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ABSTRACT 

This dissertation is an interpretative study of teaching and leaning mathematics in 

schooL Based on findings fiom the Third International Mathematics and Science Study 

(TIMSS), it raises important mathematical and pedagogical issues that arise fiom 

sustained efforts to implement the National Council of Teachers of mthematics (NCTM) 

Principles and Standards for School Mathematics (NCTM 2000). 

Told as a series of nested stories that serve as both data and method, the 

dissertation uncovers the importance of landmarks that are new to the discourse of the 

reform of mathematics in mathematics education: 

the role of memory and stories. This study argues the centrality of children's coming 

to know the discipline of mathematics through the carell telling of key stories of 

mathematicians who have gone before. Such stories put students in touch with 

mathematics as a profoundly human enterprise that arises fiom people's deep longings 

to explore the world. Sharply contrasting the ubiquitous "story problems" of various 

trains that leave various stations traveling in various directions, such ancestral stories 

deliberately raise the same longings and desires in yet another human generation: 

what are the ever-mysterious contours of now-familiar landscapes such as counting, 

measuring, predicting, and expIoring limits that mathematics was invented to resolve? 

the centrality of conversation in a mathematics classroom. Through dido gue, children 

and teachers gather, lay out and defend their thoughts, one with one another. The 

dissertation expIores the "watering ho let' of mathematical discourse: those places 

where students and teachers meet for rich mathematical conversation acld hotly 
.-- 
Lll 



contested debates. These are pIaces where the "rightness" of answers are worked out 

within boundaries estabihhed by the actual discipline of mathematics, not as an 

anxious search for proper procedures. 

creating new mathematiics. For many children and teachers, mathematics is a desolate 

sort of territory in which correct moves and answers are always known in advance, 

either by the teacher or %y the peopIe who wrote the keys at the back of the textbook 

Genuine mathematical re fom suggests that the ciassroom must, instead, be a deeply 

generative place in which the disposition to create new mathematics is caremy 

cultivated. Thought of im this way, mathematics loses its character as a series of 

preformulated problems. to be solved, and gains a new one. It becomes a way of 

thinking in which new problems emerge when we learn to cover the ground of old 

territories in fkuitfbl ways. 
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(XAPTEX ONE 

Stalled At The Classroom Door 

Introduction 

Recently, professional mathematics and mathematics education organizations, 

concerned about the quality of mathematics instruction, have issued calls for refona 

Not since the "new math" of the 1960's and 1970's has such an orchestrated change to 

mathematics curricula and pedagogy been issued (Almeida and Ernest 1996). For 

many, that is not good news. Few people remember the reforms of "new math" with 

fondness, but they find themselves caught once again in a call for fundamental changes 

in mathematics education This time, unlike the refonns of the "new math" with its 

enthusiastic infusion of the study of sets, groups and other abstract mathematical 

structures, these new reforms involve an emphasis on problems parrow 1992, Davis 

1996, English 1998, Emest, 1991, 1994). They involve 

empowering individuals to be confident solvers and posers of 

mathematical probIems embedded m social contexts. .. Schoo 1 

matbematical knowledge must reflect the nature of mathematics as a 

social construction: tentative, growing by means of human creation 

and decision-making, and connected with other realms of knowledge, 

culture and social life. (Ernest 199 1,207) 
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Teachers are used to the roller coaster ride of refo-ut with the old, m with 

the new. To the jaded, the call for reform in mathematics education seems to be just 

another in the long line of tried and soon-to-be-rejected educational reforms. 

Depending on the dominant concern (cynics might read 'fkd') of any 

particular era, teachers have embraced new met hod0 logies, 

techniques, and programs: phonics, look-and-say, whole language; 

the 'new math', manipulatives, computer assisted instruction, the 

s p a  curriculum, open areas, cooperative learning, multi-aging. The 

names change fiom era to era, as do the dominant ideologies that 

inform whatever program is developed, implemented, tested-and 

ultimately rejected. Teachers talk about this phenomenon as 'the 

pendulum swing.' (Clifford and Friesen 1994,4) 

And indeed, our efforts to reform in mathematics education might again fail. 

We have been in this place before, wanting to demonstrate the Iiving nature of the 

discipline. Calls for reform within mthernatics education seem to indicate a desire to 

connect more strongly with the dynamic nature of the discipline of mathematics itself. 

This was the impetus for the cbange of the "new math" of the 1960's and 1970's. 

"Instead of the old-fashioned emphasis upon arithmetic, cdcdating interest rates, using 

logarithms, geometry and calculus," (Barrow 1992, 133) the founders of the "new 

math," a group of mathematicians known as the Bourbaki, were anxious to demonstrate 

that mathematics was a human creation and not a divine revelation. 
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Thiay years ago parents, who were comfortable with traditional mathematics 

and were often confirsed by the new approaches, soon discovered that their children 

were not as proficient with the mathematics they, themselves, knew. Unfimiliar with 

tbis "new math," and worried about children's apparent loss of basic skills, parents 

cded  for a return to more traditiond, more fhmilk, ways. The idea that mathematics, 

itselfmight be changing was unsettling not only for parents but also for many other 

aduIts. The general public called for return to "the basics." It was not long before 

textbooks and teaching returned to more traditional, more W a r  ground and the 

"experiment" with math reform was called a failure. 

Our return to a more comfortable view of mathematics, textbooks and teaching 

satisfied us. But it was not long before news of North American studentsf deficiencies 

in mathematics started to d c e .  Barrow (1992) argues that traditional mathematics 

currick and pedagogy have "not adapted to meet the challenges posed by new 

mathematics and its relationship to the external worId and to the activities of 

mathematicians and computers" (145). What is evident to us now is that, as we 

returned to a more comfortable way of knowing and doing mathematics in schools, we 

became firrther divorced fiom the cizanging, dynamic discipline of mathematics and the 

technologica1 advances that mathematics was creating. "Mathematics, in the common 

lay view, is a static discipline based on formulas taught in the school subjects of 

arithmetic, geometry, algebra, and calculus. But outside public view, mathematics 

continues to grow at a rapid rate" (Steen 1990, 1). Instead of working through the 

dEculties caused by the "new math", and there were many, we retreated, As a result, 



school mathematics and the mathematics that mathematicians recognize have become 

increasingly different discipiines- "School mathematics and the research 

mathematician's pure mathematics are wholly different areas of study" (Almedia and 

Ernest 1996, 1). 

What Is Mathematics? 

When I ask school children "What is mathematics?" they most frequently 

answer, numbers. It's about numbers. It's plussing and minusing, and timsing and 

dividing. But this definition does not belong only to schoolchildren. 

Ask this question of persons chosen at random, and you are likely to 

receive the answer 'Mathematics is the study of number.' With a bit 

of prodding as to what kind of study they mean, you may be able to 

induce them to come up with the description, 'the science of 

numbers.' But with that you will have obtained a description of 

mathematics that ceased to be accurate some two and a half thousand 

years ago! ... 

In fkct, the answer to the question, 'What is mathematics? has 

changed several times during the course of history. @evlin 1 997, 1 ) 

Mathematics was the study of number up to 500 B. C. During this time 

Egyptian and Babylonian mathematics, dominated by arithmetic, formed the 

mathematical landscape. From 500 B-C. to 300 AD. Greek mathematicians searched 



for ways to measure the Earth and the heavens. Earth measure and geometry were born 

and the mathematical landscape expanded and changed to include the study of shape. 

This was a time of great mathematics and great mathematicians-Pythagoras, Eudoxus, 

Euclid, Archimedes and Eratosthenes. During this time, Euclid mtroduced two new 

concepts to mathematics through geometry-the defbition and the axiom. Even now, 

these form the bedrock of contemporary mathematics. "In fkt, it was only with the 

Greeks that mathematics came into being as an area of study, and ceased being a 

collection of techniques for measuring, counting and accounting" (Devlin 1997,2). 

The mathematicaI Iandscape remained relatively unchanged until the middle of 

the seventeenth century. "Until Newton's great discoveries, it never occurred to 

'scientists' that mathematics could be used to express basic principles about nature or 

the universe itself" (Motz and Weaver 1993, 125). Working independently, Newton, In 

England and Leibniz, in Germany both invented the cdculus-he study of motion and 

change, "which led to one of the most famous controversies in the history of 

mathematics, and to the most heated intellectual rivalry between two nations" (Motz 

and Weaver 1993, 125). 

With the introduction of techniques to handle motion and change, 

mathematicians were able to study the motion of the planets and of 

Edhg bodies on earth, the workings of machinery, the flow of 

liquids, the expansion of gases, physical forces such as  magnetism and 

electricity, flight, the growth of plants and animals, the spread of 

epidemics, the fluctuation of profits, and so on. Mer Newton and 



Leibniq mathematics became the study of number, shape, motion, 

change and shape [sic], @evh 1997,2) 

At &st, mathematicians and physicists (who were one and the same during this 

time) directed their energies to the applications of calculus- But with time, mother 

shift occurred in mathematics, and the mathematical landscape again expanded and 

changed. As mathematicians worked with the enormous power that the calculus 

provided, new types of mathematics were created. At the turn of this century 

mathematics had grown fiom three distinct categories-arithmetic, geometry and 

calculus---t o twelve distinct cat ego ries . 

The explosion of mathematical activity that has taken place in the 

present century has been dramatic. In the year 1900, all the world's 

mathematics knowledge would have fitted b c  J into about eighty 

books. Today it wouId take perhaps 100,000 voiunes to contain all 

known mathematics. (Devlin 1997,3) 

Today, mathematics includes almost seventy distinct categories, with some 

categories like algebra or topology, split into subfields. Entirely new categories of 

study in mathematics such as compIexity theory and dymmical systems theory are being 

created. One of the reasons for this change seems to be the increasing use of computer 

technologies. "Nothing in recent times has had as great an impact on mathematics as 

computers ..." (Inkpen 1997, 1). 



Not since the time of Newton has mathematics changed as much as it 

has in recent years. Motivated in large part by the introduction of 

computers, the nature and practice of mathematics have been 

bdamentally transformed by new concepts, tools, applications and 

methods. Like the telescope of Galilee's era that enabled the 

Newtonian revolution, today's computer challenges traditional views 

and forces re-examhation of deeply held values. As it did three 

centuries ago in the transition fiom Euclidian proofk to Newtonian 

analysis, mathematics is undergoing a fundamental reorientation of 

procedural paradigms- (Steen 1 990,7) 

The possibility that our understanding of the nature of mathematics itself (and 

not just the nature of teaching math) might be re-forming is diEcult for most of us to 

comprehend. Introduced to mathematics through traditional teaching and textbooks, we 

came to know it as a fixed, logical, rational, absolute, objective, pure, abstract, and 

certainly unchanging discipline. This view was reinforced as we went about trying to 

solve "mainly unrelated routine mathematical tasks which involv[ed] the application of 

learnt procedures, and [we learned] that every task md] a unique, fixed and objectively 

right answer, coupled with [teacher] disapproval and criticism of any fdure to achieve 

this answer" (Ernest 1 996, 1). Many of us have carried this view of mathematics with 

us into our adult world. For us, "mathematics is identified with a rote recitation of 

facts and a blind carrying out of procedures. Decades later this robotic mode of 



behavior kicks in whenever a mathematical topic arises. Countless people feel that if 

the answer or at least a recipe for fhding it doesn't come to them immediately, they'll 

never get it" (Paulos 199 1,53). 

The changes that are being called for in mathematics education this time appear 

to be forced by the changes that are occurring in the practice of mathematics. "Standard 

school practice, rooted in traditions that are several centuries 014 simply cannot 

prepare students adequately for the mathematical needs of the twenty-first century" 

(Steen 1990,2). Asking the question, What is mathematics? is important ifwe are to 

move forward with reforms this time. "Scholarly work in mathematics education has 

recently begun to look deeply at what mathematics is. This increased interest in what 

was once the purview of philosophers of mathematics grows fiom a recognition that 

both teaching and learning mathematics are intimately connected with doing 

mathematics" (Williams 1995, 184). 

CurrentIy, conversations invo1~g the nature of mathematics do not seem to be 

a high priority for teachers and prospective teachers, those most responsible for 

bringing these reforms to life. 

More often than not, my efforts to discuss the nature of the subject 

matter have been regarded as irrelevant time-wasters. I must confess 

to a certain despair when faced with this sort of response, especially 

when it is manifested among pre-senrice and practicing teachers. In 

simplest terms, I hold little hope for any meaningful change in the 

teaching of mathematics until we are willing and able to interrogate 



earnestly the subject matter we are chiming to teach, A Mure to do 

so, I fear, will compel us to reenact the same e e n t m g  and 

reductive practices that have recently come under harsh critique. 

(Davis 1996,56) 

Clearly, it is importapt for teachers and researchers to explore the nature of 

mathematics, itself, as they search for ways to improve rhe teaching of mathematics in 

schooI, However, as Davis (1996, 80) cautions, we need to be carefid about how we 

ask the question, What is mathematics? ". . .In posing the question in those terms, there 

is an implication that we can somehow consider the body of knowledge as 

determinable, focable, and separable fkom ourselveeas though we could somehow 

step outside of our mathematics". 

Our conversations about the question "What is mathematics?must go beyond 

simply discussing the nature of mathematics. Once we fk mathematics, separate it 

fiom ourselves, we lose sight of the fact that mathematical knowledge "emerges f?om 

our actions in the world and fkom our interactions with one another" (Davis 1996, 74). 

It is not preexistent, nor does it live in any one of us, yet it requires us. However, when 

our only experience of formal mathematics is through the schooled delivery of 

conclusions, then we come to know math as given-a determinable, static subject 

constituted by unchalIengeabIe and unchanging truths- Teachers and the textbooks 

possess the facts. Their task is to transmit those facts to students. "This image of 

mathematical practice portrays mathematics as  a dead subject-inquiry is unnecessary 
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because our concepts have been formally defined in the 'right' way and our theorems 

demonstrated by linear and f o n d  means" (Wilensky, 1993,21). 

"To do mathematics means to produce new mathematics" (King 1995,34). But 

wbat exactly does that mean? From the time we enter formal schooling we are steeped 

in traditional school mathematics. 

All of us have endured a certain amount of classroom mathematics. 

We lasted, not because we believed mathematics worthwhile, nor 

because, like some collection of prevailing Darwinian creatures, we 

found the environment favorable. We endured because there was no 

other choice. Long ago someone had decided for u s  that 

mathematics was important for us to know and had concluded that, if 

the choice was ours, we would choose not to learn it. So we were 

compelled into a secondary school classroom fronted with grey 

chalkboards and spread with hard seats. A teacher who had himself 

once been compelled to this same place stood before us and day after 

day poured over us what he believed to be mathematics as ceaseIess 

as a sea pours forth foam. (King 1992, 15- 1 6 )  

As mathematics education re-forms itsell; the question of what to teach and how 

to teach it is critical. If mathematics is not simply a closed and given axiomatic system 

but in fact a living discipline inspirited by ongoing questions, quarrels and 
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conversations, then the pedagogy of mathematics is not an afterthought but a necessw 

If mathematics lives in its continual re-forming, then how do we create a mathematicd 

education that allows the young to experience the creation of mathematics? When 

"outside the closed circle of professional mathematicians, almost nothing is known of 

the true nature of mathematics or of mathematics research (King 1992,5), how do we 

begin to answer the calls for reform in mathematics education? What do we reform? 

What do we do differently? 

Mathematics Education Reform Efforts 

In the past decade, much rethinking has gone into mathematics educational 

reform in terms of curriculum, pedagogy, and epistemology (NTCM 1989, 199 1, 1995; 

Grouws 1992). In 1989, the National Council of Teachers of Mathematics (NCTM) 

set forth the document C U ~ C U Z U M  and Evaluation Standards, followed by 

Professional S tundad for Teaching Mathematics in 199 1 and Assessment Standards 

in 1995. These three documents, along with myriad support documents, were intended 

to provide recommendations to improve and reform mathematics education. 

Although NCTM is a mathematics education research organization located in 

the United States, its call for reform was felt within the western provinces of Canada 

In June 1 995, the province of Alberta initiated a new mathematics curriculum. This 

curriculum, unlike any other before it, was the collaborative effort of Manitoba, 

Saskatchewan Alberta, British Columbia, Yukon Tenitory and the Northwest 
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Territories. The Common Cm~culum Framework for K-12 Mathematics (1995) was 

the first in a series of joint development projects in basic education. This curriculum, 

with its unmistakable relationship to the National Council of Teachers of Mathematics 

Cu~cultrnt and Evaluation Standards document, "identifies belief3 about mathematics, 

general and specific student outcomes and illustrative examples agreed upon by the six 

j ~ c t i o n s "  (1). 

Curriculum refom efforts by both the National Council of Teachers of 

Mathematics and the Western Canadian Protocol for Collaboration in Basic Education 

attempt to communicate clear, high expectations for students in mathematics. 

Organizations such as the Canadian Mathematical Society, the American Mathematical 

Association, the Canadian Forum for Mathematics Education, and the Pacific Lnstitute 

of Mathematics have joined in the efforts to increase mathematical literacy for students. 

These reform efforts go beyond what traditional school mathematics has offered 

students. 

Traditional school mathematics picks very few strands (e-g., 

arithmetic, geometry, algebra) and arranges them horizontalIy to form 

the curriculum: first arithmetic, then simple algebra, then geometry, 

then more algebra, and fkdy-as if it were the epitome of 

mathematical knowIedge-calculus. This layer-cake approach to 

mathematics education effectively prevents informal development of 

intuition along the multiple roots of mathematics. Moreover, it 

reinforces the tendency to design each course primarily to meet the 



prerequisites of the next course, making the study of mathematics 

largely an exercise m deIayed gratification. To help students see 

clearly into their own mathematical firtures, we need to construct 

curricula with greater vertical continuity, to connect the roots of 

mathematics to the branches o f  mathematics in the educational 

experience of cbiIdren. (Steen 1990,4) 

There is an endemic dissonance between the discourse about 

mathematics led by philosophers and logicians and picked up by 

educators and mathematicians and the actual practices of the creative 

mathematician, 

Recently, the discourse about mathematics has begun to change 

bringing the two views into greater harmony. Instead of viewing 

mathematics as part of the rationalist tradition in which truth and 

validity are primary, a new paradigm is emerging, a view of 

rnathematics through an interpretative fixmework in which meaning 

making is primary. (Widensky 1993,20) 

Currently, however, most reform efforts live only in this discourse- Despite 

some apparent, d a c e  changes, neither the efforts of mathematics and mathematics 

education organizations, the publication of new curriculum documents, nor teachers' 

awareness of these documents, have fundamentally changed the nature of teaching and 
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learning within the mathematics classroom (Borko et.aL 1992; Ernest 199 1 ; Hoyles 

2992; Lerman 1997; Schmidt et-al. 1996; Senger 1996; Thornton et.d 1997; U.S. 

Department of Education, National Center for Education S btistics, 1996). 

It appears that current reform efforts are stalled at the classroom door. Simon 

(1995) attributes this to the that fact that "traditional lews of mathematics, learning 

and teaching have been so wide-spread that researchers studying teachers' thdchg, 

belie&, and decision making have had little access to teachers who understood and 

were implementing current reform ideas" (1 18). Research in this area seems to indicate 

that despite concentrated reform initiatives since 1989, "the mathematics classroom of 

today is not recognizably different fiom the classroom of one hundred years ago" 

(Wiienslq 1995,20)- That this is particularly true m North America was one of the 

findings of the Third International Mathematics and Science Study. 

The Third International Mathematics and Science Study 

Background 

In 1995, the International Association for the Evaiuation of Educational 

Achievement (IEA), an association of universities, research institutes and minktries of 

education that conduct cooperative international research studies in education, 

conducted its largest and most comprehensive study, The Third International 



Mothematics and Science Stue (TIMSS)~. Its aim was to inform educators around the 

worid about exemphry instructional practices and student outcomes in mathematics 

and science. 

Forty-five countries participated m TIMSS, involving a half-million students at 

f i e  Werent grade levels. 

TIMSS is significant not only because of its scope and magnitude, but 

also because of innovations in its design. In this international study 

the National Center for Education Statistics (NCES) combined 

multiple methodoiogies to create an information base that goes 

beyond simple student test score comparisons and questionnaires to 

The Third International Mathematics and Science Study is comprised of many components: 

M a t h e d c s  Achievemenr in the Prima7y School Years; Mathematics in the Miale School Years; 

Mathernatfcs and Science Achievement in the Final Year of Secondiny School; Characterizing 

Pedagogi'cal Flow: An Imestigufion of Mathematics and Science Teaching in Six Countries; 

Mathematics Textbooks: A Comparative Stu& of Grade Eigh Tms; Cm-mZum Frameworks for 

Mathematics and Science; Pursuing EjccelZence; The lZMSS fideotape CZussroom Sm@: Merhodr 

andPreZiminary Findings; M q  Visions, M q  Aims: A Cross-National Imestigation of CmurrrmZar 

Intentions in School Mathematics; and Case Study Literature Review of Education Topics in 

Gemany, Japan and the United States- This list is not complete. It is intended to give the reader an 

idea of the scope and magnitude of this study- It is also intended to help the reader understand why 

authors I cite change but I still refer to the TIMSS study, In this paper, when I refer to TIMSS 

researchers, I intend the n ird  International Mathematics and Science Study in its entirety When I 

refer to a particular research component of TIMSS, I make direct reference to it. 



examine the fundamental elements of schooling- Innovative research 

techniques include analyses of textbooks and curricula, video-tapes, 

and ethnographic case studies. (U.S. Department of Education 1996, 

3) 

A rigorous quality control program ensured that the data were 

gathered fiom representative samples of comparable populations, that 

the instruments were not biased, and that the data coUection and 

processing standards were of high quality- (Robitaille, Taylor and 

Urpwood 1997,37) 

TDlSS Achievement Results 

The fhdings of Mathematics Achievement m the Primary School Years- 

Grades 3 and 4 were published in June 1997. Reporting on the results, the U.S. 

Department of Education, National Center for Education Statistics, 1 997, 

Commissioner of  the National Center for Education Statistics (WCES), stated that: 

In mathematics, seven countries score above the United States; six 

countries are sirnilat; and 12 countries are below us. Our students' 

scores are below those of Japan, not significantly merent gom those 

of Canada, and are significantly higher than those of England. (US. 



Department of Education, National Center for Educational Statistics 

1997, 1) 

About 16,000 Canadian Grades 3 and 4 students participated in TIMSS. The 

achievement portion of the mathematics test required that students answer 102 

questions. Of these 79 were multiple-choice questions and 23 were fiee-response 

questions. 

Over 89 percent of the items were considered suitable for the 

curricula studied by Canadian students, with B.C. rating the 

highest proportion as appropriate; and Newfoundland, the 

lowest- Analysis shows that the mean percent correct scores 

seem not to be affected much by either the selection of items 

used m calculating the scores or the proportion of items 

considered appropriate. (Ro bitaille, Taylor and Orpwood 1 997, 

4)- 



Grade 4 TIMSS Results 
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(Robitaille, Taylor, and Orpwood, 1997,4) 

Canadian fourth graders scored 532, three points above the international 

average o f  529, and American students scored 545, sixteen points above the 



international average. Canadian students exceeded the international average in four of 

the six mathematics areas tested--geometry; whole numbers; patterns, relations, and 

hctions; and data representation, analysis, and probability In the two mathematical 

areas of measurement, estimation, and number sense and of hctions and 

proportionality did Canadian fourth graders score below the international average. 

The findings of the Mithematics Achievement in the MiddIe School Years- 

Grades 7 and &indicate that eleven countries scored above Canada; four countries are 

sirmlar, and twelve countries are below us. Canadian Grade 8 students attained a mean 

of 59 percent, four percentage points higher than the international mean, but 

signiscantly below the mean of Singapore, Korea, Japan and Hong Kong. 

The TMSS mathematics achievement test at the Grades 7 and 8 levels involved 

answering 15 1 items of which 128 were multiple-choice questions and 23 were free- 

response questions. 

Over 90 percent of the items were considered suitable for Canadian 

students, with B.C. rating the highest proportion as appropriate; and 

Ontario, the lowest. Analysis shows that the mean percent correct 

scores seem not to be af3ected much by either the selection of items 

used in calcdating the scores or the proportion of items considered 

appropriate. (Robitaille, Taylor, and Orpwood 1997,4) 
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Canadian eighth grade students exceeded or met the international average in d six of 

the six mathematics areas tested-fkctions and number sense; geometry; algebra; data 

representation, analysis and probabm measurement; and proportiomlity. 



Grade 8 TIMSS Resuits 
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(Robitaille, Taylor, and Orpwood 1 997,4) 



What Does It Mean? 

The most obvious, and most widely discussed fbding of TLMSS in the popular 

media is that C a n a h  and American students are lagging behind their Asian 

counterparts m mathematical achievement. "You see," I hear people say, "the Japanese 

are beating us- Our kids don't know enough math. We should stop with aU these new 

ideas and go back to the basics." People such as ED. Hirsch Jr., in the United States, 

and Dr. Joe Freedman, in Canada, have responded to the relative weakness of the 

North American showing by denouncing math reform efforts and calling for a return to 

"the basics" (Bracey 1998, Ireland 1998). U n f k d k  with the study itself; such critics 

of the current reform efforts point to North America's mediocre performance and bIame 

the reform efforts. However, TIMSS findings indicate that 95 percent of US, eighth- 

grade students in North America have not been impacted by the reform initiatives while 

the bigher achieving Japanese students have. Ironically, in light of North American 

criticism of reform efforts, "Japanese mathematics teaching more closely resembles the 

recommendations of the U- S. reform movement" (U.S. Department of Education, 

National Center for Education Statistics 1996, 70). The problem is not that new- 

fanged changes in North American approaches to teaching mathematics has Gled 

students. In fact, the opposite seems to be the case: although 'host U. S.. . .math 

teachers report f;.lmiliarity with reform recommendations, . . .only a few apply the key 

points in their classrooms" (U.S. Department of Education, National Center for 

Education Statistics 1996, 70). Actual analysis of TIMSS findings demonstrates that 



the current push to see math and science classrooms return to the 

basics is based on 'a rash assumption unsupported by data' The 

TIMSS data on what and how math and science are taught, the 

researchers say, 'are fhr eom being a reflection of ill-conceived 

reforms. Instead, the empirical patterns observed reflect a 

widespread choice to focus on basics. (Lawton 1998, 1) 

As we search for ways to improve mathematics education this time, it is important to 

remember the lessons we learned from the "new math" initiatives, We cannot afford to 

let the general public and uninformed critics gain popular support. Equipped with the 

extensive data tbat TfMSS provides, education researchers, mathematicians, pol.iticians 

and teachers working together can effectiveIy chart a course towards meaningful 

reforms. "TIMSS dearly and accurately provides a wealth of usefbl data and 

information on cuniculum, instruction, teacher and student lives, and student 

achievement" (US .  Department of Education, National Center for Education 



Statistics l996,4). TMS S data fiom primary and middle schools2 go a loag way 

toward shedding light on the questions that lie at the heart of this dissertation: how do 

we begin to answer the calls for reform in mathematics education? What do we reform? 

What do we do differently? In particular, the data suggest that mathematics teaching in 

high-performing countries closely resembles reform initiatives recommended by the 

National Council of Teachers of Mathematics, initiatives hotly contested in the popular 

press and widely misunderstood both outside and inside the profession. 

Searching For Explanations 

A number of popular explanations are often mentioned as discussions arise 

about what factors contn'bute to North American students' weakness in mathematics. 

Some of these fhctors center on perceived problems with the children: Canadian and 

American kids watch too much TV; they are involved in too m y  extra-curricular 

activities; &an students do fkr more homework. Some of the perceived problems lie in 

the classroom. It is not unusual to hear complaints about classes that are too large, 

- - - - - - - - 

The Mathematics and Science Achievement in the Final Year OfSecondmy School, IEA's Third 

. International Mathematics and Science Study, was refeased in January 1998. UnIike the TIMSS study 

of Mathematics Achievement in the Primmy Years and Mathematics Achievement in the M i a e  

School Years, the Mathematrtcs and Science Achievement in the Final Year of Secondmy School 

involved a smaller sample of countries, which included Canada and the United States. The Asian 

countries did not participate in this study. Because of this fimdamental difference in the design ofthe 

Secondary study, I will not include its data in my analysis. 
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teachers who lack education, or teach& styles that place too much emphasis on group 

work 

The richness of TIMSS data that was collected from students, teachers, and 

school principals makes ''it possible to examine differences in current levels of 

performance in relation to a wide variety of variables associated with the classroom, 

school, and national contexts within which education takes place" (Mull& et.al. 1997, 

10)- 

TIMSS Questionnaires 

All students participating in TIMSS answered questions about their opinions, 

attitudes and interests in mathematics. Along with other questions, students reported 

on: 

whether they thought it was important to spend time doing mathematics, science, 

sports and having fun 

whether their mothers thought it was important to do mathematics, science, sports 

and having fh 

whether their fiends thought it was important to do mathematics, science, sports 

and having fim 

how they spent their out-of-school time during the school week 

how they spend their leisure time on a normal school day 

how many hours they spent watching television and videos on a normal school day 



Because teachers and the instructional approaches that they use are important in 

building students' mathematical understanding, all teachers participating in TIMSS 

completed questionnaires about their belief5 about math and about their teaching 

practices. Along with other questions teachers reported on: 

their academic qualifications and teaching experience 

their belie6 about mathematics and the way mathematics should k taught 

how their mathematics classes were organized 

what activities their students do in their mathematics learning 

how much homework they assign 

Findings From The Questionaires 

1 - TV and extra-curricular activities 

This is often cited as the major reason why students do not do well on their tests or 

assignments. The perception is that Canadian and American students watch more TV 

or participate in more extracULTicular activities than their Asian counterparts. TIMSS 

found that "beyond the one to two hours of daily television viewing reported by close 

to the majority of eighth graders in alI participating countries, the amount of television 

students watched was negatively associated with mathematics achievement" (4). 

"Fourth grade students in all countries also reported that they n o d y  averaged an 

hour or two each school day watching television" (Mullis et-al., 1997, 5). 



"In most countries, eighth graders reported spending as much out-of-school time 

each day in non-academic activities as they did in academic activitiesr' V.S. 

Department of Education, Nationai Center for Education Statistics, 5). Besides 

watching television, Grade 4 students reported spending &om one to two hours per 

day on extra curricular activities, such as sports. 

2. Homework 

Increase the amolmt of homework or increase the number of instructional hours 

are arguments that are frequently forwarded as ways to raise mathematicd 

achievement. 

Homework is a way of extending the school day and indirectly increasing 

instructional hours. TIMSS found that all students participating in the study typically 

reported spending approximately an hour each day on mathematics homework. "The 

relationship between amount of homework assigned and achievement was not 

straightforward. High-performing countries assigning relatively low levels of 

homework included Japan, the Czech Republic and Flemish-speaking Belgium" (Beaton 

et-al. 1997, 144). TIMSS found that Canadian and American teachers assign more 

homework and spend more class time discussing it than do their Asian colleagues. 

The amount of time spent in mathematics classes varied f?om country to 

country. Many teachers, including teachers fiom Japan and Singapore, reported that 

students spent at least two hours to three and a halfhours per week in class. Teachers 

f?om some countries, including Canada and the United States, reported that students 



spent three and a halfto five hours per week m mathematics classes. TIMSS data 

revealed "no clear pattern between the number of in-class instructional hours and 

mathematics achievement either across or between countries" (Beaton et.al. 1996, 

144). 

3. Class Size 

In North America, teachers and other educators readily blame Iarge class sizes on 

decreased achievement levels. Concerned a b u t  huge classes of 3 0 or more students, 

teachers bng for smaller classes. However, TIMSS found that there were signEcantly 

fewer students in each math class in North America than in the Asian countries. At the 

Grade 4 level, TMSS found that on average Canadian and American classrooms have 

24 students while Asian classrooms have greater than 30 with Singapore reported the 

highest number of students per classroom at 39. At the Grade 8 level, TIMSS found 

that there are typically fewer than 30 students in Canadian and American classrooms 

while most Asian countries reported classrooms of greater than 30 students, and Korea 

reported classes of more than 40 students. TIMSS researchers found that the four 

highest-performing countries at the fourth and eighth grade are among those with the 

largest mathematics classes. The numbers of students, in and of itseg was not a 

sign.3icant contri"buting factor to North American students' relatively poorer 

performance. 

Extensive research about class size m reIation to achievement 

indicates that the existence of such a relationship is dependent on the 



situation. Dramatic reductions in c h s  size can be related to gains in 

achievement, but the chief effects of smaller classes often are in 

relation to teacher attitudes and instructional behaviors. meaton et.aL 

1996, 151) 

4. Teacher Education 

The general pubtic and critics of mathematics education are often quick to 

blame poor mathematical performance on lack of d c i e n t  teacher education The 

popular myth is that Canadian and in generd North American teachers are not as well 

educated as their Asian colleagues, TIMSS found that the q ~ c a t i o n s  required for 

teaching certification were relatively d o r m  across countries. Canadian and American 

teachers have more college education than their colleagues do in all but a few TIMSS 

countries. The amount of teacher education, in and of itself; is not enough to account 

for lack of student achievement. Even (1993) contends that "good subject-matter 

preparation for teachers is necessary but not Mcient" (1 12). 

5. Group Work 

An emphasis on too much group work is sometimes cited as  a reason why 

students do not do as well on individual measures of achievement. TLMSS found that 

placing students in small groups is an instructional strategy in many subject areas in 

North America, but it is not a common strategy in mathematics cIassrooms. TIMSS 
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reported that small-group work was the least used instructional approach m both the 

primary and middle school years. Students in North American mathematics classrooms 

typically work together as one Iarge group with the teacher directly hstructing the 

whole class followed by students' working individually. The perception that group 

work is in some way contri'buting to lower achievement in the mathematics classroom is 

unfounded. 

TMSS kdings clearIy indicate that the comparative weakness of Canadian 

and American student achievement cannot be attn'buted to too much TV watching, too 

many extra curricular activities, lack of homework, large class sizes, lack of teacher 

education, or an increased emphasis on group work, despite critic's attempts to find 

explanations in these areas. Data fiom the questioMaires do not seem to identify any 

one hctor that accounts for Canadian and American's students' achievement in 

mathematics. 

TIMSS Videotape Study 

In addition to the math assessments; school, teacher and student questionnaires; 

and curricdurn analysis, the United States sponsored two additional parts of TIMSS 

which were carried out in Germany, Japan and the United States. One of these parts 

involved videotaping typical lessons taught to Grade 8 students in each of these 

countries. The tapes were analyzed to compare teaching techniques and the quality of 

instruction. The other part involved ethnographic case studies of key policy topics. 



This part of the study involved "a team of 12 bibggual researchers spending three 

months in Germany, Japan or the United States observing classrooms, interviewing 

education authorities, principals, teachers, students and parents" (United States 

Department of Education 1996, 16). Analysis of the videotapes reveals important data, 

and sheds light on the current impasse in math refom initiatives. Although Canada did 

not participate in the Videotape Classroom Study, the findings from the United States 

can help us better understand the current state of mathematics teaching in Canada, 

Achievement of Canadian and American students was not significantly merent, and 

curricular reforms in both countries have been dramatically impacted by the National 

Council of Teachers reform efforts and initiatives. 

The TIMSS Videotape Classroom Study was conducted in a total of 23 1 

classrooms: 100 in Germmy, 50 in Japan and 8 1 m the United States. This part of the 

study had four goals: 

a To provide a rich source of information regarding what goes on inside 

eighth-grade mathematics classes in three countries; 

To develop objective observatiod measures of classroom instruction to 

serve as quafltitative indicators, at a national level, of teaching practices in 

the three countries; 

To compare actual mathematics teaching methods in the US and other 

countries with those recommended in current reform documents and with 

teachers' perceptions of those recommendations 



To assess the feaniility of applying videotapes methodology in fixture 

wider-scale national and international surveys of classroom instructional 

practices 

W.S. Department of Education, TIMSS Videotape Classroom Study 1996) 

The data Eom the videotapes were analyzed according to five categories: the 

way the lessons are structured and delivered, the kind of mathematics that is taught, the 

kind of thinking students engage in during the lessons, and the way teachers view 

reform- 

How Teachers Structure And Deliver Their Lessons 

Before observing the mathematics classroom, researchers asked teachers to 

describe the goals that they had established for the lesson Researchers found a 

significant difference between the stated goals of U.S. teachers and Japanese teachers. 

U.S. teachers' goals were to have students acquire particular skills, while Japanese 

teachers' goals were to have students understand a particular concept. 

Leaming a s k a  such as being able to solve a certain type of problem, 

or using a standard forrnuia, was listed as the goal by about 60 

percent of the U.S. teachers, compared with 27 percent of the 

Japanese teachers. Mathematical thinking, such as exploring, 

developing, and underst anding concepts, or discovering multiple 



solutions to the same pro bIem, was descriid as the goal by 7 1 % of 

the Japanese teachers, compared to 24% of U.S. teachers. (U.S. 

Department of Education 1996,42). 

This difference is evident in the transcripts fiom the classrooms that typically follow the 

fo 110 wing sequence of activities. 

Table 1.1 
Comparison of the steps typical of Eighth-Grade Mathematics Lessons 

In Japan, the U.S. and Germany 

I The emphasis on understanding is evident in the steps typical I 
of Japanese eighth-grade mathematics lessons: 
a teacher poses a compIex tho ught-provo king problem 

I students struggle with the problem I 
I I various students present ideas or solutions to the class I 
I class discusses the various solution methods I 
I the teacher summarizes the class' conclusions I 

students practice simiIar problems 
In contrast, the emphasis on ski1 acquisition is evident in the 
steps common to most U.S. and German math lessons: 

teacher instructs students in a concept or skill 
I m teacher solves example probIems with class I 
I m students practice on their own whde the teacher assists I 

individual students 
TIMMS, unpublished tabulations, Videotape Classroom Study, 1996, UCLA. 

There is a strong correlation between teachers' stated goals and the type of 

work students do in-class. In the U.S. 96 percent of seatwork was devoted to 

practicing routine procedures that the teacher had demonstrated. A typical U.S. lesson 

is organized around acquisition and application. In the acquisition phase the teacher 

demonstrates how to solve a problem involving a particular skill. The goal is to clarify 
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the procedural steps that aze required so that students will be able to solve related 

problems on their own. In the applicatian phase, students are assigned a worksheet or 

textbook pages, which reinforce the procedure that was demonstrated through the 

sample problem. The students work alone while the teacher circulates through the 

classroom assisting individual students. I fa  number of questions arise about a particular 

question, the teacher stops the class and works through the probIern on the board with 

the whole class. The class typically ends with the teacher assigning any unfinished 

problems as homework. 

In Japanese classes students follow quite a different script. The lesson typically 

focuses on one or two problems and the students are challenged to invent new 

solutions, proofk, or procedures without the teacher's direct instruction or intervention 

M e r  stating the problem or the nature of the investigation, the teacher generally asks 

students to work on the problem on their own for a few minutes. During this time the 

teacher circulates throughout the classroom assisting students by asking questions. 

M e r  this the teacher asks students to work together to come up with possible 

solutions. Students work together for approximately 10 minutes. Some students are 

asked to come to the board and present their soIutions to the class. The teacher and 

the rest of the students ask questions and request clarification, which the presenting 

students answer. The teacher then reviews each of the solutions and presents a follow- 

up problem. Again the teacher asks students to consider the problem individually first 

and then to work with peers. After approximately 30 minutes the teacher brings the 

class together again and reviews the various solutions. For homework the teacher 



either assigns a follow up problem to the one or two that were presented during the 

lesson or no homework. This type of lesson structure was observed in only one 

percent of U.S- classes- 

The videotape transcripts indicate that when a lesson included a mathematical 

concept, it was usually simply stated in U.S. classrooms. This occurred in 78 percent 

of the U.S. math lessons and 17 percent of the Japanese lessons. It was much more 

common that concepts were developed, not simply stated, in Japanese classrooms. 

This occurred in 83 percent of Japanese lessons and only 22 percent of  U.S. lessons. 

For example, a U.S. teacher might tell students that the Pythagorean theorem was a2 + 

b2 = c2 ; whereas, a Japanese teacher would design the lesson in such a way that the 

students themselves derived the mathematical concept fiom their own struggle with a 

problem or investigation, 

"These findings fiom the videotape study are corroborated by the TIMSS 

questionnaire findingstf (US. Department of Education 1996,43). Teachers were 

given questionnaires that asked them to select activities that were characteristics of 

their type of teaching. U.S. teachers generally selected activities that focused on 

computational skills. Japanese teachers selected activities that involved analyzing 

relationships, writing equations, explaining reasoning, and solving problems with no 

obvious solution. 

This part of the study also examined the way that mathematical ideas and 

concepts were linked together. The C ~ ~ c u I u r n  and Evaluation Stondmh and The 

Common C~~f~cuZurn Framework for K-12 Mathematics state that a critical component 
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to mathematical activity involves the ability to connect mathematical ideas to other 

concepts in mathematics. The videotape study found that 96 percent of Japanese 

teachers' lessons included explicit language to help students link concepts while this 

occurred in only 40 percent of U.S. lessons. 

It is important to note that not all teachers who were videotaped taught in this 

way, but "what is striking, when viewing the videotapes across the two countries, is 

how many of the lessons appear consistent with these scripts" (Stigler and Hiebert, 

I998,8). The script ofa typical U.S. lesson is f d a r  to most ofus. The teacher 

demonstrates the procedure and the students reproduce the procedure. The questions 

that arise involve problems or misunderstanding of technique. Mathematics, in these 

ciassrooms, is the formulation of k e d ,  static, unchallengeable and unchanging truths. 

Because of this emphasis on "the right way", students seldom have the opportunity to 

experience the Life of mathematics through negotiating meaning, constructing different 

representations, critiquing these representations, defending and debating possible 

solutions, and posing new problems. "Ifwe deprive learners of this opportun& we 

strip mathematics of its essential character and deprive them of real mathematical 

experience" (wldensh 1993,22). 

The videotape script shows that a typical Japanese lesson is much more likely to 

invite students into mathematical ways of knowing and doing. Students are expected to 

engage and debate with each other as they progress through the messiness of creating, 

producing and defending their mathematical laowledge. "Clearly, Japanese students 

much more often engage in the type of mathematical thinking recommended by experts 
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and the U.S. reform movement" (U.S. Department of Education, National Center for 

Education Statistics, 1996,43). 

The Kind Of Mathematics That Is Taught 

There are signiscant differences m the kind of mathematics that is taught in the 

three countries. U.S- eighth-graders were learning material that was part of the seventh- 

grade curriculum in the other two countries. The U.S. eighth grade mathematics 

curriculum focuses more on arithmetic while the German and Japanese curriculum 

focuses on algebra and geometry. In addition, TIMSS researchers found that 

mathematics curricula in the U S .  is unfocused and consistently covers fiir more topics 

than is typical in the other countries- 

Some of the differences in curricula might be attributed to fimdamental 

differences between Japan and the United States when it comes to matters of who 

controls education. In Japan education standards are set and monitored by the 

Japanese Ministry of Education. 

The ministry develops national curricular guidelines that deiine 

education standards. In writing the curricuIar guidelines, no effort is 

made to define exactly what shouId be taught at each grade. Rather, 

the guidelines consist of general descriptions of what students are 

expected to accomplish during each year of schooling- The time and 

manner in which the material is presented in each classroom are 



- .  
decided by the school -tion or by the individual teacher. 

(Stevenson, 1998, 6). 

Mathematics teachers in Japan are f5.mZar with the learning goals that are 

issued by the Ministry of Education. Japanese federal documents contain general goals 

and teachers work together to support and heIp each other understand how to 

implement the goals, improve their own pedagogy and improve the curricdum, "During 

their careers, Japanese teachers engage m a relentless, continuous process of improving 

their lessons to improve students' opportunities to achieve the learning goals. Small 

groups of teachers meet regularly, once a week for about an hour, to plan, implement, 

evaluate, and revise lessons collaboratively" (StigIer and Hiebert 1997,9). Teachers 

are expected to work together developing Iessons, observing and critiquing other 

teacher's Iessons, and sharing their work with other teachers. This is in stark contrast 

to North American teachers who generally pian, teach and evaluate their lessons by 

themselves. 

In the US-, education is not a federal matter, Standard guidelines for education 

fall under state jurisdiction. "State education standards include content standards in 

core subjects, performance standards for students, and standards related to students' 

opportunities to learn" (Stevenson 1998, 7). Most of the 16,000 districts in the U.S. 

design their own curriculum or standards, which specifically address the broad 

guidelines issued by the individual states. 

US. teachers reported that they seldom met with colleagues to pIan lessons. 

Most U.S. teachers reported that they followed the textbook when deciding how to 
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present a topic to their students and 95-99 percent of the teachers reported that they 

used textbooks in their lessons. "The question thus arises: Do U.S. mathematics 

textbooks add guidance and focus to help teachers cope with unfocused curricula? 

Unfortunately, the answer is 'no.' The splintered character of mathematics curricula is 

mirrored in the textbooks used by teachers and stadents" (Schmidt et-al. 1997,4). US. 

textbooks are published for a national market even though education standards are set 

by the state. "Because there are no national guidelines, publishers have a wide degree 

of latitude to develop and market books that they believe will have the greatest sales" 

(Stevenson 1998,7). U.S. textbooks tend to cover many topics, generally fir more than 

a teacher can adequately cover in a year. Although mathematics curricula are different 

fiom state to state, textbook publishers do not publish differentiated content for the 

various states. 

The Kind Of Thinking Students Engage In During The Lessons 

The TIMMS videotape researchers asked three mathematics professors and one 

professor of mathematics education to examine the tapes and evaluate the quality of 

mathematics contained in the lessons. They were not ac td ly  allowed to view the 

videotapes, but were provided with a written summary of lessons fiom three countries: 

Germany, Japan and the U.S. Identifjing words were altered so that the reviewers were 

unable to discern which country the transcript represented. 

The following represents the fidings of the review panelists. 
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87 percent of U.S lessons called for students to use the lowest level of mathematical 

reasoning, as compared to 13 percent of Japanese teachers' lessons. This %ding 

suggests that a high quality of mathematical reasoning is probably a rare phenomenon 

in the U.S. 

Since the 1 960s, progressive ideologies have dominated mathematics education 

in North America At the end of the 1960s the Mathematical Association published a 

report on primary mathematics endorsing a progressive philosophy (Ernest 1 99 1). 

With its roots M y  grounded in developmental psychology, as opposed to behavioral 

psycho logy, the most important aspects of a mathematics education became: fostering 

student confidence, developing positive attitudes and seif-esteem with regard to 

mathematics, and shielding the student kom negative influences that might undermine 

these attitudes (CWord and Friesen 1994, Ernest 1991). The pedagogy that developed 

fkom progressivism actively discouraged teachers from creating experiences that create 

dissonance and conflict for students. ltEffoas to shield the child Eom these experiences 
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mean that "children's 'errors' are not explicitly corrected, for fear of hurt and emotional 

damage" (Ernest 1991, 194). 

A great deal of tension is created for teachers in attempting to reconcile 

progressive ideologies and their accompanying "child-centered" practices with their 

own understanding of and experiences with mathematics. For most North American 

teachers, mathematics is an absolute, fixed body of knowledge..' However, "a deep 

commitment to the ideals of progressive mathematics education can and fkequently 

does co-exist with a belief in the objectivity and neutrality of mathematics, especially 

amongst mathematics teachers and educators" (Ernest, 1996,5). Caught between two 

opposing forces, teachers attempt the fine art ofjuggling. But as the TIMSS videotape 

study shows, mathematical understanding and reasoning are jeopardized by failure to 

engage students in creating mathematical concepts and structures. 

The Way Teachers View Reform 

Ninety-five percent of U.S. teachers said that they were aware of the current 

ideas about teaching and learning mathematics. More than 75 percent of U.S. 

mathematics teachers stated that they were fsmiliar the National Council of Teachers of 

Mathematics, CumTI?cuZum and Evaluation Standards and Professional Teaching 

Standard- 

As discussed earlier in an earlier section 



A great deal of effort has been invested in the reform of mathematics 

teaching in the U.S. in recent years- There is considerable agreement 

among experts about what good instruction should look like. The 

main goal of the reform is to create classrooms in which students are 

challenged to think deeply about mathematics and science, by 

discovering, understanding and applying concepts in new situations. 

For many years, Japanese mathematics educators have closely studied 

US. education reform recommendations, and attempted to implement 

these and other ideas in their own countrytry (U.S. Department of 

Education, Nationai Center for Education Statistics 1 996,46) 

With the amount of attention and emphasis that mathematical reform has 

received in the United States, it stands to reason that TIMSS researchers would find 

strong agreement between the reform initiatives and classroom practice. Teachers 

indicated that they were aware of reform initiatives and most stated that they were 

implementing reform recommendations m their lessons. But the findings suggest that 

they are not- 

When asked to evaIuate to what degree the videotaped Iesson was in 

accord with current ideas about teaching and learning mathematics, 

almost 75 percent of the teachers respond either "a lot" or "a fair 

amount." This discrepancy between teachers' belief5 and the TIMSS 



findings leads us  to wonder how teachers themselves understand the 

key goals of the reform movement, and apply them in the classroom 

(U.S. Department of Education, National Center for Education 

Statistics 1996,46) 

U.S. teachers were asked to view the videotapes of their lessons and indicate to 

researchers which aspects of their lesson, in particular, demonstrated current ideas 

about teaching and learning. Their answers indicate a strong awareness of instructional 

techniques: hands-on, use of manipulatives, real-world math and cooperative learning. 

Over 80 percent of the teachers in the study referred to something 

other than a focus on thinking, which is the central message of the 

mathematics reform movement. The majority of the teachers cited 

examples of hands-on math or cooperative leaming, which are 

techniques included among the reform recommendations. However, 

these techniques can be used either with or  without engaging students 

in real mathematical thinking. In fhct, the videotape study observed 

many examples of these techniques being conducted in the absence of 

high-quality mathematical content. (u. S: Department of Education, 

National Center for Education Statistics 1 996,47) 

Nmeteen percent of the teachers stated that they believed that their lessons 

contained the type of mathematical thinking that was indicative of current ideas being 
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forwarded in mathematical teaching and I e d g .  TIMSS researchers found no 

indication of the type of mathematical thinlcing being called for m the reform documents 

when they analyzed the U.S. teachers' lessons. In contrast, the videotape study found 

that Japanese teaching more closely resembled the recommendations of the U.S. reform 

movement than did U. S. teaching . 

The discrepancy between teacher's belief5 and their practice is not as u n d  as 

it might first appear. Many research studies corroborate TIMSS findings. Hoyles 

(1992) points out research into the area of teacher thinking, content knowledge, and 

teacher beliefs "has shown evidence of inconsistencies between belie& and beliefi-in- 

practice.. . .This mismatch was thrown into relief when teachers were fhced with an 

innovation-. . " (4 1). Numerous studies on teacher belief5 demonstrate that teacher 

beliefs are not always consistent with their practice (Borko 1992; Carpenter et.al. 1988; 

Cooney 1985; cia Ponte 1994; Ernest 1996; Good 1990; Gorman 1991; Hoyles 1992; 

Lerman 1997; Raymond 1997; Senger 1996; Thompson 1985). And although TIMSS 

researchers found that many U.S. teachers report lknikdy with reform 

recommendations, they found little evidence of an understanding of what is required to 

impIernent the reform initiatives. 

Meaningfbl mathematical reform is still in its i.nfkncy m the United States. It is 

clear that teachers have not understood the intent of the reform initiatives and 

consequently have not been able to implement the necessary changes into their practice. 

To date, reform recommendations have been disseminated through documents issued 

from national organizations. Ifdistriibuting written reports and establishing standards 



could change teaching, reform in the U.S. would be successful Ifchanging features of 

instruction led to increased achievement, then the increased use of manipulatives, 

cooperative groups and changes to current U.S. curricula and textbooks would lead to 

increased student achievement. If making teachers more accountable for increased 

achievement were all that were necessary, then U.S. students should have scored with 

the best. 

North American efforts to improve mathematics education have focused on 

documentation, standards and accountability. These are all essential components of 

successfbl reform. Indeed, they formed the basis of changes mandated by the Japanese 

Ministry of Education, But however necessary they are, documentation, standards and 

accountability are not suEcient conditions to ensure that teachers and students increase 

the depth of their mathematical understanding. As TTMSS results clearly indicate, 

current reform initiatives ignore a fourth essential element: the processes of teaching 

and learning in classrooms. 

It is very tempting to conclude that North American teachers should just teach 

more like their Asian counterparts. However, it would be f o b  to think that we could 

transplant Japanese methods in North American soil without considering the cdtmal 

milieu that support them In Japan, teachers are expected to work together. They 

develop and refine lessons, critique each others' practice, seek and offer advice about 

how to improve. In North America, the classroom is the teacher's private domain. 

Teachers seldom work with one another for long periods of time. They rarely see one 

another teach, and it is almost unheard of for one teacher to critique another's lesson. 



Larger cultural differences m the relative importance of group cohesion and individual 

autonomy that characterize Asian and North American societies work themselves out in 

such pointed, and significant, moments in teachers' lives in school. 

Stigler and Niebert (1997) point to the bleak implications of this difference: 

"our biggest long-term problem is not how we teach now but that we have no way of 

getting better. We have no mechanism built into the teaching profession that allows us 

to improve gradually over time " (1 0). 

The CIassroom: The Place Of Reform 

Perhaps, more than any other research study, the findings fiom TIMSS shows 

us the current state of mathematics education Aithough TIMSS was not designed to 

measure the effects of current mathematical reforms, it provides a lens through which 

we can see the working out of the current initiatives in the classroom. Even though the 

current reform initiatives have dominated documents and official discourse since 1989, it 

is clear that they are stalled outside the classroom door in fix too many North American 

schools. Many teachers have been abie to adopt the aaifacts of the reforrns, thinking 

that they were embracing the new ideas advocated by the various reform organizations. 

But however well intentioned and optimistic, fsr too few teachers actually encourage 

genuinely mathematical ways of thinking, knowing and creating. 

As we try once again to move forward with important and necessary reforms to 

mathematics education, we need to remember the Iessons of the "new math." This time, 

equipped with the extensive data that T IMSS provides, we have the information we 



need to be able to counter the arguments of uninformed critics. Some of those critics 

dismiss the relevance of North American students' achievement by insisting that social 

differences between the countries invalidate true comparison. Such people point to such 

fkctors as hours of homework, teacher preparation, or what they feel is an Asian 

emphasis on rote learning to the detriment of individual student development. The 

TIMSS data shows that these commonsense perceptions of the differences between 

Asian and American students and classrooms are incorrect. Others claim that 

international studies compare appIes and oranges: Asian students drawn only fiom the 

academic elite and North American students drawn democratically from the wide 

spectrum of society. Analysis of the structure of the TIMSS study refutes that dismissal 

as welL 

Nor can educators committed to fimdamental reform of mathematics teaching 

let the popular power of uninformed criticism return us to a narrow and instrumental 

view of "the basics". It is exactly that turn back to "the basics" that has got us into the 

position we now find ourselves: "The majority of today's high school graduates-no t to 

mention dropouts-still Iack fundamental 'walking around' skills in quantitative literacy" 

(Steen 1997, xvi). As critics point to our international achievement results and blame 

the new reforms, we can confidently counter their attacks: refom have not impacted 

North American classrooms in any substantial way. 

It would help ease our burden ifwe could just import Japanese teaching and 

learning into our classrooms. But teaching is more than prescription. It is more than a 

collection of "individual features? such as using concrete materials, asking higher-order 
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questions, or forming cooperative groups" (Stigler and Hiebert 1997,8). Teaching is a 

cultural activity (StigIer and Hiebert 1999). It is situated in political, economic and 

social milieus that combine to work their way out in our classrooms. We have had 

enough add-ons already-that is part of our problem. The work we need to do is fix 

more basic. 

The cIassroom, This is the place where we need to focus our energies, attention 

and research to bring about meanin@ reforms in mathematics education. The 

pedagogy of mathematics is not an afterthought but a necessity. This is the place where 

mathematics lives. This is the place that mathematics is re-formed. It is a messy place 

Ill of debating, negotiatmg, and presenting multiple representations about fundamental 

meanings of mathematical objects, operations and ideas. It is not the clean, sanitized 

picture presented in textbooks and proof%. It is a place where curricula gets created, 

worked out, and recreated anew. 

How can curriculum be so built that it will touch something deep that 

stirs teachers and students to animated living? How can a curriculum- 

as-plan be so built that it has the potential for a curricdum-as-lived 

which is charged with life? How can a curriculum be bult so invitingly 

that teachers and students extend a welcome hand? How can 

curriculm be so built with openings and open spaces that teachers and 

students come to in-dwell vitally? (Aoki 1989, 17) 



As TMSS cledy shows, teachers c m o t  create this place done. Just d i g  

documents and making teachers more accountable does not help them understand the 

intent of the new mathematics reforms. Despite the urgency and the pervasiveness of 

the documents and reform discourse, when teachers look at their own classrooms, they 

are still left wondering, what do we do differently? What do we reform? All of us who 

are interested in improving mathematics will have to work this out. We will have to 

redefine "the basics" so that we can identify the basic attniutes of genuinely 

mathematical thinking, knowing and creating. We will need to create images of 

practice that best cultivate these attn'butes, and that speak m compelling ways to the 

context of North American classrooms. That is, we need to help teachers find answers 

to yet another question: "what does it look like when teachers and students engage with 

one another in deeply mathematical ways?' 

The classroom. This is the place that this dissertation will take you. It is the 

place where teachers and students work together to re-form the mathematics in 

mathematics education. This is a story of what it looks like when teachers and students 

engage with one another in deeply mathematical ways. 



Here You Do ~ h i n ~ s ~  

Here you do things. 
As mighty as the solar system 

as ancient as trees. 

Ancient Greece a living Eend 
Far away China as cIose as can be. 

Strange worlds not so different 
than here. 

Givers 
and receivers 

creators 
and readers. 

Geometric worlds 
broken to pieces 
recreated with 
understanding. 

Napier bones 
wolf skulls 
flying birds. 

This year was filled 
with my own wonders. 

Margaret, age- 1 2 

Here You Do Things is an original poem composed by Margaret, a student in our class- She wrote 

this poem to Pat and me as a thank you gift at the end of the school year. 



Finding New Ways 

Starting Alone 

"What you do is okay. But if you're going to teach like that, I cant help you. I 

don't know anyone who c a "  

That was fourteen years ago. I was just out of university- It was September and 

as a new teacher in my first teaching assignment, I was anxious to show the consuitant 

that sat in my room that day, that I had the makings of a good teacher. It was her job to 

offer me assistance and advice as I started out not only in this classroom, in this school 

but also in this profession As a newcomer, I wanted to know if1 was on the right 

path. 

There are, for all of us, moments when time seems to freeze- Something occurs 

that is so charged with emotion and intensity tbat even though the background fades 

away, the thing itself stretches its icy tentacles into the vulnerable reaches of your brain. 

It's the unexpected. 

I was just starting out. I was new to this pIace. I was hoping that the person 

who came into my classroom would help me recognize what was going on. Instead of 

~Iarification and direction, I heard that I would walk this path alone. 



A Chance Meeting 

I had just moved to a new school and was team teaching in a Grade 1/2 

multiage classroom. Pat came into the classroom She was a consultant. She wanted 

to do research. My teaching partner's fiend had suggested that she contact us. I 

listened as she talked about what she had m mind. 

"So what do you think?" my teaching partner, chrisS asked me after Pat left. 

"Itll be okay," I replied, "but she'll have to teach with us. She's not going to sit 

there and watch us." 

"Sharon, you're kidding. Pat won't do that- She's a high school teacher. She's 

a consultant." Chris laughed at my demand. 

"No. I insist. Phone her and tell her." 

I had no idea at that moment that this would be a new beginning for me. Pat 

agreed to my request. She came in, rolled up her sleeves, and taught with us. I don't 

know why I made that request. The memories of my first encounter with a consultant 

had faded and I was now very used to having consultants, researchers and preservice 

teachers come into my classroom to observe, "how I did things." I worked in a 

demonstration school that was connected to the university. My days were med with 

observers. Somehow 1 heard something dierent m Pat's request. 

Interpretive research begins with a different sense of the givea 

Rather than beginning with a .  idea1 of clarity, distinctness and 



methodologicd controllability and then rendering the given into the 

image of this ideal, it begins m the place where we actually start in 

being granted or given this incident in the first place. . . . Interpretive 

research, too, suggests that these striking incidents make a claim on 

us and open up and reveal something to us about our lives together. 

(Jardine 1992,55) 

I remember Iooking forward to the days when Pat came into the classroom. 

At the end of the day's events, Chris, Pat and I would sit together, laughing and telling 

stories about the day as we plitnned our next day's agenda- Pat's presence in the 

classroom and in my life changed everything. As the days went on, I repeatedly found 

myself intrigued with her questions and observations. She noticed those children, the 

ones who disrupted the expected in the classroom. They were the children who did not 

fit, who could not-or would not--comply with the institutional demands of living the 

well-schooled life. She had no desire to analyze them or fix them. She wanted instead 

to understand how to go about making the classroom Iarge enough to encompass them 

Pat had no way of knowing at that time, what I heard in her questions. During 

our months together, I made a promise to myselfthat I would not hold back. I would 

h d  a way to open myselfto her questions to help her understand why I teach the way I 

do and why these children are essential to the way I think about teaching. Not because 

* T o  protect the anonymity of subjects, the names that I use in this dissertation are pseudonyms, except 

for Pat and David who keep their real names. 



I wanted assurance or confirmation about the way that I did things, but because I 

wanted a fellow traveler- I wanted to journey with someone who also understood that 

pedagogy is not an afterthought, but a necessity. 

Two years after meeting her, Pat and I began teaching together. Our first 

classroom was a multiage class of Grade One/Two students. Many of my colleagues 

were apprehensive about my teaching with Pat because she didn't have any "boxes", no 

" s t d '  to teach with She wasn't anned with the normal trappings of elementary 

school practice. She just brought herself Would she be able to enter this place 

disarmed? What my colleagues saw as a lack of preparation, I saw the opportunity 

for beginning in a new place. 

We began our journey together with fifty-some children. And even in those 

early days, we noticed those things that protruded above the surface of the 

commonplaces of classroom He. The space that opened because of the lack of stuff to 

fill each moment of the day allowed us time to attune ourselves differently to where we 

were. Together we learned to create a space for sustained dialogues with children. 

Together we learned to listen to the children Together we learned how to create a 

space that was big enough, generous enough to include all of us. And together, 

altogether, all fifty-some of us, worked out what our next steps would be. 
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Bringing Ourselves To The Place 

Our most recent school is on the edge of an old forest reserve. There are forty 

glorious acres of woods, ponds, lichens and wild flowers. Mosses that take a hundred 

years to form here m the foothills of the Rockies stretch along old fallen timbers. 

Squirrels scurry up and down scolding us for intruding into their territory Some days, 

ifwe walk softly enough, we come upon a grazing deer. They come here to quench 

their thirst at the water's edge. If you look caremy you will notice the subtle contours 

of the forest floor. Here the folds now compacted by the ages, tell of receding ice 

fields. Back, way back, at the far edge of the forest, if you look carellly, you will 

notice the remsins of a once bustling wagon trail A trading route wound its way 

through this place. This forest is filled with memories and stories open to those who 

knew how to bring themselves to it. 

We love to go into this forest with our students. But we needed to learn how to 

enter this place. This forest would not reveal its secrets when we went crashing 

through the trees (That's how it felt when the consultant came into my classroom that 

very fist year that I started teaching.). As long as we waked its paths as though they 

were the paths in any forest, we could not know this place. It wasn't even enough to 

come and sit quietly. It took work. In order to learn who inhabits this place, it was 

necessary to open ourselves in such a way, so that we were receptive to what came to 

meet us. It was only then, when we had done our work, that this place began to share 

what was ordinarily hidden &om view. 
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The classroom we created when we first started working together was like this 

forest. What opens to those who enter, what secrets it reveals, what stories it tells 

depends on how they enter. Ifthey remain closed, even if they sit very still and listen 

very bard, they will not know this place. Visitors who enter to gaze at the lessons will 

not h o w  this place, this classroom. It wiU not yield itself to them. They will comment 

"what you do is okay" but it's not the way they do things. They will leave having 

learned nothing of the place. 

However, there is a way to bring yourself to the classroom so that it reveals 

itselfto you It requires that you begin as Pat first began, you roll up your sleeves and 

do some work. And sts you do you will start to notice the patterns, the contours, this 

child here, and the stroppy one over there. 

When I first ventured into Sharon's world, it was enough to brandish 

swords of insight and method in hopes of retreating fkom the field, 

victorious, with completed thesis held high. But I got it wrong. The 

research problem, I came to understand, was not how to defeat or 

even charm known beasts into reIeasing their treasures. The research 

challenge was to learn how to see dragons, not quest after their 

subjugation. Looking, listening and learning on my journey called for 

what Bateson (1994, p. 10) descnis  as a spiritual attentiveness, 'the 

modern equivalent of moving through life as a piIgimager. In order 

to make that pilgrimage, the deepest and most enduring 



trdormation of all ended up being the transformation of me" 

(CMord 1996,46) 

You open yourselfto the place and in doing so the place opens itselfto you. 

Entering a place in such a way so that "inner and outer re* flow seamlessly into each 

other, like the ever-merging surfaces of a M6bius strip, endlessly co-creating us and the 

world we inhabit" (Palmer 1998,5). "We and the places we find ourselves co-emerge; 
i 

we inhabit and enhabit one another" (Davis 1996, 132). 

Our Classrooms 

You are entering our cIassroom space. "By space I mean a complex of factors: 

the physical arrangement and feeling ofthe room, the conceptual h e w o r k  that I 

build around the topic my students and I are exploring, the emotional ethos I hope to 

fkcilitate, and the ground rules that will guide our inquiry" (Palmer 1 998,73). 

Our cIassroom space is composed of three different classrooms that have been 

shaped and created by Pat and me and some 250 students. In each of these classrooms 

we Iearned something different about finding new ways, learning what we needed to do 

merently and what we needed to re-form. In each of these classrooms we learned 

how to bring students together to create a classroom community that was filled with a 

deep longing to h o w  and understand. "Good teachers also bring students into 

community with themselves and with each other-not simply for the sake of warm 

feelings, but to do the diEcult things that teaching and learning require" (Palmer 1998, 



xviii. However, it's not enough to only say that we shaped and created these 

cIassrooms. These classrooms, these children have siflcantly shaped and created 

who we are today- 

How you go to a place affects what it wiU show you of itself. Frighteningly, if 

you blunder in with your "a" the trappings of ordinary classroom practice, the 

worksheets, that textbook, those beautiful hand-painted counters, the place will seem 

to be precisely what is needed and best. "The way we treat a thing can sometimes 

change its nature" (Hyde 1983, xZi  or at least, how we treat a thing can show its 

nature. 

Teaching Together 

In the early years of my teaching career, I spent most of my time and energy 

Ieaming how to make myself appear as a proper, ordinary (or at least appear to be 

doing proper and ordinary) elementary school teacher. There were crafts to make, 

bulletin boards to put up, and concerts to prepare for. And there was always all the 

flurry of hyper activity which surrounds the rituals associated with fsll, Halloween, 

Christmas, Valentine's Day, St. Patrick's Day, Easter, spring and the end of tern 

In schools, kding new ways of teaching and learning means going it done. It 

means going in disguise. I had to work hard to appear ordinary. I stayed late into the 

evenings to make displays to decorate the hallway bulletin boards so that our room 

looked like every other room. It left me with precious littIe time to act upon the 

gnawing dissatisfkction that was eating away at me about the way that I taught math. 



59 

"A person who plays such a game denies, to all appearances, continuity with himself, 

But in truth that means that he holds on to this continuity with himselffor himselfand 

only withholds it fiom himself and only withholds it fiom those before whom he is 

acting (Gadamer 1995, 11 I)." 

Now, starting again, no longer alone, disguise removed, I had space and time to 

consider how math might be different for me and for the students Pat and I. taught. I 

wasn't sure what I had in mind and I didn't know how it would turn out. It was early in 

September, the time when teachers are busily mapping out long-range plans for the 

coming year. 

"I don't like how I teach math," I announced after our first day of school with 

the children. "I want to try something different." 

"Okay." Pat responded to my request with enthusiasm. 

Convincing Pat was easy. Now we just needed to figure out what to do. We 

didn't know that our search would lead down complex and tangled trails through 

philosophy, mathematics, psychology and education. Knowing what to do differently 

was not going to be a simple undertaking. And we weren't fir along -when we realized 

that it also wouldn't be resolved in one year. 

It is impossibIe to divorce the question what we do fiom the question 

of where we ar-r, rather, where we think we are. That no sane 

creature befouls its own nest is accepted as generally true. What we 

conceive to be our nest, and where we think it is, are therefore 

questions of the greatest importance. (Berry 1986,5 1) 



"We resisted the return to traditional images and practices that seem almost 

inevitably to accompany criticism of schools" (Clifford and Friesen 1993,341). That 

was easy. But we also resisted "the fkzy, feel-good legacy of much of what teachers 

[did] in the name of 'progressive' practicen (Clifford and Friesen 1993,341; Jardine 

1994a). We were searching for a way to think about mathematics practices that 

removed them from this dichotomous swing between traditionalism and progressivism 

"Adopt a little of both," colleagues would advise. "I tend to the middle. You need 

both." 

"That doesn't make sense," we wodd reply. "It would be a little schizophrenic 

don't you think? We won't get anywhere that way." We were disillusioned with and 

fivstrated by the pendulum swings that dominated the educational landscape. We knew 

something about pendul-they just swing back and forth, they don't go anywhere. 

They just fill time. Such is the nature of pendulums. We needed to find a different 

place--a place that that was strong enough to resist our being drawn back into the 

swing of the fithe dichotomies created by the traditionaIist/progressivist arguments. 

These dicho tornies kept us fiom bringing ourselves to this place. They kept us fiom 

learning how to inhabit this place-this classroom. 

We turned to the mathematical education research c o m m ~  to help us with 

our search. Instead of clarity and direction, we found a codking number of solutions 

to what researchers deemed either inherently difficult about learning mathematics or the 

child's M u r e  to comprehend mathematics. 



When analyzing the Hcuities learners have in mathematics 

exercises, researchers often catalogue syntactic errors, d e s  that 

learners fZl to follow such as: Johnny adds hctions by adding their 

numerators and denominators instead of making a common 

denominator. These educators prescrii more practice in applying 

these d e s ,  or perhaps computer aided instruction programs which 

will help Johnny drill- Some researchers have begun to descrik 

learner's difEculties as f&e theories or misconceptions, such as: 

Maggie thinks you can't subtract a bigger number fiom a smaller, or 

divide a d e r  number by a bigger. The prescription offered here 

might be creating a simplified computer environment in which Maggie 

can pIay around with numbers, but is constrained to operations that 

are mathematically valid. In this way she will construct the true 

conception of: say, division instead of a misconception." (Wilensky 

1993,22) 

There is something deeply d ' i b i n g  about both of these formulations. They 

locate the difficulties of mathematics either in mathematics or in Johnny and Maggie. 

Adding fkactions and subtracting whole numbers are simply given. The task of 

pedagogy is one of how to hand over such givemess so that Johnny and Megie and 

their classmates do not mess it up. 



Lt; however, we consider mathematics as a living discipline, its formulaic, 

axiomatic sezevidences become precisely what must be opened m order that we might 

get a glimpse of the roiling, living, originary workfiam which such equations might be 

'genuinely dram' The real pedagogical work is not found in the handicg on of self- 

evidences, but in the opening up of our access to the living resourcefbhess, the Living 

conversations and quarrels and controversies fkom which such self-evidences are 

genuineIy drawn- The red pedagogical work is found in the effort to get in on the 

conversation. The danger of essentialism is that it hands us tradition in such a way that 

there is no thing left that needs to be said. Pedagogy is the work of seeing through the 

charm of such self-evidence, not in order to dispel tradition, history, Ianguage, but in 

order to wake it up to the %ct that our children want in. 

We soon learned that "faced with a strong demand to aim for deeper and more 

complex learning for children, teachers must develop new ways of teaching for which 

there are few available models" (Comiti and Ball, in Bauersfeld 1997, 6 12; Stigler and 

Hiebert 1999). Alone. I knew this place. " Ifyou're going to teach like that, I can't 

help you I don't know anyone who can." 

Fhding New Ways 

Like Hansel and Gretel, setting out a path alone, we left behind everything that 

was fbdiar to us. We followed a path to where? We didn't know. In truth3 there 

was no path. We had to create it. "Interpretation and understanding are creative acts" 
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(Smith 1994, 104). This is the venture that is necessary in all beginningjthe creation, 

the creative act. 

It seems evident that all this holds relevance for a conception of 

educatio-if education is conceived as a process of futuring, of 

releasing persons to become different, of provoking persons to repair 

lacks and to take action to create themselves. Action signifies 

beginnings or the taking of initiatives; and, in education, beginnings 

rnust be thought possible if authentic learning is expected to occur" 

(Greene 1988,22). 

Pat and I knew that in this beginning, that once we had decided to take this step 

there was no turnh?g back. Unlike Hansel and Gretel, we didn't bother with the 

breadcnrmbs. We coddn't hedge our bets by thinking we could go back. Our 

commitment had to be total. Experience told us  that it takes too much time and energy 

to go in disguise. We also knew that we could only Ieam what we needed to learn when 

we opened ourselves to the place that we found ourselves. Even though there would 

be times fined with uncertainty and insecurity, times when we were unsure of our next 

steps, we would have to go oa We would have to learn to Live with the unknowns that 

lurked in the depths of the forest. It was only then that the forest would reveal its 

secrets, its stories and its memories to us. 



Had we known then, what we know now, that this way was long and hard, it 

would take ten years, three SSHRC grants and two Ph,D.'s, we might not have set out. 

But set out we did. And that has made all the difference. 

A Story Of Our Fint Journey 

Interpretative work is rooted in the particular instance. ''Husserl showed that 

we never think or interpret 'in general' as a rhetorical activity that bears no necessary 

connection to the world at large" (Smith 1994, 108). Rather, thinking and interpreting 

require the particuiar, they cannot be worked out in the abstract. "Every consciousness 

is consciousness of something; every relation is a relation to something" (Gadamer 

1995,225). 

This is our Grade 1/2 mdtiage classroom. it is one filled with tifty-some 

children. The room is a large double irregular shaped polygon Tables and chairs fa 

the larger side of the room. The smaller side houses our classroom h i m y  and our 

common meeting area We are all seated in our meeting place. I begin this particular 

math Iesson: 

A bng, long time ago a young shepherd boy waked out into the field with his 

flock of sheep. He had the task of caring for his master's flock. It was his duty to 

make sure that he returned each evening with as many sheep as he set out with in the 
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Now this was a very long time ago. Numbers hadn't been invented yet. And so 

the young boy used pebbles. He let one pebble represent one sheep. He kept all the 

pebbles m a pouch that he tied around his waist. At the end of the day he returned to 

the master's place and carefdIy removed the pebbles one-by-one as sheep-by- sheep 

entered their nighttime enclosure- If everything matched up, he would be allowed to 

continue to live and tend sheep for another day (such was the life of a young boy a 

Iong, long time ago). 

Pat and I created this story as a way to mtroduce young children to the 

seemingly simple idea of one-to-one correspondenc~ne sheep matched with one 

pebble. "Ody through a story was it possible to put aside what we knew or assumed 

or had memorized about the number system to think of a time when there was none. 

Ody stories have the imaginal power to place us elsewhere" (Friesen, Clifford and 

Jardine 1998, 8). "Good mathematics ultimately comes fiom and returns to good 

storieeand the questions that bug you" (Casey and Fellows 1993, 1). 

Pat and I wanted to move the story beyond the point of a simple one-to-one 

correspondence with a finite set of pebbles and sheep. If that were the only point to the 

telling this story then we would have been guilty ofjust "dressing up" and passing 

along already known math facts. 

When tradition becomes master, it does so in such a way that what it 

transmits is made so inaccessible that it rather becomes concealed. 

Tradition takes what has come down to us  and delivers it over to self- 



evidence; it blocks our access to those primordial 'sources' fkom 

which the concepts and categories handed down to us have been in 

part quite generously d r a m  Indeed, it makes us forget that they 

have had such an origin and makes us suppose tbat the necessity of 

going back to these sources is something which we need not even 

understand. (Heidegger 1962,43) 

Too oRen, in elementary schools, incrediile care, energy and attention are paid 

to malohg everything smooth, effortless, and fim "Teachers act as ifstudent interest 

will be generated only by diversions outside of mathematics" (Stigler and Hiebert 1999, 

89). However, mathematics, dispensed as math &cts '"essed up" to M the theme of 

the month severs mathematics fiom it origins and its relationships. It turns 

mathematics into a commodity that is consumed and produced, rather than a "world 

into which we ourselves are drawn, a world which we do not and cannot 'own,' but 

must rather somehow 'inhabit' in order to understand it" (Jardine, Friesen and CWord 

2000,4)- 

David Jardine (1994) taIks about witnessing a classroom in which the teacher 

bas placed math facts on a teddy bear's tummy. These cute, laminated math facts are 

tacked to the classroom wail. Jardine sites this example, not to find hdt or lay blame 

with the teacher but as an "interpretative opportunity" to consider how such activity 

offers "no resistance and [demands] no real work" (Jardine 1994b, 264). Ifas a 

teacher you can dress up even hard and cold little math facts like 5+3- to make them 

slide down easier, like some sugar-coated pill, then the difficulties of learning 



mathematics will be removed or at least the children wiU have so much fUn that they 

won't notice it going down 

Our purpose was not to "dress up the ficts" to make them more palatable, but 

to invite the mathematics of this pIace to show itseK We wanted to learn to inhabit 

this place. We wanted the students to know and understand how the residue of things, 

often Iong since forgotten, remains in our modern world. The use of stones for tallying 

still bears traces to its origins. The root of our word 'calculate' derives fkom the Latin 

calcuIus meaning a 'pebble.' We also saw, in this story, possibilities looming on the 

horizon opening mto matters of the finite and infinite--the paradoxes of Zeno and 

Cantor. What happens when you add one and one and one and one.. ,? Can you count 

to hibity? How many is that? How big. is infinity? Could the shepherd really count an 

idkite number of sheep? And what if he was able to and then he got one more 

sheep? What's infinity plus one? 

"The world of our everyday experience is finite. We can't exactly say where the 

boundary h e  is, but beyond the M e ,  m the realm of the tramfinite, things are 

different" (Casey and Fellows 1993, 116). So as the children began to pair each sheep 

with a pebble and each pebble with a tally and each tally with a numeral, they were 

creating the same line of thinking that Cantor used as he set about exploring the 

paradoxical bfinity. 

What Cantor then set out to do was create exact notions of what it 

means for an hfidy to be equal to, greater than, or Iess than another 

hhity. The resulting arithmetic of the hhi te ,  or transfinite 



&thmetic, was a dramatic and controversial departure fiom the past 

attitudes to actual infinities by mathematicians who had regarded 

-them as a concept for the theologians. 

Cantor's trmdkite arithmetic is very simple: two infinite sets are 

equal if they can be put in one-to-one correspondence with each 

other. Sets which can be matched to each other in this sense are then 

said to have the same cardinality- 

parrow 1992,206) 

We asked, is there a way to put the set of all counting numbers { 1,2,3,4, . . . ) 

into one-to-one correspondence with the set (sheep, 1,2,3,4,. . .)? And we learned 

that yes there is. 

r, 2, 3, 4, ...) 

{ sheep, 1, 2, 3, .-.) 

During the days that the story was created and recreated, we investigated 

various counting systems. Working together and separately, we moved from a system 

of pebbles and tallying by ones to a system employing two numbers (one and two, 

because one and one makes two, of course). But what if you have only two numbers 

to count with? Can you ody count to two? What is a b ' i  number system? Is it 

good for anything? These questions invited fertile conversations and further 



investigation, which led to connections between this primitive counting system and the 

underlying structure of the most powerful microprocessors m the world today. 

During this time a deepening sense of number emerged in our classroom. Our 

tale, with its simple beghmhgs, was no longer so simple. "It is amazing how rich a 

range of topics there are which can be explored at a variety of levels, with ever more 

sophisticated questions yielding increasingly deeper insights and connections" priesen 

and Stow 1996,9). "Good problems lead to more problems-and ifthe domain is rich 

enough, students can start with the seed problem and proceed to make the domain their 

own" (Schoenfeld 1994, 18). Mathematics is more than finding and solving problems. 

"Mathematics is more generative-the centraI activity being making new mathematics. In 

so doing, it fosters a culture of design and exploration-designing new representations of 

mathematics and encouraging critique of those designs" (WilensIq 1996). 

It was during one of these critiques that James, one of our Grade 2 students, 

rose up to his kuees. Rubbing his hands together he procIaimed, "But you can make 

five by two and one and one and one. And you can make five by one and two and 

two. I' 

The rest of the children caught J&mesls excitement. Another space had opened. 

Just how many ways were there to make five? What if you were not Limited to ones 

and twos? 

The space that James opened for us  all was larger than just his 

particular questions. It was as if we had come with him over a rise 

and that just these few particular steps, taken seriously and followed, 



had opened up a huge horizon of possibilities around all of us. And 

it was not simply that we now had new territories to traverse. We 

also now came to understand territories already traversed in a new 

way." (Friesen, ClZEord, and Jardine 1998,9) 

Within good mathematical explorations there is no one "right" way to proceed. 

There were many ways. An intriguing web of connections, interconnections and 

crossroads await those who long to know this territory. "To recognize the role of 

perspective and vantage point, to recognize at the same time that there are always 

multiple perspectives and multiple vantage points, is to recognize that no accounting, 

disciplinary or otherwise, can ever be finished or complete" (Greene 1988, 128). This 

is the ontological unfinished character of a living place-a living discipline. This is a 

feature of the mathematical territory. (Wilensky 1996, 1 993) 

But for m y ,  they see only a chaotic confusion of branching forever, with 

nothing solid at the bottom. For them, this is not a desirable place to be. They locate 

the subjectivities of this place in the people themselves and so strive to protect the 

place. They long for clarity and certainty in an uncertain world-yearning for the right 

path, the right technique that will reveal everything. Too often schools, responding to 

this impulse, focus solely on transmining a "right" path. 

But in throwing out the 'bathwater' of enor, they lose the 'baby if the 

learner never enters the messy process of negotiating meaning, 

constructing diffierent representations and critiques of these 



representations. If we deprive learners of this o p p o m y  we strip 

mathematics of its essential character and deprive them of real 

mathematical experience. We also deprive them of respect. 

Mathematicians throughout history have constructed many different 

meanings for mathematical concepts and argued their relative merits. 

If mathematicians of distinction needed to go through this process in 

order to make sense of mathematics, why do we expect that the 

learner will take our conceptions on faith? We respect the learner by 

viewing her as a mathematician in a community which is stiU 

negotiating the meaning of a new concept m e n s k y  1993,22). 

Sometimes schools counter the impulse of the "right way" with its opposite. 

Now everyone has their own "right" path, In wanting to spare the student possible 

confirsion and error, they insist that each student can construct her own mathematics. 

The student is no longer accountab1e to anyone but herseK Every student has her own 

path. "That is, we are all producers and consumers of knowIedge, and the whole 

known world is at the formative disposal of our knowing" (Jardine¶ Friesen and CLifford 

2000,3). And now the idea of mathematics being a place makes no sense anymore. 



The Facts Of This Place 

Caught up in James's question, "Just how many ways are there to make five?' 

some of the children colored in f i e  squares in a row. 

t 1 I 1 1 

These children decided that they could represent these by I + 1 + 1 + 1 + 1. 

However, when they grouped the five squares like this: 

those who knew the mathematical designations wrote 3 + 2 = 5. But other children 

wrote Z + 2 + 2 = 5 for this very same figure. 

It might seem trivial that we have now discovered that 3 + 2 = 5, but 

what isn't so trivial is that, as a memorized "math fact," 3 + 2 = 5 

bears no memory or trace of how it is possible, of how it came to be, 

such that, if you forget this fkt, you're lost. And, even if you simply 

memorize and remember this hct, you have no way to go on, since it 

also carries no memory or trace of directionality and place. (Friesen, 

CLifford and Jardine 1998,ll)-  
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It's "hard to get at the information encoded m mathematical formulas because 

little or nothing in the actual patterns of the stark symbols on the printed page offers 

[the students] any clue to the formula's meaning" (Peterson 1990, 10). 

Once out of elementary school, these same cold math fkcts, now no longer 

placed (or rather out of place) on teddy bear tummies, fill pages upon pages of math 

texts, Now is the time children Iearn to do "real" math, The hard d -hc t ions ,  

ratio, algebra, trigonometry, geometry, calculus and so begins the 

litany of definition/theorem/proof chanted day in and day out. This 

image of mathematical practice portrays mathematics as a dead 

subject-inquiry is unnecessary because our concepts have been 

formally defined in the 'right' way and our theorems demonstrated by 

linear and formal means." (Wilensky 1993,2 1) 

Students faced with the burden of memorizing multiplication tables, struggling to 

calculate the age of a firmer who is twice as old as his son will be in six years ifthe 

h e r  is now three times as old as the son, or pondering how long it takes a slowly 

leaking conical vessel to drab, are left with the feeling that mathematics is an 

unchanging body of knowledge that must be painstaldngly and painfully passed on from 

generation to generation. Students, who have no choice but to endure such 

mathematics practice, pronounce a chilling dsmnation on mathematics itseE "When 

you go home you're just blank They wouldn't explain it. They'd just say 'sit down and 



do the sheet.' When you know what is ahead of you, you end up with a bad attitude 

about it, day &er day. 1 hated math," (Aaron - age 13) 

But it's not only the children who go "blank". Teachers, too, go "blanktr. 

Knowing mathematics as belonging only to the realm of memorized technique, they 

develop a shallow notion of mathematical understanding as performance rather than 

understanding as searching for what is under. Their mathematics is flat-a two 

dimensional place. "A body without a shadow: that's as good a description as any of 

the flatness of much of the institutional &ce" (CWord and Friesen 1999,58). 

Mathematics becomes akin to a tourist attraction, something to Iook 

at but never enter into, open up, and learn to live with. And we, in 

turn, become akin to curricular tourists ready to be momentarily 

entertained and amused. However, since we just see the thin, tarted- 

up, presentable surface of things, we dong with our children, become 

equally subject to boredom [and] flustration.. . " (Jardine 1994b, 

265). 

And here is the depressing consequence of all of this. Mathematics, itself goes 

"blank" Everything is now completely coherent. You are "blank" marking time m the 

pendulum swing. It's teacher-centered or child-centered. You are caught in the 
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insanity of Mud Minute Math or altemativeIy, putting in time tarting-up math facts, 

because that it all you can do. The research impulse then is to revive teacher-expert- 

manipulator or revive the child There is no alternative. 

So the task of research, and particuIarIy of this research, is to "fill in the 

blank"--not with the right answer or just any answer, but with understanding, 

searching for what is under the surface of appearances, and noticing those things that 

protruded above the surface of the commonplaces. It requires that teachers and 

students enter into dialogues with each other about their mathematical learning and 

understanding and difficulties because they now have something (it's not a blank) to 

have a conversation about. 

Kay (1995) insists, "difficulty should be sought out as a spur to delving more 

deeply into an interesting area An educational system that tries to make everything 

easy and pleasurable will prevent much important Iearning fiom happening." But it's not 

just a matter of making things dXEcult for difliculty's sake. The fact is mathematics is 

Wcult  and messy. It's not the sanitized picture we see in textbooks and proofk" 

(Widensky 1993,20). It is filled with arguments, paradoxes, controversies, scandals 

and murders (Davis and Hersh 1998; Devlin 1997; Kasner and Newman 1 989; Motz 

and Weaver 1993; Pappas 1997). But most children know nothing of these. Instead 

Mad Minute Math is a program designed to test children's math skills and increase their calculation 

speed They are tested in computation: addition, subtraction, multiplication, or division, and they 

generally have 60 seconds to answer as many questions as possible. 



they are indoctrinated into the still unchallenged Euclidean myth that mathematical 

howledge is 

certain, objective, and eternaL Even now, it seems that most 

educated people believe in the Euclid myth. Up to the middle or late 

nineteenth century, the myth was unchallenged. Everyone believed it. 

It has been the major support for metaphysical philosophy, that is, for 

philosophy which sought to establish some a priori certainty about the 

nature of the universe." (Davis and Hersch 1998,325). 

Mathematics is supposed to lead us to certainty- The long chains of reasoning 

are supposed to get you fiom here to there without a misstep or wrong turn What we 

found out in our particular example is that questions and uncertainties are necessary to 

the life of mathematics, itself, It is a feature of the territory. 

"The logic we are living out is centuries old" (Berman 1983, 23). It winds its 

way through Descartes, Aquinas, Plato to Euclid Devlin (1 997) contends that the 

logical road has led to a dead end. It is this myth that has gone mostly unchallenged in 

mathematics education research even today (Battista 1999; Davis 1996; Dowhg 1998; 

Ernst 199 1; Hersh 1997; Schneider 1994; Sierpinska, et.aL 1993; Mensky 1993). 

W e  critiques of rationalist and positivist traditions "have made serious inroads into 

the hegemony of the dominant epistemology, the calls for interpretive firameworks have 

largely focused on the social sciences and to a lesser degree on the natural sciences. To 
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a great extent, mathematics has still escaped the full glare of this critique1' (Wilensky 

1993,30)- 

However, left unexpIored, unopened, uninterpreted, unresearched, the 

"stubborn particulars" (Jardine 1994b) inherent in this place will be seen only as 

something to weed out, to be rid out and smoothed over. Their obstinate traces will 

continue to be understood as dBiculties residing in the student, the teacher, or the 

practice, rather than as a messy featme of the place itself. "The character of 

mathematical knowIedge, is inextricably interwoven with its genesis-both its historical 

genesis and its development in the mathematical learner" (Widensky 1996). 

Mathematics is something that lives in its "being handed along (Gadamer 1989, 

284). It is something we inherit. We can't individually construct it nor can we 

passively submit to it. Mathematics comes to us through the generations of 

mathematicians that explored its contours, created its ways, and mapped its paths. Its 

legacy involves learning how to hear Zeno's paradox of Achilles and the Tortoise anew 

m a six year old's question, as Kathy wonders aloud, "What happens when I divide each 

of the squares into halves. And each of those halves into halves. Could I ever divide 

them up so small that I could reach zero?'' Or recognize the voices of Newton and 

Leibnitz in a sirnilat wondering by six year old James, "So what happens if1 divided the 

squares so that I had a half, a quarter, an eighth, and a sixteenth and then add them all 

up together. Would they add up to one?" 

Passing on this legacy involves learning how to give students "direct contact 

with 'the great chain of being,' so that they can i n t e d y  generate the structures needed 
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to hold pow& ideas" (Kay 1995). The real pedagogical work is found in the effort 

to get in on the conversation. To wake it up to the fsct that our chiIdren want in. 

But it's not only the children who want in. We need to wake up to the k t  that 

mathematics wants in, it wants to be taken up as an inheritance because ifit is not, then 

it just becomes a "blank"-pages upon pages of "blank." 

This legacy also involves finding ways to Live generously in this territory, to 

embrace its ambiguities, and to learn its ways. As you enter this place, you don't have 

to turn your back on Euclid knowing how his myth was passed on and continues to be 

passed on through the generations. The process of understanding is the handing on. It 

is the process of handing down. You now have a place where you can situate Euclid in 

a larger environment thereby understanding what Euclid's axioms are good for and 

recognize that within the place of mafhematics there are other good fors and they may 

be completely contradictory. This involves the ability to look 

critically at the role of shame in the mathematical commu.nity. 

Listening to learners and fostering an environment in which it 

becomes safe for mathematical learners to express their partial 

understandings results in a dismantling of the culture of shame which 

paralyzes learners-preventing them fiom proposing the tentative 

conjectures and representations necessary to make mathematical 

progress. In doing so, it parts company with the literature on 

misconceptions which highlights the gulfbetween expert and novice. 

way of knowing and doing mathematics] stresses the continuity 



between expert and novice understanding, noticing that even expert 

mathematicians have had to laboriously carve out mal l  areas of well 

connected clarity fiom the generally messy terrain." (Widensky 1996) 

Mathematics, itself; as a living discipline is constituted by its partial 

understandings. Our partial understandings in Iearnbg the ways of this territory are a 

feature of the pIace. They don't belong solely to a person Anything that is Living is 

not whoIeIy worked out, it is not complete, it is always partiaL When you are standing 

m mathematics, you are standing in a living place. It's moving. It's alive. 



CHAPTER TEIREE 

The Children Want In 

The re-formed mathematics classroom is a dynamic place brought to life 

through conversations and dialogue. Making meaning in mathematics involves 

"persons-in-converntion" (Driver, et.al. 1 994). The National Council of Teachers of 

Mathematics (1 989, 199 1, 1995,2000) has repeatedly stressed the importance of 

conversation and dialogue within the mathematics classroom but as TIMSS (1996) 

found, in many classrooms, learning mathematics is a silent individual activity. Finding 

ways to break this silent spell requires putting forth new images of classroom life. 

Learning to describe the compIexities of classroom life means capturing its dynamics, 

the connected collective movement of conversation as understandings emerge in the 

seemingly disparate a d  unconnected approaches, dialogues, attempts, and arguments. 

"In [a] conversation, all of the participants are oriented toward deepening their 

understanding of the issue at hand" (Davis 27, 1996)- "To conduct a conversation 

means to allow oneself to be conducted by the subject matter to which the partners in 

the dialogue are oriented" (Gadamer 1 995, 367)- In this way a mathematical 

conversation is not the same as a traditional classroom discussion, 



The goal of [a] discussion is more toward the articulation of 

preformulated ideas, and so the subjects endeavor to exert some 

measure of control over the subject matter. The emphasis in the 

discussion is placed on the subjects' conceptual differences rather than 

on achieving a consensus. (Davis 1996, 27) 

h conversations the participants do not attempt to control the subject matter, 

but rather are deeply engaged in attempting to understand the issue at hand. The 

subject (mathematics) participates in the c o n v e r s a t i o ~ e m a t i c s  speaks. It is no 

Ionger a silent "b1an.k". The "circle of seekers" (Palmer 7998, 107) that have gathered 

to explore this new situation are not even aware that a conversation is taking place but 

only know that a conversation has taken place "when understandings have changed, 

when a new commonsense has been established-when self and other have been 

altered-then it has happened" (Davis 2 996,28). 

In our classrooms, mathematics lives in these day-to-day details of its being 

worked out through conversation. Through conversations we create not only our 

understanding of mathematics but also we gain an understanding about what it means 

for mathematics to be a living discipline. But herein lies a difficulty. "The idea that one 

can be aware that one is in a conversation is in some ways self-contradictory; it 

presumes an awareness of one's self and one's subjectivity. It is precisely this detached, 

observer-like awareness that must be set aside in order to d o w  a conversation in the 

first place" (Davis 1996,28). Knowing that a conversation has taken place is ahvays, 



out of necessity, something that occurs after the fact- It is the outcome, the 

destination, that determines whether a conversation has taken place, when new now 

commonly-heId understandings can be proclaimed. 

To show how mathematical understandings emerge in our classroom, we must 

let you in on the conversation. To assist you, I have taken an ordinary classroom 

mathematical exploration and the vm-ous didogues that were involved in coming to 

understand the mathematical territory that the exploration opened for us. I will fieeze 

some of the individual instances of talk, lingering with each for a few moments, to 

show: what sometimes lurks beneath the surface of students' a t i o n s  and struggles, 

how mathematical ideas cohere, how understandings rippIe, how a new commonsense 

comes into being and how new mathematical territories open In doing this, in freezing 

the taIk, you might tend to lose sight of the dynamic, the nuid, often messy, meandering 

back and forth flow ofconversation Throughout this chapter you will need to hold the 

tension of the seemingly disparate instances of tak together to see how conversation 

works, to witness how we arrived at a new shared understanding of the mathematical 

exploration we undertook over the course of several weeks. 

Paradox In The Classroom 

Mathematics shows us a way to hold such a tension. It is called paradox 

"Paradox is another name for that tension, a way of holding opposites together that 

creates an electric charge that keeps us awake" (Palmer 1998, 73-74). 



Paradoxes have played a dramatic role in intellectual history, often 

foreshadowing revolutionary developments in science, mathematics 

and logic. Whenever, in any discipline, we discover a problem that 

cannot be solved within the conceptual h e w o r k  that supposedly 

should applyy we experience shock. The shock may compel us to 

discard the old £kamework and adopt a new one. It is to this process 

of intellectual molting that we owe the birth of many of the ideas in 

mathematics and science. (Wilensky 1993,68). 

The tension created by paradox has a long history within mathematics. The 

Greek philosopher Zeno of Elia, who lived about 450 BCE invented several famous 

paradoxes through which he intended to show that there is something extremely 

mysterious about motion. One of these involved an arrow m flight. Zeno contented 

that at every instant of time the arrow was somewhere, in some place or position, and 

therefore, could not at any instant be m motion. At any instant, the arrow is 

indistinguishable from an arrow at rest. Zeno concluded that ifthe arrow is at rest at 

every want, then it is always at rest- AIl motion is an illusion. 

Zeno posed this paradox, not to argue that an arrow cannot move, but to 

challenge the belief that time consists of a succession of discrete instants, a challenge 

that the Greeks themselves were not able to meet. In hct, the paradox of the Arrow 

was left unresolved for approximately 2000 years. "Indeed, truly satisfactory 

resolutions to [this paradox were] not found until the end of the nineteenth century, 



when mathematicians fbdy came to grips with the mathematically hh i t e "  (DevIin 

1997,76), 

Zeno was right to believe that at any particular instant the arrow is at a 

particular position He was also right in believing that there is no intrinsic difference 

between an arrow being at rest at a particular instant of time and being in motion at that 

instant. His mistake was in concIuding tbat motion was thus impossibIe. Motion is not 

the sequential accumulation of incremental bits. "The key to finding the value of the 

series was to shift attention from the process of adding the individual terms to the 

identification and manipuiation of the overallpattern" (Devlin 1997,76). 

Zeno himself didn't have a proper solution to the paradox, nor did he 

seek one. The paradox suited his philosophy perfectly. He was a 

member of the Eleatic school of thought, whose founder, Parmenides, 

heid that the underlying nature of the universe was changeless and 

immobile. (Seife 2000,45). 

In this chapter I want to show how this paradox works itself out in our 

classroom, how the individual instances of talk create the movement of a mathematical 

conversation I want you to understand that "to ask good questions, deflect answers, 

and connect students in diaIogue" (Palmer 1998,134) is not enough. Taken up only by 

themselves, these unconnected moments of tallc remain discrete fiagment s, iso Iated 

anecdotes, that even when added together cannot provide a sense of the whole, of the 

conversation Instead of giving up altogether and just announcing, "Well you just had 



to be there. - -", I want to find a way to make visible the "movement of showing" 

Weidegger 1962, 1) that underwrites the work that we as students, teachers and 

researchers do in coming to understand. Palmer (1 998) calls this "the skill of lifting up 

and refknhg what my students are saying.. . But I [need] to wait for the moment 

when my students [can] experience it as their own, as a way of naming a discovery that 

they [have] made for themselves but [are] not yet able to put into words" (134- 135). 

Gathering up the seemingly discrete hgments, the tangential meanderings, the 

scattered filaments of talk, accomplishes three important things: "we [gather] up the 

elements of our dialogue and [give] them coherence, we [build] a bridge to our next 

topic; and we [do] it all in a way that [makes] students fidi participants" (Palmer 1998, 

135). In this way we shift attention away from the process of adding the individual 

instances of talk to the identification of the movement created with the overall 

conversation "By hoIding the tension of opposites, we hold the gateway to inquiry 

open, inviting students into a territory m which we all can learn" (Palmer 1998, 85)- 

To see how this works itself out, you will enter our Grade 7 classroom It is a 

big double room, med with 60 adolescents, 15 tables and I7 computers. Computers 

and tables are organized in such a way that every table grouping has access to at least 

one computer. We do not have a designated space for whole group Iessons and 

conversations. When we need to all come together, the students bring their chairs into 

one of the areas of the classroom 



The Exploration Begins 

The class starts with a mathematical exploration called Triangles Got Legs! 

(Sabinin and Stone 1999). 

To introduce the situat5011,L draw a line segment AT3 on the whiteboard. 

- 
A 0 

Figure 3.1 

I explain that this forms one side of a triangle ABC. Point C of the triangle is missing. 

The students need to h d  this third point. 

I explain that for some of their choices of the third point C, the side AB would 

be the longest side of the @kmgIe and for other points; it would not be the longest side 

of the triangle- As I draw the following figures on the white board, I suggest that these 

might be some of the possMe choices for point C: 

Figure 3.2 

I explain that the purpose of this exploration is find for which of the points C is 

AB the longest side of the triangle. I suggest that as a strategy, a way of approaching 
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this exploration, that students might want to try to identify those points C that "work" 

by shading m all the points m the plane that made AB the longest side of the triangle 

-ABC. 

The students are given time to think and ask questions about the task ahead of 

them for a few minutes before getting down to work' As they begin, in their own 

ways either by themselves or with the support of a small group, to formulate their initid 

tentative conjectures Pat, David and I join them As I approach this particular group 1 

hear: 

"We 're confused We really don 'r' understand this problem. The 

points are there, the ones you showed us. You gave us all the 

answers when you gave us the question. What's the point?" 

' In our classroom, students choose how they will proceed with the exploration. We don't assign 

students to groups. They choose with whom they do their work. Some students choose to work on 

their own, at least initially, when they are working on explorations of this nature; others prefer to 

begin with the company and support of another person. Students also choose what materials they 

want to work with as they make their way. Finding ways to both formulate your emerging 

understanding of the territory that the exploration opens and representing that understanding are both 

essential elements for communicating that understanding to others. 



The problem and my question threw this group of students into an m f i m i h  

landscape. They were asking: "Is that all there is? " The initial exploration we did 

together as we set the parameters of the problem seemed, to these students to be the 

answer. 

"So what's," they asked, "the point of doing th2;r question at all?" 

"This is so dumb, " I hear one of the students say. 

It is posslble to dismiss these students' complaints, but 1 believe that it is 

important to stop here. I believe that under their complaints, so Ill of -ation, 

lurks a problem of practice that dominates school mathematics. Left undisturbed it will 

continue to plague our best efforts to reform our mathematics cIassrooms. 

A Problem Of Practice 

AU too often, teachers and researchers read student's complaints as trouble with 

the student or trouble with the teacher. Within educational discourse these are the 

most commonly available alternatives. Read as trouble with the student, these 

complaints are turned back on the students themselves. Their fhstrations, their feelings 

of dislocation, are often read as fidure: Mure to engage with the initial problem, 

Mure to understand the problem, Mure to have the proper attitude, failure of 

motivation. Read as trouble with the teacher, the problem becomes one of technique: 

M u e  to properly clarifj. the initial problem, failure to provide enough guidance, Mure 

to provide enough examples. 
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The TIMSS Video Tape Study (1996) heIps to show us how mathematics 

education gets caught into a dichotomy of b h e - b h m b g  the student or blaming the 

teacher. ' This video study involved 8 1 U.S. mathematics classrooms. It reveaied that 

teaching in the U.S. is focused for the most part on a very narrow band of procedural 

skills. The teacher carefdly instructs the students m a concept or a skill by solving one 

or more example problems with the class. "Whether students are in rows working 

individually or sitting m groups, whether they have access to the latest technology or 

are working only with paper and pencil, they spend most of their time acquiring 

isolated skills through repeated practice" (Stigler and Hiebert 1999, 10-1 1). 

"Mathematical concepts are acquired by 'absorbing' teacher and textbook 

communications" (Battista 1999). 

"In traditional mathematics instruction, every day is the same: the teacher shows 

students several examples of how to solve a certain type of problem and then has them 

practice this method m class and in homework" (Battista 1999). Being well 

conditioned in this method, students readily equate mathematical understanding with 

knowing how to follow the instructions by diligently duplicating the teacher's 

prescriid method over a number of examples. "The National Research Council has 

dubbed the learning' produced by such instruction as 'mindIess mimicry mathematics.' 

Tnstead of understanding what they are doing, students parrot what they have seen and 

heard" (Battista 1999). 

By the time these Grade 7 students came to us, they are very fkdiar with this 

method, 



We have to get up early in the morning. We get there and expect 

something. Why don't they pay the textbook to teach us? When 1 

was in grade five we had sheets of math and when we flnished 

and [rhe teacher] wouldn't have enough, so we would have to 

make up our own sheets. It was so boring. (Amber - age 12) 

And even though Pat and I had taught these same students in Grade 6, some of them 

still had difticdty letting go of the dependency created by this method of teaching. By 

suggesting some possible places to begin our Triangles Got Legs mvestigation, it 

appears that I have throw. some of the students back into a style of teaching that still 

lurked in the shadows of their mathematical experience. The students seemed to read 

these initial possibWes as instructions rather than as potential beginning places. And 

we heard the old complaints reswfkce, the complaints that often filled our classroom 

the previous year: 

''1 used to be good at math and 1 would still be good at math zfyou would just 

tell me whether 1 should add, subtract, multiply or divide. " 

" m a t  do all these problems have to do with math?" 

"Whar a stupid question." 

By turning the exploration over to them, they were lost because this was not the way 

we do mathematics in our classroom now. Mathematics, for them, is not taught and 
1 

learned this way. 
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But for these students, doing mathematics is still too easily associated with 

ritual and method that needs to be rehearsed, page after endless page, sheet after sheet. 

When I was in Grade 5 I hated math. We got sheets of paper with questions- 

Ifwe finished one sheet we got mother. (Pam - age 12) 

This ritualized method does not belong only to grade school mathematics but 

appears to dominate the landscape of mathematical pedagogy right through schooling. 

For the most part my student teachers do not want to be problem 

solvers. They want to know the problems, be told how to solve 

them, and exercise that facility with endless variations on the theme, 

which require only recall and patience with tedious calculation. Many 

of them have been given very positive reinforcement for this type of 

activity m school. Mistaking this anal-retentive activity for the real 

t b g ,  they have drawn the conclusion that they are good at, and 

enjoy, mathematics. Faced with the necessity to explore problems 

they have not been trained to solve, they are often fhstrated, 

unsuccessfid, and feel they are somehow not being properly taught if 

I wiU give them neither the method nor the answer. (M.G. Stone, 

email to the author, February 1998) 

I'd like to be able to report that this stress on computation ends when 

students reach college. But, alas, even in calculus, linear algebra, and 

diflierential equations courses (course required by many different 



majors) there is the same mind-numbing tendency toward routine 

computational problems. (Pados 199 1,55) 

Most non-mathematicians share the view that mathematics is a question of 

knowing what to do, and view as suspect any attempts to teach otherwise pawson 

1995). Even people who recognize the intellectual value of problem solving and 

critical thinking in a wide range of situations often think that within mathematics to 

solve problems means learning to solve long lists of problems (Paulos 1 99 1 ; 

Schoenfeld 1992,1994; Stigler and Hiebert 1999). "This is the Truth; now do 400 

identical problems" (Paulos 199 1, 53)- 

MathematicaI thinking and understanding cannot be reduced to the sum total of 

memorized procedures. Mathematical thinking and understanding involves "seeking 

solutions, not just memorizing procedures; exploring patterns, not just memorizing 

formula; and formulating conjectures, not just doing exercises" (Schoenfeld 1992). 

Mathematical thinking, knowing and creating are not the accumulation of these 

incremental bits. Many teachers and students believe that doing these discrete exercises 



will add up (Schoenfeld 1992, 1994). And so students repeat procedure8 after 

procedure, diligently adding to their growing mathematical toolkit. It doesn't take long 

however, before the sheer number of procedures overwhelms them. "For most 

students, school mathematics is an endless sequence of memorizing and forgetting fiicts 

and procedures that make little sense to them" (Battista 1999). Memorized bits such 

as: "always put the bigger number on top of the Me number," "cross multiply and 

divide," "invert and muItiply," "a negative times a negative equals positive," "is is the 

numerator and of is the denominator" are but a few of the refkins that students learn to 

chant as they wander through their pages of math "blanks". Along the way they also 

memorize procedures-procedures for single digit whole numbers, two digit whole 

numbers, ratios, percents, proportions, scale, rate, interest, hctions, integers and the 

list goes on and on. UnabIe to recall which chant goes with what procedure, what 

procedure belongs with what problem many students k d  themselves f?ozen, W d  to 

take the next step. They don't remember what to do. And so they do exactly what 

survival training tells them to do, they stand still in one place until someone comes to 

8 Although it is important that students know how to execute mathematical procedures reliably and 

efficiently, knowledge of procedures involves much more than simple execution. Students must know 

when to apply them, why they work, and how to verify that they give correct answers; they also must 

understand concepts underlying a procedure and the Iogic that justifies it. Procedml knowledge also 

invoIves the ability to differentiate those procedures that work f?om those that do not and the ability to 

mod@ them or create new ones. 
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rescue them and they bewail that fact that they are lost- And so their teacher comes to 

the rescue. 

It is a f h i k  trap and it dominates m y  North American mathematical 

cIassrooms which leads to the cycle of blame-blaming the students or bIaming the 

teachers, and it forms the basis of much mathematics education research (Hiebert 1999, 

Russell 2000). The purpose of this chapter is not to enter into the seemingly endless 

exhausting either-or debate that this dichotomy opens. Rather I want to ask a different 

type of question of this situation. 

How can we escape the grip of either-or thinking? What would it 

look like to "think the world together," not to abandon discriminatory 

logic where it serves us well but to develop a more capacious habit of 

mind that supports the capacity for connectedness on which good 

teaching depends? (Palmer 2998,62) 

Being Lost 

I want to take up the students' complaints of fhstration in another way. Rather 

than hearkg the students' wak as a cry for rescue, I hear and interpret their words as 

something that is true of fall beginnings. Being lost is the fist step in d new 

mathematical investigations and explorations. Being part of a living discipline means 

that you are dropped into a conversation that is centuries old. The students' words can 

be heard as their desire to be brought into that conversation. 
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They [the teachers] mwt  memorire everything- university and recite it in 

fiont of the class- They men V including us. We want in. Bring us into the 

corrversution There is something we wmt. (Tyson - age 12) 

Learning how to be a part of that already on-going conversation means that 

you have to begin by figuring out where you are. In the beginning, you are lost. And 

so you start by asking questions and testing the ground. 

But the art of testing is the art of questioning. For we have seen that 

to question means to lay open, to place in the open. As against the 

fixity of opinions, questioning makes the object and all its possibilities 

fluid,. . Dialectic consists not in trying to discover the weakness of 

what is said, but in bringing out its real strength. It is not the art of 

arguing (which can make a strong case out of a weak one) but the art 

of thinking (which can strengthen the objects by referring to the 

subject matter). (Gadamer 1995, 3 67). 

"So what's the point?" heard differently as, "Where am I?" is the question that 

needs to be addressed and first and foremost m its address, is addressing us. The 

students "want in," and in that desire, they want to know how to join in, It is now 

possible to hear the student's complaints, ''I'm confused. I redy don't understand this 

problera" more generously than the students intended them. 

Pat and I were well aware that at the time these words were uttered, these 

students wanted to be rescued. They also wanted us  to h o w  that they thought that 
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this was a "dumb problem" But both of us  understand teaching as the point of access 

to something beyond the teacher. 

Every academic discipline has such "grains of sand" through which its 

-world can be seen So why do we keep dumping truckloads of sand 

on our students, blinding them to the whole, instead of lifting up a 

grain so they can learn to see for themselves? Why do we keep trying 

to cover the field when we can honor the stuff of the discipline more 

profoundly by teaching less of it at a deeper level? (Palmer 1998, 

122) 

We wanted the students to see that being lost, confirsed and uncertain was not a 

problem that belonged solely to them as students as they ventured into the terrain that 

this new problem opened up but it was a feature of a living discipline. In "Lifting up this 

grain of sand" we could show the students that they weren't the only ones who "want 

in" mathematics also "wants in" to the conversation Mathematics needs these students 

to join in so that it can continue as a living discipline. Ifthe young cannot find a way to 

join in the conversations, then mathematics will remain "blank" and eventually it will 

die. So it is vital to open a space in which things can now move. 

Asking questions of the territory that we have inherited and now find ourselves 

inhabiting is essential to how we begin to make our way in this new place. Learning 

how to take the e s t  steps requires letting go-letting go of the lure of certainty, of a 

"right" path created by the ritualized method of demonstration and rehearsal. It 

requires letting go of knowing exactly what to do. It begins by asking questions Like 
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these: "Do I have enough information to begin? I tried, and I couldn't do it; does that 

mean I can't do it? Does it mean that the probIem is unsolvable? Has anyone eke ever 

tried this before? How do I. h o w  that what I am doing is leading me somewhere?" 

In wanting these students to let go, to enter this mathematical space, I found 

that I needed to learn more about the territory that I was asking them to enter. Some 

days, I found rnyseifhaving to f5ce my own ignorance. "I don't know," I'd have to 

admit. "Wait, I'll try to find out." I'd rush home at night, madly dig through my books, 

search the internet, email a fiend (one who wouldn't think I was stupid). "God, she 

doesn't know that! What's she doing teaching mathematics?" I could hear the scorn 

from the silent comers of my study walls. "Ifyourre going to teach like that, I can't help 

you I don't know anyone who can-" The consultant's words uttered so many years 

ago had found their way into the private walls of my study and came back to haunt me. 

In times of uncertainty I found myself caught m the myth that mathematics is something 

you do by yourseIfand you do it quickly and you get it right. There is a penalty for not 

knowing. 

77mt'k not learning. It's punishment. It's like every morning 

when Igot up to go to school, it was like punishment. The only 

reason we want to get it right is so that we don7 have to do any 

more. Ifyou don't get it done, youjust get more. (Aaron, age 

13) 
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The students, Pat and I aU had to learn to let go of the t r a m  created by the 

years of conditioning that living this myth created- There was work to be done. Just as 

Pat had done when she first came into my classroom as a researcher at Beacon 

Elementary School we had to once again roll up our sleeves and get to work. We had 

to learn how to join in the mathematical conversation. In hearing these students' 

compiaints differently, Pat and I entered into an interpretative space that requires that 

we begin "with a different sense of the given.. . it begins in the place where we actually 

start m being granted or given this incident in the first place" (Jardine 1992,55). 

Mathematical understanding is not something that we can learn by obsening 

someone else do it correctly; rather it is something that we must undergo. It is messy, 

filled with fist steps. This is what beginning a mathematical investigation is all about. 

This is what Iearning is about. It is not the accumulation of all of those caremy 

prescriid precise discrete procedures because "mathematics is messy and not the clean 

picture we see in textbooks and proof5" (Widensky 1993,ZO). "If we deprive learners 

of this opportunity, we strip mathematics of its essential character and deprive them of 

real mathematical experience" (ibid, 22). 

All Over The PIace 

"Get over here. How are we supposed to figure out the 

points for C? We have all these triangles. Look at uZZ these 

places C can be. C is all over the place. C can be anything. 



How am Isupposed to make sense of all the places C could be? 

It would take all day. " 

Figure 3 -3 Student Work 

1 glance down at the paper, as I listen to these students' wails of anguish. An 

assortment of triangles covers their page. Throwing precision to the wind, while 

keeping line segment AB constant; these students have started to play with some of the 

places point C can reside. The constraints proscribed by the initial problem statement 

impose these boundaries upon the students and therefore define but do not limit the 

region in which they make conduct their play. As they move p o i .  C around above 

line segment AB, the space that opens invites-exploration. It is fblI of possibilities. 

In beginning to see some of the possibilities, they are overwhelmed by the space 

that has opened '2ook at all these places C can be. C is all over the place. C can be 

anything. How am I supposed to make sense of all the places C could be? It would 



fake all aby- " Interpreted as words of turmoil, a rescue is in order. "Help me, I'm 

drowning. " Resisting the temptation to rescue, which would throw me back into the 

either-or dichotomy I described earlier in this chapter, requires that I hear and interpret 

these students' words differently. Finding ways to hear differently moves me into the 

unexpected places in my own research. I know that in a very real sense, the students 

are right. It would take all day, ifthey continued m the way that they are proceeding. 

They need help, not a rescue, but some guidance-another "grain of sand Lifted up" 

(Palmer 1998, 122). 

First, the students need to see that their W steps are correct; the space, that 

their initial ventures into this problem open, is large- But it is not " a l l  over the place" as 

they say. They are right in asking for someone to help point to the markers that they 

have found to show them which ones to attend to at this point. 

"I see that you have kept line segment AB constant in aII your triangles. Whar 

happens ifyou draw only one line segment AB and then you plot your C points all 

fiom thar one line segment? 

A Place To Play 

Beginning to focus on their words: "Ir would take aZZ day" an interpretive space 

had opened, we had stumbled onto a fundamental aspect of a good mathematical 

investigation-the invitation to play. Like the "phy of light, the play of the waves, the 

play of gears or parts of machinery, the interplay of limbs, the play of forces, the play of 

gnats, even a play on words" (Gadamer 1995, 103), the type of play which suspends 
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time for awhile, this is exactly the space that good investigations open and an aspect of 

mathematics that I want the students to know. It is a space large enough that it could 

even take all day. But in order to take up this conversation, to hear these words as an 

invitation, the students need to put aside the accumulated weight of experience that 

tells them that mathematics is repetitive drudgery full of speed, right answers and 

punishment. "Mathematics may be the only discipline that bases its instruction on 

hundreds of exercises of five minutes or less" (Dawson 1995). 

In selecting this particular investigation, I sought out a problem that was rich 

enough, open enough, generous enough, so that it reveaIed something of the ways into 

the mathematical landscape. I wanted the students to Iearn to play, to see that playing is 

essential and that their movement within the play space is demanded. Mathematics and 

mathematical thinking, knowing and understanding are created m its being played out. 

Play (paidia) and education (paideia), "both terms arise from an original 

reference to the activity of the child (pais), an echo of which can be heard in the word 

"pedagogy" @aidagogos))" (Davis 1996,212). Ifmathematics is not simply a dosed 

and given axiomatic system but in fsct a living discipline inspirited by ongoing 

questions, quarrels and conversations, then play and the pedagogy of mathematics is 

not an afterthought but a necessity, If mathematics lives in its continual re-forming, 

then we need to create a mathematical education that allows the young to experience 

the creation of mathematics. 

PIay "is a phenomenon that has tended to be shalIowIy understood and, in 

consequence, almost universally scorned by mathematics teachers" (Davis 1996,214). 
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Understood as something fivolous, play, as opposed to work, off-task behavior, is not 

welcomed into most mathematics classrooms- But play is exactly what is needed. It is 

only play that can entice us to the type of repetition and rehearsal that is needed to 

learn how to inhabit the mathematical landscape and how to create new mathematics, 

"The movement of play has no goal that brings it to an end; rather, it renews 

itselfin constant repetition" (Gadamer 1995, 103). This is not the same type of 

repetition that is the hallmark of traditional mathematics teaching, that anxiety- 

inducing, mind-numbing repetitive pacing shaped by rote recitation and Mad Minute 

Math. I'm not tallcing about the repetitive pacing of the polar bears at the Calgary 

Zoo, that back and forth motion that wears one single muddy path inside the boundary 

of their limited confines. Once fkeed fbm that enclosure it is possible to understand 

repetition in a different way. " Wlithin the repetition itseE there is movement (play), so 

that each act of repetition is indeed a new (informed and transformed) act. It is thus 

that play sustains i t se1  (Davis 1996,300). Each instance creates the next new instant, 

it is both recursive and iterative, it is what keeps the play, the mathematics, alive. 

Coming Together As A Group 

As a whole group, we come together to talk about our initiaI conjectures. 

Some of the students speak about their feelings of dislocation, of being overwhelmed. 



" I looked at this problem and I got so mad and fistrated. I 

only wanted the answer. Iwanted to yell, 'Give me the answer.' 

You just said 'I'm showing you how.' In Grades 2 - 5 math it 

was all rules and doing questions. I liked it because I knew how 

to do it all. There was only one way and I knew it- But this 

problem durn? have just one way. " (T-y - age 12) 

I ask the group with their numerous triangles to talk to their classmates about 

their conjectures. As the group puts up their paper with all the triangles a murmur of 

voices goes through the room. A number of the students talk about what it is like to be 

stuck- 

"Getting stuck is okay- Before, I'djust be called 'dumb.' There 

was a penalty for not knowkg how to proceed so Ijust kept my 

mouth shut and I didn't tell anyone. " (Maria - age 12) 

"I'm not @aid to admit that I don't understand something 

anymore became I don 't want to do more of what I don 't 

understand." (Mary - age 12) 

Together we look at the question again, we look at aIl the triangles in fiont of  

us and together we start to plan some ways to proceed. I want the students to 

understand that "the essence o f  the question is to open up possibilities and keep them 



open1' (Gadamer 1995,299) but at the same time, I do not want them to read this 

openness as being anything and all over the place. 

One of the students from this group points to the triangles that they have drawn 

on their paper, which is now taped on the white board for the rest of  the class to see. 

"We drew all these tntnangles. All of them are right. We thought that C could 

be anywhere. " 

A number of students Eom the class comment that this looks somewhat Eke the 

place that their group is shrck I think it is important for the students to both recognize 

that they are stuck and to h o w  that being stuck is another fimdamental aspect of doing 

mathematics-"another grain of sand". It really cant be avoided. It is one of the ways 

that you know that you are in mathematical temtory. I talk with the students about 

what happens to me when I get stuck. I let them know that sometimes I just stare at 

the page in Eont of me, sometimes I get tense because I can't seem to make progress, 

sometimes I feel hstrated because nothing seems to work, and sometimes I don't even 

realize that 1 am stuck until I'm well into a place before I suddenly realize it is a dead- 

end. I tell them that one of things that I have Iearned is that the worst thing that I can 

do is to stop doing anything at alL One of the things that I do is to read the question 

again carefdly net because I have read it inadequately the first time, but rather, it is 

often the case that the question only really makes sense after 1 have pIayed with it for a 

while and start to recognize the territory. In this way I can now read it more 

thoughtfidy because I have had some experience with the question 
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I ask the students to return to the original probiem with me. We read it again 

as we look at d the triangles m fiont of us. "Are you just looking at all the indivr-dual 

tntnangIes?" I ask the students. "Tiy looking for an overall pattern." 

"Is that why you asked us to keep only one fine segment AB and then work the 

points C f i m  that?" asks one of the students from this group. I ask the student to 

come forward to the whiteboard to show us all how she might go abut dokg this. 

The various members of the group pick up felt markers. They begin to superimpose 

one triangle on top of another. As they do this other members of the cIass drift off into 

their groups again. They are ready to re-enter the question once again. 

Looking For Boundaries 

- 
'ZOOS these are points that C can be. is still the longest 

side at all of these points. We know that the triangle cannot be 

an obtuse trz-angle because then the other line BC will be 

- 
longer than the AB line. Look we t ied  this: lg is 35 mm. If 

we make an obtuse triangle then AC is 20 rnrn and CB is 44 

rnm. See it doesn't w o h  so it can't be an obtwe piangle." 

Figure 3.4 Student Work 
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These students have started to test the boundaries imposed by the structure of 

this investigation. "The bounds are the limits that separate this place fiom that place; 

the marking of bounds is the first step m transforming a space into a place" (Davis 

1996, 268). Creating the boundary around Ieaming "keeps us focused on the subject at 

hand. W~thin those boundaries, students are fiee to speak, but their speaking is always 

guided toward the topic" (Palmer 1998,741. This group recognizes that pomt C "can't 

be just anything," it can't be just anywhere, but in their expIoration they are recognizing 

that they are not just filling in the bounds. This group is waking up the bounds and in 

doing so the boundedness of the territory is becoming visible to them, They are 

starting to define the places that might hold point C. The task is somewhat like that of 

determining the bomdary, that jagged, fuzzy edge, of a forest. In defining this place, 

matters of measurement are important. The length of a h e  now is not just the idea of 

length as in the earlier investigations, but the actual length M e r s  come out and 

drawn lines are measured: 45mm_ 20 mm, 44 mm, 35mm- 

This group is onto something and they just want to continue. From across the 

room I hear: 

"Come here. We think we have something. We have found that 

all the points illside an equilateral fnfnangIe would have to work 

as points for C. Now we couldflip the triangle and it would still 

be the same. But., we think we got it. Is it right?" 



Figure 3 -5 Student Work 

I look down at these studentsr page. They have drawn an equilateral triangle and then 

placed a number of points inside that triangle. On closer examination, I see that they 

had also changed the lengths of AB. So instead of searching for the boundary, 

awakening the boundary as the previous group had done, this group fixed the boundary 

and then filled it in by making all their points firt inside of it. 

F turned their question back to them, rrHow would you know that you are 

right? " I know that they want me to just say whether their answer is right or not. I 

know that they do not want to me to turn the question back to them, to ask them to 

convince themselves that their answer is right, However, 1 want students to understand 

that 

advances in mathematics happen through the negotiation of a 

community of practitioners. Moreover, the development of 

mathematical pro06 is not linear, but rather follows the "zig-zag" 

path of example, conjecture, counter-exampfe, revised conjecture or 

revised definition of the terms referred to m the conjecture. ln this 
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view, mathematical meaning is not given in advance by a transcendent 

world, nor is it stipulated in an arbitrary way by conventions of 

language; rather, mathematics is constructed by a c o r n m e  of 

practitioners and given meaning by the practices, needs, uses and 

applications of that c o m m ~ t y .  (Wilensky 1993,3 7). 

In this sense living mathematical questions are produced through the 

negotiation of a community of practitioners "during [such] production[sf the 

student [s] progressively work out [their] statement [s] through an intensive 

argumentative activity functionally intermingled with the justification of [their] 

choices" (Bartohi 2000). 

This shows us how to read a concern of Palmer's (1 998) regarding pedagogy 

and, I suggest especially mathematics pedagogy which 

centers on a teacher who does little more than deliver conclusions to 

students. It assumes that the teacher has all the knowledge and the 

students have little or none that the teacher must give and the 

students must take, that the teachers sets all the standards and the 

students must measure up. 

Ih reaction to this scenario, a pedagogy based on an 

antithetical principal has arisen: students and the act of learning are 

more important than teachers and the act of teaching. The student is 

regarded as a reservoir of knowledge to be tapped, students are 



encouraged to teach each other, the standards of accountability 

emerge &om the group itself; and the teacher's role varies from 

facilitator to co-learner to necessary evil, 

As the debate swings between the teacher-centered model, 

with its concern for rigor, and the student-centered model, with its 

concern for active learning, some of us are tom between the poles. 

We find insights and excesses in both approaches, and neither seems 

adequate to the task. The problem, of course, is that we are caught 

in yet another either-or. (Palmer 1998, 1 16). 

In a teacher-centered cIassroom, a question like, "rs it right?" receives a quick 

yes or no response fkom the teacher. In a student-centered classroom, this same 

question gets turned back to the students as: "Wbut do you think? " or "Everyone has 

their own right answer. You are aZZ right- " And "whiplashed, with no way to hold the 

tension, we fid to find a synthesis that might embrace the best of both" (Palmer 1998, 

1 16). 

Inviting Mathematics In 

There is another way to understand the question, "Ls it right? " This way points 

to the discipline of mathematics, itself Heard differently, '"I it right? " provides the 

opening that invites mathematics into the discussion. 



A subject-centered classroom is characterized by the fact that the 

third thing has a presence so red, so *d, so vocd that it can hold 

teacher and students alike accountable for what they say and do. In 

such a classroom, there are no inert hcts. The great thing is so alive 

that teacher can turn to student or student to teacher, and either can 

make a cIaim on the other in the name of that great thing. Here, 

teacher and students have a power beyond themselves to contend 

with-the power of a subject that transcends our self-absorption and 

refbses to be reduced to our claims about it. (Palmer 1998, 1 17) 

In such a classroom all conversations are three-way. They are about something 

and that something has something to say. In a mathematics classroom it means striving 

"to understand what a person says, to come to an understanding about the subject 

matter, not to get inside another person and relive his experiences" (Gadamer 1995, 

383). 

"Now do you know you me right?" or "Show me that it is right. " are the 

questions that mathematics begs of the students. 

Mathematicians come together in conferences, through their journaIs and in 

lecture halls to show others what they have discovered and why and how it is "right" or 

true. This is the way the c o m r n ~  of mathematicians creates the discipline of 

mathematics (Davis 1996; Davis and Hersh 1998; Ernest 199 1 ; Thurston 1998; 

Tymoczko 1998; Wdensky 1993). "1 will show you the line of thinking that 1 have 



created and I will show you w?y it is so and ifyou can find no fa& with any of the 

steps that Igo through, then it must be mef '  the individual presenting the mathematical 

proof reasons. The finai arbiter of  the truth is the mathematical c o m e  of 

practicmg mathemati~ians.~ 

What distinguishes mathematics fkom other disciplines is the certainty 

that is obtained through the rigor of proofk. But in fact proofs are 

not the source of mathematical certainty. They are a technique used 

by mathematicians to create a uniform procedure for verification of 

mathematical knowledge. The technique consists of linearizing' the 

complex structure that constitutes the ideas in a mathematical 

argument. By means of this linearization, mathematical proofi can be 

checked line by line, each line either an axiom or derived fiom 

previous lines by accepted rules of inference. 

But the hegemony of the standard style of communicating 

mathematics (de~on/theorem/proof) constitutes a M u r e  to come 

to terms with the mind of the learner. We attempt to teach formal 

logical structures in isolation kom the experiences that can conuect 

This account of proof as a means of persuading the mathematical community is gaining acceptance 

in the mathematical community; however, I do acknowledge that it is contentious. For those who 

hold that mathematics is a system ofabsolute truths, independent of human construction or 

knowledge-then mathematical pro& are externaI and eternal. 



those structures to fhmih  ideas. The result is that the idea too 

often remains 'abstract' m the mind of the student, disconnected, alien 

and separate, a pariah in the society of agents (Wdensky 1993,70- 

71) 

Once the students have entered into the living community of  mathematical 

practice the point is not to cast them to the place of procedural technique- 

de~onltheoremlproof "Is this right?" now needs to be taken up with all the 

seriousness that the mathematical community demands. Students need to come before 

their peers to explain the rightness of their thinking. This is not easy for students to do 

in&iaIIy- They feel self-conscious. They don't want to show their partial conjectures 

for fear of embarrassment, for fear that the topic of their conjectures is them and not 

math. 

The mathematics textbooks that students have used to date do not help to ease 

the students' fears- The mathematics of textbooks is clean and precise. 

If learners believe that the mathematics as presented is a true picture 

of the way the mathematics is actually discovered and understood, 

they can be quite discouraged. Why is their thinking so messy when 

others' is so clean and elegant? They conclude that clearly 

mathematics must be made only for those born to it and not available 

to mere mortals. Mathematical discourse is not a form of persuasion 

continuous with daily discourse, but is d e a d  in some specid 



province alI its own, a purely formal phenomenon. These 

mathematical learners are deprived of the experience of struggling for 

a good d e w o n ,  and the knowledge that mathematicd truths are 

arrived at by a process of successive refinement not in a linear and 

logically inexorable khion.. - It is diflicuit to challenge old ideas, or 

to formulate new ones, in the absence of a culture that supports the 

floundering, messy process of mathematical exploration. (WiTensky 

1993,72-73) 

It is important for the teacher to create a climate in which students are fkeely 

encouraged to bring their partial understandings and conjectures forward to the rest of 

the class because this is the climate that mathematics requires. Students should, 

therefore, be expected to talk about and justify their thinking and the work they create; 

their mathematical understanding. The students want in, they want to have access to 

the conversation of mathematics, so they need a culture that will support their gaining 

access to the ways of knowing mathematics. In such a classroom, students muster up 

the courage, come before their classmates, to explain and just* why their conjecture is 

right, 

We all gather together as these students recreate their solution on the 

whiteboard for their classmates. 

''We d m  an equilateral triangle- We knew that an equilateral triangle has 

all sides the same length. We have found that all the points inside an equilateral 
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hiangle would have to work as points for C. Now we couldflip the triangle and it 

would still be the same. " 

They wait for their classmates' responses. 

'That kinda looks Zikz the solution we got. But ours is a bit dzrerent. " 

A student holds up his group's solution 

"Here, can I show you what we did?" 

The student comes up@ to the whiteboard and puts his group's solution next to 

the first one and then explains: 

'*The points for C' that work are all less than 609 Look; we have 

shaded in all the green dots in the middle and aIl the places of 

the green dots anal all the places in-between all the green dots 

work This is beciause i f a  green dot is chosen to be C it wiII be 

shorter than AB because they are less than 609 All the red dots 

including the ones on the equilateral line wiZl not work 

considering the facf they are 60" or over. So all the points on 

the side or on the sides of the equilateral triungle work " 
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Figure 3 -6 Student Work 

Again, the lines of  an equilateral triangle are sharply drawn Green dots appear 

inside of these lines and red discrete dots mark the outside. This group also claims that 

any points C that are situated outside the boundary Line "wiN not work considering the 

fact they are 60" or over." 

The two groups are very pleased that they have come to the same conclusion. 

They are all smiles; as fix as they are concerned the problem is solved. You can almost 

hear their thoughts, "Phew! We solved that one." 

They turn to their cIassmates. 

A hand goes up. 

"I think there is aproblem," Ian suggests. You can see furrows start to appear 

on the group members' brows as they look back at their drawing. " Thejkst group kept 

on moving the Z e d  of the AB line. See fake a look at all their AB lines. That 

doesn't make sense. I don't think that is allowed. You are supposed to keep AB the 

same. " 
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Small conversations and arguments erupt about the classroom as  students talk 

with each other about whether this breaches the conditions imposed by the problem. 

Some students start to dig through the papers on the table next to them to k d  the 

problem. They go over the problem, reading it to each other. 

You can hear, "Thar 's right. You have to keep AB the same," erupt around the 

room. 

" Your solution is not right," several students challenge. 

The group looks at each other as ifto say, "Okay which one of you said that 

this was right." They look back at the solutions on the whiteboard, "But they got the 

same solution," Linda, a member of the h t  group counters while pointing to the other 

solution on the whiteboard "and they didn't change the length of AB. So it doesn't 

matter that we changed AB it's still right." 

The class is silent. I can almost hear the thinking as I see the students going 

over the drawings and the solutions again. Yeah, everything seems to check out. 

Quod erat demonstrandm (QED), I can almost hear these students' mathematical 

colleagues announce as students around the room nod their approval. 

"'I think they are right, Mrs. Friesen. I want to show you what our group did 

and even though our way of doing the problem is dgferent, we think we have the 

solution. " Pam comes to the fiont of the class and puts up her group's work . 



Figure 3.7 Student Work 

"The points always have to be inside points A and B. They also have to be shorter in 

height thon the length of the AB line, " Pam goes on to explain 

I can see what the students are doing and thinking as they are going about their 

solutions, but there is something important that they are missing. I'm not sure how to 

go about helping them to see what they are currently unable to see. I clumsily ask, 

"But show me again, how it is that you tieremined that AB was the longest?" The 

students at the whiteboard look confUsed by my question. Paul hands them a meter 

stick. 

"What do we need that for?" one of the students asks. A student in the group 

grabs the meter stick and measures each of the three lines of the equilateral triangle. 

The other members of the group look on. 'They are all the same, " the student 



announces to the class, By this time Aaron had moved himself right in fiont of the 

students. 

"Are you sure the problem asked you to find a hiangle thar had all sides the 

same length? " I try to encourage the students to look again. 

"Yes. And we knao that an equilateral triangle would work because all the 

sides are the same length, " answered M y r a  

"They are all sixty degrees, " said Evelyn, "So they are all the same length- " 

1 watch Aaron, who has now left his chair and is walking to the fiont of the 

cIass. He takes the meter stick f?om Pad. There are a number of different discussions 

happening around the classroom as students argue with each other trying to convince 

each other that they solved the problem by pointing to the properties of their equilateral 

triangles. They pay little attention to Aaron as he lays the meter stick on the line 

segment AB. I watch Aaron as he careWy measures line segment AB and then places 

his finger on the meter stick at point B. 

I notice that David has his eyes fixed on Aaron too. Aaron seems totally 

engrossed with the measurements he is taking and is oblivious to the attention that 

David and I are giving him. He removes the meter stick f?om the paper and with his 

finger firmly clutching the measured point B puts the end that he had on point A onto 

point B on the piece of paper. He then swings the other end of the meter stick up to 

measure the length of the line BC. As he swings the meter stick up into position the 

meter stick passes through an arc before it comes to rest at point C- Aaron stops. He 

seems to notice something. He looks around and now notices David and I watching 
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him. He also notices that several classmates have stopped their conversations and are 

also looking at what he is doing. 

Aaron looks down at the place he bad put his finger. He again measures h e  

segment AB and once again places his h g e r  on point B on the meter stick Then again 

places the end of the meter stick that had been on point A onto point B and swings the 

meter stick up to point C. Once again he stops, but this time very briefly. He swings 

the meter stick down the arc again and then up again. Many students have stopped 

their discussions and are watching Aaron. '!Amon, can you explain what you are you 

noticing?" 

'Took- I think the points can be outside of this line. " Aaron sounds very 

codbed  as he points to the part of the arc that fds outside of the line. "That really 

doem 't make sense- " 

"He 's right, but that can't be. " Paul reluctantly agrees with Aaron. Some of 

the students look co&d and it seems as though everyone in the class starts to talk at 

once. 

'Wait! That has to be. " Tyson leaves his chair m the classroom and comes up 

to the board, He takes the meter stick fiom Aaron and begins to trace out the arc of 

the meter stick. V've got it!" He looks at the members of his group. 

"Let's go. I've got it!" 

A number of  the students come up to join Aaron who now once again has the 

meter stick in his hand. Everything feels very chaotic. The groups reform now in many 

different ways. Many students temporarily join Tyson and his group. Some students 



go back to their previous groups. Still other students stay with Aaron and coax him 

into remeasuring the Iength of the line segment AB again. They want him to repeat 

what he had done that had caused Tyson to see something beyond what they have been 

able to see. Everyone is either m a state of excitement or bewilderment. Some students 

understand the break through that Aaron's movement has made possible. 

Everyone seems to want to get into the place that Aaron bas stumbled into. 

Some students huddle together in tight groups as they work with the problem anew, 

others start rummaging through the classroom cupboards for string, stdl others ask i f  

they can go out to their lockers "to get something." 

Searching For The Vesica  isc cis" 

'Y think that the C point would 5vorkf as long as it is not in a direct straight 

line wifh point A or point B. " 

I -  ' I 

Figure 3.8 Student Work 

'Q A figure composed of two equal and symmetrically placed circular arcs. It is also known as the fish 

(piscis) bladder (vesica). It is formed by the intersection of two unit circles whose centers are offset by 

a unit distance. 



- 
''Look C can 'r be too far above AB , and C can't be directly above or to the 

outside of point A or B. I know that all the points for C ore in the shaded area. 

- 
The result is that is the longest side. Once C is outside the shaded area, 

- 
AB is no longer the longest side. So it must look something like this. " 

Figure 3.9 Student Work 

This group of students has gone back to their original drawings and has now 

extended a somewhat perpendicular line above point B. They seem to know that the 

points for C must fall into an area just outside of the equilateral triangle but they seem 

uncertain at first about how to go about determining where these points might be. One 

of the members of the group has redrawn the equilateral triangle and has started to 

place some points C onto it. However, a group of students using a string that they 

have found m the classroom take the paper and start to work just below his triangle. 



Using the string, they measure the length of the line AB. Piacing one end on point B 

they start to measure off the points C as they bring the string up to point C. 

Another group comes over to jom this group and there are now about 20 

students all standing around this table watching as Tyler marks off the points C. The 

students start to express wonder and amazement as a curved h e  starts to emerge- 

Finding The Vesica Piscis 

"C can be anywhere within the area that the circles intersect. The point where 

C can be located keeping& the longest are within the area where the radius of A and 

the radius of B overlap. To keep the line segment AB the longest, point C must be 

placed within the intersecting area of both radiuses (sic). " 

Figure 3.1 0 Student Work 

To create this shape, Ian and Drew retrieved their geometry sets fiom their 

lockers. They used the h e  AB as the length of the radius of two circles of which point 

A is the center of one circle and point B is the center of the other circle. I wanted to 



know what Ian and Drew had seen that led them to understand line AB as a radius and 

not just the length of the leg of a triangle. They could not explain what they had seen 

or why they thought that they could find the points for C with a compass but they knew 

that the line segment AB could be both the b s e  of a triangle and the radius of a cirde. 

As we stood talking about the two intersecting circles in fkont of us Christopher spoke 

up, very confused, "But I thought we were learning about hiangles. What do circles 

have to do with b=iangZes?" 

W& his eyes f%ed on the paper, Paul gasped in disbeliec "Uey, that means that 

the sides of your triangle are not straight. They are curved. Can angles be curved? 

Can a trrtrrangZe have curved angles?" 

A Place That Draws Us In 

The leap that the students had made through the conversation that we had had 

as we worked through our expIoration of triangles gave birth to a gestalt and a whole 

new area of kinship, a whole new world of relations, opened between trriangles and 

circles. In being able to see the line segment AB as  both the base of a triangle and the 

radius of a circle they made a connection between circles and tn'angles, which cannot 

happen when it's only about triangles, unless you draw every possible triangle. They 

already lcnew that that would take all day. 

The puzzlement and questions that Christopher forwarded as we looked at the 

two identical intersecting circles opened another mathematical pIace, another 

beginning. Christopher's question pulls us deeper into the mathematical space of 



Euclidean c o ~ c t i o n s ,  the work of the Pythagoreans, Babylonians and Greeks. 

Paul's question "Can hiangles have czmed angles?" opens the territory of non- 

Euclidean geometry and the work of Bolyai and Lobachevsky. 

The students had found the vesica piscis. Working together they had learned 

something about the nature of mathematical thinking, knowing and creating. The space 

we now inhabited pulled us into "its question, its respose, its regard. Therefore, first is 

the question posed, not by us but to us" (Jardine, Friesen and Clifford 2000,6). 

Our next steps lie before us. We had more mathematical territory to traverse. 

But for this moment we sat back and enjoyed the thrill of understanding that we 

laboured so hard to bring forth. On this occasion of genuine learning, we laughed. For 

it seems that whenever learning is truEy educational, when it occurs in a way that 

t r d o r m s  our experience or sharpens our powers of reason and observation, we are 

most happy and satisfied. 

A Necessary Feature Of The Mathematical Landscape 

What has become clearer to me is the centrality of conversation and dialogue as 

a necessary feature of mathematical practice. Working together we deepened our 

understanding of geometry. Together we learned that each of one of us is capable of 

comprehending much more than we had iniGally realized. And in working in this way 

we all learned how mathematics is practiced-how to help keep it "open for the future" 

(Gadamer 1989, xxiv). 



We learned that mathematics is created through a practice of inquiry. 

Mathematics is not static discipline the point of which is a piling on of "facts". In 

mathematics, consuming and producing memorized procedures do not add up to 

mathematical understanding (Russell 2000; Stigler and Hiebert 1999; Video tape 

classroom study 1996) "The critically important point is that mathematical thinking 

consists of a lot more than knowing fhcts, theorems, techniques, etc." (Schoenfeld 

1992). 

Posing and so1ving problems lives at the heart of mathematics. Introducing 

students to mathematical problems and investigations, "involves renewed effort to 

focus on: seeking solutions, not just memorizing procedures; exploring patterns, not 

just memorizing formulas; and formulating conjectures, not just doing exercises" 

(Schoenfeld 1992). 

Mathematics is a dynamic discipline. Students need to "study mathematics as azl 

exploratory, dynamic, evolving discipline rather than as a rigid, absolute, closed body 

of laws to be memorized" (National Research Council 1989,84). This image of 

mathematics is very merent fiorn images of traditional school mathematics. In 

learning how to inhabit and explore the mathematics, students are disciplined by the 

bounds that mathematics itself places on the territory-ways of conduct aimed at 

satisfjing the human desire to know and understand. That is, students who learn to 

recognize the mathematical space they are in understand what it means 

to keep it susceptiile to be taken up and transformed anew and, it 

must be emphasized, to keep ourselves open to being transformed in 



our traversing its terrain and meeting our own ancestors m that 

terrain. In such a sojourn, we risk becoming someone who bears the 

marks of having undergone such an adventure. We run the risk of 

coming to bear the marks of becoming experienced in mathematics in 

that wonderfidly ecological sense [ofJ coming to know your way 

around' (Jardine, Friesen and Clifford 2000, 13) 

Students who learn mathematics in this way learn ways of a generative culture. 

They learn what it means to create mathematics. 



Anh Linh's Shapes 

"It's a poor sort of memory that only works backwards," the Queen remarked 

Lewis Carroll,   rough the Looking Glass 

The Story Begins With Anh Linh At Work 

She sits at the end of one of the tables in our classroom. Her long dark hair 

fdls onto her paper as she methodically calcuIates then meticulously measures each 

new line. Placing her ruler across the two points that she has calculated and measured, 

she ever so caremy draws the fist light pencil line. Then checking to ensure the 

accuracy of the line, Anh Liuh draws the second, now darker line over the first line. 

She removes the d e r  fiom the paper and critically analyzes her work- "Good, it's 

good," she seems to say. And then she repeats the process, recursively adding the next 

and then the next line to the geometrical drawing. 

Sometimes a d e  of intense satfiction crosses her kce. Sometimes fellow 

students come by to inquire about her work. "Wow Anh Linh, that is so beautiful" . 

they say as they acimitk the emerging form. Anh Linh smiles and then goes back to 

calculating, measuring and drawing. Each h e  is precise. Each calculation is exact. 
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Pat and I also watch Anh Linh as she works on this construction. Images of 

Basle's (1583) Mrnga~& philosophica (in Lawlor 1982,7) come to mind m which 

geometry is depicted as a 

contemplative practice, "personified 

by an elegant and refined woman, for 

geometry fimctions as an intuitive, 

synthesizing, creative, yet exact 

activity of mind associated with the 

feminine principle" (Lawlor 1 982, 7). 

Deeply immersed in the traditions of 

geometrical ways of lcno wing and 

doing that have "arisen within our 

Marganla philosophica 

human space through human activity'' (Husserl1970,3 5 9 ,  Anb Linh has come upon 

"an inner logic so .profound that every critical piece of it [contains] the information 

necessary to reconstruct the whole" (Palmer 1998, 123). 

It Also Begins With The Pythagorean Theorem... 

Pat and I learned the stories of the mystical Pythagoras and his disciples when 

we first set out on this journey togerher in our irreguIarly shaped cIassroom with fifty- 

some Grade 1/2 children. Now here we were, once again telling the secrets of these 

early mathematicians and their quest to unite numbers and shapes to *-some Grade 8 
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cMdren, These students were just as enchanted by the stories of these ancient radicah 

as the younger children had been "Good mathematics dtimately comes f?om and 

returns to good stories-and the questions that bug you" (Casey and Feliows 1993, 

I)-stories that have the power to open an engagjng mathematical space in which 

compelling mathematical explorations invite and entice both the novice and the expert 

mathematician (Friesen and Stone 1996)- In this space, right angle triangles are so 

much more than finding the length of the hypotenuse using the handy formula-a 

theorem that stilLs bears the Pythagorean name. 

Invoking a 3 4 5  triangle and unfolding its beauty and simplicity necessitates the 

story of a man, an outcaste. How else can we let the students know that this simple 

formula carries with it the weight of history? It stands the test of time. It still stands as 

a pillar m trigonometry. This act of measurement is a hdamentd one that reaches 

back to Ancient Egypt. Using a rope knotted into 12 sections stretched out to form a 

3-4-5 triangle, rope-stretchers reclaimed and reestablished the boundaries of land and 

set order to the watery chaos created by the annual flooding of the Niie. 

Reachmg back m time, the Pythagorean theorem is one of the earliest theorems 

to known ancient civilizations. There is evidence that the Babylonians knew about this 

proportional relationship some 1000 years before Pythagoras (Siefe 2000, 29). 

Plimpton 322, a Babylonian mathematical tablet which dates back to 1900 B-C-, 

contains a table of Pythagorean triplee3-4-5, 5- 12- 1 3, 7-24-25 ... The Chou-pei, an 

ancient Chinese text, also provides evidence that the Chinese knew about the 



Pythagorean theorem mimy years before Pythagoras discovered and proved it (Joseph 

I99 I), 

And It Begins With An Exploration ... 

"Draw a right angle trkmgIe. Any sized right angle triangle. Using only 

triangles that are similar to and/or congruent with your ori& I want you to explore 

the properties of right angle triangles." 

My instructions were very simple. The story had already charmed the students 

and generously bounded the territory of the exploration I provided these few 

directions to start our mathematical journey, and then we all began. 

What a strange place to be teaching like this. We were in the heart of East 

Calgary. These students scored m the lowest quartile in the entire province. Our 

colleagues told us that what these students needed were "the basics." 

"Make them memorize their basic hcts." 

"Give them real life problems. You know problems like calculating how much 

change they need to give someone. Or how much money they will need to earn to buy 

groceries. Or how much material they will need to purchase in order to make the items 

that their customers desire. " 

We seldom entered into the exhaustive debates that these well-intended 

comments opened. "What if this is not the way that mathematics exists, as object 

either produced or consumed, either individually or collectively" (Jardine, Friesen, and 



Clifford 2000,3)? Having endured seven years of consuming and producing 

mathematics, these students were very clear about their regard for math. "We h%TE 

math. " "Irk boring." "We are never going to need it. " "We 'I1 just get a calculator. " 

These students who were bored and turned off almost fiom their earliest days in school, 

who codd not (or would not) read, who knew fkr too M e  mathematics, who would 

stop taking science as soon as they could get away with it, who dropped out of school 

at worrisome rates. It is with these students that we now taught like this. 

It Also Began The Year Before ... 

It began last year. Having made the decision to move to this schooI, Pat and I 

knew that Ewe were to make a difference to these students, we would have to work 

with them for longer than one year. And we would need to keep them together for 

long blocks of uninterrupted time throughout the day. And we would also need to 

teach them all the core academic subjects. This seems like a strange request when 

everything about the structure of junior high school works against this type of 

. - organization, this type of co~ection and connectedness. But the admmstmtors were 

receptive and supportive of our request, eager to see what differences this wouId make 

to how these students learned. 

We needed this type of structure in all the core academic subjects, and in 

mathematics we needed it to break fiee fiom the spelI that mathematics is about the 

quick method, the quick answer, the one right algorithm, the boring repetitive math 



that they hated. We wanted to connect students meanhgfdIy with the discipline of 

mathematics in all its wondrous complexity rather than reducing it to more memorized 

formulas and computation or more real life problems of consumption and production. 

We knew that '30 decide whether a math statement is true, it is not sufficient to reduce 

the statement to marks on paper and to sixdy the behaviour of the marks. Except in 

trivial cases, you can decide the truth of a statement only by studying its meaning and 

its context in the larger work of mathematical ideas" (Dyson 1996, 801)- What we 

wanted to do was to present the idea that mathematics contained a landscape of 

possiii&ies. 

"By teaching this way, we do not abandon the ethic that drives us to cover the 

fieId-we honor it more deeply" (Palmer 1998, f 23). We learn how to 'inhabit' such a 

mathematical landscape. Teaching in this way requires nurturing. The cultivation of 

this place is not simply a recapitulation of the old, like plowing the same old h o w  

again and again. "Teaching iiom the microcosm, we exercise responsibility toward both 

the subject and our students by reking merely to send data 'bites' down the intellectual 

food chain" (Palmer 1998, 123). We were working more like the rope-stretchers of 

Ancient Egypt taking time and care to bring order to the newly fertile landscape so that 

we might find ways to draw new boundaries upon fertile ground. At times we would 

take out our string with the 12 evenly spaced knots and draw out 3-4-5 triangles. At 

other times, changing our perspective, we would open our rope stretcher's triangle 

revealing a circle with 12 evenly spaced knots linking us to the perfect, endless, in£inite 

and to time itseE "By diving deep into the particularity, these students [were] 
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developing an understanding of the whole" (Palmer 1998, 123). Working in this way 

with these students, we began to show them that the cultivation of mathematics 

necessitates the creation of the new in the midst of the old. Such cultivation requires 

creation and recreation It is a f?&fbl space, a space that "bears" sornethhg, births 

something and contains the conditions to take care of what is thus "birthed." 

In this space, with these students, we asked: 

What if mathematics is much more a world into which we ourselves 

are drawn, a world which we do not and cannot 'own,' but must 

rather somehow 'inhabit' in order to understand it? What if we cannot 

own mathematics (either individually or collectively), not because it is 

some object independent of us and our (individual or collective) 

ownerships, but because it is not an object at all? What if; instead 

of production and consumption, the world of mathematics (as a 

living, breathing, con tested, human discipline that has been 

handed to us) needs our memory, our care, our intelligence, our 

work, the 'continuity of [our] attention and devotion' (Berry 1977,32) 

and understanding if it is to remain hale and healthy and whole? 

(Jardine, Friesen and Clifford 2000,4) 

Deeply committed to finding new approaches, we struggled to find ways to heip 

our students ' i i b i t '  mathematics. From our first beg@,uhgs we worked with 

mathematical explorations-the stories and fivit5.d spaces that they opened knowing 



that working in this way would "bear" something ifwe cared properly for it. A 1I1 

year had now elapsed and we were seeing some of the fhits of our care. It was a fbII 

year ago that I told these students the story of four spiders that started crawling fiom 

four corners of a six meter by six meter square. As I remember, each spider began to 

pursue the spider on its right, moving towards the center ofthe square at a constant 

rate of one centimeter per second- I embellished the story as 1 went along so that the 

students would be intrigued by the expIoration that the story opened- Would these 

spiders ever meet, and ifso how long would it take and what would their paths look 

like? (Pappas 1989,228; Holding 1991, 1 19) Through this exploration I intended to 

introduce the students to the ideas of area, ratio, similarity and limits. 

The students, however, became entranced by the pursuit curve-the path that 

an object takes when pursuing another object. They couldn't believe their eyes that 

these straight lines produced curves. We never did calculate the rime it would take the 

spiders to meet. Instead, the beautifid curve that emerged as the students worked so 

captivated them that they spent their time drawing and redrawing the path produced by 

the four spiders. Beauty and wonder are not attributes that any students, especially 

these students would associate with mathematics. However, here they were, descniig 

these four congruent l o g ~ c  spids as beautifid, awesome, magical. 



In The Presence Of The Past: Anh Linh, The Pythagorean Theorem, The 
Exploration, The Year Before ... 

Now, one futl year Iater, Anh Linh called forward the pursuit curve and the 

beautifid logarithmic spiral as she explored the 3 4 5  trh@ee However, she was not 

content to stay within the confines of  the exploration. She began the exploration by 

creating a series of right angle triangles much like this: 

Figure 4.1 spiral using right angle triangles (Pappas 1989,99) 

From these sketches she drew this (Figure 4.2) logarithmic spiral. As Pat and I gazed 

upon this incrediile piece of work, each point meticdously measured, each h e  

precisely drawn, we could barely believe that this work came &om a twelve-year-old 

child. 



Figure 4.2 Anh Linh's spiral 

Anh Linh was on to something eke. There was something in the spiral that still called 

to her, something still unresolved. She wrote: 

I began with right angle triangles. I saw a spiral when I started to put 

them together. I knew this shape. I remembered the spider's path I 

saw the spider's path in the right angle triangles and I wanted to know 

ifthese were the same. I thought that my shapes might to be simiIar in 

some way. I wasn't sure in what way they would be similar. I wanted 

to see what would happen 
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The path formed by the pursuit curve that she had experienced Iast year, had a 

simiIarity lcnown as seIf--. By rotation, the curve can be made to match any 

scaled copy of itsell: In the figure below I have shown how the angle between the 

radius fiom the origin and the tangent to the curve is constant. 

Figure 4.3 Angle between the radius fiom the origin and the tangent to the 

curve is constant 

This curve is known as the Iogarithmic spiral, the e q u i e a r  spiral and the 

growth spiral, Growing larger, this spiral exhi'bits expansive growth in the form of 

seashells and hurricanes. It results &om the play of a square with the transcendental # 

ratio--.1.6180339.. . 

Getting lost in the exploration, Anh Linh decided to create another logarithmic 

spiral next to the one that she had just created. 



Figure 4.4 Anh Linh's reflected spirals 

As Anh Linh continued with her expIoration, we all became intrigued with the natural 

forms this shape reminded us of and we started to examine naturally occurring 

logarithmic spirals. 

Natural Spiral - I 
hnp~hvyno~.uio.noP/o7Eoyvindh~o&bnl 

Natural Spiral - 2 
hrrpY/~1w.notlm.uio.no10/o7EoWindh~oaa-hrml 

Sometimes what at first seems unrelated. not similar, on closer inspection bears family 

resemblance. This shape was deeply familiar--a figure that the "Greek mathematicians 

called the gnomon and the type of growth based upon it. 'A gnomon is any figure 



which, when added to an original figure, leaves the resultant figure similar to the 

"This method of figuring the gnomon 

shows its relationship to the 

Pythagorean formula a2 + b2 = c2. 

Shown here is the gnomonic increase 

fkom the square aufkce area of 4 to the 

square of  5, where the gnomon of the 

larger square 5 is equal to 1/4 of the 

initial square of 4" (Lawson 1982,65). 

Figure 4.5 Relationship between 
gnomon and Pythagorean formula 

Anh L a ' s  quest to understand these dynamic spirals continued. When we saw 

her drawing of four tessellated, symmetrical patterns, we were awed. To produce such 

a stunniag beautiful piece of work by hand certainly required contemplation and 

exactitude beyond what we could have ever hoped for. And for us, this would have 

been enough, but not for A .  Linh. 



Figure 1.6 Anh Linh's rotated spirals 

She continued to ask questions of this beautifbl form and its symmetry, and 

each new question led us ail deeper into this exploration. Spiral doodles started to 

appear all over the classroo-n notebooks, scraps of paper, borders on assignments. 

Some students started to create a variety of spirals using the Logo program we had in 

the classroom. They learned the power of variables. Creating the following set of 

commands: 



-XU  PVL Y W N  :SLUE :MULE : A W L 1  

IF :STDE>300 [STOP] 
FD :SIDE 
RT ANGLE 
POLYGON (:SIDE + :A.MT) :&GLE :&fT 
EM) 

produced this spiral: 

Fi-me 4.7 Logo created spiral: Arthur - age 13 

Our work with Logo led us into the area of recursion and iteration-hctals. 

We saw a level of care, concern and questioning that we had never before witnessed in 

this group of students. Their hctak were exquisite. Each calculation and line was 

exact. The students understood that the slightest variation would dramaticdy affect 

the outcome, 



Sierpinski Triangle: Tuyen - age 13 

Sierpinski Triangle: Simon - age 13 

We were experiencing what it meant to creale mathematics. We were 

beginning to understand how creating new mathematics begins with asking questions. 

Sometimes a question that is easy to ask is impossible to answer. Sometimes a question 
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that sounds dBicult turns out to be something you already know, just dressed up to 

look different. Sometimes the question Ieads, not to an answer, but to another question. 

And for these questions, the answers are not in the back of the book It's the posing of 

questions that kept calling us on to new possibilities, wondering what might be around 

the next corner, helping us to understand that mathematics is not finished, it's work in 

progress, it's a "living, breathing, contested, human discipline that has been handed 

to us" (Jardine, Friesen and Clifford 2000,4). 

Working In 3D 

Working on the two dimensional plane was intn'gubg and engaging, but what 

about 3D? Our questions were quite playfid as we started, "I wonder what would 

happen if.. ." "I wonder if the symmetries that we had found on the 2D plane would 

hold as we tiled them onto the flufaces of a solid-" 

We decided to begin by tiling the d c e s  of regular solids known as Platonic 

solids: tetrahedron, icosahedron, dodecahedron, octahedron, and cube with the various 

symmetrical designs that we had constructed. What better place to try out our 

emerging understandimgs than on such perfectly symmetrical solids. Each of our 

- geometric models began as a flat design. We not ody had to determine the shapes of 

the sides tve needed to construct in order to create the transition f?om the two 

dimensional net to the three dimensional solid, we also needed to figure out how to 

place our designs on the two dimensional plane so they it would be perfectly 



symmetrical in three dimensions. The two dimensional pattern gives few clues as to 

what you will see and fee1 when it takes shape in three dimensions. 

The flat designs represent the possibility of infinite repetition but only 

a merit of this infinitv can be captuied on a sheet of paper. On the 

surface of a three-dimensional object, infinite repetition of design can 

be realized with only a We number of figures-the pattern on a 

solid has neither beginning nor end" (Schattschneider and Walker 

1982, 16). 

Creating the nets for each of the solids was fairly challenging, but 

determining h o w  to draw the designs onto the sud;lces so that when the edges 

came together the illusion of idbity was produced, was exigent. "Contrary to 

the impression given by most textbooks, the discovery of new forms and new 

ideas is rarely the product of the predictable evolutionn (Schattschneider and 

Walker 1982, 8). After many attempts the student's solids began to take shape. 

Cube: Tuyen - age 13 Icosahedron: Trung - age 13 



Excrescence: Simon and Rajit - age 13 

But it was Anh Linh who really pushed our thinking. It was Anh Linh and her 

love for the logarithmic spiral that pushed us into to the fiontiers of mathematics itself. 

Starting with the cube, Anh Linh drew the c w e s  on each of the six faces. 

Upon assembling the cube she discovered that the designs did not flow. The symmetry 

was broken. How could symmetry be lost on this perfectly symmetrical solid? 



Figure 4. I 3 Anh Li&s Cube 

Believing that she had made an error, she drew another cube. This time she 

transformed the spirals by reflecting then However, upon putting the net together, 

she discovered that the problem was not solved The pattern of  the curve had broken 

the symmetry of the perfectly symmetrica.i cube-Greek symbol of earth. The act of 

reflection had not solved the problem How could that be? What would work? "I 

want to f51d out why the symmetry breaks," Anh Linh wrote. ''.I am going to see $1 

can make the symmetry work on any of the other solidsS If1 can, then maybe I wiII 

know why it doesn't work on the cube- " 

Creating the curves on four equilateral triangles, Anh Linh started on her 

consuming quest to understand more about symmztry, She created the tetrahedron- 

the symbol of fire. 

Figure 4.14 Anh Linh's Tetrahedron 



It didn't work. The symmetry didn't hold Anh Linh wrote: "In this shape I 

noticed that the pattern (cunres of pursuit) didn't match on aU the k e s .  The symmetry 

breaks along the edge. I aIso found out that you can use the curve of pursuit on any 

platonic solid. I didn't know that when I started." 

Intrigued by her new discovery and undaunted by her disappointment, A& Linh 

took on the challenge of the octahedra-the symbol of air. 

Figure 4.15 Octahedron net 

Once again, working on the two dimensional equilateral triangles, Anh Linh 

meticulously measured and drew what we alI now called "Anh Linh's curves." 

Magic-"2 was like magical, " Anh Linh later wrote. As Anh Linh folded the 

edges of these eight equilateral triangIes together form and design came together, 

symmetry held and infinity emerged from the finite. 



Figure 4.16 Anh Linh's Octahedron 

What was it about the octahedron that was different fiom the tetrahedron or the 

cube? Everyone in the classroom was now involved in Anh Linh's pro ble-incIuding 

Pat and me. Was there a solution? 'Tf there is, I don't know it, " Anh Linh wrote. 

"There might be an easy way toFgure this out, but I don't know it. I will draw an 

icosahedron. It's faces are also triangles. " 

For Anh Link as for all of us, we thought that the solution might be in the 

shape of the fsces themselves. The tetrahedron did not work. But it was -t 

only had four hces. Perhaps there was something in the number of fhces- The 

octahedron had eight f8ces. Why should the symmetry hold with eight faces and not 

with four faces? They were both even numbers. But so was six for that matter-the 

number of faces on the cube. The solution had to be in the shape. Maybe there was 

something in the shape of the triangle that held the key to this problem It had three 

vertices. The cube had four. Maybe there was something in that. Maybe there was 

something in the odd and the even Like the ancient Pythagoras, we went loo king for a 

connection between shapes and numbers. 



Anh Linh continued drawing. Her next shape was the beautifid, perfectly 

symmetrical solid icosahedron, representing the Greek symbol for water. Upon each of 

its twenty identical equilateral triangle d c e s ,  Anh Linh drew the logarithmic spiral- 

Figure 4.1 7 Anh Linh's Icosahedron 

As she brought each of the five vertices of the solid together, she discovered, as did we 

all that symmetry was lost. But why? There had to be a solution. 

It would be easy to conclude that we were just involved in solving the problem 

posed by Aah Linh's shapes. But that is not really what was happening-at least not all 

that was happening. Mathematics is not just a problem solving activity. We were 

involved m something fhr more hdamentaI--fk more "basic" to mathematics. We 

were caught up in a generative act "the central activity being making new mathematics" 

(Wensky, 1996)- It was consuming for dl of us. We noticed the students puzzling 

with the various shapes, trying to put them together in different ways, trying the 

dodecahedron, looking again at previously failed symmetries whenever they found 

breaks in their normal day-to-day studies. Pat and I puzzled along with them 
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While driving home fiom school one day along the busy, accident-riddled 

Deerfoot heway I had a flash of insight. I suddenly knew a direction to take that 

might hold the key to Anh Linh's shapes. I pulled over to the side of the road and 

fianticdy dug through my books for a piece of paper and a pen or a pencil. That's it. 

Flatten the shape. Step on it- Make a graph. Not the normal school type graph-a 

statistical graph, but a network, that type of graph. 

We had been playing with networks earlier in the year. I had read the students 

the story Superperson Saves the Monster (Casey and Fellows 1993,s 1). It is a zany 

story about three characters: Gertrude the goose, Monster and Superperson. Now 

suddenly on this fieeway, driving home fiorn school this story seemed to somehow to 

hold the key to Anh Linh's shapes. "Sometimes ideas are often born unexpectedly- 

fiom complexity, contradiction, and, more than anything else, perspective" 

(Negroponte 1996). 

"Look at the vertices," Anh Linh's shapes seemed to call. As I flattened each of 

the shapes, about their vertex points, I noticed that the vertices and edges came 

together in a pattern of odds and evens. The tetrahedron-tbree, the cube-three, the 

octahedron-four, the icosahedro~r--five. There it was. I codd hardly wait to get 

back to school the next day. I needed to let the class know that the Superperson story 

might hold the key. Upon revisiting the story, the students saw it too. "I don't think I 

need to make a decahedron," wrote Anh L k h  "It has an odd number of edges at the 

vertices." 
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I stil l had some reservations. How could we: be sure that we were right? I 

packed up all of Anh Linh's shapes and took them to a mathematician at the university. 

I told him the story of Anh Linh's shapes and showed him how we had come to a 

solution. "Does this make sense to you, Albert? " I asked, 

'2et's see- " Albert drew a number of sketches on the chalkboard in his office. 

"Yes, I believe you and your class are on to something " he said. '"The direction you 

have chosen seems to be a good one." 

"But are we right? " I wanted to know, 

rTdonfr know," he said. "But it looks like you are in an exciting andproductive 

place- This is all new mathemafics. There are people here who know more than I do 

about this area. You are creating mathematics. " 

We began our exploration with Euclidean geometry but as we searched for a 

solution to the problem of determining symmetry we found ourselves in a very merent 

space-a geometrical space that had more questions than answers. It seemed as  

though we had left the deeply fhdh r  Euclidean geometry behind and were pushing at 

the very frontiers of mathematics itseIf&graph theory. It was an exploration that drew 

us in. "It hulled] us into its question, its repose, its regard. Therefore, first is the 

question posed, not by us but to us" (Jardine, Friesen and CWord 2000,6)? We were 

consumed by the questions that kept presenting themselves, that kept calling to us from 

Anh Linh's shapes. 

Where was Pythagoras? Did we Ieave him behind? Or are we in a place that 

required Pythagoras? Were we standing in the "long and twisted entrails of all the 
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interdependencies that gave rise to [what was] being d e s t ,  just here, just now" 

(Jardine, Friesen and Clifford 2000,7)? Did Pythagoras, m his explorations and 

eccentricity h o w  he was preparing a place which could give "birth" to this new 

mathematics? A place that could support Anh Linh's quest. A place large enough for 

all her cIassmates and her teachers. A place that required us all and all of us. 

"Mathematics is, in some sensible sense, all the actual human, bodily work which is 

required if it is to remain hale and healthy? if  it is to continue as a living practice which 

we desire to pass on, in some form, to our children" (Jardine? Friesen and Clifford 

2000, 12)- 



To Teach Like This 

"What we teach and how we teach is why we score the way we do" (Schmidt 

2000) was the finding of  the Third International Math and Science Study (TIMSS). 

This multiyear research and development project with its five components: curriculum 

analyses, achievement tests, questionnaires, case studies and a video study, assessed the 

current state of mathematics education. The findings for North America were 

disheartening . 

In the past, many critics have attempted to place the blame for schoolchildren's 

poor performance on achievement tests on a variety of f$ctors external to schooling. 

However, analysis of TIMSS data suggests that schooling itself is largely responsble. 

It points to the classroom identifying it as the source of the problem, The data fiom 

TIMSS questionnaires indicated that the majority of North American teachers were 

fkdiar with current NCTM (1989) reform recommendations. Many teachers claimed 

to be implementing these reforms in their classrooms. However, analysis of TIMSS 

videotape data revealed a big discrepancy between what teachers said they did and 

what they actually did. 

"It may come as a surprise, but the video study of TIMSS marked the h t  time 

we have collected a m y  recorded, representative sample of teaching" Webert 1997). 



Even though Canada did not participate in the videotape study the lesson scripts fioom 

the United States classrooms are deeply familk. Analysis of the videotape study data 

revealed that the current NCTM (1 989) reform initiatives to improve mathematics 

teaching have not impacted U.S. classrooms in any signiscant way. Clearly teachers 

have not understood the intent of the reform initiatives and consequently have not been 

able to implement the necessary changes into their practice. 

In the &ce of overwhelming evidence about what is wrong with North 

American mathematics education, it is tempting to reach for a quick fix-simply 

transplant the superior teaching strategies and curricula of those countries that scored 

better than North America But this would be short sighted. Teaching is a complex 

activity. It has deep cultural roots. To ignore this is to head down a path that would 

leave us "without a mechanism for steadily improving the way we teach" (Hiebert 

1997). And wouldn't be long before we would find ourselves in this place again 

wondering, what should we do differently? What do we reform? 

Wormation on teaching is essential for understanding what happens 

when policies are implemented. There are many stories in this country 

about the Wed process of educational reform: recommendations are 

proposed, no changes in outcomes are observed, complaints about 

the recommendations mount, committees meet and propose new 

recommendations, often reversing the thrust of the old ones. The 

entire process plays out without ever checking whether the initial 



recornmendations were enacted, There is no way to h o w  whether 

the old recommendations should be changed, (Hiebert 1997) 

What is clearly evident is that mathematics education research will have to move 

into the classroom to learn how to reform mathematics education Research initiatives 

are needed, initiatives that look deeply and thoughtfdly into classroom practice to 

come up 

with new ideas--new ways of teaching, new curriculum materials, 

new ways of organizing schools. Generating new ideas depends on 

the creative acts of the human mind. Research, by itself: is no 

substitute. Of course, the research process can place people in a 

position to see things in a new way and imagine new possibilities, but 

it is the individual's interpretation, not the research evidence alone, 

that generates the new ideas. (Hiekt  1999,8) 

The work of my research, of this doctoral dissertation, is one such initiative. 

Understanding the "inherent creativity of interpretation, the pivotal role of language in 

human understanding, and the interplay of part and whole in the process of 

interpretation" (Smith 1994, 104), I looked deeply into the classroom, into my own 

classroom practice, to examine closely what it looks iike when teachers and students 

engage in deeply mathematical ways in order to understand what needs to be reformed 
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in mathematics education. What I learned has implications for teaching, learning and 

M e r  research work, 

New ways of teaching are necessary; ways of teaching that are hdametal Iy 

and philosophically different fiom the current scripts that underlie much of North 

American pedagogy. This has implications for both the education of new teachers and 

practicing teachers. Working together, teachers and researchers will have to roll up 

their sleeves, to create the new images of practice that are needed, This will require 

forming new types of working relationships between schools and universities, and 

between teachers and researchers. 

Teaching is unlikely to improve through researchers' developing 

innovations in one place and then prescniing them for everyone. 

Innovations can spread around the country, but only by trying them 

out and adjusting them again and again as they encounter di6erent 

kinds ofclassrooms. (Stigler andHiebert 1999, 134-135). 

Just as Pat, David and I did, it will require working together in the classroom, 

learning how to focus on the teaching act, paying close attention to those things that 

protrude above the surfkce of the commonplaces of classroom Life, those things that 

disrupt our ordinary taken-for-granted assumptions about what constitutes good 

teaching and learning-those things and those children, who we now work hard to 

eliminate or remediate. 



And as my research revealed, one of the commonplaces that needs to be studied 

is the mathematics of mathematics education, the mathematics that has been aptly 

descnid as "a mile wide and an inch deep" (Schmidt, McIKnight and Raizen 1997). A 

mathematics education that focuses on endless disembodied numbers and operations, 

memorized procedures and Eagmented topics, has more devastating consequences than 

poor achievement results. Many students emerge fkorn twelve to sixteen years of such 

mathematics with deep scars, Far too many of these students believe that they are 

incapable of understanding mathematics. Far too few people recognize that the 

shadows that they have come to know as mathematics bear little resemblance to 

mathematics itself. 

In Malcolm's words, "If you change the way matbematics is taught, 

you'll be surprised at who can learn mathematics. The idea of fitting 

the subject to the audience is real uncharted territory." What we do 

know is that memorizing formulas doesn't make anyone literate. (Steen 

1997, m). 

How Do Yoa Learn To Teach Like This? 

"How do you learn to teach like this?" is an old fhdiar question. It is also a 

ditFcult question to pose as it has too many answers- There is one way of answering 

this question that leads directly into the search for better teaching tips and techniques. 



put]  there are no formulas for good teachin& and the advice of 

experts has but marginal utility. Ewe want to grow in our practice, we 

have two primary places to go : to the inner ground fiom which good 

teaching comes and to the community of fenow teachers ffom whom 

we can learn more a b u t  ourselves and our craft, (Palmer 1998, 14 1)- 

Leaming to teach like this requires: 

seeking out and living in the presence of those people who think and live like 

this. They are the colleagues who know and understand that teaching and 

learning is a way of being. They are the colleagues who refbe the institutional 

barriers imposed by walls that place one teacher in one classroom, They are the 

colleagues who open their classrooms, themselves and their teaching to others 

knowing that imitating, repeating and practicing are essential to learning to 

teach like this. They are the ones who understand that ancestry and memory are 

not just part of subject disciplines but a part of the stream of the teaching 

profession This is the practice of teaching that teachers need to enter. 

Leaming to teach like this "depends on shared practice and honest dialogue 

among the people who do it" (Palmer 1998, 144). 

2. refking the company of those who will not support the journey of Ieaming to 

teach Like this, the ones who demean and are cynical, This is a very delicate 

professional issue. Wood (2000) discusses the difficulty teachers encounter and 

the ways in which innovative initiatives get derailed. With no way to 
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understand the desire to search for something Merent, something more corn 

teaching than improved tech-ques, some coIleagues will attempt to derail and 

intimidate those who choose this way of teaching. "The issue of collegial 

jealousy and how it can become a barrier to innovative teaching may be one of 

the most important challenges we educators hce" (Wood 200,7). 

3. clearing a territory. Learning to teach like this requires that a space be opened. 

The clutter of activities that currently fills the days of fsr too m y  claSsrooms 

are intrusions into this way of teaching. Going deeply into a teaching and 

learning space requires an openness with yourseE your colleagues and your 

students. This is sod work. You cant hide it away. There can be no disguises. 

To begin to teach like this you need to ask yourselfwhat you want to be 

answerable to and surround yourselfwith those who will help you. Finding 

colleagues who expect it, invite it and provide a generous place is essential to 

learning to teach like this. 

4. taking heart that the world will support such work, even when schools will not. 

It is very easy to get discouraged when you start to work iike this. "I have been 

forced to ask myself whether the pessimists are right. If they are, integrity 

would require me to stop peddling Mse hope about the renewal of teaching and 

learning" (Palmer 1998, 164). But as Pat and I learned, you will find colleagues 

m schools and in pIaces other than school. Mathematicians who love their art 

will recognize this way of working. Poets and writers who love their art will 
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recognize this way of workiug. Artists who love their art will recognize this 

way of working. You will find fellow travelers both inside and outside of the 

institutions. They will be the ones who share your vision and your passion. 

5, understanding this is life work Learning to teach me this is not about how 

much you how.  Rather, it is about knowing that there is much to know 

and that that your work, as a teacher and a learner, is about finding out. 

Not knowing is not a project, but a condition of knowing a lot. It involves 

the realization that you will never know enough, not because you haven't 

learned it well, but because there is so much to learn and know. It will 

mean that you wZll find yourself needing to learn more mathematics, more 

physics, more philosophy, more literature, more art.. . 

To Teach Like this 

1 stepped fiom plank to plank 

So slow and cautiously; 

The stars about my head I felt, 

And my feet the sea. 

I knew not but the next 



This gave me that precarious gait 

Some call experience. 

For me this research experience invoked learning how to teach and Iearn in new 

ways. Working together with mathematicians, Pat and I found ways to create deeply 

engaging mathematical explorations for the students we taught. And together, we 

found and created the ways into those explorations, the stories, which connected us 

with those who had prepared this landscape for us. Learning how to create 

mathematical explorations and documenting the work that we do is in its infancy. This 

dissertation is the beginning of such work. 

Learning how to Listen to the students to hear what they say, finding di8ferent 

ways to interpret the words we hear, is essential. Only in this way will researchers 

continue to examine and understand the ordinary commonplace scripts that underwrite 

current educational theoeoridng and philosophy. As researchers and teachers work 

together, they will have to keep a constant focus on student learning to ensure that they 

do not get so caught up in the massive task of the reforms themselves that they lose 

sight of the reason why they are doing them 
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Finding new ways to help and support practicing teachers re-form and deepen 

their understanding of mathematics vdI require forging new working relationships 

between teachers and mathematicians and between mathematics departments and 

mathematics education. Ifmathematics is in &ct a living discipline inspirited by 

ongoing questions, quarrels and conversations, then the pedagogy of  mathematics is not 

an afterthought but a necessity. Teaching like this requires that we begin the task of re- 

forming the mathematics of  mathematics education, 
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