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ABSTRACT

This dissertation is an interpretative study of teaching and learning mathematics in

school. Based on findings from the Third International Mathematics and Science Study

(TIMSS), it raises important mathematical and pedagogical issues that arise from

sustained efforts to implement the National Council of Teachers of Mathematics INCTM)

Principles and Standards for School Mathematics (NCTM 2000).

Told as a series of nested stories that serve as both data and method, the

dissertation uncovers the importance of landmarks that are new to the discourse of the

reform of mathematics in mathematics education:

the role of memory and stories. This study argues the centrality of children's coming
to know the discipline of mathematics through the careful telling of key stories of
mathematicians who have gone before. Such stories put students in touch with
mathematics as a profoundly human enterprise that arises from people's deep longings
to explore the world. Sharply contrasting the ubiquitous "story problems” of various
trains that leave various stations traveling in various directions, such ancestral stories

deliberately raise the same longings and desires in yet another human generation:

~ what are the ever-mysterious contours of now-familiar landscapes such as counting,

measuring, predicting, and exploring limits that mathematics was invented to resolve?
the centrality of conversation in a mathematics classroom. Through dialogue, children
and teachers gather, lay out and defend their thoughts, one with one another. The
dissertation explores the "watering hole" of mathematical discourse: those places

where students and teachers meet for rich mathematical conversation and hotly
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contested debates. Thesee are places where the "rightness” of answers are worked out
within boundaries estab:lished by the actual discipline of mathematics, not as an
anxious search for propeer procedures.

creating new mathematiics. For many children and teachers, mathematics is a desolate
sort of territory in which correct moves and answers are always known in advance,
either by the teacher or by the people who wrote the keys at the back of the textbook.
Genuine mathematical reform suggests that the classroom must, instead, be a deeply
generative place in which the disposition to create new mathematics is carefully
cultivated. Thought of im this way, mathematics loses its character as a series of
preformulated problems. to be solved, and gains a new one. It becomes a way of
thinking in which new prroblems emerge when we learn to cover the ground of old

territories in fruitful waws.
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CHAPTER ONE

Stalled At The Classroom Door

Introduction

Recently, professional mathematics and mathematics education organizations,
concerned about the quality of mathematics instruction, have issued calls for reform.
Not since the "new math" of the 1960's and 1970's has such an orchestrated change to
mathematics curricula and pedagogy been issued (Almeida and Emest 1996). For
many, that is not good news. Few people remember the reforms of "new math" with
fondness, but they find themselves caught once again in a call for fundamental changes
in mathematics education. This time, unlike the reforms of the "new math" with its
enthusiastic infusion of the study of sets, groups and other abstract mathematical
structures, these new reforms involve an emphasis on problems (Barrow 1992, Davis
1996, English 1998, Ernest, 1991, 1994). They involve

empowering individuals to be confident solvers and posers of

mathematical problems embedded in social contexts... School

mathematical knowledge must reflect the nature of mathematics as a

social construction: tentative, growing by means of human creation

and decision-making, and connected with other realms of knowledge,

culture and social life. (Ernest 1991, 207)
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Teachers are used to the roller coaster ride of reform—out with the old, in with
the new. To the jaded, the call for reform in mathematics education seems to be just
another in the long line of tried and soon-to-be-rejected educational reforms.

Depending on the dominant concern (cynics might read 'fad") of any

particular era, teachers have embraced new methodologies,

techniques, and programs: phonics, look-and-say, whole language;

the 'new math', manipulatives, computer assisted instruction, the

spiral curriculum, open areas, cooperative learning, multi-aging. The

names change from era to era, as do the dominant ideologies that

inform whatever program is developed, implemented, tested—and

ultimately rejected. Teachers talk about this phenomenon as 'the

pendulum swing.' (Clifford and Friesen 1994, 4)

And indeed, our efforts to reform in mathematics education might again fail.
We have been in this place before, wanting to demonstrate the living nature of the
discipline. Calls for reform within mathematics education seem to indicate a desire to
connect more strongly with the dynamic nature of the discipline of mathematics itself.
This was the impetus for the change of the "new math" of the 1960's and 1970's.
"Instead of the old-fashioned emphasis upon arithmetic, calculating interest rates, using
logarithms, geometry and calculus,” (Barrow 1992, 133) the founders of the "new
math," a group of mathematicians known as the Bourbaki, were anxious to demonstrate

that mathematics was a human creation and not a divine revelation.



Thirty years ago parents, who were comfortable with traditional mathematics
and were often confused by the new approaches, soon discovered that their children
were not as proficient with the mathematics they, themselves, knew. Unfamiliar with
this "new math," and worried about children’s apparent loss of basic skills, parents
called for a return to more traditional, more familiar, ways. The idea that mathematics,
itself might be changing was unsettling not only for parents but also for many other
adults. The general public called for return to "the basics.” It was not long before
textbooks and teaching returned to more traditional, more familiar ground and the
"experiment" with math reform was called a failure.

Our return to a more comfortable view of mathematics, textbooks and teaching
satisfied us. But it was not long before news of North American students' deficiencies
in mathematics started to surface. Barrow (1992) argues that traditional mathematics
curricula and pedagogy have "not adapted to meet the challenges posed by new
mathematics and its relationship to the external world and to the activities of
mathematicians and computers” (145). What is evident to us now is that, as we
returned to a more comfortable way of knowing and doing mathematics in schools, we
became further divorced from the changing, dynamic discipline of mathematics and the
technological advances that mathematics was creating. "Mathematics, in the common
lay view, is a static discipline based on formulas taught in the school subjects of
arithmetic, geometry, algebra, and calculus. But outside public view, mathematics
continues to grow at a rapid rate" (Steen 1990, 1). Instead of working through the

difficulties caused by the "new math", and there were many, we retreated. As a result,



school mathematics and the mathematics that mathematicians recognize have become
increasingly different disciplines. "School mathematics and the research
mathematician's pure mathematics are wholly different areas of study” (Almedia and

Ernest 1996, 1).

What Is Mathematics?

When I ask school children "What is mathematics?" they most frequently
answer, numbers. It's about numbers. It's plussing and minusing, and timsing and
dividing. But this definition does not belong only to schoolchildren.

Ask this question of persons chosen at random, and you are likely to

receive the answer 'Mathematics is the study of number." With a bit

of prodding as to what kind of study they mean, you may be able to

induce them to come up with the description, ‘the science of

numbers.' But with that you will have obtained a description of

mathematics that ceased to be accurate some two and a half thousand

years ago! ...

In fact, the answer to the question, "What is mathematics?' has

changed several times during the course of history. (Devlin 1997, 1)

Mathematics was the study of number up to 500 B.C. During this time
Egyptian and Babylonian mathematics, dominated by arithmetic, formed the

mathematical landscape. From 500 B.C. to 300 A.D. Greek mathematicians searched
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for ways to measure the Earth and the heavens. Earth measure and geometry were bom
and the mathematical landscape expanded and changed to include the study of shape.
This was a time of great mathematics and great mathematicians—Pythagoras, Eudoxus,
Euclid, Archimedes and Eratosthenes. During this time, Euclid introduced two new
concepts to mathematics through geometry—the definition and the axiom. Even now,
these form the bedrock of contemporary mathematics. "In fact, it was ounly with the
Greeks that mathematics came into being as an area of stu;iy, and ceased being a
collection of techniques for measuring, counting and accounting” (Devlin 1997, 2).

The mathematical landscape remained relatively unchanged until the middle of
the seventeenth century. "Until Newton's great discoveries, it never occurred to
'scientists' that mathematics could be used to express basic principles about nature or
the universe itself" (Motz and Weaver 1993, 125). Working independently, Newton, in
England and Leibniz, in Germany both invented the calculus—the study of motion and
change, "which led to one of the most famous controversies in the history of
mathematics, and to the most heated intellectual rivalry between two nations" (Motz
and Weaver 1993, 125).

With the introduction of techniques to handle motion and change,

mathematicians were able to study the motion of the planets and of

falling bodies on earth, the workings of machinery, the flow of

liquids, the expansion of gases, physical forces such as magnetism and

electricity, flight, the growth of plants and animals, the spread of

epidemics, the fluctuation of profits, and so on. After Newton and



Leibniz, mathematics became the study of number, shape, motion,

change and shape [sic]. (Devlin 1997, 2)

At first, mathematicians and physicists (wWho were one and the same during this
time) directed their energies to the applications of calculus. But with time, another
shift occurred in mathematics, and the mathematical landscape again expanded and
changed. As mathematicians worked with the enormous power that the calculus
provided, new types of mathematics were created. At the turn of this century
mathematics had grown from three distinct categories—arithmetic, geometry and
calculus—to twelve distinct categories.

The explosion of mathematical activity that has taken place in the

present century has been dramatic. In the year 1900, all the world's

mathematics knowledge would have fitted [sic] into about eighty

books. Today it would take perhaps 100,000 volumes to contain all

known mathematics. (Devlin 1997, 3)

Today, mathematics includes almost seventy distinct categories, with some
categories like algebra or topology, split into subfields. Entirely new categories of
study in mathematics such as complexity theory and dynamical systems theory are being
created. One of the reasons for this change seems to be the increasing use of computer

technologies. "Nothing in recent times has had as great an impact on mathematics as

computers..." (Inkpen 1997, 1).



Not since the time of Newton has mathematics changed as much as it
has in recent years. Motivated in large part by the introduction of
computers, the nature and practice of mathematics have been
fundamentally transformed by new concepts, tools, applications and
methods. Like the telescope of Galileo's era that enabled the
Newtonian revolution, today’s computer challenges traditional views
and forces re-examination of deeply held values. As it did three
centuries ago in the transition from Euclidian proofs to Newtonian
analysis, mathematics is undergoing a fundamental reorientation of

procedural paradigms. (Steen 1990, 7)

The possibility that our understanding of the nature of mathematics itself (and
not just the nature of teaching math) might be re-forming is difficult for most of us to
comprehend. Introduced to mathematics through traditional teaching and textbooks, we
came to know it as a fixed, logical, rational, absolute, objective, pure, abstract, and
certainly unchanging discipline. This view was reinforced as we went about trying to
solve "mainly unrelated routine mathematical tasks which involv[ed] the application of
learnt procedures, and [we learned] that every task [had] a unique, fixed and objectively
right answer, coupled with [teacher] disapproval and criticism of any failure to achieve
this answer" (Ernest 1996, 1). Many of us have carried this view of mathematics with
us into our adult world. For us, "mathematics is identified with a rote recitation of

facts and a blind carrying out of procedures. Decades later this robotic mode of



behavior kicks in whenever a mathematical topic arises. Countless people feel that if
the answer or at least a recipe for finding it doesn't come to them immediately, theyll
never get it" (Paulos 1991, 53).

The changes that are being called for in mathematics education this time appear
to be forced by the changes that are occurring in the practice of mathematics. "Standard
school practice, rooted in traditions that are several centuries old, simply cannot
prepare students adequately for the mathematical needs of the twenty-first century”
(Steen 1990, 2). Asking the question, What is mathematics? is important if we are to
move forward with reforms this time. "Scholarly work in mathematics education has
recently begun to look deeply at what mathematics is. This increased interest in what
was once the purview of philosophers of mathematics grows from a recognition that
both teaching and learning mathematics are intimately connected with doing
mathematics" (Williams 1995, 184).

Currently, conversations involving the nature of mathematics do not seem to be
a high priority for teachers and prospective teachers, those most responsible for
bringing these reforms to life.

More often than not, my efforts to discuss the nature of the subject

matter have been regarded as irrelevant time-wasters. I must confess

to a certain despair when faced with this sort of response, especially

when it is manifested among pre-service and practicing teachers. In

simplest terms, I hold little hope for any meaningful change in the

teaching of mathematics until we are willing and able to interrogate



earnestly the subject matter we are claiming to teach. A failure to do
so, I fear, will compel us to reenact the same fragmenting and
reductive practices that have recently come under harsh critique.

(Davis 1996, 56)

Clearly, it is important for teachers and researchers to explore the nature of
mathematics, itself, as they search for ways to improve the teaching of mathematics in
school. However, as Davis (1996, 80) cautions, we need to be careful about how we
ask the question, What is mathematics? “...In posing the question in those terms, there
is an implication that we can somehow consider the body of knowledge as
determinable, fixable, and separable from ourselves—as though we could somehow
step outside of our mathematics”.

Our conversations about the question "What is mathematics?" must go beyond
simply discussing the nature of mathematics. Once we fix mathematics, separate it
from ourselves, we lose sight of the fact that mathematical knowledge "emerges from
our actions in the world and from our interactions with one another" (Davis 1996, 74).
It is not preexistent, nor does it live in any one of us, yet it requires us. However, when
our only experience of formal mathematics is through the schooled delivery of
conclusions, then we come to know math as given—a determinable, static subject
constituted by unchallengeable and unchanging truths. Teachers and the textbooks
possess the facts. Their task is to transmit those facts to students. "This image of

mathematical practice portrays mathematics as a dead subject—inquiry is unnecessary
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because our concepts have been formally defined in the 'right' way and our theorems

demonstrated by linear and formal means” (Wilensky, 1993, 21).

"To do mathematics means to produce new mathematics" (King 1995, 34). But
what exactly does that mean? From the time we enter formal schooling we are steeped
in traditional school mathematics.

All of us have endured a certain amount of classroom mathematics.

We lasted, not because we believed mathematics worthwhile, nor

because, like some collection of prevailing Darwinian creatures, we

found the environment favorable. We endured because there was no

other choice. Long ago someone had decided for us that

mathematics was important for us to know and had concluded that, if

the choice was ours, we would choose not to learn it. So we were

compelled into a secondary school classroom fronted with grey

chalkboards and spread with hard seats. A teacher who had himself

once been compelled to this same place stood before us and day after

day poured over us what he believed to be mathematics as ceaseless

as a sea pours forth foam. (King 1992, 15-16)

As mathematics education re-forms itself, the question of what to teach and how
to teach it is critical. If mathematics is not simply a closed and given axiomatic system

but in fact a living discipline inspirited by ongoing questions, quarrels and
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conversations, then the pedagogy of mathematics is not an afterthought but a necessity.
If mathematics lives in its continual re-forming, then how do we create a mathematical
education that allows the young to experience the creation of mathematics? When
"outside the closed circle of professional mathematicians, almost nothing is known of
the true nature of mathematics or of mathematics research” (King 1992, 5), how do we
begin to answer the calls for reform in mathematics education? What do we reform?

What do we do differently?

Mathematics Education Reform Efforts

In the past decade, much rethinking has gone into mathematics educational
reform in terms of curriculum, pedagogy, and epistemology (NTCM 1989, 1991, 1995;
Grouws 1992). In 1989, the National Council of Teachers of Mathematics (NCTM)
set forth the document Curriculum and Evaluation Standards, followed by
Professional Standards for Teaching Mathematics in 1991 and Assessment Standards
in 1995. These three documents, along with myriad support documents, were intended
to provide recommendations to improve and reform mathematics education.

Although NCTM is a mathematics education research organization located in
the United States, its call for reform was felt within the western provinces of Canada.
In June 1995, the province of Alberta initiated a new mathematics curriculum. This
curriculum, unlike any other before it, was the collaborative effort of Manitoba,

Saskatchewan, Alberta, British Columbia, Yukon Territory and the Northwest
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Territories. The Common Curriculum Framework for K-12 Mathematics (1995) was
the first in a series of joint development projects in basic education. This curriculum,
with its unmistakable relationship to the National Council of Teachers of Mathematics
Curriculum and Evaluation Standards document, "identifies beliefs about mathematics,
general and specific student outcomes and illustrative examples agreed upon by the six
jurisdictions" (1).

Curriculum reform efforts by both the National Council of Teachers of
Mathematics and the Western Canadian Protocol for Collaboration in Basic Education
attempt to communicate clear, high expectations for students in mathematics.
Organizations such as the Canadian Mathematical Society, the American Mathematical
Association, the Canadian Forum for Mathematics Education, and the Pacific Institute
of Mathematics have joined in the efforts to increase mathematical literacy for students.
These reform efforts go beyond what traditional school mathematics has offered
students.

Traditional school mathematics picks very few strands (e.g.,

arithmetic, geometry, algebra) and arranges them horizontally to form

the curriculum: first arithmetic, then simple aigebra, then geometry,

then more algebra, and finally—as if it were the epitome of

mathematical knowledge—calculus. This layer-cake approach to

mathematics education effectively prevents informal development of

intuition along the muitiple roots of mathematics. Moreover, it

reinforces the tendency to design each course primarily to meet the
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prerequisites of the next course, making the study of mathematics
largely an exercise in delayed gratification. To help students see
clearly into their own mathematical futures, we need to construct
curricula with greater vertical continuity, to connect the roots of
mathematics to the branches of mathematics in the educational

experience of children. (Steen 1990, 4)

There is an endemic dissonance between the discourse about
mathematics led by philosophers and logicians and picked up by
educators and mathematicians and the actual practices of the creative
mathematician.

Recently, the discourse about mathematics has begun to change
bringing the two views into greater harmony. Instead of viewing
mathematics as part of the rationalist tradition in which truth and
validity are primary, a new paradigm is emerging, a view of
mathematics through an interpretative framework in which meaning

making is primary. (Wilensky 1993, 20)

Currently, however, most reform efforts live only in this discourse. Despite
some apparent, surface changes, neither the efforts of mathematics and mathematics
education organizations, the publication of new curriculum documents, nor teachers'

awareness of these documents, have fundamentally changed the nature of teaching and
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learning within the mathematics classroom (Borko et.al. 1992; Ernest 1991; Hoyles
1992; Lerman 19.97; Schmidt et.al. 1996; Senger 1996; Thornton et.al. 1997; U.S.
Department of Education, National Center for Education Statistics, 1996).

It appears that current reform efforts are stalled at the classroom door. Simon
(1995) attributes this to the that fact that "traditional views of mathematics, learning
and teaching have been so wide-spread that researchers studying teachers' thinking,
beliefs, and decision making have had little access to teachers who understood and
were implementing current reform ideas" (118). Research in this area seems to indicate
that despite concentrated reform initiatives since 1989, "the mathematics classroom of
today is not recognizably different from the classroom of one hundred years ago”
(Wilensky 1995, 20). That this is particularly true in North America was one of the

findings of the Third International Mathematics and Science Study.

The Third International Mathematics and Science Study

Background

In 1995, the International Association for the Evaluation of Educational
Achievement (IEA), an association of universities, research institutes and ministries of
education that conduct cooperative international research studies in education,

conducted its largest and most comprehensive study, The Third International
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Mathematics and Science Study (TIMSS)'. Its aim was to inform educators around the
world about exemplary instructional practices and student outcomes in mathematics
and science.

Forty-five countries participated in TIMSS, involving a half-million students at
five different grade levels.

TIMSS is significant not only because of its scope and magnitude, but

also because of innovations in its design. In this international study

the National Center for Education Statistics INCES) combined

multiple methodologies to create an information base that goes

beyond simple student test score comparisons and questionnaires to

! The Third International Mathematics and Science Study is comprised of many components:
Mathematics Achievement in the Primary School Years; Mathematics in the Middle School Years;
Mathematics and Science Achievement in the Final Year of Secondary School; Characterizing
Pedagogical Flow: An Investigation of Mathematics and Science Teaching in Six Countries;
Mathematics Textbooks: A Comparative Study of Grade Eight Texts; Cwrriculum Frameworks for
Mathematics and Science; Pursuing Excellence; The TIMSS Videotape Classroom Study: Methods
and Preliminary Findings; Many Visions, Many Aims: A Cross-National Investigation of Curricular
Intentions in School Mathematics; and Case Study Literature Review of Education Topics in
Germany, Japan and the United States. This list is not complete. It is intended to give the reader an
idea of the scope and magnitude of this study. It is also intended to help the reader understand why
authors I cite change but I still refer to the TIMSS study. In this paper, when I refer to TIMSS
researchers, | intend the Third International Mathematics and Science Study in its entirety. When I

refer to a particular research component of TIMSS, I make direct reference to it.
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examine the fundamental elements of schooling. Innovative research
techniques include analyses of textbooks and curricula, video-tapes,
and ethnographic case studies. (U.S. Department of Education 1996,

3)

A rigorous quality control program ensured that the data were
gathered from representative samples of comparable populations, that
the instruments were not biased, and that the data collection and
processing standards were of high quality. (Robitaille, Taylor and

Orpwood 1997, 37)

TIMSS Achievement Results

The findings of Mathematics Achievement in the Primary School Years—
Grades 3 and 4 were published in June 1997. Reporting on the results, the U.S.
Department of Education, National Center for Education Statistics, 1997,
Commissioner of the National Center for Education Statistics (INCES), stated that:

In mathematics, seven countries score above the United States; six

countries are similar; and 12 countries are below us. OQur students'

scores are below those of Japan, not significantly different from those

of Canada, and are significantly higher than those of England. (U.S.
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Department of Education, National Center for Educational Statistics

1997, 1)

About 16,000 Canadian Grades 3 and 4 students participated in TIMSS. The

achievement portion of the mathematics test required that students answer 102

questions.

questions.

Of these 79 were multiple-choice questions and 23 were free-response

Over 89 percent of the items were considered suitable for the
curricula studied by Canadian students, with B.C. rating the
highest proportion as appropriate; and Newfoundland, the
lowest. Analysis shows that the mean percent correct scores
seem not to be affected much by either the selection of items
used in calculating the scores or the proportion of items
considered appropriate. (Robitaille, Taylor and Orpwood 1997,

4).
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Grade 4 TIMSS Results
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Figure 1.1
(Robitaille, Taylor, and Orpwood, 1997, 4)

Canadian fourth graders scored 532, three points above the international

average of 529, and American students scored 545, sixteen points above the
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international average. Canadian students exceeded the international average in four of
the six mathematics areas tested—geometry; whole numbers; patterns, relations, and
functions; and data representation, analysis, and probability. In the two mathematical
areas of measurement, estimation, and number sense and of fractions and
proportionality did Canadian fourth graders score below the international average.

The findings of the Mathematics Achievement in the Middle School Years—
Grades 7 and 8—indicate that eleven countries scored above Canada; four countries are
similar; and twelve countries are below us. Canadian Grade 8 students attained a mean
of 59 percent, four percentage points higher than the international mean, but
significantly below the mean of Singapore, Korea, Japan and Hong Kong.

The TIMSS mathematics achievement test at the Grades 7 and 8 levels involved
answering 151 items of which 128 were multiple-choice questions and 23 were free-
response questions.

Over 90 percent of the items were considered suitable for Canadian

students, with B.C. rating the highest proportion as appropriate; and

Ontario, the lowest. Analysis shows that the mean percent correct

scores seem not to be affected much by either the selection of items

used in calculating the scores or the proportion of items considered

appropriate. (Robitaille, Taylor, and Orpwood 1997, 4)
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Canadian eighth grade students exceeded or met the international average in all six of
the six mathematics areas tested—fractions and number sense; geometry; algebra; data

representation, analysis and probability; measurement; and proportionality.
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Grade 8 TIMSS Results
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What Does It Mean?

The most obvious, and most widely discussed finding of TIMSS in the popular
media is that Canadian and American students are lagging behind their Asian
counterparts in mathematical achievement. "You see,” I hear people say, "the Japanese
are beating us. Our kids don't know enough math. We should stop with all these new
ideas and go back to the basics." People such as E.D. Hirsch Jr., in the United States,
and Dr. Joe Freedman, in Canada, have responded to the relative weakness of the
North American showing by denouncing math reform efforts and calling for a return to
"the basics" (Bracey 1998, Ireland 1998). Unfamiliar with the study itself, such critics
of the current reform efforts point to North America's mediocre performance and blame
the reform efforts. However, TIMSS findings indicate that 95 percent of U.S. eighth-
grade students in North America have not been impacted by the reform initiatives while
the higher achieving Japanese students have. Ironically, in light of North American
criticism of reform efforts, "Japanese mathematics teaching more closely resembles the
recommendations of the U.S. reform movement" (U.S. Department of Education,
National Center for Education Statistics 1996, 70). The problem is not that new-
fangled changes in North American approaches to teaching mathematics has failed
students. In fact, the opposite seems to be the case: although “most U.S....math
teachers report familiarity with reform recommendations, ...only a few apply the key
points in their classrooms" (U.S. Department of Education, National Center for

Education Statistics 1996, 70). Actual analysis of TIMSS findings demonstrates that
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the current push to see math and science classrooms return to the
basics is based on 'a rash assumption unsupported by data." The
TIMSS data on what and how math and science are taught, the
researchers say, 'are far from being a reflection of ill-conceived
reforms. Instead, the empirical patterns observed reflect a

widespread choice to focus on basics. (Lawton 1998, 1)

As we search for ways to improve mathematics education this time, it is important to
remember the lessons we learned from the "new math" initiatives. We cannot afford to
let the general public and uninformed critics gain popular support. Equipped with the
extensive data that TIMSS provides, education researchers, mathematicians, politicians
and teachers working together can effectively chart a course towards meaningful
reforms. "TIMSS clearly and accurately provides a wealth of useful data and
information on curriculum, instruction, teacher and student lives, and student

achievement” (U.S. Department of Education, National Center for Education
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Statistics1996, 4). TIMSS data from primary and middle schools® go a long way
towérd shedding light on the questions that lie at the heart of this dissertation: how do
we begin to answer the calls for reform in mathematics education? What do we reform?
What do we do differently? In particular, the data suggest that mathematics teaching in
high-performing countries closely resembles reform initiatives recommended by the
National Council of Teachers of Mathematics, initiatives hotly contested in the popular

press and widely misunderstood both outside and inside the profession.

Searching For Explanations

A number of popular explanations are often mentioned as discussions arise
about what factors contribute to North American students' weakness in mathematics.
Some of these factors center on perceived problems with the children: Canadian and
American kids watch too much TV; they are involved in too many extra-curricular
activities; Asian students do far more homework. Some of the perceived problems lie in

the classroom. It is not unusual to hear complaints about classes that are too large,

2 The Mathematics and Science Achievement in the Final Year Of Secondary School, IEA's Third
International Mathematics and Science Study, was released in January 1998. Unlike the TIMSS study
of Mathematics Achievement in the Primary Years and Mathematics Achievement in the Middle
School Years, the Mathematics and Science Achievement in the Final Year of Secondary School
involved a smaller sample of countries, which included Canada and the United States. The Asian
countries did not participate in this study. Because of this fundamental difference in the design of the

Secondary study, [ will not include its data in my analysis.
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teachers who lack education, or teachfng styles that place too much emphasis on group

work.

The richness of TIMSS data that was collected from students, teachers, and
school principals makes “it possible to examine differences in current levels of
performance in relation to a wide variety of variables associated with the classroom,

school, and national contexts within which education takes place" (Mullis et.al. 1997,

10).

TIMSS Questionnaires

All students participating in TEIMSS answered questions about their opinions,
attitudes and interests in mathematics. Along with other questions, students reported
on:

e whether they thought it was important to spend time doing mathematics, science,
sports and having fun

e whether their mothers thought it was important to do mathematics, science, sports
and having fun

e whether their friends thought it was important to do mathematics, science, sports
and having fun

e how they spent their out-of-school time during the school week

e how they spend their leisure time on a normal school day

e how many hours they spent watching television and videos on a normal school day
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Because teachers and the instructional approaches that they use are important in
building students' mathematical understanding, all teachers participating in TIMSS
completed questionnaires about their beliefs about math and about their teaching
practices. Along with other questions teachers reported on:

e their academic qualifications and teaching experience

e their beliefs about mathematics and the way mathematics should be taught
e how their mathematics classes were organized

e what activities their students do in their mathematics learning

e how much homework they assign

Findings From The Questionaires

1. TV and extra-curricular activities

This is often cited as the major reason why students do not do welil on their tests or
assignments. The perception is that Canadian and American students watch more TV
or participate in more extracurricular activities than their Asian counterparts. TIMSS
found that "beyond the one to two hours of daily television viewing reported by close
to the majority of eighth graders in all participating countries, the amount of television
students watched was negatively associated with mathematics achievement" (4).
"Fourth grade students in all countries also reported that they normally averaged an

hour or two each school day watching television" (Mullis et.al., 1997, §).
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"In most countries, eighth graders reported spending as much out-of-school time
each day in non-academic activities as they did in academic activities" (U.S.
Department of Education, National Center for Education Statistics, 5). Besides
watching television, Grade 4 students reported spending from one to two hours per

day on extra curricular activities, such as sports.

2. Homework

Increase the amount of homework or increase the number of instructional hours
are arguments that are frequently forwarded as ways to raise mathematical
achievement.

Homework is a way of extending the school day and indirectly increasing
instructional hours. TIMSS found that all students participating in the study typically
reported spending approximately an hour each day on mathematics homework. "The
relationship between amount of homework assigned and achievement was not
straightforward. High-performing countries assigning relatively low levels of
homework included Japan, the Czech Republic and Flemish-speaking Belgium" (Beaton
et.al. 1997, 144). TIMSS found that Canadian and American teachers assign more
homework and spend more class time discussing it than do their Asian colleagues.

The amount of time spent in mathematics classes varied from country to
country. Many teachers, including teachers from Japan and Singapore, reported that
students spent at least two hours to three and a half hours per week in class. Teachers

from some countries, including Canada and the United States, reported that students
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spent three and a half to five hours per week in mathematics classes. TIMSS data
revealed "no clear pattern between the number of in-class instructional hours and
mathematics achievement either across or between countries" (Beaton et.al. 1996,

144).

3. Class Size

In North America, teachers and other educators readily blame large class sizes on
decreased achievement levels. Concerned about huge classes of 30 or more students,
teachers long for smaller classes. However, TIMSS found that there were significantly
fewer students in each math class in North America than in the Asian countries. At the
Grade 4 level, TIMSS found that on average Canadian and American classrooms have
24 students while Asian classrooms have greater than 30 with Singapore reported the
highest number of students per classroom at 39. At the Grade 8 level, TIMSS found
that there are typically fewer than 30 students in Canadian and American classrooms
while most Asian countries reported classrooms of greater than 30 students, and Korea
reported classes of more than 40 students. TIMSS researchers found that the four
highest-performing countries at the fourth and eighth grade are among those with the
largest mathematics classes. The numbers of students, in and of itself, was not a
significant contributing factor to North American students’ relatively poorer
performance.

Extensive research about class size in relation to achievement

indicates that the existence of such a relationship is dependent on the
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situation. Dramatic reductions in class size can be related to gains in
achievement, but the chief effects of smaller classes often are in
relation to teacher attitudes and instructional behaviors. (Beaton et.al.

1996, 151)

4. Teacher Education

The general public and critics of mathematics education are often quick to
blame poor mathematical performance on lack of sufficient teacher education. The
popular myth is that Canadian and in general North American teachers are not as well
educated as their Asian colleagues. TIMSS found that the qualifications required for
teaching certification were relatively uniform across countries. Canadian and American
teachers have more college education than their colleagues do in all but a few TIMSS
countries. The amount of teacher education, in and of itself, is not enough to account
for lack of student achievement. Even (1993) contends that "good subject-matter

preparation for teachers is necessary but not sufficient” (112).

5. Group Work
An emphasis on too much group work is sometimes cited as a reason why
students do not do as well on individual measures of achievement. TIMSS found that
placing students in small groups is an instructional strategy in many subject areas in

North America, but it is not a common strategy in mathematics classrooms. TIMSS
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reported that small-group work was the least used instructional approach in both the
primary and middle school years. Students in North American mathematics classrooms
typically work together as one large group with the teacher directly instructing the
whole class followed by students’ working individually. The perception that group
work is In some way contributing to lower achievement in the mathematics classroom is
unfounded.

TIMSS findings clearly indicate that the comparative weakness of Canadian
and American student achievement cannot be attributed to too much TV watching, too
many extra curricular activities, lack of homework, large class sizes, lack of teacher
education, or an increased emphasis on group work, despite critic's attempts to find
explanations in these areas. Data from the questionnaires do not seem to identify any
one factor that accounts for Canadian and American's students' achievement in

mathematics.

TIMSS Videotape Study

In addition to the math assessments; school, teacher and student questionnaires;
and curriculum analysis, the United States sponsored two additional parts of TIMSS
which were carried out in Germany, Japan and the United States. One of these parts
involved videotaping typical lessons taught to Grade 8 students in each of these
countries. The tapes were analyzed to compare teaching techniques and the quality of

instruction. The other part involved ethnographic case studies of key policy topics.
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This part of the study involved "a team of 12 bilingual researchers spending three
months in Germany, Japan or the United States observing classrooms, interviewing
education a{uthorities, principals, teachers, students and parents" (United States
Department of Education 1996, 16). Analysis of the videotapes reveals important data,
and sheds light on the current impasse in math reform initiatives. Although Canada did
not participate in the Videotape Classroom Study, the findings from the United States
can help us better understand the current state of mathematics teaching in Canada.
Achievement of Canadian and American students was not significantly different, and
curricular reforms in both countries have been dramatically impacted by the National
Council of Teachers reform efforts and initiatives.

The TIMSS Videotape Classroom Study was conducted in a total of 231
classrooms: 100 in Germany, 50 in Japan and 81 in the United States. This part of the
study had four goals:

¢ To provide a rich source of information regarding what goes on inside
eighth-grade mathematics classes in three countries;

e To develop objective observational measures of classroom instruction to
serve as quantitative indicators, at a national level, of teaching practices in
the three countries;

¢ To compare actual mathematics teaching methods in the US and other
countries with those recommended in current reform documents and with

teachers’ perceptions of those recommendations



e To assess the feasibility of applying videotapes methodology in future
wider-scale national and international surveys of classroom instructional
practices

(U.S. Department of Education, TIMSS Videotape Classroom Study 1996)
The data from the videotapes were analyzed according to five categories: the
way the lessons are structured and delivered, the kind of mathematics that is taught, the
kind of thinking students engage in during the lessons, and the way teachers view

reform.

How Teachers Structure And Deliver Their Lessons

Before observing the mathematicg classroom, researchers asked teachers to
describe the goals that they had established for the lesson. Researchers found a
significant difference between the stated goals of U.S. teachers and Japanese teachers.
U.S. teachers' goals were to have students acquire particular skills, while Japanese

teachers' goals were to have students understand a particular concept.

Learning a skill, such as being able to solve a certain type of problem,
or using a standard formula, was listed as the goal by about 60
percent of the U.S. teachers, compared with 27 percent of the
Japanese teachers. Mathematical thinking, such as exploring,

developing, and understanding concepts, or discovering multiple
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solutions to the same problem, was described as the goal by 71% of
the Japanese teachers, compared to 24% of U.S. teachers. (U.S.

Department of Education 1996, 42).

This difference is evident in the transcripts from the classrooms that typically follow the
following sequence of activities.
Table 1.1

Comparison of the steps typical of Eighth-Grade Mathematics Lessons
In Japan, the U.S. and Germany

The emphasis on understanding is evident in the steps typical
of Japanese eighth-grade mathematics lessons:

teacher poses a complex thought-provoking problem
students struggle with the problem

various students present ideas or solutions to the class
class discusses the various solution methods

the teacher summarizes the class' conclusions

students practice similar problems

In contrast, the emphasis on skill acquisition is evident in the
steps common to most U.S. and German math lessons:

= teacher instructs students in a concept or skill

= teacher solves example problems with class

- students practice on their own while the teacher assists
individual students

TIMMS, unpublished tabulations, Videotape Classroom Study, 1996, UCLA.

There is a strong correlation between teachers' stated goals and the type of
work students do in-class. In the U.S. 96 percent of seatwork was devoted to
practicing routine procedures that the teacher had demonstrated. A typical U.S. lesson
is organized around acquisition and application. In the acquisition phase the teacher

demonstrates how to solve a problem involving a particular skill. The goal is to clarify
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the procedural steps that are required so that students will be able to solve related
problems on their own. In the application phase, students are assigned a worksheet or
textbook pages, which reinforce the procedure that was demonstrated through the
sample problem. The students work alone while the teacher circulates through the
classroom assisting individual students. If a number of questions arise about a particular
question, the teacher stops the class and works through the problem on the board with
the whole class. The class typically ends with the teacher assigning any unfinished
problems as homework.

In Japanese classes students follow quite a different script. The lesson typically
focuses on one or two problems and the students are challenged to invent new
solutions, proofs, or procedures without the teacher’s direct instruction or intervention.
After stating the problem or the nature of the investigation, the teacher generally asks
students to work on the problem on their own for a few minutes. During this time the
teacher circulates throughout the classroom assisting students by asking questions.
After this the teacher asks students to work together to come up with possible
solutions. Students work together for approximately 10 minutes. Some students are
asked to come to the board and present their solutions to the class. The teacher and
the rest of the students ask questions and request clarification, which the presenting
students answer. The teacher then reviews each of the solutions and presents a follow-
up problem. Again the teacher asks students to consider the problem individually first
and then to work with peers. After approximately 30 minutes the teacher brings the

class together again and reviews the various solutions. For homework the teacher
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either assigns a follow up problem to the one or two that were presented during the
lesson or no homework. This type of lesson structure was observed in only one
percent of U.S. classes.

The videotape transcripts indicate that when a lesson included a mathematical
concept, it was usually simply stated in U.S. classrooms. This occurred in 78 percent
of the U.S. math lessons and 17 percent of the Japanese lessons. It was much more
common that concepts were developed, not simply stated, in Japanese classrooms.
This occurred in 83 percent of Japanese lessons and only 22 percent of U.S. lessons.
For example, a U.S. teacher might tell students that the Pythagorean theorem was a* +
b® = ¢?; whereas, a Japanese teacher would design the lesson in such a way that the
students themselves derived the mathematical concept from their own struggle with a
problem or investigation.

"These findings from the videotape study are corroborated by the TIMSS
questionnaire findings" (U.S. Department of Education 1996, 43). Teachers were
given questionnaires that asked them to select activities that were characteristics of
their type of teaching. U.S. teachers generally selected activities that focused on
computational skills. Japanese teachers selected activities that involved analyzing
relationships, writing equations, explaining reasoning, and solving problems with no
obvious solution.

This part of the study also examined the way that mathematical ideas and
concepts were linked together. The Curriculum and Evaluation Standards and The

Common Curriculum Framework for K-12 Mathematics state that a critical component
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to mathematical activity involves the ability to connect mathematical ideas to other
concepts in mathematics. The videotape study found that 96 percent of Japanese
teachers' lessons included explicit language to help students link concepts while this
occurred in only 40 percént of U.S. lessons.

It is important to note that not all teachers who were videotaped taught in this
way, but "what is striking, when viewing the videotapes across the two countries, is
how many of the lessons appear consistent with these scripts" (Stigler and Hiebert,
1998, 8). The script of a typical U.S. lesson is familiar to most of us. The teacher
demonstrates the procedure and the students reproduce the procedure. The questions
that arise involve problems or misunderstanding of technique. Mathematics, in these
classrooms, is the formulation of fixed, static, unchallengeable and unchanging truths.
Because of this emphasis on "the right way", students seldom have the opportunity to
experience the life of mathematics through negotiating meaning, constructing different
representations, critiquing these representations, defending and debating possible
solutions, and posing new problems. "If we deprive learners of this opportunity, we
strip mathematics of its essential character and deprive them of real mathematical
experience" (Wilensky 1993, 22).

The videotape script shows that a typical Japanese lesson is much more likely to
invite students into mathematical ways of knowing and doing. Students are expected to
engage and debate with each other as they progress through the messiness of creating,
producing and defending their mathematical knowledge. "Clearly, Japanese students

much more often engage in the type of mathematical thinking recommended by experts
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and the U.S. reform movement" (U.S. Department of Education, National Center for

Education Statistics, 1996, 43).

The Kind Of Mathematics That Is Taught

There are significant differences in the kind of mathematics that is taught in the
three countries. U.S. eighth-graders were learning material that was part of the seventh-
grade curriculum in the other two countries. The U.S. eighth grade mathematics
curriculum focuses more on arithmetic while the German and Japanese curriculum
focuses on algebra and geometry. In addition, TIMSS researchers found that
mathematics curricula in the U.S. is unfocused and consistently covers far more topics
than is typical in the other countries.

Some of the differences in curricula might be attributed to fundamental
differences between Japan and the United States when it comes to matters of who
controls education. In Japan education standards are set and monitored by the
Japanese Ministry of Education.

The ministry develops national curricular guidelines that define

education standards. In writing the curricular guidelines, no effort is

made to define exactly what should be taught at each grade. Rather,

the guidelines consist of general descriptions of what students are

expected to accomplish during each year of schooling. The time and

manner in which the material is presented in each classroom are
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decided by the school administration or by the individual teacher.

(Stevenson, 1998, 6).

Mathematics teachers in Japan are familiar with the learning goals that are
issued by the Ministry of Education. Japanese federal documents contain general goals
and teachers work together to support and help each other understand how to
implement the goals, improve their own pedagogy and improve the curriculum. "During
their careers, Japanese teachers engage in a relentless, continuous process of improving
their lessons to improve students' opportunities to achieve the learning goals. Small
groups of teachers meet regularly, once a week for about an hour, to plan, implement,
evaluate, and revise lessons collaboratively” (Stigler and Hiebert 1997, 9). Teachers
are expected to work together developing Iesson's, observing and critiquing other
teacher's lessons, and sharing their work with other teachers. This is in stark contrast
to North American teachers who generally plan, teach and evaluate therr lessons by
themselves.

In the U.S., education is not a federal matter. Standard guidelines for education
fall under state jurisdiction. "State education standards include content standards in
core subjects, performance standards for students, and standards related to students’
opportunities to learn” (Stevenson 1998, 7). Most of the 16,000 districts in the U.S.
design their own curriculum or standards, which specifically address the broad
guidelines issued by the individual states.

U.S. teachers reported that they seldom met with colleagues to plan lessons.

Most U.S. teachers reported that they followed the textbook when deciding how to
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present a topic to their students and 95-99 percent of the teachers reported that they
used textbooks in their lessons. "The question thus arises: Do U.S. mathematics
textbooks add guidance and focus to help teachers cope with unfocused curricula?
Unfortunately, the answer is 'no.’ The splintered character of mathematics curricula is
mirrored in the textbooks used by teachers and students" (Schmidt et.al. 1997, 4). U.S.
textbooks are published for a national market even though education standards are set
by the state. "Because there are no national guidelines, publishers have a wide degree
of latitude to develop and market books that they believe will have the greatest sales”
(Stevenson 1998, 7). U.S. textbooks tend to cover many topics, generally far more than
a teacher can adequately cover in a year. Although mathematics curricula are different
from state to state, textbook publishers do not publish differentiated content for the

various states.

The Kind Of Thinking Students Engage In During The Lessons

The TIMMS videotape researchers asked three mathematics professors and one
professor of mathematics education to examine the tapes and evaluate the quality of
mathematics contained in the lessons. They were not actually allowed to view the
videotapes, but were provided with a written summary of lessons from three countries:
Germany, Japan and the U.S. Identifying words were altered so that the reviewers were
unable to discern which country the transcript represented.

The following represents the findings of the review panelists.



40

FIGURE 11
Erer ADGEMENTS OF THE QUALTY OF THe Marrensancar Content
Of EGHH-GRADE Lessons

@ LOwW 87

PERCENT OF 1ESSONS

Therd inceruanondl Maghemiccs and Soence S ke =1 Say. UCLA, 1798,

Videotape Classroom Study 1996
Figure 1.3

87 percent of U.S lessons called for students to use the lowest level of mathematical
reasoning, as compared to 13 percent of Japanese teachers' lessons. This finding
suggests that a high quality of mathematical reasoning is probably a rare phenomenon
in the U.S.

Since the 1960s, progressive ideologies have dominated mathematics education
in North America. At the end of the 1960s the Mathematical Association published a
report on primary mathematics endorsing a progressive philosophy (Ernest 1991).
With its roots firmly grounded in developmental psychology, as opposed to behavioral
psychology, the most important aspects of 2 mathematics education became: fostering
student confidence, developing positive attitudes and self-esteem with regard to
mathematics, and shielding the student from negative influences that might undermine
these attitudes (Clifford and Friesen 1994, Ernest 1991). The pedagogy that developed
from progressivism actively discouraged teachers from creating experiences that create

dissonance and conflict for students. "Efforts to shield the child from these experiences
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mean that "children's 'errors' are not explicitly corrected, for fear of hurt and emotional
damage” (Emest 1991, 194).

A great deal of tension is created for teachers in attempting to reconcile
progressive ideologies and their accompanying "child-centered" practices with their
own understanding of and experiences with mathematics. For most North American
teachers, mathematics is an absolute, fixed body of lcnowledge:'.3 However, "a deep
commitment to the ideals of progressive mathematics education can and frequently
does co-exist with a belief in the objectivity and neutrality of mathematics, especially
amongst mathematics teachers and educators” (Ernest, 1996, 5). Caught between two
opposing forces, teachers attempt the fine art of juggling. But as the TIMSS videotape
study shows, mathematical understanding and reasoning are jeopardized by failure to

engage students in creating mathematical concepts and structures.

The Way Teachers View Reform

Ninety-five percent of U.S. teachers said that they were aware of the current
ideas about teaching and learning mathematics. More than 75 percent of U.S.
mathematics teachers stated that they were familiar the National Council of Teachers of
Mathematics, Curriculum and Evaluation Standards and Professional Teaching

Standards.

3 As discussed earlier in an earlier section



A great deal of effort has been invested in the reform of mathematics
teaching in the U.S. in recent years. There is considerable agreement
among experts about what good instruction should look like. The
main goal of the reform is to create classrooms in which students are
challenged to think deeply about mathematics and science, by
discovering, understanding and applying concepts in new situations.
For many years, Japanese mathematics educators have closely studied
U.S. education reform recommendations, and attempted to implement
these and other ideas in their own country. (U.S. Department of

Education, National Center for Education Statistics 1996, 46)

With the amount of attention and emphasis that mathematical reform has
received in the United States, it stands to reason that TIMSS researchers would find
strong agreement between the reform initiatives and classroom practice. Teachers
indicated that they were aware of reform initiatives and most stated that they were
implementing reform recommendations in their lessons. But the findings suggest that
they are not.

When asked to evaluate to what degree the videotaped lesson was in

accord with current ideas about teaching and learning mathematics,

almost 75 percent of the teachers respond either "a lot" or "a fair

amount.” This discrepancy between teachers' beliefs and the TIMSS

42
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findings leads us to wonder how teachers themselves understand the
key goals of the reform movement, and apply them in the classroom.
(U.S. Department of Education, National Center for Education

Statistics 1996, 46)

U.S. teachers were asked to view the videotapes of their lessons and indicate to
researchers which aspects of their lesson, in particular, demonstrated current ideas
about teaching and learning. Their answers indicate a strong awareness of instructional
techniques: hands-on, use of manipulatives, real-world math and cooperative learning.

Over 80 percent of the teachers in the study referred to something

other than a focus on thinking, which is the central message of the

mathematics reform movement. The majority of the teachers cited

examples of hands-on math or cooperative learning, which are

techniques included among the reform recommendations. However,

these techniqu/es can be used either with or without engaging students

in real mathematical thinking. In fact, the videotape study observed

many examples of these techniques being conducted in the absence of

high-quality mathematical content. (U.S. Department of Education,

National Center for Education Statistics 1996, 47)

Nineteen percent of the teachers stated that they believed that their lessons

contained the type of mathematical thinking that was indicative of current ideas being



forwarded in mathematical teaching and learning. TIMSS researchers found no
indication of the type of mathematical thinking being called for in the reform documents
7when they analyzed the U.S. teachers’ lessons. In contrast, the videotape study found
that Japanese teaching more closely resembled the recommendations of the U.S. reform
movement than did U.S. teaching.

The discrepancy between teacher’s beliefs and their practice is not as unusual as
it might first appear. Many research studies corroborate TIMSS findings. Hoyles
(1992) points out research into the area of teacher thinking, content knowledge, and
teacher beliefs "has shown evidence of inconsistencies between beliefs and beliefs-in-
practice....This mismatch was thrown into relief when teachers were faced with an
innovation..." (41). Numerous studies on teacher beliefs demonstrate that teacher
beliefs are not always consistent with their practice (Borko 1992; Carpenter et.al. 1988;
Cooney 1985; da Ponte 1994; Emmest 1996; Good 1990; Gorman 1991; Hoyles 1992;
Lerman 1997; Raymond 1997; Senger 1996; Thompson 1985). And although TIMSS
researchers found that many U.S. teachers report familiarity with reform
recommendations, they found little evidence of an understanding of what is required to
implement the reform initiatives.

Meaningful mathematical reform is still in its infancy in the United States. It is
clear that teachers have not understood the intent of the reform initiatives and
consequently have not been able to implement the necessary changes into their practice.
To date, reform recommendations have been disseminated through documents issued

from national organizations. If distributing written reports and establishing standards



45

could change teaching, reform in the U.S. would be successful. If changing features of
instruction led to increased achievement, then the increased use of manipulatives,
cooperative groups and changes to current U.S. curricula and textbooks would lead to
increased student achievement. If making teachers more accountable for increased
achievement were all that were necessary, then U.S. students should have scored with
the best.

North American efforts to improve mathematics education have focused on
documentation, standards and accountability. These are all essential components of
successful reform. Indeed, they formed the basis of changes mandated by the Japanese
Ministry of Education. But however necessary they are, documentation, standards and
accountability are not sufficient conditions to ensure that teachers and students increase
the depth of their mathematical understanding. As TIMSS results clearly indicate,
current reform initiatives ignore a fourth essential element: the processes of teaching
and learning in classrooms.

It is very tempting to conclude that North American teachers should just teach
more like their Asian counterparts. However, it would be folly to think that Wé could
transplant Japanese methods in North American soil without considering the cultural
milieu that support them. In Japan, teachers are expected to work together. They
develop and refine lessons, critique each others' practice, seek and offer advice about
how to improve. In North America, the classroom is the teacher's private domain.
Teachers seldom work with one another for long periods of time. They rarely see one

another teach, and it is almost unheard of for one teacher to critique another's lesson.
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Larger cultural differences in the relative importance of group cohesion and individual
autonomy that characterize Asian and North American societies work themselves out in
such pointed, and significant, moments in teachers' lives in school.

Stigler and Hiebert (1997) point to the bleak implications of this difference:
"our biggest long-term problem is not how we teach now but that we have no way of
getting better. We have no mechanism built into the teaching profession that allows us

to improve gradually over time " (10).

The Classroom: The Place Of Reform

Perhaps, more than any other research study, the findings from TIMSS shows
us the current state of mathematics education. Although TIMSS was not designed to
measure the effects of current mathematical reforms, it provides a lens through which
we can see the working out of the current initiatives in the classroom. Even though the
current reform initiatives have dominated documents and official discourse since 1989, it
is clear that they are stalled outside the classroom door in far too many North American
schools. Many teachers have been able to adopt the artifacts of the reforms, thinking
that they were embracing the new ideas advocated by the various reform organizations.
But however well intentioned and optimistic, far too few teachers actually encourage
genuinely mathematical ways of thinking, knowing and creating.

As we try once again to move forward with important and necessary reforms to
mathematics education, we need to remember the lessons of the "new math." This time,

equipped with the extensive data that TDMSS provides, we have the information we
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need to be able to counter the arguments of uninformed critics. Some of those critics
dismiss the relevance of North American students' achievement by insisting that social
differences between the countries invalidate true comparison. Such people point to such
factors as hours of homework, teacher preparation, or what they feel is an Asian
emphasis on rote learning to the detriment of individual student development. The
TIMSS data shows that these commonsense perceptions of the differences between
Asian and American students and classrooms are incorrect. Others claim that
international studies compare apples and oranges: Asian students drawn only from the
academic elite and North American students drawn democratically from the wide
spectrum of society. Analysis of the structure of the TIMSS study refutes that dismissal
as well.

Nor can educators committed to fundamental reform of mathematics teaching
let the popular power of uninformed criticism return us to a narrow and instrumental
view of "the basics”. It is exactly that turn back to "the basics” that has got us into the
position we now find ourselves: "The majority of today's high school graduates—not to
mention dropouts—still lack fundamental 'walking around’ skills in quantitative literacy”
(Steen 1997, ;cw). As critics point to our international achievement results and blame
the new reforms, we can confidently counter their attacks: reforms have not impacted
North American classrooms in any substantial way.

It would help ease our burden if we could just import Japanese teaching and

learning into our classrooms. But teaching is more than prescription. It is more than a

collection of "individual features, such as using concrete materials, asking higher-order
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questions, or forming cooperative groups” (Stigler and Hiebert 1997, 8). Teaching is a
cultural activity (Stigler and Hiebert 1999). It is situated in political, economic and
social milieus that combine to work their way out in our classrooms. We have had
enough add-ons already—that is part of our problem. The work we need to do is far
more basic.

The classroom. This is the place where we need to focus our energies, attention
and research to bring about meaningful reforms in mathematics education. The
pedagogy of mathematics is not an afterthought but a necessity. This is the place where
mathematics lives. This is the place that mathematics is re-formed. It is a messy place
full of debating, negotiating, and presenting multiple representations about fundamental
meanings of mathematical objects, operations and ideas. It is not the clean, sanitized
picture presented in textbooks and proofs. It is a place where curricula gets created,
worked out, and recreated anew.

How can curriculum be so built that it will touch something deep that

stirs teachers and students to animated living? How can a curriculum-
as-plan be so built that it has the potential for a curriculum-as-lived
which is charged with life? How can a curriculum be bult so invitingly
that teachers and students extend a welcome hand? How can
curriculm be so built with openings and open spaces that teachers and

students come to in-dwell vitally? (Aoki 1989, 17)
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As TIMSS clearly shows, teachers cannot create this place alone. Just writing
documents and making teachers more accountable does not help them understand the
intent of the new mathematics reforms. Despite the urgency and the pervasiveness of
the documents and reform discourse, when teachers look at their own classrooms, they
are still left wondering, what do we do differently? What do we reform? All of us who
are interested in improving mathematics will have to work this out. We will have to
redefine "the basics" so that we can identify the basic attributes of genuinely
mathematical thinking, knowing and creating. We will need to create images of
practice that best cultivate these attributes, and that speak in compelling ways to the
context of North American classrooms. That is, we need to help teachers find answers
to yet another question: "what does it look like when teachers and students engage with
one another in deeply mathematical ways?"

The classroom. This is the place that this dissertation will take you. It is the
place where teachers and students work together to re-form the mathematics in
mathematics education. This is a story of what it looks like when teachers and students

engage with one another in deeply mathematical ways.
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Here You Do Things*

Here you do things.
As mighty as the solar system
as ancient as trees.

Ancient Greece a living friend
Far away China as close as can be.
Strange worlds not so different
than here.

Givers
and receivers
creators
and readers.

Geometric worlds

broken to pieces
recreated with
understanding.

Napier bones
wolf skulls
flying birds.

This year was filled
with my own wonders.

Margaret, age-12

4 Here You Do Things is an original poem composed by Margaret, a student in our class. She wrote

this poem to Pat and me as a thank you gift at the end of the school year.
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CHAPTER TWO

Finding New Ways

Starting Alone

"What you do is okay. But if you're going to teach like fhat, I can't help you. I
don't know anyone who can.”

That was fourteen years ago. I was just out of university. It was September and
as a new teacher in my first teaching assignment, [ was anxious to show the consultant
that sat in my room that day, that I had the makings of a good teacher. It was her job to
offer me assistance and advice as I started out not only in this classroom, in this school,
but also in this profession. As a newcomer, I wanted to know if I was on the right
path.

Ther’e are, for all of us, moments when time seems to freeze. Something occurs
that is so charged with emotion and intensity that even though the background fades
away, the thing itself stretches its icy tentacles into the vulnerable reaches of your brain.
It's the unexpected.

I was just starting out. I was new to this place. I was hoping that the person
who came into my classroom would help me recognize what was going on. Instead of

clarification and direction, I heard that I would walk this path alone.
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A Chance Meeting

I had just moved to a new school and was team teaching in a Grade 1/2
muitiage classroom. Pat came into the classroom. She was a consultant. She wanted
to do research. My teaching partner's friend had suggested that she contact us. I
listened as she talked about what she had in mind.

"So what do you think?" my teaching partner, Chris’ asked me after Pat left.

"It'll be okay," I replied, "but she'll have to teach with us. She's not going to sit
there and watch us."

"Sharon, you're kidding. Pat won't do that. She's a high school teacher. She’s
a consultant." Chris laughed at my demand.

"No. Iinsist. Phone her and tell her."

I had no idea at that moment that this would be a new beginning for me. Pat
agreed to my request. She came in, rolled up her sleeves, and taught with us. I don't
know why I made that request. The memories of my first encounter with a consultant
had faded and I was now very used to having consultants, researchers and preservice
teachers come into my classroom to observe, "how I did things." I worked ina
demonstration school that was connected to the university. My days were filled with
observers. Somehow I heard something different in Pat's request.

Interpretive research begins with a different sense of the given.

Rather than beginning with an ideal of clarity, distinctness and
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methodological controllability and then rendering the given into the
image of this ideal, it begins in the place where we actually start in
being granted or given this incident in the first place. ... Interpretive
research, too, suggests that these striking incidents make a claim on
us and open up and reveal something to us about our lives together.

(Jardine 1992, 55)

I remember looking forward to the days when Pat came into the classroom.

At the end of the day's events, Chris, Pat and I would sit together, laughing and telling
stories about the day as we planned our next day's agenda. Pat's presence in the
classroom and in my life changed everything. As the days went on, I repeatedly found
myself intrigued with her questions and observations. She noticed those children, the
ones who disrupted the exi)ected in the classroom. They were the children who did not
fit, who could not—or would not—comply with the institutional demands of living the
well-schooled life. She had no desire to analyze them or fix them. She wanted instead
to understand how to go about making the classroom large enough to encompass them.

Pat had no way of knowing at that time, what I heard in her questions. During
our months together, I made a promise to myself that I would not hold back. I would
find a way to open myself to her questions to help her understand why I teach the way I

do and why these children are essential to the way I think about teaching. Not because

* To protect the anonymity of subjects, the names that I use in this dissertation are pseudonyms, except

for Pat and David who keep their real names.
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I wanted assurance or confirmation about the way that I did things, but because I
wanted a fellow traveler. I wanted to journey with someone who aiso understood that
pedagogy is not an afterthought, but a necessity.

Two years after meeting her, Pat and I began teaching together. Our first
classroom was a multiage class of Grade One/Two students. Many of my colleagues
were apprehensive about my teaching with Pat because she didn't have any "boxes”, no
"stuff" to teach with. She wasn't armed with the normal trappings of elementary
school practice. She just brought herself. Would she be able to enter this place
disarmed? What my colleagues saw as a lack of preparation, I saw the opportunity
for beginning in a new place.

We began our journey together with fifty-some children. And even in those
early days, we noticed those things that protruded above the surface of the
commonplaces of classroom life. The space that opened because of the lack of stuff to
fill each moment of the day allowed us time to attune ourselves differently to where we
were. Together we learned to create a space for sustained dialogues with children.
Together we learned to listen to the children. Together we learned how to create a
space that was big enough, generous enough to include all of us. And together,

altogether, all fifty-some of us, worked out what our next steps would be.
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Bringing Ourselves To The Place

Our most recent school is on the edge of an old forest reserve. There are forty
glorious acres of woods, ponds, lichens and wild flowers. Mosses that take a hundred
years to form here in the foothills of the Rockies stretch along old fallen timbers.
Squirrels scurry up and down scolding us for intruding into their territory. Some days,
if we walk softly enough, we come upon a grazing deer. They come here to quench
their thirst at the water's edge. If you look carefully you will notice the subtle contours
of the forest floor. Here the folds now compacted by the ages, tell of receding ice
fields. Back, way back, at the far edge of the forest, if you look carefully, you will
notice the remains of a once bustling wagon trail. A trading route wound its way
through this place. This forest is filled with memories and stories open to those who
knew how to bring themselves to it.

We love to go into this forest with our students. But we needed to learn how to
enter this place. This forest would not reveal its secrets when we went crashing
through the trees (That's how it felt when the consultant came into my classroom that
very first year that I started teaching.). As long as we walked its paths as though they
were the paths in any forest, we could not know this place. It wasn't even enough to
come and sit quietly. It took work. In order to learn who inhabits this place, it was
necessary to open ourselves in such a way, so that we were receptive to what came to
meet us. It was only then, when we had done our work, that this place began to share

what was ordinarily hidden from view.
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The classroom we created when we first started working together was like this
forest. What opens to those who enter, what secrets it reveals, what stories it tells
depends on how they enter. If they remain closed, even if they sit very still and listen
very hard, they will not know this place. Visitors who enter to gaze at the lessons will
not know this place, this classroom. It will not yield itself to them. They will comment
"what you do is okay" but it's not the way they do things. They will leave having
learned nothing of the place.

However, there is a way to bring yourself to the classroom so that it reveals
itself to you. It requires that you begin as Pat first began, you roll up your sleeves and
do some work. And as you do you will start to notice the patterns, the contours, this
child here, and the stroppy one over there.

When I first ventured into Sharon's world, it was enough to brandish

swords of insight and method in hopes of retreating from the field,

victorious, with completed thesis held high. But I got it wrong. The

research problem, I came to understand, was not how to defeat or

even charm known beasts into releasing their treasures. The research

challenge was to learn how to see dragons, not quest after their

subjugation. Looking, listening and learning on my journey called for

what Bateson (1994, p.10) describes as a spiritual attentiveness, 'the

modern equivalent of moving through life as a pilgrimage’. In order

to make that pilgrimage, the deepest and most enduring
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transformation of all ended up being the transformation of me"

(Clifford 1996, 46)

You open yourself to the place and in doing so the place opens itself to you.
Entering a place in such a way so that "inner and outer reality flow seamlessly into each
other, like the ever-merging surfaces of a M6bius strip, endlessly co-creating us and the
world we inhabit" (Palmer 1998, 5). "We and the places we find ourselves co-emerge;

we inhabit and enhabit one another” (Davis 1996, 132).

Our Classrooms

You are entering our classroom space. "By space I mean a complex of factors:
the physical arrangement and feeling of the room, the conceptual framework that I
build around the topic my students and I are exploring, the emotional ethos I hope to
facilitate, and the ground rules that will guide our inquiry" (Palmer 1998, 73).

Our classroom space is composed of three different classrooms that have been
shaped and created by Pat and me and some 250 students. In each of these classrooms
we learned something different about finding new ways, learning what we needed to do
differently and what we needed to re-form. In each of these classrooms we learned
how to bring students together to create a classroom community that was filled with a
deep longing to know and understand. "Good teachers also bring students into
community with themselves and with each other—not simply for the sake of warm

feelings, but to do the difficult things that teaching and learning require" (Palmer 1998,
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xvii). However, it's not enough to only say that we shaped and created these
classrooms. These classrooms, these children have significantly shaped and created
who we are today.

How you go to a place affects what it will show you of itself. Frighteningly, if
you blunder in with your "stuff," the trappings of ordinary classroom practice, the
worksheets, that textbook, those beautiful hand-painted counters, the place will seem
to be precisely what is needed and best. “The way we treat a thing can sometimes
change its nature” (Hyde 1983, xiii) or at least, how we treat a thing can show its

nature.

Teaching Together

In the early years of my ieaching career, I spent most of my time and energy
learning how to make myself appear as a proper, ordinary (or at least appear to be
doing proper and ordinary) elementary school teacher. There were crafts to make,
bulletin boards to put up, and concerts to prepare for. And there was always all the
flurry of hyper activity which surrounds the rituals associated with fall, Halloween,
Christmas, Valentine's Day, St. Patrick's Day, Easter, spring and the end of term.

In schools, finding new ways of teaching and learning means going it alone. {t
means going in disguise. I had to work hard to appear ordinary. I stayed late into the
evenings to make displays to decorate the hallway bulletin boards so that our room
looked like every other room. It left me with precious little time to act upon the

gnawing dissatisfaction that was eating away at me about the way that I taught math.
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"A person who plays such a game denies, to all appearances, continuity with himself.
But in truth that means that he holds on to this continuity with himself for himself and
only withholds it from himself and only withholds it from those before whom he is
acting (Gadamer 1995, 111)."

Now, starting again, no longer alone, disguise removed, I had space and time to
consider how math might be different for me and for the students Pat and I taught. I
wasn't sure what I had in mind and I didn't know how it would turn out. It was early in
September, the time when teachers are busily mapping out long-range plans for the
coming year.

"T don't like how I teach math," I announced after our first day of school with
the children. "I want to try something different.”

"Okay." Pat responded to my request with enthusiasm.

Convincing Pat was easy. Now we just needed to figure out what to do. We
didn't know that our search would lead down complex and tangled trails through
philosophy, mathematics, psychology and education. Knowing what to do differently
was not going to be a simple undertaking. And we weren't far along when we realized
that it also wouldn't be resolved in one year.

It is impossible to divorce the question what we do from the question

of where we are—or, rather, where we think we are. That no sane

creature befouls its own nest is accepted as generally true. What we

conceive to be our nest, and where we think it is, are therefore

questions of the greatest importance. (Berry 1986, 51)
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"We resisted the return to traditional images and practices that seem almost
inevitably to accompany criticism of schools" (Clifford and Friesen 1993, 341). That
was easy. But we also resisted "the fuzzy, feel-good legacy of much of what teachers
[did] in the name of 'progressive' practice” (Clifford and Friesen 1993, 341; Jardine
1994a). We were searching for a way to think about mathematics practices that
removed them from this dichotomous swing between traditionalism and progressivism.
"Adopt a little of both," colleagues would advise. "I tend to the middle. You need
both."

"That doesn't make sense," we would reply. "It would be a little schizophrenic
don't you think? We won't get anywhere that way." We were disillusioned with and
frustrated by the pendulum swings that dominated the educational landscape. We knew
something about pendulums—they just swing back and forth, they don't go anywhere.
They just fill time. Such is the nature of pendulums. We needed to find a different
place—a place that that was strong enough to resist our being drawn back into the
swing of the false dichotomies created by the traditionalist/progressivist arguments.
These dichotomies kept us from bringing ourselves to this place. They kept us from
learning how to inhabit this place—this classroom.

We turned to the mathematical education research community to help us with
our search. Instead of clarity and direction, we found a confusing number of solutions
to what researchers deemed either inherently difficult about learning mathematics or the

child's failure to comprehend mathematics.
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When analyzing the difficulties learners have in mathematics
exercises, researchers often catalogue syntactic errors, rules that
learners fail to follow such as: Johnny adds fractions by adding their
numerators and denominators instead of making a common

| denominator. These educators prescribe more practice in applying
these rules, or perhaps computer aided instruction programs which
will help Johnny drill. Some researchers have begun to describe
learner’s difficuities as false theories or misconceptions, such as:
Maggie thinks you can‘t subtract a bigger number from a smaller, or
divide a smaller number by a bigger. The prescription offered here
might be creating a simplified computer environment in which Maggie
can play around with numbers, but is constrained to operations that
are mathematically valid. In this way she will construct the true
conception of, say, division instead of a misconception.” (Wilensky

1993, 22)

There is something deeply disturbing about both of these formulations. They
locate the difficulties of mathematics either in mathematics or in Johnny and Maggie.
Adding fractions and subtracting whole numbers are simply given. The task of
pedagogy is one of how to hand over such givenness so that Johnny and Maggie and

their classmates do not mess it up.
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If, however, we consider mathematics as a living discipline, its formulaic,
axiomatic self-evidences become precisely what must be opened in order that we might
get a glimpse of the roiling, living, originary work from which such equations might be
'genuinely drawn.' The real pedagogical work is not found in the handicg on of self-
evidences, but in the opening up of our access to the living resourcefulness, the living
conversations and quarrels and controversies from which such self-evidences are
genuinely drawn. The real pedagogical work is found in the effort to get in on the
conversation. The danger of essentialism is that it hands us tradition in such a way that
there is nothing left that needs to be said. Pedagogy is the work of seeing through the
charm of such self-evidence, not in order to dispel tradition, history, language, but in
order to wake it up to the fact that our children want in.

We soon learned that "faced with a strong demand to aim for deeper and more
complex learning for children, teachers must develop new ways of teaching for which
there are few available models" (Comiti and Ball, in Bauersfeld 1997, 612; Stigler and
Hiebert 1999). Alone. I knew this place. " If you're going to teach like that, I can't

help you. I don't know anyone who can.”

Finding New Ways
Like Hansel and Gretel, setting out a path alone, we left behind everything that
was familiar to us. We followed a path to where? We didn't know. In truth, there

was no path. We had to create it. "Interpretation and understanding are creative acts"
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(Smith 1994, 104). This is the venture that is necessary in all beginnings—the creation,
the creative act.

It seems evident that all this holds relevance for a conception of

education—if education is conceived as a process of futuring, of

releasing persons to become different, of provoking persons to repair

lacks and to take action to create themselves. Action signifies

beginnings or the taking of initiatives; and, in education, beginnings

must be thought possible if authentic learning is expected to occur”

(Greene 1988, 22).

Pat and I knew that in this beginning, that once we had decided to take this step
there was no turning back. Unlike Hansel and Gretel, we didn't bother with the
breadcrumbs. We couldn't hedge our bets by thinking we could go back. Our
commitment had to be total. Experience told us that it takes too much time and energy
to go in disguise. We also knew that we could only learn what we needed to learn when
we opened ourselves to the place that we found ourselves. Even though there would
be times filled with uncertainty and insecurity, times when we were unsure of our next
steps, we would have to go on. We would have to learn to live with the unknowns that
lurked in the depths of the forest. It was only then that the forest would reveal its

secrets, its stories and its memories to us.



Had we known then, what we know now, that this way was long and hard, it
would take ten years, three SSHRC grants and two Ph.D.'s, we might not have set out.

But set out we did. And that has made all the difference.

A Story Of Our First Journey

Interpretative work is rooted in the particular instance. "Husserl showed that
we never think or interpret 'in general' as a rhetorical activity that bears no necessary
connection to the world at large" (Smith 1994, 108). Rather, thinking and interpreting
require the particular, they cannot be worked out in the abstract. "Every consciousness
is consciousness of something; every relation is a relation to something" (Gadamer
1995, 225).

This is our Grade 1/2 multiage classroom. It is one filled with fifty-some
children. The room is a large double irregular shaped polygon. Tables and chairs fill
the larger side of the room. The smaller side houses our classroom library and our
common meeting area. We are all seated in our meeting place. I begin this particular

math lesson:

A long, long time ago a young shepherd boy walked out into the field with his
flock of sheep. He had the task of caring for his master's flock. It was his duty to
make sure that he returned each evening with as many sheep as he set out with in the

morning.
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Now this was a very long time ago. Numbers hadn't been invented yet. And so
the young boy used pebbles. He let one pebble represent one sheep. He kept all the
pebbles in a pouch that he tied around his waist. At the end of the day he returned to
the master's place and carefully removed the pebbles one-by-one as sheep-by- sheep
entered their nighttime enclosure. If everything matched up, he would be allowed to
continue to live and tend sheep for another day (such was the life of a young boy a
long, long time ago).

Pat and I created this story as a way to introduce young children to the
seemingly simple idea of one-to-one correspondence—one sheep matched with one
pebble. "Only through a story was it possible to put aside what we knew or assumed
or had memorized about the number system to think of a time when there was none.
Only stories have the imaginal power to place us elsewhere" (Friesen, Clifford and
Jardine 1998, 8). "Good mathematics ultimately comes from and returns to good

stories—and the questions that bug you" (Casey and Fellows 1993, 1).

Pat and I wanted to move the story beyond the point of a simple one-to-one
correspondence with a finite set of pebbles and sheep. If that were the only point to the
telling this story then we would have been guilty of just "dressing up" and passing
along already known math facts.

When tradition becomes master, it does so in such a way that what it

transmits is made so inaccessible that it rather becomes concealed.

Tradition takes what has come down to us and delivers it over to self-
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evidence; it blocks our access to those primordial 'sources' from

which the concepts and categories handed down to us have been in

part quite generously drawn. Indeed, it makes us forget that they

have had such an origin and makes us suppose that the necessity of

going back to these sources is something which we need not even

understand. (Heidegger 1962, 43)

Too often, in elementary schools, incredible care, energy and attention are paid
to making everything smooth, effortless, and fun. "Teachers act as if student interest
will be generated only by diversions outside of mathematics" (Stigler and Hiebert 1999,
89). However, mathematics, dispensed as math facts "dressed up"” to fit the theme of
the month severs mathematics from it origins and its relationships. It turns
mathematics into a commodity that is consumed and produced, rather than a "world
into which we ourselves are drawn, a world which we do not and cannot 'own,’ but
must rather somehow 'inhabit’ in order to understand it" (Jardine, Friesen and Clifford
2000, 4).

David Jardine (1994) talks about witnessing a classroom in which the teacher
has placed math facts on a teddy bear's tummy. These cute, laminated math facts are
tacked to the classroom wall. Jardine sites this example, not to find fault or lay blame
with the teacher but as an "interpretative opportunity" to consider how such activity
offers "no resistance and [demands] no real work” (Jardine 1994b, 264). Ifasa
teacher you can dress up even hard and cold little math facts like 5+3=__ to make them

slide down easier, like some sugar-coated pill, then the difficulties of learning



67

mathematics will be removed or at least the children will have so much fun that they
won't notice it going down.

Our purpose was not to "dress up the facts" to make them more palatable, but
to invite the mathematics of this place to show itself. We wanted to learn to inhabit
this place. We wanted the students to know and understand how the residue of things,
often long since forgotten, remains in our modern world. The use of stones for tailying
still bears traces to its origins. The root of our word 'calculate’ derives from the Latin
calculus meaning a 'pebble.! We also saw, in this story, possibilities looming on the
horizon opening into matters of the finite and infinite—the paradoxes of Zeno and
Cantor. What happens when you add one and one and one and one...? Can you count
to infinity? How many is that? How big is infinity? Could the shepherd really count an
infinite number of sheep? And what if he was able to and then he got one more
sheep? What's infinity plus one?

"The world of our everyday experience is finite. We can't exactly say where the
boundary line is, but beyond the finite, in the realm of the transfinite, things are
different” (Casey and Fellows 1993, 116). So as the children began to pair each sheep
with a pebble and each pebble with a tally and each tally with a numeral, they were
creating the same line of thinking that Cantor used as he set about exploring the
paradoxical infinity.

What Cantor then set out to do was create exact notions of what it

means for an infinity to be equal to, greater than, or less than another

infinity. The resulting arithmetic of the infinite, or transfinite
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arithmetic, was a dramatic and controversial departure from the past
attitudes to actual infinities by mathematicians who had regarded
-them as a concept for the theologians.
Cantor's transfinite arithmetic is very simple: two infinite sets are
equal if they can be put in one-to-one correspondence with each
other. Sets which can be matched to each other in this sense are then
said to have the same cardinality.
(Barrow 1992, 206)
We asked, is there a way to put the set of all counting numbers {1,2,3,4, ...}

into one-to-one correspondence with the set {sheep, 1,2, 3,4,...}? And we learned

that yes there is.
{ 19 29 39 4: 4 }
{ sheep, I, 2, 3, }

During the days that the story was created and recreated, we investigated
various counting systems. Working together and separately, we moved from a system
of pebbles and tallying by ones to a system employing two numbers (one and two,
because one and one makes two, of course). But what if you have only two numbers
to count with? Can you only count to two? What is a binary number system? Is it

good for anything? These questions invited fertile conversations and further
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investigation, which led to connections between this primitive counting system and the
underlying structure of the most powerful microprocessors in the world today.

During this time a deepening sense of number emerged in our classroom. Our
tale, with its simple beginnings, was no longer so simple. "It is amazing how rich a
range of topics there are which can be explored at a variety of levels, with ever more
sophisticated questions yielding increasingly deeper insights and connections” (Friesen
and Stone 1996, 9). "Good problems lead to more problems—and if the domain is rich
enough, students can start with the seed problem and proceed to make the domain their
own" (Schoenfeld 1994, 18). Mathematics is more than finding and solving problems.
"Mathematics is more generative-the central activity being making new mathematics. In
so doing, it fosters a culture of design and exploration-designing new representations of
mathematics and encouraging critique of those designs" (Wilensky 1996).

It was during one of these critiques that James, one of our Grade 2 students,
rose up to his knees. Rubbing his hands together he proclaimed, "But you can make
five by two and one and one and one. And you can make five by one and two and
two."

The rest of the children caught James's excitement. Another space had opened.
Just how many ways were there to make five? What if you were not limited to ones
and twos?

The space that James opened for us all was larger than just his

particular questions. It was as if we had come with him over a rise

and that just these few particular steps, taken seriously and followed,
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had opened up a huge horizon of possibilities around all of us. And
it was not simply that we now had new territories to traverse. We
also now came to understand territories already traversed in a new

way." (Friesen, Clifford, and Jardine 1998, 9)

Within good mathematical explorations there is no one "right" way to proceed.
There were many ways. An intriguing web of connections, interconnections and
crossroads await those who long to know this territory. "To recognize the role of
perspective and vantage point, to recognize at the same time that there are always
multiple perspectives and multiple vantage points, is to recognize that no accounting,
disciplinary or otherwise, can ever be finished or complete” (Greene 1988, 128). This
is the ontological unfinished character of a living place—a living discipline. Thisis a
feature of the mathematical territory. (Wilensky 1996, 1993)

But for many, they see only a chaotic confusion of branching forever, with
nothing solid at the bottom. For them, this is not a desirable place to be. They locate
the subjectivities of this place in the people themselves and so strive to protect the
place. They long for clarity and certainty in an uncertain world—yearning for the right
path, the right technique that will reveal everything. Too often schools, responding to
this impulse, focus solely on transmitting a "right” path.

But in throwing out the bathwater' of error, they lose the 'baby if the

learner never enters the messy process of negotiating meaning,

constructing different representations and critiques of these
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representations. If we deprive learners of this opportunity, we strip

mathematics of its essential character and deprive them of real

mathematical experience. We also deprive them of respect.

Mathematicians throughout history have constructed many different

meanings for mathematical concepts and argued their relative merits.

If mathematicians of distinction needed to go through this process in

order to make sense of mathematics, why do we expect that the

learner will take our conceptions on faith? We respect the learner by

viewing her as a mathematician in a community which is still

negotiating the meaning of a new concept (Wilensky 1993, 22).

Sometimes schools counter the impulse of the "right way" with its opposite.
Now everyone has their own "right" path. In wanting to spare the student possible
confusion and error, they insist that each student can construct her own mathematics.
The student is no longer accountable to anyone but herself. Every student has her own
path. "That is, we are all producers and consumers of knowledge, and the whole
known world is at the formative disposal of our knowing" (Jardine, Friesen and Clifford

2000, 3). And now the idea of mathematics being a place makes no sense anymore.



The Facts Of This Place

Caught up in James's question, "Just how many ways are there to make five?"

some of the children colored in five squares in a row.

1 1 1 1 1
These children decided that they could represent theseby 1 +1+ 1+ 1 +1.

However, when they grouped the five squares like this:

2

those who knew the mathematical designations wrote 3 +2 = 5. But other children
wrote 1 +2 + 2 = 5 for this very same figure.

It might seem trivial that we have now discovered that 3 +2 =5, but

what isn't so trivial is that, as a memorized "math fact," 3 +2 =15

bears no memory or trace of how it is possible, of how it came to be,

such that, if you forget this fact, you're lost. And, even if you simply

memorize and remember this fact, you have no way to go on, since it

also carries no memory or trace of directionality and place. (Friesen,

Clifford and Jardine 1998, 11).
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It's "hard to get at the information encoded in mathematical formulas because
little or nothing in the actual patterns of the stark symbols on the printed page offers
[the students] any clue to the formula's meaning" (Peterson 1990, 10).

Once out of elementary school, these same cold math facts, now no longer
placed (or rather out of place) on teddy bear tummies, fill pages upon pages of math
texts. Now is the time children learn to do "real” math. The hard stuff—fractions,
ratio, algebra, trigonometry, geometry, calculus and so begins the

litany of definition/theorem/proof chanted day in and day out. This

image of mathematical practice portrays mathematics as a dead

subject—inquiry is unnecessary because our concepts have been

formally defined i the 'right' way and our theorems demonstrated by

linear and formal means." (Wilensky 1993, 21)

Students faced with the burden of memorizing multiplication tables, struggling to
calculate the age of a farmer who is twice as old as his son will be in six years if the
farmer is now three times as old as the son, or pondering how long it takes a slowly
leaking conical vessel to drain, are left with the feeling that mathematics is an
unchanging body of knowledge that must be painstakingly and painfully passed on from
generation to generation. Students, who have no choice but to endure such
mathematics practice, pronounce a chilling damnation on mathematics itself, "When

you go home you're just blank. They wouldn't explain it. They'd just say 'sit down and
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do the sheet." When you know what is ahead of you, you end up with a bad attitude
about it, day after day. I hated math.” (Aaron - age 13)

But it's not only the children who go "blank". Teachers, too, go "blank".
Knowing mathematics as belonging only to the realm of memorized technique, they
develop a shallow notion of mathematical understanding as performance rather than
understanding as searching for what is under. Their mathematics is flat—a two
dimensional place. "A body without a shadow: that's as good a description as any of
the flatness of much of the institutional surface" (Clifford and Friesen 1999, 58).

Mathematics becomes akin to a tourist attraction, something to look

at but never enter into, open up, and learn to live with. And we, in

turn, become akin to curricular tourists ready to be momentarily

entertained and amused. However, since we just see the thin, tarted-

up, presentable surface of things, we along with our children, become

equally subject to boredom [and] frustration..." (Jardine 1994b,

265).

And here is the depressing consequence of all of this. Mathematics, itself goes
"blank." Everything is now completely coberent. You are "blank" marking time in the

pendulum swing. It's teacher-centered or child-centered. You are caught in the
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insanity of Mad Minute Math ° or alternatively, putting in time tarting-up math facts,
because that it all you can do. The research impulse then is to revive teacher-expert-
manipulator or revive the child. There is no alternative.

So the task of research, and particularly of this research, is to "fill in the
blank"—not with the right answer or just any answer, but with understanding,
searching for what is under the surface of appearances, and noticing those things that
protruded above the surface of the commonplaces. It requires that teachers and
students enter into dialogues with each other about their mathematical learning and
understanding and difficulties because they now have something (it's not a blank) to
have a conversation about.

Kay (1995) insists, "difficulty should be sought out as a spur to delving more
deeply into an interesting area. An educational system that tries to make everything
easy and pleasurable will prevent much important learning from happening.” But it's not
just a matter of making things difficult for difficulty’s sake. The fact is mathematics is
difficult and messy. It's not the sanitized picture we see in textbooks and proofs”
(Wilensky 1993, 20). It is filled with arguments, paradoxes, controversies, scandals
and murders (Davis and Hersh 1998; Devlin 1997; Kasner and Newman 1989; Motz

and Weaver 1993; Pappas 1997). But most children know nothing of these. Instead

§ Mad Minute Math is a program designed to test children's math skills and increase their calculation
speed. They are tested in computation: addition, subtraction, multiplication, or division, and they

generally have 60 seconds to answer as many questions as possible.
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they are indoctrinated into the still unchallenged Euclidean myth that mathematical
knowledge is
certain, objective, and eternal. Even now, it seems that most
educated people believe in the Euclid ‘myth. Up to the middle or late
nineteenth century, the myth was unchallenged. Everyone believed it.
It has been the major support for metaphysical philosophy, that is, for
philosophy which sought to establish some a priori certainty about the

nature of the universe." (Davis and Hersch 1998, 325).

Mathematics is supposed to lead us to certainty. The long chains of reasoning
are supposed to get you from here to there without a misstep or wrong turn. What we
found out in our particular example is that questions and uncertainties are necessary to
the life of mathematics, itself. It is a feature of the territory.

"The logic we are living out is centuries old" (Berman 1983, 23). It winds its
way through Descartes, Aquinas, Plato to Euclid. Devlin (1997) contends that the
logical road has led to a dead end. It is this myth that has gone mostly unchallenged in
mathematics education research even today (Battista 1999; Davis 1996; Dowling 1998;
Emnst 1991; Hersh 1997; Schneider 1994; Sierpinska, et.al. 1993; Wilensky 1993).
While critiques of rationalist and positivist traditions "have made serious inroads into
the hegemony of the dominant epistemology, the calls for interpretive frameworks have

largely focused on the social sciences and to a lesser degree on the natural sciences. To
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a great extent, mathematics has still escaped the full glare of this critique” (Wilensky
1993, 30).

However, left unexplored, unopened, uninterpreted, unresearched, the
"stubborn particulars" (Jardine 1994b) inherent in this place will be seen only as
something to weed out, to be rid out and smoothed over. Their obstinate traces will
continue to be understood as difficulties residing in the student, the teacher, or the
practice, rather than as a messy feature of the place itself. "The character of
mathematical knowledge, is inextricably interwoven with its genesis-both its historical
genesis and its development in the mathematical learner" (Wilensky 1996).

Mathematics is something that lives in its "being handed along (Gadamer 1989,
284). It is something we inherit. We can't individually construct it nor can we
passively submit to it. Mathematics comes to us through the generations of
mathematicians that explored its contours, created its ways, and mapped its paths. Its
legacy involves learning how to hear Zeno's paradox of Achilles and the Tortoise anew
in a six year old's question, as Kathy wonders aloud, "What bappens when I divide each
of the squares into halves. And each of those balves into halves. Could I ever divide
them up so small that I could reach zero?" Or recognize the voices of Newton and
Leibnitz in a similar wondering by six year old James, "So what happens if I divided the
squares so that I had a half, a quarter, an eighth, and a sixteenth and then add them all
up together. Would they add up to one?

Passing on this legacy involves learning how to give students "direct contact

with ‘the great chain of being,’ so that they can internally generate the structures needed
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to hold powerful ideas" (Kay 1995). The real pedagogical work is found in the effort
to get in on the conversation. To wake it up to the fact that our children want in.

But it's not only the children who want in. We need to wake up to the fact that
mathematics wants in, it wants to be taken up as an inheritance because if it is not, then
it just becomes a "blank"-—pages upon pages of "blank."

This legacy also involves finding ways to live generously in this territory, to
embrace its ambiguities, and to learn its ways. As you enter this place, you don't have
to turn your back on Euclid knowing how his myth was passed on and continues to be
passed on through the generations. The process of understanding is the handing on. It
is the process of handing down. You now have a place where you can situate Euclid in
a larger environment thereby understanding what Euclid's axioms are good for and
recognize that within the place of mathematics there are other good fors and they may
be completely contradictory. This involves the ability to look

critically at the role of shame in the mathematical community.

Listening to learners and fostering an environment in which it

becomes safe for mathematical learners to express their partial

understandings results in a dismantling of the culture of shame which

paralyzes learners-preventing them from proposing the tentative

conjectures and representations necessary to make mathematical

progress. In doing so, it parts company with the literature on

misconceptions which highlights the gulf between expert and novice.

[This way of knowing and doing mathematics] stresses the continuity
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between expert and novice understanding, noticing that even expert
mathematicians have had to laboriously carve out small areas of well

connected clarity from the generally messy terrain." (Wilensky 1996)

Mathematics, itself, as a living discipline is constituted by its partial
understandings. Our partial understandings in learning the ways of this territory are a
feature of the place. They don't belong solely to a person. Anything that is living is
not wholely worked out, it is not complete, it is always partial. When you are standing

in mathematics, you are standing in a living place. It's moving. It's alive.
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CHAPTER THREE

The Children Want In

The re-formed mathematics classroom is a dynamic place brought to life
through conversations and dialogue. Making meaning in mathematics involves
"persons-in-conversation” (Driver, et.al. 1994). The National Council of Teachers of
Mathematics (1989, 1991, 1995, 2000) has repeatedly stressed the importance of
conversation and dialogue within the mathematics classroom but as TIMSS (1996)
found, in many classrooms, learning mathematics is a silent individual activity. Finding
ways to break this silent spell requires putting forth new images of classroom life.
Learning to describe the complexities of classroom life means capturing its dynamics,
the connected collective movement of conversation as understandings emerge in the
seemingly disparate and unconnected approaches, dialogues, attempts, and arguments.
"In [a] conversation, all of the participants are oriented toward deepening their
understanding of the issue at hand" (Davis 27, 1996). "To conduct a conversation
means to allow oneself to be conducted by the subject matter to which the partners in
the dialogue are oriented” (Gadamer 1995, 367). In this way a mathematical

conversation is not the same as a traditional classroom discussion.
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The goal of [a] discussion is more toward the articulation of
preformulated ideas, and so the subjects endeavor to exert some
measure of control over the subject matter. The emphasis in the
discussion is placed on the subjects’ conceptual differences rather than

on achieving a consensus. (Davis 1996, 27)

In conversations the participants do not attempt to control the subject matter,
but rather are deeply engaged in attempting to understand the issue at hand. The
subject (mathematics) participates in the conversation—mathematics speaks. It is no
longer a silent "blank". The “circle of seekers" (Palmer 1998, 107) that have gathered
to explore this new situation are not even aware that a conversation is taking place but
only know that a conversation has taken place "when understandings have changed,
when a new commonsense has been established—when self and other have been
altered—then it has happened" (Davis 1996, 28).

In our classrooms, mathematics lives in these day-to-day details of its being
worked out throﬁgh conversation. Through conversations we create not only our
understanding of mathematics but also we gain an understanding about what it means
for mathematics to be a living discipline. But herein lies a difficulty. "The idea that one
can be aware that one is in a conversation is in some ways self-contradictory; it
presumes an awareness of one's self and one's subjectivity. It is precisely this detached,
observer-like awareness that must be set aside in order to allow a conversation in the

first place” (Davis 1996, 28). Knowing that a conversation has taken place is always,
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out of necessity, something that occurs after the fact. It is the outcome, the
destination, that determines whether a conversation has taken place, when new now
commonly-held understandings can be proclaimed.

To show how mathematical understandings emerge in our classroom, we must
let you in on the conversation. To assist you, I have taken an ordinary classroom
mathematical exploration and the various dialogues that were involved in coming to
understand the mathematical territory that the exploration opened for us. I will freeze
some of the individual instances of talk, lingering with each for a few moments, to
show: what sometimes lurks beneath the surface of students' frustrations and struggles,
how mathematical ideas cohere, how understandings ripple, how a new commonsense
comes into being and how new mathematical territories open. In doing this, in freezing
the talk, you might tend to lose sight of the dynamic, the fluid, often messy, meandering
back and forth flow of conversation. Throughout this chapter you will need to hold the
tension of the seemingly disparate instances of talk together to see how conversation
works, to witness how we arrived at a new shared understanding of the mathematical

exploration we undertook over the course of several weeks.

Paradox In The Classroom

Mathematics shows us a way to hold such a tension. It is called paradox.
"Paradox is another name for that tension, a way of holding opposites together that

creates an electric charge that keeps us awake" (Palmer 1998, 73-74).
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Paradoxes have played a dramatic role in intellectual history, often
foreshadowing revolutionary developments in science, mathematics
and logic. Whenever, in any discipline, we discover a problem that
cannot be solved within the conceptual framework that supposedly
should apply, we experience shock. The shock may compel us to
discard the old framework and adopt a new one. It is to this process
of intellectual molting that we owe the birth of many of the ideas in

mathematics and science. (Wilensky 1993, 68).

The tension created by paradox has a long history within mathematics. The
Greek philosopher Zeno of Elia, who lived about 450 BCE invented several famous
paradoxes through which he intended to show that there is something extremely
mysterious about motion. One of these involved an arrow in flight. Zeno contented
that at every instant of time the arrow was somewhere, in some place or position, and
therefore, could not at any instant be in motion. At any instant, the arrow is
indistinguishable from an arrow at rest. Zeno concluded that if the arrow is at rest at
every instant, then it is always at rest. All motion is an illusion.

Zeno posed this paradox, not to argue that an arrow cannot move, but to
challenge the belief that time consists of a succession of discrete instants, a challenge
that the Greeks themselves were not able to meet. In fact, the paradox of the Arrow
was left unresolved for approximately 2000 years. "Indeed, truly satisfactory

resolutions to [this paradox were] not found until the end of the nineteenth century,



when mathematicians finally came to grips with the mathematically infinite" (Devlin
1997, 76).

Zeno was right to believe that at any particular instant the arrow is at a
particular position. He was also right in believing that there is no intrinsic difference
between an arrow being at rest at a particular instant of time and being in motion at that
instant. His mistake was in concluding that motion was thus impossible. Motion is not
the sequential accumulation of incremental bits. "The key to finding the value of the
series was to shift attention from the process of adding the individual terms to the
identification and manipulation of the overall patrern" (Devlin 1997, 76).

Zeno himself didn't have a proper solution to the paradox, nor did he

seek one. The paradox suited his philosophy perfectly. He was a

member of the Eleatic school of thought, whose founder, Parmenides,

held that the underlying nature of the universe was changeless and

immobile. (Seife 2000, 45).

In this chapter I want to show how this paradox works itself out in our
classroom, how the individual instances of talk create the movement of a mathematical
conversation. I want you to understand that "to ask good questions, deflect answers,
and connect students in dialogue" (Palmer 1998, 134) is not enough. Taken up only by
themselves, these unconnected moments of talk remain discrete fragments, isolated
anecdotes, that even when added together cannot provide a sense of the whole, of the

conversation. Instead of giving up altogether and just announcing, "Well you just had
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to be there...", I want to find a way to make visible the "movement of showing"
(Heidegger 1962, 1) that underwrites the work that we as students, teachers and
researchers do in coming to understand. Palmer (1998) calls this "the skill of lifting up
and reframing what my students are saying... But I [need] to wait for the moment
when my students [can] experience it as their own, as a way of naming a discovery that
they [have] made for themselves but [are] not yet able to put into words" (134-135).
Gathering up the seemingly discrete fragments, the tangential meanderings, the
scattered filaments of talk, accomplishes three important things: "we [gather] up the
elements of our dialogue and [give] them coherence, we [build] a bridge to our next
topic; and we [do] it all in a way that [makes] students full participants” (Palmer 1998,
135). In this way we shift attention away from the process of adding the individual
instances of talk to the identification of the movement created with the overall
conversation. "By holding the tension of opposites, we hold the gateway to inquiry
open, inviting students into a territory in which we all can learn" (Palmer 1998, 85).

To see how this works itself out, you will enter our Grade 7 classroom. Itisa
big double room, filled with 60 adolescents, 15 tables and 17 computers. Computers
and tables are organized in such a way that every table grouping has access to at least
one computer. We do not have a designated space for whole group lessons and
conversations. When we need to all come together, the students bring their chairs into

one of the areas of the classroom.
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The Exploration Begins

The class starts with a mathematical exploration called Triangles Got Legs!

(Sabinin and Stone 1999).

To introduce the situation, I draw a line segment AB on the whiteboard.

Y
A B

Figure 3.1
I explain that this forms one side of a triangle ABC. Point C of the triangle is missing.
The students need to find this third point.
I explain that for some of their choices of the third point C, the side AB would
be the longest side of the triangle and for other points; it would not be the longest side
of the triangle. AsI draw the following figures on the white board, I suggest that these

might be some of the possible choices for point C:

C

C
*r————e A
B A B

A B A A B

Figure 3.2
I explain that the purpose of this exploration is find for which of the points C is

AB the longest side of the triangle. I suggest that as a strategy, a way of approaching
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this exploration, that students might want to try to identify those points C that "work"
by shading in all the points in the plane that made AB the longest side of the triangle
-ABC.

The students are given time to think and ask questions about the task ahead of
them for a few minutes before getting down to work.” As they begin, in their own
ways either by themselves or with the support of a small group, to formulate their initial
tentative conjectures Pat, David and I join them. AsTapproach this particular group I
hear:

"We're confused. We really don't understand this problem. The
points are there, the ones you showed us. You gave us all the

answers when you gave us the question. What's the point?"

7 In our classroom, students choose how they will proceed with the exploration. We don't assign
students to groups. They choose with whom they do their work. Some students choose to work on
their own, at least inittally, when they are working on explorations of this nature; others prefer to
begin with the company and support of another person. Students also choose what materials they
want to work with as they make their way. Finding ways to both formulate your emerging
understanding of the territory that the exploration opens and representing that understanding are both

essential elements for communicating that understanding to others.
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The problem and my question threw this group of students into an unfamiliar
landscape. | They were asking: "Is that all there is?"” The initial exploration we did
together as we set the parameters of the problem seemed, to these students to be the
answer.

"So what's," they asked, "the point of doing this question at all?"

"This is so dumb," | hear one of the students say.

It is possible to dismiss these students' complaints, but I believe that it is
important to stop here. I believe that under their complaints, so full of frustration,
lurks a problem of practice that dominates school mathematics. Left undisturbed it will

continue to plague our best efforts to reform our mathematics classrooms.

A Problem Of Practice

All too often, teachers and researchers read student's complaints as trouble with
the student or trouble with the teacher. Within educational discourse these are the
most commonly available alternatives. Read as trouble with the student, these
complaints are turned back on the students themselves. Their frustrations, their feelings
of dislocation, are often read as failure: failure to engage with the initial problem,
failure to understand the problem, failure to have the proper attitude, failure of
motivation. Read as trouble with the teacher, the problem becomes one of technique:
failure to properly clarify the initial problem, failure to provide enough guidance, failure

to provide enough examples.
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The TIMSS Video Tape Study (1996) helps to show us how mathematics
education gets caught into a dichotomy of blame—blaming the student or blaming the
teacher. This video study involved 81 U.S. mathematics classrooms. It revealed that
teaching in the U.S. is focused for the most part on a very narrow band of procedural
skills. The teacher carefully instructs the students in a concept or a skill by solving one
or more example problems with the class. "Whether students are in rows working
individually or sitting in groups, whether they have access to the latest technology or
are working only with paper and pencil, they spend most of their time acquiring
isolated skills through repeated practice" (Stigler and Hiebert 1999, 10-11).
"Mathematical concepts are acquired by 'absorbing’ teacher and textbook
communications” (Battista 1999).

"In traditional mathematics instruction, every day is the same: the teacher shows
students several examples of how to solve a certain type of problem and then has them
practice this method in class and in homework" (Battista 1999). Being well
conditioned in this method, students readily equate mathematical understanding with
knowing how to follow the instructions by diligently duplicating the teacher’s
prescribed method over a number of examples. "The National Research Council has
dubbed the learning’ produced by such instruction as 'mindless mimicry mathematics.’
Instead of understanding what they are doing, students parrot what they have seen and
heard" (Battista 1999).

By the time these Grade 7 students came to us, they are very familiar with this

method.
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We have to get up early in the morning. We get there and expect
something. Why don't they pay the textbook to teach us? When I
was in grade five we had sheets of math and when we finished
and [the teacher] wouldn't have enough, so we would have to

make up our own sheets. It was so boring. (Amber - age 12)

And even though Pat and I had taught these same students in Grade 6, some of them
still had difficulty letting go of the dependency created by this method of teaching. By
suggesting some possible places to begin our Triangles Got Legs investigation, it
appears that I have thrown some of the students back into a style of teaching that still
lurked in the shadows of their mathematical experience. The students seemed to read
these initial possibilities as instructions rather than as potential beginning places. And
we heard the old complaints resurface, the complaints that often filled our classroom
the previous year:

“I used to be good at math and I would still be good at math if you would just
tell me wfzether I should add, subtract, multiply or divide."”

"What do all these problems have to do with math?"

"What a stupid question."

By turning the exploration over to them, they were lost because this was not the way

we do mathematics in our classroom now. ‘Mathematics, for them, is not taught and

learned this way.
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But for these students, doing mathematics is still too easily associated with
ritual and method that needs to be rehearsed, page after endless page, sheet after sheet.

When I was in Grade 5 I hated math. We got sheets of paper with questions.
If we finished one sheet we got another. (Pam - age 12)

This ritualized method does not belong only to grade school mathematics but
appears to dominate the landscape of mathematical pedagogy right through schooling.

For the most part my student teachers do not want to be problem

solvers. They want to know the problems, be told how to solve

them, and exercise that facility with endless variations on the theme,

which require only recall and patience with tedious calculation. Many

of them have been given very positive reinforcement for this type of

activity in school. Mistaking this anal-retentive activity for the real

thing, they have drawn the conclusion that they are good at, and

enjoy, mathematics. Faced with the necessity to explore problems

they have not been trained to solve, they are often frustrated,

unsuccessful, and feel they are somehow not being properly taught if

I will give them netther the method nor the answer. (M.G. Stone,

email to the author, February 1998)

I'd like to be able to report that this stress on computation ends when
students reach college. But, alas, even in calculus, linear algebra, and

differential equations courses (course required by many different
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majors) there is the same mind-numbing tendency toward routine

computational problems. (Paulos 1991, 55)

Most non-mathematicians share the view that mathematics is a question of
knowing what to do, and view as suspect any attempts to teach otherwise (Dawson
1995). Even people who recognize the intellectual value of problem solving and
critical thinking in a wide range of situations often think that within mathematics to
solve problems means learning to solve long lists of problems (Paulos 1991;
Schoenfeld 1992,1994; Stigler and Hiebert 1999). "This is the Truth; now do 400
identical problems" (Paulos 1991, 53).

Mathematical thinking and understanding cannot be reduced to the sum total of
memorized procedures. Mathematical thinking and understanding involves "seeking
solutions, not just memorizing procedures; exploring patterns, not just memorizing
formulas; and formulating conjectures, not just doing exercises" (Schoenfeld 1992).
Mathematical thinking, knowing and creating are not the accumulation of these

incremental bits. Many teachers and students believe that doing these discrete exercises
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will add up (Schoenfeld 1992, 1994). And so students repeat procedure® after
procedure, diligently adding to their growing mathematical toolkit. It doesn't take long
however, before the sheer number of procedures overwhelms them. "For most
students, school mathematics is an endless sequence of memorizing and forgetting facts
and procedures that make little sense to them" (Battista 1999). Memorized bits such

nn

as: "always put the bigger number on top of the little number," "cross multiply and

divide," "invert and multiply,” "a negative times a negative equals positive," "is is the
numerator and of is the denominator” are but a few of the refrains that students learn to
chant as they wander through their pages of math "blanks". Along the way they also
memorize procedures—procedures for single digit whole numbers, two digit whole
numbers, ratios, percents, proportions, scale, rate, interest, fractions, integers and the
list goes on and on. Unable to recall which chant goes with what procedure, what
procedure belongs with what problem many students find themselves frozen, afraid to
take the next step. They don't remember what to do. And so they do exactly what

survival training tells them to do, they stand still in one place until someone comes to

8 Although it is important that students know how to execute mathematical procedures reliably and
efficiently, knowledge of procedures involves much more than simple execution. Students must know
when to apply them, why they work, and how to verify that they give correct answers; they also must
understand concepts underlying a procedure and the logic that justifies it. Procedural knowledge also
involves the ability to differentiate those procedures that work from those that do not and the ability to

modify them or create new ones.
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rescue them and they bewail that fact that they are lost. And so their teacher comes to
the rescue.

It is a familiar trap and it dominates many North American mathematical
classrooms which leads to the cycle of bléme—blaming the students or blaming the
teachers, and it forms the basis of much mathematics education research (Hiebert 1999,
Russell 2000). The purpose of this chapter is not to enter into the seemingly endless
exhausting either-or debate that this dichotomy opens. Rather I want to ask a different
type of question of this situation.

How can we escape the grip of either-or thinking? What would it

look like to "think the world together," not to abandon discriminatory

logic where it serves us well but to develop a more capacious habit of

mind that supports the capacity for connectedness on which good

teaching depends? (Palmer 1998, 62)

Being Lost

I want to take up the students' complaints of frustration in another way. Rather
than hearing the students’ wails as a cry for rescue, I hear and interpret their words as
something that is true of all beginnings. Being lost is the first step in all new
mathematical investigations and explorations. Being part of a living discipline means
that you are dropped into a conversation that is centuries old. The students' words can

be heard as their desire to be brought into that conversation.
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They [the teachers] must memorise everything from university and recite it in
front of the class. They aren't including us. We want in. Bring us into the
conversation. There is something we want. (Tyson - age 12)

Learning how to be a part of that already on-going conversation means that
you have to begin by figuring out where you are. In the beginning, you are lost. And
S0 you start by asking questions and testing the ground.

But the art of testing is the art of questioning. For we have seen that

to question means to lay open, to place in the open. As against the

fixity of opinions, questioning makes the object and all its possibilities

fluid... Dialectic consists not in trying to discover the weakness of

what is said, but in bringing out its real strength. It is not the art of

arguing (which can make a strong case out of a weak one) but the art

of thinking (which can strengthen the objects by referring to the

subject matter). (Gadamer 1995, 367).

"So what's the point?" heard differently as, "Where am I?" is the question that
needs to be addressed and first and foremost in its address, is addressing us. The
students "want in," and in that desire, they want to know how to join in. It is now
possible to hear the student's complaints, "I'm confused. I really don't understand this
problem." more generously than the students intended them.

Pat and I were well aware that at the time these words were uttered, these

students wanted to be rescued. They also wanted us to know that they thought that
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this was a "dumb problem." But both of us understand teaching as the point of access
to something beyond the teacher.

Every academic discipline has such "grains of sand" through which its

world can be seen. So why do we keep dumping truckloads of sand

on our students, blinding them to the whole, instead of lifting up a

grain so they can learn to see for themselves? Why do we keep trying

to cover the field when we can honor the stuff of the discipline more

profoundly by teaching less of it at a deeper level? (Palmer 1998,

122)

We wanted the students to see that being lost, confused and uncertain was not a
problem that belonged solely to them as students as they ventured into the terrain that
this new problem opened up but it was a feature of a living discipline. In "lifting up this
grain of sand" we could show the students that they weren't the only ones who "want
in" mathematics also "wants in" to the conversation. Mathematics needs these students
to join in so that it can continue as a living discipline. If the young cannot find a way to
join in the conversations, then mathematics will remain "blank"” and eventually it will
die. So it is vital to open a space in which things can now move.

Asking questions of the territory that we have inherited and now find ourselves
inhabiting is essential to how we begin to make our way in this new place. Learning
how to take the first steps requires letting go—Iletting go of the lure of certainty, ofa
"right" path created by the ritualized method of demonstration and rehearsal; It

requires letting go of knowing exactly what to do. It begins by asking questions like

- TR
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these: "Do I have enough information to begin? I tried, and I couldn't do it; does that
mean I can't do it? Does it mean that the problem is unsolvable? Has anyone else ever

tried this before? How do I know that what I am doing is leading me somewhere?"

In wanting these students to let go, to enter this mathematical space, I found
that I needed to learn more about the territory that I was asking them to enter. Some
days, I found myseif having to face my own ignorance. "I don't know," I'd have to
admit. "Wait, I'll try to find out." I'd rush home at night, madly dig through my books,
search the internet, email a friend (one who wouldn't think I was stupid). "God, she
doesn't know that! What's she doing teaching mathematics?" I could hear the scorn
from the silent corners of my study walls. "If you're going to teach like that, I can't help
you. I don't know anyone who can." The consultant's words uttered so many years
ago had found their way into the private walls of my study and came back to haunt me.
In times of uncertainty I found myself caught in the myth that mathematics is something
you do by yourself and you do it quickly and you get it right. There is a penalty for not

knowing.

That's not learning. It's punishment. It's like every morning
when I got up to go to school, it was like punishment. The only
reason we want to get it right is so that we don't have to do any
more. If you don't get it done, you just get more. (Aaron, age

13)
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The students, Pat and I all had to learn to let go of the trauma created by the
years of conditioning that living this myth created. There was work to be done. Just as
Pat had done when she first came into my classroom as a researcher at Beacon
Elementary School, we had to once again roll up our sleeves and get to work. We had
to learn how to join in the mathematical conversation. In hearing these students'
complaints differently, Pat and I entered into an interpretative space that requires that
we begin "with a different sense of the given... it begins in the place where we actually
start in being granted or given this incident in the first place” (Jardine 1992, 55).

Mathematical understanding is not something that we can learn by observing
someone else do it correctly; rather it is something that we must undergo. It is messy,
filled with first steps. This is what beginning a mathematical investigation is all about.
This is what [earning is about. It is not the accumulation of all of those carefully
prescribed precise discrete procedures because "mathematics is messy and not the clean
picture we see in textbooks and proofs" (Wilensky 1993, 20). "If we deprive learners
of this opportunity, we strip mathematics of its essential character and deprive them of

real mathematical experience" (ibid, 22).

All Over The Place

"Get over here. How are we supposed to figure out the
points for C? We have all these triangles. Look at all these

places C can be. C is all over the place. C can be anything.
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How am I supposed to make sense of all the places C could be?

It would take all day.”

Figure 3.3 Student Work

I glance down at the paper, as I listen to these students’ wails of anguish. An
assortment of triangles covers their page. Throwing precision to the wind, while
keeping line segment AB constant; these students have started to play with some of the
places point C can reside. The constraints proscribed by the initial problem statement
impose these boundaries upon the students and therefore define but do not limit the
region in which they make conduct their play. As they move point C around above
line segment AB, the space that opens invites. exploration. It is full of possibilities.

In beginning to see some of the possibilities, they are overwhelmed by the space
that has opened. "Look at all these places C can be. C is all over the place. C can be

anything. How am I supposed to make sense of all the places C could be? It would
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take all day." Interpreted as words of turmoil, a rescue is in order. "Help me, I'm
drowning.” Resisting the temptation to rescue, which would throw me back into the
either-or dichotomy I described earlier in this chapter, requires that I hear and interpret
these students’' words differently. Finding ways to hear differently moves me into the
unexpected places in my own research. I know that in a very real sense, the students
are right. It would take all day, if they continued in the way that they are proceeding.
They need help, not a rescue, but some guidance—another "grain of sand lifted up"
(Palmer 1998, 122).

First, the students need to see that their. initial steps are correct; the space, that
their initial ventures into this problem open, is large. But it is not "all over the place" as
they say. They are right in asking for someone to help point to the markers that they
have found to show them which ones to attend to at this point.

"[ see that you have kept line segment AB constant in all your triangles. What
happens if you draw only one line segment AB and then you plot your C points all

Jfrom that one line segment?

A Place To Play
Beginning to focus on their words: "It would take all day" an interpretive space

had opened, we had stumbled onto a fundamental aspect of a good mathematical
investigation—the invitation to play. Like the "play of light, the play of the waves, the
play of gears or parts of machinery, the interplay of limbs, the play of forces, the play of

gnats, even a play on words" (Gadamer 1995, 103), the type of play which suspends
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time for awhile, this is exactly the space that good investigations open and an aspect of
mathematics that I want the students to know. It is a space large enough that it could
even take all day. But in order to take up this conversation, to hear these words as an
invitation, the students need to put aside the accumulated weight of experience that
tells them that mathematics is repetitive drudgery full of speed, right answers and
punishment. "Mathematics may be the only discipline that bases its instruction on
hundreds of exercises of five minutes or less" (Dawson 1995).

In selecting this particular investigation, I sought out a problem that was rich
Aenough, open enough, generous enough, so that it revealed something of the ways into
the mathematical landscape. I wanted the students to learn to play, to see that playing is
essential and that their movement within the play space is demanded. Mathematics and
mathematical thinking, knowing and understanding are created in its being played out.

Play (paidia) and education (paideia), "both terms arise from an original
reference to the activity of the child (pais), an echo of which can be heard in the word
"pedagogy" (paidagogos)" (Davis 1996, 212). If mathematics is not simply a closed
and given axiomatic system but in fact a living discipline inspirited by ongoing
questions, quarrels and conversations, then play and the pedagogy of mathematics is
not an afterthought but a necessity. If mathematics lives in its continual re-forming,
then we need to create a mathematical education that allows the young to experience
the creation of mathematics.

Play "is a phenomenon that has tended to be shallowly understood and, in

consequence, almost universally scorned by mathematics teachers” (Davis 1996, 214).
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Understood as something frivolous, play, as opposed to work, off-task behavior, is not
welcomed into most mathematics classrooms. But play is exactly what is needed. It is
only play that can entice us to the type of repetition and rehearsal that is needed to
learn how to inhabit the mathematical landscape and how to create new mathematics.
"The movement of play has no goal that brings it to an end; rather, it renews
itself in constant repetition” (Gadamer 1995, 103). This is not the same type of
repetition that is the hallmark of traditional mathematics teaching, that anxiety-
inducing, mind-numbing repetitive pacing shaped by rote recitation and Mad Minute
Math. I'm not talking about the repetitive pacing of the polar bears at the Calgary
Zoo, that back and forth motion that wears one single muddy path inside the boundary
of their limited confines. Once freed from that enclosure it is possible to understand
repetition in a different way. "Within the repetition itself, there is movement (play), so
that each act of repetition is indeed a new (informed and transformed) act. It is thus
that play sustains itself" (Davis 1996, 300). Each instance creates the next new instant,

it is both recursive and iterative, it is what keeps the play, the mathematics, alive.

Coming Together As A Group

As a whole group, we come together to talk about our initial conjectures.

Some of the students speak about their feelings of dislocation, of being overwhelmed.
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" I looked at this problem and I got so mad and frustrated. |
only wanted the answer. Iwanted to yell, 'Give me the answer.'
You just said, 'I'm showing you how.’ In Grades 2 - 5 math it
was all rules and doing questions. I liked it because I knew how
to do it all. There was only one way and I knew it. But this

problem doesn't have just one way.” (Tiffany - age 12)

I ask the group with their numerous triangles to talk to their classmates about
their conjectures. As the group puts up their paper with all the triangles a murmur of
voices goes through the room. A number of the students talk about what it is like to be
stuck.

"Getting stuck is okay. Before, I'd just be called 'dumb.’ There
was a penalty for not knowing how to proceed so I just kept my

mouth shut and I didn't tell anyone."” (Maria - age 12)

"I'm not afraid to admit that I don't understand something
anymore because I don't want to do more of what I don't

understand.” (Mary - age 12)

Together we look at the question again, we look at all the triangles in front of
us and together we start to plan some ways to proceed. I want the students to

understand that "the essence of the question is to open up possibilities and keep them
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open" (Gadamer 1995, 299) but at the same time, I do not want them to read this
openness as being anything and all over the place.

Ore of the students from this group points to the triangles that they have drawn
on their paper, which is now taped on the white board for the rest of the class to see.

"We drew all these triangles. All of them are right. We thought that C could
be anywhere."”

A number of students from the class comment that this looks somewhat like the
place that their group is stuck. I think it is important for the students to both recognize
that they are stuck and to know that being stuck is another fundamental aspect of doing
mathematics—"another grain of sand". It really can't be avoided. It is one of the ways
that you know that you are in mathematical territory. I talk with the students about
what happens to me when I get stuck. I let them know that sometimes I just stare at
the page in front of me, sometimes I get tense because I can't seem to make progress,
sometimes I feel frustrated because nothing seems to work, and sometimes I don't even
realize that I am stuck until I'm well into a place before I suddenly realize itis a déad—
end. I tell them that one of things that I have learned is that the worst thing that I can
do is to stop doing anything at all. One of the things that I do is to read the question
again carefully not because I have read it inadequately the first time, but rather, it is
often the case that the question only really makes sense after I have played with it for a
while and start to recognize the territory. In this way I can now read it more

thoughtfully because I have had some experience with the question.
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I ask the students to return to the original problem with me. We read it again
as we look at all the triangles in front of us. "4re you just looking at all the individual
triangles?" 1 ask the students. "Try looking for an overall pattern."

"Is that why you asked us to keep only one line segment AB and then work the
points C from that?" asks one of the students from this group. I ask the student to
come forward to the whiteboard to show us all how she might go about doing this.
The various members of the group pick up felt markers. They begin to superimpose
one triangle on top of another. As they do this other members of the class drift off into

their groups again. They are ready to re-enter the question once again.

Looking For Boundaries

"Look, these are points that C can be. AB s still the longest
side at all of these points. We know that the triangle cannot be

an obtuse triangle because then the other line BC will be

5l

longer than the AB line. Look we tried this: is35mm. If
we make an obtuse triangle then AC is 20 mm and CB is 44

mm. See it doesn't work, so it can't be an obtuse triangle."

Paux C= 88w
C, Q 2D mm

2 44
A \% e%mem\ ®,8:=35mm

Figure 3.4 Student Work
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These students have started to test the boundaries imposed by the structure of
this investigation. "The bounds are the limits that separate this place from that place;
the marking of bounds is the first step in transforming a space into a place™ (Davis
1996, 168). Creating the boundary around learning "keeps us focused on the subject at
hand. Within those boundaries, students are free to speak, but their speaking is always
guided toward the topic" (Palmer 1998, 74). This group recognizes that point C "can't
be just anything," it can't be just anywhere, but in their exploration they are recognizing
that they are not just filling n the bounds. This group is waking up the bounds and in
doing so the boundedness of the territory is becoming visible to them. They are
starting to define the places that might hold point C. The task is somewhat like that of
determining the boundary, that jagged, fuzzy edge, of a forest. In defining this place,
matters of measurement are important. The length of a line now is not just the idea of
length as in the earlier investigations, but the actual length. Rulers come out and
drawn lines are measured: 45mm, 20 mm, 44 mm, 35mm.

This group is onto something and they just want to continue. From across the
room I hear:

"Come here. We think we have something. We have found that
all the points inside an equilateral triangle would have to work
as points for C. Now we could flip the triangle and it would still

be the same. But, we think we got it. Is it right?"”
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Figure 3.5 Student Work
I look down at these students' page. They have drawn an equilateral triangle and then
placed a number of points inside that triangle. On closer examination, I see that they
had also changed the lengths of AB. So instead of searching for the boundary,
awakening the boundary as the previous group had done, this group fixed the boundary
and then filled it in by making all their points fit inside of it.

I turned their question back to them. "How would you know that you are
right?" I know that they want me to just say whether their answer is right or not. [
know that they do not want to me to turn the question back to them, to ask them to
convince themselves that their answer is right. However, I want students to understand
that

advances in mathematics happen through the negotiation of a

community of practitioners. Moreover, the development of

mathematical proofs is not linear, but rather follows the “zig-zag”

path of example, conjecture, counter-example, revised conjecture or

revised definition of the terms referred to in the conjecture. In this
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view, mathematical meaning is not given in advance by a transcendent
world, nor is it stipulated in an arbitrary way by conventions of
language; rather, mathematics is constructed by a community of
practitioners and given meaning by the practices, needs, uses and

applications of that community. (Wilensky 1993, 37).

In this sense living mathematical questions are produced through the
negotiation of a community of practitioners "during [such] production(s] the
student[s] progressively work out [their] statement[s] through an intensive
argurnentative activity functionally intermingled with the justification of [their]
choices” (Bartolini 2000).

This shows us how to read a concern of Palmer's (1998) regarding pedagogy
and, I suggest especially mathematics pedagogy which

centers on a teacher who does little more than deliver conclusions to

students. It assumes that the teacher has all the knowledge and the

students have little or none that the teacher must give and the

students must take, that the teachers sets all the standards and the

students must measure up.

In reaction to this scenario, a pedagogy based on an
antithetical principal has arisen: students and the act of learning are
more important than teachers and the act of teaching. The student is

regarded as a reservoir of knowledge to be tapped, students are
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encouraged to teach each other, the standards of accountability
emerge from the group itself, and the teacher's role varies from
facilitator to co-learner to necessary evil.

As the debate swings between the teacher-centered model,
with its concern for rigor, and the student-centered model, with its
concern for active learning, some of us are torn between the poles.
We find insights and excesses in both approaches, and neither seems
adequate to the task. The problem, of course, is that we are caught

in yet another either-or. (Palmer 1998, 116).

In a teacher-centered classroom, a question like, "Is it right?" receives a quick
yes or no response from the teacher. In a student-centered classroom, this same
question gets turned back to the students as: "What do you think?" or "Everyone has
their own right answer. You are all right.” And "whiplashed, with no way to hold the

tension, we fail to find a synthesis that might embrace the best of both" (Palmer 1998,

116).

Inviting Mathematics In

There is another way to understand the question, "Is it right? " This way points
to the discipline of mathematics, itself. Heard differently, “Is it right?" provides the

opening that invites mathematics into the discussion.
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A subject-centered classroom is characterized by the fact that the
third thing has a presence so real, so vivid, so vocal, that it can hold
teacher and students alike accountable for what they say and do. In
such a classroom, there are no inert facts. The great thing is so alive
that teacher can turn to student or student to teacher, and either can
make a claim on the other in the name of that great thing. Here,
teacher and students have a power beyond themselves to contend
with—the power of a subject that transcends our self-absorption and

refuses to be reduced to our claims about it. (Palmer 1998, 117)

In such a classroom all conversations are three-way. They are about something
and that something has something to say. In a mathematics classroom it means striving
"to understand what a person says, to come to an understanding about the subject
matter, not to get inside another person and relive his experiences" (Gadamer 1995,
383).

"How do you know you are right?" or "Show me that it is right." are the
questions that mathematics begs of the students.

Mathematicians come together in conferences, through their journals and in
lecture halls to show others what they have discovered and why and how it is "right" or
true. This is the way the community of mathematicians creates the discipline of
mathematics (Davis 1996; Davis and Hersh 1998; Ernest 1991; Thurston 1998;

Tymoczko 1998; Wilensky 1993). "I will show you the line of thinking that I have
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created and I will show you why it is so and if you can find no fault with any of the
steps that I go through, then it must be true” the individual presenting the mathematical
proof reasons. The final arbiter of the truth is the mathematical community of

practicing mathematicians.’

What distinguishes mathematics from other disciplines is the certainty
that is obtained through the rigor of proofs. But in fact proofs are
not the source of mathematical certainty. They are a technique used
by mathematicians to create a uniform procedure for verification of
mathematical knowledge. The technique consists of 'linearizing' the
complex structure that constitutes the ideas in a mathematical
argument. By means of this linearization, mathematical proofs can be
checked line by line, each line either an axiom or derived from
previous lines by accepted rules of inference.

But the hegemony of the standard style of communicating
mathematics (definition/theorem/proof) constitutes a failure to come
to terms with the mind of the learner. We attempt to teach formal

logical structures in isolation from the experiences that can connect

? This account of proof as a means of persuading the mathematical community is gaining acceptance
in the mathematical community; however, I do acknowledge that it is contentious. For those who
hold that mathematics is a system of absolute truths, independent of human construction or

knowledge—then mathematical proofs are external and eternal.
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those structures to familiar ideas. The result is that the idea too
often remains ‘abstract’ in the mind of the student, disconnected, alien
and separate, a pariah in the society of agents. (Wilensky 1993, 70-

71)

Once the students have entered into the living community of mathematical
practice the point is not to cast them to the place of procedural technique—
definition/theorem/proof. "Is this right?" now néeds to be taken up with all the
seriousness that the mathematical community demands. Students need to come before
their peers to explain the rightness of their thinking. This is not easy for students to do
initially. They feel self-conscious. They don't want to show their partial conjectures
for fear of embarrassment, for fear that the topic of their conjectures is them and not
math.

The mathematics textbooks that students have used to date do not help to ease
the students' fears. The mathematics of textbooks is clean and precise.

If learners believe that the mathematics as presented is a true picture

of the way the mathematics is actually discovered and understood,

they can be quite discouraged. Why is their thinking so messy when

others' is so clean and elegant? They conclude that clearly

mathematics must be made only for those born to it and not available

to mere mortals. Mathematical discourse is not a form of persuasion

continuous with daily discourse, but is instead in some special
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province all its own, a purely formal phenomenon. These
mathematical learners are deprived of the experience of struggling for
a good definition, and the knowledge that mathematical truths are
arrived at by a process of successive refinement not in a linear and
logically inexorable fashion... It is difficult to challenge old ideas, or
to formulate new ones, in the absence of a culture that supports the
floundering, messy process of mathematical exploration. (Wilensky

1993, 72-73)

It is important for the teacher to create a climate in which students are freely
encouraged to bring their partial understandings and conjectures forward to the rest of
the class because this is the climate that mathematics requires. Students should,
therefore, be expected to talk about and justify their thinking and the work they create;
their mathematical understanding. The students want in, they want to have access to
the conversation of mathematics, so they need a culture that will support their gaining
access to the ways of knowing mathematics. In such a classroom, students muster up
the courage, come before their classmates, to explain and justify why their conjecture is
right.

We all gather together as these students recreate their solution on the
whiteboard for their classmates.

"We drew an equilateral triangle. We knew that an equilateral triangle has

all sides the same length. We have found that all the points inside an equilateral



triangle would have to work as points for C. Now we could flip the triangle and it
would still be the same."
They wait for their classmates' responses.
"That kinda looks like= the solution we got. But ours is a bit different.”
A student holds up his group's solution.
"Here, can I show yow what we did?"
The student comes up- to the whiteboard and puts his group's solution next to
the first one and then explainss:
"“The points for C’ that work are all less than 60°. Look, we have
shaded in all the green dots in the middle and all the places of
the green dots and all the places in-between all the green dots
work. This is becaause if a green dot is chosen to be C it will be
shorter than AB brecause they are less than 60°. All the red dots
including the oness on the equilateral line will not work
considering the fact they are 60° or over. So all the points on

the side or on the sides of the equilateral triangle work."
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Figure 3.6 Student Work

Again, the lines of an equilateral triangle are sharply drawn. Green dots appear
inside of these lines and red discrete dots mark the outside. This group also claims that
any points C that are situated outside the boundary line "will not work considering the
fact they are 60° or over."

The two groups are very pleased that they have come to the same conclusion.
They are all smiles; as far as they are concerned the problem is solved. You can almost
hear their thoughts, "Phew! We solved that one."”

They turn to their classmates.

A hand goes up.

"I think there is a problem," Ian suggests. You can see furrows start to appear
on the group members' brows as they look back at their drawing. "The first group kept
on moving the length of the AB line. See take a look at all their AB lines. That

doesn't make sense. I don't think that is allowed. You are supposed to keep AB the

same."”
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Small conversations and arguments erupt about the classroom as students talk
with each other about whether this breaches the conditions imposed by the problem.
Some students start to dig through the papers on the table next to them to find the
problem. They go over the problem, reading it to each other.

You can hear, "That's right. You have to keep AB the same," erupt around the
room.

"Your solution is not right," several students challenge.

The group looks at each other as if to say, "Okay which one of you said that
this was right." They look back at the solutions on the whiteboard, "But they got the
same solution," Linda, a member of the first group counters while pointing to the other
solution on the whiteboard "and they didn't change the length of AB. So it doesn't
matter that we changed AB it's still right."

The class is silent. I can almost hear the thinking as I see the students going
over the drawings and the solutions again. Yeah, everything seems to check out.
Quod erat demonstrandum (QED), I can almost hear these students' mathematical
colleagues announce as students around the room nod their approval.

[ think they are right, Mrs. Friesen. I want to show you what our group did
and even though our way of doing the problem is different, we think we have the

solution.” Pam comes to the front of the class and puts up her group's work .
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Figure 3.7 Student Work
"The points always have to be inside points A and B. They also have to be shorter in
height than the length of the AB line,” Pam goes on to explain.

I can see what the students are doing and thinking as they are going about their
solutions, but there is something important that they are missing. I'm not sure how to
go about helping them to see what they are currently unable to see. I clumsily ask,
"But show me again, how it is that you determined that AB was the longest?"” The
students at the whiteboard look confused by my question. Paul hands them a meter
stick.

"What do we need that for?" one of the students asks. A student in the group
grabs the meter stick and measures each of the three lines of the equilateral triangle.

The other members of the group look on. "They are all the same," the student
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announces to the class. By this time Aaron had moved himself right in front of the
students.

"Are you sure the problem asked you to find a triangle that had all sides the
same length?" 1 try to encourage the students to look again.

"Yes. And we knew that an equilateral triangle would work because all the
sides are the same length, " answered Myra.

"They are all sixty degrees,"” said Evelyn. “So they are all the same length.”

I watch Aaron, who has now left his chair and is walking to the front of the
class. He takes the meter stick from Paul. There are a number of different discussions
happening around the classroom as students argue with each other trying to convince
each other that they solved the problem by pointing to the properties of their equilateral
triangles. They pay little attention to Aaron as he lays the meter stick on the line
.segment AB. I watch Aaron as he carefully measures line segment AB and then places
his finger on the meter stick at point B.

I notice that David has his eyes fixed on Aaron too. Aaron seems totally
engrossed with the measurements he is taking and is oblivious to the attention that
David and I are giving him. He removes the meter stick from the paper and with his
finger firmly clutching the measured point B puts the end that he had on point A onto
point B on the piece of paper. He then swings the other end of the meter stick up to
measure the length of the line BC. As he swings the meter stick up into position the
meter stick passes through an arc before it comes to rest at point C. Aaron stops. He

seems to notice something. He looks around and now notices David and I watching
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him. He also notices that several classmates have stopped their conversations and are
also looking at what he is doing.

Aaron looks down at the place he had put his finger. He again measures line
segment AB and once again places his finger on point B on the meter stick. Then again
places the end of the meter stick that had been on point A onto point B and swings the
meter stick up to point C. Once again he stops, but this time very briefly. He swings
the meter stick down the arc again and then up again. Many students have stopped
their discussions and are watching Aaron. "Aaron, can you explain what you are you
noticing?"

"Look. I think the points can be outside of this line.” Aaron sounds very
confused as he points to the part of the arc that falls outside of the line. "That really
doesn't make sense."

"He's right, but that can't be.” Paul reluctantly agrees with Aaron. Some of
the students look confused and it seems as though everyone in the class starts to talk at
once.

"Wait! That has to be.” Tyson leaves his chair in the classroom and comes up
to the board. He takes the meter stick from Aaron and begins to trace out the arc of
the meter stick. "I've got it!” He looks at the members of his group.

"Let's go. I've got it!"

A number of the students come up to join Aaron who now once again has the
meter stick in his hand. Everything feels very chaotic. The groups reform now in many

different ways. Many students temporarily join Tyscn and his group. Some students
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go back to their previous groups. Still other students stay with Aaron and coax him
into remeasuring the length of the line segment AB again. They want him to repeat
what he had done that had caused Tyson to see something beyond what they have been
able to see. Everyone is either in a state of excitement or bewildermeht. Some students
understand ther break through that Aaron's movement has made possible.

Everyone seems to want to get into the place that Aaron has stumbled into.
Some students huddle together in tight groups as they work with the problem anew,
others start rummaging through the classroom cupboards for string, still others ask if

they can go out to their lockers "fo get something."

Searching For The Vesica Piscis’’
"I think that the C point would ‘work’ as long as it is not in a direct straight

line with point A or point B."
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Figure 3.8 Student Work

'8 A figure composed of two equal and symmetrically placed circular arcs. It is also known as the fish
(piscis) bladder (vesica). It is formed by the intersection of two unit circles whose centers are offset by

a unit distance.
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"Look C can't be too far above AB , and C can’t be directly above or to the

outside of point A or B. I know that all the points for C are in the shaded area.

The result is that AB s the longest side. Once C is outside the shaded area,

is no longer the longest side. So it must look something like this.”

Figure 3.9 Student Work
This group of students has gone back to their original drawings and has now
extended a somewhat perpendicular line above point B. They seem to know that the
points for C must fall into an area just outside of the equilateral triangle but they seem
uncertain at first about how to go about determining where these points might be. One
of the members of the group has redrawn the equilateral triangle and has started to
place some points C onto it. However, a group of students using a string that they

have found in the classroom take the paper and start to work just below his triangle.
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Using the string, they measure the length of the line AB. Placing one end on point B
they start to measure off the points C as they bring the string up to point C.

Another group comes over to join this group and there are now about 20
students all standing around this table watching as Tyler marks off the points C. The

students start to express wonder and amazement as a curved line starts to emerge.

Finding The Vesica Piscis

"C can be anywhere within the area that the circles intersect. The point where
C can be located keeping AB the longest are within the area where the radius of A and
the radius of B overlap. To keep the line segment AB the longest, point C must be

placed within the intersecting area of both radiuses (sic)."”

Figure 3.10 Student Work
To create this shape, Ian and Drew retrieved their geometry sets from their
lockers. They used the line AB as the length of the radius of two circles of which point

A is the center of one circle and point B is the center of the other circle. I wanted to
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know what Ian and Drew had seen that led them to understand line AB as a radius and
not just the length of the leg of a triangle. They could not explain what they had seen
or why they thought that they could find the points for C with a compass but they knew
that the line segment AB could be both the base of a triangle and the radius of a circle.
As we stood talking about the two intersecting circles in front of us Christopher spoke
up, very confused, "But I thought we were learning about triangles. What do circles
have to do with triangles?"

With his eyes fixed on the paper, Paul gasped in disbelief, "Hey, that means that
the sides of your triangle are not straight. They are curved. Can angles be curved?

Can a triangle have curved angles?"

A Place That Draws Us In

The leap that the students had made through the conversation that we had had
as we worked through our exploration of triangles gave birth to a gestalt and a whole
new area of kinship, a whole new world of relations, opened between triangles and
circles. In being able to see the line segment AB as both the base of a triangle and the
radius of a circle they made a connection between circles and triangles, which cannot
happen when it's only about triangles, unless you draw every possible triangle. They
already knew that that would take all day.

The puzzlement and questions that Christopher forwarded as we looked at the
two identical intersecting circles opened another mathematical place, another

beginning. Christopher's question pulls us deeper into the mathematical space of
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Euclidean constructions, the work of the Pythagoreans, Babylonians and Greeks.
Paul's question "Can triangles have curved angles?" opens the territory of non-
Euclidean geometry and the work of Bolyai and Lobachevsky.

The students had found the vesica piscis. Working together they had learned
something about the nature of mathematical thinking, knowing and creating. The space
we now inhabited pulled us into "its question, its respose, its regard. Therefore, first is
the question posed, not by us but o us" (Jardine, Friesen and Clifford 2000, 6).

Our next steps lie before us. We had more mathematical territory to traverse.
But for this moment we sat back and enjoyed the thrill of understanding that we
Iaboured so hard to bring forth. On this occasion of genuine learning, we laughed. For
it seems that whenever learning is truly educational, when it occurs in a way that
transforms our experience or sharpens our powers of reason and observation, we are

most happy and satisfied.

A Necessary Feature Of The Mathematical Landscape

What has become clearer to me is the centrality of conversation and dialogue as
a necessary feature of mathematical practice. Working together we deepened our
understanding of geometry. Together we learned that each of one of us is capable of
comprehending much more than we had initially realized. And in working in this way
we all learned how mathematics is practiced—how to help keep it "open for the future"

(Gadamer 1989, xxiv).
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We learned that mathematics is created through a practice of inquiry.
Mathematics is not static discipline the point of which is a piling on of "facts". In
mathematics, consuming and producing memorized procedures do not add up to
mafhematical understanding (Russell 2000; Stigler and Hiebert 1999; Video tape
classroom study 1996) "The critically important point is that mathematical thinking
consists of a lot more than knowing facts, theorems, techniques, etc.”" (Schoenfeld
1992).

Posing and solving problems lives at the heart of mathematics. Introducing
students to mathematical problems and investigations, "involves renewed effort to
focus on: seeking solutions, not just memorizing procedures; exploring patterns, not
just memorizing formulas; and formulating conjectures, not just doing exercises”
(Schoenfeld 1992).

Mathematics is a dynamic discipline. Students need to "study mathematics as an
exploratory, dynamic, evolving discipline rather than as a rigid, absolute, closed body
of laws to be memorized" (National Research Council 1989, 84). This image of
mathematics is very different from images of traditional school mathematics. In
learning how to inhabit and explore the mathematics, students are disciplined by the
bounds that mathematics itself places on the territory—ways of conduct aimed at
satisfying the human desire to know and understand. That is, students who learn to
recognize the mathematical space they are in understand what it means

to keep it susceptible to be taken up and transformed anew and, it

must be emphasized, to keep ourselves open to being transformed in
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our traversing its terrain and meeting our own ancestors in that
terrain. In such a sojourn, we risk becoming someone who bears the
marks of having undergone such an adventure. We run the risk of
coming to bear the marks of becorﬁing experienced in mathematics in
that wonderfully ecological sense [of] coming to know your way

around.' (Jardine, Friesen and Clifford 2000, 13)

Students who learn mathematics in this way learn ways of a generative culture.

They learn what it means to create mathematics.
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CHAPTER 4

Anh Linh's Shapes

"It's a poor sort of memory that only works backwards," the Queen remarked

Lewis Carroll, Through the Looking Glass

The Story Begins With Anh Linh At Work

She sits at the end of one of the tables in our classroom. Her long dark hair
falls onto her paper as she methodically calculates then meticulously measures each
new line. Placing her ruler across the two points that she has calculated and measured,
she ever so carefully draws the first light pencil line. Then checking to ensure the
accuracy of the line, Anh Linh draws the second, now darker line over the first line.
She removes the ruler from the paper and critically analyzes her work. "Good, it's
good," she seems to say. And then she repeats the process, recursively adding the next
and then the next line to the geometrical drawing.

Sometimes a smile of intense satisfaction crosses her face. Sometimes fellow
students come by to inquire about her work. "Wow Anh Linh, that is so beautiful,"
they say as they admire the emerging form. Anh Linh smiles and then goes back to

calculating, measuring and drawing. Each line is precise. Each calculation is exact.
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Pat and I also watch Anh Linh as she works on this construction. Images of

Basle's (1583) Margarita philosophica (in Lawlor 1982, 7) come to mind in which

geometry is depicted as a

contemplative practice, "personified
by an elegant and refined woman, for
geometry functions as an intuitive,

synthesizing, creative, yet exact

activity of mind associated with the

feminine principle” (Lawlor 1982, 7).
Deeply immersed in the traditions of

geometrical ways of knowing and

doing that have "arisen within our

Margarita philosophica

human space through human activity" (Husserl 1970, 355), Anh Linh has come upon
"an inner logic so.profound that every critical piece of it {contains] the information

necessary to reconstruct the whole" (Palmer 1998, 123).

It Also Begins With The Pythagorean Theorem...

Pat and I learned the stories of the mystical Pythagoras and his disciples when
we first set out on this journey together in our irregularly shaped classroom with fifty-
some Grade 1/2 children. Now here we were, once again telling the secrets of these

early mathematicians and their quest to unite numbers and shapes to fifty-some Grade 8
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children. These students were just as enchanted by the stories of these ancient radicals
as the younger children had been. "Good mathematics ultimately comes from and
returns to good stories—and the questions that bug you" (Casey and Fellows 1993,
IHoﬂm that have the power to open an engaging mathematical space in which
compelling mathematical explorations invite and entice both the novice and the expert
mathematician (Friesen and Stone 1996). In this space, right angle triangles are so
much more than finding the length of the hypotenuse using the handy formula—a
theorem that stills bears the Pythagorean name.

Invoking a 3-4-5 triangle and unfolding its beauty and simplicity necessitates the
story of a man, an outcaste. How else can we let the students know that this simple
formula carries with it the weight of history? It stands the test of time. It still stands as
a pillar in trigonometry. This act of measurement is a fundamental one that reaches
back to Ancient Egypt. Using a rope knotted into 12 sections stretched out to form a
3-4-5 triangle, rope-stretchers reclaimed and reestablished the boundaries of land and
set order to the watery chaos created by the annual flooding of the Nile.

Reaching back in time, the Pythagorean theorem is one of the earliest theorems
to known ancient civilizations. There is evidence that the Babylonians knew about this
proportional relationship some 1000 years before Pythagoras (Siefe 2000, 29).
Plimpton 322, a Babylonian mathematical tablet which dates back to 1900 B.C.,
contains a table of Pythagorean triples—3-4-5, 5-12-13, 7-24-25... The Chou-pei, an

ancient Chinese text, also provides evidence that the Chinese knew about the
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Pythagorean theorem many years before Pythagoras discovered and proved it (Joseph

1991).

And It Begins With An Exploration...

"Draw a right angle triangle. Any sized right angle triangle. Using only
triangles that are similar to and/or congruent with your original, I want you to explore
the properties of right angle triangles.”

My instructions were very simple. The story had already charmed the students
and generously bounded the territory of the exploration. I provided these few
directions to start our mathematical journey, and then we all began.

What a strange place to be teaching like this. We were in the heart of East
Calgary. These students scored in the lowest quartile in the entire province. Our
colleagues told us that what these students needed were "the basics."

"Make them memorize their basic facts.”

"Give them real life problems. You know problems like calculating how much
change they need to give someone. Or how much money they will need to earn to buy
groceries. Or how much material they will need to purchase in order to make the items
that their customers desire."

We seldom entered into the exhaustive debates that these well-intended
comments opened. "What if this is not the way that mathematics exists, as object

either produced or consumed, either individually or collectively" (Jardine, Friesen, and
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Clifford 2000, 3)? Having endured seven years of consuming and producing
mathematics, these students were very clear about their regard for math. "We HATE
math." "It's boring.” "We are never going to need it.” "We'll just get a calculator.”
These students who were bored and turned off almost from their earliest days in school,
who could not (or would not) read, who knew far too little mathematics, who would
stop taking science as soon as they could get away with it, who dropped out of school

at worrisome rates. It is with these students that we now taught like this.

It Also Began The Year Before...

It began last year. Having made the decision to move to this school, Pat and I
knew that if we were to make a difference to these students, we would have to work
with them for longer than one year. And we would need to keep them together for
long blocks of uninterrupted time throughout the day. And we would also need to
teach them all the core academic subjects. This seems like a strange request when
everything about the structure of junior high school works against this type of
organization, this type of connection and connectedness. But the administrators were
receptive and supportive of our request, eager to see what differences this would make
to how these students learned.

We needed this type of structure in all the core academic subjects, and in
mathematics we needed it to break free from the spell that mathematics is about the

quick method, the quick answer, the one right algorithm, the boring repetitive math
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that they hated. We wanted to connect students meaningfully with the discipline of
mathematics in all its wondrous complexity rather than reducing it to more memorized
formulas and computation or more real life problems of consumption and production.
We knew that “to decide whether a math statement is true, it is not sufficient to reduce
the statement to marks on paper and to study the behaviour of the marks. Except in
trivial cases, you can decide the truth of a statement only by studying its meaning and
its context in the larger work of mathematical ideas” (Dyson 1996, 801). What we
wanted to do was to present the idea that mathematics contained a landscape of
possibilities.

"By teaching this way, we do not abandon the ethic that drives us to cover the
field—we honor it more deeply” (Palmer 1998, 123). We learn how to ‘inhabit’ such a
mathematical landscape. Teaching in this way requires nurturing. The cultivation of
this place is not simply a recapitulation of the old, like plowing the same old furrow
again and again. "Teaching from the microcosm, we exercise responsibility toward both
the subject and our students by refusing merely to send data bites' down the intellectual
food chain" (Palmer 1998, 123). We were working more like the rope-stretchers of
Ancient Egypt taking time and care to bring order to the newly fertile landscape so that
we might find ways to draw new boundaries upon fertile ground. At times we would
take out our string with the 12 evenly spaced knots and draw out 3-4-5 triangles. At
other times, changing our perspective, we would open our rope stretcher’s triangle
revealing a circle with 12 evenly spaced knots linking us to the perfect, endless, infinite

and to time itself. "By diving deep into the particularity, these students [were]
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developing an understanding of the whole" (Palmer 1998, 123). Working in this way
with these students, we began to show them that the cultivation of mathematics
necessitates the creation of the new in the midst of the old. Such cultivation requires
creation and recreation. It is a fruitful space, a space that "bears" something, births

something and contains the conditions to take care of what is thus "birthed.”

In this space, with these students, we asked:

What if mathematics is much more a world into which we ourselves
are drawn, a world which we do not and cannot 'own,’ but must
rather somehow 'inhabit’ in order to understand it? What if we cannot
own mathematics (either individually or collectively), not because it is
some object independent of us and our (individual or collective)
ownerships, but because it is not an object at all? What if, instead
of production and consumption, the world of mathematics (as a
living, breathing, contested, human discipline that has been
handed to us) needs our memory, our care, our intelligence, our
work, the 'continuity of [our] attention and devotion' (Berry 1977,32)
and understanding if it is to remain hale and healthy and whole?

(Jardine, Friesen and Clifford 2000, 4)

Deeply committed to finding new approaches, we struggled to find ways to help
our students ‘inhabit’ mathematics. From our first beginnings we worked with

mathematical explorations—the stories and fruitful spaces that they opened knowing
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that working in this way would "bear" something if we cared properly for it. A full
year had now elapsed and we were seeing some of the fruits of our care. It was a full
year ago that I told these students the story of four spiders that started crawling from
four corners of a six meter by six meter square. As I remember, each spider began to
pursue the spider on its right, moving towards the center of the square at a constant
rate of one centimeter per second. I embellished the story as I went along so that the
students would be intrigued by the exploration that the story opened. Would these
spiders ever meet, and if so how long would it take and what would their paths look
like? (Pappas 1989, 228; Holding 1991, 119) Through this exploration I intended to

introduce the students to the ideas of area, ratio, similarity and limits.

The students, however, became entranced by the pursuit curve—the path that
an object takes when pursuing another object. They couldn't believe their eyes that
these straight lines produced curves. We never did calculate the time it would take the
spiders to meet. Instead, the beautiful curve that emerged as the students worked so
captivated them that they spent their time drawing and redrawing the path produced by
the four spiders. Beauty and wonder are not attributes that any students, especially
these students would associate with mathematics. However, here they were, describing

these four congruent logarithmic spirals as beautiful, awesome, magical.
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In The Presence Of The Past: Anh Linh, The Pythagorean Theorem, The
Exploration, The Year Before...

Now, one full year later, Anh Linh called forward the pursuit curve and the
beautiful logarithmic spiral as she explored the 3-4-5 triangle. However, she was not
content to stay within the confines of the exploration. She began the exploration by

creating a series of right angle triangles much like this:

Figure 4.1 spiral using right angle triangles (Pappas 1989, 99)

From these sketches she drew this (Figure 4.2) logarithmic spiral. As Pat and I gazed
upon this incredible piece of work, each point meticulously measured, each line
precisely drawn, we could barely believe that this work came from a twelve-year-old

child.
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Figure 4.2 Anh Linh's spiral

Anh Linh was on to something else. There was something in the spiral that still called
to her, something still unresolved. She wrote:

I began with right angle triangles. I saw a spiral when I started to put

them together. I knew this shape. I remembered the spider's path. I

saw the spider's path in the right angle triangles and I wanted to know

if these were the same. I thought that my shapes might to be similar in

some way. | wasn't sure in what way they would be similar. I wanted

to see what would happen.
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The path formed by the pursuit curve that she had experienced last year, had a
similarity known as self-similarity. By rotation, the curve can be made to match any
scaled copy of itself. In the figure below [ have shown how the angle between the

radius from the origin and the tangent to the curve is constant.

/ ¢ 2xa
¢ 2xa
\

Figure 4.3 Angle between the radius from the origin and the tangent to the

curve is constant

This curve is known as the logarithmic spiral, the equiangular spiral and the
growth spiral. Growing larger, this spiral exhibits expansive growth in the form of
seashells and hurricanes. It results from the play of a square with the transcendental ¢
ratio—1.6180339...

Getting lost in the exploration, Anh Linh decided to create another logarithmic

spiral next to the one that she had just created.



138

» Figure 4.4 Anh Linh's reflected spiréls
As Anh Linh continued with her exploration, we all became intrigued with the natural
forms this shape reminded us of and we started to examine naturally occurring

logarithmic spirals.

Natural Spiral - 1
http://ww.notam.uio.no/%7Eoyvindha/loga.html

Natural Spiral - 2
http://www.notam.uio.no/%7Eovyvindha/loga.honl

Sometimes what at first seems unrelated, not similar, on closer inspection bears family
resemblance. This shape was deeply familiar—a figure that the "Greek mathematicians

called the gnomon and the type of growth based upon it. 'A gnomon is any figure
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which, when added to an original figure, leaves the resultant figure similar to the

original” (Lawson 1982, 64).

"This method of figuring the gnomon
shows its relationship to the
Pythagorean formula a’+ b*=c.

Shown here is the gnomonic increase

from the square surface area of 4 to the

square of 5, where the gnomon of the

larger square 5 is equal to 1/4 of the

initial square of 4" (Lawson 1982, 65).

Figure 4.5 Relationship between
gnomon and Pythagorean formula

Anh Linh's quest to understand these dynamic spirals continued. When we saw
her drawing of four tessellated, symmetrical patterns, we were awed. To produce such
a stunning beautiful piece of work by hand certainly required contemplation and
exactitude beyond what we could have ever hoped for. And for us, this would have

been enough, but not for Anh Linh.
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Figure 4.6 Anh Linh's rotated spirals
She continued to ask questions of this beautiful form and its symmetry, and
each new question led us all deeper into this exploration. Spiral doodles started to
appear all over the classroom—on notebooks, scraps of paper, borders on assignments.
Some students started to create a variety of spirals using the Logo program we had in
the classroom. They learned the power of variables. Creating the following set of

commands:
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TO POLYGUN DIUE CANULLE AVLL
IF :SIDE>300 [STOP]

FD :SIDE

RT :ANGLE

BOLYGON (:SIDE + :AMT) :ANGLE :AMT
END

produced this spiral:

Figure 4.7 Logo created spiral: Arthur - age 13

Our work with Logo led us into the area of recursion and iteration—fractals.
We saw a level of care, concern and questioning that we had never before witnessed in
this group of students. Their fractals were exquisite. Each calculation and line was

exact. The students understood that the slightest variation would dramatically affect

the outcome.
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Sierpinski Triangle: Simon - age 13

We were experiencing what it meant to create mathematics. We were
beginning to understand how creating new mathematics begins with asking questions.

Sometimes a question that is easy to ask is impossible to answer. Sometimes a question
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that sounds difficult turns out to be something you aiready know, just dressed up to
look different. Sometimes the question leads, not to an answer, but to another question.
And for these questions, the answers are not in the back of the book. It's the posing of
questions that kept calling us on to new possibilities, wondering what might be around
the next corner, helping us to understand that mathematics is not finished, it's work in
progress, it's a "living, breathing, contested, human discipline that has been handed

to us" (Jardine, Friesen and Clifford 2000, 4).

Working In 3D

Working on the two dimensional plane was intriguing and engaging, but what
about 3D? Our questions were quite playful as we started, "I wonder what would
happen if..." "I wonder if the symmetries that we had found on the 2D plane would
hold as we tiled them onto the surfaces of a solid."

We decided to begin by tiling the surfaces of regular solids known as Platonic
solids: tetrahedron, icosahedron, dodecahedron, octahedron, and cube with the various
symmetrical designs that we had constructed. What better place to try out our
emerging understandings than on such perfectly symmetrical solids. Each of our
_ geometric models began as a flat design. We not only had to determine the shapes of
the sides we needed to construct in order to create the transition from the two
dimensional net to the three dimensional solid, we also needed to figure out how to

place our designs on the two dimensional plane so they it would be perfectly



symmetrical in three dimensions. The two dimensional pattern gives few clues as to
what you will see and feel when it takes shape in three dimensions.
The flat designs represent the possibility of infinite repetition but only
a fragment of this infinity can be captured on a sheet of paper. On the
surface of a three-dimensional object, infinite repetition of design can
be realized with only a finite number of figures—the pattern on a
solid has neither beginning nor end" (Schattschneider and Walker

1982, 16).

Creating the nets for each of the solids was fairly challenging, but
determining how to draw the designs onto the surfaces so that when the edges
came together the illusion of infinity was produced, was exigent. "Contrary to
the impression given by most textbooks, the discovery of new forms and new
ideas is rarely the product of the predictable evolution” (Schattschneider and

Walker 1982, 8). After many attempts the student's solids began to take shape.

Cube: Tuyen - age 13 . Icosahedron: Trung - age 13

144
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Excrescence: Simon and Rajit - age 13

But it was Anh Linh who really pushed our thinking. It was Anh Linh and her
love for the logarithmic spiral that pushed us into to the frontiers of mathematics itself.

Starting with the cube, Anh Linh drew the curves on each of the six faces.
Upon assembling the cube she discovered that the designs did not flow. The symmetry

was broken. How could symmetry be lost on this perfectly symmetrical solid?
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Figure 4.13 Anh Linh's Cube

Believing that she had made an error, she drew another cube. This time she
transformed the spirals by reflecting them. However, upon putting the net together,
she discovered that the problem was not solved. The pattern of the curve had broken
the symmetry of the perfectly symmetrical cube—Greek symbol of earth. The act of
reflection had not solved the problem. How could that be? What would work? "I
want to find out why the symmetry breaks," Anh Linh wrote. "I am going to see if [
can make the symmetry work on any of the other solids. If I can, then maybe I will
know why it doesn't work on the cube.”

Creating the curves on four equilateral triangles, Anh Linh started on her
consuming quest to understand more about symmetry. She created the tetrahedron—

the symbol of fire.

Figure 4.14 Anh Linh's Tetrahedron
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It didn't work. The symmetry didn't hold. Anh Linh wrote: "In this shape I
noticed that the pattern (curves of pursuit) didn't match on all the faces. The symmetry
breaks along the edge. I also found out that you can use the curve of pursuit on any

platonic solid. I didn't know that when I started.”

Intrigued by her new discovery and undaunted by her disappointment, Anh Linh

took on the challenge of the octahedron—the symbol of air.

Figure 4.15 Octahedron net

Once again, working on the two dimensional equilateral triangles, Anh Linh

meticulously measured and drew what we all now called "Anh Linh's curves.”
Magic—"1t was like magical,” Anh Linh later wrote. As Anh Linh folded the

edges of these eight equilateral triangles together form and design came together,

symmetry held and infinity emerged from the finite.
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Figure 4.16 Anh Linh's Octahedron

What was it about the octahedron that was different from the tetrahedron or the
cube? Everyone in the classroom was now involved in Anh Linh's problem—including
Pat and me. Was there a solution? "If there is, I don't know it,” Anh Linh wrote.
"There might be an easy way to figure this out, but I don't know it. I will draw an
icosahedron. It's faces are also triangles.”

For Anh Linh, as for all of us, we thought that the solution might be in the
shape of the faces themselves. The tetrahedron did not work. But it was small—it
only had four faces. Perhaps there was something in the number of faces. The
octahedron had eight faces. Why should the symmetry hold with eight faces and not
with four faces? They were both even numbers. But so was six for that matter—the
number of faces on the cube. The solution had to be in the shape. Maybe there was
something in the shape of the triangle that held the key to this problem. It had three
vertices. The cube had four. Maybe there was something in that. Maybe there was
something in the odd and the even. Like the ancient Pythagoras, we went looking for a

connection between shapes and numbers.
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Anh Linh continued drawing. Her next shape was the beautiful, perfectly
symmetrical solid icosahedron, representing the Greek symbol for water. Upon each of

its twenty identical equilateral triangle surfaces, Anh Linh drew the logarithmic spiral.

Figure 4.17 Anh Linh's Icosahedron
As she brought each of the five vertices of the solid together, she discovered, as did we
all that symmetry was lost. But why? There had to be a solution.

It would be easy to conclude that we were just involved in solving the problem
posed by Anh Linh’s shapes. But that is not really what was happening—at least not all
that was happening. Mathematics is not just a problem solving activity. We were
involved in something far more fundamental—far more "basic" to mathematics. We
were caught up in a generative act "the central activity being making new mathematics"
(Wilensky, 1996). It was consuming for all of us. We noticed the students puzzling
with the various shapes, trying to put them together in different ways, trying the
dodecahedron, looking again at previously failed symmetries whenever they found

breaks in their normal day-to-day studies. Pat and I puzzled along with them.
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‘While driving home from school one day along the busy, accident-riddled
Deerfoot freeway I had a flash of insight. I suddenly knew a direction to take that
might hold the key to Anh Linh's shapes. I pulled over to the side of the road and
frantically dug through my books for a piece of paper and a pen or a pencil. That's it.
Flatten the shape. Step onit. Make a graph. Not the normal school type graph—a
statistical graph, but a network, that type of graph.

We had been playing with networks earlier in the year. I had read the students
the story Superperson Saves the Monster (Casey and Fellows 1993, 51). It is a zany
story about three characters: Gertrude the goose, Monster and Superperson. Now
suddenly on this freeway, driving home from school this story seemed to somehow to
hold the key to Anh Linh's shapes. "Sometimes ideas are often born unexpectedly—
from complexity, contradiction, and, more than anything else, perspective"
(Negroponte 1996).

"Look at the vertices,” Anh Linh's shapes seemed to call. As I flattened each of
the shapes, about their vertex points, I noticed that the vertices and edges came
together in a pattern of odds and evens. The tetrahedron—three, the cube—three, the
octahedron—four, the icosahedron—five. There it was. I could hardly wait to get
back to school the next day. I needed to let the class know that the Superperson story
might hold the key. Upon revisiting the story, the students saw it too. "I don't think I
need to make a decahedron,”" wrote Anh Linh. "It has an odd number of edges at the

vertices."
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I still had some reservations. How could we be sure that we were right?
packed up all of Anh Linh's shapes and took them to a mathematician at the university.
I told him the story of Anh Linh's shapes and showed him how we had come to a
solution. "Does this make sense to you, Albert?" I asked.

"Let's see.” Albert drew a number of sketches on the chalkboard in his office.
"Yes, I believe you and your class are on to something,” he said. "The direction you
have chosen seems to be a good one."

"But are we right?" 1 wanted to know.

"I don't know," he said. "But it looks like you are in an exciting and productive
place. This is all new mathematics. There are people here who know more than I do
about this area. You are creating mathematics.”

We began our exploration with Euclidean geometry but as we searched for a
solution to the problem of determining symmetry we found ourselves in a very different
space—a geometrical space that bad more questions than answers. It seemed as
though we had left the deeply familiar Euclidean geometry behind and were pushing at
the very frontiers of mathematics itself—graph theory. It was an exploration that drew
us in. "It [pulled] us into its question, its repose, its regard. Therefqre, first is the
question posed, not by us but fo us" (Jardine, Friesen and Clifford 2000, 6)? We were
consumed by the questions that kept presenting themselves, that kept calling to us from
Anh Linh's shapes.

Where was Pythagoras? Did we leave him behind? Or are we in a place that

required Pythagoras? Were we standing in the "long and twisted entrails of all the
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interdependencies that gave rise to [what was] being manifest, just here, just now"
(Jardine, Friesen and Clifford 2000, 7)? Did Pythagoras, in his explorations and
eccentricity know he was preparing a place which could give "birth" to this new
mathematics? A place that could support Anh Linh's quest. A place large enough for
all her classmates and her teachers. A place that required us all and all of us.
"Mathematics is, in some sensible sense, all the actual human, bodily work which is
required if it is to remain hale and healthy, if it is to continue as a living practice which
we desire to pass on, in some form, to our children" (Jardine, Friesen and Clifford

2000, 12).
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CHAPTER FIVE

To Teach Like This

"What we teach and how we teach is why we score the way we do" (Schmidt
2000) was the finding of the Third International Math and Science Study (TIMSS).
This multiyear research and development project with its five components: curriculum
analyses, achievement tests, questionnaires, case studies and a video study, assessed the
current state of mathematics education. The findings for North America were

disheartening.

In the past, many critics have attempted to place the blame for schoolchildren’s
poor performance on achievement tests on a variety of factors external to schooling.
However, analysis of TIMSS data suggests that schooling itself is largely responsible.
It points to the classroom identifying it as the source of the problem. The data from
TIMSS questionnaires indicated that the majority of North American teachers were
familiar with current NCTM (1989) reform recommendations. Many teachers claimed
to be implementing these reforms in their classrooms. However, analysis of TIMSS
videotape data revealed a big discrepancy between what teachers said they did and

what they actually did.

"It may come as a surprise, but the video study of TIMSS marked the first time

we have collected a fully recorded, representative sample of teaching" (Hiebert 1997).
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Even though Canada did not participate in the videotape study the lesson scripts from
the United States classrooms are deeply familiar. Analysis of the videotape study data
revealed that the current NCTM (1989) reform initiatives to improve mathematics
teaching have not impacted U.S. classrooms in any significant way. Clearly teachers
have not understood the intent of the reform initiatives and consequently have not been

able to implement the necessary changes into their practice.

In the face of overwhelming evidence about what is wrong with North
American mathematics education, it is tempting to reach for a quick fix—simply
transplant the superior teaching strategies and curricula of those countries that scored
better than North America. But this would be short sighted. Teaching is a complex
activity. It has deep cultural roots. To ignore this is to head down a path that would
leave us "without a mechanism for steadily improving the way we teach” (Hiebert
1997). And wouldn't be long before we would find ourselves in this place again

wondering, what should we do differently? What do we reform?

Information on teaching is essential for understanding what happens
when policies are implemented. There are many stories in this country
about the failed process of educational reform: recommendations are
proposed, no changes in outcomes are observed, complaints about
the recommendations mount, committees meet and propose new
recommendations, often reversing the thrust of the old ones. The

entire process plays out without ever checking whether the initial
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recommendations were enacted. There is no way to know whether

the old recommendations should be changed. (Hiebert 1997)

What is clearly evident is that mathematics education research will have to move
into the classroom to learn how to reform mathematics education. Research initiatives
are needed, initiatives that look deeply and thoughtfully into classroom practice to

come up

with new ideas--new ways of teaching, new curriculum materials,
new ways of organizing schools. Generating new ideas depends on
the creative acts of the human mind. Research, by itself, is no
substitute. Of course, the research process can place people in a
position to see things in a new way and imagine new possibilities, but
it is the individual's interpretation, net the research evidence alone,

that generates the new ideas. (Hiebert 1999, 8)

The work of my research, of tbjs.doctoral dissertation, is one such initiative.
Understanding the "inherent creativity of interpretation, the pivotal role of language in
human understanding, and the interplay of part and wﬁole in the process of
interpretation” (Smith 1994, 104), I looked deeply into the classroom, into my own
classroom practice, to examine closely what it looks like when teachers and students

engage in deeply mathematical ways in order to understand what needs to be reformed
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in mathematics education. What I learned has implications for teaching, learning and

further research work.

New ways of teaching are necessary; ways of teaching that are fundamentally
and philosophically different from the current scripts that underlie much of North
American pedagogy. This has implications for both the education of new teachers and
practicing teachers. Working together, teachers and researchers will have to roll up
their sleeves, to create the new images of practice that are needed. This will require
forming new types of working relationships between schools and universities, and

between teachers and researchers.

Teaching is unlikely to improve through researchers' developing
innovations in one place and then prescribing them for everyone.
Innovations can spread around the country, but only by trying them
out and adjusting them again and again as they encounter different

kinds of classrooms. (Stigler and Hiebert 1999, 134-135).

Just as Pat, David and I did, it will require working together in the classroom,
learning how to focus on the teaching act, paying close attention to those things that
protrude above the surface of the commonplaces of classroom life, those things that
disrupt our ordinary taken-for-granted assumptions about what constitutes good
teaching and learning—those things and those children, who we now work hard to

eliminate or remediate.
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And as my research revealed, one of the commonplaces that needs to be studied
is the mathematics of mathematics education, the mathematics that has been aptly
described as "a mile wide and an inch deep” (Schmidt, McKnight and Raizen 1997). A
mathematics education that focuses on endless disembodied numbers and operations,
memorized procedures and fragmented topics, has more devastating consequences than
poor achievement results. Many students emerge from twelve to sixteen years of such
mathematics with deep scars. Far too many of these students believe that they are
incapable of understanding mathematics. Far too few people recognize that the
shadows that they have come to know as mathematics bear little resemblance to

mathematics itself

In Malcolm's words, "If you change the way mathematics is taught,
you'll be surprised at who can learn mathematics. The idea of fitting
the subject to the audience is real uncharted territory." What we do
know is that memorizing formulas doesn't make anyone literate. (Steen

1997, xxv).

How Do You Learn To Teach Like This?

"How do you learn to teach like this?" is an old familiar question. It is also a
difficult question to pose as it has too many answers. There is one way of answering

this question that leads directly into the search for better teaching tips and techniques.
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[But] there are no formulas for good teaching, and the advice of
experts has but marginal utility. If we want to grow in our practice, we
have two primary places to go: to the inner ground from which good
teaching comes and to the community of fellow teachers from whom

we can learn more about ourselves and our craft. (Palmer 1998, 141).

Learning to teach like this requires:

1. seeking out and living in the presence of those people who think and live like
this. They are the colleagues who know and understand that teaching and
learning is a way of being. They are the colleagues who refuse the institutional
barriers imposed by walls that place one teacher in one classroom. They are the
colleagues who open their classrooms, themselves and their teaching to others
knowing that imitating, repeating and practicing are essential to learning to
teach like this. They are the ones who understand that ancestry and memory are
not just part of subject disciplines but a part of the stream of the teaching
profession. This is the practice of teaching that teachers need to enter.

Learning to teach like this "depends on shared practice and honest dialogue

among the people who do it" (Palmer 1998, 144).

2. refusing the company of those who will not support the journey of learning to
teach like this, the ones who demean and are cynical. This is a very delicate
professional issue. Wood (2000) discusses the difficulty teachers encounter and

the ways in which innovative initiatives get derailed. With no way to
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understand the desire to search for something different, something more from
teaching than improved techniques, some colleagues will attempt to derail and
intimidate those who choose this way of teaching. "The issue of collegial
jealousy and how it can become a barrier to innovative teaching may be one of

the most important challenges we educators face" (Wood 200, 7).

clearing a territory. Learning to teach like this requires that a space be opened.
The clutter of activities that currently fills the days of far too many classrooms
are intrusions into this way of teaching. Going deeply into a teaching and
learning space requires an openness with yourself, your colleagues and your
students. This is soul work. You can't hide it away. There can be no disguises.
To begin to teach like this you need to ask yourself what you want to be
answerable to and surround yourself with those who will help you. Finding
colleagues who expect it, invite it and provide a generous place is essential to

learning to teach like this.

taking heart that the world will support such work, even when schools will not.
It is very easy to get discouraged when you start to work like this. "I have been
forced to ask myself whether the pessimists are right. If they are, integrity
would require me to stop peddling false hope about the renewal of teaching and
learning" (Palmer 1998, 164). But as Pat and I learned, you will find colleagues
in schools and in places other than school. Mathematicians who love their art

will recognize this way of working. Poets and writers who love their art will
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recognize this way of working. Artists who love their art will recognize this
way of working. You will find fellow travelers both inside and outside of the

institutions. They will be the ones who share your vision and your passion.

5. understanding this is life work. Learning to teach like this is not about how
much you know. Rather, it is about knowing that there is much to know
and that that your work, as a teacher and a learner, is about finding out.
Not knowing is not a project, but a condition of knowing a lot. It involves
the realization that you will never know enough, not because you haven't
learned it well, but because there is so much to learn and know. It will
mean that you will find yourself needing to learn more mathematics, more

physics, more philosophy, more literature, more art...

To Teach Like this

I stepped from plank to plank

So slow and cautiously;

The stars about my head I felt,

And my feet the sea.

I knew not but the next
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Would be my final inch,—
This gave me that precarious gait
Some call experience.
Emily Dickinson

For me this research experience invoived learning how to teach and learn in new
ways. Working together with mathematicians, Pat and I found ways to create deeply
engaging mathematical explorations for the students we taught. And together, we
found and created the ways into those explorations, the stories, which connected us
with those who had prepared this landscape for us. Learning how to create
mathematical explorations and documenting the work that we do is in its infancy. This

dissertation is the beginning of such work.

Learning how to listen to the students to hear what they say, finding different
ways to interpret the words we hear, is essential. Only in this way will researchers
continue to examine and understand the ordinary commonplace scripts that underwrite
current educational theorizing and philosophy. As researchers and teachers work
together, they will have to keep a constant focus on student learning to ensure that they
do not get so caught up in the massive task of the reforms themselves that they lose

sight of the reason why they are doing them.
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Finding new ways to help and support practicing teachers re-form and deepen
their understanding of mathematics will require forging new working relationships
between teachers and mathematicians and between mathematics departments and
mathematics education. If mathematics is in fact a living discipline inspirited by
ongoing questions, quarrels and conversations, then the pedagogy of mathematics is not
an afterthought but a necessity. Teaching like this requires that we begin the task of re-

forming the mathematics of mathematics education.



163

References

Almedia, Dennis and Paul Ernest. 1996. "Editorial: teaching and the nature of
mathematics." Philosophy of Mathematics Education Newsletter [online]: 9.
[cited 2000-07-02]. Available from Internet:

http://www.ex.ac.uk/~PErnest/pome/pompart1.htm

Aoki, Ted. 1989. "Layered understanding of curriculum and pedagogy: challenge to
curriculum developers." Paper presented at the symposium Empowering
Teachers as Curriculum Developers sponsored by the Alberta Teachers'

Association, March 4.

Ball, Deborah Lowenberg. 1990. "Breaking with experience in learning to teach
mathematics: the role of a preservice methods course." For the Learning of

Mathematics 10: 10-16.

Barrow, John D. 1992. Pi in the sky: counting, thinking and being. New York:

Oxford University Press.

Bartolini, Bussi M.G. 2000. "Early approach to mathematical ideas related to proof
making." Contribution to Proof and Proving in Mathematics Education.

fonline}: ICME9 TSG 12. Tokyo/Makurhari, Japan. [cited 2000-07-02].



164
Available from Internet:
http://www.cabri.net/Preuve/ICME9TG12/ICME9TG12Contributions/Bartolini

BussilICMEQ0.htmt

Battista, Michael T. 1999. "The mathematical miseducation of America's youth." Phi
Delta Kappan [Online]. [cited 2000-07-02]. Available from Internet:

http://www.pdkintl.org/kappan/kbat9902.htm

Bauersfeld, Heinrich. 1997. "Research in mathematics education: a well-documented

field?" Jowrnal for Research in Mathematics Education 28,5: 612-625.

Beaton, Albert E., Ina V.S. Mullis, Michael O. Martin, Eugenio J. Gonzalez, Dana L.
Kelly, and Teresa A. Smith. 1996. Mathematics achievement in the middle
school years: IEA's third international mathematics and science study
(TIMSS). Boston College: Center for the Study of Testing, Evaluation, and

Educational Policy.

Berman, Morris. 1983. The reenchantment of the world. New York: Bantam Books

Berry, Wendall. 1983. Standing by words. San Francisco: North Point Press.



165
Borko, Hilda, Margaret Eisenhart, Catherine A. Brown, Robert G. Underhill, Doug
Jones and Patricia C. Agard. 1992. "Learning to teach hard mathematics: do
novice teachers and their instructors give up to easily?" Journal for Research

in Mathematics 3,23: 194-222.

Bracey, Gerald, W. 1998. "TIMSS, the new basics, and the schools we need.”
Education Week [online]:17,23. [cited 2000-07-02]. Available from Internet:

http://www.edweek.org/ew/vol-17/23bracey.h17

Carpenter, Thomas P., Elizabeth Fennema, Penelope L. Peterson, and Deborah A.
Carey. 1988. "Teachers' pedagogical content knowledge of students' problem
solving in elementary arithmetic." Journal for Research in Mathematics

Education 19: 385-401.

Casey, Nancy and Mike Fellows. 1993. This is mega-mathematics! Los Alamos, New
Mexico: Los Alamos National Laboratory. Also available from Internet:

available online at http://www.c3.lanl.gov/mega-math/menu.html

Clifford, Patricia A. 1996. "Here there be dragons: de-literalizing the margins of

educational thought and practice.” Ph.D. dissertation., University of Calgary.



166
.Clifford, Patricia and Sharon Friesen. 1999. "Awakening in a dark wood." In Allan R.
Neilsen, ed., Daily Meaning: counternarratives of teachers’ work. ~Canada:

Bendall Books.

Clifford, Patricia and Sharon Friesen. 1997/1998. "Hard fun: teaching and learning for

the twenty-first century." Focus on learning 11: 8-32.

Clifford, Patricia and Sharon L. Friesen. 1993. "A curious plan: managing on the

twelfth.," Harvard Educational Review 63,3: 339-358.

Cohen, Jack & lan Stewart. 1994. The collapse of chaos: discovering simplicity in a

complex world. New York: Penguin Books.

Cooney, Thomas J. 1985. "A beginning teacher's view of problem solving." Journal

Jfor Research in Mathematics Education 16: 324-336.

da Ponte, Joao Pedro. 1994. "Mathematics teachers' professional knowledge."
Proceedings of the 18" International Conference for the Psychology of

Mathematics Education, 195-209.

Davis, Brent. 1996. Teaching mathematics: toward a sound alternative. New York:

Garland Publishing, Inc.



167

Davis, Philip J. and Reuben Hersch. 1998. The Mathematical Experience. New

York: Houghton Mifflin Company.

Dawson, A.J. (Sandy). 1995. "A Canadian education in mathematics: goals, problems
and proposals." A discussion paper prepared for the Canadian Forum for
Education in Mathematics. [cited 2000-07-02]. Awvailable from Internet:

http://camel. math.ca/CMS/Forum/

Devlin, Keith. 1994. Mathematics, the science of patterns: the search for order in life,

mind, and the universe. New York: Scientific American Library.

Dickinson, Emily. 1890. Selected poems & letters of Emily Dickinson. Ed. R.N.

Linscott. Garden City, NY: Doubleday, Anchor Books, 1959.

Dowling, Paul. 1998. The sociology of mathematics education: mathematical

myths/pedagogical texts. London: Falmer Press.

Driver, Rosalind, H. Asoko, J. Leach, E. Mortimer and Philip Scott. 1994.
"Constructing scientific knowledge in the classroom.”" Educational Researcher

23:5-12.



168

Dyson, Freeman. 1996. "The scientist as rebel." American Mathematics Monthly 103,

9: 800-805.

English, Lyn D. "Children's problem posing within formal and informal contexts.”

Journal of Research in Mathematics Education 29,1: 83-106.

Emest, Paul. 1996. "The nature of mathematics and teaching.”" Philosophy of
Mathematics Education Newsletter [online]: 9 [cited 2000-07-02]. Available

from Internet: http://www.ex.ac.uk/~PErmest/pome/pompart7.htm

——. 1994. "The philosophy of mathematics and mathematics education." Edited by
R. Biehler, R.W. Scholz, R. Stresser, and B. Winkelmann. 7The Didactics of

Mathematics as a Scientific Discipline. Dordrecht: Kluwer. 335-349.
——. 1991. The philosophy of mathematics education. London: The Falmer Press.
Even, Ruhama. 1993. "Subject-matter knowledge and pedagogical content
knowledge: prospective secondary teachers and the function concept." Journal

Jfor Research in Mathematics Education 24: 94-116.

Eves, Howard. 1990. Foundations and fundamental concepts of mathematics. New

York: Dover Publications.



169

Friesen, Sharon and Michael G. Stone. 1996. "Great Explorations." Applying

Research to the Classroom 14,2: 6-11.

Friesen, Sharon, Patricia Clifford and David W. Jardine. 1998. "Meditations on
‘classroom community, memory,snd the intergenerational character of

mathematical truth." Journal of Curriculum Theorizing 14,3: 6-11.

Gadamer, Hans-Georg. 1995. Truth and Method. New York: The Continuum

Publishing Company.

Good, Thomas L., Douglas A. Grouws, and DeWayne A. Mason. 1990. "Teachers'
beliefs about small-group instruction in elementary school mathematics."

Journal for Research in Mathematics Education 21: 2-15.
Gorman, Jacqueline L. 1991. "The beliefs of pre-service teachers learning
mathematics." Paper presented at the annual meeting of the American

Education Research Association, Chicago, April, 1991.

Greene, Maxine. 1988. The dialectic of freedom. New York: Teachers College Press.



170

Grouws, D. (Ed.). 1992. Handbook of research on mathematics teaching and

learning. New York: Macmillan.

Hammer, @yvind 2000. "Logarithmic spirals.” [online] [cited 2000-07-02].

Available from Internet: http://www.notam.uio.no/%7Eoyvindha/loga.html

Heidegger, Martin. 1962. Being and time. New York: Harper and Row

Hersh, Reuben. 1997. What is mathematics really? Oxford: Oxford University Press.

Hiebert, James. 1999. "Relationships between research and NCTM standards.”

Journal for Research in Mathematics Education 30: 3-19.

Hiebert, James. 1997. "Statement of James Hiebert: Before the Committee on Science
United States House of Representatives, Hearing on the Third International
Mathematics and Science Study: A Comprehensive Analysis of Elementary and
Secondary Math and Science Education." [cited 2000-07-02]. Available from

Internet: http://www.house.gov/science/hiebert_10-8.htm

Holding, John. 1991. The investigations book. Cambridge: Cambridge University

Press.



171

Hoyles, Celia. 1992. "Mathematics teaching and mathematics teachers: a meta-case

study.” For the Learning of Mathematics 12: 32—44.

Husserl, Edmund. 1970. 7he crisis of European sciences and transcendental

phenomehology, Evanston: Northwestern University Press.

Hyde, Lewis. 1983. The gift: imagination and the erotic life of property. New York:

Vintage Books.

Inkpen, Sarah. 1997. "Jurassic pedagogy in a technocratic park???" [online] [cited
2000-07-02]. Available from Internet:

http://www.oise.on.ca/~sinkpen/Jurassic.html

Ireland, David. 1998. "Canadian students do better than results indicate. " The CCPA
Education Monitor [online]. [cited 2000-07-02]. Awvailable from Internet:

http://www.policyalternatives.ca/edumon/article4.html

Jardine, David W., Sharon Friesen and Pat Clifford. 2000. (under consideration).
"Behind each jewel are 300 sweating horses: meditations on the ontology of
memory in mathematics education.” In Haebe-Ludt, E., and Hurren, W. (eds.)
Curriculum Intertext: Place/Language/Pedagogy. New York: Peter Lang

Publishing.



172
Jardine, David W. 1995 "Hermeneutics, community and the power of address."
Presentation to the Faculty of Education, Louisiana State University. Baton

Rouge, Louisiana.

Jardine, David W. 1994a. Speaking with a boneless tongue. Bragg Creek: Makyo

Press.

Jardine, David W. 1994b. “"The stubborn particulars of grace." in B. Horwood, ed.,
Experience and the curriculum. Dubuque, Iowa: Kendall/Hunt Publishing

Company, 261-275.

Jardine, David W. 1992. "The fecundity of the individual case: considerations of the
pedagogic heart of interpretive work.." Journal of Philosophy of Education,

26,1: 51-61.

Joseph, George Gheverghese. 1991. The crest of the peacock: Non-European roots

of mathematics. New York: Penguin.

Kasner, Edward & Newman, James R. 1989. Mathematics and the imagination.

Redmond, Washington: Microsoft Press.



173

Kay, Alan C. 1995. "Computers, networks and education." Scientific American

Special Issue: The Computer in the 21st Century, 148-155.

King, Jerry P. 1992. The art of mathematics. New York: Fawcett Columbine.

Lawlor, Robert. 1982. Sacred Geometry. New York: Crossroad.

Lawton, Millicent. 1997. "Researchers trace nation's TIMSS showing to 'basics'."
Education Week [online]: 17, 23. [cited 2000-07-02]. Available from Internet:

http://www.edweek.org/ew/vol-17/23aaas.hl17

Lerman, Stephen. 1997. "The psychology of mathematics teachers' learning: in search
of theory." Proceedings of the 21" Conference of Psychology of Mathematics

Education. 201-207.

Motz Lloyd and Jefferson Hane Weaver. 1993. The story of mathematics. New York:

Avon Books.

Mullis, Ina V.S., Michael O. Martin, Albert E. Beaton, Eugenio J., Gonzalez, Dana L.
Kelly, and Teresa A. Smith. 1997. Mathematics achievement in the primary

school years: IEA's third international mathematics and science study



174

(TIMSS). Boston College: Center for the Study of Testing, Evaluation, and

Educational Policy.

National Council of Teachers' of Mathematics. 2000. Principals and standards for

school mathematics. Reston, Virginia: National Council of Teachers' of

Mathematics.

— . 1995. Assessment standards for school mathematics. Reston, Virginia:

National Council of Teachers' of Mathematics.

—. 1991. Professional standards for teaching mathematics. Reston, Virginia:

National Council of Teachers' of Mathematics.

—. 1989. Curriculum and evaluation standards for school mathematics. Reston,

Virginia: National Council of Teachers' of Mathematics

National Research Council. 1989. Everybody Counts. Washington, DC: National

Academy Press.

Negroponte, Nicholas. 1996. "Where do new ideas come from?" Wired [online].

[cited 2000-07-02]. Awvailable from Internet:
http://www.wired.com/wired/archive//4.01/negroponte_pr.html



175

Palmer, Parker. 1998. The courage to teach: exploring the inner landscape of a

teacher's life. San Francisco: Jossey-Bass Inc.

Pappas, Theoni. 1997. Mathematical scandals. San Carlos, California: Wide World

Publishing/Tetra.

Pappas, Theoni. 1989. The joy of mathematics. San Carlos, California: Wide World

Publishing/Tetra.

Paulos, John Allen. 1991. Beyond numeracy: ruminations of a numbers man. New

York: Alfred A. Knopf.

Peterson, Ivars. 1990. Islands of truth: a mathematical mystery cruise. New York:

W.H. Freeman and Company.

Raymond, Anne M. 1997. "Inconsistency between a teacher's beliefs and practice."”

Journal for Research in Mathematics Education 28, 5: 550-573.

Resnick, Michael D. 1998. "Proof as a source of truth." In Thomas Tymoczko, ed.,
New Directions in the Philosophy of Mathematics. Princton, New Jersey:

Princeton University Press.



176

Robitaille, David F., Alan R. Taylor, Graham Orpwood, and J. Stuart Donn. 1998.
TIMSS-Canada Report Volume 4 Senior Secondary: Executive Summary
[online]. [cited 2000-07-02]. Available from Internet:

http://www._curricstudies.educ.ubc.ca/projects/ TIMSS/Summ4. html

Robitaille, David F., Alan R. Taylor, and Graham Orpwood. 1997. "Third
international mathematics and science study: Canada report, grade 8."

Education Quarterly Review 4,3: 35-46.

——. 1997. TIMSS-Canada Report Volume 1 Grade 8: Executive Summary [online]
[cited 2000-07-02]. Awvailable from Internet:

http://www.cust.educ.ubc.ca/wprojects/TIMSS/execV1/text.htm

——. 1997. TIMSS-Canada Report Volume 2 Grade 4: Executive Summary [online]
[cited 2000-07-02]. Available from Internet:

http://www.cust.educ.ubc.ca/wprojects/TIMSS/Summ?2.html

Russell, Susan Jo. 2000. "Changing the elementary mathematics curriculum: Obstacles
and challenges." [online] [cited 2000-07-02]. Awvailable from Internet:

http://www.terc.edu/investigations/resource/html/currchange.html



177

Sabinin, Pauline and Michael G. Stone. 1999. "Triangles got legs! A classroom
exploration of the largest side and smallest angle in triangles.” Delta-K Jounal

of the Mathematics Council of The Alberta Teachers' Association 36,1: 60-62.

Schattschneider, Doris and Wallace Walker. 1982. M.C. Escher Kaleidocycle.

Norfolk,England: Tarquin Publications.

Schmidt, William H. 2000. "A call to substance: an interview with Dr. William
Schmidt on. the lessons learned from the Third International Mathematics and
Science Study." The Math Projects Journal. [online] [cited 2000-07-02].

Available from Internet: http://www.mathprojects.com/resources/.

Schmidt, William H., Curtis C. McKnight, and Senta A.Raizen. 1997. A4 splintered
vision: an investigation of U.S. science and mathematics education. U.S.
National Research Center for the Third International Mathematics and Science
Study, Michigan State University. [online] [cited 2000-07-02]. Available from

Internet: http://ustimss.msu.edu/splintered.htm

Schneider, Michael S. 1994. A beginner's guide to constructing the universe: the
mathematical archetypes of nature, art and science. New York: Harper

Collins Publishers, Inc.



178

Schoenfeld, Alan. 1992. "Learning to think mathematically: problem solving,
metacognition, and sense-making in mathematics." In D. Grows, ed., Handbook
for Research on Mathematics Teaching and Learning (D. Grouws, Ed.). New
York: MacMillan, 334-370. Also available from internet: http://www-
gse.berkeley.edu/Faculty/aschoenfeld/Learning ToThink/Learning_to_think Mat

h.html

Schoenfeld, Alan.1994. "What do we know about mathematics curricula?" Journal of
Mathematical Behavior 13, 1: 55-80. Also available from Internet:http://www-
gse.berkeley.edu/Faculty/aschoenfeld/ WhatDoWeKnow/What_do_we_Know.ht

ml

Senger, Elizabeth S. 1996. "Teachers' struggles with mathematics reform: unpacking
the process of change." Paper presented at the annual meeting of the American

Educational Research Association, New York.
Siefe, Charles. 2000. Zero: the biography of a dangerous idea. New York: Viking.

Sierpinska, Anna; Jeremy Kilpatrick, Nicholas Balacheff, A. Geoffrey Howston, Anna
Sfard, and Heinz Steinbring. 1993. "What is research in mathematics
education, and what are the results?" Journal for Research in Mathematics

Education 24,3: 274-278.



179

Simon, Martin A. 1995. "Elaborating models of mathematics teaching: a response to
Steffe and D'Ambrosio." Journal for Research in Mathematics Education 26,

2: 160-162.

Smith, David G. 1994. "The hermeneutic imagination and the pedagogic text.”
Pedagon: Meditation on Pedagogy and Culture. Bragg Creek, Alberta: Mayko

Press, 99-136.

Sfeen, Lynn Arthur. 1997. "Preface: the new literacy." in Lynn Arthur Steen, ed., Why
numbers count: quantitative literacy for tomorrow's America. New York: The

College Board.

Steen, Lynn Arthur. 1990. "Pattern.” In Lynn Arthur Steen, ed., On the shoulders of
giants: new approaches to numeracy. Washington, D.C.: National Research

Council, National Academy Press.

Stevenson, Harold W. 1998. "A study of three cultures: Germany, Japan and the
United States: An overview of the TIMSS case study project." Phi Delta
Kappan|online] {cited 2000-07-02]. Auvailable from Internet:

http://www.pdkintl.org/kappan/kste9803.htm



180

Stewart, lan. 1995. Nature's numbers: the unreal reality of mathematics. New York:

Basic Books.

Stiglef, James W. and Hiebert, James. 1999. The teaching gap: best ideas from the
world's teachers for improving education in the classroom. New York: The

Free Press.

Stigler, James W. and Hiebert, James. 1998. "Understanding and improving classroom
mathematics instruction.” Phi Delta Kappan [online] [cited 2000-07-02].

Available from Internet: http://www.kiva.net/~pdkintl/kstg9709.htm

Thompson, Alba. 1985. "Teachers' conceptions of mathematics and the teaching of
problem solving." in E. A Silver, ed., Teaching and learning mathematical

problem solving. Hillsdale, N.J.: Lawrence Erlbaum Associates.

Thornton, Carol A., Cynthia W. Langrall, Graham A. Jones, and John A. Malone.
1997. "Changing prospective elementary mathematics teachers' beliefs through
reflective analysis and enhanced pedagogical knowledge." Paper presented at

21" Conference of Psychology of Mathematics Education.



181

Thurston. William P. 1998. "On proof and progress in mathematics." in Thomas
Tymoczko, ed., New Directions in the Philosophy of Mathematics. Princeton,

New Jersey: Princeton University Press.

U.S. Department of Education, National Center for Education Statistics. 1997.
Pursuing excellence: a study of U.S. fourth-grade mathematics and science
achievement in international context. NCES 97-255. Washington, DC:
National Center for Education Statistics. [online] [cited 2000-07-02].

Available from Internet: http://nces.ed.gov/timss/report/97255-01.html

—— 1997. Video examples from the TIMSS videotape classroom study. NCES 98-
092 CD ROM. Washington, DC: National Center for Education Statistics.

Available from Internet: http://nces.ed.gov/timss/timss95/video.asp

—. 1996. Pursuing excellence: a study of U.S. eighth-grade mathematics and
science teaching, learning, curriculum, and achievement in international
context. NCES 97-198. Washington, DC: National Center for Education
Statistics. [online] [cited 2000-07-02]. Available from Internet:

http://nces.ed.gov/timss/97198.html



182
Videotape Classroom Study. 1996. Third International Mathematics and Science
Study: unpublished tabulations, UCLA. Available from Internet:

http://timssvideo.psych.ucla.edw/

Western Canadian Protocol for Collaboration in Basic Education. 1995. The common
curriculum framework for K-12 mathematics. [online] [cited 2000-07-02].

Available from Internet: http://www.wcp.ca/

Wilensky, Uriel J., 1996. " Making sense of probability through paradox and
programming: a case study in a connected mathematics framework." [online]
[cited 2000-07-02]. Awvailable from Internet:

http://www.tufts.eduw/~uwilensk/papers/paradox/lppp/msppp.-html

Wilensky, Uriel J., 1993. Connected mathematics - building concrete relationships
with mathematical knowledge. Ph.D. dissertation, Massachusetts Institute of

Technology.

Williams, Steven R. 1995. "A critical look at practice in mathematics and mathematics

education." Journal for research in mathematics education 26,2: 184-188.

Wood, Julie M. 2000. "Innovative teachers hindered by the 'green-eyed monster."

Harvard education letter 16, 4: 7-8.





