
MOLECULAR PHYSICS, 1994, VOL. 81, NO. 1, 199-216 

Computer simulation study of a highly polar fluid under the influence of 
static electric fields 

By P. G. KUSALIK 

Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4J3, 
Canada 

(Received 11 March 1993; accepted 27 May 1993) 

The dielectric response and the electrostriction of polar liquids are certainly 
important properties of these systems. They also play fundamental roles in 
processes such as solvation. In this article we report results from a computer 
simulation study of the behaviour of a highly polar fluid subject to static 
homogeneous electric fields. Values for three different measures of the dielectric 
constant are given and their dependences on the field strength analysed. 
Surprisingly, we find that the integral response and the differential response per­
pendicular to the field appear to be equal. System size and boundary condition 
effects are examined; at low fields the behaviour observed reflects that found 
previously in e0, the zero-field static dielectric constant. As expected at small 
fields, the dielectric constants and the electrostriction exhibit a simple quadratic 
dependence upon the field strength. We show that even when very large fields 
are applied the present dipolar soft-sphere fluid does not demonstrate a phase 
transition similar to the isotropic-to-nematic transition observed by Wei and 
Patey at zero field for larger dipole couplings. 

1. Introduction 

The phenomena of dielectric saturation and electrostriction are important 
properties of polar liquids. They are particularly relevant to the theoretical study 
of solvation and solvation effects in electrolyte solutions where both saturation 
and electrostriction are believed to be large. Yet, direct observation of either 
phenomenon in bulk liquids is difficult due to the rather large external fields that 
are required [1,2]. However, computer simulation provides us the opportunity of 
examining these inherently nonlinear effects in models of polar liquids for arbitrarily 
large applied electric fields. Such computer experiments can now be performed in a 
relatively straightforward manner (below we shall see, in fact, that results are more 
easily obtained at larger fields). 

In the past, the determination of the dielectric properties of polar fluids 
by computer simulation had presented both conceptual and computational 
difficulties. While many of the conceptual problems have now been at least partially 
resolved [3-8], the calculation of precise values for the static dielectric constant, e0, 
can represent a formidable computational task [8-12]. In order to find a more 
computationally efficient approach, some workers have considered applied field 
simulations [13-17] as an alternative to the usual equilibrium calculation at zero 
field which exploits the usual fluctuation formula for e0. The bulk of this work has 
focused upon simple dipolar fluids where e0 is obtained from the average value of the 
polarization, P, in the presence of a static homogeneous applied electric field, E0. 
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Unfortunately, much of the early work [14,15] suffers from both systematic errors [5] 
and poor numerical precision. In a recent article [17] static field results along with the 
transient polarization response of a dipolar system to the instantaneous application 
of an electric field were reported. From the observed response functions it was 
concluded that nonlinear effects become important at smaller fields than was 
previously thought [13-15]. Subsequently, a much more complete investigation 
[18] of the time-dependent polarization response of the same Stockmayer fluid 
found no evidence to support the claim in [17]. 

To our knowledge the work of Adams [15] has been the only previous computer 
simulation study in which an attempt was made to measure directly electrostriction 
in a polar liquid. Unfortunately, the precision of his density data was not sufficient to 
allow Adams to draw any major conclusions. 

The present study will examine a highly polar fluid under the influence of static 
electric fields from several points of view. The particular dipolar soft-sphere fluid 
being investigated has been studied extensively in previous zero-field work [9,19]. At 
non-zero fields it is possible to define at least three different dielectric constants and 
we will examine how nonlinear (saturation) effects are manifest in these various 
measures of the polarization response and will explore their dependence upon the 
field strength. As in our earlier work, system size and boundary condition effects will 
be closely studied. We will consider whether the average polarization response of the 
system to small applied fields can be used as a reliable route to the zero-field static 
dielectric constant. A determination of the electrostriction of the liquid and its 
dependence upon field strength is another important aspect of the present work. 

2. Dielectric constants at finite fields 

Although various relationships for dielectric constants at finite (non-zero) fields 
can be found in the literature [1,8,15,20] and in standard references [21,22], never­
theless it will be useful to collect and summarize the resulting expressions here. Since 
it is possible to define at least three different dielectric constants (each representing a 
different physical measurement), it will be important that we be able to make clear 
distinctions between them. 

Our starting point is the macroscopic equation 

P 
£ , = 1 + 4 7 1 - , (1) 

where P = (M)/V is the polarization, E is the total internal or Maxwell field, 
(M) = (Ejfjii) is the average total dipole moment of the system, and V is the 
volume. Following Adams [14,15] we will refer to ep as the integral dielectric 
constant since it is a measure of the total polarization response of the sample to 
the applied field. For an isotropic liquid P and E will be in the same direction, and 
hence ep is a scalar quantity. If e denotes the direction of E then we can write 

« , - . + £ ^ . (2) 
For present purposes it is more convenient to express ep as a function of 

the applied electric field, E0, the field that would appear explicitly in the usual 
hamiltonian for this system. In periodic boundary conditions (PBC), where the 
system is a macroscopic spherical sample composed of a large number of replicas 
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of the basic simulation cell embedded in a continuum with a dielectric constant eRF, 
it has now been established [3,8,10] that 

V (2eRF + 1) V2eRF + <V 

We also note that this relationship holds for reaction field boundary conditions (or 
for any macroscopic spherical sample embedded in a dielectric continuum). Together 
equations (2) and (3) yield the standard results [8] 

( e p - l ) ( 2 e R F + l )_47 i (M-e) 

2eRF + ep V 
(4) 

In order to explore the dependence of ep upon the applied field, we expand 
(M • e) as a Taylor series about the value Ee, 

(M. e> 6 = (M • e) £ , + ( ± - (M . . ) ) ^ (Ea - E.) + (£j (M . e ) ^ ^ t 

where Ee is also assumed to be directed along e and (• • -)Eo denotes the ensemble 
average evaluated in the presence of the field E0. From the definition 

J d r ( M - e ) e x p [ - / 3 ( / / 0 - M - E 0 ) ] 
( M - e ) £ » " J dT exp[-/3(//0 - M • Eo)] ' ( 6 ) 

explicit expressions for the partial derivatives appearing in equation (5) can be 
obtained and it can be rewritten as 

where 

(M • e)£o = a0 + a, A£0 + a2AE<} + a3A£0
3 + • • •, (7 a) 

AE0 = E0-Ee, (lb) 

a0 = (M-e)Ee, (7 c) 

fl,=/3(((M.e)2)£e-(M.e)|j, (Id) 

a2 =^(((M-e)
i)Ee - 3((M.e)2)Ee(M.e)Ee+2{M.e)i), (7 e) 

* /{(M • e) V " 4{(M • ef)Ee (M • e)Ee - 3((M • e ) 2 ) | \ 
a3 = ~T > (7 / ) 

6 \ + i 2 ( ( M . e ) 2 ) i ; ( M . e ) | f - 6 ( M . e ) 4
£ f j 

andA5= l//tr. 
If we now restrict ourselves to the case Ee = 0, the probability of any particular 

value of the polarization is independent of its direction, and therefore 

< ( M . e y ) i ; = 0 = 0 , for n odd. (8) 
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It immediately follows then that 

«0 = a2 = °, 

ax § < * ' : ( ) • 

and 

I 
90 

a3=^r(3{M\-5(M2)l) 

(9 a) 

(9 6) 

(9 c) 

where (• • )0 indicates the zero-field ensemble average. Thus, in the limit of very small 
applied fields we can insert equations (9), (7 a) and (7 b) into equation (4) to obtain 

( e ; , - l ) ( 2 e R F + l ) = 4 7 i 

2£RF + e„ V 
t 

90' 
f(W2)o + ^(3(M (10) 

Rearranging equation (10) and defining the zero-field dielectric constant (still 
following previous workers [8,10]), 

47T/3 

Iv l + 2 e R F + 2 e R F ^ ( M 2 ) 0 

e0 = 

l + 2 e R F - ^ ( M 2 } 0 

it is easily shown that 

0̂ + 
£o + 2ERF 

2eRF + 1 

4TC £ 
~V 90 

2 \ 2 l ( 3 < M 4 ) 0 - 5 ( M ^ 

(11) 

(12) 

which will be valid in the limit of small EQ. Three special cases of equation (12) are of 
particular interest, namely, 

4rt „ , 
when eRF = oo, then ep = e0 + — a3it0 

when eRF = e0, 

and when eRF = 1, 

4-7T 

then ep = e0 + — 
3 6 0 ^ n F2 

a3A0, 

then 

V \2e0 + 1 

47r/e0 + 2 \ , 

:i3a) 

(Kb) 

(13c) 

Equation (12) can also be expressed in terms of the Maxwell field, E; using equation 
(3) one obtains that 

eo 
/ £ o + 2eR F \2 

V 2 e R F + l ) V2eRF 

ep + 2eRF 4JI /3j 

I7 90 ( 3 < M 4 ) 0 - 5 ( M ^ ) (14) 

For eRF — 1 and to leading order in E (when ep can be replaced by e0), equation (14) 
agrees with the much earlier work of Buckingham [1] and Coffey and Scaife (see 
equation (13) of [20]). We remark that the second term in equations (12), (13) and 
(14) represent the leading-order nonlinear terms in the polarization response of the 
system. 

It is often only the linear polarization response of the sample to the applied field 
which is desired, and hence a second definition, 

15) 
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is used for what is known as the incremental [1,21] or differential [15] dielectric 
constant. Employing expressions analogous to equations (3) and {Id) one 
immediately has that for sufficiently (infinitesimally) small E0, such that there is 
no coupling between the direction and magnitude of M, 

' ^ / " - g ^ - ( « ) ' ) - £ ( « ' > • (.6, 
where the second equality follows from the fact that (M)=0. Equation (16) 
represents the usual fluctuation formula for the dielectric constant and is clearly 
equivalent to equation (11). 

However, at finite fields the system will no longer be isotropic and we would 
expect its response to depend upon the relative orientations of the probe and 
polarizing fields. In the presence of the applied field E0, it is then possible to define 
two unique incremental dielectric constants, one measuring the differential response 
parallel to E0, 

«i = i + y ^ W * . (17«) 
and one measuring the differential response perpendicular to E0, 

ex = l + | ^ ( M x ) £ o . (176) 

It is straightforward to show that for very small probe fields 

- l ) (2e R F + l) 4nP/ltf2. / 1 # . 2 
«M, )E - {M»)i ), (18 a) 

2eRF + e,| V 
and 

( £ l- l ) (2eR F + l )=4gVX 08.) 
zeRF + e_L v 

where we have taken advantage of the fact that {M±)Eo = 0. 

3. Model and simulation methodology 

As a detailed description of the present model and general simulation 
methodology can be found elsewhere [9,23,24], here we only briefly outline some 
key points. 

In the current investigation we employ the same soft-sphere model which has 
been extensively studied in earlier work [9,19]. Its pair potential can be expressed as 

M(12) = Mss(r)+Mdd(12), (19a) 

in which 

« s s W = 4 e s s Q 1 2 (19 b) 

is just the soft-sphere potential, and 

Mdd(12) = - 3 ( M i - r ) ( M 2 . r ) / r 5 + M l - M 2 / r 3 (19 c) 

's the dipole-dipole interaction, where /^ and (A2
 a r e dipole moments of particles 1 

and 2, and r — r2 — ri is the separation vector. In the presence of the homogeneous 
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applied field E0, the total energy of particle i becomes 

t / , '=t/ , .- /x,. .E0 , (20) 

where U, is just its total energy with the field off. Thus, E0 is the applied field actually 
experienced by each particle; in this study it is always assumed to be directed along 
the z axis. 

Cubic samples of 32, 108, 256 and 500 particles were examined in the present 
calculations. Periodic boundary conditions were employed with the required lattice 
sums being performed using the Ewald summation technique [4,10,24]. As in 
previous work [9,19] care was taken in choosing the truncation points and the value 
for the unitless convergence parameter a. In our simulations the real space sum was 
carried over all nearest images, while in reciprocal space only those vectors n for 
which n2 ^ wĵ ax were included. The values of «max and a used here were the same as 
those employed in our earlier investigations of this system and can be found in table 
IV of [9]. 

Molecular dynamics simulations were carried out at constant temperature with 
the aid of a Gaussian thermostat [23,24]. In order to study electrostriction, constant 
pressure conditions were maintained by a Nose barostat [23-25]. The resulting 
equations of motion can be written as 

Pi = F, - 7P,- ~ £Pn (20 a) 

A,. = T,- - 7A,-, (20 b) 

and 

q, = pi/nti + £<\i, (20 c) 

where the equations governing the motions of the orientational coordinates (the 
quaterions [24,26]) remain unchanged. In equations (20), p, and A, are, 
respectively, the linear and principal angular momenta of particle i, q, denotes its 
position, F, is the force and T, is the torque acting on particle i. For these isokinetic 
equations of motion, 

D P<- • F/M + E*x* • Ti/Ji - £YliP2ilmi m\ 
7 E/^M + E,^//, l j 

is the Gaussian multiplier which maintains a constant total kinetic energy, where »i, 
and /, are, respectively, the mass and principal moment of inertia. For the Nose 
barostat the time evolution of the dilation rate, £, is given by [23,24] 

e = i(p-p°), (22) 

in which P and P are, respectively, the instantaneous and desired pressures of the 
system, and Q is an adjustable parameter (the 'piston mass') associated with the 
extended system. If we let L denote the length of our cubic simulation cell, then it is 
clear from our equations of motion that 

L = ZL, (23 a) 
from which it immediately follows that the evolution of the volume and the density 
will be governed by the equations 

V=3£V {23 b) 
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and 

P = - 3 £ p , (23 c) 

respectively. Equations (23) imply that our momenta p, are peculiar momenta, with 
fq, being the local 'streaming' velocities of our particles. 

In our calculations the equations of motion were integrated using a fourth-order 
Gear algorithm and a timestep, At, of 0-0025(wcr /ess)

5. Runs varied in lengths from 
1 x 104 to 4 x 105 timesteps, the longest simulations being performed at the smallest 
fields. Each run was preceded by a suitable equilibration period of typically 5000-
20 000 timesteps, the starting configuration usually coming from a well-
equilibrated system at a higher field. 

4. Results and discussion 

In our calculations and in the following discussion it is convenient to express all 
parameters in reduced units. The particular dipolar soft-sphere fluid we have con­
sidered can be characterized at constant volume and zero field by a reduced density, 

p* = pa3 = 0-8, (24 a) 

a reduced temperature, 

T*=kT/ess= 1-35, (24ft) 

and a reduced dipole moment, 

M* = (M2 /e s s^)1 / 2=2-0. (24 c) 

As mentioned above, this dipolar soft-sphere system has been the subject of earlier 
simulation work [9,19]. We point out that unlike a Stockmayer fluid at the same 
state point, the dipolar soft-sphere fluid has a positive pressure. In the present study 
this fluid is examined at constant pressure in the presence of static homogeneous 
electric fields, EQ = Eo(a3/ess)

J, ranging in value from 0-025 to 1-0. For values of a 
and «ss roughly corresponding to those used in water-like models, these fields would 
span a range of about 106-108V cm . 

Tables 1, 2, 3 and 4 summarized the simulations carried out for systems of 32, 
108, 256 and 500 particles, respectively. In each case sets of runs were performed in 
'tin-foil' (i.e., E = E0) boundary conditions, as well as with eRF = 85 (which is 
approximately the value of e0). For N — 108, an additional set was studied at 
£RF =15. We remark that 'tin-foil' boundary conditions have tranditionally been 
viewed as referring to eRF = oo when applied to zero-field calculations. However, 
this interpretation must be modified when considering applied field simulations 
where these boundary conditions should be expressed as the limit of eRF

 —* °° 
(then, in order to obtain the appropriate value of E0 we can imagine applying an 
external field which grows as rapidly as eRF). Thus, our calculations can be seen as 
being carried out at some large but finite value of eRF, which on a computer of 
limited numerical accuracy becomes indistinguishable from eRF = oo. Values of Q 
were chosen to allow the fluctuations in the pressure to occur over reasonable 
time-scales (of the order of tens to hundreds of timesteps); short test calculations 
confirmed that the quantities of interest were invariant to the exact choice for Q. 
The pressures were chosen so as to recover reduced densities of 08 at zero field. 
Table 2 contains results from a test run for 7V= 108 and eRF = oo at EQ = 0; 
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Table 1. Constant pressure results for 32-particle dipolar soft-sphere systems at T* — 1 -35 and // = 2-0. Estimates of the uncertainties for the dielectric 
constants are given in parentheses. 

timesteps 

E; 1000 {UDD)/Ne„ (U)/Ness (p*) {MZ)/N(M e„ e„ e ± 

y 
eRF = oo, Q = 2., / V 3 / ^ = 13-44 Q 

0-05 400 -6-121 -0-731 0-7999 0164 66-8(±12) 70-4(±3-5) 73-0(±3) ^ 
0-1 200 -6-169 -0-771 08006 0-321 65-6(±3) 57-2(±3-5) 611(±4) g 
0-2 100 -6-270 -0-858 0-8028 0-510 52-4(±2) 32-4(±4-5) 47-0(±4) g 
0-3 100 -6-345 -0-921 0-8042 0-598 41-3(±1) 180(±4-5) 36-5(±3) 

eRF = 85, Q = 2., Pa3/e s s = 1350 

01 200 -6-107 -0-705 0-8003 0-276 83-l(±4) 69-7(±4) 74-9(±6) 
0-2 100 -6-207 -0-791 0-8027 0-457 64-1 (±2) 33-5(±3-5) 60-3(±5) 
0-5 50 -6-470 -1-016 0-8082 0-687 34-3(±0-5) 8-9(±2) 29-5(±4) 



Table 2. Cons tan t pressure results for 108-particle d ipolar soft-sphere systems at T* = 1 -35 and /t* = 2 0 . Est imates of the uncertaint ies for the 
dielectric cons tan ts are given in parentheses . 

t imesteps 

Eo 1000 <£W/M* (U)/Ness (p*) <MZ)/7V> t„ c„ e± 

eR F = oo, Q = 1., Po-3/eSs = '3-40 

0-0 300 -6057 -0-693 0-7998 86-5(±4) 86-5(±4) 
0-025 400 -6-059 -0-696 0-8001 0-112 91-3(±8) 76-8(±3) 79-5(±6) 
0-05 200 -6084 -0716 0-8003 0-206 84-0(±4) 69-7(±4) 82-4(±3) 
0-1 100 -6-148 -0-771 0-8014 0-353 72-l(±5) 47-5(±3) 74-8(±4) 5s 

0-2 100 -6-263 -0-868 0-8038 0-536 55-2(±2) 24-6(±l) 51-9(±3-5) S" 
0-3 50 -6-352 -0-943 0-0850 0-620 42-8(±l) 15-3(±1) 41-1(±4) ^ 
0-5 50 -6-475 -1-050 0-8083 0-712 29-9(±0-8) 6-8(±0-5) 24-9(±2-5) 5. 
0-75 50 -6-571 -1-129 0-8097 0-765 21-8(±0-5) 4-2(±0-3) 20-6(±l) 5: 
10 25 -6-645 -1-195 0-8117 0-799 17-3(±0-2) 3-5(±0-3) 16-8(±1) * 

e R F = 85, e = l . , P a 3 / e S s = 13-40 § 
J?" 

0-05 400 - 6 - 0 5 2 - 0 - 6 9 1 0-8001 0 1 4 9 93-l(±7) 91-9(±5) 86-2(±6) ^ 
01 200 -6-087 -0-720 0-8006 0-276 83-3(±5) 56-5(±3) 83-6(±5) £ 
0-2 100 -6-185 -0-803 0-8025 0-449 62-7(±2) 35-0(±2) 66-1 (±5) 
0-5 50 -6-429 -1-011 0-8072 0-682 34-0(±l) 8-9(±l) 30-4(±3) 
10 25 -6-625 -1-172 0-8103 0-791 18-8(±0-5) 3-3(±0-5) 18-l(±l-5) 

e R F = 15, g = L , P<r3/ess = 13-40 

0-1 400 -6-025 -0-666 0-7994 0-118 101-1 (±10) 115-8(±20) 100-8(±10) 
0-2 200 -6059 -0-695 0-7999 0-234 97-9(±6) 68-4(±8) 96-0(±12) 
0-3 100 -6-095 -0-727 0-8008 0-336 83-9(±4) 60-2(±8) 64-4(±10) 
0-5 50 -6-215 -0-829 0-8032 0-512 63-l(±2) 34-l(±5) 81-0(±14) 
0-8 50 -6-387 -0-975 0-8066 0-664 37-8(±l) ll-8(±3) 341(±6) 

K> 
. _ O ^1 
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Table 3. Constant pressure results for 256-particle dipolar soft-sphere systems at T* = 1-35 and / / = 2-0. Estimates of the uncertainties for the 
dielectric constants are given in parentheses. 

timesteps 

ES 1000 (UDD)/Ness (U)/Nesi (p*) (Mz)/N,i ep e„ e x 

ew = oo,Q=l.,Pai/eu =13-45 y 

0-025 400 -6072 -0-688 0-7999 0-122 99-3(±6) 78-6(±3) 87-4(±7) P 
0-05 200 -6-091 -0-706 0-8005 0-222 90-2(±4) 76-0(±4-5) 82-8(±6) ^ 
0-1 100 -6148 -0-754 0-8018 0-365 74-4(±2) 55-4(±4-5) 70-3(±4) g 
0-2 100 -6-271 -0-858 0-8039 0-532 54-7(±l) 24-9(±l-5) 61-5(±5) gt 

eRF = 85, g=l.,/V
3/e s s = 13-46 

0-05 200 -6-069 -0-684 0-8002 0-153 97-l(±10) 95-3(±5) 106-8(±12) 
0-1 100 -6-112 -0-720 0-8008 0-281 85-6(±4) 76-5(±8) 75-9(±7) 
0-2 50 -6-216 -0-810 0-8029 0-471 66-8(±2) 37-8(±4) 68-2(±6) 
0-5 30 -6-442 -1-002 0-8076 0-686 34-3(±l) 10-2(±1) 34-0(±3) 



Table 4. Constant pressure results for 500-particle dipolar soft-sphere systems at T* = 1 -35 and / / = 20. Estimates of the uncertainties for the 
dielectric constants are given in parentheses. 

timesteps 

E$ 1000 (UDD)/Ness (U)/Ness (p') (MZ)/JV> ep e„ e± 

e R F = oo,fi=l., P^/e,, = 13-46 | 

"a, 
0-05 200 -6092 -0-704 0-8006 0-223 90-8(±4) 66-8(±8) 95-6(±7) S. 
0-075 200 -6123 -0-730 0-8012 0-307 83-4(±2) 66-l(±3) 82-5(±5) S: 
0-1 100 -6154 -0-756 0-8017 0-372 76-0(±2) 51-8(±2) 74-8(±4) * 
0-2 50 -6-277 -0-861 0-8041 0-538 55-3(±l) 27-2(±3) 62-0(±5) Rr 
0-3 50 -6-372 -0-943 0-8062 0-631 43-6(±0-8) 12-3(±1) 43-0(±2) •? 
0-5 25 -6-503 -1-052 0-8087 0-717 30-l(±0-5) 6-4(±0-5) 27-7(±3) 5" 
0-75 15 -6-606 -1-138 0-8099 0-771 21-9(±0-4) 4-2(±0-3) 20-9(±2) ^ 
1-0 10 -6-682 -1-200 0-8111 0-804 17-4(±0-2) 2-9(±0-2) 17-3(±l-5) g; 

e R F = 85, g = l . , Pff
3/ess = 13-47 

005 200 -6-071 -0-683 0-8003 0-154 97-7(±4) 78-4(±6) 92-4(±6) 
0-075 200 -6-087 -0-696 0-8006 0-213 86-8(±3) 80-6(±7) 98-4(±8) 
0-1 100 -6-108 -0-715 0-8011 0-277 83-8(±3) 68-4(±4) 90-4(±6) 

O 



210 P. G. Kusalik 

we find excellent agreement between it and our previous constant volume 
calculations [9]. 

Estimates for our statistical uncertainties in average quantities were usually 
determined by dividing each run into several blocks and computing the standard 
deviation of the mean. Values for the uncertainties in the dielectric constants are 
given in tables 1-4. Estimates for the error bars for the average energies range from 
±0-02 for the shortest runs (high fields) and smallest systems, to ±0003 for the 
longest runs and largest systems. Similarly, the uncertainties in the average densities 
range from ±0-001 to ±0000 15. 

In tables 1-4 we have summarized results for the average dipole-dipole energy, 
(^DD)/Ne i & , the average total configurational energy, (U)/Ness, and the average 
reduced density, (p*). The average polarization we have reported as (Mz)/Np 
which has a limiting value of 1-0 for a totally saturated (aligned) system. The 
thermodynamic properties exhibit small but clear tends with increasing field 
strength. The changes in the total energy are dominated by the increasing 
magnitude of the dipole-dipole contribution. Electrostriction of the fluid is 
observed, that is the density is found to increase with the applied field. The depen­
dence of (p*) upon Eg will be examined in detail below. We also see from tables 1-4 
that even at the smallest fields studied, the samples are still more than 10% 
saturated. For the largest fields included in tables 1-4, the polarization is approxi­
mately 80% of its maximum value, indicating a rather high degree of orientational 
ordering (or dipole alignment). As one would expect, we find that the measured 
polarization response is dependent upon eRF; for a given field strength (M2) 
becomes smaller with decreasing eRF. 

Also recorded in tables 1-4 are results for three distinct measures of the dielectric 
response, the integral dielectric constant, ep, as given by equation (4), and the two 
differential (or incremental) dielectric constants, e^ and e±, as determined from 
equations (18). In general, all three dielectric constants decrease with increasing 
EQ . We find that the largest uncertainties for the dielectric constants are still 
observed at the lowest fields despite significantly longer run lengths. A comparison 
with zero-field calculations [9] indicates that applied field simulations at very small 
fields are not as computationally efficient as the usual equilibrium fluctuation 
approach to e0. 

The dependence of the dielectric constants ep, ê  and ex upon the strength of the 
applied electric field is examined in figure 1 for samples of 108 and 500 dipolar soft-
spheres. Several features in figure 1 are noteworthy. The dielectric constants all 
decrease in value with increasing field as a result of saturation, although the 
behaviour appears more confused at small fields due to larger uncertainties. 
Again, we would conclude that simulations at small applied fields do not represent 
a superior route to e0. We find that the response as measured by en decreases most 
rapidly, its values always lying below those of e± and e_. This is perhaps not 
surprising since we would expect the differential response to be smaller parallel to 
the direction of alignment than perpendicular to it. A more striking result is that to 
within our uncertainties e± = ep, independent of field strength. Why this differential 
and the integral dielectric constants should be equal is not obvious. Adams proposed 
that (see equation (12) of [15]) 
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Figure I. Dependence of ep, en and e± upon the applied field for systems of 108 and 500 
particles at eRF = oo. The full circles, full triangles, and solid line represent, respectively, 
;esults for en, e± and ep for A' = 108, while the open circles, open triangles, and dotted 
line are values recorded for N = 500. Sample error bars have been included. The points 
at EQ = 0 have been taken from [9]. 

unfortunately, he did not give a justification or source for this relationship. It is clear 
from the behaviour exhibited in figure 1 and from the numerical values in tables 1 -4 
that this equality does not hold. Curiously, however, if we examine values for the 
left-hand side of equation (25) as a function of EQ for the systems studied, we 
discover that they are roughly constant and perhaps suspiciously close to e0. 
Again, a justification for this apparent behaviour is not immediately obvious. 

We see from figure 1 that each of the measures of the dielectric response at finite 
field is consistent with our previously determined zero-field points (as obtained in [9] 
from equation (11)). Moreover, the system size dependence evident in e0 is reflected 
in the small field behaviour of the dielectric constants, most notably for ep. Yet, as 
the applied electric field becomes larger and the saturation increases, the dielectric 
constants appear to become independent of sample size suggesting that periodicity 
becomes less important as the system becomes more orientationally ordered. We 
note that the values for N = 32 and N = 256 (see tables 1 and 3) behave similarly. 

In figure 2 we have attempted to explore the dependence of the integral dielectric 
constant upon field strength in more detail, as well as to investigate the influence of 
the boundary conditions. Values for N — \0S and eRF = 15, 85, and oo are com­
pared. We see in figure 2 (a) that the boundary conditions appear to have a signifi­
cant effect. However, it is clear from equations (2) and (4) that, whereas ep explicitly 
depends upon eRF when viewed as a function of the applied field E0, it should be 
independent of eRF when E0 is replaced by the Maxwell field E (at least for macro­
scopic dielectrics). In figure 2 (b), where ep is plotted against E, we observed that for 
larger fields ep does in fact become independent of the value of eRF. At smaller fields 
we find that the curves separate and, to within uncertainty, extrapolate to the 
appropriate zero-field results. 

Equation (12) predicts that for sufficiently small fields, ep will have a simple 
quadratic dependence on E0. In figure 2(c) we see that this claim is supported by 
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our data. Moreover, it is clear that the limiting slopes are all negative and that their 
magnitudes increase with the value of eRF. Unfortunately, a quantitative comparison 
(such as with equation (12)) would be difficult because of the large uncertainties at 
these smaller field strengths. Attempts were also made to exploit relationships such 
as equations (7) and (12) to determine the local field dependence of ep both at E0 = 0 
and at finite E0. The statistical uncertainties in the higher moments of M were at least 
as large as those for (M2) and, with substantial numerical cancellation (see equations 
(7 d-f )) a s a result of differencing two or more large values, the relative errors in a2, 
a-i, etc. became prohibitive. Hence, even though we were able to provide the value for 
a. to within 5-10%, we were unable to predict even the sign of a3. A plot of (My) 
against E0 reveals that the slopes of the tangents to this curve usually vary quite 
significantly from one field point to the next (except at very small and very large 
fields). It is not surprising then that using equation (7 a) to linear order only, we were 
not particularly successful at determining reasonably reliable estimates for (MM), and 
therefore e„, from data accumulated at neighbouring fields. However, given a set of 
local slopes, a{, we did have some success with integrating these values, knowing that 
they should satisfy the relationship 

to obtain reasonable estimates for ep at finite fields. 
As mentioned above, another purpose of the present study was to examine 

electrostriction in this dipolar fluid. The previous work of Adams [15] using NpT 
Monte Carlo was inconclusive, due in part to poor convergence of the average 
densities. In figure 3 we have plotted data for the average densities from the present 
constant pressure molecular dynamics (MD) calculations for N = 500. From 
thermodynamic arguments it is possible to show [21,27] that at sufficiently small 
fields the electrostriction observed for a polar liquid should vary as the square of the 
applied field. We see from the insert in figure 3 that this behaviour is clearly demon­
strated by the present results, although only at the smallest fields considered. As the 
field strength increases, saturation effects are again exhibited. We remark that even 
at larger fields the total increase in density of this rather incompressible fluid is still 
only 1-1-5%. In general, we would expect the electrostriction of the fluid to impact 
upon the nonlinear behaviour of its dielectric properties; however, for the present 
system these effects will obviously be small due to the relatively small changes in 
density observed. Short test calculations at constant volume (p* = 0-8) and EQ = 0-3 
and 10 provided confirmation of this fact. As with the dielectric constants, when 
plotted against E0 the density depends upon the value of eRF, yet if the Maxwell field 
is used this dependence virtually disappears (this is again the behaviour we would 
expect for a macroscopic dielectric [21,27]). 

Plots similar to figure 3 have also been constructed for the average dipole-dipole 
energies reported in tables 1-4. Once more we find an EQ dependence at low fields 
and if the energies are plotted as functions of the Maxwell field the data at different 
values for eRF collapse into a single curve. 

figure 2. The influence of eRF upon the field dependence of ep. The open squares, triangles 
and circles are, respectively, results from calculations at eRF = oo, 85 and 15. Shown is 
the dependence upon (a) the applied field, (b) the Maxwell field, and (c) the square of the 
applied field. Sample error bars have been included. The values at zero field have been 
taken from [9]. In (c) the lines represent approximate limiting slopes. 
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Figure 3. Density against applied field for a 500 particle sample. The dots are values 
recorded with eRF = 85, while the open squares are points from calculations at 
eRF = oo. The insert shows the dependence of the density upon the square of the applied 
field at small fields. Sample error bars have been included. 

In a recent article Wei and Patey [28] have shown that with still larger dipole 
moments (p* = 3-0), these dipolar soft-sphere fluids can form ferroelectric nematic 
phases (with no applied fields). Although the present system (// = 2-0) appears 
unable to form these orientationally ordered phases at zero field, we might never­
theless suspect that an applied field could stabilize such a phase. In an attempt to 
determine if a similar transition could be induced in the present dipolar soft-sphere 
fluid with the application of a sufficiently large applied electric field, several shorter 
calculations (typically 25 000 timesteps) were carried out with samples of 108 
particles at eRF = oo for fields up to EQ = 5. However, examination of the average 
energies and densities revealed them to be smooth continuous functions (to within 
uncertainties) of the applied field. Since the system was more than 92% saturated at 
EQ = 5, we would conclude that the dipolar coupling in the present dipolar soft-
sphere fluid (with n* = 2 0) is not sufficient for it to demonstrate a nematic phase, 
even when exposed to extremely large electric fields. 

5. Conclusions 

In this paper we have examined the properties of a dipolar fluid in the presence of 
applied static homogeneous electric fields. In order to help facilitate the discussion of 
our simulation results for the dielectric response, we have summarized formal 
relationships for the differential dielectric constants, en and ex, and the integral 
dielectric constant, ep. Molecular dynamics simulations have been performed at 
constant temperature and pressure for samples of 32, 108, 256 and 500 dipolar soft 
spheres at T* - 1 35 and / / = 2 0 for field strengths ranging from 0-025 to 1-0. 
Previously, this system had been extensively studied at zero field [9,19]. The 
dependences of e(j, ex and ep upon the applied field, as well as upon the sample size 
and boundary conditions applied, were explored. Electrostriction, the influence of 
the applied field upon the density of the system, was also investigated. 
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In general, our results at smaller fields indicate that applied field simulations do 
not represent a computationally superior alternative to the usual equilibrium fluc­
tuation approach to e0. Although nonlinear effects do not become appreciable until 
the dipole saturation is more than about 20%, the signal to noise ratios at low fields 
are also small making it rather difficult to extract precise values for the dielectric 
constants, particularly tp. At small fields the influence of system size and boundary 
conditions upon ey, e± and ep was consistent with the behaviour previously detected 
in (Q [9]- However, at higher fields data from calculations with different numbers of 
particles and values for eRF were found to lie on a single curve when viewed as 
functions of the Maxwell field. We were able to demonstrate an apparent £0 depen­
dence in ep at low fields; yet it was not possible to make a comparison between 
estimates for this slope given by the appropriate statistical mechanical expressions 
(see equations (7) and (12)) and the measured data due to very large uncertainties (in 
excess of 100%) in the former. At all non-zero fields it was observed that the values 
for en measuring the differential reponse parallel to the applied field were always less 
than those for ex. At the same time the results for the differential dielectric constant, 
e , were discovered to be always equal (to within uncertainties) to those of the 
integral dielectric constant, ep, although we are not aware of any formal justification 
for this rather surprising behaviour. 

Electrostriction within our dipolar soft-sphere fluid was also monitored. At small 
fields the increase in density exhibited the expected E0 dependence, although 
saturation effects again become apparent when the polarization reaches approxi­
mately 25-30% of its maximum value. 

A secondary aspect of the present study was an attempt to induce (with the 
application of a sufficiently large electric field) a nematic phase similar to that 
observed by Wei and Patey [28] for dipolar soft-sphere systems with larger dipole 
moments. Although we have subjected the present fluid to very high electric fields, no 
anomalous behaviour was detected in any of the properties examined. Hence, we 
conclude that the dipole couplings are not sufficient in the present system to support 
a nematic phase even in the presence of extremely large fields. 

Clearly, the full time-dependent dielectric response of polar liquids would be 
required if a much more complete picture of dynamical processes in these systems 
is desired. Thus, we have also carried out MD simulations in which time-dependent 
(oscillating) electric fields have been applied to the dipolar fluid studied here. This 
investigation will be the subject of a future article [29]. 

We are grateful for the financial support of the Natural Sciences and Engineering 
Research Council of Canada. 
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