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ABSTRACT

To evaluate the time-dependent redistributions of inter-
nal stresses in concrete,-a finite. element programme is'
developed using three-dimensional elements of hyprid stress
formulation. _Creep and Sﬁrinkage prediction functions
proposed by CEB~FIP, 1978 and ACI Committee 209 are incorporat-
ed in the programme. The principlé of supe;position is
assumed to hold true for concrete. To avoid the storage of
stress history, a set of Dirichlet series ‘are ‘employed;
The series proposed by Kabir and Scordelis is used to approxi-
mate the ACI creep function and the series proposed by Khalil,
Dilger and Ghali to approximate the CEB-FIP functions. Instead
of building the Dirichlet coefficients into the programme,
as had been done in the past, a set of coefficients are
found for each time~step. This method is found to give a
series with much better correlation to'the.prediction func-
tions. Simulation of threejdimensional creep is achieved
by assuming uniform creep coefficients in all directions.
Creep Poissonfs ratios are calculated as a function of instan-
taneous strains using a method introduced by Gopalakrishnan,
Neville and Ghali. Since the current prediction models do

(W] .
not evaluate creep and shrinkage as a local property, a

iii



simple manipulation empldying different volume/surface ratios
across a section is proposed.

The finite element programme is applied to analyse a
composite bridge for time~dependent stress redistributions.
The effect of age difference of components ‘and differential

shrinkage withina;component<x1internalstresérediétribution
is studied by assigning varying volume/surface parameters
to different zones of the cross section. Analysis is also
done with "creep-~transformed" section properties and the
results are compared with the results of the finite element

analysis.
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NOTATION

a; coefficient of time function

a height of member cross—-section

A constant depending on material properties and
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b width of member cross-section
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B constant depending on material properties and
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[B] strain matrix

o creep compliance

Cyq drying creep

icl material compliance matrix

D time function describing delayed elastic creep

[D] elasticity matrix-

E(t) modulus of elasticity of concrete at age t

£l concrete strength

F time function describing irreversible creep
_F mean error

{r} vector of nodal forces

{AFao} equivalent nodal load due to initial strain
increment

{g} nodal loads due to body forces
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CHAPTER ONE

INTRODUCTION

1.1 . General

It has been 1long established that investigation of
time-dependent behaviour of structures is essent{al‘to ensure
their good serviceability and ultimate strength performance
during their entire lifetime, The term "time-dependent"
includes the effects due to creep, éhrinkage and relaxation
of steel. Creep is a gradual increase in deformation under
sustained load and shrinkage is a stress-independent deforma-
tion mainly brought about by drying. Creep deformatioﬁ'can
reach as high as three to foﬁr times the instantaneous elastic
deformation and shrinkage can be as high as 800 micro-strains.
Relaxation is defined as a gradual decrease in stress under
cénstant strain. Relaxation of prestressing steel may lead
to a loss of prestressing in the order of ld%., But, with
the introduction of low relaxation steel, this 1loss has
been reduced to negligible levels.

The effects due to creep and shrinakge are mainly
two-fold. The first is growth of deflections, which is
~guite serious since this alone may lead to serviceability
problems. In prestressed concrete members, the increased

deformation due to creep can cause losses of prestress of

1



up to 35%. Thé second effect is long-time redistributions
of internal stresses. This occurs Secause of the presence
of bonded reinforcement and because parts of many structures
have diffefent creep and shrinkage rates amd magnitudes due
to differences in:age, temperature, size, composition and
humidity conditions. The redistrigutions are such that com-
patibility is maintained within a section.l The stresses
introduced by differential shrinkage, sustained temperature
gradient and other extraneous sources are redistributed by
creep. Thesé redistributions are normally not serious and
do not affect the strength of a struéture. But they are
cause of concern if the Creep and shrinkage properties of
different componentsﬁn a member vary significantly. Cracking
due to differential shrinkage alone is not uncommon in struc-
tures. Increasé in internal stresses of the order of up to
5 'MPa (tension) was observed in the present investigation.
Although time-dependent analysis is a standard procedure in
design these days, the analysis is generally 1limited to
linear idealizations of the actual structures and an accurate
evaluation of the redistributions of internal stresses.cannot
be accomplished by this method.

Creep of concrete has been much researched, especially
since the wide-spread use of prestressed concrete and it's
application to important structures such as nuclear reactors.

This is evidenced by the vast amount of literature available



on the subject. 1Instead of attempting an exclusive'review
of 1literature, the relavent 1iteratare is 'cited locally
. throughout this exposition since an exhaustive coverage of
literature is considered unnecessary with the publication
of several excellent text books (1.1, 1.2) and repo;ts on

the state-of-the-art (1.3).

1.2 Objective and Scope

Analytical solutions to time-dependent problems are com-
plex. 'Moreover, analytical solutions are based on many simpli-
fications and assumptions which tend to impede representative
modelling of the structural members involved. Finite element
analysis 1is an excellent alternative in such casas, since
finite element modelling of complex material behaviour is
now possible with the advent of powerful computers with
extended memories. In cases where the time—depeﬁﬁent
redistributions of internal stresses ara the prime targets
of analysis, finite element analysis may be the only practical
choice. Simplified analytical methods such as
"creep-transformed" section properties method (1.4) have been
introduced recently which can greatly reduce the computational
efforts for time-dependent analysis. But even these methods
are too complex to use by hand for many practical{structures.

The objective of the present study is to trace the

redistribution of internal stresses in concrete structures



“using the finite element method. For this, a comprehensive
finite element code is developed using three—dimensionai
"hybrid" finite elements. Elements of hybrid stress (1.5)
formulation are selecteq sinée they are found to give a
much better performance éhan the conveﬁﬁional displacement
formulated élements. For creep and shinkage prediction,
constitutive models proposed by CEB-FIP, 197§ (1.6) and ACI
Committee 209 (1.7) are incorporated into the program. The
éuperposition theorem is assumed to hold true and to avoid
storing the past“sfress history, the creep functions are
expanded to finite Dirichlet seriés.. The ACI creep function
is approximated by the series proposed by Kabir and Scordelis
(1.8) and the CEB-FIP creep function by the series proposed
by Khalil et al. (1.9). Use of these series instead of the
actual creep prediction functions simplifies the storage
problems and renders the analysis of complex thrée-dimensional
concrete structures posgible;

Chapter 2 briefly discusses the various meéhaniéms that
are thought to underly the creep and shrinkage phenomena,
the various constitutive relations and recommendations by
Engineering Societies to model the phenomena. A compariscn
between different prediction models and a discussion 6f‘cree§\
uﬁder different states of stress also are attempted.

Because of varying drying rates, the creep énd shrinkage

rates across a cross section can vary considerably. It is

.



essential to establish these different rates of creep and
shrinkage ecross a section to arrive at a realistic evaluation
of the time-dependent redistribution of internal stresses.
However, the creep.and shinkaée prediction models that are
currently available indicate an overall or mean creep and
‘shinkage across a section. To overcome this problem, a
simple manipulation of the current prediction models to evalu-
ate creep and shrinkage as a "local" property is proposed.
In Chapter 3, the various <classical methods of
time-dependent analysis are outlined and the varioes forms
of Dirichlet series to approximate creep functions are
reviewed. The series proposed by Kabir and Sco;delis and
Khalil et al. are discussed and a way to evaluate Dirichlet
coefflclents of better performance is 1ntroduced To verify
the validity of the series used in the present investigation,
comparisons of analyses are made with experimental data.
Chapter 4 is devoted to the application of the finite
element technigUe to solve time-dependent problems. The
basic ingredients of various modes of finite element formula-
tions are discussed and a comparison of performances of
elements of different formulations is attempted. The trans-
formation of a finite element érognam for static-elastic
analysis into a program capable of time-dependent analysis
is dealt with in detail and an outline of the evolution of

the use of finite element method to model structural concrete



is presented. Finally, the capabilities of NON_SMAC,'the
finite element éode developed for the present investigation
are listed and a comparison of results of computer analyses
QithAexperimental results is presented.

In Chapter 5, seyeral examples are analysedr for
time-dependent redistributions of internal stresses by the
present method of analysis. Three-dimensional hybrid finite
elements aré used to represent concrete as well as reinforcing
steel. The results are presented in the form of plots of
initial and final (10,000 day) stresses. The
"creep-trénsformed" section properties method is extended
~to analyze sections when creep and shrinkage strains vary
throughout the areas. Numerical examples in which the results
of computer analyses are compared with the results oﬁ,the

aﬂalytical method are also provided.



. CHAPTER TWO -

CREEP AND SHRINKAGE PROPERTIES

2.1 1Introduction

Before embarking on developing analysis techniques fof
creep and shrinkage effects, it is important to understand
the cree§ and shrinkage phenomena, their underlying mechaniéms
and constitutive relations. This chapter is devoted to such
a pursuit. 1In addition to the various mechanisms that are
thought to underly the phenomena, the parameters that are
identified to influence creep and shrinkage are listed.
The 7var£ous constitutive relations that are prosted to
’relate between the state of the influencing parameters and
the state of the phenomena are discussed. Among the contempo-
rary prediction models, the CEB-FIP 1978 model, the ACI Commit-
tee 209 médel and the Bazant and Panula's model are described.
A comparison between different prediction models is also
attempted. Since the effects of diffe_rential creep and shrink-
age ét various points on a cross—section‘are quite pronounced,
this topic is discussed in detail and a method of evaluation
of differential creep and shrinkage is proposed. Finally,
. concrete creep ﬁnder different states of stress is

investigated.



2.2 Creep and Shrinkage ‘Mechanisms

The mechanism of a phenomenon is the physical process
or processes which are thought to have the most influence
on the phenomenon being considered. To develop constitutive
models for creep and shrinkage, the first step is to understand
the:mechanisms that underly the phehomena. Numerous theories
have beén proposed over the years to elucidate creep and”
shrinkage, but none seemingly adequate to fully explain all
the phendémena. Some investigators try to formulate deforma-
tion mechanisms on the basis of creep and shrinkage measure-
ments carried out on concrete specimens,'while others try
to approach the problem at a microstructural level, studying
the physical characteristics of xyrogel in hardened cement
paste.

Some of the broad mechanisms that are proposed to explain'
creep are mechanical deformation theory, viscous flow and
plastic flow theories, seepage of gel water theory, delayed
elasticity and solid solution theory (2.1). The mechanical
deformation theory attributes creep to the change in the
form of the capillary étruéture of cement paste due to applied
stress. The viécousrflow theory is based on the arguement
that hydrated cement paste is a highly viscous liquid Qhose
viscosity increases with time. This viscous flow represents
the creep of concrete. The plastic flow theory suggests

" that creep of concrete is similar to plastic flow of metals,

-



i.e. a result of slipping along planes within a crystal
lattice. The seepage theory takes creep to be due to seepage
of gel water under pressure. Hydrated cement paste is a
rigid gel wherein the applied ioad causes an expulsion of
the viscous component from the voids in the elastié skeleton.
The so0lid solution théory explains creep on the basis of
change in vapour pressure of the water in gel affected by
applied stresses. This results in an alteration of the
water content as well aé the volume of the gel.

The mechanisms described so far may be classified as
'real mechanisms' or in other words, physically meaningful
mechanisms. A large extent of the actual creep behaviour,
however, 1is dependent on something called the 'apparent
mechanisms' (2.2). Apparent mechanisms are phenomena such
as micro-cracking and intérnally created states of stress
thch modify time-dependent deformation. The most important
apparant mechanism is drying creep, which represents the
accelerated creep due to the drying process. Another apparent
creep mechanism is the thermal transient creep i.e. the
increased time-dependent defqrmafion if concrete is heated
while under load. Yet another creep mechanism is based on
the two phase nature of concrete. Under stress, the aggregates
react in a linear elastic manner @hile the cement paste

acts viscoelastically, undergoing creep deformation. This
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way elastic energy is stored in the two-phase material and
this causes some reversible creep if the concrete is unloaded.
In a similar way, the shrinkage mechanisms also can be

divided into real and apparent mechanisms (2.2). The real
mechanisms are capillary shrinkage, chemical shrinkage and
drying shrinkage. The capillary shrinkage is attributed to
the attractive forces between concrete particles separated
by liquid filled capillary as a result of the capillary
- pressure. Capillary pressure starts to increase if the surface
begins to dry since menisci ére formed between particles
. close to the surface. The chemical shrinkage mechanism repre-
sents all volume changes caused by chemical reactions. The
improtant chemical shrinkage mechanisms are:

(a) hydration shrinkage

(b) thermal shrinkage

(c) dehydration shrinkage

(d) crystallization swelling

(e) carbonation shrinkage

(f) conversion shrinkage
The hydration shrinkage represents the characteristic volume
change that Portland Cemen't undergoes as it's main constituents
react with water. The thermal sﬁrinkage is related to the
heat of hydr_ation which can cause swelling in massive elements.
The temperature reducfion that accompanies the slow doWn of

rate of hydration causes the thermal shrinkage. The dehydra-
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»

tion shrinkage is due to the loss of hydrate water of some
of the unstablé hydration products under drying conditions.

Crystallization swelling is caused by'the‘pfgssure that
accompanies crystallization. During hydration both colloidal '
products and crystallized phases are formed. Once a solia
skeleton is built up, internal crystal growth is hindered
and thus an internal pressure is generated, causiﬂg swelliﬂg.
Calcium hydroxide formeq during hydration of cement reacts
with carbon di oxide from the ambient air to liberate water.
Evaporation of this water results in what is known as the
carbonation shrinkage. The conversion shrinkage occurs as
some phases in hydrated cement paste, especially aluminate
hydrates undergo a slow transition to more stable forms.
The drying shrinkage is defined to be the volume change of
a colloidal inert system as it's moisture content is changed.

The apparent shrinkage mechanisms include the influence
of geometry and the influence of cracking (2.2). Depending
on the geometry and diffusion coefficient , a moisture gradient
is built up in concrete immediately after the drying process
begins.r This‘causes shrinkage of the oﬁter layers to be
hindered by the still saturated inner parf; resulting in
internal stresses and accompanying deformations, Undérdrying
conditions, tensile stresses in the outer zones usually over-

come the tensile strength of concrete resulting in crack

1
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formation. Cracks can change the time—dépendence as well
as the final value of shrinkage strains. |

Though these mechanisms are devised on the basis that
creep and'shrinkage are independent phenomena, it is seen
(2.2) that if creep and shrinkage take place simultaneously,
the observed deformation is always higher than the sum of
creep and shrinkage when measuréd separately on companion
specimens (see Fig. 2.1). It follows that mechanisms which
have been defined on the basis of the usual subdivision
have no real meaning and the phenomena have to bertreated
as interdependent. The latest trend in studying these mecha-
nisms is by means of numerical methods such as finite element
analysis. A concrete-like composite structure can be
generated (Fig. 2.2) and the time-dependeiit béhavioux under

load can be studied with the help of computers (2.3).

2.3 Constitutive Relations

Constitutive relations for a phenomenon may be defined
as a mathematical expression that relates the states of the
'different influencing parameters to the state of the phenomenon
itself. Thus the stages involved in developing the constitu-
tive relations corresponding to a phenomenon are identifying
the influencing parameters, describing a representative mecha-
nism and determining the inter-relationship between thé param-

eters and the working of the mechanism. 1In this section,
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the variables that are observed to influence the creep and
shrinkage phenomena and some of the available constitutive

relations are listed.

2.3.1 1Influencing Parameters

Creep and shrinkage of concrete ére influenced by a
large number of factors -which include material characteris-
tics, member geaﬁetry, environment and loading (2.1, 2.4).
These factors may be classified into intrinsic and extraneous
factors (2.5). The intrinsic factors are those which remain
unchanged once the concrete is cast. These include the
design strength, the fraction of aggregate in the concrete
mix, the member geometry etc.. The extraneous factors are
those which can vary after casting, for eg., temperature,
age at loading and relative humidity.

The material characteristics that are observed to influ-
ence creep and shrinkage include: water cement ratio, mix
proportions, aggregate characteristics and the degree of
compaction. The corresponding variables that can be included
in constitutive relations are: the type of cement, the
slump of concrete, air content, fine aggregate percentage
and cement content. The initial curing conditions also affect
the creep and shrinkage behaviour. The  length of curing,
temperature of curing and curing humidity can be the curing

variables. The geometric factors influencing creep and



15

shrinkage are thegsﬁape and size of the member under consides—
~ation. Volume to surface ratio or minimum thickness may be
the geometric variables. The concrete age at the application
of load, the duration of loading‘and the type of stress and
distribution of stress across the cross-section are the loading
factors affecting creep. The stress/strength ratio is also
an influencing parameter. The different ways the variables
affect the creep and shrinkage behaviour of'concrete are
well documented by various authors, eg.: ©Neville and Dilger

(2.1), Hanson (2.6) and Neville (2.7).

2.3.2 Constitutive Models

Based on experimental trends, several mathematical models
have been proposed to represent shetime—dependentdeformation
of concrete. 1In general, these 'deterministic' expressions
may be divided into four categories: power ekpressions,
logarithmic expressions, exponential expressions aﬁd
hyperbolic expressions (2.1). The first two expressions
_don't have a finite limit, but the last two tend to a limiting
value. |
The power expressions have the basic form:

B
clt, t,) = A(t -t ) . (2.1)
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where (t - t_) 1is the duration of loadimg, c(t -t,) is
the creep compliance and A and B are constants depending on
the material properties and the environment. An expression
of this‘type was first proposed by Straub (2.8) and Shank
(2.9). Bazant (2.10) has included an additional inverge
power term for the effect of the age t, at loadihg;and
proposed the 'double power' law. The most recent, 'triple
power' law (2.11) is a modified version of the double power
law. '
.Hanson (2.6) propésed a logarithmic law of the form:

/
clt,t,) = @(t,)logl (1+(t-t,))} (2.2)

where <¢%to) is an experimental parameter fepreéenting the
time rate of éreep.‘ This expression gives good predictions
for long creep durations but the results are not as good
for short durations (2.1, 2.5).

Exponential expressidns are derived from considerations

of the rate of creep and have the form:

c(t,t,) = géo{l-exp(A(t—tic))}  (2.3)

where ¢i is the limiting ultimate creep and A .is a constant.
Expressions of this type were proposed by ‘Moersch (2.12),

‘McHenry (2.13) and'others. Exponential representation agree
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well with the experimental data and especially for creep at
drying (2.5).
Propo'sed by Ross and Lorman (2.14), the hyperboli;c expres-

sions have the form:

c(t,t,) = mmmmm——- (2.4

where A and B are material constants. This typelof expression
is convenient for fitting of test data, but is inapplicable
to long creep durations (2.14).

The four general forms discussed above can be used.forﬂ
creep predictions. But for shrinkage, the exponential and
.hyperbolic expressions are recommended since shrinkage is
taken to reach a limiéing value (2.1l). Knowing the material
parameters based on short term tests, these expressions can
be employed to extrapolate the long term behaviour of concrete.
These models yield accurate results if thé actual ﬁaterials
are tested under environmentai and loading conditions similar

to those expected in the field (2.10).

2.4 Prediction Models by Engineering Societies

Since the experimental data for a particular structure
to be anélysed for time-dependent effects are usually lacking
or are incomplete, the constitﬁtive models as described in

Section 2.3 are not normally used in'practice. Instead,
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practical prediction models proposed by engineering societies
are most commonly used. These prediction models are based
. on the coﬁstitutive models described earlier and are derived
from experimental observations and the abund.amt‘ data available,
in the literature. Using these models the respose‘behaviour
at an arbitrary time step can be evaluated almost as easily .
as evaluating an elastic solution. They apply primarily to
an isothermal and relatively uniform environment and they
are commonly not intended for the anal?sis of creep recovery
due to unloading (2.4).

Some of the contemporary creep and shrinkage prediction
models are : |

(a) ‘Model of CEB-FIP Model Code 1978 (CEB-78) (2.15)

(b) 'Model of ACI Committee 209 (ACI) (2.16)

(c) Bazant and Panula's ‘Model (BAP) (2.17)

(d) ‘Model of German Concrete Code (DIN) (2.18)

(e) ‘Model of CEB-FIP Model Code 1970 (CEB-70) (2.19)

(f)ﬁ ‘Model of British Concrete Society (BCS) (2.20)
LOf these, the BAP model, though not proposed by an engineering
society ,is included under the general classification
'prediction models by engineering societies' in the present
study. On the basis of the mathematical formulation the
prediction models may be subdivided into two groups. The

first group which includes the models ACI, CEB-70 and BCS
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gives the cfeep coefficient ¢Xt,to) in terms of products

of coefficients:

Bert,) = K k,ook ..k(E) (2.5)
where k; are independent coefficients to describe the effect
of parameters on conére£e creep and k(t) represents the
development of creep with time. The second group includes
BAP, CEB-78 and DIN models. The total creep is described
as the sum of individual strain components. In CEB-78 and
DIN models, creep is subdivided into a delayed elastic strain
and flow components. Here the delayed elastic component is
associated with creep recovery while the flow component is
an unrecoverable part.

.Being the most widely used in North America, the models
CEB-78, ACI and BAP are described in the fslloWing sections.
The CEB-FIP 1978 and the ACI Committee 209 models are the

prediction models used in the present investigation.

2.4.1 CEB-FIP 1978 Model

The expressions for the mean creep coefficient and the
mean shrinkage strain across a cross section as given by

the CEB-FIP 1978 Model Code (2.15) have the basic form:
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P (et = Pie,) + PPt + BUAEI-P(E)] (2.6)

28

EplErtg) = £ PLE) - B ()] (2.6a)

where gg;t,to) = creep coefficient, i.e. the ratio of creep
at time t due to a unit stress applied at age to,‘to the
corresponding elastic strain at the age of728 days; 92 = 0.4;
q% is a coefficient depending on environmental humidity and
effective thickness of member; f% and /ihare functions of
time and effective thickness; [3;( is a function of load duration
(t-to) and [% is the .initial flow ‘function, depending on
age at loading. 'Mathematical expressions are specified for
the functions j%, ﬁ, and f}, but the shrinkage developement
function /%h is defined iﬂ a graph. 'Many other parameters
are defined in the form of tabies and graphs and this makes
the CEB-FIP model inconvenient for computer implementation.
Interpolation polynomials are generated to represent such
functions and parameters in the present computer analysis.
The age of concrete is adjuéted for the cemeht type
and curing temperature (if different from 200C) by the follow-
ing expression:
£ = Eii {IT(t ) + 101 At } (2.7)
e 300 M ‘M
where k, is a factor depending on the type of cement, T is

the mean daily temperature of concrete (OC) occuring during
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a period /.\.t.H days. The adjusted age of concrete t, is to
be used instead of t in the evaluation of creep and shrinkage

using Egn. 2.6.

2.4.2 Model of ACI Committee 209

The ACI Committee recommendations are based on the works .

-

of Branson et al. (2.21) The prediction models have the follow-

ing form (2.16):

) 0.6
(t-t,) ‘
¢(t,to)J = mmmmm—————— 56 PIE,) (2.8)
10 + (t-t,) '
, (t=t) .
U R p— LA R (2.9)
C + (t-t,) ' )

where ¢Mt,qp) is the creep coefficient, which is the ratio
of c?eep at time t , generated by a load applied at concrete
age t, to the‘corresponding elastic strain at t_; ém(t,gh)
is the shrinkage strain at t when the drying starts at‘age
gh; %é“%) and £9uﬁre ultimate creep coefficient and ultimate
shrinkage which are functions of envirénmental huﬁidity,
minimum thickness of structural member, slump,cementcéntent,
percentage of fine ‘aggregates and air content and;é is a

constant depending on curing conditions.
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2.4.3 Bazant and Panula's Model

Derived from diffusion theory and activation energy
theory, this model in it's basic form recommends-a double
power law (2.10, 2.22) and recently, a log-double power law
and a triple power law (2.11) havevbeen proposed. The double

power law has the form:
-m . N .
Pleit,) = Ple, + )it - ¢, (2.10)

where ¢yt,to) is the basic creep coefficient, which is the
ratio of basic creep (creep in the absence of dryingi at
age t due to a load applied at age t_, to the corresponding
elastic strain based on the ‘'asymptotic modulus’ E,.
Asymptotic modulus is approximately 1.5 times the conventional
elastic modulus for 28-days old concrete; m ~ 1/3, X ¥ 0.05,
Q?z 3 to 6 and n %~ 1/8, which are material parameters.

The log-double power law is introduced since the double
power law is found to give too high final slopes of creep
curves (2.11l). The log-power law is obtained by combining
the double power law with a logarithmic law, with the transition
from thek power curve to the logarithmic curve occurring

gradually. The log-power law may be expressed in the form:

n

o m
P,y = Yoinlle Y(e, + o) (t-t,) 1 (2.11)
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where @&, “H, and m are constants depending on the standard
cylindrical strength of concrete at age 28 days and n and
. & are experimental constants.

Though the log-power law is supposed to be an improvement
over the double power law in terms of lpng-term predictions,
it has the disadvantage of being inapplicable for very short
load durations. The triple power law is developed to offset
this problem. This law (2.11) exhibits a smooth transition
from the déuble power law for very short durations to the
logérithmic law for long durations. It.is expressed as:

’ - n ‘
Qz(t,to) = Ple, +o0) [(t=t,) = Blt,t,5n)]  (2.12)

tt,

. t ‘
where B(t,tosn) = n \ [1-{---2-} 1 ag F=(t-t )  (2.13)

B(t,t,sn) is a binomial integral, the values of which can
be interpolated from tables in Ref. (2.11). The various
coefficients have the same meaning and recommended values
as in the double power law. oo -

‘Mean shrinkage of a cross section is expressed as:

£ ltit,) = € k,S(9 (2.14)

where E%hmis the final shrinkage at humidity zero, which
depends on mix ratios and the strength; kh is a function of

environmental humidity and S(@) is a function giving the
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evolution of shrinkage in a non-dimensional time &. 1In
case of drying an additional term Cy4 is added to the right

hand sides of creep equations 2.10 and 2.11l.
» / -
Cy(tst,) =7 £y (t,)k, S(8) (2.15)

where gi(to) is an empirical function of age at loading t,s
I -
k, is a function of environmental humidity and S(8) is an

empirical function of non-dimensional time &.

2.4.4 Comparison Between Different Models

There had been several attempts (2.1, 2.23, 2.25) to
compare the different prediction models for creep and shrminkage
with experimental results tostudy‘theirrelativereliability.
In this section some of the reported results of comparisons
are presented. 1In addition to the performance comparisons,
the relative simplicity of application of the different models
and their applicabiiity to different situations are also
discussed.

When the performances of‘many different models are to
be compared with a multitude of experimental results, statisti-
cal methods become inevitable. In an excellent comparison
study, Muller and Hilsdorf (2.23) uses the statistical parame-
ters V, V and f as the basis of comparison between the
different creep prediction models. These parameters are

defined as: '
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1. (
vV = - Vi (2.16)
N i=1
_ 1 N 2 1/2
v = { - Vi (2.17)
N i-1
~ 1 N 2 172
F = [ - > rFi (2.18)
N i=1
Si - 1 n
where vi = -- 1007, bi= -5 Pij
¢H n j=1
1 n 2.1/2 calc Qbi,q— obs ¢iw
Si = [=== 7. (APij) 1 5 Fi = mmmmmmmmmmmmomee o 2100
n-1 j-1 _ obs Pico _

in these expressions V is the coefficient of variation; F
is the mean error; Si is the standard error; 951j describes
the creep strain observed at time 3j using the prediction
model no. 1i; Aqéij is the difference between predicted and
experimental strains; n represents the number of differences
taken for each expériment; 961 is the mean calculated for
each experiment; N is the total number of experiments; 95%0
is the ultimate creep coefficient. Since most creép tests
are of relativély short durations, Ross's hyperbolic relation
(2.24) is used to evaluate the"observed' ultimate creep
'obs?éio'.

The results of the statistical evaluation are summarized -

in Tables 2.1 and 2.2. 1In Figures 2.3 to 2;5, the effects
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of specimen size, relative humidity and age at loading as
predicted by the various models are cémpared. The models
that are studied are: ACI Committee 209 model (ACI), CEB-FIP
1978 model (CEB-78), the earliest version of Bazant and -
Panula's model (BAP), model of German Prestressed Concrete
"Code (DIN), CEB~-FIP 1970 model (CEB-70) and the model proposed
by British Concrete Society in 1970 (BCS). o

Since it has been admitted (2.11) that the latest versions
of BAP model shows only a "relatively modest" improvement
in the coefficiénf of variation of the deviationé of the

formula from test data, the compariéons of Muller and
Hilsdorf using the early version of BAP could be applied to
the latest versions also. Based on their study, Muller and
Hiisdorf conclude that the most complicated procedureé are
not necessarily the most accurate ones. Considering the
large deviations between predictions and experimental data,
structures are to be analysed stochastically for both lower
bound and upper bound creep solutions.

The results of Muller and Hilsdorf is refuted by Bazant
(2.14) , who questions the validity of using Ross's hyperbolic
relations to extrapolate experimental Creep results. Bazant
reports (2.25) 90% confidence limits (i.e. the relative
deviations from the mean having a 5% probability of being
exceeded on the plus side and 5% on the minus side) Wao =

+/-31% for the BAP mbdel, “%0# +/-63% for the ACI model
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Table 2.1

Results of Statistical Evaluation (Ref. 273)

Parameter No. of Prediction Method
Expts. ACI CEB-78 CEB—70 BAP DIN BCS
_ 102 - 24,1 23.1 32.0 25.1 -~
V(Z)
72 24,8 24.5 22.5 31.0 26.1 -~
- 102 - 27.6 25.5 39.3 28.4 -
V(%)
72 28.3 28,2 25.0 35.5 29,1 -
_ 102 - 27.2 24,2 61.9 23.2 -
F(7%)
72 27.8 28.5 24,9 53.6 24.5 -
Table 2.2

Results of Detailed Statistical Evaluation

Parameters No. of : Prediction '‘Method
Expts. ACI CEB-78 CEB-70 BAP DIN BCS
(t £ 7 days) 17 -
V(%) - 24,1 25.3 43.8 21.2 -~
V(%) - 27.2 27.3 58.8 25.6 - °
(t-»60 days) 12 ) -
V(%) 31.2 25.8 24.1 27.8 23.6 -
V(%) 27.4 32.0 28.0 37.3 31.8 -
drying creep ’
7 <t <60 days 28
V(%) 25.3 28.7 26.3 33.7 29.5 -
V(%) 27.4 32.0 28.0 37.3 31.8 -
basic creep
.t 2 7 days 14
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and U%o= +/-76% for the CEB-FIP model for the same set of
experimental data. However for drying creep, the reported
results are (,= +/-29% for BAP, () = +/-42% for ACI and
“Wao = +/-32% for CEB. A regression of basic data for the
BAP, ACI and the CEB-FIP models from Ref. (2.31) is given
in Fig. 2.6. Regression for shrinkage is shown in Fig. 2.7.

| Since the current prediction models deviate so much in
their predictions and since they are so fundamentally differ-
ent, there is no doubt still room left for improvement.
Finally, in the midst of all this confusion,:the best appears
to be to follow Neville and Dilger's (2.1) stance, i.e. there
is not a reliable method to be recommended and that a simple,
proven method is preferable to a more complicated one, at
least to take advantage of the simplicity.

To have an idea of the relative simplicity of various
prediction models, their input requirements are summarized
in Table 2.3. Among the different models, BAP seems to be
the most versatile orie since it involves the influence of
temperature, cyclic loading or pulsating load, the effect
of a raiserin temperature before the loading starts etc..
But for a general time-dependent analyses of concrete struc-
tures, the CEB—FIP and ACT modelé are well suited in terms

of applicability and ease of computation.
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2.5 Differential Creep and Shrinkage Across

A Cross Section

The creeﬁ and shrinkage prediction models that are pres-
ently available indicate an overall or mean creep and shrinkage
across the cross section of tﬁe structural member under
consideration. Butinreality,thecreepandshrinkagestrains
at different poiﬁts of a cross section differ considerably

in their magnitudes (2.5, 2.26).

2.5.1 Causes and Effects

The variation of creep and shrinkage behaviour across
a cross section is more pronounced for mass concrete members
even if they are cast to be homogeheous. Concrete whenr
cast is wet and has a pore humidity of 100 %. When exposed
to environment, a gradual loss of moisture takes place.
This drying rate is much higher on the surface as compared
to the inner regions. For example, it has been reported
(2.5) that for a 6-inch thick slab, for the pore humidity’
at mid-thickness to reach that of the atmosphere, it takes
ovér 10 years. For other thicknesses this drying time is
proportional to the square of the thickness. For thick
uncracked members, concrete undergoes no significant drying
except for about oné foot from the surface. \L'Hermite and

Mamillan (2.28) have shown the pattern of this behaviour

with the help of dielectric probes (see Figures 2.8 and
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Table 2.3
Input Data Requirements for Various Prediction Models

Input Data Requirement Prediction, K Model
' ACI CEB-78 CEB-70 BAP DIN BCS

Compr. Strngth of Conc. x X X X X X

Consistency of Conc. X X - - X -
Type of Cement X X b4 X x' X
Cement Content - - X X - } -
Density of Conc. X - - X - -
Water/Cement Ratio - - . X X - -
7, Fines in Aggregates X - - x - -
Air Content in Conc. X - - - - -
Size & Shape of Member x X X X X X
Age at loading X b X X X X
Humidity of Environment x X X X X X
Temperature ) - X X X x -

: required

: not required
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2.9). Since drying is the principal mechanism undérlying
shrinkage (see Section 2.2) and since creep is éhown to be
affected by drying (Pickett effect (2.27)), ié follows that
the distribution of pore moisture across a cross section
s;gnificanély affects the éreep and shrinkage behaviour at
various points.

The variation in creep and shrinkage causes significant
stresses . and redistributions of stresses across a
cross-section. Redistributions of up to 60 % (decrease) on
the periphery and upto 40% (increase) at the centre during
creep tests on cylindrical specimens (see Fig. 2.10) has
been reported (2.26).- When concrete members of differing
material properties or age are Jjoined to form composite
members, different sectioné creep and shrink at different
rates. This causes additional deflections of the‘member
and rebdistr ibutions of stresses. Diffe_rent thermal and hygral
conditions at different sections alsogive rise todifferential
creep and shrinkage, consider nuclear containment structures
for example. |

If the surface of a structure is cracked, the cracked
éréa shrinks at a different rate as compared to the uncracked
regions. For members with thick and thin regions across
cross sections, the effects of differential creep and shrinkage
could be quite detrimental. To prevent problems related to

internal straining and the accompanying movements that are
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generated by the differential creep and shrinkage, expanéion
joints, sliding bearing etc. are to be provided. These added
structural releases may result in signifidant reduction of
the latéral stiffness (2.29) of the structure, warranting
design improvements at extra cost.

The currently available ‘constitutive models' for creep
and shrinkage are not true constitutive models in the sense
that they cannot evaluate the free shrinkage or creep as a
'local' property. These models use parameters such as
volume/surface ratio and ambient humidity which are not local
parameters, but parameters for the member as a whole. Conse-
quently, the models can yield only the mean‘or overall creep
and shrinkage strains. Undoubtedly, such models are not
sufficient for detailed time-dependent analyses of structures
involving thes effects of differing creep and shrinkage
behaviour at various points of cross sectionms.

- This deficiency has attracted the attention of ﬁany investiga-
tors (2.5) 2.26) of late and research efforts are currently
underwa§ to develop a model in the form of a true constitutive
relation. These effofts include that of Acker, who has

proposed an incremental relation (2.30) of the form:
& = f(e, T, w, b) (2.19)

where e is the rate of nonelastic strain (total minus elastic

strain); 0 1is the stress at the time of observation t; w
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is the water content at t and b is a parameter characterizing

the texture and structure of concrete.

2.5.2 Method of Evaluation

In the present study, the creep and shrinkage atciifferent
points on a cross section are evaluated employing a simple/
manipuiatic;n of the current prediction methods. 1In the CEB-FIP
1978 model, the prominent influencing factors are: size
and shape of member, age at loading, humidity of ambient
environment and type of concrete. Here the material factors
such as the type and age of concrete and therenvironmental
factor i.e. humidity are fixed for a member. The only
factor that the 'user' can have some control over is the
size and shape factor. The variable representing this is
the volume/surface ratio and by varying this variable across
a cross section, one should be able to evaluate differential
creep and shrinkage.

The procedure is best explained with the hélp of an
example. Consider a member of rectangular cro%s section
(Fig. 2.11). Subdivide the cross section as shown into several
seetions with thin sections near the surface and thicker
sections in the inside. Within each section the creep and
shrinkage behaviour is assumed to remain uniform. For the

top layer, the volume/surface ratio VSl is:

vsl = (b‘x al)/(b + 2 x al) (2.20)
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where b and al are defined in Fig. 2.11. The ratio for the

top two layers is:

vsl2 = (b x (al+a2))/(b + 2 x (al+a2)) S (2.21)
The variable volume/surface ratio is related to  the
irreversible part of the creep function through a factor

known as the notional thickness h which is given by:
h, = XAx 2 x VS (2.22)

where X is a.coefficient for ambient humidity and VS is
the volume/surface ratio. The irreversible creep strain is

given by the expression:

t 1/3 ¢, 1/3
ey g

LR (e) = (e ] = @ 1 (2.23)

t+H, tHH,

where E(t) describes the development 6f delayed plastic
strain with time; Hﬂto) accounts for the age at épplication
of load, t,: H{ is a time delay function depending on h,
and g@ is the flow coefficient, which is a function of
ambient humidity, consistency of concrete and h,.

In Fig. 2.11; the mean of the creep coefficient for
region 1 and the creep coefficient for region 2 should be
equal to the creep coefficient for the combined area consiéting '
of regions 1 and 2, since the prediction model evaluates

the mean creep over a region. Based on this observation,

the creep coefficient for region 2 can be found knowing the
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procedure related to Egn. 2.23. The results are tabulated

in Table 2.4 and they show the valiéity of the linear relation.

Thus, to evaluate creep strains at diffe;ent regions
on a cross section, the vqlume/surﬁace parameter is to be
calculated for each region using the procedure just described.
While doing this, one might start at the top surface and
work downwards, start at the boﬁtom sur face and work upwards
or approach from the sides. If the cross section is symmetrical
about a horizontal axis, the top to bottom and the bottom
to top calculations will give identical results for horizontal
layers. But for unsymmetrical sections, the top to bottom
" calculation and the bottom to top calculation may yield
different volume/surface ratios for the same layer. Iq such
cases the lesser value is chosen since creep is inversely
related to the volume/surface ratio. The same method applies
to the sidewise calculations, i.e. to the‘§ertical layers
as well., It should be noted here that for a layer lying at
the surface, the volume/surface ratio can be obtained directly
from the area of the surface exposed and the volume of the
region under consideration (ﬁhis can be just the perimeter
exposed and the area of thé region). It is for the inper
layers that the present method of evaluation apply. Finally,
the volume/surface ratio for a region A (Fig. 2.1l2) is taken
as the mean of the ratios for the horizontal layer through

A and the vertical layer through A.
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qfeep coefficients for region 1 and for the combined area

of regions 1 and 2. Thus in an analysis!'tbe v/s ratio
ﬂused for region 2 should be such that the creep coefficients
satisfy these relations. - Ideally, one should evaluate
Egn. 2.23 for region 1 and for regions 1 and 2 combined and
from these values determine the value of the equation for
region 2. The notional thickness h, and hence the v/s paraﬁe-
tér can bé solved from the value of Eqn. 2.23 for region 2
by means of an iterative procedure. This procedure is to
be repeated for each variation of the age at application of
load, t, and the observation tiﬁe t, since the creep flow
function (Egqn. 2.23) is depeﬁdent on t, and t also.

But it is seen that a 1linear relation could be used to
arrive at‘the v/s ratio for region 2, using the v/s ratios
for region 1 and for the area combining region 1 and region 2,
i.e. using VS1 and VS12 (cf. Equations 2.20 and 2.21). Knowing:
VSl and VSl2, the v)s ratio for reéién 2 (VS2) 1is obtained

from:
vs2 = [(hl+h2)VS1l2 - hl VS1l]/h2 (2.24)

where hld@ h2 are the thicknesses of layers 1 and 2 respective-
ly. The values of volume/surface ratio VS2 for various VSl
and VS1l2 and different values of relative humidity, t, and

t are calculated by means of Eqn. 2.24 and by the iterative
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Volume to Surface Ratio for An Inner Region Calculated
by Iterative '‘Method and by Linear Expression

100
100

100

100

100

100

100

50

50

300
300

150
150
150

150

150

150.

150

80

80

400
400

50
50
50

70
70
70

50
50

70

70

50

50

50

50

100
100

100

100

———— e ——— VS2—-—-

t Iteration Linr.Exp.
50 - 221 200
300 215 200
10000 203 200
50 227 200
300 221 200
10000 215 200
300 204 200
10000 180 200
300 213 200
10000 175 200
50 125 110
10000 160 110
50 548 500
10000 515 500

©=-6.1

14.3

-12.0

-31.2
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2.5.3 Example

For the cross section shown in Fig. 2.12, the
volume/sﬁrface ratios are calculated for regions A and B.
Knowing the volume/surface values, the flow component of
CEB-FIP creep coefficient (Egqn. 2.23) based on the following
data are computed for A and B:

Relative Humidity = 50 %

Consistency of Concrete = Normal

Type of Cement = Normal

Age at loading t, = 5 days ~
Observ&tion time t = 20000 days

The results obtained from following the above procedure are:

V/S. v/s. V/s_ v/s. v/S.
top to bottom left to right to Final
Region bottom to top right left value
A 40 - 34 - 37
B 162 178 171 181 167

The corresponding values of the flow components of creep
coefficients are: |

Region A = 3.5

Region D = 3.0
The higher value for Region A denotes the higher creep. at

surface as compared to the inner regions.
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2.6 Creep under Different States of Stress

‘Most creep tests are done under unigxial compression
and the creep models that we have seen are based on the_
data from such’ tests. Here the questiom arises whether
such models can be applied to states of stress other than
uniaxial combression. The important avenues that are to be
explored here are the creep under a multiaxial state of
stress, creep under Eension, creep under torsion and creep
under high stresses. There seems to be considerable differ-
ences in opinion as to the equality of creep under compression
and creep under tensile stresses of equal magnitude (see
Neville and Dilger, Ref. 2.1). Some invgstigators report
equality of creep under compression and tension while many
others suggest more creep under tension. Considering the
hncertainities involved, no differentiation is made between
compression and tension for creep evaluation in-the present
study. As to the creep under torsion, many reports indicate
(2.1) that it ig approxiamately equal to the éreep under
compression. Since creep under multiaxial state of stress
and creép under high stress are inevitable in a creep analysis,

these are discussed in detail in the following sections.

2.6.1 Creep under 'Multiaxial Stress

In uniaxial creep tests the specimens were observed to

creep not only in the direction of the applied stress, but
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also normal to it (2.32, 2.33, 2.34, 2.35). PFollowing the
concept used in the case of elastic strains, the normal
creep strains that are induced are called latéral creep
strains and the ratio of the lateral creeb-strain to the
creep strain along the direction of the applied stress is
called creep Poissonis ratio. 7

Several investigators (2.32, 2.35, 2.36, 2.37f'have
reported creep Poisson's ratios ranging from 0.05 to 0.4.
The discrepencies between these results may be, to some
extent, attributed to the modes of measurement of the lateral
strains (2.1l). But some other studies (2.38, 2.39) indicate
'the creep Poisson's ratio to be closer to the elastic Poi‘ss.on' S
ratio and to range from 0.16 to 0.25, Gopalakrishnan et. al
(2.39) found that creep under multiaxial compression is less
than under a uniaxial compression of the same magnitude and
that tHhe creep Poisson's ratio under multiaxial compression
is less than that under uniaxial compression.

Here the question ariées whether the creep strain in a
certain direction due to a stress in thatdirection is indepen-
dent of the stress in the lateral direction or not. If the
answer is 'yes', then the principle of superposition can be
applied and the net creep in any direction can be calculated
as an algebraic sum of the creep strain occuring in that
direction and the lateral creep strains induced by the stresses

in the lateral direction. Thus:
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[

£,=[6,’—/gflu (07 + )1 £ (2.25)
3 .
where Gz denotes stress in the i direction; é& is the net

creep in direction of ¢ ;/U -is creep Poisson's ratio

epu
under uniaxial stress state and.@w is the specific creep.
Neville (2.40) treats creep Poisson's ratio as a function

of the relative magnitude of principal stresses and uses

the following relationship for creep under biaxial state of

stress:
él = [G—F-/‘C{P;O—i ]ZSF
(2.26)
£, = [OZ-CFZGI 155},
¢ 07
h = A + Blm=————- + Cl—=—-——- 2.27
where éﬂ {q+ﬂi} {Uj+@} ( )

where O?, ﬁ} and GI are principal stresses and A, B and C
are constants to be determined from experiments.

In the present study, the following relation between

~

effective creep Poisson's ratio and instantaneous strain on

application of 1load éy, as recommended by Gopalakrishnan
s <

(2.39) is used:

3 2

f = 0.146 - 152£ . + 184210 (£ .) (2.28)
Pt €¢ €¢
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Using these creep Poisson's ratios and following Arutyunyan's

(2.41) éssumption that creep in shear is 2(l+é;) times the
4

specific creep, the following relation may be arrived at

for multiaxial creep:

c -1 P, t,)
{£ (t)} = D] ——————- { 0wt (2.29)
E(t,) A ~
¢ c c c < [ c T
where {£ (t)} = {gx(t),‘ £,08) s é%(t),ijm,%t(t), z(t)}
: T
) = {0 0y (5, 0(8) , () T (8) T (R}
— ‘ —
and 1 -p -9 0 0 0
Cp/Y P2
-7 1 -9 0 0 0
Cp,X Cp,Z
-1 -2 -7 1 0 0 0
[D] = CpsX  CP,Y
0 0 0 2(1+7 ) 0O 0
Cp, Xy
0 0 0 0 2(1+ ) O
Cp,Y2
0 0 0 0 0 2(1+7) )
— CPr2X
where 'Q ' YD etc. are creep Poisson's ratios evaluated
cp% pry

from instantaneous strains using Egn. 2.28.
Another way or treating multiaxial creep is using the
concept of 'effective stress' and 'effective creep strain'

(2.42). The effective stress is defined as:

2 2 2 2
ﬂo’,-u;) F G5 + (-0 + 60,  (2.30)
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where 0 =0y , Up=0y, 0= 0and [, =7, for a plane

stress case and the components of creep strain are:

o é ~
£ = -U—;-- 20y - 0y)
c ec
. oCel -
£y i (2075 - 0% ) | (2.31)
c 3 =
D=Lz,
Xy 2 Ve‘

(4 .
where é% is the incremental effective creep strain at any

time t.

2.6.2 Creep under High Stresses

The creep prediction models discussed earlier giGe a
creep rate that decreases with time. But it has been shown
that if the applied stress is high enough, the creep can
develop at an increasing strain-rate (2.1). Also many investi-—.
gators (2.43, 2.44,°2.45) report that creep of concrete is
linearly proportional to stress only up to a sﬁress level
of 35 % sf'the strength. Becker et. al (2.46) suggesﬁ an
'effective stress' value for higher stress levels:

T =2.330 - 0.465 £, for 1>750.35  (2.32)
eff 3
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/
where ~U;ﬁ is the effective stress and f., is the concrete

strength. This effective stress value is to be used instead

of stress in case of high stresses.



CHAPTER THREE

CREEP AND SHRINKAGE ANALYSIS OF STRUCTURAL MEMBERS

3.1 1Introduction

With the increasing awafenesé of the detrimental effects
of differential creep and shrinkage comes the need for more
and more accurate methods of creep and shrinkage analysis.
If shrinkage is not accompanied by creep, analysing for the
effect of shrinkage generally doesn't pose any problems since
shrinkage is independent of the stress state and the analysis
reduces to a problem similar to determining the effect of
température loading. Analysing creep would have been a similar
problem, had the stresses in a structural member undergoing
creep remained constant. But in a practical structural member
with steel reinforcement and other restraﬂints to free expansion
(statical indeterminacy), the stresses vary with time and
the problem becomes that of predicting the creep under varying
stress. This chapter mainly deals with the various methods
to'tackle this problem, starting with the classical methods
and concluding with an efficient and economical numerical
method. Formulation of the numerical method is discussed
in detail and comparisons of the method chosen for the present
study with experimental results are presented.

g0
Gl



53

3.2 Classical Methods of Creep Analysis

Various models have been proposed over the years for
the creep analysié of concrete structures,r some of them
crude but simple, while others, more comprehensive, but complex
to use. The methods are well documented by various authors
(3.1, 3.27), hence only a summary of the different methods

is attempted here.

3.2.1 Effective Modulus Method

The effective modulus method simplifies creep analysis
to a ﬁroblem similar to elastic analysis. Thé elastic modulus
is simply modified by a factor [1 + ¢Xt,to)] to take care
of the creep effects and the creep analysis is done as
though it were an elastic problem. Here gﬂt,to) is the
creep coefficient, i.e., the ratio of creep strain at observa-
tion time t for concrete loaded at age t, to the corresponding
elastic strain at t .

This method, proposed by Faber (3.2) in 1927, is still
very much in use. Since the method doesn't take the
redistributions in internal stresses due to creep into account,
it cannot be appligd'to situations where significant changes
in stresses are expected. However,thenmthodgivesrelétively
good results when the aging of concrete is negligible, as
in old concrete. When applied to a situation of decreasing

stress, the method tends to underestimate the strains and
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for a situation of increasing stress the strains are

overestimated (3.1, 3.3).

3.2.2 Rate of Creep 'Method

The rate of creep method was fofmulated by Whitney
(3.4) based on the assumption éhat the rate of creep is
independent of the age at application of load. This assumption'
of constant creep rate renders the creep curves parallel.
The total strain S#Wt,to) at t due to a unit load applied

at age t, is given by:
P et = /B, x 1+ Bre,t,)] (3.1)

where E(t,) is the concrete modulus of elasticity at age t,
and ¢Mt,g)) is the creep coefficient. Since the rate of
change of q%t,to) decreases with time, nearing zero at higher
ages, application of the rate of creep based on t, to éreep
analysis for higher ages of 1loading will result in an
underestimation of strains. 1In addition to this, the rate
of creep method leads to an overestimation of creep under a
decreasing stress state and an underestimation under an
increasing stress state (3.1). Also the rate 6f creep method
"ignores creep recovery.

Based on this theory, the total strain £ (= instantaneous

elastic strain + creep strain + shrinkage) can be determined
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from the following relation in which creep coefficient ;5,

not time is the independent variable.

J

ag 1 ag ac, . '
————— [F(E) + ——= ] 4~ (3.2)
ag E(t,) ag d:’gb

where UYto) is the applied stress and ém is the shrinkage

strain.

3.2.3 Rate of Flow Method

Proposed by England and Illston (3.%) in 1965, this
method breaks down creeﬁ into a. deléye& elastic étrain
(corresponding creep coefficient is ?ﬁi(t—t&») ;nd an irrecov-
erable flow éomponent (?6f(t)) ha§1n§ a constant rate
irrespgctive of the age at loading. Thus for a unit stress
applied at age t,, the creep strain at t is given by

1 ¢d(t-to) ¢f(t)- ¢f(to)
gc (t) = ====- + m—e—e——— Wl iy : (3.3)

The delayed elastic strain €4 is divided into a rapid
recovery part and a slow recovery part, but if was suggested
(3.1) that Ehis division can be ignored for the sake of
simplicity. Making use of this and taking E(t,) = E(t),
for a 'unit' stress épplied at age t, and remqved at age

t|, we have the total strain at time t (t>>t))
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Pt (v ) - PE(t,)

E(t) = —mmmmmmmmmeelo (3.4)

For strain under a varying stress the following intergral

relation can be used.

c

2th(t,)
E(t) = %(t,t) ———z-== at’ . (3.5)

t
"where g%(t,t') is obtained by replacing t by t' in the

right hand side of equation (3.3).

3.2.4 Improved Dischinger 'Method

The Improved Dischinger method was proposed by Niélsén
(3.6) as a simplification of the rate of flow method. The
first two terms in Egn. (3.3) afe combined to form a single
term 1/E4d where E4d = E(to)/(1+§5d), and the flow éomponent
is assumed to act in the same way as the total creep in the
rate of creep method. The differential equation
(cf. Egn. 3.2) according to the the Improved Disichinger

method is:

il
=
+

e
Qs
ﬁ
2l
ct
ol
Y
P

de
-—  mmm——— . === + ————= + === ' (3.6)
ag  Blt,) aPf EB(t,) 4Pt
The method gives accurate results for simple practical problems
in which time since the application of load exceeds about -3

months (3.1), but for older concrete, creep is underestimated.
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3.2.5 Superposition of Virgin Creep Curves

According to the principle of superposiéion, the present
behaviour of a material under an applied stress is indepehaent
of the stress or strain history. 1In other words, the combined
effect of stresses applied in the past can be obtained through
superposition of the individual effects. Extending this
principle toscreép, virgin creep curves can be superimposed-

Thus if the creep compliance is given‘by

1

(t,t,) = —=——- [1+ P(e,t,)] (3.7)
# E(t,) P

then the strain due to stress [, applied at age t,and

removed at age t', measured at time t is given by

£(t) = Lo, [1+¢(t,to)] T [1+¢(t,’t')] (3.8)

E(t,) E(t')
This could be further simplified by assuming
E(t,) = E(t') = E(28) or E(7)

where E(28) and E(7) are modulii of elasticity at concrete
ages 28 days and 7 days respectivély.
The total strain at time t due to a variable stress [,

with an initial value [, is
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t
; 20 (&)
£ = et + (ﬁ(t.t') ——————— at' (3.9
t

o

Under increasing stress or slightly decreasing stress, this
method gives good results, but for a complete removal of

load, the strains are underestimated (3.1).

3.2.6 Trost-Bazant Method

The difficulty in computing the strain under a varying
stress is that the integral equation Eqn. 3.5 is not solvable
in a closed form since the creep curves are non-parallel.
To overcome this handicap, Trost (1967) introduced a relaxation
coefficient X which depends on the age at loading, creep
function and the variation of the stress or stgaixa with
éime. Using'this relaxation coefficient, the strain under
varying stress UYt'), with an initial value of [, can be

o

expressed as follows (cf. Egn. 3.9):

£(t) = —=2— [+t t,)] + —mmmmmet [14X(t,t, ) lt, b, )]
E(t,) E(t,) (3.10)
where V}t) ié the value of the variable stress at:t, the
time at evaluation of strain.
The coefficient X can be evaluated from integration

of the last term in Egn. 3.9 and is given in the form:
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t

E(t,) L+D(e, L") (L") 1
Altst,) = mmmmmmm S | et mmmmeen
Ple,t,) 1 T(t) =071 E(t') g Pt t,)
ST t (3.11)

where all the terms are as defined earlier.

Physicaily, A represents the reduction in creep when
rather than applying at once, the stress is app}ied gradually
over a period of time. ‘

This method‘was made more rigorous by Bazant (3.7),
who extented the method to relaxation of stress under constant
or varyiné strain. He coined the term 'aging coefficient'
for the relaxation coefficient describéd earlier andlnamed
his method ‘'Age Adjusted Effective ‘Modulus Method'. Since

for relaxation, £(t) (=0Ue/E(t,)) is constant, Eqn. 3.10

reduces to:

| L |
X (t,t,) = mmem@m (3.12)

For a unit strain, this can be written as

X (tyt,) = —mmmmmmm e o (3.13)

where R(t,t ) is the relaxation function at time t for an
initial stress E(t,) applied at t,. A step by step procedure
and an empirical formula to evaluate the relaxation functions

from creep functions are presented in Ref. (3.8);‘ Dilger
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| (3.1), based on a comparison’ with experiments by Bastgen
concludes that the results obtained by Trost aré better

" than . those of Bazant and that the aging Acoefficienté
established on the basis of the CEB-FIP créep function best
represent the experimental trend. Graphs for values of
based on the CEB-FIP creep function are preéented by Dilger

in references 3.1 and 3.9.

3.2.7 Rheological ‘Models

Rheological models, consisting of springs and dashpots
have been used by many researchers td model concrete behaviour.
Based on the Kelvin model (Fig. 3.la), Bazamt (3.10) arrived

at the following relation in 1966:

t
N 1
Z%(t,t') S JN — explf, (T) - £; (£)14T (3.14)
i=1 '/).(E) t
‘ 0
h £ (%) 2: {9 as
where . = | ——m———
‘ ?‘ (0)

N is the number of Kelvin units, E and ﬂé are the spring
moduli and dashpot viscosities (functions of age t) of the
i th Kelvin unit. An analogous formulation was presented

based on the '‘Maxwell chain (Fig. 3.1b) which has the form:
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N
r(t) = Z exp
i=1

E, (t') exp [A€(E')-a £ (£')]
1 ’ , (3.15)

t
-t/Ci S t'/Ci
0
where T; are a set of relaxation or retardation times and
N is the number of Maxwell units.
According to Jordaan et al. (3.11), the creep function can

be represented by

’ 1l £ -
9%(trt') = m——— + [fg(t)-fa(t‘)] + A(t") [1-exp{- =—===- }H
. E(t') ht')
' (3.16)

¢
where fz(t) represents the irrecoverable creep of the dashpot

element of thevBurgers‘Model (Fig. 3.1c) and the parameters
A(t') and B(t') apply to thé Kelvin's unit in the‘model.

Based on an age-dependent Kelvin model coupled in series
with an age dependent spring, Arutyunian (3.12) proposed

the following approximations

, 1 ¢§u(t')
gg(t,t ) = m———— + —————— [l~exp-(t-t') /z] (3.17)
E(t") E(t')
u ' ) -0.118
where ?éu(t') = Q@z@,?) 1.25 t°

and T is retardation time (normally 50 days).
Both the Kelvin and the 'Maxwell models can model a
given concrete behaviour very closely and by increasing the

number of units in the models, any desired degree of accuracy
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can be achieved. However, the Maxwell chain model is found
to give a better representation of the actual test data
(2.1). Burger's model is a combination of the Kelvin. and
Maxwell models and it's beﬁaviour is qualitatevely similar

to that of concrete (2.1).

~

3.3 Step-by-Step Numerical Method

The solution of the superposition integral (Egns. 3.8,
3.9) cannot be accomplished by analytical means and so numeri-
cal techniques must be adopted. For this, the most convenient
ﬂﬁmerical scheme appears to be the step-by-step intergration
method wherein time t is divided into discrete times t;, (j
= 0,1,2,...N) in time steps.A§]= ;hrtj. Time t_ coincides
with the time of first application of load and ty coincides.
with the final observation time of total strain or
time~dependent deformation of the structure. The intermediate
time steps should be chosen to coincide with the time of
application of incremental loads. Those observation times,
immeaiately after each loading are best chosen in the form
of a geometric progression, ie. with time steps equal in a
log-time plot. Bazant (3.13) recommends the following rela-
tion between time steps:

1/n

(t -t ) = 10 (t -t ), n =8
- i+l 0 i 0
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A comparison of stress results with t's generated by the
above expression with different n's is made (Fié. 3.2)7and
the costs of evaluation for the cases are compared (Fig. 3.3).
Based on this study, a value of n = 4 is chosen for the
present study.

Thez;e are different ways of implementing the step-by-step
procedure. The methods proposed by Ghali et al. (3.26)
and Bazant et al. (3.27).are briefly discussed here. 1In
the first method, the stress increment AE{ during a time

interval (t -t;) is assumed to be applied at .the middle

{+

of the interval, so that the strain increment at th4 is:

AT

AE (8 4t ) = ————- [1+ P&t )1 (3.18)
i+l i E(t ) i+l i+1/2
where
t = (t +t)/2 ., AT =t ) - T()
i+l/2 i+l i . i i+l i

The second method uses the trapezoidal rule:

(e ,£)]  [+Pe Lt )]
: 4673 i+l i i+l i+l
AE (e b)) = mmem { mmmmmcmiiieoeo b mmmmemmooi- }
i+1 i 2 E(t ) E(t )

: i i+l (3.19)
which means the stress increment AUE during the interyal
(tbi -t;) is assumed to be applied at the beginning of the
interval and at the end of the interval in equal halves.

The principle of superposition is applied in thé present
study with an 'initial strain'. formulation proposed by

Zienkiewicz, which will be discussed in CHAPTER 4.
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3.4 Time-Functions to Avoid Storing Stress History

If a structure is restrained‘(statically indetermi§?te),
non—ﬁomogenous in terms of creep properties or if steel
reinforcement is present, then there will be a continuous
redistribution of stresses across the cross-section to main-
tain compatibility. The step-by-step method can eﬁficiently
trace this redistribution of stresses at different time steps
using any of the creep prediction models described in CHAPTER
2. But there is one major drawback in employing those predic-
tion modéls in a step-by~-step analysis. To £find the
time-dependent effects at the end of the j th time-interval,
the stress increments applied at the beginning of all the j
preceeding the j th interval are needed. Knowing that a
solid finiterelement repofts 162 stress values (6 stress
components at 27 gauss points for a 3x3 integration order),
it is easily seen that for a practical proplem employing
hundreds of elements and dozens of time-steps, the storage
requirement could become quite prohibitive. This problem
imposes restrictions on the size of the structure to be
analysed and also on the number of time-steps which is critical
to the accuracy of ;heAanalysis. To overcome this problem,
the integral type creep law has.to be converted to a rate-type
one. Many researchers have looked into this particular problem
and some of their suggestions over the years are discussed

in the following section.
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3.4.1 Review of Functions

‘McHenry (3.14) suggested a creep compliance function:

of the form:

Pe,t,) = %I1 - exp(-P(t-t,))]

+ F(exp(—pg,))[l - éxp(-m(t—fo)] ‘(3.20)

where 00,'?, P, p and m are constants to be determined from
experimental observation. Arutyunyan (3.12) proposed the

function

| f b m

Ple,t,) = (a + =) 2 ferp - Y Lee,)) (3.21)
where a, b, ﬁ:and ‘Dkare to be determined from experimental
data.

Based on these two models, Selna (3.15) suggested a function

of the form:

m

Pieit,) = 7,

o aé(to) [1 - exp(—Ki(t-ta))] (3.22)

where a; and ki are constants to be determined experimentally
and m was chosen to be 4. This fuﬁction requires the storage
of stress increments corresponding to only two time steps
prior to the time under consideration. Scanlon and Murray
(3.16) used the CEB-FIP (1964) creep curves to determine

the coefficients a; and k{ in Egn. 3.22 through the method
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of least squares. Mukaddam and Bresler (3.17) proposed the
following creep compliance function which take into account

both temperature and aging effects:.

¢(t,ta,i‘) = ii::l a{:eXP[-)\i(t-to) ¢(T)¢(to)] (3.23)
where a; and Ag are constants, 46(T) is a temperature shift
function and égu:) is an age shift function. T is the
temperature at loading. Though this func?ion is much advanced
as compared to the previous models in the sense that both
aging and temperature effects are considered, it's application
requires the stress histories at all the previous time steps.
‘Mukaddam proposed another compliance function (3.18) in i974;

which alleviates this problem. 'The function is:

m

De-t,, ™) = 2;1 a; (1 - exp(- X, D) (e-t,1)]  (3.24)

where a; s

%4 are constants and QQT) is temperature shift
function. This model ‘requires merely the stress increment
at one previous time step for the creep strain calculation
at the current time step. This reduction in both computer
storage and computationai effort makes the application of

this compliance function to the solution of large structural

problems possible. However, the éging effects, an important
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factor in the case of concrete is not included in this
model.

Zienkiewicz and Cormeau (3.19) developed a viscoplastic
model of méterial behaviour capable of dealing with:material
non-linearity problems ranging from creep to plasticity.
They have based their model ;Dn the principle of thermodYnamics,~
taking plasticity and viscoelasticity as limiting cases of
a general formulation and not as separate phenomena. ﬁowever,
it's application to reinforced concrete is yet ,éo be
formulatedf

Kabir (3.20) suggested a function of the form

S m

Dt t-t,,T) = i);l a; (t,) [1-exp (- X;AT) (t-t,)1 (3.25)
where aé(to) are scale factors dependent on the age at loading
tor .x;are exponential constants determining the shape of
the logarithmically decaying creep curve and ¢KT) is a
temperature shift function.

The Kabir model requires the storage of the stress
history of only one time~step prior to the time under consider-
ation, similar to the ‘Mukkadam's model. But the Kabir model
is superior to that of the 'Mukkadam's since both age at
loading and temperature effects are considered in the former.

Khalil and Dilger (3.21) proposed the following model based

on the arguement that a time-function to represent creep,
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like creep, should have an irrecoverable flow component and
a recoverable delayed elastic component. The proposed func-

"tion is:
Dt e, ,m) = Peorie,e,,m + Papie-t) (3.26)

where .¢f =ultimate creep coefficient, depends on the concrete
mix properties, ambient environment and the effective thick-
ness of the member; de is the ultimate delayed elastic

coefficient.

| ) .
F(t,t,,T) = iZ:l a, lexp(=A;t,)] [1—exp(-)\£_(t—to)¢(T.)(%.27)

Dlt, b)) = 3 b; [1 - exp(-7, (t-t,)] (3.28)
i=1 o .

s

'aé ,bi,IKL and ‘Dz are coefficients to be determined from
experimental data and ¢RT) is a temperature shift function.

The irrecoverable component of creep is dependént on
the age of concrete at initial loading, the duration under
load and the temperature variation while under 1load. It
continues to increase at a decaying rate and has no limiting
value. The delayed elastic part is dependent on the duration
pnder load anq has a limiting value that ié reached in a
relatively short time, especially for young concrete. The
delayed elastic part is independent of the age loading and

temperature. Like the Kabir model, the Khalil model also
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doesn't require storage of the entire stress history prior
to the time under consideration. |

Other forms of exponential algorithms were developed
by Bazant (3.22), by Argyris et al. (3.23) and Willam (3.24).
But these will not be discussed here since they are essentially

equivalent to the Kabir model.

3.4.2 Choice of Model for the Present Study

Thetime—functionsdiscussedearlierihvolwamaﬁycoeffi-
cients to be determined ekperimentally. Since experimental
study of a problem at hand is not always feasible due to
limitations set by time, funding or practicality, prediction
models recommended by ACI, CEB-~FIP or BAP can be used instead
to determine the coefficients (3.20, 3.21). Keeping this'
in ﬁind  the time-functions chosen should meet the following
requirements:

l.The time-functions should fit the chosen creep predic-
tion model accurately.

2.The undetermined coefficients of the function should
be easy to evaluate from the values of creep compliance
~from the prediction model.

3.The function should be such that it does not require
an exceséive amount of storage space in the computer.

In the present study, the Kabir time-functions are chosen

to represent the ACI creep model and the Khalil functions
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to represent the CEB~FIP model. Both the chosen functioqs
require minimal amount of computer storage and they take
into account such parameters as age at loading, temperature
variations and material properties._}The unknown céeﬁficiénts’
of both the functions could easily be determined through a
least square fiéting of the chosen creep prediction models

(see Section 3.4.3).

3.4.3 Determination‘g£ Coefficients of Time-Functions

The determination of coefficients 'a' and ' )\' in the
Kabir formulation is discussed first. Define matrix [S]

and vectors {a} and {F} such that:

_i—exp(-A,At,) l-exp (=}, At ) «... l-exp(-Andt,)
l-exp(—A,AtZ) l-exp(-X,At,) .... l-exp(—XMAtz)
[s1 = . |

l-exp(-AAt,) l-exp(-A\dty) ceee lmexp(-f,At,)
(3.29)

where Ati = t&rt{, n = the number of observation times and

m = the number of terms of the series that are considered.

T

{a} = ,{a‘ (tU)' aZ (to)l a$(t0)' AR 4 am(ta)} (3'30)

. |
and  {F} = [ Pt,,t,), Plt, ,t), oo Plr, e} (3.31)
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where Qﬂté,to) are the creep compliance functions for time
t; when the age of concrete at loading is t,. Based on
these, the Kabir'function (cf. Egqn. 3.25) can be written

as:
[s1 {a} = {F} (3.32)

Note that the temperatﬁre term ¢XT) is missing here.
Unit value is given to 'the temperature shift function which
'corresponas to a temperature of ZOOC. |

The right hand side of Egqn. 3.32 can be derived from
any creep prediction model. Since it was found that the
Kabir model best fits the ACI prediction model, the ACI

model is used and it is repeated here for convenience:

R B Dt,) (3.33)

10 + (t-t,)

where §é§to)’is thé ultimate creep éoefficiént,gdependent

on properties of the material, ambient atmospﬁere and the
size and shape of the member. |

Since there are two sets of annowns viz. a; aﬁd A;,'a

trial and error procedure is adopted. A set of values is

given fo X{ and Egn. (3.32) is solved for the corresponding

values of a;. The solution procedure involves the following

Steps: ’ -
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Premultiplying the Egn. by [Sf:
T T .
(s1 (s8] {a} = (51 {F} (3.34)

T -1 T
or, {al} = 1181 1811 (81 {F} (3.35)

This procedure is repeated for a number of ages at
loading t, and the least square error E corresponding to

the assumed set of K{ values is noted. E is given by:

E = f‘, > r) - [sHa})2 (3.36)
i=1 j=1
where N ig the number of ages at loading’ and n 1is the
number of observation times.
Kabir (3.20) recommends the following values for A;:
Ar= 0.1, A=0.01, A= 0.001 (i.e. m=3)
But in thé present study, 4 terms are considered and the
following values are chosen:
A= 10, A=1, A=0.1, Az=o0.01
Fig. 3.4 shows a comparison of the ACI creep curves with
the Khalil function using the first and second sets of values
above for A. A similar procedure is adopted to determine
the coefficients a; s Ai' b; and Qiof the Khalil time-function.
The irreversible flow component oftheLCEB compliance function

96f.[f%(t) - f}(to)] is used to evaluate the coefficients
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a; and 'Ki of the first part of the Khalil function . The

matrix [8] in this case would be

S ] S S

11 12 13 © 1lm
[s] = . Y . . (3.37)
S S S S
nl n2 n3 nm
where S . = [exp(-Alg )I{l-exp (- A, (t,-t, )1,
1 ,
5," [exp (=M t,) 1 [1-exp (- A, (t, -t,))]
and S i = [exp(—Aﬁto)][l—exp(—)“(tn—to))] etc..
n

here n 1is the number of observation times and m is the
number of summation terms chosen. Substitution of Egqn. 3.37
into Egqn. 3.35 gives the required coefficients, again through
a trial and error procedure coupled with the least square
" method. |

For the remaining coefficients b; and ‘D;, the matrix
{Fl of Egqn. 3.35 is assembled from the delayed elastic part

¢d Fd’(t-to) of the CEB creep compliance function. The matrix
[S] in this case is:’
l-exp (=D At,) l-exp(-%At) ... l-exp(~-W,At,)
[s] = :
1-exp (=¥ A t,) l—exp(—;)LAtn ) w.. l-exp(-7At, )|
(3.38)
énd the vector {a} is replaced by vector {b} in Egn. 3.35.

Khalil recommends the following values for‘A;andi&'(B.Zl):'

A, =0.1, A = 0.02, A, = 0.003, A,= 0.0004
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and 73,= 1.5, 172= 0.15, 773= 0.015, 7, = 0.0015
However, the following sets of values are found to give
better results (Fig. 3.5) and hence are used in the present

study:
A
and '2

One interesting trend that was noticable during the present

0.1, A= .02, As = .003, Ay = .0004
10.0, = 1.0, Y, = 0.1, 7, = 0.01

efforts to determine coefficients that give closer fit to
the CEB-FIP or ACI prediction mo@els is that for a fixed
set of values, the coefficients 'ag for a particular age
at loading t, are dependent on the chosen set of t's, the
observation times. It follows that the observation times
that are chosen in the evaluation of the coefficients should
be similar to the actual observation times when the coeffi-
cients would be used in a creep analysis. Khalil seems to
have overlooked this and has used a fixed set of observation
times applicable to any age at loading. He has built-in 16
sets of a; values corresponding to "standard" ages at loading
(from 7 to 420 days) into his computer program. He has
based his evaluations on the CEB-~FIP creep model keeping an
assumed Qalue for Hf, the time delay function. A correction
factor is used when the value of H{ deviates from'the assumed.
1/3 1/3
[£/(t+Hg )] = [t/ (t, +Hp )]

1/3

| L3
[t/(t+H, )]~ [t,/(t, +Hg )]
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~ uwhere‘CF is the correction factor, Hy, is the actual value
of He for which the coefficients a; are to be determined
and Hﬂ is the standard value of Hf , which the built in
a; sets are based on. ‘ .

For intermediate values of the ages at loading (intermedi-
ate to the "sfandard ages") the coefficients are lineérly
interpolated.

In the present study, the coefficients aL‘are,genefated
at the time of application of stress, to suit the requirements
of the problém at hand. This eliminates the necessity for
interpolations, correction factors and storage of lafge
amounts of data. Through compact and efficient
matrix-operator subroutines the cost of evéluation is kept
at a minimum (negligible as compared to the overall cost of
running a finite element job).

The efficiency of the preseﬁt method is'ievealed in
Fig. 3.6, showing a comparison of results from using CEB-FIP
curves and xusing the Khalil method with éoeffidients as
reéorted by Khalil et al. and the coefficients from the present
method.

The coefficients b{hin the Khalil time-functions are
independent of time,‘hence these values are stored as data

in the computer program.
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3.4.4 Cummulative Coefficients to Avoid Stress History

The time functions (i.e. Egns. 3.25 and 3.26), Qhen
used as they are, do not serve their purpose of dispensing
with the storage of stfess history of all thé previous
time-steps. To achieve this goal, certain mathematical manip-
ulations are necessary. The steps involved in transforming
the Kabir time-functions are given below (3.20):
Creep‘compliance function ¢Xt,to) is given by

A .
Plt,t,) = if,l a; (t,) [l-exp(-}; (t-t,))]  (3.40)
With stress increments Al , 40; , ...,40,_, applied at ages

[
ty, £+ ...y t,,, the creep strain £, at time t, is:

: 4
[+
£ = Aﬁz_ 2: aE(ta)[l—exp(-A;(tn-t,))]
n E, i=1 , '

A &
4 0 z: a{(to)[l—exp(-A;(tnftz))]

E, i=1
+ cssaes
Any <
4+ -l a-(t )[l-exp(-A-(t -t ))]
E 12;1 Lo At ©(3.41)

n-1

where E,,EL,.. are the modulii of elasticity at t,,tz etc.

This may be rearranged as:

c A &
£,0 o Iy et e vt )
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Al7 4 ‘ ‘
LN .a{L[l—exp(-)\i(At2+Atg+ cee Ht, )]

EZ i=1
+ . o ®
Ay, 4 |
+ o= S g [1-exp (- A, At,]_l)] :
E,, i=1 ‘ (3.42)
where aq = a{(Fj) and.ﬁt1= t@.’t{'
w * I4
Similarly, the creep strian £ at time t is
Nl N4l
c Ao 4
E = =3 a [l-exp(-A. (4t +4t + .. +4t,))]
n+l E, i=1 .
A A "
+ =200 a, [l-exp(-A; (A, +At,+ .. +At,))]
B, i=1 1
+
s :
+ Afn a.  [l-exp(-A Atn)]
E, i=1 " (3.43)

[
From Egns. 3.42 and 3.43, the creep strain increment 4% in

Atn is obtained as:

" c A 4 .
£ = A, . a [exp (- \, (At, +4t, +..+4t )) 1 [1-exp(-). 4¢t,)]
n E, i=1 ! " (
My &
+ === 7. a, lexp(= ), (At +4t, +..+At ))1[1-exp(- A At,) ]
E, i=1 ! !
yA
+.
2
+ Afn ) a lexp(-A;At, )1l1l-exp(-A; At, )]
E,, i=1 -
Ay &
+ =~ Z a. [l-exp(-)\iAth)]

(3.44)
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Now define a coefficient Am such that,

e
A= A exp-Nde, )+ -=I-a, (3.45a)
in in- En
A6
and A = -—== a,, (3.45a)
il E, ,

so that Egn. 3.44 may be simplified as

C
Ag, = L. a Il-exp(=) 4t,)] (3.46)

i=1 «+n

Thus the creep strain increment during any time interval

(tm4—tn) can be found using just Eqns. 3.45 and 3.46. The
cummulative coefficient A, can be calculated as a progressive
sum using Egn. 3.45, knowing the stress incremeqt at the
current time. Thus the storage of stress history is avoided,
making the time-dependent analysis of large structural prob-
lems possible.

The Khalil time-functions can be modified in a similar

fashion, with the following results:

~f 4 |
AE = i§=:1 A, [l-exp(-h Aty)) (3.48)
4 4
and e = B, [1-exp(—’D.At )1 (3.49)
n ji=1 ¥ ¢ n

£
where A£n== increment in the irreversible flow part of

d
creep strain during the interval (t -t,) and Aé; is the

n+l
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corresponding increment in the delayed elastic part. The

coefficients A;, and By, are defined as:

46n
A, = A. exp[—A.At__] + ¢5f ———a. exp[-A-tn]
b - . * BEn W ' (3.50a)
A, = ¢T —égi a; exp[-A{t,] (3.50b)
"B,
. A ,
B, = B expl-7J4¢ 1+ Pa 22 by (3.51a)
En
b .
By = bq A b; , (3.51b)
= - | ,
where Q% and q% are as defined in Eq. 3.26.

3.5 Shrinkage'Analysié

The CEB-FIP }978 and the ACI Committee 209 shfinkage
prediction models are used in the present study for shrinkage
analysis. However, since the CEB-FIP function is depéndent
on a set of prediction graphs and taBles, it is not suitable
for numerical impleﬁentation unless mathematical formulations
are developed to represent these graphs and tables. Khalil
(3.21) assumes that sﬁrinkage develops at the same rate as
creep and uses an exponential expression of éhersame type
as that is used to predict creep. Because of it's simplicity,
the same function is adopted for shrinkage pfediction in

the present study. The Khalil function (see Fig. 3.7) is:
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FIG. 3.7 DEVELOPMENT OF SHRINKAGE WITH TIME:
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(t,t ) = 8S(t_,t ) K{t-t ) (3.52)
£ sh  sh " sh sh
4 L ‘
where K(t-t ) = 2: C [l-exp(-X (t-t ))] - (3.53)
sh i=1 i i sh

where ém(t’Eh) is the shrinkage étrain at time t} C{ and
xiare coefficients to be determined experimentally or from
the CEB-FIP prediction model and t% is the start of drying.
Sty 99 is the ultimate value of shrinkage which depends
on the mix p?oportion, the ambient environment, the shape
and size of the element and %h"

The ACI shrinkage prediction model is straight forward

to use and is expressed as follows:

(t - t )
sh
£ (tyt ) = —m—m—mm—mv ¢ (3.54)
sh sh C + (t-t ) sh
sh .

where ém(t,gh), t and tghhave the same meaning as before;

C is a constant dependihg on the type of curing and‘égwﬁ is_
the ultimate shrinkage which depends on mix proportion, ambient
environment and shape and size of the member. Analysis for
'shrinkage effects is similar to creep analysis and in the
present study, shrinkage strain is simply added to the creep
strain, based on the assumption that shrinkage develops at

the same rate as creep.
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3.6 Comparison of Analyses with Experments

Iﬁ order to verify the wvalidity of time-functions
described in Section 3.4, comparisons are made with the
experimental curves of Ross (3.25). Three cases are consid-
ered;, one under constant applied stress and two under variable
stresses. In‘the constant stress test, a stress of 15.03
MPa (2180 psi) is applied for a périod fromvl4 to 60 days.
Fig. (3.8) shows the comparison between the results from
the experiments and the results from using the Kabir
time-fuﬁctioﬁs wiﬁh coefficients from the ACI curves and
from Khalil's functions with coefficients from the CEB-FIP
curves. Also given for comparison are the results using
the ACI and the CEB-FIP prediction models. It is seen that
the CEB-FIP results show a better correspondence with experi-
mental values than the ACI committee results, and both the
models underestimate creep strains in the event of a removal
of applied stress. Fig. (3.9) shows the comparisons for
creep under an increasing stress state and Fig. (3.10) shows
the comparisons for creep under a decreasing stress state.
In all the cases fhe present analysis with time-functions
show good agreement with the CEB-FIP and ACI results.

The experimental results reported by L'Hermite and
‘Mamillan (3.28) are used to verify the analytical methods
for shrinkage effects. The results for two different specimen

sizes (7x7x28 cm and 100x100x400 cm) are compared.‘ The
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results of the study are presented in Fig. 3.11 and it is
seen that the CEB results are the closest to the experimental

results and the ACI predictions are on the higher side.
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CHAPTER FOUR

FINITE ELEMENT ANALYSIS

4.1 Introduction

Ahalytical solutions to time-dependent problems are com-
‘Plex. Moreover, analytical solutions are based on too many
simplifications which might impede a representative model
of the structural members involved. Finite element analysis
is an excellent tool in such cases, since finite element
modelling of complex material behaviour is now possible with
the advent of powerful computers. In some cases where the
internal stress distributions due to time-dependent effects
are the prime target of analysis, finite.element analysis
may be the only choice. -In this chapter the steps involved
in employing the finite element method to solve time-dependent
problems are discussed. A brief outline of the various
finite elememt formulations and the evolution of the use of
finite element method in modelling structural concrete is
also presented. The transformation of a finite element program
for elastic-static analysis into a program capable of
time-dependent analysis is dealt with in detail, and finally,
the capabilities of NON-SMAC, the program used in the present

study for time-~dependent analysis are listed.
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4.2 Finite Element Method of Analysis

Finite elemept method is a descretization procedure
through which a continuum with infinite number of unknowns
(degrees of freedom) is approximated as an assemblage of
elements having a finite number of unknowns. Since the
method is so widely used and numerous text books (eg. 4.1,4.2)
are available on the subject, further elaboration is not
attempted here, though three different modes of finite element
formulations, viz. the dispiacement formulation, the incom-
patible modes formulation and the hybrid stress formulation

are briefly touched upon in the following paragraphs.

4.2.1 Displacement Formulation

In this method, the element displacements are the only
variables. 1Internal displacements are interpolated from the
nodal displacements and the stresses and strains within the
elements are expressed as functions of these displacemengs.
The stiffness matrix is obtained by the minimization of
total potential energy. No effort is made to consider the
equilibrium of internal stresses and the applieé loads. 1In
general the displacement elements satisfy inter-elment dis-
placement compatibility, though some elements have been
developed which perform very well without being compatible
(4.2). Displacement method is the most widely used, mainly

because of it's simplicity in theory and the ease with which
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it can be programmed. Many displacement elements are currently
in use, which can be applied in situations of in-plane forces,
bending or both. They range from the simple constant strain
}triangle and beam to the complex, variable node isoparametric
solids. Though simple in theory and strainght forward in
formulation, the displacement method has the drawback of"
being inherently overstiff. The displacement method employé'
a set of shape functions [N] = [N, , Ni, ...] to express the
diéplacement field {u} within each element in terms of the

r

nodal displacement vector {q}.
i.e. _ {u} = 1 {q} (4.1)

A linear differential operator matrix [L] is applied to {u}

to get the strains {5-} at all points within the element:

{€} = L1 {u} = (L1 N1 {q}
i.e. ; {¢1} = B1 {q} (4.2)

where [B] = [L] [N], the strain-displacement matrix.
The stresses are obtained from the strain-displacement

matrix using the material matrix [D].
{0} = b1 {£} | (4.3)

or - {V} = (p1 B1 {q} : (4.4)

If virtual displacements {Aq} are applied on nodes,

the sum of work done (dW) by internal stresses and body
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forces over the element volume V and by the surface forces

over the surface area S is given by

T ¢ T T T
aw = {aq} (S[B] {T}av - g[N] {plas - g[N] {glaw) (4.5)
v S v

where {p} and {g} correspond to surface traction and body
forces respectively.

In order to maintain equilibrium within the element, a
system of external nodal forces {Fr} have to be applied which
will reduce the virtual work 4dW to =zero. Egn. 4.5 wi;l

take the form:

T T T T T '
{aq} {r} = {aq} (S 8] {0 }av - g [v] {pl}as - g N1 {g}av)
\Y S 7 v (4.6)

Egn. 4.6 is valid for any virtual displacemnt {dq} and hence
it can eliminated from both sides of Egn. 4.6. Substituting

Egn. 4.4 into Egn. 4.6,

T T ' T
{r} = (\ [B] [D1[BlaV){q} - S IN]l {plas - S [Nl {glav
v S v (4.7)

This can be rewritten as

(F} = k1 la) = (¢ } - {F ) (4.8)
S g
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where [K] is the element stiffness matrix, FS and F3 are
the nodal forces due to surface forces and body forces respec~
tively. | )

Egqn. 4.8 1is the force-displacemnt relation for each
élement. Assembling the stiffness matrices and force vectors
of all the elements, the stiffness matrix and fo;ce vectors

for the entire structure is constructed. Overall equilibrium

equation can be written as:
[x1 {a} = {r} (4.9)

Egn. 4.9 is solved for the unknown displacemnts {&} and the
element strains are derived from {a}. For a linear analysis,

the stresses are obtained from Egn. 4.3 or Eqn. 4.4.

4.2.,2 Incompatible ‘Modes Formulation

This is an extension of the displacement method (4.3).
To overcome the problems with over-stiffness of displacement
elements, additional shape functions (interpolation func-
tions) are employed. These additional functions are
associated with 'dummy' degrees of freedom and these dummies
are eliminated in the element level by static condensation

(4.1). Details of this formulation is available in Ref. 4.3.
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4.2.3 Hybrid Formulation

Unlike in the displacement and the incompatible modes
formulations where the displacemnt fiélds are the only assump-
tions, the hybrid formulation uses multivaribale assumptions
(4.4, 4.5). Typically one assumption is made for the displace-
ment fields and another independent assumption is made for
the stress fields. The formulation is called hybrid since
the strain energy comes from two different sources. Various
variational principles are used as the basis of derivation
of the stiffness matrix from the assumétions. Hybrid formula-
tion can be either 'displacement hybrid' or 'stress hybrid’,
depending on whether a potential energy functional or a
complementary energy functional is used in the derivation.

Ssimilar to the displacement method, the hybrid method
also uses a set of shape functions to express the displacement
field within elements in terms of the nodal displacements
{q}, (see Egn. 4.1). 1In addition to this, an interpolation

matrix [P] of assumed stress fields is used such that
(0} =121 {p] (4.10)

where {p} is a vector of unknown stress parameters. Variation
of a "modified complementary energy principle" (4.14) pro-

duces:



.
0 G q F
= (4.11)
sym. -H P 0
where
-
[G] = S [p] ([L) [N]) 4V, 1leverage matrix
v .
T
[H] "= g[P] [C] [P] AV, generalized flexibility matrix
v
and [cl = material compliances. {£€} = [c1{0}

[y, [N1, {q} and {F} are defined in Section 4.2.1.
From Egn. 4.11, by reverse Gauss factorization and

part-inversion,

-
{p} = 11 161 {q} (4.12)
and
T - T -l
GHG -G H q F
= (4.13)
sym. - o -
T -l
Therefore [G H G] {q} = {F}, so that the stiffness
matrix is N
[K] = (G H G : (4.14)
and stresses {0} = (p1 { g} © (4.15)

or from (4.12), {0} = 1(p1 (8] [c] {q} (4.16)
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The strains can be derived from the stresses using the

compliance matrix

-

{e} = [c1 {0} (4.17)

4.2.4 Choice of Formulation Model for the Present Study

To choose between the different methodé of finite element
formulationg for the present study, a comparison study of
the performances of the different elements is made. A cantile-
ver with a concentrated 1load and a couple applied at the‘
free end is modelled with different numbers of 8—node'solid
elements of the different formulations. It is seen that
the hybrid and incompatible mode elements converges much
faster than the displacement elements. The stress and dis-
placement results using the hybrid and incompatible mode
elements are identical, when the elements used are 'regular'
shaped (see Figures 4.1 and 4.2). A study of the cost of
analysis (proportional to the time of analysis when'comparisons
are made in the same 'shift'), using the different formulations
(Fig 4.3),‘indicates the hybrid elements to be the most
expensive and the displacement elements to be the least
expensive. But this advantage of the displacement elements
is offset by their very sluggish convergence.

A further study of the formulations was made for skew
situations, where the shape of the element faces departed

from the .rectangular (Fig. 4.4). The results indicate
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(Fig. 4.5) a definite superiority of the hybrid formulation
over the others. Hybrid element formulation has a concrete
theoritical base, whereas the incompatible modes formulation
is weak in this regard (4.14). Considering these advantages,

the Hybrid formulation is chosen for the present study.

4.3 Simulation of Three-Dimensional Creep and Shrinkage

The main objectives of a time-dependent analysis are
determination of the ultimate deflection and the ultimate
stress state in a_structuﬁe, ﬁnder various loads and environ-
mental conditions. This would bé an easy task, if the structur-
"al member is made of a material that creeps and shrinks at
a uniform rate at all points of the cross-section and the
stress state remains étationary. But this is not the case
with practical cases of structural members. Even if a member
is homogeneous, the material:at peripheral zones creeps and
shrinks at a higher rate than the inner regions. The differen-
tial creep and shrinkage across a croés—section and the
presencecﬁfsteelreinforcementcausésconstantredistribution
of stresses within a section. The monolithic nature of
concrete structures and their statical indeterminacy further

complicates the problen.
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4.3.1 Step-by-Step Integration Scheme

Since créep is a function of stress, the continuous
redistribution of stresses necessitates a step-by-step analy-
sis scheme in the time-domain. The popular 'initial strain'
approach as descfibed by Zienkiewicz (4.1l) is adopted for
the present study. 1In this method, the total time period
for which the structure is under study is divided into several
time intervals. The stress state during each time interval
is assumed to stay constant at it's‘vaiue at the beginning
of the time interval. Since creep rate is the highest immedi-
ately after the application of load, smaller time-steps are
taken just after each loading and longer steps afterwards.
Time steps also coincide with the times of application of
load. The various steps involved in the analysis are presented
below for a time step t,-t,, where t, and t, denote the

beginning and the end of the time step (Fig. 4.6):

1. For the load increment at time t,, perform an elastic
analysis of the structure. By solving’the equilibrium equa-
tions for the applied loads, all the field variables such
as the nodal displacement vector {g}, the strains {£} and
stresses {0} are known for all the elements.

2. Determine the creep and shriﬁkage coefficients for

this time step.
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3. Compute the creep and shrinkade strain increments

during the time interval tz-t1,‘assuming the stress state
to remain steady at the value calculated in step 1.

4, Treat creep and shrinkage strain increments as initial

strains {4}

(48} = {ag} + {4} (4.18)

where [4¢,} and {42} are creep and shrinkage strain increment
vectors at gauss points in each element.
5. Calculate the equivalent nodal forces produced by

the initial strain increments.

{4F,} = S[B]T (a1 {4} av (4.19)
where MZ} is the equivale;t nodal load vector due to the
initial strain increment, [B] is the strain displacement
matrix, [D] is the material matrix and V is the volume of

all the elements that undergo creep and shrinkage .

For the hybrid formulation, this becomes:

.._,
{be} = S([G] (m] (el {44} av (4.20)
(2}
v
- T
since [P][H] I[G] is equivalent to [D][B] from Egn. 4.16
and [D] being symmetric.
" 6. Solve the equilibrium equations for the equivalent

nodal vector above
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{dq} = IK] {'AFéa} (4.21)

where {Aq} is the nodal displacement increment vector and

[K] is the structure stiffness matrix.

7. The strain increment vector {Ai } is obtained frqm
]
{46} = 1c1 {40} (4.22)

: !
where [C] is the compliance matrix and {40} is obtained

from

) ]
(&} = [p] tu] te] Wq) (4.23)

8. The stress increment during t, -t is calculated

from

(AP} < o1 ({46} - (46,) )  (a.2a)

where {4f} - {#£.} is the increment in elastic strain during
the period t -t,.
9. Find the field variables at time t, by adding the
increments during tL-t, to the total values at t .
10. Modify the structure stiffness matrix if necessary.

11l. Repeat steps 1-9 for next time interval ty-t, ..

4.3.2 Solution Procedure For The Present Analysis

The present analysis for creep and shrinkage effects

using finite element method involves the following steps:
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1. Set flags to choose between different creep and
shrinkage prediction models.

2. Define a number of material property sets, one for
each different creep and/or shrinkage property. Different
'Area/Perimeter Exposed' parameters may be allocated to ele-
ments according to their relative position across the
cross-section (see Section 2.4.2). The material data requireq
depend on the creep and shrinkage model that is specified
in.step 1.

The creep poisson's ratios for three-dimensional analysis
may either be specified or calculated at a later stage by
Gopalakrishnan's method (Section 2.5). |

The elastic modulus of concrete is taken as E . The
structure stiffness based on this value is used throughout
the analysis. For creep analysis based on the ACI method,
a correction factor is applied to E,y to get E,.

Specify the curing conditions. This will be used to
modify the age of concrete (see details in Section 2.4).

Set flags to specify creep analysis or shrinkage analysis.
This enables individual analysis for creep alone or for
shrinkage alone or for both together.

3. Enter nodal point data. Specify nodal degrees of -
freedom, boundary conditions and nodal coordinates.

Specify the element types and assign méterial property sets

defined in step 2 to each element. "Define elements’witﬁ
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element topology.

4. 1Input the details of initial load: enter the age
at loading tyy specify gravity loads, surface loads and
nodal loads.

Give the obervation time t, for creep and shrinkage effects.
Define vectors 'total displacement', 'total strain' and 'total
stress' and initialize them to zero.

5. Generate the element stiffness matrix and assemble
the structure stiffness matrix using Ezs'

6. Solve the equilibrium equations for the nodal dis-
placements. Add these values to the total displacement.vecpor
to get the displacements at t,. 1Include the displacements
in the output file.

7. Evaluate the stresses at gauss points in each element,
add the values to the 'total stress' vector. Repor£ the
stress state at time t, , either at the gauss points or at
corner nodes through extrapolation. i

8. Generate the creep and shrinkage coefficients for
time t from built-in interpolating functions representing
CEB-FIP and ACI curves and‘tébles. Determine the coefficients
of Kabir's or Khalil's time-functions (see CHAPTER 3). Calcu-
late the creep poisson's ratios (function of instantaneous
strain), 'by Gopalakrishnan's procedure (CHAPTER 2), |if

desired.
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Using the stress values from step 6, evaluate the incremental
creep and shrinkage strains during the period t,-t,.
) Using Equation (4.20), determine the nodal force vector {A%b}'
equivalent to the sum of the incremental creep and shrinkage’
strains.

9. Replacing {AE%D} as the load vector, solve for the
incremental displacements {Aq}.
Find the stress vector {AJJ} corresponding to {Aq}.
Determine the incremental stress vgctor {AF‘} during the
period t, -t , using {AV;} = ‘{AVJ} - [D]{ﬂé,}, where { 4£,}
is the sum of incremental creep and shrinkage strains from
step 8 and [D] is the material matrix.
Add {AU’} to the total stress vector of step 7.

10. Add the incremental displacements to the total dis-
placements from step 5. Now the displacements and stresses
at time t, are known. Write thesevvalues into the output
file.

11. Replace t,4 with t, . Read the next observation
time, ;he new‘t’. Set flag to specify whether structure
modification is necessary at this point or not:

12, If the structure stiffness matrix is to be modified,

read modification factor to Ez and the identities of all

8

the elements to be modified. Form new element stiffnesses

and assemble these to form the new structure stiffness matrix.
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'If external load is incremented at the new t r repeat steps
' 6-10. Otherwise skip to step 13.

13. Set the étress values at all points to be zero.
Repeat steps 8-10.

14. Stop computations if the value ofhtl is input as
zero in step 1l.

A‘flowrchart for the procedure is given in Fig. (4.7).

4.4 Finite Element Modelling Of Structural Concrete

‘Most finite element analysis of structural members are
carried out based on assumed homogenity of the material
across cross sections. But practical structural members
are seldom homogeneous. For accurate analysis of
non—homogehous members such as reinforced or prestressed
members, both the concrete as well as the steel have to be
represented in the finite element idealization. Analysis
of structural concrete is further complicated by the continual
change in geometry of structural elements due to the
progreesive cracking under increasing or sustained loads
and environmental changes. Almatheconstitutiverelationship
for concrete is nonlinear and is a function of many variables.
The failure criteria of concrete under multi-axial stress
states are complex and are dependent on many factors. Effects
of dowelraction in the steel reinforcement and concrete are

very difficult to model analytically.
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The pioneers in the field of application of the finite
element method to reinforced concrete structures appears to
be Ngo and Scordelis (4.6). They studied simply supported
beams using constant strain triangles for both concréte and
steel. To stimulate the bond between concrete and steel,
special 1link elementé were used. Bresler, et al. (4.7)
developed a "boundary layer" adjacent toc the steel-concrete
interface, whose elastic constants were adjusted to account
for the effects of cracks and inelastic deformations.
Zienkiewicz, et al. (4.8) made two dimensional stress studies
of concrete which included tensile cracking and elasto-plastic
behaviour in compression and used an "initial stress" approach.

Numerous other investigators (4.16, 4,17, 4,18, 4.19,
4.20, 4.21, 4.22, 4.23) have studied reinforced and prestressed
concrete members including beams, plates and shells using
plane stress elements. But very little work has been done
in treating structural <concrete systems as general
three-dimensional solids because of the computational effort
involved and the lack of knowledge of concrete material
behaviour in the three-dimensional stress states. The first
attempt in this direction was by Suidan and Schnobrich (4.9)
who used a 20-node three-~dimensional isoparamentric displace-
ment element for the analysis of beams. Reinforcement bars
were~representéd by linear elements that shared points.of

definition of displacements with the concrete elements and
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thus bonded to them. Furthur attempts in using
three-dimensional concrete analysis were made by Bangash

and England (4.10), Sarne (4.11) and Anderson (4.12).

4.4.1 Representation of Reinforcement

The different modes of representation of reinforcement
that are used by various investigators can be broadly divided

into three catogories:

(a) distributed
(b) embedded
(c) discrete

fér a distributed representation (Fig. 4.8a), the steel is
assumed to be distributed over a concrete element. The
constitutive relation .is modified to include this
steel-concrete composite. Perfect bond betﬁeen steel and
concrete interface is assumed.

For embedded representation (Fig. 4.8b), the
reinfocement bar is considered to be an axial member built
into the concrete element such that the steel displacements
are consistent with those of the concrete element. Again
perfect bond must be assumed. This representation is mainly
suited to higher order isoparametric elements (4.13).

A discrete representation (Fig. 4.8c) of‘reinforcement
using one~dimensional axial, tendon, truss or bar elements

is the most widely used mode of representation. The steel
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elements are assumed to be pin connected with two degrees

of freedom at the nodal points. Alternatively, beam elements
may be used if the reinforcement is assumed to be having
axial,‘shear and bending resistences. The discrete represen-
tation has the advantages of bging simple and being able to
move relatively with respect to the concrete elements.

The first two methods of representations of steel are
obviously inadequate to model unbonded or partially bonded
prestressing cables. Anderson (4.12) has ‘developed a
multi-node tendon element (Fig. 4;86) , which can have any
number of nodes and whose stiffness can easily be found
from initial geometry and thé elastic modulus of steel alone.
If the tendon is grouted into the concrete and there is no
slip between tendon and concrete, then the stiffness for
each link of the tendon reduces to the stiffness of a bar
element and the stiffness matrix for the whole tendon can
be formed as the sum of stiffness matrices for it's individual
links. .He further employs a constraint parameter ﬁ-,
with 0% % £ 1 ; to represent th9§e cases intermediate
between fully bonded and frictionless.

In the present analysis, 8-node tHree—dimensional
isoparametric hybrid brick elements are used to.represent
concrete., The same type of eléments are used for steel as
well, forming a discrete mode of representation. Though

this method is not as efficient as using bar elements (see
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Fig. 4.9 and Table 4.1), it has the advantage of uniformity

and ease of input preparation. For large structural members
taking thousands of concrete elements to model, the uniformity

of elements could prove to be quite an advantage.

4.5 Computer Program

A finite element computer program 'NON-SMAC' is developed
for the present time-dependent study, based on an
elastié—static general purpose finite element program 'SMAC'
(Systematic Matrix Analysis of Continua) prepared by Chieslar
(4.15) at the University of Calgary. The program has a
wide ranged element library which includes:

(1) Boundary Elements

(2) Truss Elements

(3) Beam Elements

(4) Substructure Elements

(5) Plane/Membrane/Axisymm. Elements

(6) Plate Bending/Membrane Elements’

(7) Solid Elements

(8) Thick-Shell Elements
The program NON-SMAC has both ACI and CEB-FIP 1978 creep
and shrinkage models built-in and the user has the option
to choose a model, by setting the appropriate flags. The
step-by-step analysis may be based on either rthe Khalil

time-functions or the Kabir time-functions. The creep
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Table 4.1
Comparison of Performances of Different Modes of

Representation of Reinforcing Steel

Steel Represented by Case 1 Case 2 Case 3
Truss Elements u 1.007 1.01 0.96
Solid Elements‘ 1.11 1.12 1.05

Based on tests modelling 2x0.1x0.3m cantilever and

4x0.1x0.3m simply supported beam using 4 numbers of 8-node

solid hybrid elements. Cases of loading are given’'in Fig. 4.9.
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poisson's ratios can be either user supplied or evaluated
by the Gopalakrishnan's procedure.

Large creep problems will tax tﬁe fast core memory of
even the modern 'mega' computers. 1In addition to the storage
requiéed to store and solve the assembled structure stiffness
matrix, a large amount oﬁ storége is required in a
time-dependent analysis for storing data at the integration
points -even while using the Dirichlet series functional to
simplify the storage problem. For example, in a
three-dimensional creeb problem using Khalil time-functions,
8 Dirichlet coefficients are to be stored correbonding to
eachstressvaiue. Thus for a solid element with 9 integration
points and 6 stress components for each integration point,
8x 9 x6 = 432 values are to be stored. Considering that in
addition to this, total displacgments, total strains and
éotal stresses at any time. are also to be stored, it becomes
obvious that fast core storage of data is impossible. Hence
disc storage is adopted for all the storage requirementszin
the present program. The data are read to and from a large
common block, the size of which can be adjusted for the
problem at hand and for the computer used.

The program NON-SMAC is wripten in standard FORTRAN-77 and
has been tested in Honeywell ‘Multics and CDC Cyber 175 at

the University of’Calgary.
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4.6 Verification Examples

To verify the computer program just described, the results’
of analyses using the program were compared with experimental
results. Three cases were considered: biaxial and triaxial
creep tests reported by Gopalakrishnan et al. (4.24) and a

simple composite beam tested by Rao and Dilger (4.25).

4.6.1 Example 4.1

Gopalakrishnan's (4.24) experiment consisted of a 10
in. cube specimen loaded for a 28 day period with biaxial
stresses. Assuming no stress variations through the specimen,
it was analysed using only one three dimensional element.
The load was applied with the age of concrete at 8 days and
then the creep steps were applied for a duration of 28 days
after which the load was removed. At the end of each time
step the values of stresses were not changed and remained
equal to the applied stresses, such that equilibrium is
maintained with the applied load. Creep strains from the
experiment and from the analysis are shown in Fig. 4.10.
It is seen that the computed results are in good agreement

with the test data.

4.6.2 Example 4.2

A 10 in. cube specimen as in the previous example was

tested under triaxial stresses in this case (4.24). The
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initial triaxial stresses were sustained on the specimen
for a period of 68 days, after which V"was increased and
the specimen was kept under load for another 31 days. The
computer analysis was made with a constant creep Poisson's
ratio of 0.17 (Fig. .4.11l) and with the creep Poisson's ratios
calculated by the Gopalakrishnan's method (CHAPTER 2)

(Fig. 4.12).

4.6.3 Example 4.3

Rao and Dilger's experiment (4.25) consisted of a simple
composite beam with the web cast first and the deck added
after 41 days. The dimensions of cross section are shown

in Fig. 4.13a. The material properties were:

Concrete Properties:

Web Concrete Deck Concrete
Modulus of Elasticity 32000 MPa 25000 MPa
Ultimate Creep Coefficient . 2.18 2.48
Ultimate Free Shrinkage =720 x 10-6 -770 x 10-6
Prestressing:
Initial Prestressing Force 293 kN
Loss of Prestressing 42 kN

(i.e. 14% loss, applied at day 48)

Time Schedule:

Casting of web : day O
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End of curing, application of prestress day 7
Casting of deck on a propped web day 41

”End of curing deck, mounting of beam on

‘é simple span of 3.7 m day 48

Two concentrated loads of 25.9 kN applied

at the third points ( day 53

For the compu{:er analysis, the beam is taken as simply supported
from day 7 6nwards, ignoring the restraint to deflection
during the period from day 41 to day 47. Two analyses are
made, one with concentrated loads applied at day 53 and a
second one without these superimposed loads. The deck is
included in the finite element anal?sis with a modulus of
elasticity of 1 MPa and density of 0.001 kg/m for the
first 48 days, at which point in time the modulus of elasticity
and density are increased to their actual values. The étruc—
ture stiffness matrix is modified corresponding to the new
value of the modulus of elasticity and the deck slab material
is allowed to creep and shrink by setting the appropriate
flags. In the analysis the ultimate creep and shrinkage
values are used with the Khalil time-functions based on the
CEB-FIP, 1978 graphs. Fig. 4.13b shows the calculafed values

of mid-span deflections along with the measured values.



CHAPTER FIVE

REDISTRIBUTION OF INTERNAL STRESSES DUE TO

DIFFERENTIAL SHRINKAGE AND CREEP

5.1 Introduction

Redistribution of internal stresses occurs in a structur-
allmember when the strains generated due to various‘causes
across a cross section are not mutually compatible. The
redistribution is such that compatibility is re-established.
The stresses generated due to non-linear shrinkage or no-linear
temperature distribution or settlement of a support are
redistributed by creep. In addition to this, differential
creep can generate internal stresses on it's own too. These
effects may not be of much consequences in statically determi-
nate members of plain concrete with uniform creep and shrinkage
properties across cross sections. But in composite members
with parts of different creep and shrinkage properties and
in members with unsymmetrical reinforcement, this
‘"redistribution of stresses deserve close attentién.

In this chapter a detail study of the redistributions
of stresses due to shrinkage and creep in a composite bridge
cross section is pfesented. "The finite element program
described in the previous chapter is employed for the analyses.

The bridge is made up of a solid spine and wings and the

130
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effects of édding wings when the spine has reached different
maturity levels are studied. The stresses that develop in
and due to an overlay and a parapet are investigated. The
results are presented in the form of plots of initial agd
final (lOQOO day) stresses. Also inélﬁded in this chapter
are the description of anefficient analytical method viz. the
creep transformed section properties method to evaluate stress
redistributions and an example problem wherein results of
the computer analysis are compared with results of the

analytical method.

5.2 Analysis using Creep-Transformed Section Properties

Introduced by Dilger (5.2, 5.3), the method of analysis
using creep-transformed section properties is a simple method
‘for computing time-dependent éffects in uncracked concrete
members subjected to sustained loads and sustained temperature
gradients. Using this method, analysis for shrinkage and
creep effects is reduced to a problem similar to that of
analysing for temperature effects in a composite section
wherein different components have different thermal
properties. This simplification is possible by making use
of the so-called "creep~transformed" section properties which
take the effects of creep into account. To account for the
gradual development of creep and shrinkage, the method uses

the concept of "aging coefficient" which was originally
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introduced by Trost (5.4) and further modified by Bazant
(5.5). |

Creep-transformed section is obtained by modifying the

section properties with a modular ratio:
n = E /E ’ . (5.1)

where i stands for the ith component of the composite section,
either steel or concrete. E* is the "age adjusted effective
modulus” (5.5) of the ith component ana EZ: is the age
adjusted effective modulus of a reference layef of concrete.

Thus for steel, the modular ratio is:

E E
* s . : -]
R (1 + X Plt,t,)) (5.2)
E E (t ) r r
cr cr o
where E, = modulus of elasticity of steel, E, (t,) is the

modulus of elasticity of concrete loaded at age t,, ><r is
the aging coefficient for the reference layer and qb(t t,)
is the creep coefficient for the reference layer. For a

concrete layer, the modular ratio is given by:
¥
B B (t) (14X Plet)
#® ci ci o rr o
€ n = =g = Somemoem— meeeeme— e (5.3)
E E (t) (1L+ X @D(tet) :
ii o -

cr ~ecr o
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where Ecift )+ X; and gétt,to) are the modulus of elasticity,
aging coefficient and creep coefficient respectively of the
ith layer of concrete.

To evaluate the time-dependent stresses and deformations
in a member, the forces that are necessary to prevent the
strains due to unrestrained creep, to free shrinkage of
concrete and to "reduced" relaxation (5.2) of prestressing

steel are applied to the creep-transformed section.

5.2.1 Analysis for Differential Shrinkage and Creep

Effects -

The creep-transformed section properties method was
applied to analyse members for differential creep and shrinkage
effects due to sustained temperature gradients by Sivakumaran
and Dilger (5.6). In the analysis, concrete section is
divided into a suitable number of horizontal layers and the
creep due to the initially applied stress and shtrinkage of
each layer is assumed to occur freely without restraint
from adjoining concrete layers or from reinforcement. A
reference strain distribution is obtained kﬁf multiplying
the initial elastic strains by the creep coefficient of the
reference layer and adding free shrinkage of the reference
layer. The forces in each layer corresponding to the differ-
ence between the free strains and the reference strains

distribution are found and are applied to the composite
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creep-transformed section. Superposition of the stresses
éorreséonding to the difference in strains between the free
strains and the reference straindistribution and the stresses
corresponding to the action of the internal forces on the
creep-transformed section gives the final stresses at varous
layers. |

In the present study, however, it is necessary to consider
the variation of creep and shrinkage .rates in both veftical
and horizontal directions. A section is divided info several
zones (see Section 2.5) of varying creep and shrinkage rates.
A reference 2zone is chosenland a reference strain profile
is developed as de#cribed earlier. Since redistribution of
stresses due to differential shrinkage and creep is of the
main concern in this study, the effects ‘on prestressing
steel is nét considered. The difference in time-dependent
free strains between the centroid of the ith zone and the
centroid gf the reference zone until time t is given by

% ,
b7ty = £ 1hte,t) - P el + £ (b)) = £ (t,t)
ci ci r o) i o

shr fo) shi o
(5.4)

where 5 = elastic strian at the level of the centroid fo

ci
the ith zone due to load applieé at age t, and . fsm= free
shrinkage at the ith layer. The corresponding normal force

and moment acting on the creep-transformed cross section

are
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* * #* :
N = Af£ (t) A E (5.5)
i ci ci ci

® ® % ,
and ‘M = N vy (5.6) -

ci ci ci

. "

where A, = area of ith 2zone and Y, = distance of the

centroid of ith zone from the centroid of ti'le creep-transformed
section.

In addition to the above forces and moments, the moments
generated due to different rates of time-dependent curvatures
between zones are also to be considéred. However, in practical
cases where the section is divided into several layers, the
contibution of these moments to the totél moment is normélly
negligible (5.6) and hence are not included in this study.

The time-~dependent change in stress at the centroid of

the ith zone is given by

x x
Y N Im
X X cl Cl *
A (&) =4 (£) B = {-==5 + ——=3-ly (5.7)
ci ci ~ci A I ci
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where Aﬁg (t) = the change in stress at the centroid of

the ith =zone, Aci= cross-sectional area of creep~transformed
" .

.section and I = moment of inertial of the creep-transformed

section. Time-dependent change in curvature is expresses

by

Apte) = g Pet ) - o5 (5.8)
O o

where ‘¥;= the initial curvature.

5.2.2 Example 5.1

The stress redistributins that.occur in a composite
beam is evaluated by the creep transformed section properties
method and by the finite element program and the results
are compared. The details of beam dimensions and materials
are given in Example 4.3 (CHAPTER 4). The beam is taken to
be cast at-once and cured for 7 aays after which it is
mounted on a span of 3.7 m. The shrinkage strains and creep

coefficients for the girder and slab are:

Creep coefficient for deck 9b (10000,7) = 2.28
1

|
=
X}
N

Creep coefficient for girder Qb(10000,7)
: 2

Aging coefficient for deck (Ref. 5.3) >§ = 0.78
1
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Aging coefficient for girder )Q = 0.75
2
i ’ -6
Free Shrinkage for deck £ (10000,7) = 674x10 -
shl
. ’ -6
Free Shrinkage for girder ¢ (10000,7) = 488x1l0
‘ sh2
*
E 2 e —————— = 10798 ‘MPa
cl (1 +X, D)
*® 36000
E T me—————— = 14400 MPa
c2 (l +>\1.¢2)
* *® X
n = E / E = 0.75
cl c2 :
‘ -2 2
Area of slab = Area of girder = 3.84x10 m
* -2 -2 2
Transformed area, A2 = 3.84x10 (1+.75) = 6.72x10 m
_% ® 3* %
1% = YAy /Z:A = 0.193, where y is the centroidal
b ii i . b
distance of the transformed area
C % ®x 2 2 -4 -4 -4 4
I =I+4+ A (v) = 2.16x10 + 4,16x10 = 6.32x10 m
, i i
Force corresponding to differential shrinkage,
*® ® -6 -6
N = & xA XE = (674-488)x10 x3.84x10 x10798
sh ¢l «cl
-2
= 7.71x10 'MN
* X ¥ -2 -3
‘M = Ny = 7.71x10 x0.093 = 7.17x10 MN.m

1
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Incremental concrete stresses at the centroid of deck:

* X - *
* N M X E
As (¢) = A (10000,7)xE - {-- + —-.y } -c2
cl sh cl * #* *
. A I E
c c2
, -2 -2
-6 7.71x10 7.17x10 x.093
= 186x10 x10798 - {-—-——-———- + mmmmmmmmeee o }.75
. -2 -2
6.72x10 6.32x10

0.36 MPa (tension)

The finite element solution with time steps generated by
L .
tﬂn = t0+ xtn—to) is 0.395 MpPa.

The variation of bottom fibre stress with time from
the finite element solution is shown in Fié. 5.1. . It ié-
seen £pat the stress reaches a peak at about 53 days after
loading and drop in value beyond that. Based on this observa-
tion and based on the fact that concrete étrength develops
with maturity, it is imperative that the concrete stresses
should be checked against the strength at several ages rather
than'against just one ultimate value. The "race" of internal

stresses against étrength is illustrated in Fig. 5.2.
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5.3 Stress Redistributions in a Composite Bridge

Cross Section

A composite bridge of cross section shown in Fig. 5.3a
is analysed for stress redistributions due to differential

shrinkage and creep. Four different cases are considered:

1. Spine cast at day 0 and wings added after 32 days

2. Wings added at day 178

3. Wings added at day 32 and a parapet added at day
178, and

4. Wings added at day 32 and overlaid at day 178.

The material properties and environmental conditions are:

Relative humidity = 50%

Age when drying starts = 4 days

Type of cement = Rapid Hardening
Consistency of concrete = Normal

Curing = 4 éays at 500C
‘Modulus of elasticity (Spine) = 30,000 MPa
‘Modulus of elasticity (Wings) = 30,000 MPa
Elastic Poisson's ratio = 0.16

In order to evaluate the varying rates of shrinakge and
creep at various points on the cross section, the cross
section is divided into different 2zones of varying

volume/surface ratios. See Fig. 5.4 for the volume/surface
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‘ratios chosen for different zohes and for the corfespénding
creep coefficients.

A finite element idealization of half the structure is
shown in Fig. 5.3b. Three-dimensional elements are used to
represent both' concrete as well as reinforcing steel.
Prestréssing steel ié not represented, but the prestregsing
force is applied in the form of axial loads and transverse
surface pressure. The structure is simply supported on a
span of 30 metres. The loads corresponding to prestress

applied at age 4 are:

Axial load : 7 = 15,1 MN

End moment " = 1,51 mN.m (sagging)
Uniform upward load’ = b.lBS'MN/m
Vertical shear at ends - = 1.8 MN (down)

In addition to these loads, the load due tg self weight is
also applied at this stage.

A second stage pnestressing‘is applied to the structure
when the wings are added. A 6% loss of the initiél prestress
to the spine is assumed to have happened at this stage.
This is applied in the form of a tensile force on the entire
cross section along with a uniform downward pressure. The
self weight of wings also acts at this stage. The loads
are:

Axial load corresponding to second

stage prestress 4,52 'MN
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Axial load corresponding to loss of

-0.906 MN

first stage prestress - =

End moment (prestress) ' = 0.74 MN.m (sagging)
End moment (loss) = -0,091 MN.m (hogging)
Vertical shear at ends (prestress)= 0.67 'MN (down)
Vertical shear at ends (loss) = -0.108 MN (up)

5.3.1 Case (1)

Two analyses are made and the results are superimposed.
The first analysis is for the time-dependent effects of
initial prestress and self weight on the spine. Only creep
is considered in this case. The second analysis is for the
entire structure. The age of spine concrete when the wings
are attached is taken to be 32 days. The second stage
preétress, loss of fi;st stage prestress and self weight of
wings are applied to the structure. Values of normal stresses
at day 4 -and at day 10000 from the first analysis of spine
alone is given in Fig. 5.5. It is seen that differential
creep alone doesn't cause any appreciable redistributions
of internal stresses. The sum of stresses from both the
analyses are given in Figures 5.6 to 5.9. As shown in the
figures, the extreme changes in stress occur at the tip of
the wings. 1In this region, the top fibre stress is modified
from -1.92 MPa (compression) to 3.18 MPa (tension). At the

same time compressive stress at the top fibre in spine increased
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from -4.78 MPa to -5.73 MPa. The tensile stress at the
bottom fibre in spine increased from 2,77 MPa to 3.15 'MPa.
A summation'df stresses across the cross section at day
10000 yielded axial forces of magnitude élose to the initial -
applied loads, with about 7% error.

The problem is analysed using "creep-transformed" section
properties (details in Appeﬁdix A) and the final stress at
the centroid of the extreme half of the wing is found to be
3.25'MPa~(tension5. This validates the present computer

analysis.

5.3.2 Case (2)

The wings are attached to the spine at day 178 in this
case. The final results are obtained from superposition of
the results of two analyses as in case (l). The stress
distributions across the cross section at day 178 and at
day 10000 are shown in Figures 5.10 to 5.13. The amount of
redistribution of stresses is higher in this case due to
the increased age difference between the components. The
normal stress at the top fibre near wing tip increased from
1.92 MPa (compression) to 3.52 MPa (tension). This 1is an
increase of 10% from the previous case. The 1level of
redistribution in the spine in this case remained very close
to that in the previous case. The major differences of

this case from the previous case is observed near the wing-spine
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junction. Whereas in case 1 normal stresses in the wing
near the spine changed from -1.7 'MPa (compression) to -4.78
‘MPa (compression), in case 2 the'change in this point is
negligible. This can bé explained as due to the parity of .
shrinkage rates of the spine concrete and wing concrete

near the junction.

5.3.3 Case (3)

In this case the spine.is assumed to be cast at day 6,
wings at éay 32 and the structure overlaidwat day 178. The
overlay is 50 mm thick and~is assumed to be made up of
concrete with similar properties as the rest of the structure.
Because of it's extreme thinness and age difference with
the older concrete, stresses in the overlay was found to
increase from -0.38 MPa (compression) to 5.4 MPa (tension).
The redistribution of stresses in the rest of the structure
is not much affected due to the addition of oyerlay.

In this case also the final stresses are obtained by
the summation of results from one analysis of spine alone
and another one of the entire structure. Elementsrepresenting
the‘overlay!are included in the analysis from the start
with a negligible value of the modulus of elasticity, zero
density and with the creep and shrinkage flags at "off"
position. Subsequently, at day 178, the actual values of

the modulus of ‘elasticity and density are set and the creep
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and shrinkage flags are set at "on" position. The element
stiffness matrices corresponding to the overlay elements
are modified for the new value of the modulus of elasticity
and the structure stiffness‘matrix is re-assembled. The
stress matrix also is modified. Incremental load due to
self weight of the overlay is added to the structure at
this point. The age of the wing concrete is 146 days at
this stage and the spine is 178 days old. The distributions
of stresses in the cross section at day 178 and at day

10000 are shown in Figures 5.14 to 5.18.

5.3.4 Case (4)

In this case the effects of adding a parapet to £he
bridge structure is analysed. The wing is taken to be cast
at day 32 and the parapet to be added at day 178. The
method of analysis is similar to that in case 3. From the
initial and final stress distributions shown in Figures 5.19
to 5.23, it is clear that adaing a parapet is beneficial to
the entire structure. The 10000 day normal stress at the
top fibre in the tip'of the wing is only 2.98 MPa (tension)
in this case. Recall that this value in case 1 is 3.18 MPa
and in case 2, 3.52 MPa. The final stresses in the parapet
are 0.43 MPa (tension) at top fibre and 1.16 'MPa (tension)

at the bottom fibre. Stress redistribution in the wing
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only is affected by the addition of parapet. Thé spine is

unaffected.
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FIG. 5.20 REDISTRIBUTION OF NORMAL STRESSES AT

MID-SPAN IN A COMPOSITE BRIDGE CROSS SECTION:
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CHAPTER SIX

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

6.1 Summary

A fiffite element program capable of time-dependent ana;Ly-—
sis of concrete is developed using three-dimensional hybrid
stress elements. For creep and shrinkage prediction, the
prediction functions proposed by CEB-FIP, 1978 and'ACI Commit-—
tee 209 are incorporated into the program. The principle
of superposition is assumed to hold true. To avoid the
"storage of stress history that is esséntial for a creep
analysis using the above creep prediction models, a set of
Dirichlet series is employed. The series proposed by Kabir
and Scordelis is used to approximate the ACI creep functions
and the series proposed by Khalil and Dilger to approximate
the CEB-FIP functions. 1Instead of building the Dirichlet
coefficients into the program, as had been doqe in the paét,
the coefficients are found for each time step with a chosen
set of observation times. This method was found to give a
series with much better correlation to the prediction fuﬁc—
tions. Simulation of three-dimensional creep is aéhieved
by assuming uniform creep coefficients in all directions.

Creep Poisson's ratios are evaluated as a function of instanta-

1€8
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neous strains using a method introduced by Gopalakrishnan
and Ghali. Since the current predictioﬁ models do not evaluate
creep and shrinkage as a local property, arsimple manipulation
employing different volume/surfaée ratios across a section
is proposed. Using this .technique the :time-~dependent
redistributions of internal stresses that occur in a composite
bridge section is studied. The analysis technique using
"creep-transformed" section propefties proposed by Dilger
is extended to cover analysis of sections when time-dependent
strains vary throughout the area of the sections. Results
of the computer analyses are compared with the results of

analyses with creep-transformed section properties.

6.2 Conclusions

The importance of time-~-dependent analysis of concrete
is on the rise with the increasing usage of composite construc-
tion, _prestr:essed concrete slender members and the application
of concrete to build structures such as nuclear containment
vessels. The time-dependent effects may cause serviceability
problems through increased deflections or through cracking_
due to redistributions of stresses. Simple and efficient
methods such as "creep~transformed" section properties method
could be employed for the time-dependent analysis of simple

structures. But they get too tedius to use when applied to



170
complex structures. Finite element analysis is an excellent
alternative in such cases.

There are a number of prediction models currentiy avail-
able to evaluate creep and shrinkage strains, but they deviate
much in their predictions and their formulations are fundamen-
tally different. Even detailed statistical evaluétions seenm
incapable of establishing the superiority of one model over
the others. in the midst of all this confusion, the best
appears to be to follow Neville and Dilger's stance, ie.,
there is not a reliable method to be recommended and that a
simple, proven method is preferable to a more complic%ted
one, at least to take advantage of the simplicity.

The current prediction models indicate a mean creep
and shrinkage strain across a crdss section. This is useful
only if structures are simplified into linear elements. Such
an idealization cannot bring out the time-dependent
redis£ributions of stresses within a section. Thus fﬁgre
is no doubt room left for improvelﬁent of the current.prediction
models. Specifically, constitutive models which can establish
creep and sbrinkagé as a local property are needed. 1In the
present study, the local creep and shrinkage strains are.
evaluated using the current prediction models by varying
the volume/surface parameter. This 'method is found to gi&e
creep and shrinkage strain distribution of such nature as

that is expected physically.
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One bottle~neck in emgloying the step—by-step numerical
method for time-dependent analysis is the necessity to store
stress-history. To overcome this handicap, Defichlet series
representations of the ‘prediction models are used. Earlier
iﬁvestigators such as Kabir and Khalil have built-in sets
of Dirichlet coefficients in their computer codes and uses
interpdlative methods to evaluate coefficients for
"non-standard" time-steps and parameters. In the present
study, however, coefficients are evaluated at each time-step,
tailored to the problem at hand. This method is found to
| give much better correlation to the actual prediction curves.
Finite elementsforﬁulated by the Hybrid stress technique
are used in the present study to ﬁodel concrete, Hybrid
elements are found tq converge much quicker than their "Dis-
placement"formulétedcounterparts1x>theclassiéalsolUtions.
Though Hybrid elements are more expensive to use in terms
to computation time; it is seen that ‘their efficiency
over-rides this disadvantage in economy. 8-node solid ele-
ments are used to model concrete as well as feinforcing
steel. 'Modélling steel using solid elements was found to
give rise to a maximum error of 12%.
The results of computer anélyées of a composite bridge
is found to agree ‘with analytical solution using
"creep-transformed" section properties. The analyéisassumes

the validity of the Superposition theorem. The detailed
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computer analysis of the bridge shows that differential creep
alone doesn't cause any appreciable-redistributions of inter-
nal strésses. The highest changes of stresses occur at
very thin components. The age difference between components
is a mojor governing factor of the magnitude of stress-
redistributions. Addition of a parapet teﬁds to decrease
the extent of stress redistributions to the cantilever slabs
to which they are attached if the parapet is thicker than
the slab. Thin overlays are found to develop high tensile
stresses of the order of 5 MPa, implying cracking at some
stage. Thus it is imperative that a detailed time-dependent
analysis is made during the design process to enable the
designer to take preemptory measures to ensure the

serviceability of the structure during it's entire life-time.

6.3 Recommendations

Recommendations include recommendations for future work
related toé the computer program and recommendations to the
practising engineer, derived from the results of
time-dependent computer analysis of a composite bridge struc-
ture.

The following enhancements could be made to the computer
program:

(1) Prestressing steel 1is currentlyvnot incorporated in

the program. Prestressing forces are simply applied to members
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as axial loads and transverse loads. Pfestress losseé are
not continually evaluated, but applied in lump at certain
time steps. Inclusion of tendon elements to model prestressing
tendons and provisions for continuous evaluation of losses
and application of the losseé to the structure will be a
definite improvement to the program.

(2) Inclusion of the relaxation of prestressing steel.

(3) The present analysis is based on:thé assumption of
linearity of concrete behaviour. But for an accurate analysis
of concrete, it is essential to consider the nonlinear material
relationships of concrete.

(4) Reinforced Concrete is subject to cracking even at
relatively low loads. As the load increases these cracks
progress gradually. The' presence of cracks has a major
effect in the local stress and overall performance of the
structure. Crackfmodelé would be a definite asset to any
program to model concrete behaviour.

(5) Present analysis assumes perfect bond between steel
and concrete. But with increasing load, there might be
bond failure between concrete and steel, resulting in
longitudinal slip. The effect of this longitudinal slip is
to be included in the program.h

k6) Include effects due to sustained temperature gradients.

The following conclusions based on the results of a
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detailed time—dependentA computer analysis of a composite
bridge structure may be of uée to the designer:

(1) Age difference between the components in composite
construction is a decisive factor in the extent of
time-dependent stress redistributions. To dvoid problems
related to excessive accumulations of stressrin certain compo-
nents, the age differences between adjacent components are
to be kept to a minimum. Extended curing of young components
would defini£ely be worthwhile.

(2) Excessive size difference between components is hazard-
ous. Allow higher strength concrete and longer curing time
" for thin members.

(3) Parapets attached to thin slabs are helpful in reducing
the extend of redistributions to the slabs”provided that
the parapéts.have properties generating higher creep and
shrinkage rates and magnitudes.

(4) Thin overlays on aged members are found to develop
tensile stresses of the order of 5 'MPa, this will most
likely result in cracking of the concrete overlay. Thus

materials with minimal shrinkage are to be used for overlays.
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APPENDIX A

Analysis Using Creep-Transformed Section'Properties

Timé—dependent redistributions of internal stresses in &
bridge cross section (Fig. 5.3) is analysed using
"creep-tranéformed" section properties. The section is
divided into three zones and the créep and shrinkage rates
in each zoné is assumed to be uniform. The zones are shown

in Fig. A-1l.

Fig. A-1

Volume/Surface ratio of zone 1 = 560 mm
Volume/Surface ratio'of zone 3 = 170 mm
Volume/Sufface ratio of zones 2+3 = 219 mm
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.. Volume/Surface ratio of zone 2 = 219%2~170 = 268 mm .

Creep Coefficients:

# (10000,39) = 1.185, X = 0.74
1 1

@ (10000, 7) = 1.467, X = 0.72
2 2

¢ (10000, 7) = 1.888, X = 0.76
3 3

Shrinkage Strains:

¢ | -6
(10000,39) = 50x10
shl
: -6
£ (10000, 7) = 234x10
sh2
-6
£ (10000, 7) = 451x10

sh3

Age adjusted effective modulus,
X%
E=E /(1L +X P) = 16,014 Mpa
1 1 11

*

E = 14,620 MPa
2
*®

E = 12,220 MPa
3

See Table A-1 for calculation of,creép—transformed section

properties.

Load Applied to the Structure

Loads applied to the composite section when the wings

are added at day 32 are:
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Additional Prestress = 4,52 MN

Loss of Initial Prestress -0.206 MN

These forces give rise to the following loads:

0.65 MN.m - 0.65 MN.m
A

3.61 MN———*4 }F—- 3.61 MN

0.56 MN MHHH’(MH?”HH'?HHH‘H” 0.56 'MN

0.032 'MN/m

Fig. aA-2

Initial stress at the centroid of zone 3,

P M
( =--+--y
1 A I 3
3.61 0.65 - 3.63
= mmmm b [ } (-0.39) -
10.27 1.94

= -0.253 MPa (tension)

Corresponding elastic strain,

-6
£ = -0.253/30000 = +8.4x10 ,
e N
-6 : .
Similarly, £ = -0.102/30000 = +3.4x10
) ‘
-6
and £ = 0.679/30000 = -2,9x10
3

Zone 1 is chosen as the reference zone. A reference strain

distribution is obtained by multiplying the initial elastic
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strains by the creep coefficient for zone 1 and adding free

shrinkage of zone 1l to it.

-6 -6 -6

£ = 2.9%x10 x1.185 + 50x10 =  53.4x10
rl
-6 -6 -6
£ = -3.4x10 x1.185 + 50x10 = 46.0x10
r2
-6 -6 -6
§ = -6.4x10 x1.185 + 50xl0 = 42.5x%10
r3 :

Free time-dependent strains at centroids of the zones are:

¢ =¢xP+ ¢
cl 1l 1 shl
' -6
= 53,4 x 10
& = E X ¢§+- e
c? 2 2 sh2
-6
= 229 x 10
£ = Ex QP+ &
c3 3 3 sh3
-6
= 439 x 10

Forces‘and moments corresponding to time-dependent strains:
%* * ‘ ’

(¢ -¢£ )YA E

2 c2 cr 2 2

N

5.46 'MN

(¢ -£)n B
3 c3 cr 3 3

2
1

6.23 MN

11.69 'MN

2
Il

%
M = -4047 'MN



The change in concrete stress at

zones:
® *
A Cr + o2 v
£ (t) = = {~= + ¢ v =
cl ' R
x®
* N
Af (£) = (¢ -¢ 1B - {4+
c2 c2 cr 2 A
Similarly, AEf  (t) =

c3

where t = 10,000 days.
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the centroids of different

-1.46 'MPa (compr.)

L3 *
‘M 3% E
1 2 ¥

1

0.95 'MPa (tension)

3.25 'MPa (tension)



Table A-1

% * % * %
ISection Area Multiplier Transformed Distance of A..y, v.= (y.,—- v.) A.(Y.} I. (m)
: 9 X, 2) Gy, (m) i*7i 71 i Ji iv/i i
! A, (m™) Area A, (m - i !
! i i , i
b S - — _—
i
i
i
! 6.38 1 6.38 0.75 4,785 0.172 0.189 1.3
]
]
E 2.23 0.913 2.04 0.28 0.573 -0.296 0.179 0.063
I
i
i 1.66 0.767 1.28 0.18 0.236 -0.393 0.198 0.0104
i
]
i ]
e e e
D 9.69 5.593 0.565 1.373___1
=% A * zl
y = =i =057 m I' = I+A(y)" = 1.9%m
i
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