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ABSTRACT 

To evaluate the time-dependent redistributions of inter-

nal stresses in concrete, a finite, element programme is 

developed using three-dimensional elements of hybrid stress 

formulation. Creep and Shrinkage prediction functions 

proposed by CEB-FIP, 1978 and ACI Committee 209 are incorporat-

ed in the programme. The principle of superposition is 

assumed to hold true for concrete. To avoid the storage of 

stress history, a set of Dirichlet series •are employed. 

The series proposed by Kabir and Scordelis is used to approxi-

mate the ACI creep function and the series proposed by Khalil, 

Dilger and Ghali to approximate the CEB-FIP functions. Instead 

of building the Dirichiet coefficients into the programme, 

as had been done in the past, a set of coefficients are 

found for each time-step. This method is found to give a 

series with much better correlation to the prediction func-

tions. Simulation of three-dimensional creep is achieved 

by assuming uniform creep coefficients in all directions. 

Creep Poisson's ratios are calculated as a function of instan-

taneous strains using a method introduced by Gopalakrishnan, 

Neville and Ghali. Since the current prediction models do 

not evaluate creep and shrinkage as a local property, a 



simple manipulation employing different volume/surface ratios 

across a section is proposed. 

The finite element programme is applied to analyse a 

composite bridge for time-dependent stress redistributions. 

The effect of age difference of components and differential 

shrinkage within a component on internal stress redistribution 

is studied by assigning varying volume/surface parameters 

to different zones of the cross section. Analysis is also 

done with "creep-transformed" section properties and the 

results are compared with the results of the finite element 

analysis. 
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CHAPTER ONE 

INTRODUCTION 

1.1 General  

It has been long established that investigation of 

time-dependent behaviour of structures is essential to ensure 

their good serviceability and ultimate strength performance 

during their entire lifetime. The term "time-dependent" 

includes the effects due to creep, shrinkage and relaxation 

of steel. Creep is a gradual increase in deformation under 

sustained load and shrinkage is a stress-independent deforma-

tion mainly brought about by drying. Creep deformation can 

reach as high as three to four times the instantaneous elastic 

deformation and shrinkage can be as high as 800 micro-strains. 

Relaxation is defined as a gradual decrease in stress under 

constant strain. Relaxation of prestressing steel may lead 

to a loss of prestressing in the order of 10%. But, with 

the introduction of low relaxation steel, this loss has 

been reduced to negligible levels. 

The effects due to creep and shrinakge are mainly 

two-fold. The first is growth of deflections, which is 

quite serious since this alone may lead to serviceability 

problems. In prestressed concrete' members, the increased 

deformation due to creep can cause losses of prestress of 

1 
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up to 35%. The second effect is long-time redistributions 

of internal stresses. This occurs because of the presence 

of bonded reinforcement and because parts of many structures 

have different creep and shrinkage rates and! magnitudes due 

to differences in age, temperature, size, composition and 

humidity conditions. The redistributions are such that com-

patibility is maintained within a section. The stresses 

introduced by differential shrinkage, sustained temperature 

gradient and other extraneous sources are redistributed by 

creep. These redistributions are normally not seriouS and 

do not affect the strength of a structure. But they are 

cause of concern if the creep and shrinkage properties of 

different components in a member vary signifièantly. Cracking 

due to differential shrinkage alone is not uncommon in struc-

tures. Increase in internal stresses of the order of up to 

5 '4Pa (tension) was observed in the present. investigation. 

Although time-dependent analysis is a standard prpcedure in 

design these days, the analysis is generally limited to 

linear idealizations of the actual structures and an accurate 

evaluation of the redistributions of internal stresses cannot 

be accomplished by this method. 

Creep of concrete has been much researched, especially 

since the wide-spread use of prestressed concrete and it's 

application to important structures such as nuclear reactors. 

This is evidenced by the vast amount of literature available 
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on the subject. Instead of attempting an exclusive review 

of literature, the relavent literature is cited locally 

throughout this exposition since an exhaustive coverage of 

literature is considered unnecessary with the publication 

of several excellent text books (1.1, 1.2) and reports on 

the state-of-the-art (1.3). 

1.2 Objective and Scope  

Analytical solutions to time-dependent problems are com-

plex. Moreover, analytical solutions are based on many simpli-

fications and assumptions which tend to impede representative 

modelling of the structural members involved. Finite element 

analysis is an excellent alternative in such cases, since 

finite element modelling of complex material behaviour is 

now possible with the advent of powerful computers with 

extended memories. In cases where the time-dependent 

redistributions of internal stresses are the prime targets 

of analysis, finite element analysis may be the only practical 

choice. Simplified analytical methods such as 

"creep-transformed" section properties method (1.4) have been 

introduced recently which can greatly reduce the computational 

efforts for time-dependent analysis. But even these methods 

are too complex to use by hand for many practical.structures. 

The objective of the present study is to trace the 

redistribution of internal stresses in concrete structures 
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using the finite element method. For this, a comprehensive 

finite element code is developed using three-dimensional 

"hybrid" finite elements. Elements of hybrid stress (1.5) 

formulation are selected since they are found to give a 

much better performance than the conventional displacement 

formulated elements. For creep and shinkage prediction, 

constitutive models proposed by CEB-FIP, 1978 (1.6) and Ad 

Committee 209 (1.7) are incorporated into the program. The 

Superposition theorem is assumed to hold true and to avoid 

storing the past stress history, the creep functions are 

expanded to finite Dirichiet series.. The ACI creep function 

is approximated by the series proposed by Kabir and Scordelis 

(1.8) and the CEB-FIP creep function by the series proposed 

by Khalil et al. (1.9) . Use of these series instead of the 

actual creep prediction functions simplifies the storage 

problems and renders the analysis of complex three-dimensional 

concrete structures possible. 

Chapter 2 briefly discusses the various mechanisms that 

are thought to underly the creep and shrinkage phenomena, 

the various constitutive relations and recommendations by 

Engineering Societies to model the phenomena. A comparison 

between different prediction models and a discussion of creep 

under different states of stress also are attempted. 

Because of varying drying rates, the creep and shrinkage 

rates across a cross section can vary considerably. It is 
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essential to establish these different rates of creep and 

shrinkage across a section to arrive at a realistic evaluation 

of the time-dependent redistribution of internal stresses. 

However, the creep and shinkage prediction models that are 

currently available indicate an overall or mean creep and 

shinkage across a section. To overcome this problem, a 

simple manipulation of the current prediction models to evalu-

ate creep and shrinkage, as a "local" property is proposed. 

In Chapter 3, the various classical methods of 

time-dependent analysis are outlined and the various forms 

of Dirichlet series to approximate creep functions are 

reviewed. The series proposed by Kabir and Scordelis and 

Khalil et al. are discussed and a way to evaluate Dirichiet 

coefficients of better performance is introduced. To verify 

the validity of the series used in the present investigation, 

comparisons of analyses are made with experimental data. 

Chapter 4 is devoted to the application of the finite 

element technique to solve time-dependent problems. The 

basic ingredients of various modes of finite element formula-

tions are di scussed and a comparison of performances of 

elements of different formulations is attempted. The trans-

formation of a finite element program for static-elastic 

.analysis into a program capable of time-dependent analysis 

is dealt with in detail and an outline of the evolution of 

the use of finite element method to model structural concrete 
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is presented. Finally, the capabilities of NON Sr4AC, the 

finite element code developed for the present investigation 

are listed and a comparison of results of computer analyses 

with ,experimental results is presented. 

In Chapter 5, several examples are analysed for 

time-dependent redistributions of internal stresses by the 

present method of analysis. Three-dimensional hybrid finite 

elements are used to represent concrete as well as reinforcing 

steel. The results are presented in the form of plots of 

initial and final (10,000 day) stresses. The 

"creep-transformed" section properties method is extended 

to analyze sections when creep and shrinkage strains vary 

throughout the areas. Numerical examples in which the results 

of computer analyses are compared with the results of. the 

analytical method are also provided. 



CHAPTER TWO 

CREEP AND SHRINKAGE PROPERTIES 

2.1 Introduction 

Before embarking on developing analysis techniques for 

creep and shrinkage effects, it is important to understand 

the creep and shrinkage phenomena, their underlying mechanisms 

and constitutive relations. This chapter is devoted to such 

a pursuit. In addition to the various mechanisms that are 

thought to underly the phenomena, the parameters that are 

identified to influence creep and' shrinkage are listed. 

The various constitutive relations that are proposed to 

relate between the state of the influencing parameters and 

the state of the phenomena are discussed. Among the contempo-

rary prediction models, the CEB-FIP 1978 model, the ACI Commit-

tee 209 model and the Bazant and Panula's model are described. 

A comparison between different prediction models is also 

attempted,. Since the effects of differential creep and shrink-

age at various points on a cross-section are quite pronounced, 

this topic is discussed in detail and a method of evaluation 

of differential creep and shrinkage is proposed. Finally, 

concrete creep under different states of stress is 

investigated. 
7 
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2.2 Creep and Shrinkage Mechanisms  

The mechanism of a phenomenon is the physical process 

or processes which are thought to have the most influence 

on the phenomenon being considered. To develop constitutive 

models for creep and shrinkage, the first step is to understand 

the mechanisms that underly the phenomena. Numerous theories 

have been proposed over the years to elucidate creep and' 

shrinkage, but none seemingly adequateto fully explain all 

the phenomena. Some investigators try to formulate deforma-

tion mechanisms on the basis of creep and shrinkage measure-

ments carried out on concrete specimens, while others try 

to approach the problem at a microstructural level, studying 

the physical characteristics of xyrogel in hardened cement 

paste. 

Some of the broad mechanisms that are proposed to explain 

creep are mechanical deformation theory,, viscous flow and 

plastic flow theories, seepage of gel water theory, delayed 

elasticity and solid solution theory (2.1). The mechanical 

deformation theory attributes creep to the change in the 

form of the capillary structure of cement paste due to applied' 

stress. The viscous flow theory is based on the arguement 

that hydrated cement paste is a highly viscous liquid whose 

viscosity increases with time. This viscous flow represents 

the creep of concrete. The plastic flow theory suggests 

that creep of concrete is similar to plastic flow of metals, 
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i.e. a result of slipping along' planes within a crystal 

lattice. The seepage theory takes creep tobe due to seepage 

of gel water under pressure. Hydrated cement paste is a 

rigid gel wherein the applied load causes an expulsion of 

the viscous component from the voids in the elastic skeleton. 

The solid solution theory explains creep on the basis of 

change in vapour pressure of the water in gel affected by 

applied stresses. This results in an alteration of the 

water content as well as the volume of the gel. 

The mechanisms described so far may be classified as 

'real mechanisms' or in other words, physically meaningful 

mechanisms. 

however, is 

mechanisms' 

A large extent of the actual creep behaviour, 

dependent on something called the 'apparent 

(2.2). Apparent mechanisms are phenomena such 

as micro-cracking and internally created states of stress 

which modify time-dependent deformation. The most important 

apparant mechanism is drying creep, which represents the 

accelerated creep due to the drying process. Another apparent 

creep mechanism is the thermal transient creep i.e. the 

increased time-dependent deformation if concrete is heated 

while under load. Yet another creep mechanism is based on 

the two phase nature of concrete. Under stress, the aggregates 

react in a linear elastic manner while the cement paste 

acts viscoelastically, undergoing creep deformation. This 
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way elastic energy is stored in the two-phase material and 

this causes some reversible creep if the concrete is unloaded. 

In a similar way, the shrinkage mechanisms also can be 

divided into real and apparent mechanisms (2.2). The real 

mechanisms are capillary shrinkage, chemical shrinkage and 

drying shrinkage. The capillary shrinkage is attributed to 

the attractive forces between concrete particles separated 

by liquid filled capillary as a result of the capillary 

pressure. Capillary pressure starts to inc.rease if the surface 

begins to dry since menisci are formed between particles 

close to the surface. The chemical shrinkage mechanism repre-

sents all volume changes caused by chemical reactions. The 

improtant chemical shrinkage mechanisms are: 

(a) hydration shrinkage 

(b) thermal shrinkage 

(c) dehydration shrinkage 

(d) crystallization swelling 

(e) carbonation shrinkage 

(f) conversion shrinkage 

The hydration shrinkage represents the characteristic volume 

change that Portland Cement undergoes as it' s main constituents 

react with water. The thermal shrinkage is related to the 

heat of hydration which can cause swelling in massive elements. 

The temperature reduction that accompanies the slow down of 

rate of hydration causes the thermal shrinkage. The dehydra-
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tion shrinkage is due to the loss of hydrate water of some 

of the unstable hydration products under drying conditions. 

Crystallization swelling is caused by the pressure that 

accompanies crystallization. During hydration both colloidal 

products and crystallized phases are formed. Once a solid 

skeleton is built up, internal crystal growth is hind'ered 

and thus an internal pressure is generated, causing swelling. 

Calcium hydroxide formed during hydration of cement reacts 

with carbon di oxide from the ambient air to liberate water. 

Evaporation of this water results in what is. known as the 

carbonation shrinkage. The conversion shrinkage occurs as 

some phases in hydrated cement paste, especially aluminate 

hydrates undergo a slow transition to more stable forms. 

The drying shrinkage is defined to be the volume change of 

a colloidal inert system as it's moisture content is changed. 

The apparent shrinkage mechanisms include the influence 

of geometry and the influence of cracking (2.2). Depending 

on the geometry and diffusion coefficient , a moisture gradient 

is built up in concrete immediately after the drying process 

begins. This causes shrinkage of the outer layers to be 

hindered by the still saturated inner part, resulting in 

internal stresses and accompanying deformations. Under drying 

conditions, tensile stresses in the outer zones usually over-

come the tensile strength of concrete resulting in crack 
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formation. Cracks can change the time-dependence as well 

as the final value of shrinkage strains. 

Though these mechanisms are devised on the basis that 

creep and shrinkage are independent phenomena, it is seen 

(2.2) that if creep and, shrinkage take place simultaneously, 

the observed deformation is always higher than the sum of 

creep and shrinkage when measured separately on companion 

specimens (see Fig. 2.1). It follows that mechanisms which 

have been defined on the basis of the usual bubd,ivision 

have no real meaning and the phenomena have to be treated 

as interdependent. The latest trend in studying these mecha-

nisms is by' means of numerical methods such as finite element 

analysis. A concrete-like composite structure can be 

generated (Fig. 2.2) and the time-dependent behaviour under 

load can be studied with the help of computers (2.3). 

2.3 Constitutive Relations 

Constitutive relations for a phenomenon may be defined 

as a mathematical expression that relates the states of the 

different influencing parameters to the state of the phenomenon 

itself. Thus the stages involved in developing the constitu-

tive relations corresponding to a phenomenon are identifying 

the influencing parameters, describing a representative mecha-

nism and determining the inter-relationship between the param-

eters and the working of the mechanism. In this section, 
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the variables that are observed to influence the creep and 

shrinkage phenomena and some of the available constitutive 

relations are listed. 

2.3.1 Influencing Parameters  

Creep and shrinkage of concrete are influenced by a 

large number bf factors -which include material characteris-

tics, member geometry, environment and loading (2.1, 2.4). 

These factors may be classified into intrinsic and extraneous 

factors (2.5). The intrinsic factors are those which remain 

unchanged once the concrete is cast. These include the 

design strength, the fraction of aggregate in the concrete 

mix, the member geometry etc.. The extraneous factors are 

those which can vary after casting, for eg., temperature, 

age at loading and relative humidity. 

The material characteristics that are observed to influ-

ence creep and, shrinkage include: water cement ratio, mix 

proportions, aggregate' characteristics and the degree of 

compaction. The corresponding variables that can be included 

in constitutive relations are: the type of cement, the 

slump of concrete, air content, fine aggregate percentage 

and cement content. The initial curing conditions also affect 

the creep and shrinkage behaviour. Thee length of curing, 

temperature of curing and curing humidity can be the curing 

variables. The geometric factors influencing creep and 
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shrinkage are the shape and size of the member under consider-

ation.. Volume to surface ratio or minimum thickness may be 

the geometric variables. The concrete age at the application 

of load, the duration of loading and the type of stress and 

distribution of stress across the cross-section are the loading 

factors affecting creep. The stress/strength ratio is also 

an influencing parameter. The different ways the variables 

affect the creep and shrinkage behaviour of 'concrete are 

well documented by various authors, eg.: Neville and Dilger 

(2.1), Hanson (2.6) and Neville (2.7). 

2.3.2 Constitutive Models  

Based, on experimental trends, several mathematical models 

have been proposed to represent the time-dependent deformation 

of concrete. In general, these 'deterministic' expressions 

may be divided into four categories: power expressions, 

logarithmic expressions, exponential expressions and 

hyperbolic expressions (2.1). The first two expressions 

don't have a finite limit, but the last two tend to a limiting 

value. 

The power expressions have the basic form: 

c(t, t0) = A(t - t0 ) (2.1) 
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where (t - t0) is the duration of loading:, c. (t -t0) is 

the creep compliance and A and B are constants depending on 

the material properties and the environment.. An expression 

of this type was first proposed by Straub (2.8) and Shank 

(2.9). Bazant (2.10) has included an additional inverse 

power term for the effect of the age t0 at loading ' and 

proposed the 'double power' law. The most recent, 'triple 

power' law (2.11) is a modified version of the double power 

law. 

Hanson (2.6) proposed a logarithmic law of the form: 

c(t,t 0) = 0 ) log { (l+(t-t 0) )} (2.2) 

where 7(t 0) is an experimental parameter representing the 

time rate of creep. This expression gives good predictions 

for long creep durations but the results are not as good 

for short durations (2.1, 2.5) 

Exponential expressions are derived from considerations 

of the rate of creep and have the form: 

c(t,t0 ) = O il-exp(A(t-t,,))j (2.3) 

where is the limiting ultimate creep and Ads a constant. 

Expressions of this type were proposed by Moersch (2.12), 

McHenry (2.13) and others. Exponential representation agree 
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well with the experimental data and especially for creep at 

drying (2.5). 

Proposed by Ross and Lorman (2.14) , the hyperbolic expres-

sions have the form: 

t-to 
c(t,t0) = (2.4) 

A+B(t-t0) 

where A and B are material constants. This type of expression 

is convenient for fitting of test data, but is inapplicable 

to long creep durations (2.14) 

The four general forms discussed above can be used for 

creep predictions. But for shrinkage, the exponential and 

hyperbolic expressions are recommended since shrinkage is 

taken to reach a limiting value (2.1). Knowing the material 

parameters based on short term tests, these expressions can 

be employed to extrapolate the long term behaviour of concrete. 

These models yield accurate results if the actual materials 

are tested under environmental and loading conditions similar 

to those expected in the field (2.10). 

2.4 Prediction 'Models by Engineering Societies 

Since the experimental data for a particular structure 

to be analysed for time-dependent effects are usually lacking 

or are incomplete, the constitutive models as described in 

Section 2.3 are not normally used in practice. Instead, 
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practical prediction models proposed by engineering societies 

are most commonly used. These prediction models are based 

on the constitutive models described earlier and are derived 

from experimental observations and the abundant data available, 

in the literature. Using these models the respose behaviour 

at an arbitrary time step can be evaluated almost as easily 

as evaluating an elastic solution. They apply primarily to 

an isothermal and relatively uniform environment and they 

are commonly not intended for the analysis of creep recovery 

due to unloading (2.4). 

Some of the contemporary creep and shrinkage prediction 

models are 

(a) 'Model of CEB-FIP'r4odel Code 1978 (CEB-78) (2.15) 

(b) Model of ACI Committee 209 (Ad) (2.16) 

(c) Bazant and Panula's Model (BAP) (2.17) 

(d) Model of German Concrete Code (DIN) (2.18) 

(e) Model of CEB-FIP 'Model Code 1970 (CEB-70) (2.19) 

(f) 'Model of British Concrete Society (BCS) (2.20) 

,Of these, the BAP model, though not proposed by an engineering 

society ,is included under the general classification 

'prediction models by engineering societies' in the present 

study. On the basis of the mathematical formulation the 

prediction models may be subdivided into two groups. The 

first group which includes the models Ad, CEB-70 and BCS 
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gives the creep coefficient (t,t0 ) in terms of products 

of coefficients: 

ç(tt,) = k1k...k41 ...k(t.) (2.5) 

where kZ are independent coefficients to describe the effect 

of parameters on concrete creep and k(t) represents the 

development of creep with time. The second group includes 

BAP, CEB-78 and DIN models. The total creep is described 

as the sum of individual strain components. In CEB-78 and 

DIN models, creep is subdivided into a delayed elastic strain 

and flow components. Here the delayed elastic component is 

associated with creep recovery while the flow component is 

an unrecoverable part. 

,Being the most widely used in North America, the models 

CEB-78, ACI and BAP are described in the following sections. 

The CEB-FIP 1978 and the ACI Committee 209 models are the 

prediction models used in the present investigation. 

2.4.1 CEB-FIP 1978 'Model 

The expressions for the mean creep coefficient and the 

mean shrinkage strain across a cross section as given by 

the CEB-FIP 1978 'Model Code (2.15) have the basic form: 
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0 
(t 1t) = I3 (t ) +th(t-t) + F(t)_Pc (to )3 (2.6) 

) = 5h tI3t) - (2.6a) 

where çZ 9(t,t0 ) = creep coefficient, i.e. the ratio of creep 
2 

at time t due to a unit stress applied at age to , to the 

corresponding elastic strain at the age of 28 days'; 0.4; 

is a coefficient depending on environmental humidity and 

effective thickness of member; Pf and Pare functions of 

time and effective thickness; is a function of load duration 

(t—t 0 ) and Pc, is the .initial flow function, depending on 

age at loading.'Mathematical expressions are specified for 

the functions J, Pd and but the shrinkage developement 

function Ph is defined in a graph.'Many other parameters 

are defined in the form of tables and graphs and this makes 

the CEB-FIP model inconvenient for computer implementation. 

Interpolation polynomials are generated to represent such 

functions and parameters in the present computer analysis. 

The age of concrete is adjusted for the cement type 

and curing temperature (if different from 200 C) by the follow-

ing expression: 

k t 
t = - { [T(t ) + 10] At } 
e 300 

(2.7) 

where kis a factor depending on the type of cement, T is 

the mean daily temperature of concrete (°C) occuring during 
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a period At. days. The adjusted age of concrete' t is to 

be used instead of t in the evaluation of creep and shrinkage 

using Eqn. 2.6. 

2.4.2 Model of ACI Committee 209 

The ACI Committee recommendations are based on the works 

of Branson et al. (2.21) The prediction models have the foilo-

ing form (2.16): 

0.6 

(t, t" =  E,ch(tO) (2.8) 

, t) Sh 

0. 
10 + (t-t0 ) 

(t-t) 

C + (t-t5 ) 
• (2.9) 

where çD(t,t0 ) is the creep coeffibient, which is the ratio 

of creep at time t , generated by a load applied at concrete 

age t0 to the corresponding elastic strain at t0 ; h(t,t) 

is the shrinkage strain at t when the drying starts at age 

t; and g0,are ultimate creep coefficient and ultimate 
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2.4.3 Bazant and Panula's Model 

Derived from diffusion theory and activation energy 

theory, this model in it's basic form recommends a double 

power law (2.10, 2.22) and recently, a log-double power law 

and a triple power law (2.11) have been proposed. The double 

power law has the form: 

-.nl II 

96 (t,t) = (t0 + c'<ì)(t - t) (2.10) 

where A  (tlt,) is the basic creep coefficient, which is the 

ratio of basic creep (creep in the absence of drying) at 

age t due to a load applied at age to to the corresponding 

elastic strain based on the 'asymptotic modulus' E0. 

Asymptotic modulus is approximately 1.5 times the conventional 

elastic modulus for 28-days old concrete; in 1/3, 0 0.05, 

3 to 6 and ni 1/8, which are material parameters. 

The log-double power law is introduced since the double 

power law is found to give too high final slopes of creep 

curves (2.11). The log-power law is obtained by combining 

the double power law with a logarithmic law, with the transition 

from the power curve to the logarithmic curve occurring 

gradually. The log-power law may be expressed in the form: 

(t,t0 ) = V  ln[1+ VO 

-m n 
+ ° ) (t-t") 1 (2.11) 
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where 9/, (V, and m are constants depending on the standard 

cylindrical strength of concrete at age 28 days and n and 

o are experimental constants. 

Though the log-power law is supposed to be an improvement 

over the double power law in terms of long-term predictions, 

it has the disadvantage of being inapplicable for very shOrt 

load durations. The triple power law is developed to offset 

this problem. This law (2.11) exhibits a smooth transition 

from the double power law for very short durations to the 

logarithmic law for long durations. It is expressed as: 

-nl 

qS(t,t ) = (t0 +OC.)((t-t,) - B(t,t0 ;n)] 
b 

It-to 

where B(t,t0 ;n) = n 

(2.12) 

(i-{ to } ] d =(t-t ) (2.13) 
t b + 

B(t,t 0 ;n) is a binomial- integral, the values of which can 

be interpolated from tables in Ref. (2.11). The various 

coefficients have the same meaning and recommended values 

as in the double power law-. 

Mean shrinkage of a cross section is expressed as: 

- = (2.14) 

where is the final shrinkage at humidity zero, which 

depends on mix ratios and the strength; kh is a function of 

environmental humidity and S(9) is a function giving the 
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evolution of shrinkage in a non-dimensional time 9. In 

case of drying an additional term C4 is added to the right 

hand sides of creep equations 2.10 and 2.11. 

C (t, to-) = (to )kh S(9) (2.15) 

where f4 (t) is an empirical function of age at loading to; 

k is a function of environmental humidity and S(ê) is an 

empirical function of non-dimensional time 9. 

2.4.4 Comparison Between Different, Models  

There had been several attempts (2.1, 2.23, 2.25) to 

compare the different prediction models for creep and shrinkage 

with experimental results to study their relative reliability. 

In this section some of the reported results of comparisons 

are pr,esented. In addition to the performance comparisons, 

the relative simplicity of application of the different models 

and their applicability to different situations are also 

discussed. 

When the performances of many different models are to 

be compared with a multitude of experimental results, statisti-

cal methods become inevitable. In an excellent comparison 

s'tudy, Muller and Hilsdorf (2.23) uses the statistical parame-

ters V, 7 and ! as the basis of comparison between the 

different creep prediction models. These parameters are 

defined as: 
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V 
1 

N i=1 

= 1 N 2 1/2 
V = {-Vi} 

N i-i 

1 N 2 1/2 
= { - E Fi 

N 1=1 

(2.16) 

(2.17) 

(2.18) 

Si - in 
where Vi = - 100%, i = - 1 

nj=1 

1 n 2 1/2 caic i- obs Øi 
Si = (--- L (44Dij) ] ; Fi =  .100 

n-i j-i - obs 
in these expressions V is the coefficient of variation; F 

is the mean error; Si is the standard error; 95ii describes 

the creep strain observed at time j using the prediction 

model no. i; J\O1j is the difference between predicted and 

experimental strains; n represents the number of differences 

taken for each experiment; i is the mean calculated for 

each experiment; N is the total number of experiments; 

is the ultimate creep coefficient. Since most creep tests 

are of relatively short durations, Ross's hyperbolic relation 

(2.24) is used to evaluate the 'observed' ultimate creep 

obs 0i.0 

The results of the statistical evaluation are summarized 

in Tables 2.1 and 2.2. In Figures 2.3 to 2.5, the effects 
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of specimen size, relative humidity and age at loading as 

predicted by the various models are compared. The models 

that are studied are: ACI Committee 209 model (Ad)., CEB-FIP 

1978 model (CEB-78), the earliest version of Bazant and 

Panula's model (BAP), model of German Prestressed Concrete 

Code (DIN), CEB-FIP 1970 model (CEB-70) and the model proposed 

by British Concrete Society in 1970 (BCS). 

Since it has been admitted (2.11) that the latest versions 

of BAP model shows only a "relatively modest" improvement 

in the coefficient of variation of the deviations of the 

formula from test data, the comparisons of Muller and 

Hilsdorf using the early version of BAP could be applied to 

the latest versions also. Based on their study, Muller and 

Hilsdorf conclude that the most complicated procedures are 

not necessarily the most accurate ones. Considering the 

large deviations between predictions and experimental data, 

structures are to be analysed stochastically for both lower 

bound and upper bound creep solutions. 

The results of Muller and Hilsdorf is refuted by Bazant 

(2.14) , who questions the validity of using Ross's hyperbolic 

relations to extrapolate experimental creep results. Bazant 

reports (2.25) 90% confidence limits (i.e. the relative 

deviations from the mean having a 5% probability of being 

exceeded on the plus side and 5% on the minus side) 0 90 = 

+1-31% for the BAP model, 3= +/-63% for the ACI model 
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Table 2.1 

Results of Statistical Evaluation (Ref. 2.3) 

Parameter No. of 
Expts. 

Prediction'Method 
ACI CEB-78 CEB-70 BAP DIN BCS 

102 - 24.1 23.1 32.0 25.1 - 

72 24.8 24.5 22.5 31.0 26.1 - 

V(%) 
102 - 27.6 25.5 39.3 28.4 - 

72 28.3 28.2 25.0 35.5 29.1 

102 - 27.2 24.2 61.9 23.2 - 

72 27.8 28.5 24.9 53.6 24.5 - 

Table 2.2 

Results of Detailed Statistical Evaluation 

Parameters •No. of Prediction Method 
Expts. ACI CEp-78 CEE-70 BAP DIN BCS 

(t < 7 days) 17 

(t'60 days) 12 

V(Z) 
drying creep 
7 <t c60 days 28 

1(Z) 
V (Z) 

basic creep 
7 days 14 

- 24.1 25.3 
- 27.2 27.3 

31.2 25.8 24.1 
27.4 32.0 28.0 

25.3 28.7 26.3 
27.4 32.0 28.0 

43.8 21.2 
58.8 25.6 

27.8 23.6 
37.3 31.8 

33.7 29.5 - 

37.3 31.8 - 

32.8 14.9 17.0 21.7 20.0 - 

37.3 18.4 18.2 22.8 24.0 - 
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and -'= +1-76% for the CEB-FIP model for the same set of 

experimental data. However for drying creep, the reported 

results are C2= +/-29% for BA?, +/-42% for ACI and 

= +/-32% for CEB. A regression of basic data fOr the 

BA?, ACI and the CEB-FIP models from Ref. (2.31) is given 

in Fig. 2.6. Regression for shrinkage is shown in Fig. 2.7. 

Since the current prediction models deviate so much in 

their predictions and since they are so fundamentally differ-

ent, there is no doubt still room left for improvement. 

Finally, in the midst of all this confusion, the best appears 

to be to follow Neville and Dilger's (2.1) stance, i.e. there 

is not a reliable method to be recommended and that a simple, 

proven method is preferable to a more complicated one, at 

least to take advantage of the simplicity. 

To have an idea of the relative simplicity of various 

prediction models, their input requirements are summarized 

in Table 2.3. Among the different models, BA? seems to be 

the most versatile one since it involves the influence of 

temperature, cyclic loading or pulsating load, the effect 

of a raise in temperature before the loading starts etc.. 

But for a general time-dependent analyses of concrete struc-

tures, the CEB-FIP and ACI models are well suited in terms 

of , applicability and ease of computation. 
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2.5 Differential Creep and Shrinkage Across  

A Cross Section  

The creep and shrinkage prediction models that are pres-

ently available indicate an overall or mean creep and shrinkage 

across the cross section of the structural member under 

consideration. But in reality, the creep and shrinkage strains 

at different points of a cross section differ considerably 

in their magnitudes(2.5, 2.26). 

2.5.1 Causes and Effects  

The variation of creep and shrinkage behaviour across 

a cross section is more pronounced for mass concrete members 

even if they are cast to be homogeneous. Concrete when 

cast is wet and has a pore humidity of 100 %. When exposed 

to environment, a gradual loss of moisture takes place. 

This drying rate is much higher on the surface as compared 

to the inner regions. For example, it has been reported 

(2.5) that for a 6-inch thick slab, for the pore humidity 

at mid-thickness to reach that of the atmosphere, it takes 

over 10 years. For other thicknesses this drying time is 

proportional to the square of the thickness. For thick 

uncracked members, concrete undergoes no significant drying 

except for about one foot from the surface. L'tiermite and 

Mamillan (2.28) have shown the -pattern of this behaviour 

with the help of dielectric probes (see Figures 2.8 and 
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Table 2.3 

Input Data Requirements for Various Prediction Models 

Input Data Requirement Prediction -,' Model 
ACI CEB-78 CEB-70 BAP DIN BCS 

Compr. Strngth of Conc. x x x x x x 

Consistency of Conc. x x - - x - 

Type of Cement x x x x x x 

Cement Content - - x x - - 

Density of Conc. x - - x - - 

Water/Cement Ratio - - x x - - 

°hFines in Aggregates x - - x - - 

Air Content in Conc. x - - - - - 

Size & Shape of Member x x x x x x 

Age at loading x x x x x x 

Humidity of Environment x x x x x x 

Temperature - x x x x - 

x : required 

- : not required 
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2.9). Since drying is the principal mechanism underlying 

shrinkage (see Section 2.2) and since creep is shown to be 

affected by drying (Pickett effect (2.27)), it follows that 

the distribution of pore moisture across a cross section 

significantly affects the creep and shrinkage behaviour at 

various points. 

The variation in creep and shrinkage causes significant 

stresses and redistributions of stresses across a 

cross-section. Redistributions of up to 60 % (decrease) on 

the periphery and upto 40% (increase) at the centre during 

creep tests on cylindrical specimens (see Fig. 2.10) has 

been reported (2.26).. When concrete members of differing 

material properties or age are joined to form composite 

members, different sections creep and shrink at different 

rates. This causes additional deflections of the member 

and redistributions of stresses. Different thermal and hygral 

conditions at different sections also give rise to differential 

creep and shrinkage, consider nuclear containment structures 

for example. 

If the surface of a structure is cracked, the cracked 

area shrinks at a different rate as compared to the uncracked 

regions. For members with thick and thin regions across 

cross sections, the effects of differential creep and shrinkage 

could be quite detrimental. To prevent problems related to 

internal straining and the accompanying movements that are 
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generated by the differential creep and shrinkage, expansion 

joints, sliding bearing etc. are to be provided. These added 

structural releases may result in significant reduction of 

the lateral stiffness (2.29) of the structure, warranting 

design improvements at extra cost. 

The currently available 'constitutive models' for creep 

and shrinkage are not true constitutive models in the sense 

that they cannot evaluate the free shrinkage or creep as a 

'local' property. These models use parameters such as 

volume/surface ratio and ambient humidity which are not local 

parameters, but parameters for the member as a whole. Conse-

quently, the models can yield only the mean or overall creep 

and shrinkage strains. Undoubtedly, such models are not 

sufficient for detailed time-dependent analyses of structures 

involving the effects of differing creep and shrinkage 

behaviour at various points of cross sections. 

This deficiency has attracted the attention of many investiga-

tors (2.5, 2.26) of late and research efforts are currently 

underway to develop a model in the form of a true constitutive 

relation. These efforts include that of Acker, who has 

proposed an incremental relation (2.30) of the form: 

= f(e, r , w, b) (2.19) 

where e is the rate of nonelastic strain (total minus elastic 

strain); is the stress at the time of observation t; w 
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is the water content at t and b is a parameter characterizing 

the texture and structure of concrete. 

2.5.2 Method of Evaluation  

In the present study, the creep and shrinkage at different 

points on a cross section are evaluated employing a simple 

manipulation of the current prediction methods. In the CEB-FIP 

1978 model, the prominent influencing factors are: size 

and shape of member, age at loading, humidity of ambient 

environment and type of concrete. Here the material factors 

such as the type and age of concrete and the environmental 

factor i.e. humidity are fixed for a member. The only 

factor that the 'user' can have some control over is the 

size and shape factor. The variable representing this is 

the volume/surface ratio and by varying this variable across 

a cross section, one should be able to evaluate differential 

creep and shrinkage. 

The procedure is best explained with the help of an 

example. Consider a member of rectangular cross section 

(Fig. 2.11). Subdivide the cross section as shown into several 

sections with thin sections near the surface and thicker 

sections in the inside. Within each section the creep and 

shrinkage behaviour is assumed to remain uniform. For the 

top layer, the volume/surface ratio VS1 is: 

VS1 = (b x al)/(b + 2 x al) (2.20) 
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where b and al are defined in Fig. 2.11. The ratio for the 

top two layers is: 

- VS12 = (b x (al+a2))/(b + 2x (al+a2)) (2.21) 

The variable volume/surface ratio is related to the 

irreversible part of the creep function through a factor 

known as the notional thickness h which is given by: 

h0 = 2 x VS (2.22) 

where X is a.coefficient for ambient humidity and VS is 

the volume/surface ratio. The irreversible creep strain is 

given by the expression: 

t 1/3 t 
( - Pf (t )3 = - __ 1/3 (t) -} 1 (2.23) 

where P, (t) describes the development, of delayed plastic 

strain, with time; f3(t0) accounts for the age at application 

of load, t0 ; H1 is a time delay function depending on h0 

and Of is the flow coefficient, which is a function of 

ambient humidity, consistency of concrete and h0. 

In Fig. 2.11, the mean of the creep coefficient for 

region 1 and the creep coefficient for region 2 should be 

equal to the creep coefficient for the combined' area consisting 

of regions 1 and 2, since the prediction model evaluates 

the mean creep over a region. Based on this observation, 

the creep coefficient for region 2 can be found knowing the 
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procedure related to Eqn. 2.23. The results are tabulated 

in Table 2.,4 and they show the validity of the linear relation. 

Thus, to evaluate creep strains at different regions 

on a cross section, the volume/surface parameter is to be 

calculated for each region using the procedure just described. 

While doing this, one might start at the top surface and 

work downwards, start at the bottom surface and work upwards 

or approach from the sides. If the cross section is symmetrical 

about a horizontal axis, the top to bottom and the bottom 

to top calculations will give identical results for horiontal 

layers. But for unsymmetrical sections, the top to bottom 

calculation and the bottom to top calculation may yield 

different volume/surface ratios for the sarn layer. In such 

cases the lesser value is chosen since creep is inversely 

related to the volume/surface ratio. The same method applies 

to the sidewise calculations, i.e. to the yertical layers 

as well. It should be noted here that for a layer lying at 

the surface, the volume/surface ratio can be obtained directly 

from the area of the surface exposed and the volume of the 

region under consideration (this can be just the perimeter 

exposed and the area of the region). It is for the inner 

layers that the present method of evaluation apply. Finally, 

the volume/surface ratio for a region A (Fig. 2.12) is taken 

as the mean of the ratios for the horizontal layer through 

A and the vertical layer through A. 
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creep coefficients for region 1 and for the combined area 

of regions 1 and 2. Thus in an analysis, the v/s ratio 

used for region 2 should be such that the creep coefficients 

satisfy these relations. Ideally, one should evaluate 

Eqn. 2.23 for region 1 and for regions 1 and 2 combined and 

from these values determine the value of the equation for 

region 2. The notional thickness h0 and hence the v/s parame-

ter can be solved from the value of Eqn. 2.23 for region 2 

by means, of an iterative procedure. This procedure is to 

be repeated for each variation of the age at application of 

load, t0 and the observation time t, since the creep flow 

function (Eqn. 2.23) is dependent on t0 and t also. 

But it is seen that a linear relation could be used to 

arrive at the v/s ratio for region 2, using the v/s ratios 

for region 1 and, for the area combining region 1 and region 2, 

i.e. using VS1 and VS12 (of. Equations 2.20 and 2.21). Knowing. 

VS1 and VS12, the v/s ratio for region 2 (VS2) is obtained 

from: 

VS2 = [(hl+h2)VS12 - hi VS1]/h2 (2.24) 

where hi d h2 are the thicknesses of layers 1 and 2 respective-

ly. The values of volume/surface ratio VS2 for various VS1 

and VS12 and different values of relative humidity, t and 

t are calculated by means of Eqn. 2.24 and by the iterative 
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Table 2.4 

Volume to Surface Ratio for An Inner Region Calculated 
by Iterative 'Method and by Linear Expression 

VS2 
VS1 VS12 RH?O to t Iteration Linr.Exp. Error 

100 150 50 7 50 221 200 -9.5 

100 150 50 7 300 215 200 -6.9 

100 150 50 7 10000 203 200 -1.5 

100 150 70 7 50 227 200 -11.9 

100 150 70 7 300 221 200 -9.5 

100 150 70 7 10000 215 200 -6.9 

100 150 50 100 300 204 200 -1.9 

100 150 50 100 10000 180 200 11.1 

100 150 70 100 300 213 200 -6.1 

100 150 70 100 10000 175 200 14.3 

50 80 50 7 50 125 110 -12.0 

50 80 50 7 10000 160 110 -31.2 

300 400 50 7 50 548 500 -8.7 

300 400 50 7 10000 515 500 -2.9 



45 

2.5.3 Example  

For the cross section shown in Fig. 2.12, the 

volume/surface ratios are calculated for regions A and B. 

Knowing the volume/surface values, the flow component of 

CEB-FIP creep coefficient (Eqn. 2.23) based on the following 

data are computed for A and B: 

Relative Humidity = 50 % 

Consistency of Concrete = Normal 

type of Cement = Normal 

Age at loading t0 = 5 days 

Observation time t =20000 days 

The results obtained from following the above procedure are: 

v/s_ v/s_ v/s v/s_ v/s 
top to bottom left to right to Final 

Region bottom to top right left value 

A 40 -- 34 -- 37 

B 162 178 171 181 167 

The corresponding values of the flow components of creep 

coefficients are: 

Region A = 3.5 

Region D = 3.0 

The higher value for Region A denotes the higher creep at 

surface as compared to the inner regions. 
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2.6 Creep under Different States of Stress  

Most creep tests are done under uniaxial compression 

and the creep models that we have seen are. based on the 

data from such tests. Here the question arises whether 

such models can be applied to states of stress other than 

uniaxial compression. The important avenues that are to be 

explored here are the creep under a multiaxial state of 

stress, creep under tension, creep under orsion and creep 

under high stresses. There seems to be considerable differ-

ences in opinion as to the equality of creep under compression 

and creep under tensile stresses of equal magnitude (see 

Neville and Dilger, Ref. 2.1). Some investigators report 

equality of creep under compression and tension while many 

others suggest more creep under tension. Considering the 

uncertainities involved, no differentiation is made between 

compression and tension for creep evaluation in 'the present 

study. As to the creep under torsion, many reports indicate 

(2.1) that it is approxiamately equal to the creep under 

compression. Since creep under multiaxial state of stress 

and creep under high stress are inevitable in a creep analysis, 

these are discussed in detail in the following sections. 

2.6.1 Creep under Multiaxial Stress 

In uniaxial creep tests the specimens were observed to 

creep not only in the direction of the applied stress, but 
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also normal to it (2.32, 2.33, 2.34, 2.35). Following the 

concept used in the case of elastic strains, the normal 

creep strains that are induced are called lateral creep 

strains and the ratio of the lateral creep strain to the 

creep strain along the direction of the applied stress is 

called creep Poisson's ratio. 

Several investigators (2.32, 2.35, 236, 2.37) have 

reported creep Poisson's ratios ranging from 0.05 to 0.4. 

The discrepencies between these results may be, to some 

extent, attributed to the modes of measurement of the lateral 

strains (2.1). But some other studies (2.38, 2.39) indicate 

the creep Poisson's ratio to be closer to the elastic Poisson's 

ratio and to range from 0.16 to 0.25. Gopaiakrislinan et. al 

(2.39) found that creep under multiaxial compression is less 

than under a uniaxial compression of the same magnitude and 

that the creep Poisson's ratio under multiaxial compression 

is less than that under uniaxial compression. 

Here the question arises whether the creep strain in a 

certain direction due to a stress in that direction is indepen-

dent of the stress in the lateral direction or not. If the 

answer is 'yes', then the principle of superposition can be 

applied and the net creep in any direction can. be calculated 

as an algebraic sum of the creep strain occuring in that 

direction and the lateral creep strains induced by the stresses 

in the lateral direction. Thus: 
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'%'L1 (+)] 
(2.25) 

where ff denotes stress in the i direction; L is the net 

creep in direction of 4  ;/t P/ u is creep Poisson's ratio 

under uniaxial stress state and, 15P is the specific creep. 

Neville (2.40) treats creep Poisson's ratio as a function 

of the relative magnitude of principal stresses and uses 

the following relationship for creep under biaxial state of 

stress: 

4. 

where 

= 

= tç_,Zt G7 ]ç 
Cf 2. 

} 

(2.26) 

(2.27) 

where and are principal stresses and A, B and c 

are constants to be determined from experiments. 

In the present study, the following relation between 

effective creep Poisson's ratio and instantaneous strain on 

application of load as recommended by Gopalakrishnan 

(2.39) is used: 

3 2 
= 0.146 - 152. + 184,U0 ( (2.28) 
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Using these creep Poisson's ratios and following Arutyunyan's 

(2.41) assumption that creep in shear is 2(1+/) times the 

specific creep, the following relation may be arrived at 

for multiaxial creep: 

-1 Ø(t,t0) {e.  (t)} = [Dl ( cr(t0 )} 
E(t0) 

(2.29) 

c. T 
where { (t) } = ( Ct), (t), £(t) , (t), 9(t), (t)} 

c:f 2; 

and 

-1 
[Dl = 

T 

() } = { ç(t) ,ç(), c(tD) , (t) a , it e?6 Z  
xy 0 

1 - 0 0 0 
cp,y cp,z 
1 —.) 0 0 0 

cp,x cp,z 
0 0 0 

cp,x cp,y 
o 0 0 2(1-F2 ) 0 0 

cp,xy 
o 0 0 0 2(1+ ) 0 

cp,yz 
o 0 0 0 0 2(1+7) 

cp, z  

where 9 , 9',y etc. are creep Poisson's ratios evaluated 

from instantaneous strains using Eqn. 2.28. 

Another way or treating multiaxial creep is using the 

concept of 'effective stress' and 'effective creep strain' 

(2.42). The effective stress is defined as: 

Jr 6F, (2.30) 
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where 07 = , 0= O , xy 7= 0 and = for a plane 

stress case and the components of creep strain are: 

C 
I-

z-e ,r 
L V - Jy 

(2.31) 

where : is the incremental effective creep strain at any 

time t. 

2.6.2 Creep under High Stresses  

The creep prediction models discussed earlier give a 

creep rate that decreases with time. But it has been shown 

that if the applied stress is high enough, the creep can 

develop at an increasing strain-rate (2.1). Also many investi-

gators (2.43, 2.44, -2.45) report that creep of concrete is 

linearly proportional to stress only up to a stress level 

of 35 % of the strength. Becker et. al (2.46) suggest an 

'effective stress' value for higher stress levels: 

= 2.33- 0.465 f 
eff fS 

for l>> O.35 

C 

(2.32) 
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where is the effective stress' and f is the concrete 

strength. This effective stress value is to be used instead 

of stress in case of high stresses. 



CHAPTER THREE 

CREEP AND SHRINKAGE ANALYSIS OF STRUCTURAL 'MEMBERS 

3.1 Introduction 

With the increasing awareness of the detrimental effects 

of differential creep and shrinkage comes the need for more 

and more accurate methods of creep and shrinkage analysis. 

If shrinkage is not accompanied by creep, analysing for the 

effect of shrinkage generally doesn't pose any problems since 

shrinkage is independent of the stress state and the analysis 

reduces to a problem similar to determining the effect of 

temperature loading. Analysing creep would have been a similar 

problem, had the stresses in a structural member undergoing 

creep remained constant. Bit in a practical structural member 

with steel reinforcement and other restraints to free expansion 

(statical indeterminacy) , the stresses vary with time and 

the problem becomes that of predicting the creep under varying 

stress. This chapter mainly deals with the various methods 

to tackle this problem, starting with the classical methods 

and concluding with an efficient and economical numerical 

method. Formulation of the numerical method is discussed 

in detail and comparisons of the method chosen for the present 

study with experimental '.results are presented. 
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3.2 Classical Methods of Creep Analysis  

Various models have been proposed over the years for 

the creep analysis of concrete structures, some of them 

crude but simple, while others, more comprehensive, but complex 

to use. The methods are well documented by various authors 

(3.1, 3.27), hence only a summary of the different methods 

is attempted here. 

3.2.1 Effective Modulus Method 

The effective modulus method simplifies creep analysis 

to a problem similar to elastic analysis. The elastic modulus 

is simply modified by a factor El + 0(t,t0 )] to take care 

of the creep effects and the creep analysis is done as 

though it were an elastic problem. Here ç(t,t0 ) is the 

creep coefficient, i.e., the ratio of creep strain at observa-

tion time t for concrete loaded at age to to the corresponding 

elastic strain at t 

This method, proposed by Faber (3.2) in 1927, is still 

very much in use. Since the method doesn't take the 

redistributions in internal stresses due to creep into account, 

it cannot be applied to situations where significant changes 

in stresses are expected. However, the method gives relatively 

good results when the aging of concrete is negligible, as 

in old concrete. When applied to a situation of decreasing 

stress, the method tends to underestimate the strains and 
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for a situation of increasing stress the strains are 

overestimated (3.1, 3.3). 

3.2.2 Rate of Creep'Method  

The rate of creep method was formulated by Whitney 

(3.4) based on the assumption that the rate of creep is 

independent of the age at application of load. This assumption 

of constant creep rate renders the creep curves parallel. 

The total strain (t,t0 ) at t due to a unit load applied 

at age to is given by: 

0 (t,t) = [1/E (to )] x [1+(t,t)] (3.1) 

where E(t0 ) is the concrete modulus of elasticity at age to 

and 0(t,t0 ) is the creep coefficient. Since the rate of 

change of çkt,t0 ) decreases with time, nearing zero at higher 

ages, application of the rate of creep based on tc, to creep 

analysis for higher ages of loading will result in an 

underestimation of strains. In addition to this, the rate 

of creep method leads to an overestimation of creep under a 

decreasing stress state and an underestimation under an 

increasing stress state (3.1) . Also the rate of creep method 

.ignores creep recovery. - 

Based on this theory, the total strain £(= instantaneous 

elastic strain + creep strain + shrinkage) can be determined 
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from the following relation in which creep coefficient 

not time is the independent variable. 

df 1 dO de 
-- =   t flt + --- I + 
dØ E(t0) d 

56, 

(3.2) 

where 11(t0) is the applied stress and 9,L, is the shrinkage 

strain. 

3.2.3 Rate of Flow Method  

Proposed by England and Iliston (3.5). in 1965, this 

method breaks down creep into a delayed elastic strain 

(corresponding creep coefficient is Od(t-t0 j) and an irrecov-

erable flow component Of (t) having a constant rate 

irrespective of the age at loading. Thus for a un<it stress 

applied at age t,, the creep strain at t is given by 

1 56d (t—t0) 56f(t)—Of (to )  
(t)   + + (3.3) 

E(t0) E(t0 ) E(t 0) 

The delayed elastic strain 6d is divided into a rapid 

recovery part and a slow recovery part, but it was suggested 

(3.1) that this division can be ignored for the sake of 

simplicity. Making use of this and taking E(t0) = E(t), 

for a 'unit' stress applied at age to and removed at age 

t, , we have the total strain at time t (t>>t 1 ) 
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Of (t )-f(t0 ) 

E (t0 ) 

For strain under a varying stress the following intergral 

relation can be used. 

(t) 
t6it0) 

dt' (3.5) 

where (t,t') is obta.ined by replacing t by t' in the 

right hand side of equation (3.3). 

3.2.4 Improved DischingerMethod  

The Improved Dischinger method was proposed by Nielsen 

(3.6) as a simplification of the rate of flow method. The 

first two terms in Eqn. (3.3) are combined to form a single 

term 1/Ed where Ed = E(t0)/(l+od), and the flow component 

is assumed to act in the same way as the total creep in the 

rate of creep method. The differential equation 

(cf. Eqn. 3.2) according to the the Improved Disichinger 

method is: 

d. = l+d d9 

d E(t0 ) d 

t) dh 

E(t 0) + 
(3.6) 

The method gives accurate results for simple practical problems 

in which time since the application of load exceeds about 3 

months (3.1) , but for older concrete, creep is underestimated. 
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3.2.5 Superposition of Virgin Creep Curves  

According to the principle of superposition, the present 

behaviour of a material under an applied stress is independent 

of the stress or strain history. In other words, the combined 

effect of stresses applied in the past can be obtained through 

superposition of the individual effects. Extending this 

principle to creep, virgin creep curves can be superimposed-. 

Thus if the creep compliance is given by 

1 
(t,t0 ) =   (1+ 

E(t0) 
t,t)] (3.7) 

then the strain due to stress applied at age t0 and 

removed at age t', measured at time t is given by 

= -- 11+ 
E(t0) 

t,t0 )] -----(1+ 
E(t') 

,t') ) (3.8) 

This could be further simplified by assuming 

E(t0 ) = E(t') = E(28) or E(7) 

where E(28) and E(7) are modulii of elasticity at concrete 

ages 28 days and 7 days respectively. 

The total strain at time t due to a variable stress L1, 

with an initial value is 
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t 

(tt t)  (t') dt' (3.9) 

to 

Under increasing stress or slightly decreasing stress, this 

method gives good results, but for a complete removal of 

load, the strains are underestimated (3.1). 

3.2.6 Trost-Bazant 4ethod 

The difficulty in computing the strain under a varying 

stress is that the integral equation Eqn. 3.5 is not solvable 

in a closed form since the creep curves are non-parallel. 

To overcome this handicap, Trost (1967) introduced a relaxation 

coefficient X which depends on the age at loading, creep 

function and the variation of the stress or strain with 

time. Using this relaxation coefficient, the strain under 

varying stress Q(t'), with an initial value of t7 can be 

expressed as follows (cf. Eqn. 3.9) 

(t) = F.  [1+t,t0 )] +   (l+X(t,t0 )(t,t0 )] 
E(t 0) E(t0 ) (3.10) 

where (t) is the value of the variable stress at 't, the 

time at evaluation of strain. 

The coefficient X can be evaluated from integration 

of the last term in Eqn. 3.9 and is given in the form: 
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E (to ) 

t,tc) ) t F(t)-U'j'] 

(t It J(t') 1 
 dt-

E(t') t' P(t,t0 ) 
(3.11) 

where all the terms are as defined earlier. 

Physically, X represents the reduction in creep when 

rather than applying at once, the stress is applied gradually 

over a period of time. 

This method was made more rigorou by Bazant (3.7) , 

who extented the method to relaxation of stress under constant 

or varying strain. He coined the term 'aging coefficieiit' 

for the relaxation coefficient described earlier and named 

his method 'Age Adjusted Effective 'Modulus 'Method'. Since 

for relaxation, ,(t) (=/E(t0 )) is constant, Eqn. 3.10 

reduces to: 

X (t,t 0) 
1 

07- 67(t) Ø(t, t0) 

For a unit strain, this can be written as 

X(t,t0) = 
E(t0 ) 1 

E(t0 ) - R(t,t) çD(t,t0 ) 

(3.12) 

(3.13) 

where R(t,t ) is the relaxation function at time t for an 

initial stress E(t 0) applied at t0 . A step by step procedure 

and an empirical formula to evaluate the relaxation functions 

from creep functions are presented in Ref. (3.8) . Dilger 
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(3.1), based on a comparison with experiments by Ba.stgen 

concludes that the results obtained by Trost are better 

than those of Bazant and that the aging coefficients 

established on the basis of the CEB-FIP creep function best 

represent the experimental trend. Graphs for values of 

based on the CEB-FIP creep function are presented by Dilger 

in references 3.1 and 3.9. 

3.2.7 Rheological Models  

Rheological models, consisting of springs' and dashpots 

have been used by many researchers to model concrete behaviour. 

Based on the Kelvin model (Fig. 3.la), Bazant (3.10) arrived 

at the following relation in 1966: 

t 

0 

where f, () = 

expif. () - (t) ]d (3.14) 

0 
N is the number of Kelvin Units, E and 

E (0) 
  d9 

(0) 

are the spring 

moduli and dashpot viscosities (functions of age t) of the 

i th Kelvin unit. An analogous formulation was presented 

based on the Maxwell chain (Fig. 3.lb) which has the form: 
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t) = 

t 

exp E. (t') exp  
(3.15) i=l 

0 

where are a set of relaxation or retardation times and 

N is the number of 'Maxwell units. 

According to Jordaan et al. (3.11), the creep function can 

be represented by 

I(t,t') = 

1 t - t' 
  + [f3 (t)-f , (t')] + A(t') [1-exp{-   
E(t') h(t') 11 

(3.16) 

where f3 (t) represents the irrecoverable creep of the dashpot 

element of the Burgers 'Model (Fig. 3.lc) and the parameters 

A(t') and B(t') apply to the Kelvin's unit in the model. 

Based on an age-dependent Kelvin model coupled in series 

with an age dependent spring, Arutyunian (3.12) proposed 

the following approximations 

I(t,t ,) = 

1 

E(t') E(t') 
t1-exp-(t-t')/] (3.17) 

-0.118 
where u(t') = 00 ,7) 1.25 t' 

and t is retardation time (normally 50 days). 

Both the Kelvin and the 'Maxwell models can model a 

given concrete behaviour very closely and by increasing the 

number of units in the models, any desired degree of accuracy 
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can be achieved. However, the Maxwell chain model -is found 

to give a better representation of the actual test data 

(2.1). Burger's model is a combination of the Kelvin. and 

Maxwell models and it's behaviour is qualitatevely similar 

to that of concrete (2.1). 

3.3 Step-by-Step Numerical 'Method  

The solution of the superposition integral (Eqns. 3.8, 

3.9) cannot be accomplished by analytical means and so numeri-

cal techniques must be adopted. For this, the most convenient 

numerical scheme appears to be the step-by-step intergration 

method wherein time t is divided into discrete times t, (j 

= O,l,2 .... N) in time steps Time t0 coincides 

with the time of first application of load and t coincides. 

with the final observation time Of total strain or 

time-dependent deformation of the structure. The intermediate 

time steps should be chosen to coincide with the time of 

application of incremental loads. Those observation times, 

immediately after each loading are best chosen in the form 

of a geometric progression, ie. with time steps equal in a 

log-time plot. Bazant (3.13) recommends the following rela-

tion between time steps: 

1/n 
(t _t 10 (t _t 

i+1 0 i 0 
n= 8 
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A comparison of stress results with t's generated by the 

above expression with different n's is made (Fig. 3.2) and 

the costs of evaluation for the cases are compared (Fig. 3.3). 

Based on this study, a value of n = 4 is chosen for the 

present study. 

There are different ways of implementing the step-by-step 

procedure. The methods proposed by Ghali et al. (3.26) 

and Bazant et al. (3.27) are briefly discussed here. In 

the first method, the stress increment 2iU during a time 

interval (t 1 -tL) is assumed to be applied at the middle 

of the interval, so that the strain increment at t 1 is: 

.4g. (t ,t ) =   (1+ (t ,t 
1+1 i E(t ) i+l 1+1/2 

where 

t =(t +t)/2 
1+1/2 1+1 i 

(3.18) 

40- = f( ) - (t 
i i+1 

The second method uses the trapezoidal rule: 

[1+(t ,t )1 tl+O(t ,t H 
1+1 i. i+1 1+1 

t.(t ,t)=----{   +   
i+1 1 2 E(t) E(t 

I 1+1 (3.19) 
which means the stress increment 4U during the interval 

(t -ti) is assumed to be applied at the beginning of the 

interval and at the end of the interval in equal halves. 

The principle of superposition is applied in the present 

study with an 'initial strain' formulation proposed by 

Zienkiewicz, which will be discussed in CHAPTER 4. 
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3.4 Time-Functions to Avoid Storing Stress History 

If a structure is restrained (statically indeterminate), 

non-homogenous in terms of creep properties or if steel 

reinforcement is present, then there will be a continuous 

redistribution of stresses across the cross-section to main-

tain compatibility. The step-by-step method can efficiently 

trace this redistribution of stresses at different time steps 

using any of the creep prediction models described in CHAPTER 

2. But there is one major drawback in employing those predic-

tion models in a step-by-step analysis. To find the 

time-dependent effects at the end of the j th time-interval, 

the stress increments applied at the beginning of all the j 

preceeding the j th interval are needed. Knowing that a 

solid finite element reports 162 stress values (6 stress 

components at 27 gauss points for a 3x3 integration order), 

it is easily seen that for a practical problem employing 

hundreds of elements and dozens of time-steps, the storage 

requirement could become quite prohibitive. This problem 

imposes restrictions on the size of the structure to be 

analysed and also on the number of time-steps which is critical 

to the accuracy of the analysis. To overcome this problem, 

the integral type creep law has to be converted to a rate-type 

one. Many researchers have looked into this particular problem 

and some of their suggestions over the years are discussed 

in the following section. 
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3.4.1 Review of Functions 

McHenry (3.14) suggested a creep compliance function 

of the form: 

exp(-(t-t0 ))] 

+ P(exp -Pt))t 1 - exp(-m(t-t 0)] (3.20) 

where c,-i7, /', pand m are constants to be determined from 

experimental observation. Arutyunyan (3.12) proposed the 

function 

b m 
(a + -- Pk5xp(k(tto )) (3.21) 

t k=0 

where a, b, and kare to be determined from experimental 

data. 

Based on these two models, Selna (3.15) suggested a function 

of the form: 

(t, t' ) = j, a (t0 ) (1 - exp(-K (t-t0 ))] 
i=1 

(3.22) 

where a and k are constants to be determined experimentally 

and m was chosen to be 4. This function requires the storage 

of stress increments corresponding to only two time steps 

prior to the time under consideration. Scanlon and Murray 

(3.16) used the CEB-FIP (1964) creep curves to determine 

the coefficients a and k in Eqn. 3.22 through the method 
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of least squares. Mukaddam and Bresler (3.17) proposed the 

following creep compliance function which take into account 

both temperature and aging effects:. 

(t,t0,T) = 2: aexpt-1\.(t-t) (T) 0 (t0 )] (3.23) 

where a and are constants, q5(T) is a temperature shift 

function and çb(t ) is an age shift function. T is the 

temperature at loading. Though this function is much advanced 

as compared to the previous models in the sense that both 

aging and temperature effects are considered, it's application 

requires the stress histories at all the previous time steps. 

4ukaddam proposed another compliance function (3.18) in 1974, 

which alleviates this problem. The function is: 

m 
(t-t0 , T) =   a. ti - exp(- Ø(T) (t-t))] (3.24) 

L 

where a , are constants and O(T) is temperature shift 

function. This model requires merely the stress increment 

at one previous time step for the creep strain calculation 

at the current time step. This reduction in both computer 

storage and computational effort makes the application of 

this compliance function to the solution of large structural 

problems possible. However, the aging effects, an important 
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factor in the case of concrete is not included in this 

model. 

Zienkiewicz and Corineau (3.19) developed a viscoplastic 

model of material behaviour capable of dealing with material 

non-linearity problems ranging from creep to plasticity. 

They have based their model on the principle of thermodynamics, 

taking plasticity and viscoelasticity as limiting cases of 

a general formulation and not as separate phenomena. However, 

it's application to reinforced concrete is yet to be 

formulated. 

Kabir (3.20) suggested a function of the form 

c(t,t-t01 T) a (t0 ) [l-exp(-)(Ø(T) (t-t0 )] (3.25) 

where a (t0) are scale factors dependent on the age at loading 

to  )\are exponential constants determining the shape of 

the logarithmically decaying creep curve and (T) is a 

temperature shift function. 

The Kabir model requires the storage of the stress 

history of only one time-step prior to the time under consider-

ation, similar to the 'rukkadam's model. But the Kabir model 

is superior to that of the ukkadam's since both age at 

loading and temperature effects are considered in the former. 

Khalil and Dilger (3.21) proposed the following model based 

on the arguement that a time-function to represent creep, 
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like creep, should have an irrecoverable flow component and 

a recoverable delayed elastic component. The proposed func-

tion is: 

çb(t,t01 T) = f.F(t,t01 T) + Ød.D(t-t 0) (3.26) 

where f = ultimate creep coefficient, depends on the concrete 

mix properties, ambient environment and the effective thick-

ness of the member; 

coefficient. 

d is the ultimate delayed elastic 

a. texp(-.t 0)] [l-exp(-
i=1 - 

D(t,t0 ) = 
1=1 

t—to (T)] 
(3.27) 

b [1 - exp(-2(t-t0 )] (3.28) 

a bj and are coefficients to be determined from 

experimental data and O(T) is a temperature shift function. 

The irrecoverable component of creep is dependent on 

the age of concrete at initial loading, the duration under 

load and the temperature variation while under load. It 

continues to increase at a decaying rate and has no limiting 

value. The delayed elastic part is dependent on the duration 

under load and has a limiting value that is reached in a 

relatively short time, especially for young concrete. The 

delayed elastic part is independent of the age loading and 

temperature. Like the Kabir model, the Khalil model also 



71 

doesn't require storage of the entire stress history prior 

to the time under consideration. 

Other forms of exponential algorithms were developed 

by Bazant (3.22) , by Argyris et al. (3.23) and Willam (3.24). 

But these will not be discussed here since they are essentially 

equivalent to the Kabir model. 

3.4.2 Choice of Model for the Present Study 

The time-functions discussed earlier involve many coeffi-

cients to be determined experimentally. Since experimental 

study of a problem at hand is not always feasible due to 

limitations set by time, funding or practicality, prediction 

models recommended by Ad, CEB-FIP or BAP can be used instead 

to determine the coefficients (3.20, 3.21). Keeping this 

in mind , the time-functions chosen should meet the following 

requirements: 

1. The time-functions should fit the chosen creep predic-

tion model accurately. 

2..The undetermined coefficients of the function should 

be easy to evaluate from the values of creep compliance 

from the prediction model. 

3.The function should be such that it does not require 

an excessive amount of storage space in the computer. 

In the present study, the Kabir time-functions are chosen 

to represent the ACI creep model and the Khalil functions 
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to represent the CEB-FIP model. Both the chosen functions 

require minimal amount of computer storage and they take 

into account such parameters as age at loading, temperature 

variations and material properties. The unknown coefficients 

of both the functions could easily be determined through a 

least square fitting of the chosen creep prediction models 

(see Section 3.4.3). 

3.4.3 Determinationof Coefficients of Time-Functions 

The determination of coefficients 'a' and A in the 

Kabir formulation is discussed first. Define matrix [S] 

and vectors {a} and {F} such that: 

i-exp(-A1àt, ) 1-exp(-At, 

IS] = 

1-exp(-tt) l-exp(-2At 2. ) 

l-exp(-At1 

l-exp(-)ç4t) 

1-exp(-)\ 1Lt) 1-exp(--A4t) .... 1-exp(-Llt) 

(3.29) 

where Atj = t-t. , n = the number of observation times and 

m = the number of terms of the series that are considered. 

a} = (a 1 (ta) , a (t0 ) , a3 (t0 ) , ..., a(t) }T (3.30) 

T 
and {F} = ( (t, ,t0 ), (t ,t 0 ), ... , $(t ,t) 1 (3.31) 



73 

where Ø(tL ,t0) are the creep compliance functions for time 

ti when the age of concrete at loading is t0 . Based on 

these, the Kabir function (Cf. Eqn. 3.25) can be written 

as: 

(S] {a} = F} (3.32) 

Note that the temperature term O(T) is missing here. 

Unit value is given to the temperature shift function which 

corresponds to a temperature of 20 C. 

The right hand side of Eqn. 3.32 can be derived from 

any creep prediction model. Since it zas found that the 

Kabir model best fits the ACI prediction model, the Ad 

model is used and it is repeated here for convenience: 

Ø(t,t0) = 
.6 

(3.33) 

10 

where 0(t0) is the ultimate creep coefficient, dependent 

on properties of the material, ambient atmosphere and the 

size and shape of the member. 

Since there. are two sets of unknowns viz. a and A;, 'a 

trial and error procedure is adopted. A set of values is 

given to and Eqn. (3.32) is solved for the corresponding 

values of a. The solution procedure involves the following 

steps: 
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1 
Premultiplying the Egn. by [S] 

T T 
[S] [S] {a} = [S] {F} (3.34) 

T -1 T 
Or, {a} = ([S] [S]] (S] JFJ (3.35) 

This procedure is repeated for a number of ages at 

loading t and the least square error E corresponding to 

the assumed set of Ai values is noted. E is given by: 

E = ({F} - [S]{a}) 
i=l j=l 

(3.36) 

where N is the. number of ages at loading and n is the 

number of observation times. 

Kabir (3.20) recommends the following values for 

Al = o.i, 0.01, A3= 0.001 (i.e. m=3) 

But in the present study, 4 terms are considered and the 

following values are chosen: 

A, = io, )2 = 1, = 0.1, \= 0.01 
Fig. 3.4 shows a comparison of the ACI creep curves with 

the Khalil function using the first and second sets of values 

above for A. A similar procedure is adopted to determine 

the coefficients a , bi and of the Khalil time-function. 

The irreversible flow component of the CEB compliance function 

is used to ealuate the coefficients 
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a and A i of the first part of the Khalil function . The 

matrix [S] in this case would be 

S S S S - 

11 12 13 lm 
IS] = 

S S S S 
n1 n2 n3 nm_ 

where S = (exp(- 1t0 )]El-exp(-,(t 1-t0 ))i11  

S = 

12 
and S = (exp( -At0 ))( 1-exp( - A(t -t0 ))] etc.. 

ni 

(3.37) 

here n is the number of observation times and m is the 

number of summation terms chosen. Substitution of Eqn. 3.37 

into Eqn. 3.35 gives the required coefficients, again through 

a trial and error procedure coupled with the least square 

method. 

For the remaining coefficients b and , the matrix 

F} of Eqn. 3.35 is assembled from the delayed elastic part 

d /d (t-t0 ) of the CEE creep compliance function. The matrix 

(SI in this case is: 

i_exp(_) At, ) 1-exp(-4 t1  

IS] = 

1-exp(-, t) 1-exp(-t,) ... 1-exp(-t) 

(3.38) 

and the vector {a} is replaced by vector JbI in Eqn. 3.35. 

Khalil recommends the following values for Y\and (3.21): 

=0.1, = 0. 02, = 0.003, 0.0004 
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and = 1. 5, 0.15, 0.015, 0.0015 

However, the following sets of values are found to give 

better results (Fig. 3.5) and hence are used in the present 

study: 

= 0. 1, = .02, = .003, A4 = .0004 

and = 10. 0, = 1. 0, 7=0.i, =0.01 

One interesting trend that was noticable during the present 

efforts to determine coefficients that give closer fit to 

the CEB-FIP or ACI prediction models is that for a fixed 

set of values, the coefficients 'al for a particular age 

at loading t are dependent on the chosen set of t's, the 

observation times. It follows that the observation times 

that are chosen in the evaluation of the coefficients should 

be similar to the actual observation times when the coeffi-

cients would be used in a creep analysis. Khalil seems to 

have overlooked this and has used a fixed set of observation 

times applicable to any age at loading. He has built-in 16 

sets of a values corresponding to "standard" ages at loading 

(from 7 to 420 days) into his cmputer program. He has 

based his evaluations on the CEB-FIP creep model keeping an 

assumed value for H., the time delay function. A correction 

factor is used when the value of H  deviates from the assumed. 

1/3 1/3 
tt/(t+H 1 )1 - tt0 /(t0 +H )] 

CF = (3..39) 
1/3 1/3 

[t/(t+H , )] - [t/(t+Hf )] 
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where CF is the correction factor, H. is the actual value 

of Hf for which the coefficients a are to be determined 

and H is the standard value of H.f , which the built in 

aj sets are based on. 

For intermediate values of the ages at loading (intermedi-

ate to the "standard ages") the coefficients are linearly 

interpolated. 

In the present study, the coefficients aare generated 

at the time of application of stress,to suit the requirements 

of the problem at hand. This eliminates the necessity for 

interpolations, correction factors and storage of large 

amounts of data. Through compact and efficient 

matrix-operator subroutines the cost of evaluation is kept 

at a minimum (negligible as compared to the overall cost of 

running a finite element job). 

The efficiency of the present method is revealed in 

Fig. 3.6, showing a comparison of results from using CEB-FIP 

curves and using the Khalil method with coeffidients as 

reported by Khalil et al. and the coefficients from the present 

method. 

The coefficients bL in the Khalil time-functions are 

independent of time, hence these values are stored as data 

in the computer program. 
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3.4.4 Cummulative Coefficients to Avoid Stress History  

The time functions (i.e. Eqns. 3.25 and 3.26), when 

used as they are, do ndt serve their purpose of dispensing 

with the storage of stress history of all the previous 

time-steps. To achieve this goal, certain mathematical manip-

ulations are necessary. The steps involved in transforming 

the Kabir time-functions are given below (3.20): 

Creep compliance function ç15(t,t 0) is given by 

a (t0 ) [l-exp(- (t-t0 ))] (3.40) 
i=l 

With stress increments 47, , ....,iç... 1 applied at ages 

t , t , •.., t, the creep strain £ at time t is: 

A 
n E1 

A6 
+----

EL i=l 

+ 

a (t0 ) [1-exp(-;(t-t 1 ))] 

a (t0 ) tl-exp(-A (t -t))] 

+ ± a (t ) El-exp(-•(t-t) i=l 11 1 (3.41) 

where E, ,E,.. are the modulii of elasticity at t, ,t etc. 

This may be rearranged as: 

C A 
= -- ± a. [1-exp(-t1 +At+ ... 

n E i=1 
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4 
L ,a (l-exp(-A.(Lt2 +4t.3+ ... 

if.i=l 

Ar 4 

E 1 i=l 
[1-exp(- At,11 )] 

where aq = a (tj ) and At. = t.+1 -t. 
< L 

Similarly, the creep strian at time t is 
GI*I 

= a [1-exp(-A.(t, + + .. +t))] 
n+l E i=1 

+ •Lz a? tl-exp(-A  (At +4t3+ .. +4th ))] 

E i=l 

+ ... 

(3.42) 

+ a. El-exp(-ALt)] 
E i=l (3.43) 

From Ens. 3.42 and 3.43, the creep strain increment A in 

4i is obtained as: 

= a (exp(-JLt 1+4t+..+A ))][l-exp(- .At)] 
)1-I 

n E1 i=... 1 4 

+ a texp( (At, +At +..+t ))] t1-exp(-At)] 
E i=l 

Ar 4 

E 1 i=l 
-I (exp( -A4t 1)] [1-exp( - A; At,, ) I 

14 

a. (1-exp(-A I 
(3.44) 
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Now define a coefficient A. such that, 

and 

A = A exp(-A At + 
i1 iv)-.i En 

A 
ii E1 

so that Eqn. 3.44 may be simplified as 

(3.45a) 

(3.45a) 

c 
= A [l-exp(-t1 )] (3.46) 

i=1 

Thus the creep strain increment during any time interval 

(t-t) can be found using just Eqns. 3.45 and 3.46. The 

cummulative coefficient can be calculated as a progressive 

sum using Eqn. 3.45, knowing the stress increment at the 

current time. Thus the storage of stress history is avoided, 

making the time-dependent analysis of large structural prob-

lems possible. 

The Khalil time-functions can be modified in a similar 

fashion, with the following results: 

and 

4 

i=1 
t1-exp(-X4. /t,.,)] (3.48) 

d 4 
= I B [l-exp(-.L\tfl (3.49) 

n i=l ILA 

f 
where = increment in the irreversible flow part of 

creep strain during the interval (t,-t) and Ae  is the. 
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corresponding increment in the delayed elastic part. The 

coefficients Ai. and Bi., are defined as: 

A. = A. exp[ -)c.At, 1] 
1)1 p1-I 

f ---- a. exp[-Ait,l] 
En (3.50a) 

A 1 = Of a.1 expt- t1 I 
E1 

B. = B. - expt-At, 1j + 

B 1 = Od -- b 
E 

where and are as defined in Eq. 3.26. 

En 

3.5 Shrinkage Analysis  

(3.50b) 

(3.51a) 

(3.51b) 

The CEB-FIP 1978 and the ACI Committee 209 shrinkage 

prediction models are used in the present study for shrinkage 

analysis. However, since the CEB-FIP function is dependent 

on a set of prediction graphs and tables, it is not suitable 

for numerical implementation unless mathematical formulations 

are developed to represent these graphs and tables. Khalil 

(3.21) assumes that shrinkage develops at the same rate as 

creep and uses an exponential expression of the same type 

as that is used to predict creep. Because of it's simplicity, 

the same function is adopted for shrinkage prediction in 

the present study. The Khalil function (see Fig. 3.7) is: 
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where 

(t,t ) = S(t ,t ) K(t-t 
sh sh 00 5k sh 

4 
K(t-t ) = C [1-exp(-- (t-t ))1 

sh i=l i i sh 

(3.52) 

(3.53) 

where h(t,th) is the shrinkage strain at time t, C and 

are coefficients to be determined experimentally or from 

the CEB-FIP prediction model and t is the start of drying. 

S(tct  ,t) is the ultimate value of shrinkage which depends 

on the mix proportion, the ambient environment, the shape 

and size of the element and t. 

The ACI shrinkage prediction model is straight forward 

to use and is expressed as follows: 

(t - t 
sh 

(t,t ) =   

sh sh C + (t-t ) 
sh 

(3.54) 

where (t,t), t and tç have the same meaning as before. 

C is a constant depending on the type of curing and 9 is 

the ultimate shrinkage which depends on mix proportion, ambient 

environment and shape and size of the member. Analysis for 

shrinkage effects is similar to creep analysis and in the 

present study, shrinkage strain is simply addedto the creep 

strain, based on the assumption that shrinkage develops at 

the same rate as creep. 
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3.6 Comparison of Analyses with Experments  

In order to verify the validity of time-functions 

described in Section 3.4, comparisons are made with the 

experimental curves of Ross (3.25). Three cases are consid-

ered, one under constant applied stress and two under variable 

stresses. In the constant stress test, a stress of 15.03 

NPa (2180 psi) is applied for a period from 14 to 60 days. 

Fig. (3.8) shows the comparison between the results from 

the experiments and the results from using the Kabir 

time-functIons with coefficients from the ACI curves and 

from Khalil's functions with coefficients from the CEB-FIP 

curves. Also given for comparison are the results using 

the ACI and the CEB-FIP prediction models. It is seen that 

the CEB-FIP results show a better correspondence with experi-

mental values than the ACI committee results, and both the 

models underestimate creep strains in the event of a removal 

of applied stress. Fig. (3.9) shows the comparisons for 

creep under an increasing stress state and Fig. (.10) shows 

the comparisons for creep under a decreasing stress state. 

In all the cases the present analysis with time-functions 

show good agreement with the CEB-FIP and ACI results. 

The experimental results reported by. L'Hermite and 

Mamillan (3.28) are used to verify the analytical methods 

for shrinkage effects. The results for two different specimen 

sizes (7x7x28 cm and 100x100x400 cm) are compared. The 
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results of the study are presented in Fig. 3.11 and it is 

seen that the CEB results are the closest to the experimental 

results and the ACI predictions are on the higher side. 
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CHAPTER FOUR 

FINITE ELEMENT ANALYSIS 

4.1 Introduction 

Analytical solutions to time-dependent problems are com-

plex. Moreover, analytical solutions are based on too many 

simplifications which might impede a representative model 

of the structural members involved. Finite element analysis 

is an excellent tool in such cases, since finite element 

modelling of complex material behaviour is now possible with 

the advent of powerful computers. In some cases where the 

internal stress distributions due to time-dependent effects 

are the prime target of analysis, finite element analysis 

may be the only choice. In this chapter the steps involved 

in employing the finite element method to solve time-dependent 

problems are discussed. A brief outline of the various 

finite elememt formulations and the evolution of the use of 

finite element method in modelling structural concrete is 

also presented. The transformation of a finite element program 

for elastic-static analysis into a program capable of 

time-dependent analysis is dealt with in detail, and finally, 

the capabilities of NON-SMAC, the program used in the present 

study for time-dependent analysis are listed. 

93 
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4.2 Finite Element Method of Analysis  

Finite element method is a descretization procedure 

through which a continuum with infinite number of unknowns 

(degrees of freedom) is approximated as an assemblage of 

elements having a finite number of unknowns. Since the 

method is so widely used and numerous text books (eg. 4.1,4.2) 

are available on the subject, further elaboration is not 

attempted here, though three different modes of finite element 

formulations, viz, the displacement formulation, the incom-

patible modes formulation and the hybrid stress formulation 

are briefly touched upon in the following paragraphs. 

4.2.1 Displacement Formulation  

In this method, the element displacements are the only 

variables. Internal displacements are interpolated from the 

nodal displacements and the stresses and strains within the 

elements are expressed as functions of these displacements. 

The stiffness matrix is obtained by the minimization of 

total potential energy. No effort is made to consider the 

equilibrium of internal stresses and the applied loads. In 

general the displacement elements satisfy inter-elment dis-

placement compatibility, though some elements have been 

developed which perform very well without being compatible 

(4.2) . Displacement method is the most widely used, mainly 

because of it's simplicity in theory and the ease with which 
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it can be programmed. Many displacement elements are currently 

in use, which can be applied in situations of in-plane forces, 

bending or both. They range from the simple constant strain 

triangle and beam to the complex, variable node isoparametric 

solids. Though simple in theory and strainght forward in 

formulation, the displacement method has the drawback of 

being inherently overstiff. The displacement method employs 

a set of shape functions [N] [N 1, N1 , ...] to express the 

displacement field Jul within each element in terms of the 

nodal displacement vector {q}. 

i.e. Jul = [N] Jqj (4.1) 

A linear differential operator matrix [L] is applied to Jul 

to get the strains { } at all points within the element: 

{ . } = [L] Jul = (LI [N] {g} 

16 } = (B] {q} (4.2) 

where [B] = [L] [NI, the strain-displacement matrix. 

The stresses are obtained from the strain-displacement 

matrix, using the material matrix [D] 

or 

{U} = [D] {g} (4.3) 

{c1} = [D] [B] {q} (4.4) 

If virtual displacements {A.q} are applied on nodes, 

the sum of work done (d) by internal stresses and body 



96 

forces over the element volume V and by the surface forces 

over the surface area S is given by 

dW = {dq}T( [B] {}dV - [N] {p}dS - [N] {g}dV) (4.5) 

V S V 

where {p} and {g} correspond to surface traction and body 

forces respectively. 

In order to maintain equilibrium within the element, a 

system of external nodal forces {F} have to be applied which 

will reduce the virtual work dw to zero. Eqn. 4.5 will 

take the form: 

II; 

{dq} jF} = 

T( T fT ( T 
{dq} C) [B] {0}dv - [N] {p}dS - [N] {g}dv) 

V S V (4.6) 

Eqn. 4.6 is valid for any virtual displacemnt {dq} and hence 

it can eliminated from both sides of Eqn. 4.6. Substituting 

Eqn. 4.4 into Eqn. 4.6, 

( T I T ( T 
{F} = ( [B] [D] [B]dV) {q} - [N] {p}ds - [NI {g}dv 

V S V (4.7) 

This can be rewritten as 

{F} = [K] {q} - IF } - IF } 
5 9 

(4. 8)' 
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where [K] is the element stiffness matrix, F and F9 are 

the nodal forces due to surface forces and body forces respec-

tively. 

Eqn. 4.8 is the force-displacemnt relation for each 

element. Assembling the stiffness matrices and force vectors 

of all the elements, the stiffness matrix and force vectors 

for the entire structure is constructed. Overall equilibrium 

equation can be written as: 

[K] {q} = {F} (4.9) 

Eqn. 4.9 is solved for the unknown displacemnts {q} and the 

element strains are derived from {q}. For a linear analysis, 

the stresses are obtained from Eqn. 4.3 or Eqn. 4.4. 

4.2.2 Incompatible 'Modes Formulation  

This is an extension of the displacement method (4.3). 

To overcome the problems with over-stiffness of displacement 

elements, additional shape functions (interpolation func-

tions) are employed. These additional functions are 

associated with 'dummy' degrees of freedom and these dummies 

are eliminated in the element level by static condensation 

(4.1). Details of this formulation' is available in Ref. 4.3. 
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4.2.3 Hybrid Formulation  

Unlike in the displacement and the incompatible modes 

formulations where the displacemnt fields are the only assump-

tions, the hybrid formulation uses multivaribale assumptions 

(4.4, 4.5). Typically one assumption is made for the displace-

ment fields and another independent assumption is made for 

the stress fields. The formulation is called hybrid since 

the strain energy comes from two different sources. Various 

variational principles are used as the basis of derivation 

of the stiffness matrix from the assumptions. Hybrid formula-

tion can be either 'displacement hybrid' or 'stress hybrid', 

depending on whether a potential energy functional or a 

complementary energy functional is used in the derivation. 

Similar to the displacement method, the hybrid method 

also uses a set of shape functions to express the displacement 

field within elements in terms of the nodal displacements 

{q}, (see Egn. 4.1). In addition to this, an interpolation 

matrix [P] of assumed stress fields is used such that 

{} = EP] {p1 (4.10) 

where {f2} is a vector of unknown stress parameters. Variation 

of a "modified complementary energy principle" (4.14) pro-

duces: 
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where 

0 
T 
G 

sym. -H 

q F 

0 

( 
(GI = ) [P] ((L] [N]) dv, leverage matrix 

(4.11) 

[H] S[P]T[C] [P] dv, generalized flexibility matrix 

V 

and [C] = material compliances. {} = [C]{fl} 

[L], [N], {q} and {F} are defined in Section 4.2.1. 

From Eqn. 4.11, by reverse Gauss factorization and 

part-inversion, 

and 

•1 -I 

G H G 

sym. 

{ f3 } = [H] EG] {q} (4.12) 

T 
-G H g. 

0 

(4.13) 

Therefore EGT H1 G] {g} = {F}, so that the stiffness 

matrix is 

and stresses 

or from (4.12), 

T -I 
[RI = [GHG] 

{O •} = [P] { (3} 

{ cr = [P1 [H] [G] {g} 
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The strains can be derived from the stresses using the 

compliance matrix 

{} = [c] {0} (4.17) 

4.2.4 Choice of Formulation Model for the Present Study  

To choose between the different methods of finite element 

formulations for the present study, a comparison study of 

the performances of the different elements is made. A cantile-

ver with a concentrated load and a couple applied at the 

free end is modelled with different numbers of 8-node solid 

elements of the different formulations. It is seen that 

the hybrid and incompatible mode elements converges much 

faster than the displacement elements. The stress and dis-

placement results using the hybrid and incompatible mode 

elements are identical, when the elements used are 'regular' 

shaped (see Figures 4.1 and 4.2). A study of the cost of 

analysis (proportional to the time of analysis when comparisons 

are made in the same 'shift'), using the differen't formulations 

(Fig 4.3) , indicates the hybrid elements to be the most 

expensive and the displacement elements to be the least 

expensive. But this advantage of the displacement elements 

is offset by their very sluggish convergence. 

A further study of the formulations was made for skew 

situations, where the shape of the element faces departed 

from the rectangular (Fig. 4.4). The results indicate 
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(Fig. 4.5) a definite superiority of the hybrid formulation 

over the others. Hybrid element formulation has a concrete 

theoritical base, whereas the incompatible modes formulation 

is weak in this regard (4.14) . Considering these advantages, 

the Hybrid formulation is chosen for the present study. 

4.3 Simulation of Three-Dimensional Creep and Shrinkage 

The main objectives of a time-dependent analysis are 

determination of the ultimate deflection and the ultimate 

stress state in a structure, under various loads and environ-

mental conditions. This would be an easy task, if the structur-

al member is made of a material that creeps and shrinks at 

a uniform rate at all points of the cross-section and the 

stress state remains stationary. But this is not the case 

with practical cases of structural members. Even if a member 

is homogeneous, the material at peripheral zones creeps and 

shrinks at a higher rate than the inner regions. The differen-

tial creep and shrinkage across a cross-section and the 

presence of steel reinforcement causes constant redistribution 

of stresses within a section. The monolithic nature of 

concrete structures and their statical indeterminacy further 

complicates the problem. 
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4.3.1 Step-by-Step Integration Scheme  

Since creep is a function of stress, the continuous 

redistribution of stresses necessitates a step-by-step analy-

sis scheme in the time-domain. The popular 'initial strain' 

approach as described by Zienkiewicz (4.1) is adopted for 

the present study. In this method, the total time period 

for which the structure is under study is divided into several 

time intervals. The stress state during each time interval 

is assumed to stay constant at it's value at the beginning 

of the time interval. Since creep rate is the highest immedi-

ately after the application of load, smaller time-steps are 

taken just after each loading and longer steps afterwards. 

Time steps also coincide with the times of application of 

load. The various steps involved in the analysis are presented 

below for a time step t-t 1 , where t1 and tZ denote the 

beginning and the end of the time step (Fig. 4.6): 

1. For the load increment at time t1 , perform an elastic 

analysis of the structure. By solving the equilibrium equa-

tions for the applied loads, all the field variables such 

as the nodal displacement vector {q}, the strains 19  and 

stresses {0} are known for all the elements. 

2. Determine the creep and shrinkage coefficients for 

this time step. 
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3. Compute the creep and shrinkage strain increments 

during the time interval t-t 1, assuming the stress state 

to remain steady at the value calculated in step 1. 

4. Treat creep and shrinkage strain increments as initial 

strains {'} 

= 12EI + {LiE4} (4.18) 

where {&} and {Li} are creep and shrinkage strain increment 

vectors at gauss points in each element. 

5. Calculate the equivalent nodal forces produced by 

the initial strain increments. 

= (B] [d] {A} dv (4.19) 

where YFJ is the equivalent nodal load vector due to the 

initial strain increment, [B] is the strain displacement 

matrix, [D] is the material matrix and V is the volume of 

all the elements that undergo creep and shrinkage 

For the hybrid formulation, this becomes: 

{F} = ([G] (H] [P] {AL}.) dv 

V 

(4.20) 

-4 T 
since [P] [H] [G] is equivalent to [D] [B] from Eqn. 4.16 

and [D] being symmetric. 

6. Solve the equilibrium equations for the equivalent 

nodal vector above 
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{A q} = [K] {Ap' } (4.21) 

where {A q} is the nodal displacement increment vector and 

[K] is the structure stiffness matrix. 

7. The strain increment vector {. } is obtained from 

126 } = [C] {0J} (4.22) 

where [C] is the compliance matrix and {Lo} is obtained 

from 

from 

- I 

{r} = [P] [H] [G] {A q} (4.23) 

8. The stress increment during t- t is calculated 

{M} = [Dl ( {4.} - {L1 0 } (4.24) 

where I LL } - {iL } is the increment in elastic strain during 

the period t-t i. 

9. Find the field variables at time t by adding the 

increments during t-t 1 to the total values at t1 

10. modify the structure stiffness matrix if necessary. 

11. Repeat steps 1-9 for next time interval t,-t,. 

4.3.2 Solution Procedure For The Present Analysis  

The present analysis for creep and shrinkage effects 

using finite element method involves the following steps: 
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1. Set flags to choose between different creep and 

shrinkage prediction models. 

2. Define a number of material property sets, one for 

each different creep and/or shrinkage property. Different 

'Area/Perimeter Exposed' parameters may be allocated to ele-

ments according to their relative position across the 

cross-section (see Section 2.4.2). The material data required 

depend on the creep and shrinkage model that is specified 

instep 1. 

The creep poisson' s ratios for three-dimensional analysis 

may either be specified or calculated at a later stage by 

Gopalakrishnan's method (Section 2.5). 

The elastic modulus of concrete is taken as E . The 

structure stiffness based on this value is used throughout 

the analysis. For creep analysis based on the ACI method, 

a correction factor is applied to E2a to get 

Specify the curing conditions. This will be used to 

modify the age of concrete (see details in Section 2.4) 

Set flags to specify creep analysis or shrinkage analysis. 

This enables individual analysis for creep alone or for 

shrinkage alone or for both together. 

3. Enter nodal point data. Specify nodal degrees of 

freedom, boundary conditions and nodal coordinates. 

Specify the element types and assign material property sets 

defined in step 2 to each element. Define elementswith 
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element topology. 

4. Input the details of initial load: enter the age 

at loading t1, specify gravity loads, surface loads and 

nodal loads. 

Give the obervation time t for creep and shrinkage effects. 

Define vectors 'total displacement', 'total strain' and 'total 

stress' and initialize them to zero. 

5. Generate the element stiffness matrix and assemble 

the structure stiffness matrix using E 5 . 

6. Solve the equilibrium equations for the nodal dis-

placements. Add these values to the total displacement vector 

to get the displacements at t . Include the displacements 

in the output file. 

7. Evaluate the stresses at gauss points in each element, 

add the values to the 'total stress' vector. Report the 

stress state at time t , either at the gauss points or at 

corner nodes through extrapolation. 

8. Generate the creep and shrinkage coefficients for 

time t from built-in interpolating functions representing 

CEB-FIP and ACI curves and tables. Determine the coefficients 

of Kabir's or Khalil 's time-functions (see CHAPTER 3). Calcu-

late the creep poisson's ratios (function of instantaneous 

strain), by Gopalakrishnan's procedure (CHAPTER 2), if 

desired. 
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Using the stress values from step 6, evaluate the incremental 

creep and shrinkage strains during the period t,_ -t, . 

Using Equation (4.20), determine the nodal force vector JAF 

equivalent to the sum of the incremental creep and shrinkage' 

strains. 

9. Replacing (4F 0} as the load vector, solve for the 

incremental, displacements {4q}. 

Find the stress vector {tr} corresponding to {i1q}. 

Determine the incremental stress vector { 40} during the 

period t -t1 , using { AV-'I = { 4r} - [D] { 1,}, where { '} 

is the sum of incremental creep and shrinkage strains from 

step 8 and [D] is the material matrix. 

Add 140-1 to the total stress vector of step 7. 

10. Add the incremental displacements to the total dis-

placements from step 5. Now the displacements and stresses 

at time t2 are known. Write these values into the output 

file. 

11. Replace t with t . Read the next observation 

time, the new t . Set flag to specify whether structure 

modification is necessary at this point or not. 

12. If the structure stiffness matrix is to be modified, 

read modification factor to E and the identities of all 

the elements to be modified. Form new element stiffnesses 

and assemble these to form the new structure stiffness matrix. 
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If external load is incremented at the newi , repeat steps 

6-10. Otherwise skip to step 13. 

13. Set the stress values at all points to be zero. 

Repeat steps 8-10. 

14. Stop computations if the value oft is input as 

zero in step 11. 

A flow chart for the procedure is given in Fig. (4.7). 

4.4 Finite Element Modelling Of Structural Concrete  

Most finite element analysis oE structural members are 

carried out based on assumed homogenity of the material 

across cross sections. But practical structural members 

are seldom homogeneous. For accurate analysis of 

non-homogenous members such as reinforced or prestressed 

members, both the concrete as well as the steel have to be 

represented in the finite element idealization. Analysis 

of structural concrete is further complicated by the continual 

change in geometry of structural elements due to the 

progreesive cracking under increasing or sustained loads 

and environmental changes. Also the constitutive relationship 

for concrete is nonlinear and is a function of many variables. 

The failure criteria of concrete under multi-axial stress 

states are complex and are dependent on many factors. Effects 

of dowel action in the steel reinforcement and concrete are 

very difficult to model analytically. 
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The pioneers in the field of application of the finite 

element method to reinforced concrete structures appears to 

be Ngo and Scordelis (4.6). They studied simply supported 

beams using constant strain triangles for both concrete and 

steel. To stimulate the bond between concrete and steel, 

special link elements were used. Bresler, et al. (4.7) 

developed a "boundary layer" adjacent to the steel-concrete 

interface, whose elastic constants were adjusted to account 

for the effects of cracks and inelastic deformations. 

Zienkiewicz, et al. (4.8) made two dimensional stress studies 

of concrete which included tensile cracking and elasto-plastic 

behaviour in compression and used an "initial stress" approach. 

Numerous other investigators (4.16, 4.17, 4.18, 4.19, 

4.20, 4.21, 4.22, 4.23) have studied reinforced and prestressed 

concrete members including beams, plates and shells using 

plane stress elements. But very little work has been done 

in treating structural concrete systems as general 

three-dimensional solids because of the computational effort 

involved and the lack of knowledge of concrete material 

behaviour in the three-dimensional stress states. 'The first 

attempt in this direction was by Suidan and Schnobrich (4.9) 

who used a 20-node three-dimensional isoparamentric displace-

ment element for the analysis of beams. Reinforcement bars 

were represented by linear elements that shared points of 

definition of displacements with the concrete elements and 
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thus bonded to them. Furthur attempts in using 

three-dimensional concrete analysis were made by Bangash 

and England (4.10) , Same (4.11) and Anderson (4.12) 

4.4.1 Representation of Reinforcement  

The different modes of representation of reinforcement 

that are used by various investigators can be broadly divided 

into three catogories: 

(a) distributed 

(b) embedded 

(C) discrete 

For a distributed representation (Fig. 4.8a), the steel is 

assumed to be distributed over a concrete element. The 

constitutive relation is modified to include this 

steel-concrete composite. Perfect bond between steel and 

concrete interface is assumed. 

For embedded representation (Fig. 4.8b), the 

reinfoceinent bar is considered to be an axial member built 

into the concrete element such that the steel displacements 

are consistent with those of the concrete element. Again 

perfect bond must be assumed. This representation is mainly 

suited to higher order isoparametric elements (4.13). 

A discrete representation (Fig. 4.8c) of reinforcement 

using one-dimensional axial, tendon, truss or bar elements 

is the most widely used mode of representation. The steel 
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FIG. 4.8d MULTI—NODE TENDON ELEMENT 

FIG. 4.8 METHODS OF REPRESENTATION OF STEEL (Ref. 4.12.4.13) 
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elements are assumed to be pin connected with two degrees 

of freedom at the nodal points. Alternatively, beam elements 

may be used if the reinforcement is assumed to be having 

axial, shear and bending resistences. The discrete represen-

tation has the advantages of being simple and being able to 

move relatively with respect to the concrete elements. 

The first two methods of representations of steel are 

obviously inadequate to model unbonded or partially bonded 

prestressing cables. Anderson (4.12) has developed a 

multi-node tendon element (Fig. 4.8d) , which can have any 

number of nodes and whose stiffness can easily be found 

from initial geometry and the elastic modulus of steel alone. 

If the tendon is grouted into the concrete and there is no 

slip between tendon and concrete, then the stiffness for 

each link of the tendon reduces to the stiffness of a bar 

element and the stiffness matrix for the whole tendon can 

be formed as the sum of stiffness matrices for it's individual 

links. He further employs a constraint parameter 

with O 1 , to represent those cases intermediate 

between fully bonded and frictionless. 

In the present analysis, 8-node three-dimensional 

isoparametric hybrid brick elements are used to -represent 

concrete. . The same type of elements are used for steel as 

well, forming a discrete mode of representation. Though 

this method is not as efficient as using bar elements (see 
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Fig. 4.9 and Table 4.1), it has the advantage of uniformity 

and ease of input preparation. For large structural members 

taking thousands of concrete elements to model, the uniformity 

of elements could prove to be quite an advantage. 

4.5 Computer Program 

A finite element computer program 'NON-MAC' is developed 

for the present time-dependent study, based on an 

elastic-static general purpose finite element program 'SMAC' 

(Systematic Matrix Analysis of Continua) prepared by Chieslar 

(4.15) at the University of Calgary. The program has a 

wide ranged element library which includes: 

Boundary Elements 

Truss Elements 

Beam Elements 

Substructure Elements 

Plane/Membrane/Axisymm. Elements 

Plate Bending/Membrane Elements 

Solid Elements 

Thick-Shell Elements 

The program NON-SMAC has both ACI and CEB-FIP 1978 creep 

and shrinkage models built-in and the user has the option 

to choose a model, by setting the appropriate flags. The 

step-by-step analysis may be based on either the Khalil 

time-functions or the Kabir time-functiors. The creep 
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FIG. 4.9e STEEL BY TRUSS ELEMENTS 

A  
i I 

of —40 
-STEEL 

FIG. 4.9b STEEL BY SOLID ELEMENTS 

 o") 

FIG. 4.9c CASES OF STUDY 
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Table 4.1 

Comparison of Performances of Different Modes of 

Representation of Reinforcing Steel 

Max Defin/Max Def in by Beam Theory! 

Steel Represented by Case 1 Case 2 Case 3 

Truss Elements 1.007 

Solid Elements 1.11 

1.01 0.96 

1.12 1.05 

Based on tests modelling 2x0.lx0.3m cantilever and 

4x0.lxO.3m simply supported beam using 4 numbers of 8-node 

solid hybrid elements. Cases of loading are given in Fig. 4.9. 
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poisson's ratios can be either user supplied or evaluated 

by the Gopalakrishnan's procedure. 

Large creep problems will tax the fast core memory of 

even the modern 'mega' computers. In addition to the storage 

required to store and solve the assembled structure stiffness 

matrix, a large amount of storage is required in a 

time-dependent analysis for storing data at the integration 

points -even while using the Dirichlet series functional to 

simplify the storage problem. For example, in a 

three-dimensional creep problem using Khalil time-functions, 

8 Dirichiet coefficients are to be stored correponding to 

each stress value. Thus for a solid element with g integration 

points and 6 stress components for each integration point, 

8x9 x6 = 432. values are to be stored. Considering that in 

addition to this, total displacements, total strains and 

total stresses at any time. are also to be stored, it becomes 

obvious that fast core storage of data is impossible. Hence 

disc storage is adopted for all the storage requirements in 

the present program. The data are read to and from a large 

common block, the size of which can be adjusted for the 

problem at hand and for the computer used. 

The program NON-SMAC is written in standard FORTRAN-77 and 

has been tested in Honeywell 4ultics and CDC Cyber 175 at 

the University of Calgary. 
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4.6 Verification Examples  

To verify the computer programjust described, the results 

of analyses using the program were compared with experimental 

results. Three cases were considered: biaxial and triaxial 

creep tests reported by Gopalakrishnan et al. (4.24) and a 

simple composite beam tested by Rao and Dilger (4.25). 

4.6.1 Example 4.1 

Gopalakrishnan's (4.24) experiment consisted of a 10 

in. cube specimen loaded for a 28 day period with biaxial 

stresses. Assuming no stress variations through the specimen, 

it was analysed using only one three dimensional element. 

The load was applied with the age of concrete at 8 days and 

then the creep steps were applied for a duration of 28 days 

after which the load was removed. At the end of each time 

step the values of stresses were not changed and remained 

equal to the applied stresses, such that equilibrium is 

maintained with the applied load. Creep strains from the 

experiment and from the analysis are shown in Fig. 4.10. 

It is seen that the computed results are in good agreement 

with the test data. 

4.6.2 Example 4.2 

A 10 in. cube specimen as in the previous example was 

tested under triaxial stresses in this case (4.24) . The 
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initial triaxial stresses were sustained on the specimen 

for a period of 68 days, after which Q was increased and 

the specimen was kept under load for another 31 days. The 

computer analysis was made with a constant creep Poisson's 

ratio of 0.17 (Fig.. .4.11) and with the creep Poisson's ratios 

calculated by the Gopalakrishnan's method (CHAPTER 2) 

(Fig. 4.12). 

4.6.3 Example 4.3 

Rao and Dilger's experiment (4.25) consisted of a simple 

composite beam with the web cast first and the deck added 

after 41 days. The dimensions of cross section are shown 

in Fig. 4.13a. The material properties were: 

Concrete Properties: 

Web Concrete Deck Concrete 

Modulus of Elasticity 32000 MPa 25000 MPa 

Ultimate Creep Coefficient . 2.18 2.48 
-6 -6 

Ultimate Free Shrinkage -720 x 10 -770 x 10 

Prestressing: 

Initial Prestressing Force 

Loss of Prestressing 

(i.e. 14% loss, applied at day 48) 

Time Schedule: 

293 kN 

42 kN 

Casting of web day 0 
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End of curing, application of prestress 

Casting of deck on a propped web 

End of curing deck, mounting of beam on 

a simple span of 3.7 m 

Two concentrated loads of 25.9 kN applied 

at the third points 

d,ay 7 

day 41 

day 48 

day 53 

For the computer analysis, the beam is taken as simply supported 

from day 7 onwards, ignoring the restraint to deflection 

during the period from day 41 to day 47. Two analyses are 

made, one with concentrated loads applied at day 53 and a 

second one without these superimposed loads. The deck is 

included in the finite element analysis with a modulus of 

elasticity of 1 MPa and density of 0.001 kg/rn for the 

first 48 days, at which point in time the modulus of elasticity 

and density are increased to their actual values. The struc-

ture stiffness matrix is modified corresponding to the new 

value of the modulus of elasticity and the deck slab material 

is allowed to creep and shrink by setting the appropriate 

flags. In the analysis the ultimate creep and shrinkage 

values are used with the Khalil time-functions based on the 

CEB-FIP, 1978 graphs. Fig. 4.13b shows the calculated values 

of mid-span deflections along with the measured values. 



CHAPTER FIVE 

REDISTRIBUTION OF INTERNAL STRESSES DUE TO 

DIFFERENTIAL SHRINKAGE AND CREEP 

5.1 Introduction 

Redistribution of internal stresses occurs in a structur-

al member when the strains generated due to various causes 

across a cross section are not mutually compatible. The 

redistribution is such that compatibility is re-established. 

The stresses generated due to non-linear shrinkage or no-linear 

temperature distribution or settlement of a support are 

redistributed by creep. In addition to this, differential 

creep can generate internal stresses on it's own too. These 

effects may not be of much consequences in statically determi-

nate members of plain concrete with uniform creep and shrinkage 

properties across cross sections. But in composite members 

with part's of different creep and shrinkage properties and 

in members with unsymmetrical reinforcement, this 

redistribution of stresses deserve close attention. 

In this chapter a detail study of the redistributions 

of stresses due to shrinkage and creep in a composite bridge 

cross section is presented. The finite element program 

described in the previous chapter is employed for the analyses. 

The bridge is made up of a solid spine and wings and the 
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effects of adding wings when the spine has reached different 

maturity levels are studied. The stresses -that develop in 

and due to an overlay and a parapet are investigated. The 

results are presented in the form of plots of initial and 

final (10000 day) stresses. Also included in this chapter 

are the description of an efficient analytical method viz, the 

creep transformed section properties method to evaluate stress 

redistributions and an example problem wherein results of 

the computer analysis are compared with results of the 

analytical method. 

5.2 Analysis using Creep-Transformed Section Properties  

Introduced by Dilger (5.2, 5.3), the method of analysis 

using creep-transformed section properties is a simple method 

for computing time-dependent effects in uricracked concrete 

members subjected to sustained loads and sustained temperature 

gradients. Using this method, analysis for shrinkage and 

creep effects is reduced to a problem similar to that of 

analysing for temperature effects in a composite section 

wherein different components have different thermal 

properties. This simplification is possible by making use 

of the so-called "creep-transformed" section properties which 

take the effects of creep into account. To account for the 

gradual development of creep and shrinkage, the method uses 

the concept of "aging coefficient" which was originally 
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introduced by Trost (5.4) and further modified by Bazant 

(5.5). 

Creep-transformed section is obtained by modifying the 

section properties with a modular ratio: 

* 

n = E/E 
i i cr 

(5.1) 

where i stands for the ith component of the composite section, 

* 
either steel or concrete. E is the "age adjusted effective 

modulus" (5.5) of the ith component and E. is the age 

adjusted , effective modulus of a reference layer of concrete. 

Thus for steel, the modular ratio is: 

E E 

n   (1 + X (t,t 0 )) 
E E (t) r r 
cr cr o 

where E, = modulus of elasticity of steel, E (t. 0) is the 

modulus of elasticity of concrete loaded at age t,, is 

the aging coefficient for the reference layer and O (t,t q) 

is the creep coefficient for the reference layer. For a 

concrete layer, the modular ratio is given by: 

E 
ci 

n 

E(t) (1 + X0(t ,t) 

= E(t) (1 + 7S(t,t 
cr cr o 1 1 0 

) 
(5.3) 
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where E,i (t ) ,X; and (t,t0) are the modulus of elasticity, 

aging coefficient and creep coefficient respectively of the 

ith layer of concrete. 

To evaluate the time-dependent stresses and deformations 

in a member, the forces that are necessary to prevent the 

strains due to unrestrained creep, to free shrinkage of 

concrete and to "reduced" relaxation (5.2) of prestressing 

steel are applied to the creep-transformed section. 

5.2.1 Analysis for Differential Shrinkage and Creep 

Effects 

The creep-transformed section properties method was 

applied to analyse members for differential creep and shrinkage 

effects due to sustained temperature gradients by Sivakumaran 

and Dilger (5.6). In the analysis, concrete section is 

divided into a suitable number of horizontal layers and the 

creep due to the initially applied stress and shrinkage of 

each layer is assumed to occur freely without restraint 

from adjoining concrete layers or from reinforcement. A 

reference strain distribution is obtained by multiplying 

the initial elastic strains by the creep coefficient of the 

reference layer and adding free shrinkage of the reference 

layer. The forces in each layer corresponding to the differ-

ence between the free strains and the reference strains 

distribution are found and are applied to the composite 
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creep-transformed section. Superposition of the stresses 

corresponding to the difference in strains between the free 

strains and the reference strain distribution and the stresses 

corresponding to the action of the internal forces on the 

creep-transformed section gives the final stresses at varous 

layers. 

In the present study, however, it is necessary to consider 

the variation of creep and shrinkage rates in both vertical 

and horizontal directions. A section is divided into several 

zones (see Section 2.5) of varying creep and shrinkage rates. 

A reference zone is chosen and a reference strain profile 

is developed as described earlier. Since redistribution of 

stresses due to differential shrinkage and creep is of the 

main concern in this study, the effects on prestressing 

steel is not considered. The difference in time-dependent 

free strains between the centroid of the ith zone and the 

centroid of the reference zone until time t is given by 

Lt (t) = 

ci c  r 0 1 

(t,t )] + £ (t,t ) - £. (t,t 
o shr o shi o 

(5.4) 

where = elastic strian at the level of the centroid fo 

the ith zone due to load applied at age t0 and free 

shrinkage at the ith layer. The corresponding normal force 

and moment acting on the creep-transformed cross section 

are 
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and 

N = 4 (t) A E 
1 Cl ci ci 

ci 
N y 
ci ci 

(5.5) 

(5.6) 

where A = area of ith zone and y. = distance of the 

centroid of ith zone from the centroid of the creep-transformed 

section. 

In addition to the above forces and moments, the moments 

generated due to different rates of time-dependent curvatures 

between zones are also to be considered. However, in practical 

cases where the section is divided into several layers, the 

contibution of these moments to the total moment is normally 

negligible (5.6) and hence are not included in this study. 

The time-dependent change in stress at the centroid of 

the ith zone is given by 

K 

-3t N = 1t(t) E - A +  ly  (5.,7) 
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where 2f 1 (t) = the change in stress at the centroid of 

the ith zone, A. = cross-sectional area of creep-transformed 

section 'and I = moment of inertial of the creep-transformed 

section. Time-dependent change in curvature is expresses 

by 

C l 

ff 

= t7j 4t,t ) - 
'0 0 1  

c ci 

where = the initial curvature. 

5.2.2 Example 5.1 

(5.8) 

The stress red istributins that occur in a composite 

beam is evaluated by the creep transformed section properties 

method and by the finite element program and the results 

are compared. The details of beam dimensions and materials 

are given in Example 4.3 (CHAPTER 4). The beam is taken to 

be cast at-once and cured for 7 days after which it is 

mounted on a span of 3.7 m. The shrinkage strains and creep 

coefficients for the girder and slab are: 

Creep coefficient for deck (10000,7) = 2.28 
1 

Creep coefficient for girder çi' (10000,7) = 1.92 
2 
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Aging coefficient for girder X = 0.75 
2 

-6 
Free Shrinkage for deck (10000,7) = 674x10 

shi 
-6 

Free Shrinkage for girder (10000,7) = 488x10 
sh2 

E = = 10798 'f7Pa 
ci (1 +X1Ø,) 

36000 
E = = 14400 MPa 
c2 (1 

X 

n E /E =0.75 
ci c2 

-2 2 
Area of slab = Area of girder = 3.84x10 m 

-2 -2 2 
Transformed area, A = 3.84x10 (1+.75) = 6.72x10 m 

* 

= A y /ZA = 0.193, where is the centroidal 
b ii I b 

distance of the transformed area 

* *2 -4 -4 -44 
I = I + A (y ) = 2.16x10 + 4.16x10 = 6.32x10 m 

ii 

Force corresponding to differential shrinkage, 

-6 -6 
N = . xA XE = (674-488)x10 x3.84x10 x10798 

sh ci ci 
-2 

= 7.71x10 MN 

-2 -3 
= N y = 7.71x10 x0.093 = 7.17x10 NN.m 

1 
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Incremental concrete stresses at the centroid of deck: 

N t4 x E 
Lf (t) = zlfj. (10000,7)xE - {-- + --.y } -c2 

ci sh ci 
A I E 
c c2 

-2 -2 
-6 7.71x10 7.17x10 x.093 

= 186x10 x10798 - {  +  }.75 
-2 -2 

6.72x10 6.32x10 

= 0.36 MPa (tension) 

The finite element solution with time steps generated by 
1/1 

t = to fl + (t -t o) is 0.395 '4Pa. 

The va,riation of bottom fibre stress with time from 

the finite element solution is shown in Fig. 5.1. It is 

seen that the stress reaches a peak at about 53 days after 

loading and drop in value beyond that. Based on this observa-

tion and based on the fact that concrete strength develops 

with maturity, it is imperative that the concrete stresses 

should be checked against the strength at several ages rather 

than against just one ultimate value. The "race" of internal 

stresses against strength is illustrated in Fig. 5.2. 
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5.3 Stress Redistributions in.a Composite Bridge  

Cross Section 

A composite bridge of cross section shown in Fig. 5.3a 

is analysed for stress redistributions due to differential 

shrinkage and creep. Four different cases are considered: 

1. Spine cast at day 0 and wings added after 32 days 

2. Wings added at day 178 

3. Wings added at day 32 and a parapet added at day 

- 178, and 

4. Wings added at day 32 and overlaid at day 178. 

The material properties and environmental conditions are: 

Relative humidity 50% 

Age when drying starts = 4 days 

Type of cement = Rapid Hardening 

Consistency of concrete = Normal 

0 

Curing = 4 days at 50 C 

Modulus of elasticity (Spine) = 30,900 MPa 

Modulus of elasticity (Wings) = 30,000 NPa 

Elastic Poisson's ratio = 0.16 

In order to evaluate the varying rates of shrinakge and 

creep at various points on the cross section, the cross 

section is divided into different zones of varying 

volume/surface ratios. See Fig. 5.4 for the volume/surface 
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ratios chosen for different zones and for the corresponding 

creep coefficients. 

A finite element idealization of half the structure is 

shown in Fig. 5.3b. Three-dimensional elements are used to 

represent both concrete as well as reinforcing steel. 

Prestressing steel is not represented, but the prestressing 

force is applied in the form of axial loads and transverse 

surface pressure. The structure is simply supported on a 

span of 30 metres. The loads corresponding to prestress 

applied at age 4 are: 

Axial load = 15.1 MN 

End moment = 1.51 mN.m (sagging) 

Uniform upward load = 0.135 MN/m 

Vertical shear at ends = 1.8 MN (down) 
1. 

In addition to these loads, the load due to self weight is 

also applied at this stage. 

A second stage prestressing is applied to the structure 

when the wings are added. A 6% loss of the initial prestress 

to the spine is assumed to have happened at this stage. 

This is applied in the form of a tensile force on the entire 

cross section along with a uniform downward pressure. The 

self weight of wings also acts at this stage. The loads 

are: 

Axial load corresponding to second 

stage prestress = 4.52 MN 
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Axial load corresponding 

first stage prestress 

End moment (prestress) 

End moment (loss) 

Vertical shear at ends 

to loss of 

(prestress) = 

Vertical shear at ends (loss) 

5.3.1 Case (1) 

-0.906 MN 

0.74 MN.m 

-0.091 r4N.m 

0.67 'MN 

= -0.108 MN 

(sagging) 

(hogging) 

(down) 

(up) 

Two analyses are made and the results are superimposed. 

The first analysis is for the time-dependent effects of 

initial prestress and self weight on the spine. Only creep 

is considered in thi.s case. The second analysis is for the 

entire structure. The age of spine concrete when the wings 

are attached is taken to be 32 days. The second stage 

prestress, loss of first stage prestress and self weight of 

wings are applied to the structure. Values 

at day 4-and at day 10000 from the first 

alone is given in Fig. 5.5. It is seen 

of normal stresses 

analysis of spine 

that differential 

creep alone doesn't cause any appreciable redistributions 

of internal stresses. The sum of stresses from both the 

analyses are given in Figures 5.6 to 5.9. As shown in the 

figures, the extreme changes in •stress occur at the tip of 

the wings. In this region, the top fibre stress is modified 

from -1.92 MPa (compression) to 3.18 MPa (tension). At the 

same time compressive stress at the top fibre in spine increased 
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from -4.78 MPa to -5.73 MPa. The tensile stress at the 

bottom fibre in spine increased from 2,77 MPa to 3.15 'MPa. 

A summation of stresses across the cross section at day 

10000 yielded axial forces of magnitude close to the initial 

applied loads, with about 7% error. 

The problem is analysed using "creep-transformed" section 

properties (details in Appendix A) and the final stress at 

the centroid of the extreme half of the wing is found to be 

3.25 MPa (tension). This validates the present computer 

analysis. 

5.3.2 Case (2) 

The wings are attached to the spine at day 178 in this 

case. The final results are obtained from superposition of 

the results of two analyses as in case (1). The stress 

distributions across the cross section at day 178 and at 

day 10000 are shown in Figures 5.10 to 5.13. The amount of 

redistribution of stresses is higher in this case due to 

the increased age difference between the components. The 

normal stress at the top fibre near wing tip increased from 

1.92 MPa (compression) to 3.52 MPa (tension). This is an 

increase of 10% from the previous case. The level of 

redistribution in. the spine in this case remained very close 

to that in the previous case. The major differences of 

this case from the previous case is observed near the wing-spine 
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junction. Whereas in case 1 normal stresses in the wing 

near the spine changed from -1.7 MPa (compression) to -4.78 

NPa (compression), in case 2 the change in this point is 

negligible. This can be explained as due to the parity of 

shrinkage rates of the spine concrete and wing concrete 

near the junction. 

5.3.3 Case  

In this, case the spine is assumed to be cast at day 0, 

wings at day 32 and the structure overlaid at day 178. The 

overlay is 50 mm thick and is assumed to be made up of 

concrete with similar properties as the rest of the structure. 

Because of it's extreme thinness and age difference with 

the older concrete, stresses in the overlay was found to 

increase from -0.38 4Pa (compression) to 5.4 DPa (tension). 

The redistribution of stresses in the rest of the structure 

is not much affected due to the addition of overlay. 

In this case also the final stresses are obtained by 

the summation of results from one analysis of spine alone 

and another one of the entire structure. Elements representing 

the overlay are included in the analysis from the start 

with a negligible value of the modulus of elasticity, zero 

density and with the creep and shrinkage flags at "off" 

position. Subsequently, at day 178, the actual values of 

the modulus of elsticity and density are set and the creep 
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and shrinkage flags are set at "on" position. The element 

stiffness matrices corresponding to the overlay elements 

are modified for the new value of the modulus of elasticity 

and the structure stiffness matrix is re-assembled. The 

stress matrix also is modified. Incremental load due to 

self weight of the overlay is added to the structure at 

this point. The age of the wing concrete is 146 days at 

this stage and the spine is 178 days old. The distributions 

of stresses in the cross section at day 178 and at day 

10000 are shown in Figures 5.14 to 5.18. 

5.3.4 Case (4) 

In this case the effects of adding a parapet to the 

bridge structure is analysed. The wing is taken to be cast 

at day 32 and the parapet to be added at day 178. The 

method of analysis is similar to that in case 3. From the 

initial and final stress distributions shown in Figures 5.19 

to 5.23, it is clear that adding a parapet is beneficial to 

the entire structure. The 10000 day normal stress at the 

top fibre in the tip-of the wing is only 2.98 4Pa (tension) 

in this case. Recall that this value in case 1 is 3.18 MPa 

and in case 2, 3.52 D4Pa. The final stresses in the parapet 

are 0.43 MPa (tension) at top fibre and 1.16 'MPa (tension) 

at the bottom fibre. Stress redistribution in the wing 
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only is affected by the addition of parapet. Thd spine is 

unaffected; 
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CHAPTER SIX 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

6.1 Summary 

A fi?ite element program capable of time-dependent analy-

sis of concrete is developed using three-dimensional hybrid 

stress elements. For creep and shrinkage prediction, the 

prediction functions proposed by CEE-FIP, 1978 and ACI Commit-

tee 209 are incorporated into the program. The principle 

of superposition is assumed to hold true. To avoid the 

storage of stress history that is essential for a creep 

analysis using the 'above creep prediction models, a set of 

Dirichlet series is employed. The series proposed by Kabir 

and Scordelis is used to approximate the ACI. creep functions 

and the series proposed by Khalil and Dilger to approximate 

the CEB-FIP functions. Instead of building the Dirichiet 

coefficients into the program, as had been done in the past, 

the coefficients are found for each time step with a chosen 

set of observation times. This method was found to give a 

series with much better correlation to the prediction func-

tions. Simulation of three-dimensional creep is achieved 

by assuming uniform creep coefficients in all directions. 

Creep Poisson's ratios are evaluated as a function of instanta-

168 
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neous strains using a method introduced by Gopalakrishnan 

and Ghali. Since the current prediction models do not evaluate 

creep and shrinkage as a local property, a simple manipulation 

employing different volume/surface ratios across a section 

is proposed. Using this technique the time-dependent 

redistributions of internal stresses that occur in a composite 

bridge section is studied. The analysis technique using 

"creep-transformed" section properties proposed by Dilger 

is extended to cover analysis of sections when time-dependent 

strains vary throughout the area of the sections. Results 

of the computer analyses are compared with the results of 

analyses with creep-transformed section properties. 

6.2 Conclusions 

The importance of time-dependent analysis of concrete 

is on the rise with the increasing usage of composite construc-

tion, prestressed concrete slender members and the application 

of concrete to build structures such as nuclear containment 

vessels. The time-dependent effects may cause serviceability 

problems through increased deflections or through cracking 

due to redistributions of stresses. Simple and efficient 

methods such as "creep-transformed" section properties method 

could be employed for the time-dependent analysis of simple 

structures. But they get too tedius to use when applied to 
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complex structures. Finite element analysis is an excellent 

alternative in such cases. 

There are a number of prediction models currently avail-

able to evaluate creep and shrinkage strains, but they deviate 

much in their predictions and their formulations are fundamen-

tally different. Even detailed statistical evaluations seem 

incapable of establishing the superiority of one model over 

the others. In the midst of all this confusion, the best 

appears to be to follow Neville and Dilger's stance, ie., 

there is not a reliable method to be iecommended and that a 

simple, proven method is preferable to a more complicated 

one, at least to take advantage of the simplicity. 

The current prediction models indicate a mean creep 

and shrinkage strain across a cross section. This is useful 

only if structures are simplified into linear elements. Such 

an idealization cannot bring out the time-dependent 

redistributions of stresses within a section. Thus there 

is no doubt room left for improvement of the current -prediction 

models. Specifically, constitutive models which can establish 

creep and shrinkage as a local property are needed. In the 

present study, the local creep and shrinkage strains are. 

evaluated using the current prediction models by varying 

the volume/surface parameter. This'method is found to give 

creep and shrinkage strain distribution of such nature as 

that is expected physically. 
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One bottle-neck in employing the step-by-step numerical 

method for time-dependent analysis is the necessity to store 

stress-history. To overcome this handicap, Derichlet series 

representations of the prediction models are used. Earlier 

investigators such as Kabir and Khalil have built-in sets 

of Dirichiet coefficients in their computer codes and uses 

interpolative methods to evaluate coefficients for 

"non-standard" time-steps and parameters. In the present 

study, however, coefficients are evaluated at each time-step, 

tailored to the problem at hand. This method is found to 

give much better correlation to the actual prediction curves. 

Finite elements formulated by the Hybrid stress technique 

are used in the present study to model concrete. Hybrid 

elements are found to converge much quicker than their "Dis-

placement" formulated counterparts to the classical solutions. 

Though Hybrid elements are more expensive to use in terms 

to computation time, it is seen that their efficiency 

over-rides this disadvantage in economy. 8-node solid ele-

ments are used to model concrete as well as reinforcing 

steel. Modelling steel using solid elements was found to 

give rise to a maximum error of 12%. 

The results of computer analyses of a composite bridge 

is found to agree with analytical solution using 

"creep-transformed" section properties. The analyàis assumes 

the validity of the Superposition theorem. The detailed 
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computer analysis of the bridge shows that differential creep 

alone doesn't cause any appreciable redistributions of inter-

nal stresses. The highest changes of stresses occur at 

very thin components. The age difference between components 

is a mojor governing factor of the magnitude of stress 

redistributions. Addition of a parapet tends to decrease 

the extent of stress redistributions to the cantilever slabs 

to which they are attached if the parapet is thicker than 

the slab. Thin overlays are found to develop high tensile 

stresses of the order of 5 'NPa, implying cracking at some 

stage. Thus it is imperative that a detailed time-dependent 

analysis is made during the design process to enable the 

designer to take preemptory measures to ensure the 

serviceability of the structure during it's entire life-time. 

6.3 Recommendations  

Recommendations include recommendations for future work 

related to the computer program and recommendations to the 

practising engineer, derived from the results of 

time-dependent computer analysis of a composite bridge struc-

ture. 

The following enhancements could be made to the computer 

program: 

(1) Prestressing steel is currently not incorporated in 

the program. Prestressing forces are simply applied to members 
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as axial loads and transverse loads. Prestress losses are 

not continually evaluated, but applied in lump at certain 

time steps. Inclusion of tendon elements to model prestressing 

tendons and provisions for continuous evaluation of losses 

and application of the losses to the structure will be a 

definite improvement to the program. 

(2) Inclusion of the relaxation of prestressing steel. 

(3) The present analysis is based on the assumption of 

linearity of concrete behaviour. But for an accurate analysis 

of concrete, it is essential to consider the nonlinear material 

relationships of concrete. 

(4) Reinforced Concrete is subject to cracking even at 

relatively low loads. As the load increases these cracks 

progress gradually. The presence of cracks has a major 

effect in the local stress and overall performance of the 

structure. Crack -models would be a definite asset to any 

program to model concrete behaviour. 

(5) Present analysis assumes perfect bond between steel 

and concrete. But with increasing load, there might be 

bond failure between concrete and steel, resulting in 

longitudinal slip. The effect of this longitudinal slip is 

to be included in the program. 

(6) Include effects due to sustained temperature gradients. 

The following conclusions based on the results of a 
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detailed time-dependent computer analysis of a composite 

bridge structure may be of use to the designer: 

(1) Age difference between the components in composite 

construction is a decisive factor in the extent of 

time-dependent stress redistributions. To avoid problems 

related to excessive accumulations of stress in certain compo-

nents, the age differences between adjacent components are 

to be kept to a minimum. Extended curing of young components 

would definitely be worthwhile. 

(2) Excessive size difference between components is hazard-

ous. Allow higher strength concrete and longer curing time 

for thin members. 

(3) Parapets attached to thin slabs are helpful in reducing 

the extend of redistributions to the slabs provided that 

the parapets have properties generating higher creep and 

shrinkage rates and magnitudes. 

(4) Thin overlays on aged members are found to develop 

tensile stresses of the order of 5 'MPa, this will most 

likely result in cracking of the concrete overlay. Thus 

materials with minimal shrinkage are to be used for overlays. 



REFERENCES 

1.1 NEVILLE,A. M., DILGER, W. H. and BROOKS, "Creep of Plain 
and Structural Concrete", Construction. Press, London 
and New York, 1983. 

1.2 RUSCH, H., JUNGWIRTH, D. and HILSDORF, H. K., "Creep 
and Shrinkage - Their Effect on the Behaviour of Concrete 
Structures", Springer-verlag, Berlin, NY, 1983. 

1.3 BAZANT, Z. P., "Mathematical Models for Creep and Shrink-
age of Concrete", Creep and Shrinkage in Concrete  
Structures, Edited by Bazant, Z. P. and Wittmann, F. H., 
John Wiley, 1982, pp. 163-256. 

1.4 DILGER, W. H., "Creep Analysis of Prestressed Concrete 
Structures Using Creep-Transformed Section Properties", 
PCI Journal, V. 27, No. 1, Jan-Feb 1S2, pp. 98-118. 

1.5 LOIKKANEN, M., "Hybrid Finite Elements With Shape Func-
tion Subroutine, Ph.D Thesis, Department of Civil Engi-
neering, Univ. of Calgary, Canada, 19S1. 

1.6 CEB-FIP, "Model Code for Concrete Structures", Comite 
Euro-International du Beton, Paris, V. 2, 1978. 

1.7 ACI COMMITTEE 209, "Prediction of Creep, Shrinkage and 
Temperature Effects in Concrete Structures", American 
Concrete Institute, Detroit, October 1978. 

1.8 KABIR, A. F. and SCORDELIS, A. C., !'Analysis of 
R. C. Shells for Time-Dependent Effects", Bulletin of 
the International Association for Shell and Spatial 
Structures, V. XXI, No. 69, April 1979. 

1.9 KHALIL, M. S., DILGER, W. H. and GHALI, A., 
"Time-Dependent Analysis of PC Cable-Stayed Bridges", 
Journal of Structural Engineering, ASCE, V. 109, No. 8, 
Aug 1983. 

2.1 see 1.1 

2.2 WITTMANN, F. H., "Creep and Shrinkage Mechanisms", Creep 
and Shrinkage in Concrete Structures, Edited by Bazant, 
_.P. and TEtmann, F. H., John Wiley, 1982. 

2.3 WITTMANN, F • H., ROELFSTRA, P • E. and SADOUKI, H ., "Simu-
lation and Numerical Analysis of Composite Materials" 
TO BE PUBLISHED 

175 



176 

2.4 ACI Manual of Concrete Practice, Part I, "Materials 
and General Properties of Concrete", ACI Publication, 
1985. 

2.5 BAZANT, Z. P., "Mathematical Models for Creep and. Shrink-
age of Concrete", Creep and Shrinkage in Concrete  
Structures, Edited by Bazant, Z. P. and Wittmann, F. H., 
John Wiley, 1982. 

2.6 HANSON, J. A., "A 10-Year Study of Creep Properties of 
Concrete", Concrete Lab. Rep. No. SP-38, US Department 
of Interior, Bureau of Reclamation, Denver, Colorado. 

2.7 NEVILLE, A. M., "Properties of Concrete", 2nd Edition, 
John Wiley, New York, 1973. 

2.8 STRAUB, H., "Plastic Flow in Concrete Arches", 
Proceedings of ASCE, 56, 1930, pp. 49-114. 

2.9 SHANK, J. R., "The Plastic Flow of Concrete", Bulletin  
No. 91, Ohio State Univ. Eng. Exp. Station, 1935. 

2.10 BAZANT, Z. P. and OSMAN, E., "Double Power Law for Basic 
Creep of Concrete", Materials and Structures, (RILEM, 
Paris) , 9, No. 49, 1976, pp. 3-11. 

2.11 BAZANT, Z. P. and CHERN, J. C., "Improvements of Double 
Power Law for Basic Creep of Concrete", Part III, "Triple 
Power Law for Concrete Creep", Report No. 83-12/679i, 
Centre for Concrete and Geomaterials, The Technological 
Institute, Northwestern Univ., l983. 

2.12 MORSCH, E., "Static der Gewolbe und Rahmen", Teil, A., 
Wittwer, Stuttgart, 1947. 

2.13 McHENRY, D., "A New Aspect of Creep in Concrete and 
it's Application to Design", Proceedings of ASTM, 43, 
1943, pp. 1069-86. 

2.14 BAZANT, Z. P. and CHERN, J. C., "Comment on the Use of 
Ross's Hyperbola and Recent Comparisons of Various Prac-
tical Prediction Models", Cement Concrete Research, 12, 
1982, pp. 527-532. 

2.15 CEB-FIP, Model, Comite Euro- Intern ational du Beton - 

Federation Internationale de la Precontrainte, Paris, 
1978, 348 pp. 

2.16 ACI COMMITTEE 209, "Prediction of Creep, Shrinkage and 
Temperature Effects in Concrete Structures", American 
Concrete Institute, Detroit, October 1978, 98 pp. 



177 

2.17 BAZANT, Z. P. and PANULA, L., "Simplified Prediction 
of Concrete Creep and Shrinkage from Strength and Mix", 
Structural Engineering Report No. 78-10/6405, Department 
of Civil Engineering, Northwestern Univ., October 1978, 

24 pp. 

2.18 DIN 4227, Teil 1, Spannbeton, Ausgabe Dezember 1979. 

2.19 CEB-FIP, "International Recommendations for the Design 
and Construction of Concrete Structures - Principles 
and Recommendations", FIP Sixth Congress, Prague, June 
1970, Published by Cement and Concrete Association, 
London, 1970. 

2.20 CONCRETE SOCIETY, "A Simplified Method for Estimating 
the Elastic Modulus and Creep of Normal Weight Concrete", 
Training Centre Publication No. TDH-7376, Cement and 
Concrete Association, London, June 1978. 

2.21 BRANSON, D. E. and CHRISTIANSON, M. L., "Time-Dependent 
Concrete Properties Related to Design Strength and Elas-
tic Properties, Creep 'and Shrinkage", Designing for 
Creep, Shrinkage and Temperature, Special Publication 
SP-27, Ad, Detroit, pp. 257-77. 

2.22 BAZANT, Z. P. and PANULA, L., "Practical Predictions 
of Time-Dependent Deformation of Concrete", Part I - 

Shrinkage; Part II - Basic Creep; Part III - Drying 
Creep; Part IV - Temperature Effect on Basic Creep; 
Part V - Temperature Effect on Drying Creep; Part VI - 

Cyclic Creep, Nonlinearity and Statistical Methods, 
Materials and Structures, Paris, 11, No. 65, 1978, 

pp. 301-16; 317-28. 

2.23 MULLER, H. S. and HILSDORF, H. K. "Comparison of Predic-
tion Models for Creep Coefficients of Structural Concrete 
with Experimental Data", Fundamental Research on Creep 
and Shrinkage of Concrete, Edited by Wittmann, F. H., 
Martinus Nijhoff Publishers, 1982. 

2.24 ROSS, A. D., "Concrete Creep Data", The Structural  
Engineer, 15, No. 8, 1937, pp. 314-2 6. 

2.25 BAZANT, Z. P. and PANULA, L., "Creep and Shrinakge Char-
acterization for Analysing Prestressed Concrete Struc-
tures", PCI Journal, 25, No. 3, 1980, pp. 86-122. 

2.26 ACKER, P., "Drying of Concrete, Consequences for the 
Evaluation of Creep Tests", Fundamental Research on 
Creep and Shrinkage of Concrete, Edited by Wittrnann, 
F. H., Martinus Nilhoff Publishers, 1982, pp. 149-169. 



178 

2.27 PICKETT, G., "The Effect of Change in Moisture Content 
on the Creep of Concrete Under a Sustained Load", ACI 
Journal, Vol. 38, 1942, pp. 333-355. 

2.28 L'HERMITE, R. G. and MAMILLAN, M., "Repartition de la 
Teneur en Eau dans le Beton Durci", ANNALES de 
1'I.T.B.T.P. No. 309-310, 1973, pp. 30-34. 

2.29 THORNTON, C. H. and LEW, I. P., "Analysis of Restrained 
Concrete Structures for Creep and Shrinkage", Fundamental  
Research on Creep and Shrinkage of Concrete, Edited by 
Wittinann, F. H., Martinus Nijhoff Publishers, 1982, 
pp. 305-322. 

2.30 ACKER, P., "Le Probleme des Pertes de Precontrainte 
par Fluage et Relaxation Combines", Bulletin de Liaison  
des L. P. C., No. 96, 1978, pp. 129-37. 

2.31 BAZANT, Z. P. and STEVEN, Z., "Statistical Linear Regres-
sion Analysis of Prediction Models for Creep and Shrink-
age", Cement and Concrete Research, Vol. 13, 1983, 
pp. 869-76. 

2.32 DUKE, C. M. and DAVIS, H. E., "Some Properties of Con-
crete under Sustained Combined Stresses", Proceedings, 
ASTM, Vol. 44, 1944. 

2.33 POLIVKA, M., PIRTZ, D. and ADAMS, R. F., "Studies of 
Creep in Mass Concrete", Symp. on Mass Concrete, Ad 
Special Publication No. 6, 1964, pp. 257-83. 

2.34 HANNANT, D. J., "The Strain Behaviour of Concrete up 
to 95 C under Compressive Stresses", Paper 17, 
Proc. Conf. on Prestressed Concrete Pressure Vessels, 
Institution of Civil Engineers, March 1967, pp. 57-71. 

2.35 ROSS, A. D., "Experiments on the Creep of Concrete under 
Two-Dimensional Stressing", Magazine of Concrete  
Research, 6, No. 16, 1954, pp. 3-10. 

2.36 GLANVILLE, W. H. and THOMAS, F. G., "Studies in 
Reinforced Concrete-IV. Furthur Investigations on Creep 
or Flow of Concrete under Load", Building Research Techni-
cal Paper No. 21, London, 1939. 

2.37 L'HERMITE, R., "What Do We Know about the Plastic Deforma-
tion and Creep of Concrete ?", RILEM Bulletin No. 1, 
March 1959. 



179 

2.38 MEYER, H. G., "On the Influence of Water Content and 
of Drying Conditions on Lateral Creep of Plain Concrete", 
Materials and Structures, 2, 1969. 

2.39 GOPALAKRISHNAN, K. S., NEVILLE, A. M. and GHALI, A., 
"Creep Poisson's Ratio of Concrete under Multiaxial 
Compression", ACI Journal, Vol. 66, No. 12, Dec. 1969. 

2.40 NEVILLE, A. M., "Creep of Concrete: Plain, Reinforced 
and Prestressed", North Holland Publishing Co., 
Amsterdam, 1970. 

2.41 ARUTYUNYAN, N. K., see 3.12 

2.42 HAQUE, M. N., VALLIAPPAN, S. and COOK, S. D., "Tensile 
Creep Analysis of Concrete Structures", Finite Element  
Methods in Engineering, The University of New South 
Wales, Australia, 1974. 

2.43 DAVIS, R. E. and DAVIS, H. E., "Flow of Concrete under 
Sustained Compressive Stress", Proceedings, ASTM, Part 
II, Vol. 30, 1930. 

2.44 FREUDENTHAL, A. M. and ROLL, F., "Creep and Creep Recov-
ery of Concrete under High Compressive Stress", ACI 
Journal, Vol. 54, No. 12, June 1958. 2.45 ROLL, F., 
"Long-Time Creep-Recovery of Highly Stressed Concrete 
Cylinders"., Symposium on Creep of Concrete, ACI Special  
Publication SP. 9, March 1964. 

2.46 BECK ER, J. and BRESLER, B., "FIRES-PC, AComputer Program 
for the Fire Response of Structures - Reinforced Concrete 
Frames", Report No. UCB FRG 74-3, Division of Structural 
Engineering and Structural Mechanics, Univ. of 
California, Berkeley, 1974. 

3.1 NEVILLE, A. M., DILGER, W. H. and BROOKS, "Creep of Plain 
and Structural Concrete", Construction Press, London 
and New York, 1983. 

3.2 FABER, O.,"Plastic Yield, Shrinkage and Other Problems 
of Concrete and Their Effects on Design" Minutes of 
Proc. ICE, 225, Part I, London,1927 pp. 27-73. 

3.3 DILGER, W. H., "Methods of Structural Creep Analysis", 
Creep and Shrinkage in Concrete Structures, Edited by 
Bazant, Z. P., and Wittmann, F. H., John Wiley, 1982, 

pp. 305-39. 



180 

3.4 WHITNEY, C. S., "Plain and Reinforced Concrete Arches", 
ACI Journal, 28, 1932, pp. 479-519. 

3.5 ENGLAND, G. L., and ILLSTON, J. M., "Methods of Computing 
Stress in Concrete From a History of Measured Strain", 
Civil Engineering and Public Works Review, 60, 1960, 
No. 705, pp. 513-17; No. 706, pp.. 692-4; No. 707, 
pp. 846-7. 

3.6 NIELSEN, L. F., "Kriechen und Relaxation. des Betons", 
Beton und Stahlbetonbau, 65, 1970, pp. 272-5. 

3.7 BAZANT, Z. P., "Prediction of Concrete Creep Effects 
Using Age-Adjusted Effective Modulus Method", ACI Jour-
nal, Proceedings, V. 69, No. 4, April 1972, pp. 212-17. 

3.8 BAZANT, Z. P., and KIM, S. S., "Approximate Relaxation 
Function for Concrete Creep", Journal of the Structural 
Division, ASCE, 105, No. ST12, 1979, pp. 2695-2705. 

3.9 DILGER, W. H., "Creep Analysis of Prestressed Concrete 
Structures Using Creep-Transformed Section Properties", 
PCI Journal, V. 27, No. 1, Jan-Feb 1982, pp., 98-118. 

3.10 BAZANT, Z. P., "Phenomenological Theories for Creep of 
Concrete Based on Rheological Models", Acta Technica, 
CSAV, Prague, 1966, 11, pp. 82-109. 

3.11 JORDAAN, I. J., ENGLAND, C. L., and KHALIFA, M. A., 
"Creep of Concrete , Consistent Engineering Approach", 
Journal of Structural Division, ASCE, 103, No. ST3, 

pp. 475-91. 

3.12 ARUTYUNIAN, N. K., "Some Problems in the Theory of Creep" 
(in Russian), Techteorizdat, Moscow, USSR, 1952. 
(English Translation: Pergamon Press, New York, N. Y., 
1960) 

3.13 BAZANT, Z. P., "Theory of Creep and Shrinkage in Concrete 
Structures: 
a Precis of Recent Developments", Mech Today, 2, 1975, 

pp. 1-93. 

3.14 MCHENRY, D., "A New Aspect of Creep in Concrete and 
it's Application to Design", Proceedings, ASTM, V. 43, 
1943. 

3.15 SELNA, L. G., "Creep, Cracking and Shrinkage in Concrete 
Frame Structures", Journal of the Structural Division, 
ASCE, V. 95, NO. ST12, December 1969. 



181 

3.16 SCANLON, A., and MURRAY, D. ci., "Time-Dependent 
Reinforced Concrete Slab Deflections", Journal of the 
Structural Division, ASCE, No. ST9, September 1974, 
pp. 1911-24. 

3.17 MUKADDAM, M. A. and BRESLER, B., "Behaviour of Concrete 
Under Variable Temperature and Loading", ACI Seminar  
on Concrete for Nuclear Reactors, ACI Special Publication 
SP-34, 1972. 

3.18 MUKADDAM, M. A., "Creep Analysis of Concrete at Elevated 
Temperatures", ACI Journal, Vol. 71, No. 2,. February 
1974. 

3.19 ZIENKIEWICZ, 0. C. and CORMEAU, I. C., 
"Visco-plasticity - Plasticity and Creep in Elastic 
Solids - A Unified Numerical Solution Approach", 
International Journal for Numerical Methods in 
Engineering, Vol. 8, 1974. 

3.20 KABIR, A. F., "Nonlinear Analysis of Reinforôed Panels, 
Slabs and Shells for Time-Dependent Effects", Ph. D 
Thesis, Division of Structural Engineering and Structural 
Mechanics, University of California, Berkeley, UC-SESM 
Report No. 76-6, December 1976. 

3.21 KHALIL, M. S., "Time-Dependent Nonlinear Analysis of 
Prestressed Concrete Cable-Stayed Girders and Other Con-
crete Structures", Ph-D Thesis, Department of Civil 
Engineering, University of Calgary, Canada, January 1979. 

3.22 BAZANT, Z. P., "Numerically Stable Algorithm With 
Increasing Time Steps for Integral-Type Aging Creep", 
First International Conference on Structural Mechanics  
In Reactor Technology, Paper H2/3, Vol. 3, September 
1971. 

3.23 ARGYRIS, J. H., PISTER, K. S., SZIMMAT, J. and WILLAM, 
K. J., "Unified Concepts of Constitutive Modelling and 
Numerical Solution Methods for Concrete Creep Problems", 
Computer Methods in Applied Mechanics and Engineering, 
Vol. 10, 1977, pp. 199-246. 

3.24 ARGYRIS, J. H., VAZ, L. E. and WILLAM, K. J., "Improved 
Solution Methods for Inelastic Rate Problems", Computer  
Methods in Applied Mechanics and Engineering, Vol. 16, 
1978, pp. 231-277. 

3.25 ROSS, A. D., "Creep of Concrete Under Variable Stress", 
ACI Journal, Vol. 29, No. 9, March 1958, pp. 739-758. 



1' 

182 

3.26 GHALI, A., NEVILLE, A. M. and JHA, P. C., "Effect of 
Elastic and Creep Recoveries of Concrete on Loss of 
Prestress", ACI Journal, Vol. 64, 1967, pp. 802-10. 

3.27 BAZANT, Z. P., and NAJJAR,L. T., "Comparison of Approxi-
mate Linear Methods for Concrete Creep", Journal of 
Structural Division, ASCE, VOL. 99, No. ST9, 1973, 
pp. 1851-74. 

3.28 L'HERMITE, R. G., and MAMILLAN, M., "Retrait et fluages 
des betons', Annales de l'Institut Technique duBatirnent  
et des Travaux Publics (Supplement), VOL. 21, No. 249, 
1968, P. 1334; "Nouveaux resultats et recentes etudes 
sur le fluage du beton", Materials and Structures, VOL. 2, 
1969, pp. 35-4L. 

4.1 ZIENKIEWICZ, 0. C., "The Finite Element Method in Engi-
neering Science", Mc Graw-Hill, 1977. 

4.2 COOK, R. D., "Concepts and Applications of Finite Element 
Analysis", John Wiley, 1981. 

4.3 WILSON, E. L. et al., "Incompatible Displacement Mod-
els", Numerical and Computer Methods in Structural  
Mechanics, Edited by Fenves et al., Academic Press, 

1973, pp. 43-59. 

4.4 PlAN, T. H. H., "Derivation of Element Stiffness Matrices 
by Assumed Stress Distributions", AIAA Journal, 1964, 
pp. 1338-1336. 

4.5 LOIKKANEN, M., "Hybrid Finite Elements With Shape Func-
tion Subroutine", Ph.D Thesis,. D Thesis, Department 
of Civil Engineering, Univ. of Calgary, Canada, 1981. 

4.6 NGO, D. and SCORDELIS, A. C., "Finite Element Analysis 
of Reinforced Concrete Beams", ACI Journal, Vol. 64, 
No. 3, March 1967. 

4.7 BRESLER, B. and BERTERO, V., "Behaviour of Reiforced 
Concrete under Repeated Loads", Journal of the Structural  
Division, ASCE, Vol. 94, No. ST6, June 1968. 

4.8 ZIENKIEWICZ, 0. C., VALLIAPPAN, S., and KING, I. P., 
"Elasto-Plastic Solutions of Engineering Problems - Ini-
tial Stress - Finite Element Approach", International  
J,ournal for Numerical Methods in Engineering, Vol. I, 
1969. 



183 

4.9 SUIDAN, M. T. and SCHNOBRICH, W. C., "Finite Element 
Analysis of Reinforced Concrete", Journal of the Struc-
tural Division, ASCE, Vol. 99, No. ST10, October 1973. 

4.10 BANGASH, Y. and ENGLAND, G. L., "The Influence of Thermal 
Creep on the Operational Behaviour of Complex Struc-
tures", Fundamental Research on Creep and Shrinkage of 
Concrete, Edited by Wittmann, F. H., Martinus Nijhoff 
Publishers, 1982. 

4.11 SARNE, Y., "Material Nonlinear Time-Dependent 
Three-Dimensional Finite Element Analysis for Reinforced 
and Prestressed Concrete Structures", Ph. D Thesis, 
Department of Civil Engineering, M. I. T., Cambridge, 

1975. 

4.12 ANDERSON, C. A., "Numerical Creep Analysis of Struc-
tures", Creep and Shrinkage in Concrete. Structures, 
Edited by Bazant, Z. P. and Wittmann., F. H., John Wiley, 
1983. 

4.13 Task Committee on Finite Element Analysis of Reinforced 
Concrete Structures of the Structural Division Committee 
on Concrete and Masonry Structures, "State-of-the-Art 
Report on Finite Element Analysis of Reinforced Con-
crete", Published by ASCE, 1982. 

4.14 CHIESLAR, J. D., "Hybrid Finite Elements for Solids 
and Shells", Ph. D Thesis, Department of CivilEngineer-
ing, University of Calgary, 1985. 

4.15 CHIESLAR, J. D., "User Manual for Computer Program SMAC: 
Systematic Matrix Analysis of Continua", Research Report  
No. CE85-5, Department of Civil Engineering, University 
of Calgary, January 1985. 

4.16 KABIR, A. F., "Nonlinear Analysis of Reinforced Panels, 
Slabs and Shells for Time-Dependent Effects", Ph. D 
Thesis, Division of Structural Engineering and Structural 
Mechanics, Univ. of California, Berkeley, UC-SESM Report 
No. 76-6, 1976. 

4.17 GHONEIM, G. A. M., "Nonlinear Finite Element Analysis 
of Concrete Structures", Ph. D Thesis, Department of 
Civil Engineering, Univ. of Calgary, Canada, 1978. 

4.18 NILSON, A. H., "Finite Element Analysis of Reinforced 
Concrete", Ph. D Thesis, Division of Structural Engineer-
ing and Structural Mechanics, Univ. of California, 
Berkeley, 1967. 



184 

4.19 FRANKLIN, H. A., "Nonlinear Analysis of Reinforced Con-
crete Frames and Panels", Ph. D Thesis, Division of 
Structural Engineering and Structural Mechanics, 
Univ. of California, Berkeley, UC-SESM Report No. 70-5, 
1970. 

4.20 CHERVENKA, V. and GERSTLE, K. H., "Inelastic Analysis 
of Reinforced Concrete Panels", Publication of Interna-
tional Association for Bridge and Structural Engineering, 
Vol. 71-lI, 1971. 

4.21 MUFTI, A. A., et al., "A Finite Element Study of 
Reinforced Concrete Structures", Structural Concrete  
Series No. 70-5, McGill Univ., Montreal, 1970. 

4.22 VALLIAPPAN, S. and DOOLAN, T. F., "Nonlinear Analysis 
of Reinforced Concrete", Journal of the Sturctural  
Division, ASCE, Vol. 98, No. ST4, 1972. 

4.23 JOFRIET, J. C. and McNIECE, G. M., "Finite Element Analy-
sis of Reinforced Concrete Slabs", Journal of the Struc-
tural Division, ASCE, Vol. 97, No. ST3, 1971. 

4.24 GOPALAKRISHNAN, K. S., NEVILLE, A. M. and GHALI, A, 
"Creep Poisson's Ratio of Concrete Under Multiaxial 
Compression", ACI Journal, December, 1969, 

pp. 1008-1018. 

4.25 RAO, V. J. and DILGER, W. H., "Analysis of Composite 
Prestressed Concrete Beams", Journal of the Structural  
Division, ASCE, Vol. 100, No. ST10, Oct., 1974, 
pp. 2109-2121. 

5.1 RUSCH, H., JUNGcIRTH, D. and HILSDORF, H. K., "Creep 
and Shrinkage - Their Effect on the Behaviour of Concrete 
Structures", Springer-Verlag, 1983. 

5.2 DILGER, W. H., "Creep Analysis of Prestressed Concrete 
Structures Using Creep-Transformed Section Properties", 
PCI Journal, Jan-Feb, 1982, pp. 98-118. 

5.3 DILGER, W. H., "Methods of Structural Creep Analysis", 
Creep and Shrinkage in Concrete Structures, Edited by 
Bazant, Z. P and Wittmann, F. H., John Wiley, 1982. 

5.4 TROST, H., "Auswirkungen des Superpositionspring zips 
auf Kriech-und Relaxat ions -probleme bei Beton and 
Spannbeton", Beton und Stahlbetonbau, V. 62, No. 10, 
1967, pp. 230-238; No. 11, 1967, pp. 261-269. 



185 

5.5 BAZANT, Z. P., "Prediction of Concrete Creep Effects 
Using Age-Adjusted Effective Modulus Methodr ACI 
Journal, Proceedings, V. 69, No. 4, April 1972, 
pp. 212-217. 

5.6 SIVAKUMARAN, K. S. and DILGER, W. H., "Analysis of Con-
crete Structures Subjected to Sustained Temperature Gra-
dients", Canadian Journal of Civil Engineering, V. 11, 
No. 3, 1984, pp. 404-410. 



APPENDIX A 

Analysis Using Creep-Transformed Section Properties 

Time-dependent redistributions of internal stresses in a 

bridge cross section (Fig. 5.3) is analysed using 

"creep-transformed" section properties. The section is 

divided into three zones and the creep and shrinkage rates 

in each zone is assumed to be uniform. The zones are shown 

in Fig. A-i. 

2.2 2.0 2.328 
--a 

2 3 

1 

Fig. A-i 

Volume/Surface ratio of zone 1 = 560 mm 

Volume/Surface ratio of zone 3 = 170 mm 

Volume/Surface ratio of zones 2+3 = 219 mm 
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.'. Volume/Surface ratio of zone 2 = 219x2-170 = 268 mm 

Creep Coefficients: 

(10000,39) = 1.185, = 0.74 
1 1 
(10000, 7) = 1.467, = 0.72 

2 2 
(10000, 7) = 1.888, X = 0.76 

3 3 

Shrinkage Strains: 

(10000,39) 
sh1 

-6 
= 50x10 

-6 
(10000, 7) = 234x10 

sh2 
-6 

£ (1,0000, 7) = 451x10 
sh3 

Age adjusted effective modulus, 

E = E /(1 +X ) = 16,014 t4Pa 
1 1 11 

E = 14,620 4Pa 
2 

E = 12,220 'NPa 
3 

See Table A-i for calOulation of creep-transformed section 

properties. 

Load Applied to the Structure  

Loads applied to the composite section when the wings 

are added at day 32 are: 
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Additional Prestress = 4.52 MN 

Loss of Initial Prestress = -0.906 MN 

These forces give rise to the following loads: 

0.65 'MN.m 0.65 MN.m 

3.61 MN   j-. 3.61 MN 

0.56 MN 0.56 MN 

0.032 'MN/m 

Fig. A-2 

Initial stress at the centroid of zone 3, 
P M 

= -- + -- y 
1 A I 3 

3.61 0.65 - 3.63 
+ 1 1(-0.39) 

10.27 1.94 

= -0.253 MPa (tension) 

Corresponding elastic strain, 

-6 
= -0.253/30000 = +8.4x10 

1 
-6 

Similarly, = -0.102/30000 = +3.4x10 
2 

-6 
and = 0.679/30000 = -2.9x10 

3 

Zone 1 is chosen as the reference zone. A reference strain 

distribution is obtained by multiplying the initial elastic 
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strains by the creep coefficient for zone 1 and adding free 

shrinkage of zone 1 to it. 

-6 -6 -6 
= 2.9x10 xl.185 + 50x10 = 53.4x10 

ri 

-6 -6 -6 
= -3.4x10 xl.185 + 50x10 = 46.Ox10 

r2 

-6 -6 -6 
= -6.4x10 xl.185 + 50x10 = 42.5x10 

r3 

Free time-dependent strains at centroids of the zones are: 

=x + 
ci 1 1 shi 

-6 
= 53.4 x 10 

:. =x+ 
c2 2,2 sh2 

-6 
= 229 x 10 

=x0+ 
c3 3 3 sh3 

-6 
= 439 x 10 

Forces and moments corresponding to time-dependent strains: 

N =( -)A E 
2 c2 cr 2 2 

= 5.46 '4N 
* 

N =(-)A E 
3 c3 cr 3 3 

= 6.23 MN 

N = 11.69 MN 

= -4.47 MN 
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The change in concrete stress at the centroids of different 

zones: 

if (t) = 

ci 

N M * 

- + - y } 
A I 1 

= -1.46 MPa (compr.) 

* 

N . E 
A  (t)  )E - + - y ) - 

c2 c2 cr2 A I 2 E 

Similarly, 

1 
= 0.95 'lPa (tension) 

4f (t) = 3.25 'MPa (tension) 
c3 

where t = 10,000 days. 



Table A-i  

* * _* )'C ic) 
Section Area Multiplier Transformed Distance of A i.yi y= (y1- y) A(y1Y I. (m4) 

2 * 2) CG 
A Cm ) Area' A. (m yj 
i 1 

2 

'3 

6.38 1 6.38 0.75 4.785 0.172 

2.23 0.913 - 2.04 0.28 0.573 -0.296 

1.66 0.767 1.28 0.18 0.236 -0.393 

0.189 

0.179 

0.198 

1.3 

0.063 

0.0104 

9.69 5.593 0.565 1.373 

= 0.577 m 
* **2 4 
I = 1+ A(y.) = 1.94 in 

-4 


