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Abstract

Beginning with the fundamentals of multidimensional systems theory and de-
scribing the design, implementation and testing of two prototypes, this thesis is an
investigation into the use of analogue, mixed continuous-discrete domain circuits for
real-time three-dimensional linear trajectory filtering of raster scanned video signals.
A first order frequency planar pass filter and a second order frequency bowl pass fil-
ter have been constructed such that their parameters are controllable in real-time. A
method to measure the three-dimensional frequency responses of these filters is ap-
plied for the first time and the results are presented. The sensitivity of these filters to
errors in the delay elements is derived and their stability under variation of the delay

lengths is investigated.

111



Acknowledgements

First, I would like to thank Dr. Bruton for the advice and encouragement he
has given me in his role as supervisor. I have enjoyed and appreciated our interaction
in both research and teaching situations.

I would like to thank Hai-Ling Margaret Cheng, Chia-Luh Chung, Andreas
Dilger and Jophes Provine for their work in reviewing this thesis. Their suggestions
and editing have made it both more readable and more informative. I would also like
to thank Norm Bartley for his assistance in circuit design and programming. Warren
Flaman, John Shelly and Garry Harrington have provided invaluable service in the
construction of the filter. Finally, I would like to thank Christopher Kulach for the
use of his controller module design and software and his assistance in adapting them
to my use.

This research has been supported in part by a NSERC Postgraduate scholarship
and by MICRONET, The Federal Centres of Excellence in Microelectronics, Devices
and Systems.

This thesis is typeset in TEXand BTEX, free document preparation systems by
Donald Knuth, Leslie Lamport and many others.

v



To the glory of God,
Creator and Sustainer;
and to my wife, Cynthia, who’s support

and encouragement have made all the difference



Contents

Abstract iii
Acknowledgements iv
Dedication v
Contents vi
List of Tables X
List of Figures xi
Chapter 1 Introduction 1
1.1 Mixed Continuous-Discrete Domain Signals . . . ... ... ... ... 2
1.2 Linear Trajectory Filters . . . . . . . . . . .. ... ... ... .... 3
1.3 Notation . . . . . .« . .t ittt e e e e e e e e e 4
1.4 Thesis Organisation . . . . . ... ... ... ... .......... 5
Chapter 2 Review of Multidimensional Signals and Systems 7
2.1 M-D Continuous Domain Signals and Circuits ... ... ... .. .. 8
2.1.1 M-D Circuit Elements and Differential Equations . . . .. .. 8

2.1.2 M-D Impulse Response and Convolution .. ... ... .. .. 9

2.1.3 M-D Laplace Transform and Transfer Functions . . .. .. .. 10

2.1.4 Stability, Passivity and Losslessness . . . . . ... . ... ... 11

vi



2.2 M-D Discrete Domain Signals and Systems . . . .. . .. ..
2.2.1 M-D Discrete Difference Equation . . . . .. .. ...
2.2.2 M-D Impulse Response and Convolution .. ... ..
2.2.3 M-D Z Transform and Transfer Functions . . . . . . .
224 Stability . . .. .. ... i i

2.3 M-D Mixed Continuous-Discrete Domain Signals and Systems
2.3.1 Differential/Difference Equations . .. ... ... ..
2.3.2 M-D Impulse Response and Convolution .. ... ..
2.3.3 Laplace/Z Transform and Transfer Functions . . . . .
234 Stability . . .. . ... ... ...

2.4 Linear Trajectory Signals . . . . .. .. .. ..........
2.4.1 Continuous Spatio-Temporal Domain . . .. ... ..
2.4.2 Frequency Domain ...................

2.5 NTSC Raster Scanned Video Format . . ... ... ... ..
2.5.1 The Raster Scan as a Transformation . . . . .. ...

2.5.2 Raster Scan Transformation in the Frequency Domain

Chapter 3 Design of Mixed Domain LT Filters
3.1 Continuous Domain Prototypes . . .. .. ... .......
3.1.1 First Order Frequency Planar Filter . . . . . .. ...
3.1.2 Second Order Frequency Bowl Filter . . .. .. ...
32 Signal FlowGraphs . . .. ... .. .. ... .........
3.2.1 First Order Frequency Planar Filter . . . . . .. ...
3.22 Second Order Frequency Bowl Filter . . .. .. ...
33 Predistortion . ... ... ... .. ...,
3.3.1 First Order Frequency Planar Filter . . . . . ... ..
3.3.2 Second Order Frequency Bowl Filter . . .. .. ...
3.4 Modified Bilinear Transform . . . . ... ... ... .....
3.4.1 First Order Frequency Planar Filter . . . . . .. ...

vii



3.4.2 Second Order Frequency Bowl Filter . . . . . . .. ... ... 41

3.5 Passband Manipulation by Delay Changes . . . .. .. ... ..... 41
Chapter 4 Hardware Implementation of the Signal Flow Graphs 46
41 TopLevelLayout . . ... ... ... ... .. ... . ... ..., 48
4.2 Video Extraction and Reconstruction . . . ... .. ... ....... 49
43 AnalogueFilterBlock. . . . .. .. ...... ... .......... 50
4.4 Coefficient Control Block . . . . .. .. ... ... ... ... .... 55
4.5 DelayElements . . . . . . . . ... ... . L. 56
4.6 Controller and User Interface . . . ... ... ... .. ........ 57
4.7 FutureImprovements . . . . .. . ... .. .. ... ... L., 63
Chapter 5 Characterization of the Filter Response 66
5.1 Spatio-Temporal Response . . . . . ... ... ... .......... 67
5.2 Experimental Observations of the Transient Response and Overflow
Effects . . . . . . . . . o . e e 68
53 Calibration .. ... ... ... ... ... o oo, 70
5.4 1-D to 3-D Frequency Response Transformation . ... ... ..... 70
5.5 Measurement Techniqueand Test Setup . . . . .. ... ....... 73
56 FilterResponses . . ... ... ... ... ... ... ... ... 75
56.1 IDDFilter . . ... ... ... . ... ... ..., 75
56.2 BowlFilter . ... ... ... ... ... ... .. ... 81
5.6.3 Highpass Postfilter . . . .. ... ... ............. 86
5.7 SUMMATY . . . ¢t v o it et e e et e e e e e e e e e e e e e 87
Chapter 6 Sensitivity 88
6.1 Lower Bound Worst Case Sensitivity to Delay Element Errors . ... 89
6.2 Comparison of Direct Form and Ladder Form ... .. .. ... ... 91
6.3 Summary . . . . . . . i it e e e e e e e e e e e e e e e 97



Chapter 7 Practical BIBO Stability of M-D Systems

7.1
7.2

73

74

7.5

Non-Rectangular Regions of Support for Mixed Domain Systems .

PBIBO Stability in Rectangular Regions of Support . . . . .. .. ..
7.2.1 Discrete DomainSystems. . . . . ... .. ... ........
722 Mixed DomainSystems. . . . ... ... ............
PBIBO Stability in Non-Rectangular Regions of Support for Mixed
Domain Systems . . . .. .. ... . ... e

Design of PBIBO Stable Systems from Continuous Positive M-D Net-

7.4.1 Mixed Domain Systems under Rectangular Regions of Support
7.4.2 Mixed Domain Systems under Non-Rectangular Regions of Sup-
2 2

Conclusions and Further Work . . . . . . . . . .. . .. ... .....

Chapter 8 Conclusions and Recommendations for Further Research

8.1
8.2

ConcluSionSs . - - « v v v e e e e e e e e e e e e e e e e e e e e e e .

Recommendations for Future Research . . .. .. ... ... .....

References

ix



List of Tables

5.1 Filter Parameters for Frequency Response Measurement of IDD Filter 76
5.2 Filter Parameters for Frequency Response Measurement of Bowl Filter 81

6.1 Coeflicients of the Direct Form Planar Pass Filter . . . . .. ... .. 93



List of Figures

1.1 An Example of a 3-D Continuous Domain Linear Trajectory Signal

2.1 The Schematic Symbol for an M-D Inductor and an M-D Capacitor
2.2 Two Lines of NTSC Raster Scanned Video . . . . ... ... .....

3.1 General Ladder Form Prototype Circuit. . . . . ... ... ......
3.2 Continuous Domain First Order Frequency Planar Pass Ladder Form
Filter Prototype . . . . . . . . . . . . . . . . .. e
3.3 Passband of the First Order Planar Pass Filter . . . . . . ... .. ..
3.4 Ideal Bowl Shaped LT Passband Approximated by the Second Order
BowlFilter . . ... ... ... . ... .. .. . ... ... .
3.5 Continuous Domain Second Order Bowl Shaped Passband Ladder Form
Filter Prototype . . . . . . . . . . . . . . . e
3.6 Signal Flow Graph Corresponding to the First Order Planar Pass Filter
PrototypeinFigure 3.2 . . . . . . . . ... .. ... ... ... ....
3.7 Signal Flow Graph Corresponding to the Second Order Bowl Filter
Prototypein Figure 3.5 . . . . . . . .. ... ... ... . ...
3.8 Predistorted Frequency Planar Filter Prototype . ... ... ... ..
3.9 Signal Flow Graph of the Predistorted Frequency Planar Filter . . . .
3.10 Predistorted Bowl Filter Prototype . ... ...............
3.11 Signal Flow Graph of the Predistorted Bowl Filter . . . . . . . .. ..
3.12 Manipulated Signal Flow Graph of the Predistorted Bowl Filter

X1

37



3.13 Frequency Domain Warping Effect of the Bilinear Transform . . . . .
3.14 The Mapping of the Imaginary Axis in the s-plane to the z-plane of the
Modified Bilinear Transform . . . . .. .. .. ... ..........
3.15 The Effect of the Modified Bilinear Transform on the Frequency Planar
Filter Response . . . . .. .. . .« . it i ennn
3.16 Mixed Domain Signal Flow Graph of the First Order Frequency Planar
Filter, known asthe IDD Filter . . .. .. .. ... .. ........
3.17 Mixed Domain Signal Flow Graph of the Second Order Frequency Bowl

3.18 Effect of Delay Manipulation . . . . . . .. ... ... .........
3.19 Skew in the Frequency Domain Corresponding to the Skew in the
Spatio-Temporal Domain . . . . .. .. .. .. .............

4.1 Top Level Block Diagram of the Analogue Signal Path . . . . . . . ..
4.2 Video Extraction Circuit . . . . . . .. .. ... ... .........
4.3 Video Reconstruction Circuit. . . . . . .. .. ... ... ... ....
4.4 Signal Flow Graph of the IDD Filter Reduced to Components: (I) Lossy

Integrators, (D) Discrete Differentiators, (M) Multipliers. . . . . . ..
4.5 Signal Flow Graph of the Bowl Filter Reduced to Components: (I)

Lossy Integrators, (D) Discrete Differentiators, (M) Multipliers. . . . .
4.6 A Variable Multiplier and Variable Lossy Integrator . . .. ... ...
4.7 A Discrete Domain Differentiator . . . .. .. ... ..........
4.8 Block Diagram of the Complete Analogue Filter Block Implementing

both the IDD Filter and the Bowl Filter . . . . . . . . ... .. .. ..
4.9 Functional Diagram of Delay Elements . . . . ... .. .. ... ...
4.10 The Communication and User Interface for the Endeavour Analogue

VideoFilter . . . . . . .. ... .. .. .. . . e
4.11 Direct Register Control Panel for Filter Module . . . ... ... ...
4.12 Direct Register Control Panel for Delay Module . . . . .. .. .. ..
4.13 Coefficient, Structure and Delay Control Panel . . . . . .. ... ...

xii

40

4]

42
43

43

49
51

31

32

52

33

54

39
56



4.14
4.15

5.1
5.2
5.3
5.4
5.9
5.6
5.7
5.8
5.9
3.10
3.11
5.12

6.1
6.2
6.3

6.4

7.1
7.2

Linear Trajectory Filter Design Tool . ... ... ... ........ 63
Diagnostics Control Panel . .. .................. ... 64
IDD Filter Spatio-Temporal Response. . . .. ... .. ........ 69
Bowl Filter Spatio-Temporal Response. . . . . ... .. ........ 69
A Slicing Line Drawn modulus 27r in @, and Q3 . . .. .. .. .. .. 72
Test Setup - - . . . . . o i e e e e e e e e e e e, 73
IDD Filter Response A. . . .. . ... ... ...« ... 77
IDD FilterResponse B.. . . .. ... ... ... ... ... ...... 78
IDD FilterResponse C.. . . . . .. .. ... . ............. 79
IDD Filter Response D. . . . . .. ... ... _........... 80
Bowl Filter Response E. . . . . .. ... ... ... ..., ...... 83
Bowl Filter Response F. . . .. ... ... ... . ... ........ 84
Bowl Filter Response G. . . . . .. .. ... ... ........... 85
The Effect of the Highpass Postfilter on the Measured Magnitude Re-

sponseof Filter A. . . . . ... ... ... ... ... ... ...... 86
Direct Form Structure for the First Order Planar Pass Filter . . . . . 92
Worst Case Magnitude Sensitities to Row Delay Element Gain Errors 94

Lower Bound Worst Case Magnitude Sensitivity to Frame Delay Ele-
ment Gain Errors . . . . . ... ... L L ... 95
Lower Bound Worst Case Magnitude Sensitivity to Delay Element Gain
Errors with Reduced NominalGains . . . . . . ... .. ........ 96

2-D Example of a Computable Non-Rectangular Region of Support . 99
A M-D Reactance 2-Port Terminated in a Resistance . . ... .. .. 110

Xili



4

Chapter 1

Introduction

The recent explosion of interest in the creation, manipulation, measurement and
broadcasting of video sequences along with such diverse industrial applications as
seismic analysis, biomedical imaging and synthetic aperture radar has spurred the ad-
vance of multidimensional signal processing theory to the point where useful two and
three dimensional filters can be designed using a number of straightforward meth-
ods. However, the problem of implementing these designs so that they meet such
requirements as real-time operation, low cost and low power has yet to be solved.
Most implementations of video filters currently available use digital multipliers and
adders to make the required calculations. Because video sequences contain a very
large amount of data and even the simplest 3-D filters require several operations on
each datum or voxel,! these implementations either involve large amounts of hardware

or operate at a lower than real-time rate.

For example, a standard 512 by 480 pixel image filtered at 30 frames per second
requires one output voxel to be computed every 136 ns. In this thesis, this is referred
to as real-time filtering. Discrete digital hardware or a high-speed workstation is
capable of making 1 multiplication and 1 addition in that amount of time, but the

first order recursive 3-D transfer function requires 15 multiply and 14 add operations

lfn 2-D, a picture element is called a pixel. In 3-D, each discrete value in a signal is associated
with a volume and so is known as a volume element, ot voxel.
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for each voxel [1]. Thus these filters must use massively parallel processing to achieve

real-time operation.

Recently, systems using analogue operational amplifiers and reactance elements
to make the computations have been implemented for real-time filtering of raster
scanned video sequences [2-4]. These systems, known as mixed continuous-discrete
domain systems, greatly reduce the amount of hardware required, especially for 3-D
filtering; however, they have previously been tunable only by the adjustment of com-
ponent values. Chapters 3 and 4 of this thesis describe the design and implementation

of 2 mixed continuous-discrete domain filter that is controllable in real-time.

1.1 Mixed Continuous-Discrete Domain Signals

A mixed continuous-discrete domain (mixD) signal is simply a multidimensional signal
that is continuous in one or more of the dimensions it is defined over and discrete in
the others. Thus, where a digital domain signal has a region of support that is a set of
points, a mixD system’s region of support is a set of lines, planes, solids, etc. Systems
that operate on mixD signals are known as mixD systems.

MixD signals are common in video applications. The three most common
formats for television broadcast, NTSC (North America), PAL (Europe) and SECAM
(Europe) are all raster scan video formats, and therefore mixD signals. The three
dimensional images represented by these signals are continuous in the horizontal dir-
ection, but discrete both vertically and temporally. Digital systems discretize these
signals by sampling in the horizontal dimension, and then often end up constructing a
mixD output signal. Both of these operations are complex and require costly hardware.
Dedicated analogue early vision systems [6-8], on the other hand, involve expensive
VLSI techniques and can not operate on a stored or transmitted signal. The analogue
filters described in this thesis operate directly on a NTSC raster scanned video signal
in real-time and use mixD signals internally.



Figure 1.1: An Example of a 3-D Continuous Domain Linear Trajectory Signal

1.2 Linear Trajectory Filters

Many video processing applications make use of velocity information about objects in
the image; therefore, a filter that can distinguish between objects on the basis of their
motion is useful. Solid objects moving in a straight line at a constant speed, with
no rotation or change of size, as shown in Figure 1.1, correspond to linear trajectory
(LT) signals [9]. While motion in video sequences is seldom purely translational, it
is nearly always smooth; objects usually have inertia. A smoothly curved trajectory
can be approximated by a decomposition into a set of piecewise linear trajectory
signals [10]. This makes a filter that can be tuned in real-time to selectively pass LT
signals—a 3-D LT filter—useful for extracting velocity information.

LT filters, and velocity selective filters in general, are costly in terms of com-
putation, so highly efficient methods for their implementation are of interest. The
analogue filters designed and tested in this thesis are first and second order linear
trajectory filters. It is shown that they can be built using much less hardware than is
required for a digital implementation. The first order filter—known as the integrator-
differentiator double loop (IDD) filter, after the form of the final signal low graph—is
the simplest known LT filter (3,4, 11]. The second o;der filter has better directional
selectivity [12], that is, an improved ability to enhance or reject a LT signal on the
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basis of its 3-D trajectory [13]. These two filters have been implemented on a com-

mon platform known as the Endeavour Analogue Video Filter. The system includes
interfaces to a video camera, a monitor and a workstation along with a graphical user
interface that allows it to be tuned easily and precisely while in operation.

The filters developed here are intended to be used as building blocks in a
variety of video processing applications including video compression, object tracking
and classification and computer vision. One application would be to use a number
of LT filters to measure the energy in the signal associated with objects moving in
different directions and so determine the dominant motional components for video
compression [5]. Another would be to use an adaptive LT filter to extract a moving
object from noise and clutter for a tracking algorithm [10,14]. A final possibility is to
combine these two functions to track and classify multiple moving objects for machine

vision.

1.3 Notation

Multidimensional equations often contain many terms, compared with one dimensional
equations of similar order, which can make them difficult to read and may hide their
general structure. This is especially true of equations involving summations and in-
tegrations, so a more compact form of these has been adopted from [3] for this thesis.

A vector is typeset in boldface
t™) = [ty,t2,...,tm]T (1.1)

where m is usually clear from the context and omitted. Multidimensional signals are
represented as functions of more than one variable and are thus written as functions

of vectors or M-tuples
z(tt™") = z(t1, t2, .. . 1 tm) (1.2)

and mixD signals are written as functions of two M-tuples, one continuous and one

discrete:

z(tP, 0™ P = z(ty, ..., tp Mpgry - - - 2 em)- (1.3)
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A summation over a vector is taken to be a multiple summation over each member of

the vector
Bm

B
Ex(l(m))- Z Z "ot Z $(i1,iz,...,im) (1’4)

f1=A; ia=Ag im=Am

and similarly for integration or differentiation over a vector

z(t™)dt = z(ti tay- - tm) dm . .. dta dt
Jatoaem [ [ [ sttt ot .

g g

o
y(t(m)) = at'l .o ﬁy(th ceny tm).

The vector exponent of a vector is

Z =2tz ... i (1.6)

n

1.4 Thesis Organisation

In this thesis the design and implementation of a controllable, analogue, 3-D, mixed
continuous-discrete domain linear trajectory filter for NTSC video signals is proposed,
described and tested. The spatio-temporal and frequency domain characteristics,
sensitivity to parameter changes and stability of the filter are investigated and recom-
mendations are made for improvements.

Chapter two is a review of multidimensional signals and systems. Useful tools
for the description and design of continuous, discrete and mixed domain systems are
covered briefly and some important issues such as stability are touched upon. Also,
linear trajectory signals and the raster scanning process are discussed.

In chapter three the designs of the first order planar pass or IDD filter [3,4] and
the second order bowl filter [5,12] are reviewed and modified slightly. The theoretical
effectiveness of each in enhancing or rejecting signals on the basis of their 3-D velocity
is also discussed. Manipulating the filter trajectory by changing the delay lengths
overcomes one of the basic limitations of the technique [3] and is investigated here.

Chapter four describes the implementation of the signal flow graphs designed

in chapter three. The hardware and software modules are described individually and
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in the context of the overall design. Some elements are adapted from previous designs

[3,5,15] while others are original. The major improvement in this implementation and a
principal contribution of this thesis is that the filter parameters are controllable in real-
time via input currents to analogue multipliers. These currents are presently supplied
by digital to analogue converters controlled via a workstation, but the option of control
by analogue circuitry exists. Suggestions for improvements in future implementations
are also given.

The filters are thoroughly characterized in chapter five, both in the spatio-
temporal domain and in the 3-D frequency domain. Non-ideal effects such as overflow
instability are discussed along with methods to reduce them. The 1-D to 3-D frequency
response transformation for raster scanned systems proposed in [5] is applied to both
filters to provide a complete frequency domain characterization, which has not been
done before. A 1-D high pass post filter is also suggested to improve directional
selectivity at low frequencies and to remove a non-ideal dominant pole characteristic
in the measured responses.

In chapter six the sensitivity of mixD systems to delay element errors is in-
vestigated. Lower bounds on the first order and Schoefller sensitivities of structures
implementing a given transfer function are found. The direct form and ladder form
implementations of the first order planar pass filter are compared to the lower bound
and it is shown that the ladder form implementation is superior.

Chapter seven investigates the stability of mixD systems. Conditions for prac-
tical BIBO stability are found for various regions of support and a technique for
designing practically BIBO stable mixD systems from continuous positive M-D net-
works is developed. The filters designed in chapter three conform to these conditions.
The question of the stability of these filters under delay length variations is also ad-
dressed.

Finally, chapter eight gives a summary of the thesis and makes suggestions for

future research.



Chapter 2

Review of Multidimensional Signals

and Systems

A Multidimensional (M-D) signal can be respresented by a function of more than one
independent variable. Examples of such functions include the intensity or luminosity
of a photograph, seismic data, biomedical imaging data and synthetic aperture radar
sensor data; but the signal of interest in this thesis is a time varying image, such as a
video sequence. A video sequence is a three dimensional (3-D) signal, with the three
dimensions being horizontal position, vertical position and time, and is said to be in
the spatio-temporal domain.

M-D signals can be classified [3] as continuous domain signals, which are func-
tions of continuous variables; discrete domain signals, which take on values only at
discrete values of the independent variables; or mixed continuous-discrete domain
(mixD) signals, for which some of the independent variables are continuous and others
are discrete. Continuous and discrete domain signa]s can be thought of as special
cases of mixD signals, but that is unnecessarily complex in most situations.

Systems which process M-D signals are called M-D systems and are classified
in the same way. This chapter will review some basic concepts and tools in M-D
systems theory. For more information the reader is referred to [16-21]. The concepts

will be covered for continuous, discrete and mixed domain signals in that order.
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2.1 M-D Continuous Domain Signals and Circuits

It is common, in the design of M-D systems, to begin with a continuous domain
model and move to the appropriate domain through a number of linear transformations
[3,4,12,22-26] (see section 3.4). The main advantage of this approach is the ability
to draw on some well known properties of continuous domain circuits, which may
be described by M-D differential equations, through Kirchoff’s laws and Tellegen’s
theoremn [24].

2.1.1 M-D Circuit Elements and Differential Equations

M-D circuits imply the conservation of current and voltage surfaces, i(t™) and
v(t™)), in a manner completely analogous to 1-D circuits, and may be constructed
and solved in a similar manner. M-D circuit elements are also defined in a manner
very similar to 1-D elements [24]. Resistors support a voltage surface relative to the
current flowing through them as

v(t) = Ri(t). (2.1)

Inductors perform partial directional differentiation of the current along one dimension,

t;, as

v(t)=L; ——z(t) (2.2)
and capacitors do the same with voltage as

i(t) = baTv(t) (2.3)

The schematic symbols for M-D inductors and capacitors are shown in Figure 2.1,
while an M-D resistor can be drawn the same as a 1-D resistor. M-D transformers,
gyrators and independent sources are the same as their 1-D counterparts.
Systems made of interconnections of these elements can be described by the
M-D differential equation
Zb; y(t) za, :z(t (2.4)

i=0 i=0



siL sL, s), si,
LTV LE (VL0 LTV L

L el oL
T G BT 6T

Figure 2.1: The Schematic Symbol for an M-D Inductor and an M-D Capacitor

where by = 1, z(t) € R is the input and y(t) € R is the output of the system, which
may be a voltage at a node or a current through an element. This class of systems
is linear and shift-invariant and they can therefore be fully characterized by their
impulse responses [12].

2.1.2 M-D Impulse Response and Convolution

The manipulation of differential equations is difficult, so a number of techniques for
simplifying or avoiding their use in the design of linear shift-invariant (LSI) systems
have been developed. Central to these techniques is the system impulse response.
The M-D continuous domain impulse function §(t) is defined by the two properties

76(t)dt= 1

and 4(t) =0, Vt #0.
If an LSI system is modeled by the operator ®[e] as y(t) = ®[z(t)] then the impulse

(2.5)

response of the system is defined to be [12]
h(t) = ®[&(t)]. (2.6)

It can be shown [27,28] that the zero initial condition output response of the system is
fully determined by the impulse response, h(t), and the input, z(t). The zero initial
condition response to any absolutely integrable input is given by the M-D convolution

integral:

y(t) = ] z(r)h(t — r)dr. (2.7)
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Conceptually, the convolution integral implies decomposing z(t) into an infinite set of

weighted and shifted impulses, each of which is then applied to the filter separately,
with the results added together to form the output. It is also possible to decompose
the input into an infinite set of weighted and shifted complex exponential functions
in the form e*'t, where s is the M-D Laplace variable and sTt is the dot product of s
and t, which results in the M-D Laplace transform.

2.1.3 M-D Laplace Transform and Transfer Functions

The M-D Laplace transform X(s) of the signal z(t) is defined by [27]
X(s) = / z(t)e~*"t dt (2.8)

where the region s € C™ such that the integrals converge to the same function for all
values of s is known as the region of convergence of X(s). The inverse transform is
given by

o+joo
f X(s)e* t ds (2.9)

o-joo

1
z(t) = @

and o is chosen so that the integrals will converge [27]. The M-D Fourier transform
of an absolutely integrable signal z(t) can be found by replacing s by jw in X(s).
Given these definitions, a LSI system can be characterized by the Laplace
transform of the system impulse function h(t), if it exists, which is known as the
transfer function of the system. Given that the initial conditions of the system are

zero, that is

2 z(t)=0,i = s Mk, Yk
sg=(t) = 0,7 = ) (2.10)
ag'y(t) 01i=07""Nk: Vk
the system described by equation 2.4 will have the transfer function
b
H(S) -_— Y(S) 2!"0 ais (2.11)

T X(s)  Tiohst
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which relates the Laplace transform of the output of the system to that of the input.

These transforms exist and are invertible if the system is stable and the input is square
integrable [27].

2.1.4 Stability, Passivity and Losslessness

A system is said to be bounded-input bounded-output (BIBO) stable if, for every mag-
nitude bounded input applied to the system, the output is also magnitude bounded.
A continuous domain system is BIBO stable iff

7 |h(t)|dt < 51 < o0 (2.12)

where S is a real finite numher. Unfortunately this is, in general, difficult to test given
the coefficients of equation 2.4. A sufficient condition on H(s) for BIBO stability
is that for the real parts of all s; greater than or equal to zero, the denominator
polynomial is non-zero [16]. However, because M-D polynomials cannot, in general,
be completely factored, testing this condition is also usually difficult. Several classes
of functions have been shown to be BIBO stable, notably the driving-point functions
of M-D passive networks [22].

M-D resistors, inductors and capacitors with positive values as well as trans-
formers and gyrators are passive [24], that is, the net energy delivered to any of
these components is non-negative over all t. Thus, systems containing only these
elements are BIBO stable, and have been used to design useful discrete and mixD
filters [3~5,9,11,12,20-24,29-32]. The filters that will be described in this thesis have
all been designed from passive continuous domain circuit prototypes, and derive their

stability from that fact (see section 7.4).
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2.2 M-D Discrete Domain Signals and Systems

Discrete domain signals are generally obtained by sampling continuous domain signals
on a rectangular grid such that

I(n(m)) = zc(nile n2T2s L ] anm) (2'13)

where z. is the continuous signal and T; are the sampling intervals in each dimension.
Other sampling methods are possible [17], but do not lend themselves as easily to
processing video signals. The original signal can be reconstructed from the sampled
signal if the original signal is bandlimited, that is, the magnitude of its Fourier trans-
form is zero for w; > w/T; [17]. The most common reason for sampling a signal is
to digitize it and process it with a computer, or digital signal processor (DSP). DSP
based filters generally apply a discrete difference equation.

2.2.1 M-D Discrete Difference Equation

The class of discrete domain systems of interest in this thesis can be described by the

discrete difference equation [12,17]

N M
z: by(n-1i) = 2 a;z(n — i) (2.14)
i=0 i=0

where, without loss of generality, by = 1, z(n) is the input and y(n) is the output.
These systems are first quadrant (or hyper-quadrant) causal, linear and shift-invariant

if a and b are constant and so can be fully characterized by their impulse response [16].

2.2.2 M-D Impulse Response and Convolution

The M-D discrete domain impulse function é(n) is defined as

0, otherwise

8(n) = { L n=0 (2.15)
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and, given that the system can be modeled by the operator ®[e] such that y(n) =

®(z(n}], the impulse response is defined to be [16]
h(n) = #[6(n)]. (2.16)

Discrete domain systems are classified as finite impulse response (FIR) if the impulse
response is of bounded extent in all dimensions, and as infinite impulse response (IIR)
otherwise [12].

For a LSI system, the input can be decomposed into 2 set of weighted, shifted
impulses, which can be applied separately to the system and then summed, to arrive

at the output. This process results in the M-D convolution sum:

o
y(n) = 2 z(k)h(n — k) (2.17)
k=-00
It is also possible to decompose the input into an infinite set of weighted and

shifted complex exponential functions in the form z?, leading to the M-D Z Transform.

2.2.3 M-D Z Transform and Transfer Functions

The M-D Z transform X (z) of the discrete domain signal z(n) is defined to be [17]

X(z) = i z(n)z™* (2.18)
k=-oo0
where z € C™. The region in C™ where this sum converges to the same finite function
for all choices of z is known as the region of uniform convergence (ROC) of X(z) [16].
The Fourier transform of z(n(™)) can be found from the Z transform, X(z(™)) by
substituting e for z;, ¢ = 1,2,...,m [17], if the ROC includes the distinguished
boundary of the unit disk, which it will if the signal is absolutely summable [16].

The inverse Z transform is given by
1
z(n) = —=— ¢ X(z)2z" ' dz 2.19
(n) (Qmmi (2) (2.19)

where each contour of integration must be closed, lie completely within the ROC of

X(z) and encircle the origin counterclockwise [17].
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Given these definitions, an LSI system can be characterized by the Z transform

of the system impulse response h(n), if it exists, which is known as the Z transform
transfer function of the system. Given that the initial conditions of the system are

zero, that is

=0,vnjn; <0
z(n) njrn; < (2.20)

y(n)=0,Vn|n; <0

the system described by equation 2.14 has the Z transform transfer function [12,16]

_Y(z) Ta,az®
HE) = 3 = s (2.21)

which relates the Z transform of the output of the system to that of the input. These
transforms exist and are invertible if the system is stable and the input is absolutely
summable [17].

It is common, in M-D filter design as well as in 1-D filter design, to use the
well known properties of continuous domain circuits discussed in section 2.1.4 in the
initial design by beginning with a continuous domain prototype and moving into the
discrete domain via a frequency domain transform such as the bilinear transform. The
design is then completed in the discrete domain. The bilinear transform in dimension

z is given by the substitution

22z-1
e 2
i = T Tl (2.22)

2.2.4 Stability
A discrete domain system is BIBO stable (see section 2.1.4) iff [16,31]

_ A

Y. lk(n)| £ 81 < (2.23)

n=-00

where S is a finite real number. However, this implies that the output of the filter
is calculated for points extending to infinity in all directions. It has been shown [33]
that this is not possible with a finite state machine, so the BIBO stability condition

is too restrictive. It is sufficient, in practice, to ensure stability in a region of finite
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extent in all but one direction, which is known as practical bounded input bounded

output (PBIBO) stability [31]. If that direction is along one of the axes, the condition

N
Y k()] < 81 < o0, VE (2.24)
=0

where all elements of Ny are bounded integers except for element k, which is oo, is
necessary and sufficient for PBIBO stability [31]. Chapter 7 extends this condition to
the case where the direction of infinite extent is not along one of the axes.

All continuous voltage transfer functions of an M-D circuit containing only
positive resistors, capacitors, inductors, transformers and gyrators with the output
voltage measured across a terminating resistor lead to PBIBO stable discrete filters
after bilinear transformation in a rectangular region of support [31]. This fact is used
extensively through out the designs, along with the extensions to mixD systems and
non-rectangular regions of support discussed in chapter 7.

2.3 M-D Mixed Continuous-Discrete Domain Sig-

nals and Systems

MixD system models' have been useful in describing continuous 1-D systems contain-
ing both reactance elements and delay elements [3,4,16,37,38], such as those designed
in this thesis. While the input to the filters is, in fact, a 1-D signal, it may be inter-
preted, through a raster scan transformation (see section 2.5), to be a 3-D mixD signal.
It is then appropriate to associate a complex frequency with the reactance elements
and different complex frequencies with delays of two different lengths [21,37].
Because the filters implement the differentiation and integration associated with
the continuous dimensions of the mixD differential/difference equation with lumped
elements that differentiate with respect to time, they can only process signals that

have one continuous dimension [3]. However, for the sake of completeness this review

1This is not mixed DFT/LDE filtering described in [34~36].
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will treat mixD signals and systems with p continuous dimensions and m — p discrete

dimensions.
MixD signals will be indicated as such by being functions of two l-tuples, one

of continuous variables and one of discrete.

2.3.1 Differential/Difference Equations

All of the mixD systems in this thesis are approximately linear and shift-invariant
within the region of calculation (the signals are all bounded spatially) and may be
described by the differential/difference equation with constant coefficients (2, 3]

N. Ng4 ai M. My ai
Y Y buggy(tin-k) =3 Y aiggz(t,n—k) (2.25)
i=0 k=0 i=0 k=0

where, without loss of generality, boo = 1 and the input and output are z(t,n) and
y(t,n) respectively. These systems can also be fully characterized by their impulse

responses.

2.3.2 M-D Impulse Response and Convolution

The M-D mixD impulse function §(t,n) is defined by the two properties [3]

iy 1, n=0
j §(t,n)dt = (2.26)
oo 0, otherwise

and
§(t,n) =0, Vt # 0. (2.27)

If an LSI system is modeled by the operator ®[e] as y(t,n) = ®[z(t,n)], then the
impulse response of the system is defined to be [3]

h(t,n) = ®[6(t, n)] (2.28)

The zero initial condition output response of the system can then be determined

from the impulse response, A(t,n) and the input, z(t,n), with the M-D convolution
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integral/sum given by [2,3]
w
y(t,n)= 3 j (r, k)h(t — r,n — k) dr (2.20)
k==00 _
This equation is similar to that for continuous domain systems given in equation 2.7,
and for discrete domain systems given in equation 2.7. If the impulse response and
input are both first quadrant (or hyper-quadrant) causal, that is, if they are zero for
any index negative, then the lower limits of the sum and integral may be changed to
0 and the upper limits to n and t respectively.

Once again, the convolution sum is conceptually the effect of decomposing the
input into an infinite set of weighted and shifted impulses, which are applied separately
to the filter. The results are then summed to give the output.

The eigenfunctions of equation 2.29 are of the form e~*"tz73 so it is useful to
apply the Laplace/Z transform and investigate the characteristics of the system in the

sz-domain.

2.3.3 Laplace/Z Transform and Transfer Functions

The M-D Laplace/Z transform can be defined by applying the Laplace transform to
the continuous dimensions, with all the conditions given in section 2.1.3, and the Z
transform to the discrete dimensions, with all the conditions given in section 2.2.3,
resulting in [2}

X(s,z) = f f z(t,n)e~* tz " dt. (2.30)

a=-~oo =

The region in C™ where this converges is defined as the region of convergence (ROC)
of X(s,z). The mixD Fourier transform can be found by substituting jw; for s; and
e’ for z;,i = 1,2,...,m [3] if the ROC includes the imaginary axis in each s-domain
and the unit circle in each z-domain. This will occur if z is absolutely sum/integrable,

that is, if

[ -}

3 [ et midt < Si < o0 (2.31)

n=-ao
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where S; is a non-infinite real number.

The inverse Laplace/Z transform is given by

a+joo
- 1 sTt, n-1
2(t:0) = G f L{“X(s,z)e 2! ds dz (2.32)

where the contour C is the same as for equation 2.19 and o is chosen so that the inner
integral converges.

Applying the Laplace/Z transform to equation 2.25 and assuming zero initial
conditions (equation 2.10 applied for the continuous dimensions and equation 2.20 for
the discrete dimensions), the transformed output can be related to the transformed
input via the system transfer function given by (3]

H(s,z) = %-:—:-;- = ;1_3022%1% (2.33)

’ i=0 Zuk=0 ik
Since the transform of a unit impulse is 1, it is apparent that the transfer function
is equal to the transform of the impulse response. The input and output transforms
exist and are invertible if the input is absolutely sum/integrable and the filter is stable.

2.3.4 Stability

A mixD system is BIBO stable iff

i / |a(t,n)| dt < 51 < oo (2.34)

N===00 _ oo

and PBIBO stable over a rectangular region of support iff

T
EN: / [h(t,n)| dt < S, < oo, Vk. (2.35)
n=0%
where one of N or Tk is unbounded and all other limits are bounded and S is a non-
infinite real number. The proof is given in chapter 7. It is also shown in chapter 7
that transfer functions of passive M-D circuits lead to PBIBO stable mixD circuits
after the bilinear transform is applied to m — p dimensions in all rectangular, and

some non-rectangular, regions of support.
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2.4 Linear Trajectory Signals

In video sequences the class of 3-D LT signals correspond to objects moving with con-
stant velocity. The filters designed in this thesis make use of special properties of LT
signals to enhance these moving objects in a way that is useful in many applications.

2.4.1 Continuous Spatio-Temporal Domain

A signal is defined to be linear trajectory if there exists a line in M-D space such that
the signal has constant value along all lines parallel to it [9]. For these lines to exist,
that is, for them to have a defined value along their length, the signal must be in the
continuous domain. The unit vector d, in the direction of the line of constant value

is known as the signal trajectory. Alternately, this can be stated as [3]
Vz(t)ed,=0,Vte R™ (2.36)

where Vz(t) = [Z-x(t),-.., 52-z(t)]” and e represents the dot product operation.
That is, there is a direction in which the gradient of z(t) is zero everywhere in t.

In a time varying spatial image this corresponds to objects moving translation-
ally along a straight path at a specific speed. The spatial velocity of the LT signal
with trajectory d, is [9] \/d? + d%,/ds3 at the angle arctan(d,; /d,;) in the ¢;, ¢, plane,
where t3 is the temporal variable. If ¢; is the horizontal dimension and £, is the vertical
dimension the horizontal and vertical components of the velocity are H, = d,; /ds3 and

Vi = dy2/d,3 respectively.

2.4.2 Frequency Domain

The energy content of a continuous domain 3-D LT signal is confined to a plane in the
frequency domain [9]. The normal to this plane in the frequency domain corresponds
to the trajectory d, in the spatio-temporal domain. Thus a filter with a passband
closely surrounding a plane in the frequency domain (a frequency planar passband)

can selectively enhance objects with particular trajectories.
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The definitions of LT signals imply continuous domain signals of unbounded

extent. To examine the effects of sampling and cropping an LT signal in several
dimensions, as is done with video signals, the resulting aliasing and gating can be
applied in each dimension successively. Assuming that the signal is bandlimited to
half the sampling frequency in each dimension before it is sampled, the baseband
signal will not experience interference from the image bands; that is, the signal will
be zero in the plane of interest outside of half the sampling rate before sampling,
so no aliasing effects will occur. Cropping a signal is mathematically equivalent to
multiplying by a gate function in the spatio-temporal domain, or convolving with a
sinc function in the frequency domain, which has the effect of spreading the energy of
the signal out of the plane. The width of the main lobe of the sinc function is inversely
related to the width of the gate function; so, if the length of the region of support of
the signal is much greater than the sampling interval, this generally results in a signal

with the majority of its energy in or near the original plane in the frequency domain.

2.5 NTSC Raster Scanned Video Format

A raster scan is a method of representing a 3-D signal as a 1-D signal for broadcasting
or storage. The majority of North American video cameras and monitors use the
National Television Standards Committee (NTSC) raster scanned video format, which
encodes spatially bounded, time-varying images as a time-varying voltage [39]. The
process of converting light reflecting from objects into a time-varying voltage signal
involves a number of steps, most of which are not considered in detail here.

Initially, the light from an angularly (spatially) bounded portion of the scene is
focused through a lens onto a grid of phototransducers and sampled. The aspect ratio
(width to height) of the sampled image is 4:3. It is assumed that the signal is averaged
both spatially and temporally by the phototransducers such that this sampling does
not cause noticable aliasing.? The grids generally contain about 480 rows and 640

2This is not a particularly good assumption [40], and a great deal of effort is being made at
reducing the aliasing effects in high definition television.
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Figure 2.2: Two Lines of NTSC Raster Scanned Video(courtesy of Norm Bartley)

columns, and are sampled 30 times per second. Each still image, sampled temporally,
is known as a frame.

The transformation from this 3-D discrete domain image sequence to the 1-D
signal is of more interest here. Once a frame is sampled, the grid of transducers
is scanned, row by row, left to right and top to bottom. The output voltage is
proportional to the intensity of the image at the point being scanned, and is continuous
along each row and bandlimited to 4.2MHz. Synchronization information is inserted
between rows and frames in the form of “sync pulses” to enable reconstruction of the
image at the monitor. Two lines of output are shown in Figure 2.2. NTSC video
displayed on a screen is a mixD signal, continuous in the horizontal dimension and
discrete in the vertical and temporal dimensions. Note that the fact that the scanning
proceeds from the top downward implies a left handed coordinate system [3].

NTSC video is also interlaced; that is, two pa:sses are made on each frame with
odd rows being scanned on the first pass and even rows on the second. Each pass is
known as a field. In this thesis the two fields are treated separately, in the order that
they are sampled; that is, as a vertical concatenation. This sub-sampling by 2 results
in aliasing in the vertical direction. Fortunately, most of the energy in most video

sequences lies in the region ||$2]] < 7/2, known as the region of interest (ROI) [3,12],
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which means that there is little energy in the high frequency region to be aliased.

This is equivalent to the assumption that the original image is highly oversampled
vertically.

Due to the insertion of the synchronization information into the signal, the
voltage only corresponds to the intensity of the image during the active video portion
of each row (see Figure 2.2). Each field consists of 262.5 rows, so that there are 525
lines per frame. Of these, approximately 21 lines per field are reserved for the vertical
synchronization information, during which the active video portion is constant at the
back porch level. The number of active rows may vary from camera to camera.

In this thesis a grain is defined to be a unit of length equal to the distance
between successive (odd or even) rows and between successive frames. It provides
a device independent way of comparing distances and angles in 3-D image space for

NTSC raster scan video signals.

2.5.1 The Raster Scan as a Transformation

The raster scanning process can be considered to be a transformation from a three
dimensional mixD signal—continuous in the horizontal dimension and discrete in both
vertical and temporal dimensions—into a continuous one dimensional signal. Consider
the signal z(h;, n2, n3), where h; € R is the horizontal position in grains, n; € Z is the
vertical position in grains (row number) and n3 € 2 is the temporal position, also in
grains (frame number). Then the raster scan applies the transformation of variables:
hy
t= [ T, I, T ] n2 (2.37)
ng
so that
r(t) = r(hi Ty + n2T + n3Ts) = z(hy,n2,n3) €R (2.38)
for05h.1S-%a.ndosngs-%L

where r is the raster scan of z; ¢ is time in seconds; and T},72,T3 € R are the time

it takes to scan one grain horizontally (167ns), one grain vertically (63.5us) and one
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grain temporally (1/30 s) respectively. The fact that NTSC raster scan lines are tilted

down from the horizontal by 0.15° is ignored.
The sync pulses allow the receiver to recover the row and frame numbers n,

and n3 and thus perform the inverse transformation®

t
1
hy = T [ 1 =T, =T ] na (2.39)
1
ns

to recover z(hy,ny,n3) from r(t).

The operation ¢t — t — T corresponds exactly to n; ~» n, — 1 and is called a
row delay. Similarly, ¢ — t — T3 corresponds to na — n3z — 1 and is called a frame
delay. The operation t — t — v where —T, < 7 < T corresponds to hy; — hy — 7/T}.

In previous work on the subject [3-3] the horizontal dimension was measured
in units of time and a scaling factor similar to T; was introduced to correct for it.
Using grains as units eliminates this extra complexity and allows horizontal distances

to be measured in units of length.

2.5.2 Raster Scan Transformation in the Frequency Domain

Najafi-Koopai has shown [5] that the Fourier transform of a three dimensional signal
can be recovered from the Fourier transform of the raster scan of that signal and vice
versa.

The frequency domain transformation corresponding to the raster scan is
Q=uwT (2.40)

where ,;,Q; and Q3 in rad/grain are frequency variables associated with h;,n3,n;
respectively and w in rad/s is associated with {. Thus if R(e’“) is the 1-D Fourier
transform of r(t) and X (e, e/, %) is the 3-D Fourier transform of z(h1, n2,n3),

3The frame number is fictitious in that both ¢ and n3 are only defined with respect to an arbitrary
constant which represents the point in time at which decoding began.
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then

R(e¥) = X(eT1, T2, &Ts). (2.41)

This implies that the 1-D Fourier transform of the raster scan is equivalent in value to
the 3-D Fourier transform of the original signal along a line in 3-D frequency space,
known as the slicing line. Because of the periodicity of the Fourier Transform in the
second and third dimensions, this line fills the 3-D frequency space sufficiently to allow
X (£2) to be recovered from R(w) as an interpolation [5]. This fact is used to measure
the response of the filter in section 5.4. The interpolation step can be avoided by
measuring the 3-D response of the filter on a discrete grid approximately aligned with
the slicing line.
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Chapter 3

Design of Mixed Domain LT Filters

A number of techniques have been developed for the design of 2-D and 3-D digital
filters. To avoid stability problems and to take advantage of their linear phase char-
acteristics, which are important in most image processing applications, FIR filters
have been designed by optimizing the coefficients to fit an ideal magnitude frequency
response [20]. However, IIR filters promise similar performance with much lower
order, though stability must be ensured by design and they generally do not have
linear phase. Since the number of operations required in a filter grows much more
rapidly with order in a 2-D filter than in 1-D, and more rapidly yet in 3-D, this is
a very important consideration, especially when real-time operation is considered.
Some IIR design techniques have involved optimizing the coefficients of the transfer
function to fit an ideal magnitude and/or phase response with some constraints to
ensure stability [20]. Others have optimized other parameters, which have by their
form, guaranteed stability [22], low sensitivity to parameter values [29] and/or wide
stability margins leading to short transients [25]. However, while very selective fil-
ters can be designed, these techniques tend to require a large number of coefficients
and therefore high order (> 2) filters. Also, the optimization can take a long time to
perform, inhibiting real-time steering. While filters that can be simply steered can
be designed with these methods [41,42], they are generally of even higher order. To

overcome these problems, algebraic techniques, usually based on continuous domain
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circuit models, have been advanced, and will be used here.

A number of different filter structures have been suggested for the implementa-
tion of these designs, including direct form [2,9,43], wave digital filters [21,32,44,45],
differentiator-type ladder form filters [11,12] and differential-integral operator form
filters [30]. Many of these techniques could be extended to mixD filters, but, following
Bertschmann, et. al. [3,4] and Najafi-Koopai [5], I will use the ladder form techanique.

The initial work in 2-D mixD filters for raster scanned signals used a direct
form structure [2]. The direct form structure is attractive in that the filter parameters
correspond directly to the coefficients of the transfer function to be implemented, but
it suffers from the same sensitivity problems that the 1-D direct form structure has,
and from a very large number of operating elements [3], such as delays, integrators and
multipliers. As well, stability must be ensured analytically from the transfer function.

The ladder form structure, on the other hand, has excellent sensitivity proper-
ties [11], as shown later in chapter 6, and the minimum number of operating elements.
It also lends itself to algebraic design techniques that make use of well known prop-
erties of circuits to ensure stability (see chapter 7) while eliminating the optimization
step in steering the passband by relating passband properties to circuit element values
and thereby to filter parameters. The structure also has highly local interconnections,

which makes for short signal routes in the implementation.

The ladder form design technique begins with a continuous domain prototype
circuit in a ladder form, as described in section 3.1, whose properties are understood
in terms of resonance, passivity, losslessness and energy. The equations that define
the circuit are modeled by a signal flow graph (SFG) in section 3.2, which can then
be manipulated into a form that can be easily implemented. section 3.4 describes the
application of the bilinear transform, in a modified form, to the elements associated
with the discrete dimensions, resulting in a replacement of the differentiation and
integration operations with discrete time operations. This can lead to non-realizable
delay-free loops, so a predistortion technique [11] described in section 3.3 is used on

the original prototype to avoid the situations in which delay-free loops would occur.



27
Some final SFG manipulation may be required before implementation.

The designs of the IDD filter and the Bowl filter that result are almost exactly
the same as those given in [3,4] and [5,12] respectively. The only difference is the
modification of the bilinear transform in section 3.4. The major contribution of this
thesis is the implementation described in chapter 4 which allows real-time tuning of
the filter, and the precise frequency domain characterization given in chapter 5.

Other types of velocity selective filters have been designed [13, 36, 40, 46, 47],
some of which offer superior performance to the filters designed here, but they do not
lend themselves as well to real time implementation or control.

A serious limitation of the designs is that the component values of the prototype
must be positive for stability to be guaranteed. This eflectively limits the LT filter
trajectories to one octant. Fortunately, a technique discovered by Bertschmann [3]
involving passband manipulation by changing the length of the delay elements allows
the full range of trajectories to be covered. This will be discussed in section 3.5.

3.1 Continuous Domain Prototypes

The ladder form design technique, an M-D extension of the 1-D technique (see {48]),
begins with a prototype circuit of the form shown in Figure 3.1a. The extension to

M-D is simply that the shunt and series impedences are, in general, M-D elements.

3.1.1 First Order Frequency Planar Filter

The purpose of a linear trajectory filter is to enhance (or remove) objects in the image
moving with a specific velocity. This corresponds to enhancing (or removing) energy
in the signal that lies in a specific plane in the frequency domain. The simplest LT
filter is a first order system that is resonant in a plane, and corresponds to the planar
pass circuit [3,4,9,11,12,24,45] shown in Figure 3.2, which has the transfer function

Rr

HW(S) = m

(3.1)
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Figure 3.1: General Ladder Form Prototype Circuit
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Vo

Figure 3.2: Continuous Domain First Order Frequency Planar Pass Ladder Form
Filter Prototype

The 3-D inductor is resonant in the plane
LTw=0 (3-2)

which has the unit normal LTe,/|[L||, where e,; are the unit basis vectors in the
frequency domain and || @|| is the Euclidean norm. Thus it will pass LT signals with
the unit trajectory dr, known as the filter trajectory, given by

LTe,
d; = Tl (3.3)

where e, are the unit basis vectors in the spatio-temporal domain. Objects in the

passband will then be traveling with horizontal speed, H,, and vertical speed, V;,

given by:
_ L _ L
H, = I, and V,= .’ (3.4)
The -3dB surfaces are planes at
LTw = %R, (3.5)
so that it has a uniform bandwidth
2R,
B, = —. 3.6
= TIE 30

Now while this filter will pass undistorted any object with the filter trajectory, it
has poor directional selectivity at low frequencies. That is, LT signals with signal

trajectories significantly different from the filter trajectory will have some of their low
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Figure 3.3: The Passband of the First Order Planar Pass Filter. Note that because
the bandwidth is uniform, some of the low frequency energy in the plane shown not
aligned with the filter trajectory would be in the passband.

frequency energy passed through the filter. This is shown in Figure 3.3. It is especially
problematic in that a static background has all of its energy in the Q3 = 0 plane and
often consists of large regions, which have a large amount of energy in the low spatial
frequencies. It has also been shown [49] that the attenuation of non-passband objects
is affected by both their velocity and their shape, and that the attenuation experienced
by spatially elongated objects can be quite low, even for significantly different signal
and filter trajectories. The second order bowl filter is designed to address these
drawbacks.

3.1.2 Second Order Frequency Bowl Filter

Ideally, an LT filter should attenuate energy in a plane uniformly throughout the
plane by an amount proportional to the angle between the signal trajectory and the
filter trajectory. Thus the passband would have the bowl, or cone, shape shown in

Figure 3.4 [13]. This would eliminate the effect of the object’s shape on the attenuation;
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Figure 3.4: Ideal Bowl Shaped LT Passband Approximated by the Second Order Bowl
Filter

Vo
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Figure 3.5: Continuous Domain Second Order Bowl Shaped Passband Ladder Form
Filter Prototype

and, for filter velocities corresponding to quickly moving objects, greatly decrease the
background interference.

The second order bowl filter derived from the prototype shown in Figure 3.5
approximates this shape and thus has better directional selectivity than the first order
filter [12]. A discrete domain design is described in {12] and a mixD implementation
in [5]. The transfer function of the prototype is

. Ry (Rst +57Lg)
sTL4sTLp + RrsTLp + (Rr + Rst)s"La + RLRst’

Hiu(s) = (3.7)

After using two different s = z transforms on L4 and Lg (see section 3.4) the band-
width in the ROI has been shown to be proportional to [|€2], giving the -3dB surfaces
a bow] shape. Normally the inductance values are chosen such that Lg = KL, and
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the angular bandwidth is proportional to K|{L4||. The constant K > 0 is known as

the inductance ratio.

Because the input to the filter is not a continuous, unbounded domain signal,
having been sampled and spatially bounded in the raster scanning process, it is not
a perfectly linear trajectory signal. Also, the original input may only be piecewise
linear trajectory. Thus the energy of the signal that is to be passed does not lie exactly
within the central passband plane. To allow for this, the resistor Rs; increases the
bandwidth near the origin where the bandwidth of the ideal bowl response shown
in Figure 3.4 approaches zero. Rs is usually set to a low value so the minimum
bandwidth is

B - __.2;Ri€__
Pomin TN+ K)

If Rs;, were zero there would be a non-essential singularity of the second kind (NSSK)
at = 0 in the mixD transfer function following bilinear transformation [12]. NSSKs

have been of interest in terms of stability for some time, and have a number of useful

(38)

properties [50,51] but are generally problematic, especially if the filter coefficients are
not exact [16,18,26,52-54]. In this case, the stability margin is directly related to
Rsp and therefore to the minimum bandwidth. In practice this means that the filter
responses are less robust with low minimum bandwidth settings.

The resistor Ry limits the bandwidth at high frequencies, so the maximum
bandwidth (outside the ROI) is

2R,
Biwmax & —. 39
burmax N (39)

Note that the bandwidth of the continuous domain filter is uniform, but the two

different transformations used cause the bowl shape [12].

3.2 Signal Flow Graphs

Sigunal flow graphs have been widely used in both 1-D and M-D digital filter design [3~
5,11,21,30,48,55] and provide a powerful tool for developing easily implementable filter
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structures. Two general types of SFGs can be derived from the generic ladder form

circuit prototype shown in Figure 3.1a [3,48]. The type I SFG shown in Figure 3.1b
results from modeling the series elements as admittances and the shunt elements as
impedences, and is used for both designs. The type II SFG results from the opposite
choice.

The SFG treats both voltages and currents in the prototype as values to be
operated on by transmittances. These transmittances exhibit a one to one corres-
pondence to the prototype element values. The equivalence of the SFG to the circuit
can be shown by applying KCL, KVL and Ohm’s law to create equations relating
voltages and currents in the circuit and then comparing them to the corresponding
equations implied by the SFG.

The advantage of creating a SFG from the circuit is that while the characteristics
of the passive circuit are maintained with the equations, the limitations of form are
not. A SFG can be manipulated into a form that is simple to implement using active

components and discrete delay elements.

3.2.1 First Order Frequency Planar Filter

Bertschmann showed [3] that modeling the inductor associated with the continuous
dimension in Figure 3.2 as an impedence leads to continuous domain differentiat-
ors in the mixD filter, which are highly sensitive to noise and therefore undesirable.
However, discrete domain differentiators resulting from modeling the other inductors
as impedences can be constructed easily and robustly, so L, and L3 are designated as

Zy, Ly as Y, and Ry as Z;, resulting in the SFG shown in Figure 3.6.

3.2.2 Second Order Frequency Bowl Filter

Similar arguments applied to the second order prototype of Figure 3.5 lead to choosing
Lpr and Lgz as Z,, La; as Y3, Rp as Z3, L, and Rsy as Yy and Lp; and Lgs as Zs,

as shown in Figure 3.7. Note that the output signal is V3, rather than V; as is usual.
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Figure 3.6: Signal Flow Graph Corresponding to the First Order Planar Pass Filter

Prototype in Figure 3.2
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Figure 3.7: Signal Flow Graph Corresponding to the Second Order Bowl Filter Pro-

totype in Figure 3.5
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3.3 Predistortion

If the bilinear transform is applied to a branch in the continuous domain SFG with a
transmittance that is proportional to s, the corresponding branch in the mixD SFG
will contain a delay-free forward path. In some cases this will result in a delay-free
loop (or a very short delay loop) which is not robustly implementable [3]. A technique
for eliminating these loops, called predistortion, that was developed for the discrete
domain case [11] has been adapted to the mixD case in [3].

The predistortion is applied to the circuit prototype before it is modeled by the
SFG. A negative series resistance is associated with each inductor to be transformed
and a positive series resistance of the same value with the rest of the circuit, with no net
effect on the transfer function. Note that the inductors associated with the continuous
dimension do not need to be predistorted. If the circuit contains capacitors, a negative
and a positive conductance are inserted in parallel with the capacitor. The negative
one is associated with the capacitor during bilinear transformation and the positive
one with the rest of the circuit. If the correct value is chosen for the predistorting
resistor, applying the bilinear transform will no longer result in delay-free forward
paths in those branches.

A useful side effect of the technique is to reduce the large gains in some branches
and the attenuations in others. This keeps the signal levels fairly even throughout the
implementation, as well as easing the requirement for high gain-bandwidth product

amplifiers.

3.3.1 First Order Frequency Planar Filter

For the first order frequency planar filter, —r, and —r; are associated with L, and
L3 as shown in Figure 3.8. The positive resistances r, and r3 can be combined with
the terminating resistor so that the number of branches in the SFG does not increase.

This increases the overall gain, but does not alter the shape of the response.

The type I SFG of the predistorted circuit has the same form as Figure 3.6, but
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Figure 3.9: Signal Flow Graph of the Predistorted Frequency Planar Filter

the predistortion resistances change the transmittances slightly. Combining the center
and right branches, and splitting the left branch in two results in the SFG shown in
Figure 3.9. The right branch is suitable for implementation as a continuous domain

lossy integrator, and the left two are suitable for bilinear transformation.

3.3.2 Second Order Frequency Bowl Filter

The predistorted secon& order frequency bowl filter is shown in Figure 3.10, with
the separation into ladder form elements indicated by the dashed boxes. The circuit
has been redrawn as in [5] so that the implementation is similar to two first order
frequency planar sections. The SFG is shown in Figure 3.11. Breaking the branch
marked “x” and routing it separately to the three summing points it leads to marked
“o” results in the SFG shown in Figure 3.12. The halves on either side of the dashed
line are similar in form to the first order frequency planar filter (see Figure 3.6), with
either an extra input or an extra output. This will lead to an implementation in which

the two filters share hardware as shown in [3).
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Figure 3.11: Signal Flow Graph of the Predistorted Bowl Filter
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Figure 3.12: Manipulated Signal Flow Graph of the Predistorted Bowl Filter. It has
been manipulated into two sections similar to the first order frequency planar sections
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Figure 3.13: Frequency Domain Warping Effect of the Bilinear Transform for the
First Order Frequency Planar Filter. Contour diagram of the magnitude frequency
response for L = [1,2,2]. a) The continuous domain prototype for w; = 0. b) The
mixD prototype for Q3 = 0.

3.4 Modified Bilinear Transform

A linear transformation is applied to the continuous domain prototype signal flow
graph to produce the mixD signal flow graph. The bilinear transform, equation 2.22,
is commonly used in discrete domain design and maps the s;-plane imaginary axis onto
the z;-plane unit circle. This mapping maintains the magnitude and phase response
values, but warps the frequencies at which they occur. In the M-D discrete domain
case, the warping is applied to all the dimensions and is thus symmetrical, but in the
mixD case it is not.

In the case of LT filters, the frequency domain warping effect causes the central
passband surface to deviate from a plane; however, the warping is at its minimum
within the ROL This is illustrated in Figure 3.13, where a slice through the continuous
domain magnitude response in a) is compared to the same slice through the mixD
response in b). The distortion of the frequency response of both filters is discussed in
depth in [12] and a method is given for compensating .for the linear part of the central

passband deviation by accounting for the warping in the selection of the inductor
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Figure 3.14: The Mapping of the Imaginary Axis in the s-plane to the z-plane of the
Modified Bilinear Transform. 2) D =0.95 b) D = 0.

values. The second order bowl filter has less warping of the central passband plane
within the ROI than the first order filter.
For these designs the bilinear transform is modified as

14D z~-1

i = —
y T;: z+D

,i=2,3. (3.10)

D is used both to increase the stability margin [25], and to shape the passband in the
case of the bowl filter. The increase in stability margin is important for an analogue
implementation because coefficients of the transfer function are related to component
values, which have tolerances that may lead to unacceptable inaccuracy in the coeffi-
cients and potential instability. For example, the filters contain discrete differentiators
{see Figure 3.16) which would become unstable if the gain through a delay block or the
feedback was greater than its ideal value of one. Decreasing the value of D indirectly
corresponds to reducing the gain through the delay block, resulting in a more robust
filter.

This transform maps the left half s;-plane into a circle in the z;-plane passing
through the points -D+j0 and 1+j0, as shown in Figure 3.14. The polar surfaces of a
passive continuous domain circuit are guaranteed to lie entirely in the non-right hand
si-plane [25]; so, with D less than unity, all polar surfaces of the transfer function are
guaranteed to be within the unit circle (except at z = 1). This decreases the likelihood
of instability due to imprecise component values and slight non-linearities. However,

because the s;-plane imaginary axis is not mapped onto the unit circle in the z;-plane,
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Figure 3.15: The Effect of the Modified Bilinear Transform on the Frequency Planar
Filter Response. A contour diagram of a slice through the magnitude frequency
response with L = [1,2,2] at Q3 = 0. a) With D = 1 (unmodified). b) With D = 0.9.

the magnitude and phase responses are not only warped in frequency by the modified
bilinear transform, but take on slightly different values. The high frequency region
of the mapping in Figure 3.14 is furthest from the unit circle, so this portion of the
response is most affected.

In the LT filters, decreasing D from unity causes the high frequency portion of
the magnitude response to decrease, but preserves passband bandwidth and orienta-
tion, as shown in Figure 3.15. Fortunately, the effect is minimal within the ROI. As
the gain of the passband at higher frequencies has been reduced from the upper bound
of 1 guaranteed by passivity [29], the sensitivity of the response in the passband is no

longer necessarily zero.

3.4.1 First Order Frequency Planar Filter

The modified bilinear transform is applied to the branches of the frequency planar filter
SFG containing s, and s3 in Figure 3.9 with D = 1 resulting in the mixD SFG shown
in Figure 3.16. This is very similar to the design in [4], with a continuous domain
lossy integrator (I) and two discrete domain differentiators (D) in a double loop (D),
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Figure 3.16: Mixed Domain Signal Flow Graph of the First Order Frequency Planar
Filter, known as the [DD Filter

so it is known as an IDD filter. It contains the minimum number of delay elements and
integrating elements, which is important for a low cost, low power implementation.
Also, the multiplier values are very simply related to the filter trajectory, making

steering simple.

3.4.2 Second Order Frequency Bowl Filter

Setting D to 0 for the transformation used on the reactances associated with Lg, and
Lp; in Figure 3.12 and D = 1 for L4; and L43 shapes the passband of the second
order filter into a bowl [12]. Careful manipulation of the SFG results in the final form
shown in Figure 3.17 [5]. Again, the SFG contains the minimum number of delay
elements for a second order system and the multiplier values are simply related to the

filter trajectory.

3.5 Passband Manipulation by Delay Changes

A major limitation of the filters as described so far is the requirement that the inductor
values be positive for stability to be guaranteed by passivity. This effectively bounds
the filter trajectory to the first octant. In discrete domain implementations this is not
a problem, as the input image can simply be reoriented before and after filtering so

that the appropriate filter trajectory lies in the first quadrant [12,43,55]. However,
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Figure 3.17: Mixed Domain Signal Flow Graph of the Second Order Frequency Bowl
Filter

this is not possible in the case of a mixD implementation. A technique reported by
Bertschmann [3] to manipulate the trajectory by changing the length of the delays

overcomes this limitation.

The input signal to the filters is a time varying voltage—a 1-D signal—that
is interpreted to be a 3-D image according to the raster scanning technique used.
However, this same signal could represent a different 3-D image acquired by a different
scanning technique or displayed by a different inverse scanning. In the 2-D case,
using a row delay for filtering and reconstruction that is shorter than that used to
scan the original image effectively shifts the rows relative to one another, as shown
in Figure 3.18b. However, if a smaller delay is used in the filter but the boundary
conditions are maintained, the image from the filter’s point of view is as shown in

Figure 3.18¢c. Once it has been filtered, it can be reconstructed using the original
delay length.

This skew in the spatio-temporal domain corresponds to a skew in the frequency

domain that allows the full range of trajectories to be covered. The skew shown in
Figure 3.18 corresponds to a skew in the frequency domain as shown in Figure 3.19.
In [3] and [5] the effect is described as a rotation of the passband. While this is the

first order effect, treating it as a skew is both simpler and more complete.
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Figure 3.18: Effect of Delay Manipulation. a) with delay of T> (the original) b) with
delay less than T3 c) with delay less than T, but the original boundary conditions.

Figure 3.19: Skew in the Frequency Domain Corresponding to the Skew in the Spatio-
Temporal Domain shown in Figure 3.18. Note: not to scale.
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In a 2-D LT filter, the passband direction can be described in terms of slope.

That is, in terms of horizontal displacement of the filter trajectory for a unit vertical
displacement. Reducing the row delay T; by AT, = m;T} (m; € R) will reduce
the effective horizontal displacement of the filter passband by m, grains per vertical
grain. This corresponds to increasing the effective slope of all input signals by the
same amount.

In a 3-D LT filter, the relationship can be expressed as:

AT; =mT) + moT,
AH,=m;,m; €R (3.11)
AV,=my, my€e 2

so increasing the frame delay T3 by AT; = mT) + m,;T, will increase the effective
horizontal speed associated with the filter trajectory by m; grains/frame and the
effective vertical speed! by m, grains/frame. In the frequency domain, the mapping
Q3 = Q3 + mw; + My, is applied. If m, is zero, this corresponds to shifting the
planes of constant w; by mw; in the Q3 direction. If m, is zero, it corresponds to
shifting the planes of constant €2, by m,;€; in the Q3 direction. A passband plane will
be tilted, and stretched, around the opposite axis, though the action is not a rotation,
as a passband that lies entirely in the w; = 0 plane is not affected by the first case
and vice versa. If neither m; nor m;, is zero, the mapping corresponds to shifting lines
of constant w;, and Q2 by mw; + m2Q; in the Q3 direction. Thus a passband plane
will be tilted about the line myw; + my§; = 0.

Changing the length of the row delay will have the same effect as in the 2-D case,
except that planes of constant w; will be shifted in the {2, direction rather than lines.
This corresponds to changing the shape of the input signals, rather than changing the
direction of motion, and may be of use in filtering elongated objects [49].

Because the filter response is periodic in the second and third dimensions, the
skew in these dimensions will eventually lead to aliasing of the passband, as can be
seen from Figure 3.19. The passband from the next period of the response will be

1 Positive vertical speed is downward in NTSC raster scan video.
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skewed into the baseband response. Fortunately, for LT filters this aliasing occurs

mostly outside the ROI, and is therefore assumed to have little effect. An examination
of this is still necessary.

Another concern that has not been addressed before is whether the filter wili
remain stable for a given change in the delay lengths. This issue is addressed in
chapter 7.
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Chapter 4

Hardware Implementation of the

Signal Flow Graphs

The advantages and disadvantages of the mixD approach to multidimensional filter-
ing compared to the digital approach are largely in the implementation. One of the
primary purposes in the development of the mixID) approach is a reduction in the size
and cost of the hardware. While this has been achieved, the mixD implementation
is not nearly as flexible as the digital implementations can be. One major advantage
that digital filters have over the mixD filters previously developed is in the control of
the filter parameters, such as multiplier coefficients corresponding to transmittances
in the SFG.

The goal of the research work described in this chapter was to develop a hard-
ware platform implementing two 3-D mixD filters for raster scanned video signals in
which the filter parameters are controllable interactively and precisely while the filter
is running. The filters were to be more robust than those previously developed, as well
as easy to use and flexible enough to be used in further research. Also, the hardware
platform was to be designed to be expandible, specifically for the addition of real-time
adaptive control. The two filter structures that have been implemented are the first

order LT, or IDD, filter shown in Figure 3.16 and the second order Bowl filter shown
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in Figure 3.17.

The filters, which together with the control circuitry and software are known
as the Endevour Analogue Video Filter, are constructed from readily available integ-
rated circuits and discrete components such as resistors and capacitors mounted on
printed circuit boards. Also mounted on these boards are interfaces to a standard
NTSC format video camera, as a signal source, an NTSC format video monitor, as a
signal sink, and a workstation, for control through a graphical user interface (GUI).
This implementation, which meets the goals outlined in the previous paragraph, is a

principal contribution of this thesis.

The only appropriate comparison between a fully digital implementation and
a2 mixD implementation of a controllable real-time 3-D video filter, of those repor-
ted in the literature, is between the Challenger real-time video processor [1,55] and
the Endeavour analogue video filter described in this thesis. Challenger is a fully
digital, discrete domain implementation of a general first order 3-D transfer function,
developed recently by C. Kulach, et. al. [1] in the Micronet MDDSP research group at
the University of Calgary. It is fully controllable in real time through the same kind of
GUI as the Endeavour and has built in video extraction and reconstruction A/D and
D/A capability, enabling it to input and output NTSC raster scan video. It contains
634 integrated circuits (ICs) on 17 8” x 10” printed circuit boards (PCBs) and draws
an average of about 15A of current at 5V [1]. Endeavour is a mixD implementation of
ibe first and second order LT filters designed in chapter 3, using digital signal paths
only in the delay elements (see section 4.5). It is also fully controllable in real-time
and has NTSC raster scan video inputs and outputs. It contains 279 ICs on 6 8”
x 10" PCBs and draws a total of approximately 8A at £5V and +12V. While the
comparison is not between two implementations of the same filter, the reduction in

size, cost and power consumption due to the mixD technique is readily apparent.

It is also appropriate to mention that the non-controllable IDD filter constructed
by K. Bertschmann and N. Bartley [4] uses only 96 ICs and draws about 2A at 5V.

Much of the increase between this fiiter and Endeavour is the control interface.
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Other issues in the comparison include precision, non-linearities and calibra-

tion. The internal precision, or dynamic range, of digital systems can be improved
by increasing the internal wordlength, to a limit imposed by the speed of multipliers
of that wordlength. High quality analogue hardware, however, is limited by noise
and slew rates to a dynamic range comparable to a 9 bit wordlength in a digital
system. This has proven adequate in many filters, but some very narrow bandwidth
filters may require 13 bits precision [55] and are not, therefore, achievable in mixD.
Both implementations experience overflow non-linearities and either finite precision
effects or non-linear component effects. One consideration that appears in the control
of mixD filters that is not a problem in digital filters is calibration. Because the fil-
ter parameters are dependent on component values, which are not exact, the designer
must measure the response of the circuit to determine these values exactly and thereby

calibrate the control system. These effects are discussed further in section 5.3.

4.1 Top Level Layout

The physical layout of the hardware is modular, both to ease testability of the various
functions and for future expansion. The 5 modules are connected by a 150 conductor
backplane which has space for up to 3 more modules, and the entire system is moun-
ted in a vented, fan-cooled enclosure. The five modules are: the analogue board, the
row delay, the frame delay, the controller and the power supply. The analogue board
contains video extraction and reconstruction sections, described in section 4.2; the ac-
tual analogue filter block, described in section 4.3; and the coefficient D/A subsection,
described in section 4.4. The row delay and frame delay are described in section 4.5
and provide 27! and z3! operations respectively. The controller board interfaces with
a workstation to provide GUI control of various parameters including multiplier coef-
ficients and filter structure. It is described in section 4.6. The power supply provides
+5V at TA and -5V, +12V and -12V at 1.5A. A block diagram of the analogue signal

path and the elements that operate on it is shown in Figure 4.1.
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Figure 4.1: Top Level Block Diagram of the Analogue Signal Path
4.2 Video Extraction and Reconstruction

The video extraction circuit used on the analogue board (see Figure 4.1) is nearly
identical to that presented in [3] and is shown in Figure 4.2. It provides three basic
functions: DC level restoration of the AC coupled composite input signal, sync pulse
removal to provide a clean active video signal and sync pulse detection and extraction.
The LM1881 video sync detector [15] extracts the composite sync signal and passes
it to the delay elements and the video reconstruction circuit. It also provides a burst
signal during the back porch portion of the scan line (see Figure 2.2) closing the
4066 analogue switch and clamping the zero level of the op-amp to the back porch
level. The emitter follower circuit then eliminates any traversal above zero, effectively
eliminating the sync pulses. The active video is then applied directly to the analogue
filter block.

The option exists to use a separate external synchronization signal, which is
then used for all synchronization in the system. The composite sync signal, odd/even
field signal and vertical sync signals are made available externally. It is also possible
to bypass the extraction block and apply an input siéna.l directly to the analogue filter
block. This is useful in testing, especially for applying an artificial input signal as in
the frequency response measurement (see chapter 5).

The video extraction block has a dominant pole response with a cutoff fre-
quency of 2.3 MHz, which is necessary to remove impulse noise which can cause

the analogue multipliers or the delay elements to overflow. 2.3 MHz corresponds to
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w; > 2.02 rad/grain, which is well outside of the ROI. The problem of impulse noise
is discussed further in section 5.2.

Once the active video signal has been filtered, the composite video output signal
is created by the video reconstruction block, shown in Figure 4.3. The active video
signal is added to the synchronization signal only during the active video portion of
the line, providing clean sync pulses. The 2N3906 transistor acts as an AND gate
for the Control line and the inverted sync signal and provides the increase in voltage
swing from 0—+5V to -5V-+5V needed to control the 4066 analogue switch. The
Control line must be high and the inverted sync signal low for the switch to be on.
The Control line is one bit in a register that is set by the control board which selects
the filter structure. There are actually two control lines, transistors, switches and
active video sources: one each for the output of the IDD/Bowl filter or the temporal
highpass filter discussed in section 4.7. If the Add Sync switch is moved to the off
position, the sync pulses are not added to the output and the 4066 switch remains
closed through the sync interval. This is useful for testing purposes, as described in
chapter 5.

4.3 Analogue Filter Block

The SFGs of the IDD and Bowl filters shown in Figures 3.16 and 3.17 contain three
types of transmittances. Three branches contain s; in the form Rp/(Rr + si1L1),
and are called lossy integrators. An example is the top most branch in Figure 3.16.
Four branches, including the other two branches in Figure 3.16, contain a discrete
differentiator, which is a delay element with negative feedback around it. The other
branches are simply muitiplications, some with a delay; and all three types require
summation at either input or output. The SFGs are repeated in Figures 4.4 and 4.5
where the transmittances are marked I for lossy integrator, D for discrete differentiator

and M for multiplier.

Previous implementations of mixD filters [3-5] have used operational amplifier
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Figure 4.4: Signal Flow Graph of the IDD Filter Reduced to Components: (I) Lossy
Integrators, (D) Discrete Differentiators, (M) Multipliers.
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Figure 4.5: Signal Flow Graph of the Bow! Filter Reduced to Components: (I) Lossy
Integrators, (D) Discrete Differentiators, (M) Multipliers.
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Figure 4.6: A Variable Multiplier and Variable Lossy Integrator

circuits to compute the multiplications, summations and lossy continuous domain in-
tegrations. The transmittance values have been proportional to ratios of resistors and
capacitors, which could be changed using potentiometers. The circuits are simple and

work well, but are laborious to tune.

In order to make the transmittances proportional to currents, which can be
controlled externally, the multiplications, summations and lossy continuous domain
integrations are implemented with high bandwidth, current mode analogue multi-
pliers and high gain bandwidth product, voltage mode operational amplifiers. The
bandwidth of the lossy integrator is controlled through an analogue multiplier in the
feedback path with the capacitor, as shown in Figure 4.6. Resistor R, is small and
serves to stabilize the circuit. Currents Gy and G, are supplied by D/A converters in

the coefficient control block (see section 4.4).

Comparing the structure in Figure 4.6 to the SFGs in figures 4.4 and 4.5, the
two op-amps and the feedback multiplier implement the lossy integrations in the form
Ry /(RL+s1L,), where L, is proportional to Gy R;C. The input gain is proportional to
Go and the summing point is differential over the two resistors R,,. More multiplier

outputs can be summed by connecting their outputs directly to these points, and
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Figure 4.7: A Discrete Domain Differentiator

inversion is performed simply by exchanging the positive and negative outputs.

The op-amp in the feedback path is required because the analogue multiplier is
unstable with a capacitor connected to its input. However, this introduces a delay in
the feedback path leading to a second (non-dominant) pole. The second pole limits
the range of cutoff frequencies for which the response is a good approximation of a

first order lossy integrator. This effectively limits the range of L,.

The discrete domain differentiation is computed with a circuit of the form shown
in Figure 4.7, where the block labeled 2~! indicates an analogue row or frame delay
element. The input to this block is a voltage, V;, as output by the summing op-amp
in Figure 4.6, and the output is a differential current, IZ, suitable for summation.
A small compensation capacitor is added in parallel to each resistor to stabilize the
op-amp.

The parameter D in the modified bilinear transform, equation 3.10, is actu-
ally provided by a variation of the gain through the delay block, which is set by
potentiometers. It is then compensated for in the calibration of the multiplier control
values. The exact gain through the delay element is important because if it is set too
high the filter will be unstable but if it is set too low the filter will have a poor high
frequency response. By trial and error, the best trade off was found to be a gain of

approximately 0.9.

The final circuit design is constructed from the two basic blocks in figures 4.6
and 4.7 according to the connections defined by the SFGs. An overall block diagram is
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Figure 4.8: Block Diagram of the Complete Analogue Filter Block Implementing both
the IDD Filter and the Bowl Filter

shown in Figure 4.8 where voltage signal paths are shown as solid lines and differential
current signal paths as dashed lines. Besides the aforementioned blocks, the circuit
contains one summing op-amp and one inverting op-amp. The inverting op-amp could
be avoided topologically, but is used as a buffer, as the signals going to the delay
elements travel across the backplane. The IDD filter structure is selected when the
analogue switches are open and the Bowl filter structure when the switches are closed,
allowing most of the components of the IDD filter to be shared by the Bowl filter. The
state of the switches is controlled by registers set by the control block and accessible
from the GUI In total, the analogue filter block contains 8 op-amps and 9 analogue

multipliers and accesses 2 row delays and 2 frame delays.

4.4 Coefficient Control Block

The filter coeficients are supplied as a current to one input of each multiplier. A D/A
converter supplies a buffered voltage which is converted to a current by a resistor
connected to the multiplier input, which is a virtual ground. The value of the voltage
is directly related to the binary sequence stored in the D/A converter by the control
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Figure 4.9: Functional Diagram of Delay Elements

block, and is directly accessible from the GUI. While the multipliers are capable of four
quadrant multiplication, the requirement that the inductor values be positive means
that only positive currents need be supplied. Thus the output voltage from the D/A
converters ranges from 0 to 1V, though the maximum current supplied differs between
multipliers according to the resistor value used for conversion.

The video extraction and reconstruction block, the analogue filter block and
the coefficient control block are laid out on one 8”x10” PCB.

4.5 Delay Elements

The delay elements z;* and 23! would, ideally, provide an analogue, continuous do-
main continuously controllable delay of nominally one row length T or one frame
length T3 respectively. Because the length of the delay affects the shape of the pass-
band, and especially the filter trajectory, the length of the delays must be precisely
determined; and, because this effect is to be used to tune the filter, they must be
controllable in real-time.

The current implementation, based on a de;ign by N. Bartley [56] shown in
Figure 4.9, uses a high sample rate A/D converter, digital storage and D/A converter
to approximate this. The input and output of the delays are analogue, but the internal
signal path is digital at 8 bits quantization, which is nearly the dynamic range of the
other analogue components in the system. The input and output of the delays are also
continuous time, while the digital signal path is discrete time. Sampling is done at 768
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samples per row during the active video for the row delay and 384 samples per row

during the entire row length for the frame delay, for a sample rate of 2.4 and 1 sample
per grain respectively. The Nyquist frequency is then 7 rad/grain for the frame delay,
which is well above the ROI limit of w/2. The digital storage uses a double buffer
approach with separate counters for reading and writing, allowing delay skews of any
number of samples. The clock is generated by a phase locked loop referenced to the
synchronization signal. The frame delay length is determined from the vertical sync
pulse and the row delay length from the horizontal sync pulse, which matches the
filter delays exactly to the timing of the camera applying the raster scan. A total of
178 ICs on 4 8” x 10” printed circuit boards are used to create 2 row delays and 2
frame delays. This is currently the largest component of the system and the major
cost, so improvements and alternate implementations are of interest. They are further

discussed in section 4.7.

4.6 Controller and User Interface

To make the control of the filter parameters easy a communication system and graph-
ical user interface has been developed for the filter. A functional diagram of the
system, which has been adapted from a similar system developed for the Challenger
RTVP [55] with the assistance of its designer, C. Kulach, is shown in Figure 4.10.
The coefficients, structure settings and delay lengths are stored in registers in the
appropriate filter modules, which are set via the backplane by the controller module.
The microprocessor on the controller module communicates via a RS-232 serial con-
nection with a Unix daemon running on a workstation, which in turn communicates
with a GUI via Unix interprocess communication. The entire system is designed to
be transparent to the user.

The filter module contains 10 8 bit D/A converters which supply currents to
the analogue multipliers that represent the filter coefficients. Each D/A has a register
and a 4Kx8 bit look up table associated with it. Each register or look up table can be
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Figure 4.10: The Communication and User Interface for the Endeavour Analogue
Video Filter (adapted from the Challenger RTVP)
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loaded individually from the controller or all 10 registers can be loaded in parallel from

their look up table at a common address. This allows many different filter settings
to be stored and applied quickly, as in a tracking application. The filter module also
uses 3 bits of a control register to set the filter structure.

The delay modules contain either two row delays or two frame delays. The
starting addresses for the two address counters (see Figure 4.9) are stored in two 16
bit registers, each of which is associated with a 4Kx16 bit look up table. The difference
between the start addresses for reading and writing compensates for latency through
the A/D and D/A converters and allows the length of the delay to be controlled. Since
the two delays on each board share address counters, the two different delay elements
are of the same length. If they were of different lengths the analysis of the delay change
effects in section 3.5 would be much more difficult. Also two bits of a control register
can be used to put the module into a diagnostic mode in which either one or the other
buffer is continually read out, or else the signal bypasses the storage entirely, running
straight through with only the converter latency as a delay.

The controller module has been adopted complete from the Challenger RTVP
system [55]. It is based on a Motorola 68008 microprocessor, with a RS-232 serial data
interface and a number of registers and control lines driving lines on the backplane.
The RS-232 communications part of the program running on the microprocessor, writ-
ten entirely in C and assembly with no library functions, has also been adapted from
the Challenger project, but the code that interacts with the filter and delay modules
was all developed for this project.

Communication between the controller and the other modules occurs over sev-
eral shared busses on the backplane. Each module other than the controller has a
unique 8 bit address. When the controller receives a request to load a register on a
module it puts that module’s address on the board address bus, to which the module
replies by identifying its type on the 3 bit identity bus. Then the controller puts a
16 bit value on the coefficient bus and clocks it into ‘either an address register for the

look up tables or the module’s control register, which selects the next data register
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to be loaded. Finally it puts the data on the coefficient bus and clocks it into the

appropriate data register. Besides responding to individual requests for state changes
(which take precedence) the controller has a batch processing ability. A command
file containing a list of operations to be done, with an optional pause and/or loop,
can be loaded from the GUI. This has been useful for testing the operation of inter
board communication, registers and even board functionality. The controller can also
operate independently of the workstation using interrupts or an 8 bit bus that can be
connected to buttons to load predefined filters.

To avoid blocking the GUI while communication on the RS-232 serial line oc-
curs, a2 Unix daemon acts as a buffer on the serial port, running asynchronously with
the GUI and communicating with it via Unix sockets. This daemon has been adopted
complete from the Challenger RTVP system [55].

The GUI is based on an image of the filter states. The main controlling object
is responsible for maintaining this record of the state of the filter, updating the filter by
forwarding requests from panel objects to the communications daemon and informing
the various panel objects of changes made in other panels. It is also capable of saving
the state to a file for use in another session. A number of different panels offer different

views on this filter state and different ways to manipulate it.

The direct register control panels allow the user to manipulate the bits in the
registers directly, without any interpretation. The filter module control panel is shown
in Figure 4.11 and a delay module control panel is shown in Figure 4.12 Note that the
number of samples per row (Counts Per Row) and the number of grains over which
those samples are taken (Pixels Per Row) are set by switches and potentiometers
rather than via registers and are therefore only information for the calculation engines

and not controllable parameters.

The 3-D transfer function panel shown in Figure 4.13 translates register settings
into coefficient values and vice versa. Multiplier values can be adjusted via the sliders,
or entered explicitly as a desired value. The panel object performs quantization into

register settings in the indicated manner. Also, the configuration can be chosen, or
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Figure 4.13: Coefficient, Structure and Delay Control Panel

the analogue switches controlled directly. Finally, the delay adjustments can be made,
either in grains, or in samples, with quantization applied as for the coefficients. If the
Continuous Update button is checked, requests for changes are made to the controlling
object as the changes are made to the various fields, otherwise they are made in a batch
when the Update Filter button is pressed.

The LT filter design tool shown in Figure 4.14 takes the abstraction one step
further and represents the filter state in terms of the design parameters: filter tra-
jectory, bandwidth, etc. When changed, these parameters are translated into filter
coefficients via a simple optimization routine which selects delay lengths that min-
imize the difference in the quantized coefficients from a nominal “best” set. After
quantization into register values, they are translated back into the design parameters
as the quantized values. When the first order configuration is chosen, only the top
five fields are active. When the second order configuration is chosen there are two
modes. In tracking mode Lg is proportional to L4 and parameters are indicated in
terms of inductance ratio, minimum and maximum bandwidth and Rgsz as described
in section 3.1.2. In independent mode the proportionality is not enforced and the

second order section is parameterized as another first order section. The temporal



Figure 4.14: Linear Trajectory Filter Design Tool

HP configuration is discussed in section 4.7.

The fourth major control panel is the diagnostics panel shown in Figure 4.15.
Sequences can be applied to each register or function of the modules and the function
verified with logic probes. Note that since the diagnostic sequences generally use a
batch process, the filter state image will not be accurate after diagnostics are ;ppﬁed.

4.7 Fuature Improvements

During the construction and testing of this prototype a number of issues have arisen
which suggest improvements to the system. .

In the current implementation a large majority of the components are required
for the delay modules. Other delay implementations may be available in the near future
to reduce this requirement. Bertschmann [3] showed that the available CCD based
analogue delay elements introduce too much clock noise, or distortion, to be useful.

Random access analogue memories may be available soon [57], which would eliminate
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Figure 4.15: Diagnostics Control Panel

the need for an A/D and a D/A. They would also provide a continuous range delay,
as opposed to the present digital system, but currently do not have enough cells or
persistence for a frame delay. Many of them are also being designed as first in first out
(FIFO) memories, which would reduce the addressing logic required. Digital FIFO
memories of sufficient size and speed have recently become available which would
eliminate the need for double buffering and much of the external control logic. The
resulting design would be much smaller than the present implementation. A feasibility
design indicates that about 34 ICs would be required for an implementation with only
negative delay skews and that it would fit on one 8” x 10” PCB, compared to the
present 178 ICs on 4 8” x 10" PCBs.

The original specifications for the system include the idea of an adapter module,
to be developed in the future. The adapter module would control the system and
implement a higher level algorithm such as tracking [10] or classification [14] using the
filter as a building block. For this purpose jumpers exist so that the filter coefficient
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currents can be supplied through the backplane from the adapter module position.

Also, the digital delays can output the delayed version of the signal as a digital stream
to the backplane. The controller can yield control of the busses to the adapter and all
the software has been developed with such expansion in mind.

Usually, most of the signal energy in a scene is associated with a static, or
nearly static background, which contains large low spatial frequency components. The
first order LT filter will pass some of this low frequency energy, which is usually not
desired. A solution to this problem would be a temporal highpass filter in cascade,
which would remove the static portion of all images. A temporal highpass filter was
designed and implemented as part of Endeavour using the same frame delay element
as the second order section of the bow! filter. Because the design required a large gain
in one feedback loop, the current implementation is unstable and therefore no results
are available.

A primary motivation in the development of mixD systems is a reduction, in
comparison with digital systems, in size and power consumption. A very large scale
integration (VLSI) implementation of this type of system would be the obvious next
step in this direction. The analogue components and control would fit easily on one

IC, with the FIFO memories external.
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Chapter 5

Characterization of the Filter

Response

Detailed measurement of the response of 2 and 3-D mixD filters in both the spatio-
temporal and frequency domains has been a problem in the past, largely due to the
difficulty in creating 2 and 3-D test images. Previously, the input signals were created
from either printed 2-D sinusoids or computer generated movies of 3-D sinusoids with
a video camera. The output of the camera was then applied to the filter and the input
and output magnitudes measured with an oscilloscope [3,4]. In addition to the large
amount of labour involved in each measurement, the method introduces inaccuracies
from lighting, printing or display, the camera response and human measurement.

Najafi-Koopai [5] has recently derived a method to transform the 1-D frequency
response of a raster scan based filter, which is relatively easy to measure from the 1-D
input and output signals, into the 3-D frequency response. This serves to simultan-
ously reduce the labour involved in each measurement and to increase the accuracy.
The application of this method to the Endeavour Analogue Video Filter for a number
of filter settings forms the bulk of this chapter.

The steady state frequency response is only meaningful if the spatio-temporal
transient response dies away quickly, and if all the -components operate in the linear

region. This is discussed qualitatively with examples in section 5.1. Non-linear effects
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due to signal values outside the linear region of some components can cause the filter

to become unstable. This overflow-induced instability and the problem of calibration
are discussed in sections 5.2 and 5.3.

The 1-D to 3-D frequency response transformation is described in section 5.4,
followed by the measurement technique and test setup in section 5.5. Measurements
of the frequency responses of several IDD and Bowl filters are given in section 5.6,
along with a suggestion for a simple 1-D highpass post filter. The chapter concludes
with a summary of the results.

5.1 Spatio-Temporal Response

The response of the filter to a variety of video sequences is acceptable for a wide
range of settings in terms of clearly visible passband objects and visibly attenuated
and smeared stopband objects. The difficulty in creating test sequences containing
objects moving with exactly the same trajectory the filter is tuned to remains; but,
with practice, you can move your hand in front of the camera in approximately the
right direction and speed. Even with narrow bandwidth filters your hand is clearly
visible in the output. A slight blurring of the lines and edges attests to the expected
high frequency drop off due to the modified bilinear transform. If you move your hand
in a different direction or especially at a higher speed the output image is smeared
and attenuated.

In an attempt to make a more objective visual measurement, three cards with
checkerboard patterns on them were attached to a wheel which was rotated at different
speeds in front of a black backdrop. The scene was then evenly lighted and shot with
a video camera. An input frame is shown in Figure 5.1a. If the wheel is rotated such
that the speed of the cards is equal to the magnitude of the spatial velocity associated
with the filter trajectory (see section 2.4.1), then, at one point in the rotation, one
of the cards will be moving along the passband trajectory while the other two cards
will be in the stopband. An output frame from the IDD filter with one card (at
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the top left) nearly in the passband is shown in Figure 5.1b. The contrast has been

enhanced so that the printed output image looks similar to that seen on the monitor.
Input and output frames for the bowl filter are shown in Figure 5.2, where the card
at the top right is nearly in the passband. In both cases the checkerboard pattern
is smeared somewhat due to the fact that the response of the filter is lower at high
spatial frequencies than at low spatial frequencies (see figures 5.5 to 5.11) and because
the card only has the correct trajectory momentarily as it rotates. It can be seen that
the bowl filter eliminates more of the low frequency background energy than the IDD

filter, especially in removing the static image of the tire.

5.2 Experimental Observations of the Transient Re-
sponse and Overflow Effects

The filter is stable for a wide range of filter settings, with the transient effects confined
to an area near the edge of the screen. However, it is necessary to vary the settings
slowly and through stable ranges to maintain stability. If they are changed suddenly,
or a poor setting is chosen, the transient effects may cover a large area of the screen for
an extended period, or even lead to instability due to overflow. This is especially true
for narrow bandwidth filters, which have long transients and small stability margins.
Choosing effective filter settings, and varying them appropriately, is an important issue
if closed loop adaptive algorithms are to be implemented.

Both filter structures are prone to instability due to overflow non-linearities.
The overflow can be caused by spikes on the input, as mentioned in section 4.2, or by
sudden large changes in coefficient values, especially when the filter is set to a narrow
bandwidth. When an overflow occurs in a delay element or multiplier at some point in
the image, the effect spreads quickly through the image and eventually all of the signals
in the filter take on extremum values. A low pass filter has been incorporated into
the video extraction circuit to reduce the incidence of spikes on the input, virtually

eliminating that cause; but the coefficient change problem has not been addressed.
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a) b)

Figure 5.1: IDD Filter Spatio-Temporal Response. a) Input Frame. b) Output Frame.
The top left card is nearly in the passband.

Figure 5.2: Bowl Filter Spatio-Temporal Response. a) Input Frame. b) Qutput
Frame. The top right card is nearly in the passband.
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Possibly the GUI could enforce slow changes. It may even be possible to alter the

design so that the extremum would not be an equilibrium point.

Once the filter enters the extremum state, it is not possible to reset it without
changing the coefficient values with the current implementation. One solution would
be to apply zero initial conditions by zeroing the input to each delay element and
integrator for at least one frame. This might even be done automatically using the
overflow detection signal from the A/D converters in the delay circuits. The filter
could be made more robust by forcing the outputs of the delay elements to be zero

during the entire synchronization interval [11].

5.3 Calibration

One of the more difficult aspects of tuning an analogue filter is calibration. Because
filter parameters depend on component values, the exact relationship between the
binary value stored in the D/A converter and the multiplier coefficient associated
with it must be measured to be known. It must also be measured in the closed loop
situation to be accurate, as the loading on the op-amps, and therefore the response,
will change slightly if the loops are broken. A solution to the problem is to model
the measured frequency response of the system with the appropriate transfer function
(IDD or Bowl) and to compare the coefficients of the modelling transfer function with
the filter settings. To get an accurate relationship between the filter settings and the
coefficients of the transfer function, measurements must be taken for widely different
values of each parameter. The D/A converters and multiplier gains should be nearly
linear; so, once calibrated, the system should be fully predictable.

5.4 1-D to 3-D Frequency Response Transformation

To simplify the task of measuring the frequency response of raster scan based filters

it is useful to investigate the effect of the raster scan transformation in the frequency
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domain. It may be shown that, along the line in 3-D frequency space given by [3]

&1 =wT;
& Q, Q3 =
- ol M 1
Q) =wl, or =T, " T (5-1)
93 ==wT3

known as the slicing line, the raster scan of a 3-D sinusoid with frequency (w;, 2, (3)

is a 1-D sinusoid with frequency w:
sin(wyhy +Qan2+Qanz+¢) = sin(wTih; +wTon: +wTzns+@) = sin(wt+4¢). (5.2)

Thus the response of the filter to a 1-D sinusoidal input will be exactly the same as
its response to the raster scan of the 3-D sinusoidal input with frequency given by
equation 5.1. Using the raster scan transformation given in equation 2.38, it is also
possible to show that the Fourier transform of the raster scan of a signal is equivalent

to the Fourier transform of the 3-D signal along the slicing line [5]:
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Because the Fourier transform of a raster scanned signal is periodic in the discrete
dimensions, the slicing line can be drawn modulus 27 in these dimensions as in Fig-
ure 5.3. This slicing line fills the 3-D frequency space such that the entire 3-D frequency
response can be recovered from the 1-D frequency response as an interpolation [3].
However, for NTSC raster scanning this grid of lines fills the 3-D frequency space quite
tightly, and for the purposes of characterizing the filter frequency response, measur-
ing the response on a set of closely spaced points aligned with this grid is more than
sufficient. The angles that the lincs make with the Q3-axis are very small (< 0.1°),
and may be ignored. The lines are spaced 0.0120 rad/grain (27712/T3) apart in the

), direction and 0.0294 rad/grain (277}/T») apart in the w; direction.
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Figure 5.4: Test Setup

A simple approximation to the 3-D magnitude response at a set of closely
spaced points may then be made by measuring the magnitude response to a 1-D sine

wave input at a frequency, f, determined by

kRS
f=gtnty
kT, -
i = }Tzl'z keZ (5.4)
kT
2 = ——,k zZ
fa T 2 €

where f;, f> and f3 correspond to w;.Q); and Q3 respectively, —1/2 < f, < 1/2 and

—'1/2 < fa<l/2

5.5 Measurement Technique and Test Setup

The test setup shown in Figure 5.4 uses the IEEE488.2 standard instrument com-
munication protocol and HP VEE-Test software to control an HP 3325A waveform
synthesizer and an HP E1406 Main Frame VXI controller with an HP E1430C 10 MHz
23 bit analogue to digital converter and storage (ADC). The filter is configured to use
the video camera as an external synchronization so{xrce and to bypass the video ex-

traction circuit, using the output of the waveform synthesizer directly as the input to
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the filter block. The video reconstruction module is also configured not to add the

sync pulse to the output.

For each point {k;, ks, f3} in the requested set in three dimensional frequency
space the, test routine sets the frequency of the signal source according to equation 5.4,
pauses for 1 second to arrive at steady state in the temporal dimension, and then arms
the ADC. The ADC uses the odd/even field sync signal to trigger and collects the
active video portion of lines 65-68, which are far enough from the top for the system
to be in steady state in the vertical dimension. Then the first 16.5us of each line is
discarded to arrive at steady state in the horizontal dimension. Finally a portion of
each line equal in length to an integer number of cycles of the input is taken, the mean
subtracted and the rms value calculated as the output magnitude. This value is stored

in a file and the next iteration begins.

The row length T used by the camera. and therefore by the delay elements,
must be measured very accurately for the frequency response measurements to be
meaningful. In equation 5.4 the term k;/T, will quickly dominate the f3/T; term
with increasing f1. Also, since f3 is the only continuous frequency variable, any error
in the calculation of f between the actual 3-D frequency created and the calculated
frequency will appear in f3. Thus a very small errvor in T, will indirectly cause a large
error in f3. For example, at f; = 1/4cycle/grain, an error in T, of 0.002% will result
in an error in f3 of 1 cycle/grain. To address this, the period of the horizontal sync
pulses was measured to within £10~7 with a frequency counter that was calibrated

to the waveform synthesizer.

The frequency produced by the wavelorm synthesizer must be very precise also,
as Af =30 Hz © Af; =1 cycle/grain. These sources of error primarily affect the
orientation of the measured passband. rather than the bandwidth, and can be com-
pensated, but this is unnecessary with the present equipment. The output frequency
of the HP 3325A waveform synthesizer is accurate to £10~7 which, combined with the
tolerance in T3, results in an accuracy in Q3 of better than £0.01 rad/grain throughout

the measurement range.



5.6 Filter Responses
5.6.1 IDD Filter

The IDD filter has four important controllable parameters:! the gain, G, associated
with the lossy integrator; two gains, G; and G73, associated with discrete differentiators;
and the variation in the length of the frame delay, AT;. The gains correspond to
transmittances shown in Figure 3.16, and are related to the filter design parameters

by the following equations.

G = L,
YT R+ (L4 D)Ly + La)
(1+ D)L, -
G2 Re+(1+ D)Lz + La) (5.5)
. (1+ D)’Ls
Gs

R+ (1 + D)(L, + L3)

The input gain is set to make the passband gain approximately one and the variation
in the row delay length changes the response to spatial shapes rather than to motion
and so is not used here.

Four IDD filters, labelled A to D, were characterized. The filter design paramet-
ers for each, which were found by modelling the measured response with a calculated
frequency response as suggested in section 5.3, are given in table 5.1. The delay length
was kept constant for all four tests. Filters B. C and D are identical to A except that
the gain Gi, G2 or G3 respectively was reduced slightly. Equation 5.6 reveals that
G, only affects L,, but while G, primarily affects L, it has secondary effects on L,
and Lz. Similarly, G3 is primarily related to Lz but is also related to L, and L,.
The horizontal and vertical specds associated with the filter trajectory, as calculated
from equations 3.4 and 3.11, are also given in table 5.1 along with the bandwidth
from equation 3.6. The effect of the delay change on the bandwidth is not taken into
account as it is only an approximate mcasure.

While the video extraction module, with its lowpass characteristic, is bypassed

for the tests, the filter exhibits a 1-D dominant pole response in cascade with the fre-

IThe delay element gain, D, is set by potentiometers and so is not a controllable parameter.
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Table 5.1: Filter Parameters for Frequency Response Measurement of IDD Filter

Parameter Unit A B C D
L, Qgrain 12 9 8 3
L, Qgrain 3 3 2.7 2.8
Ly Qgrain 3 3 2.9 2.5
Ry Q 1 1 1 1
AT3 S —1.0T1 —1.0T1 —1.0T1 '-1.0T1
Horizontal  grains/ 3.0 2.0 1.8 2.2
Speed frame

Vertical grains/ -1.0 -1.0 -0.93  -1.12
Speed frame

Bandwidth rad/grain | 0.08 0.0  0.11  0.11

quency planar response. The pole is at approximately 530 kHz, or w; = 0.46 rad/grain
and does affect the responses within the ROI. This pole is taken into account in the
calculated filter responses and its effect is discussed further in section 3.6.3.

Contour plots of slices through the three dimensional magnitude frequency
response of the filters at «; = 0.032 rad/grain, «» = 0 and Q3 = 0 are shown in
figures 5.5-5.8 part a, along with the calculated magnitude response in figures 5.5~
5.8 part b. The responses are normalised to a maximum of 1 and contours are
shown for 0.9, 0.7, 0.5 and 0.2 times the maximum. Note that the regions separating
isolated contours of the same level are mostly sampling artifacts and the areas would
be connected if measurements were made at more points. The samples are separated
by 0.048 rad/grain in wy, 0.31 and 0.14 rad/grain in Q, for the constant w, case and
the Q3 = 0 case respectively and by 0.21 rad/grain in Q3.

The shapes of the filter responses are very similar to the calculated responses,
confirming the operation of the filter. The measured response generally drops off
more quickly with increasing w; than the calculated response, which may indicate
that the single dominant pole mentioned above is not sufficient. The planar shape of
the passband is apparent in all the measurements.

The slight decrease in G, between filters A and B causes an anti-clockwise

rotation in the ; =0 and Q3 = 0 planes and an increase in bandwidth, but does not
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Figure 5.6: IDD Filter Response B. a) Measured b) Calculated. Frequencies in

rad/grain.



Figure 5.7: IDD Filter Response C. a) Measured b) Calculated. Frequencies in
rad/grain.
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rad /grain.
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Table 5.2: Filter Parameters for Frequency Response Measurement of Bowl Filter

Parameter  Unit E F G
L, Qgrain | 1.1 1.1 L.1
L, Qgrain | 0.6 0.6 0.6
Ls Qgrain | 1.2 1.2 1.2
Ry Q 1 1 1
K 0.879 0.8379 0.879
Rst Q 2 2 0.5
ATs s 0 —3.05T1 —-l.OTz
Horizontal grains/ | 0.92 -2.13 0.92
Speed frame
Vertical grains/ | -0.5 -0.5 +0.5
Speed frame
Maximum rad/ 1.15 1.15 1.15
Bandwidth  grain
Minimum rad/ | 1.23 1.23 0.31
Bandwidth  grain

affect the constant w; plane. This is consistent with a decrease in L;. Changing G-
between filters A and C causes an anti-clockwise rotation and an increase in bandwidth
in all three, though the rotation in the constant w,; plane is barely noticable. The
decrease in G, between filters A and D has a similar effect, except that the rotation
in the constant w; plane is clockwise. The fact that the passband plane rotates in a
manner consistent with the change in settings of the filter indicates that it is working

as expected in terms of steering.

5.6.2 Bowl Filter

The bowl filter has many more independent parameters than the IDD filter, so an
exhaustive exploration of the effects of individual settings is too extensive for inclusion
here. Instead, the measurements presented in figures 5.9 to 5.11 are of three filters
labelled E to G that are identical except in the length of the frame delay. The design
parameters for each filter, as determined by comparison with the calculated response,

are given in table 5.2. While no changes were made to the coefficient settings between
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filters E and G, the apparent minimum bandwidth, determined by Rsr, did change.

The reason for this is not known, but Rg; is proportional to 1 — Gg2 — Ggs, where
Gp2 and Gp; are gains associated with Lp; and L3 respectively. As the gains are

both approximately 1/2 in this filter, small changes will result in large changes in Rsr.

Contour plots of slices through the three dimensional magnitude frequency
response of the filters at w; = 0.032 rad/grain, w, = 0 and 3 = 0 are shown in
figures 5.9-5.11 part a, along with the calculated magnitude response in figures 5.9-
5.11 part b, with the same resolution as in section 5.6.1. The dominant pole is taken
into account in the calculations. The responses are normalised to 2 maximum of one
and contours are shown for 0.9, 0.7, 0.5 and 0.2 times the maximum. The measured
responses correspond very closely to the calculated responses, more closely, in fact,
than the IDD responses. The one exception is in the Q3 = 0 plane for filter G where

the passband angles differ by about 30°. This may be related to the change in Rgy.

These responses show the frequency response skewing effect of the delay change.
The reduction in the length of the frame delay by 3.057; skews the lines of constant
w; in the @, = 0 plane upwards by 3.05w; between figures 5.9 and 5.10, while not
affecting the w; = 0.03 plane. Similarly, the reduction in the length of the frame delay
by 1T skews the lines of constant w» in the Q; = 0.03 plane by 1Q,, while not affecting
the 2, = 0 plane.

While the measured response of the bow] filter matches the expected response
very closely, the desired bowl shape is not achieved due to large minimum bandwidths
related to large values of Rsy. The passband of filter G (Figure 5.11) is narrower near
the origin than that of the others. but low values of Rs. corresponding to bowl-like
shapes have not yet been possible. The problem may be that the value of Rg; is very
sensitive to Gg; and Gg; and that the stability margin is proportional to Rsy. Rst
is also inversely proportional to the input gain of lossy integrator B, Gg,, and so can

be lowered by increasing Gg;.
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Figure 5.9: Bowl Filter Response E. a) Measured b) Calculated. Frequencies in
rad/grain.
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Figure 5.10: Bowl Filter Response F. a) Measured b) Calculated. Frequencies in
rad/grain.



Figure 5.11: Bowl Filter Response G. a) Measured b) Calculated. Frequencies in
rad/grain.
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Figure 5.12: The Effect of the Highpass Postfilter on the Measured Magnitude Re-
sponse of Filter A. a) The original measured response. b) The response after highpass
filtering.

5.6.3 Highpass Postfilter

The reduction in the magnitude response of all the filters at high frequencies modelled
by a dominant pole lowpass characteristic in cascade with the LT filter characteristics
is a significant deviation from the ideal LT response. However, because it is apparently
a purely 1-D characteristic, it can be compensated for easily with a 1-D highpass or
bandpass filter. A 1-D highpass post filter has been suggested previously to remove
the static background [58]. The use of a highpass post filter with a cut off frequency
less than that of the dominant pole may actually create a semi-bowl shape from the
IDD response. That is, the response near the origin and in the w, = 0 plane will be
reduced, but the overall passband will simply be planar with an intersecting planar
region removed.

The measured response of filter A in the Q3 = 0 plane was multiplied by the

first order 1-D highpass magnitude characteristic

Mip(w) = jwhC i (5.6)

1+ j«RC

with RC = 2% 107 "s. The result is compared with the original in Figure 5.12. Note

how the passband narrows near the origin giving it a fan shape. This response is
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better in terms of velocity selectivity than any of the bowl filter responses, but the
phase distortion introduced by the highpass filter may be problematic, smearing the
image visually.

The lowpass characteristic is possibly due to the delay through the feedback
path in the variable lossy integrator. In future implementations it may be possible
to avoid this by using a fixed bandwidth lossy integrator—a simple lowpass op-amp
circuit as used in [3]. If it were set to a low cutoff frequency, corresponding to large
values of L, variation of the effective H, could be made with AT; and G;. Either the
bandwidth or the trajectory would then be variable only in discrete steps, but that
may not be a serious problem. A much lower bandwidth, and therefore less costly and

more stable, op-amp could be used;? and it would also simplify the control structure.

5.7 Summary

The results presented in this chapter indicate that the Endeavour Analogue Video
Filter works quite well, both visually and in terms of the measured 3-D frequency
responses. Problems with overflow instability, calibration and non-ideal 1-D lowpass
characteristics are discussed and solutions are suggested. A technique for measuring
the 3-D frequency response precisely and completely via the 1-D frequency response
has been applied for the first time and the results are presented for 7 different fil-
ters. The measured responses difler from the ideal responses mostly by a 1-D lowpass
characteristic, which can be compensated for by a 1-D highpass postfilter. It is also
suggested that the circuit could be simplified by using a fixed bandwidth lossy integ-
rator in place of the variable integrator in Figure 4.6. This may improve the response
considerably by eliminating the dclay in the feedback path which results in an extra

lowpass characteristic.

2The EL2075 op-amp is not suitable for use with a capacitor in the feedback path.
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Chapter 6
Sensitivity

The fact that implementations of mixD filters depend on non-ideal physical compon-
ents such as resistors and capacitors means that the response of an implementation
may differ from the ideal designed response. It is useful to quantify the effects of the
variations in component values on the filter response. This enables the designer to
determine what tolerances in component values must be met to guarantee that the
filter response will be within some allowable deviation from the ideal. It also enables
the designer to compare different implementations in terms of their probable perform-
ance before constructing them. One well known way to do this is through sensitivity
measures.

The first order sensitivity of a general function F' to one of its real parameters
z is defined as [39]

dIn(F)

F -
Sz = 9ln(z)

(6.1)

and relates the fractional change in the value of F at a point due to a small fractional
change in z. Thus, if the value of the parameter z, which is related to some physical
component values, is bounded to within a fractional portion its nominal value, F will

be bounded to within some fractional portion of its nominal value given by [59]

' [qFA” . 6.2)
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While first order sensitivity can be applied to any one parameter, the filter im-

plementations have many parameters that depend on component values. Two meas-
ures used to characterize a structure’s sensitivity to multiple parameter variations and
their interactions are worst case sensitivity WSF and Schoeffler, or mean-squared,
sensitivity UE. Worst case sensitivity is given by [59]
N
WsE =3 |sE (63)
i=1
where N is the total number of parameters, and indicates the maximum possible
deviation in F which could occur if all parameters z; took on their extremum values

in the appropriate direction. Schoeffler sensitivity is defined as [59]
1 & 2
F F
LHERS Z.-l ISE|"- (6.4)

and gives a measure of the distribution of the sensitivities to individual parameters.
If the filter is much more sensitive to one pararneter than to the others it will have a
high Schoefller sensitivity; and, statistically, the deviation from the ideal response of

these filters will be larger than that of filters with a lower Schoeffler sensitivity.

6.1 Lower Bound Worst Case Sensitivity to Delay
Element Errors

While deviation of the transfer function from an ideal value due to errors in the circuit
elements of a filter is undesirable, the transfer function must depend in some way on
some parameters if it is to be a useful shape. The design challenge is to choose the
set of parameters and structure of the implementation such that the sensitivity is
minimized. In this, it is useful to have a lower bound on the worst case and Schoeffler
sensitivities of any structure implementing a given transfer function. These lower
bounds can then act as benchmarks for the evaluation of the sensitivity properties of
different filter structures. If the sensitivity of a structure approaches the lower bound

then it is a good choice, otherwise a different structure may be needed. However,
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there is no guarantee that a structure exists that has sensitivities equal to the lower
bounds.

Lower bounds on worst case and Schoeffler sensitivities to gain and phase errors
of analogue delay elements in 1-D filters have been derived in [59]. These results will
be extended here, with examples, to the mixD case.

Given that the transfer function can be represented as
H(s,z) = M(s,z)e®®) (6.5)

where M(s,z) is the real magnitude response and ¢(s.z) is the real phase response,

and defining group delay as
do(s.z)

-r,-(s, Z) = -—5-{2—- (6.6)
then
Sa o = 5ol ™ + jQimi(s, 2). (6.7)
Also, it is useful to show that for any real parameter, z,
gH(s2) Oln M(s,z) .9d(s.2)
z dlnz I Oz
= S} + jo(s,2) 526 (6.8)

If all the delay elements in each dimension in the system have the same gain
and phase errors, then, for the steady-state frequency response calculation, the delay

element operation can be written as

i1 = Biem T (6.9)

~:
where B; represents a gain error and O; represents a phase error. With these delay

elements and ignoring any other errors in the system, its response is H(s,Z) =

H(s,2) {z;=:,- The sensitivity of this transfer function to gain errors is

1

Sg‘ (s.%) Sg (=.%) 5'3,-

= —$p"7SS;

=[S + jQum(s. 4)| (6.10)

I
O.T:
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Similarly, the sensitivity of this transfer function to phase errors is

sHed . gHefgs
SH A % 5% 5, T:0;

[SM(s.z) + jri(s, ) ] JwTG

= 0:[Sa® + (s, z)] (6.11)

The term T; associated with w is in seconds, while the term T; associated with (; is
in grains, so wT; = O;T; in equation 6.11. From equations 6.10 and 6.11 and using
equation 6.8 we can show that the sensitivity of the magnitude and phase of H(s, %)

to gain and phase errors are:

S&!(s i) Ti(S, z) s b(s.2) _ Sﬂl(s,z]
T; Bi T 4(s,2)UT: (6.12)
g o 9:iti(s.2)
SM(S'Z) = eish{(sz) Sa(s,z) _ 9iluini(s,
; o o, “as.z)

These sensitivities are properties of the transfer function itself, rather than of any
particular implementation or structure. In fact, any implementation of a transfer
function will have exactly these sensitivities to uniform variations in delay element
gain or phase [59]. However, the worst case sensitivity to non-uniform delay element
errors cannot be less than this, as the uniform case is always a possibility. Thus, from
equations 6.3 and 6.4 lower bounds on the worst case sensitivities are given by the
magnitudes of equation 6.12, and lower bounds on the Schoeffler sensitivities by the

squares of equation 6.12. For example

1:(s,2) 2
T:

T (S, Z)

T and LlIlM(s # =

LwSge) = (6.13)

where L indicates the lower bound.

6.2 Comparison of Direct Form and Ladder Form

The lower bounds derived in section 6.1 can be used to compare the direct form and

ladder form structures implementing the first order planar pass filter. In this case



Figure 6.1: Direct Form Structure for the First Order Planar Pass Filter

the worst case sensitivity of the magnitude response to delay element gain errors are
compared to the lower bound.

The direct form structure with the fewest possible delay and integrating ele-
ments is shown in Figure 6.1. It is assumed that frame delays are more costly than row
delays and that both are more costly than integrators. Feedforward paths are shown
as solid lines and feedback paths as dotted. This structure implements the transfer

function

L1 .
CED DI L
Hy(s,z) = 2050 : (6.14)

1 1 1 . A R
.. . TR T2 0
Z 6131211‘3 2 75
1y =0 i2=01i3=0

The coefficients for the planar pass filter are given in table 6.1 and come from equa-

tion 3.1 after application of the bilinear transform and collection of terms, with By = 1.
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Table 6.1: Coeflicients of the Direct Form Planar Pass Filter

booo L,

aso 1|boor 1+2L2+2L3
bo1o L,

ao1 1 bou I - 2L2 + 2[:3
b10o L,

ao 1|bon 1+42L,—2L3
bllO Ll

a; 1 bu[ 1-— ?.Lz -‘2L3

This structure has two row delay elements labelled z;} and 273 in Figure 6.1, so
the worst case sensitivity of the magnitude response of the direct form implementation

to gain errors in the delay elements in the second dimension is

(6.15)

WS = e + sk

+ l SMd[(S'z)

where By, and B,p are the gains associated with =7 and 275 respectively.

Because the ladder form (IDD) filter has only one row delay element the vari-
ations are necessarily uniform, so the IDD filter has worst case sensitivities and
Schoeflier sensitivities to delay variations that are equal to the lower bound.

A surface plot of the lower bound LW.S'g? P&2) for [y = 12,0, = 3,L; = 3
and unity delay gains is shown in Figure 6.2a. These are the same parameters as for
Filter A tested in chapter 5 except for the unity gains. A surface plot of ng";" (s:2)
for the direct form filter is shown in Figure 6.2b. The direct form structure is up to
an order of magnitude more sensitive to these errors than the IDD filter.

Since both the direct form and the IDD filters have only one frame delay element
they should have the same worst case magnitude sensitivity to delay gain errors equal
to the lower bound. Deriving the sensitivity of each structure confirms this. A surface
plot of the lower bound worst case sensitivity of the magnitude response to frame delay

element gain errors, LWSgi’ {52} for the same filter as above is shown in Figure 6.3.

The decrease in the delay element gains that results from the modified bilinear
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Figure 6.2: Worst Case Magnitude Sensitities to Row Delay Element Gain Errors. a)
Lower Bound (IDD Filter’s is equivalent) b) Direct Form Structure.
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Figure 6.3: Lower Bound Worst Case Magnitude Sensitivity to Frame Delay Element
Gain Errors

transform increases the stability margin of the filter. A useful side effect is that it
also decreases the sensitivity to delay element gains. The lower bound worst case
sensitivities of the magnitude response to errors in the row and frame delay element
gains, LWS'g;P P(82) and LW.S';?’ P(52) for the same inductance values as above, but
with nominal gains of 0.9, are shown in Figure 6.4. The IDD filter worst case sens-
itivities are equal to the lower bound. Near Q3 = += the sensitivity to frame delay
gain errors actually increases significantly compared to the unity gain case, but since
the magnitude response is very small there, it is not particularly a problem. The sur-
face plots shown here are slices through the 3-D sensitivity functions, so many of the
features of the functions are not shown. The slices were chosen to be as reprentative

of the overall functions as possible.
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Figure 6.4: Lower Bound Worst Case Magnitude Sensitivity to Delay Element Gain
Errors with Reduced Nominal Gains. a) Row delay gain errors. b) Frame delay gain
errors.
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6.3 Summary

Sensitivity measures are a well known way to quantify the effects of errors in com-
ponent values on the response of an analogue filter. Specifically, the worst case and
Schoefller sensitivities provide useful measures of the possible and probable deviation
from the ideal. In this chapter, lower bounds are found on the worst case and Schoeffler
sensitivities to errors in the delay elements, for any mixD LSI transfer function. These
lower bounds are useful for the selection of an appropriate filter structure.

As an example, the worst case sensitivity of the magnitude response of the IDD
filter designed in chapter 3 to gain errors in the delay elements is compared to both
the equivalent direct form filter and the lower bound. The IDD filter, which has a
ladder form structure, has sensitivity equal to the lower bound, which is superior to
the direct form version by up to an order of magnitude in the passband. This confirms
that the ladder form technique is appropriate for the first order planar pass filter.

Further investigation reveals that the modification of the bilinear transform
introduced in chapter 3 to increase the stability margin also reduces the sensitivity to
delay gain errors in the passband.

[t is also useful to point out that the worst case sensitivity of frequency planar
digital ladder form filters to errors in the coefficients is lower than that of the corres-
ponding direct form filters and wave digital filters [11]. [t seems likely that this would

hold true for the equivalent mixD filter structures.
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Chapter 7

Practical BIBO Stability of M-D
Systems

A filter must be stable for it to function effectively. Most definitions of stability
imply that any transient effects eventually die away and that a desired steady state
response will dominate the output. The most commonly used stability criterion in
1-D is bounded-input bounded-output (BIBO) stability, which states that for any
bounded value input signal, the output will also be of bounded value. The BIBO
stability condition has been extended to the M-D case and is extensively used in filter
design; however, the direct extension to M-D is both difficult to test and unnecessarily
restrictive.

In [31] Agathoklis and Bruton describe a practical-BIBO (PBIBO) stability
condition for M-D discrete systems that is simpler to apply and less restrictive than
the BIBO stability condition; yet is a sufficient condition for the effective function
of the vast majority of practical systems. Both BIBO and PBIBO stability imply
that for any bounded value input signal, the output will also be of bounded value;
however, while BIBO stability bounds the value of the output over its entire domain,
PBIBO stability bounds only those values of the output which are computable in finite
time with a finite sized system [33]. Ignoring values of the output which can not be

computed has no detrimental effect on the function of a system. but in many cases
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Figure 7.1: 2-D Example of a Computable Non-Rectangular Region of Support

simplifies and even improves the design.

The authors of [31] present conditions on both the impulse response and the
z-transform transfer function of a linear shift-invariant discrete system for PBIBO
stability that assume a rectangular region of support (ROS), or region of calculation.
That is, they assume that all indices of the signals except one are bounded by a
finite number and that the calculation proceeds along one of the dimensional axes;
which is the case for the vast majority of systems. However, for the filters described
in chapters 3 and 4, as well as some discrete systems, that is not always the case.
Refering to Figure 3.18c it is apparent that the ROS for these filters is not rectangular
when delay variations are applied: and, since these variations are to be used to steer
the filter trajectory, it is important to determine if the filters will remain stable under
these conditions.

The conditions for PBIBO stability given in [31] do not apply to systems with
a non-rectangular ROS, such as that shown in Figure 7.1. For example, if the discrete

difference equation
y(ni,nz) = o(ni,na) +y(m ~ 1,nz = 1) (7.1)

which has the z-transform transfer function

A(zrlzgt) 1

1 _=1y = ~1l_-1
B(el y 29 1"".:,1 2

H(z' 27" =

(7.2)

is calculated along the ROS given by n; = n;,n; 2 0 (or any ROS including this line)

with the bounded input z(n;,n.) = 1; the output is a ramp function which increases
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without bound [26]. Thus, this system is unstable for the given ROS. However, both

conditions for PBIBO stability given in [31} hold; and therefore different conditions
are required for systems with a non-rectangular ROS.

In [33] the authors show that a computable ROS may only be of unbounded
extent in one direction and this chapter extends the conditions for PBIBO stability to
systems in which this direction is not along one of the dimensional axis. Thus, while
the ROS is of bounded extent in all but one direction, the indices of the signal are not

necessarily bounded. Also, the conditions are expanded to apply to mixD systems.

7.1 Non-Rectangular Regions of Support for Mixed
Domain Systems

The conditions for PBIBO stability depend on the ROS of the system. Of the many
computable non-rectangular regions of support, two of interest are considered in the
remainder of this chapter. One can be described in terms of an unbounded continuous
dimension and the other in terms of an unbounded discrete dimension.

To describe a non-rectangular ROS in terms of an unbounded continuous di-
mension, it is simplest to label that dimension as ¢; and the others in order such that

the region can be written as

4 h'
0 S tl S o0, (Tl = w)
Koty £ t2 S maly + 1o
’ t € RP!
Vi ={t,n| x < < & s > 7.3
ROS(¢) B Koty S toer S Kt + T n e ITM-r (7.3)
ki £ n, < Kt + N,
{ Eatit £ nar < kauti + Ny )
where several coefficients, labelled &j,...,k,~; and kg, ...,Kxp, may be zero. This

results in five possible classes of dimensions. The first continuous index, f,, is un-

bounded; while the other indices are either continuous or discrete and bounded either
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by 0 and a positive constant, T;; or by a constant times the first index, «;t;, and a that

plus a positive constant, T;. This equation can thus describe a wide range of shapes

over which it is possible to calculate the output signal.

Similarly, to describe a non-rectangular ROS is terms of an unbounded discrete

dimension, the dimensions can be labelled so that

{ 3
K1y < 4 < Rinp+ T,
Kp1fp < tpoy < Kp—iftp +Tpa
p—-1ltp = fp-1 = p—1Tp + Ip1 t € RP-1
Vrosgq) = {t,n 0 < n, < oo,(N,=0c¢) - s (7.4)
neIM-r
Fpe1fp S Nppp < Kpeap + Npy
kMn, < mpr < EMnp + Nug )

where again kj,...,5p~1 = 0 and &y,...,kpr = 0. This also results in five possible
classes of dimensions which are the same as above except that the unbounded index,
n,, is discrete. Many other, more complexly shaped regions of support are possible,

with limits dependent on more than one other dimension.

The rectangular ROS can be defined by

0<t; <T;, teRr!
0<n;<N;, neIM»
T = {Th,-... T}
Ny = {Np...., Nar}

Veosw = (B0

where N;x. are finite integers and Ty are finite real numbersand Ty = o0 if 1 < k< p

or Ni=o0ifp<k< M.

The impulse response, input and output of a system with the ROS Vgros(y) can
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be transformed into those with rectangular ROS Vi), as

h(t,n) h(ti t2 + Koty, ... 0y + Kpty, .. ) = A(t + Ke(t1),n + Ka(8))

i(tv n) = z(tly t2 + Kztl, cesyNp + Rpth .- ') = z(t + Kt(tl)1 n-+ Kn(tl))
g(t’ l'l) = y(tla t2 + Koty ..., Mp + Kply, . - ') = y(t+K!(tl)1n +K'l(t1))
(7.6)

and a system with the ROS Vgos(a) can be transformed into one with a rectangular

ROS me as

h(t,n) = Aty + K10p, - -, gy pat + FppiTipy - - ) = At + Ke(np), 0 + Ka(n,))

£(t,n) = z(t + K1y - - - s My pt + KpsiNp, - -.) = T(t + Ke(np), n + Ka(n,))

g(t,n) = y(t+ Kinp, - Nps Mot + Ky, - - ) = Y(E + Ke(np), 0 + Kia(ny))
(7.7)

7.2 PBIBO Stability in Rectangular Regions of
Support

7.2.1 Discrete Domain Systems

The necessary and sufficient conditions given in [31] for PBIBO stability under any
rectangular ROS Vg5, that are stated here were derived for a discrete domain
system. First, a linear shift invariant M-D discrete domain system is PBIBO stable

iff the following M inequalities are satisfied:

N N Ni=co Nas

‘\: Z ... Z Z lh(n1,n2,...,np)| < 0 (7.8)

ny=0n,=0 ng.=0 npr=0
for k=1,2,...,M where N\, No,..., Neo1, Nig1, - - - . Nag are finite positive integers
and h(ny,ns,...,nyr) is the impulse response. And equivalently in the z-domain, an

M-D discrete domain system described by the steady state transfer function

A -1
H(Z—l) = BE:'I))

(7.9)
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is PBIBO stable iff

B(0,...,0,2z%,0,...,0) #0 (7.10)

for zx' € U,(k=1,2,...,n) where U = {z]|z] < 1}.

7.2.2 Mixed Domain Systems

Before extending the conditions for PBIBO stability given in equations 7.8 and 7.10
to the mixD case, it is appropriate to prove formally the time domain condition for

BIBO stability given in equation 2.34 in chapter 2.

Theorem 7.1 A linear shift-inveriant mized domain system is BIBO stable iff

i f lh(t,n)] dt < 51 < o0 (7.11)

n=——on -0

where h(t,n) is the unit impulse response of the system and S\ is a non-infinite real

number.

Proof: Using the convolution sum to prove sufficiency yields

el = | S [ ekt -rn-K) dr

oo

< 3 flh(r,k)l[z(t—r,n-k)l dr

k=—00 o

o0

< max(let,m)) 3 [ Ih(eito] de

k=—co J o

< 0. (7.12)

To prove necessity, assume that

(- -}

X / [2(t,n)| dt = o0 (7.13)

n=-—0c0 Z o
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and that for some t,n, z(t — r,n — k) = sign(h(r,k)). Then

wte) = 3 [ httnsign(h, )
k==-00 J o

c %

Y [ i)

k=-00 J o

= oo. (7.14)

If, on the other hand, z(t,n) and A(t,n) are constrained to be causal, then with the
same definitions \ }li_ery(t, n) = oo. QED.
The following condition for PBIBO stability is much less restrictive and thus

of more use.

Theorem 7.2 A linear shift-invariant mizred domain system is PBIBO stable over
the rectangular region of support Vigs ) iff

N Ty
> f [A(t,n)] dt < Sy < oc (7.15)

where h(t,n) is the impulse response of the system, Sy is a non-infinite real number

and Veosuy N and Ty are defined by equation 7.5.

Proof: Using the convolution sum to prove sufficiency yields

f: f h(r,k)z(t —r,n ~ k) dr

ly(t,n)| =
k=0 0
N Tk
< 3 / lh(r, k)| |z(t — r,n — k)| dr
k=0
N Teo
< max(le(t.m) Y [ Ihtr,1o)] dr
n k=0 g
< oo. (7.16)

Necessity can be shown exactly as in equation 7.14 with t,n approaching Tx), N
QED.
MixD filters are usually designed in the SZ-domain. so the following condition

is usually of more use.
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Theorem 7.3 A linear shift-invariant M-D mized domain system described by the

transfer function
A(s,z71)
= ———= 7.17
H(s,2™) = oo (717)
is PBIBO stable over the rectangular region of support Vigse ., iff
B(L...,56-.,1,0,...,0) #0, Re[se] 20 if 1<k <p
1 t:p-l p lo M
or (7.18)
B(L,..-,1,0,...,35",....0) £ 0,]57' [ <1 ifp< k<M.
e — i/ )
1 to p—1 ptoM

Proof: The proof closely parallels the proof of theorem 2 in [31] and theorem 4
in [26].
From the fact that B(1,...,1,0,...,0) # O there exists a region AY = {s,27 |

si — 1] < &,|z7Y < €} where H(s,z™!) is analytic and there exists an SZ-transform
2

H(s,z™) = i/h(t,n)e"rtz—“ dt (7.19)

which can be differentiated term-wise in each =z, i # k, n; times

GretFrgr b+

H(s,z™") (7.20)
-7 < -Tls —nM ? - - -
82 Dzigs -0z 7 st =m0

sy ="'=3j#k='”=sp—l =1

oo
(n,!) ce (nM!)/ e~ t-x / h(t, n)e”""‘ dt, dt(_k) ifl<k<p
0
o

(nph) -~ (naga!) - - - (nag) / et Y h(t,n)z;™dt ifp<k< M.
0 n;=0

where t(_g) is the vector t without the entry ¢;. In the case that 1 < k < p the left
hand side is a rational function of the form

Ax(se)

7.2
[B(L,.. . 5r.....1.0,...,0)re+—+nu (7.21)
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which, if equation 7.18 holds, is a bounded 1-D transfer function so

/0 = |A(t, n)|dtz < oo (7.22)

for all ¢ixs, n; finite. In the case that p < k < M, the left hand side of equation 7.20

is a rational function of the form

Axlzi ) (7.23)
[B(ls eres 1, 01 crey zk.l’ seen 0)]up+~>-+n.';¢k+m+ny )
which, if equation 7.18 holds, is a bounded 1-D transfer function so
x<
> |h(t,n)| < (7.24)
n;=0

for all ¢;, ni4: finite. Equation 7.15 follows as the sum of a finite number of integrals
over finite intervals of elements of the form of equation 7.22 or 7.24. QED.

PBIBO stability for discrete domain and continuous domain systems are a
special case of the mixD results presented above. They are, however, restricted to

rectangular regions of support.

7.3 PBIBO Stability in Non-Rectangular Regions of
Support for Mixed Domain Systems

The conditons for PBIBO stability with non-rectangular regions of support for mixD
systems are similar to (7.8) and (7.10) in both form and proof, and are relatively simple
extensions of the concepts presented in [31]. The conditions in the spatio-temporal

domain are given by theorem 7.4.

Theorem 7.4 A linear shift-invariant M-D mized domain system is practical-BIBO
stable over the ROS Vros(y or Vros(n) iff the following inequality is satisfied:

Tty Ny .
/ 3 [h(t,n)|dt < oo (7.25)
0

0
where k = 1 for Vrosyy and k = p for Vposn). h(t.n) is the transformed impulse

response defined by equation 7.6 or 7.7 and T ) and Nyy) are defined by equation 7.5.
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Proof: As in [31], we use the M-D convolution integral-sum to show sufficiency.

For the Vaos(,;) case:

y(t.n)

g(t,n)

M-

®o 0
z / h(t —r,n —k)z(r,k), t.n € Vrosn)

k==00 o
0+K, (kp—np) tFKe(kp=7p)
y / h(t — £,n — K)z(r,k), t,n € Vrose)
k=K (kp) Ke(kp)
B+Kn (k) (T (k)
3 h(t + Ki(n,) — r,n + Ka(n,) — k)z(r, k), t,n € Vg,

k=Kn(kp) K(kp)

M-

h(t + Ki(np—k;)—r.n + K(n, — k) —k)z(r + Ki(k;), k + Kn(k))

®
il
o

O\n o\n

h(t —r,n —k)#(r,k), t.n € Vs, (7.26)

I

The Vrosy case is similar, with manipulations via K.(¢1) and K,(¢1) and resulting

in n,t €

VTzT:B'(:)' If § is bounded for bounded Z, then y is bounded for bounded z

and the system is PBIBO stable. If z is bounded by S then

|g(t, n)| dr, t.n€ Vggz,

)n:/i;(t - r,n - K)&(r, k)
k=0°g

n t
< nggx{[é‘:(t,n)l}z j |h(r,k)ldr, t.n € Vg,

k=0"g
N(p] T(P) )
< Y, [ i, tn € Vs,
k=0 g
< o (7.27)

from (7.25). The Vgosyy) case is again similar.

To prove necessity, assume

N(P) T(P,

3 f lh(t.n)| = o (7.28)

and consider the signal

:Z.‘(T(p) -t N(p) —n)= sign(h(t,n)), t.n€ VROS(p) (729)
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as input. This gives

Nex Tee)
Jim_ (T, Nal = Jim 32 ] [h(t,m)] = oo. (7.30)

QED.
The conditions corresponding to theorem 7.4 in the SZ-domain are given by

theorem 7.5.

Theorem 7.5 A linear shift-invariant M-D mized domain system described by the
transfer function given in equation 7.17 is PBIBO stable over the ROS Vros() iff

B(s; — K.(1)Ts(-1y — Ka(1)T Inz,5(21),27") # 0,VRe[s,] > 0(7.31)

sig1=L.z"t=0

or over the ROS Vros(n) iff

- T ’g Kn l
B(s, z; 1sTR (l)z(-p() ), Z(—p))

5.’=l,:.,'l =0 # 09 Vlz;ll $ 1 (7_32)
t¥p
where s(_,) is s without the eniry s, end z(_,) is z without the entry z,.

These conditions correspond to transforming the SZ-domain system from the
non-rectangular region of support to a rectangular region of support and then applying
theorem 7.3.

Proof: The transfer function, H(s,z!) is equal to the SZ transform of the
impulse response, A(t,n). Defining the transformed transfer function, H(s,z™!) as
the SZ transform of the transformed impulse response, iz(t, n), we have for the Vaos()

case

h(r, l()ez"T"z‘k dr

™3

H(s,z™")

n=-o0

(]

A(r + Ko(t1), k + Kn(t1))e™ "z % dr

1
Ms

8 8;\.8 é\g

=00
(- -]

= / Z h(t,n)e-sf(:-—x.(tx))z-(n-l(,.(t,))dt
_xn=-oo

= H(s; — Ki(1)Ts(-1) = Ko(1)T Inz,50-1),27") (7.33)
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and for the Vros(n) case

h(r,k)e™* "z "k dr

M8

H(s,z™%) =

-0

h(r + Ke(np), k + Ka(n,))e™ "z7% dr

-}
1
]
8

)
~8 é\8 é\S
Ms

h(t, n)e~®" (t~Kelnp)lg—~(n~Ka(np)) g¢

i
Ms

(]

s ep B=—00

H(s,z,; LesTK:(1) Z:i';,()”, Z(-p)) (7.34)

I

If H(s,z™!) is PBIBO stable over the ROS then H(s,z™!) is PBIBO stable over

V!ﬁ(l )
the ROS Vgrosy), and similarly for the second case. The functions B in equations 7.31
and 7.32 are the denominators of [ for the two cases respectively and the substitutions

and conditions correspond to theorem 7.3. QED.

7.4 Design of PBIBO Stable Systems from Continu-
ous Positive M-D Networks

In [31] the authors show that M-D discrete domain systems derived from continuous
domain positive M-D networks via the bilinear transform are always PBIBO stable,
given a rectangular ROS, though they may not always be BIBO stable [52]. The
same arguments can be applied to show that mixD systems derived from continuous
positive M-D networks are PBIBO stable in both rectangular regions of support and

some non-rectangular regions of support.

The same continuous M-D structure as in [31], which is a general M-D reactance
2-port as shown in Figure 7.2, containing only unit M-D capacitors, resistors, gyrators
and transformers, is considered here. All M-D inductors and capacitors can be realized
as combinations of gyrators, transformers and unit capacitors. The input is a voltage

across port 1 and the output is the voltage across a non-zero resistor terminating port
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Figure 7.2: A M-D Reactance 2-Port Terminated in a Resistance

2 so the general M-D transfer function can be written

Va(s)

T = Vi)

(7.35)

This continuous domain system can then be transformed into a mixD system by
applying the bilinear transform (equation 2.22) or the modified bilinear transform

(equation 3.10) to each dimension which is to be discrete in the final design.

7.4.1 Mixed Domain Systems under Rectangular Regions of
Support

Theorem 7.6 is the extension of theorem 3 in [31] to mixD systems.

Theorem 7.6 The voltage-transfer function of an M-D reactance 2-port, where the
output voltage is across a resistor, leads to a PBIBO stable mized domain system
over any rectangular region of support, Vigzy ., after the application of the bilinear

or modified bilinear transformation to M — (p — 1} dimensions.

Proof: If the continuous domain transfer function of the M-D reactance 2-port,

as shown in Figure 7.2, is given by equation 7.35 then the 1-D transfer function Tk(sk)
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From equation 7.40 we have that

- ¢ Kn(1 - e e Kn "
B(Sl,zp lesd\n(l)z( (1) z(_lp)) # 01v|zp 1nK 1(1)2(_p()1) <l,s; = l,z(_lp) =0

-p) H
(7.42)

Again, since z, appears only in the form of the bilinear transformation no cancellation
can occur and the condition holds if [eX::(!)| < 1, all the elements of K,(1) are negative
and |z;!| < 1. Theorem 7.5 then applies. QED.

7.5 Conclusions and Further Work

In this chapter a number of conditions for the stability of mixD systems are derived.
These include conditions in the spatio-temporal and SZ-domains for PBIBO stability
under both rectangular and non-rectangular regions of support. Also, filters designed
from continuous domain M-D reactance 2-ports are shown to be PBIBO stable after
bilinear transformation into mixD filters under rectangular and some non-rectangular
regions of support.

A major concern and the primary motivation for this work concerns the stability
of the IDD and Bowil filters discussed in chapters 3 and 4 with delay variations. In
section 3.5 it was shown that changes in the delay element lengths corresponded to
applying the original filter to skewed inputs over a non-rectangular region of support.

In terms of equation 3.11, the region of support Vros(n) for these filters is given by

IA

—~m;n3 t -mnzg + T

IN

teR
—moanz+ Ny (7.43)

VRosm) = 4t:n| —man3 < n,
nel?
0 € n3 £ 00,(N3=00)

IN

so that, according to theorem 7.7 the filters will be stable if the delay lengths are
increased, but not if they are decreased.

The Challenger Real-Time Video Processor [1,55] was used to implement the
fully digital version of the frequency planar pass filter (using the transfer function

coefficients given in table 6.1) with both rectangular and non-rectangular regions of
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support by varying the length of the frame delay. It was confirmed that increasing the

length of the delay led to stable responses and decreasing the length of the delay lead
to unstable responses, as expected by theorem 7.7. The trials were not exhaustive.
However, using the Endeavour Analogue Video Filter, the opposite was found:
increasing the length of the frame delay resulted in unstable responses and decreasing
it resulted in stable responses. The results shown in chapter 5 confirm this. The
reasons for this are not understood, but the effect is advantageous, since lengthening
the frame delay does not skew the passband into octants other than the first while

shortening it does.
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Chapter 8

Conclusions and Recommendations

for Further Research

8.1 Conclusions

In this thesis the design, implemenation and testing of real-time, controllable, analogue
3-D LT filters for video signals is described. These LT filters enhance or reject signals
on the basis of their velocity and are intended as a building block for various applica-
tions in which velocity information is important. Because of the large amount of data
in video signals, the digital, discrete domain approach to processing them requires a
great deal of expensive hardware to achieve real-time operation. The analogue, mixD
approach is intended to overcome this obstacle, using the inherent speed and lower
cost of analogue computing elements. The major improvement of the filters described
in this thesis over previous implementations is that they are controllable remotely in
real-time, rather than by the manipulation of potentiometers and switches. Also, this
is the first time that the 3-D frequency response of a real-time filter for video signals
bas been experimentally measured in an automated manner and over a large portion
of the frequency domain. In the interest of improving the performance of the filters,
a number of sensitivity issues unique to mixD filters are investigated. Finally, the

stability of these filters under manipulation of the delay elements, which enable them
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to be much more flexible, is addressed.

Chapters one and two present an introduction to the basic mathematical tools
needed in the design of mixD systems; to the class of linear trajectory signals, on which
the velocity selectivity of the filters to be designed is based; and to raster scanning and
in particular the NTSC raster scan video format, which is used for input and output
to the system. Objects in video sequences that travel at a constant speed in a straight
line belong to the class of linear trajectory signals. In the frequency domain, the
energy in these signals lies entirely in a plane related to the object’s velocity, which is
the connection between frequency planar filters, LT filters and velocity selective filters.
The mixD approach to processing video signals is shown to be advantageous in that
the most common format for broadcast and storage of video sequences, NTSC raster
scan format, is a mixD signal. MixD filters can process this raster scanned signal
directly, without the sampling and conversion needed by digital systems. The raster
scan operation is treated mathematically as a transformation of variables, which is
used in later chapters in the design process, to explain the effects of manipulating the

delay elements, and to derive the frequency response measurement technique.

Chapter three describes the design of two linear trajectory mixD filters using the
ladder form structure. The first order frequency planar pass filter is the simplest linear
trajectory filter and is derived from a continuous domain prototype containing one
3-D inductor and one resistor. The second order frequency bowl pass filter has better
velocity selectivity in the low frequency region, but uses more operating elements. It
is derived from a continuous domain prototype containing two 3-D inductors and two
resistors. The only difference between these designs and those developed in [4,5] is
the modification of the bilinear transform, which increases the stability margin and
reduces sensitivity to delay element gain errors. In their original form these filters are
limited to passband trajectories that lie in the first octant. A technique to overcome
this limitation by changing the length of the delay elements is discussed and its effects

described with a simple model.

A major goal of this research work was to develop a method to provide para-
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meter control of the real-time filter, while in operation, without having to manipulate

the circuit elements mechanically. In chapter four, the implementation of the filters
designed in chapter three, using wide bandwidth analogue multipliers and high gain-
bandwidth product operational amplifiers as computing elements, is described. The
filter parameters are supplied as currents to the analogue multipliers either directly
from an exterior source or from onboard D/A converters. The D/A converters, along
with some other registers which determine filter structure and delay element opera-
tion, can be controlled via a GUI running on a workstation to which the filters are
connected. The hardware and software that makes up this implementation is called

the Endeavour Analogue Video Filter.

Chapter five describes the characterization of the response of the filters in both
the spatio-temporal domain and the frequency domain. They are shown to be effect-
ive, visually, in enhancing objects with a given velocity and attenuating others. The
filters are prone to instability due to overflow non-linearities, so some suggestions for
improvement are made. Also, the issue of calibration is touched on. The technique
for measuring the 3-D frequency response of a raster scan based filter suggested in [5]
is applied, for the first time, to the filters; and magnitude responses for a number of
different settings are given. While the measured responses are good, they differ from
the ideal, mostly by a 1-D lowpass response. A simple 1-D highpass postfilter and

some changes to the circuit are suggested to compensate.

In chapter six, the sensitivity of the filters to errors in circuit component values
is investigated. Theoretical lower bounds on the worst case and Schoeffler sensitiv-
ities to delay element errors for the implementation of any given transfer function
are derived. These can be used to compare different filter structures, before they
are constructed. It is shown that the ladder form structure used in the Endeavour
Analogue Video Filter has excellent sensitivity properties and that the modification
to the bilinear transform introduced in chapter three to increase the stability margin

also reduces the sensitivity of the filter to delay element gain errors.

In chapter seven, the conditions for PBIBO stability developed in [31] for dis-
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crete domain filters are extended to mixD filters and to non-rectangular regions of

support. [t is shown that mixD filters derived from passive continuous domain pro-
totypes via the bilinear or modified bilinear transforms are PBIBO stable under all
rectangular and some non-rectangular regions of support. Non-rectangular regions
of support arise in the case of mixD filters when the length of the delay elements
are manipulated. The stability conditions were tested both with a discrete domain
implementation, for which they held; and with the Endeavour Analogue Video Filter,
for which they were reversed. The reason for this is not understood and should be

persued in future research in the area.

8.2 Recommendations for Future Research

The field of mixD filter design and implementation is quite new, so many areas of
interest are still unexplored. Even in the areas that have been examined the results
are preliminary and invite further exploration. Some specific areas that may be of
interest are suggested below.

To further reduce the cost and power requirements of implementing these filters,
it would be of interest to explore alternate implementations of the delay elements.
Several options have recently become available or may be possible in the near future,
including analogue memories and large digital FIFO memories. Currently the size and
persistance of the analogue memories are too small for a frame delay, but progress
is being made. With recently released digital FIFO products it is possible to reduce
the number of ICs associated with the delays from 178 to about 34. Another major
reduction in size and power would come from a VLSI implementation of the analogue
functions.

Improvements to the implementation might include a fixed lossy integrator, in
place of the current variable one. This would eliminate the delay through the feedback
loop that is probably causing the extra lowpass characteristic measured in chapter five.

The passband would still be completely controllable, though the bandwidth would
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only be adjustable in discrete steps. It would also reduce the analogue hardware

requirements significantly. Another solution to this problem would be a 1-D highpass
postfilter.

The results of the theoretic investigation into stability under delay variations
in chapter seven are inconclusive. Further study would be appropriate.

Finally, one of the purposes of developing these filters is the implementation of
affordable adaptive tracking algorithms, classification systems and other applications.
An adaptor module added to the present platform would be instrumental in achieving
this end.
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