CHAPTER 1

Introduction

Computational complexity theory, the study of the relative difficulty of computing
functions, has ever since it’s inception in the 1970’s used the Turing Machine (TM)
as a basic universal model of computation. This approach was justified by a series
of theorems which showed all other suggested models as sufficiently equivalent to
the Turing Machine. This fact is somewhat ironic, for in spite of its relatively late
appearance, the theory utilizes a model that seems to disregard what is perhaps the
most revolutionary theory of all modern time — Quantum Mechanics. Feynman in
1982, pointed out that the simulation of a quantum mechanical system on an ordinary
computer is apparently plagued by exponential slow down, thereby suggesting that
inherent in the Turing Machine are the limitations of classical physics [1]. Feynman’s
suggestion gave rise to a new model of computation known as the quantum Turing
machine (QTM), whose execution follows the laws of quantum physics. This model
was first formulated by Deutsch and later improved by Bernstein and Vazirani [2, 3].

The model introduced by Bernstein and Vazirani bears a great resemblance to the
classical probabilistic Turing Machines. Both are models of computation involving
forms of randomness which are both similar and different in many respects. The ran-
domness in the probabilistic Turing Machine is based on the observable day to day
phenomena of nature, whereas the quantum Turing Machine possesses randomness
which occurs only at the microscopic level of interactions between atomic and sub-

atomic particles. It is the special relationship between interactions of particles on the

1

microscopic scale, coupled with Feynman’s observation, that motivates the definition
of the quantum Turing Machine.

As defined by Bernstein and Vazirani [3], the quantum Turing Machine’s distin-
guishing characteristic is it’s phenomenon of interference. This effect which the model
exhibits allows for a variety of interesting and powerful results to arise. Unfortunately,
interference does not appear to lend itself to polynomial time simulation on a classical
Turing Machine, and indeed, had such a simulation been feasible, a number of open
questions in contemporary complexity theory would be answered. It has, however,
been shown that the class of functions efficiently computable by a classical Turing
Machine is a subset of those efficiently computable by a quantum Turing Machine [3].
This relationship proves extremely useful in determining the computational power of
the quantum Turing Machine, as it is not at all clear from its definition that it indeed
possesses any advantage over its classical predecessors.

The results currently under discussion in this relatively new area of complexity
theory provide us with a much greater promise. Last year, Simon [4] showed that
there exists a problem for which no apparent polynomial time solution on a classical
probabilistic Turing Machine, yet has an elegant and efficient solution on a quan-
tum Turing Machine. Simon’s result sparked an interest in the model, and only a
few months later polynomial time algorithms for factoring integers and solving the
Discrete Log problem on a quantum Turing Machine were presented by Peter Shor.
The latter result is of extreme significance as the solution to both those problems is
conjectured to require super-polynomial time on any classical Turing Machine, and
this conjecture is long standing.

In this final report I have attempted to consolidate the above definitions and results.
As this is a new field in complexity theory, there is no published text on the topic
to date. Papers in this area most often assume a strong background in mathematics,
and thus do not lend themselves to an easy read. I have tried to produce a paper

which would provide the reader with an introduction to the field, beginning with

2

basic definitions in classical complexity theory, and progressing towards the develop-
ment of the quantum Turing Machine’s definition. In addition, Simon’s and Shor’s
results are brought here with their complete proofs. Finally, Chapter 8 includes a
discussion of the current known limitations of the model. The main result presented
was proposed by Bennett, Brassard, Bernstein and Vazirani in a paper that has not
yet been published [5]. Understanding this paper consumed a large proportion of the
time allotted to this project, and it appears as though the result presented here is
better than the one in the original paper by a linear factor.

Before beginning the discussion of the model, it should be mentioned that while this
is intended as an introductory paper to the subject, it does assume a basic knowledge

of classical complexity theory, linear algebra, and group theory.

CHAPTER 2

Classical Turing Machines

A Turing Machine (TM) is commonly characterized by an alphabet, a one-sided
infinite tape, a read-write tape head and a finite-state control which includes a halting
state. For the purpose of facilitating the transition from Classical Turing Machines
to Quantum Turing Machines we shall adopt a definition which is more general than
normally introduced in the literature. We initially allow the tape to be infinite on

both sides, and formally define,

DEFINITION 2.1. A Turing Machine is a quadruple (K, X, 6, s) where,
K is a finite set of states, not containing the halt state h.
¥ is an alphabet containing a blank symbol, but not containing L and R
s € K is the initial state
6 is a function from K x £ x (K U h) x (£U {L, R}) to C. (complex numbers) [6]

The symbols L and R are excluded from ¥ in definition 2.1 since they indicate
a movement of the tape head, rather than a symbol that is written on the tape.
Likewise, the state h is excluded from K, and is reserved to denote the halting
state. For the classical Turing Machines, it can be shown that the extension of the
Turing Machine from having a one-sided infinite tape to a two-sided infinite tape is

insignificant and introduces nothing more than a constant speedup in the computation

6,7] .

Classically, ¢ is defined as an everywhere defined relation from K x £ to (K U &) x
(XU{L, R}). This definition is more intuitive as it relates every state-symbol pair at
time ¢ with the corresponding state-symbol pair at timet+1. We call § for that reason
the transition function, and its specification determines the type and operation of the
Turing Machine. Different transition functions lead to different classes of Turing
Machines. It is easy to see that by restricting the range of & to {0,1} we effectively
force é to specify a relation between K x ¥ and (K U k) x (£ U {L,R}) as in the
classical sense. We will consider a TM to produce a state-symbol pair (kz, 53) from a
state-symbol pair (k;,01) if and only if §(k1, o2, k2, 02) # 0 [6].

The full description of a Turing Machine at a given time, known as the TM’s
configuration, consists of the current information stored on the tape, the current

state of the machine, and position of the head on the tape. Formally,

DEFINITION 2.2. A configuration of a Turing Machine M = (K, %, §, s) is a member
of
(KUR) X Z*x I x (Z*(Z - {#}) Ue).
where e is the empty string.
Note that in a configuration (k,u,v,w), k represents the current state, v represents
the current symbol under the head, u represents the contents of the tape to the left of
the head excluding leading blanks and w represents the contents to the right excluding

trailing blanks. For convenience, we will denote such a configuration by (k,uvw)[6]

Given a particular Turing Machine M, M is said to yield configuration y from
configuration x, if y can be produced from z by proceeding to a new state, and either
writing one symbol on the tape or moving the tape head one step to the left or the

right. Formally,

DEFINITION 2.3. Given a Turing Machine M = (K,X,6,s), M is said to yield
configuration (k',u',v',w') from configuration (k,u,v,w) if one of the following three

conditions hold:

(1) §(k,u, ku') # 0, w' € T, o/ = u and w' = w
(2) 6(k,u, k', L) # 0, u'v' = u, and either

(o) w' = v or,

(b) w =w =) and v = #
(3) 6(k,u,k',R) # 0, v’ = uv, and either

(Here X is used to denote the empty string.) We will denote such a transition by

(kyu,v,w) M, (K ', o', w') [6].

Note that while the number of configurations is infinite, (since the tape is infinite)
the number of configurations that a single configuration can yield is finite. The TM’s
initial configuration is defined as the configuration of the TM before execution, and
a halted configuration is defined as a configuration describing a machine which is
currently in its halting state and is no longer running. Furthermore, a TM is said to
compute a function f over an alphabet ¥ if for every string z € £*, if the tape consists
of nothing but z in the initial configuration, then the machine reaches a halting state
and f(z) is the only string written on the tape in the halted configuration. For the
purpose of this discussion we will restrict the TMs under consideration to those which
halt on every input. While this assumption is very restrictive in certain settings, it
is inconsequential here. [6]

Thus, a computation of a function in a Turing Machine can be viewed as a finite
sequence of configurations that starts with an initial configuration and ends with a
halted configuration. In order to further clarify the distinction between the different
types of Turing Machines, we introduce a graph G = (V, E) known as the configura-
tion graph in which every vertex is labeled by a configuration and an edge (z,y) € E
if and only if configuration z can yield configuration y. Note that since the tape is

infinite the configuration graph is as well infinite.

6

2.1. Deterministic Turing Machines

A deterministic Turing Machine (DTM) is one in which every non-halted configura-
tion yields exactly one other configuration. This is the result of formally restricting the
range of § to {0,1} and furthermore requiring that for every k; € K and o; € ¥ there
exists exactly one pair (kg, 02) € (K Uh) x (SU{L, R}) such that §(ky, 01, ks, 03) = 1.
In other words, we require this model to have a uniquely determined action to every
state-symbol pair. This implies that if the machine is scanning a certain symbol and
is in a particular state, it proceeds to a new state and either writes a new symbol on
the tape or moves to the left or right. As a consequence, given a particular initial
configuration z and a particular deterministic Turing Machine M, we can determine

with certainty the final (halted) configuration.

EXAMPLE 2.1. In the following example we define a simple Turing Machine, and
show it’s computation on a particular string. In each step we will indicate which
transition of delta it is that we are using.

Let M = (K,%,6,s) be a deterministic Turing Machine where,
K ={p,q}, £ ={0,1,4#}, s = p, and

(1) 8(p, 1,9, #) =1
(2) 6(p,0,9,#) =1
(3) 8(p, #,h, #) =1
(4) 6(g,#,p, R) =1
(5) 6(¢,1,p,R) =1
(6) 6(¢,1,p, R) =1
(7) For all other 4-tuples z we define 6(z) =

We claim that this machine erases the input string from the tape. While not
immediately obvious from the definition, this is best illustrated if we consider the

computation of the machine on an initial configuration (p, #010#) (notation defined

7

in definition 2.2). The computation is as follows:

(p, #0104#) SN (q, ##10#) by transition 2
2 (p, ##104) by transition 4
= (g, #AH0H) by transition 1
2 (p, #+#40#) by transition 4
= (g #HH#EH) by transition 2
L (o, ####H) by transition 4
= (b, #H#AH) by transition 3

A deterministic TM’s computation on an initial configuration of z, can be viewed
as a path in the configuration graph G starting at z and ending at some halted
configuration. In fact, for a deterministic Turing Machine, the configuration graph
G is composed of an infinite number of such paths, each of which is finite. The

computation above is an example of such a path. [6]

2.2. Probabilistic Turing Machines

A probabilistic Turing Machine (PTM) is one in in which a probability is asso-
ciated with every transition of the Machine. We therefore do not discuss whether
a configuration z yields configuration y, but rather say that z yields y with some
probability. This also implies that the operation of the machine is not completely
determined by it’s initial state, but rather by it’s initial state and some sequence of
random choices. In particular, we will allow an algorithm for a PTM to flip coins
(not necessarily fair or double sided) and decide how to proceed based on the out-
come. As a point of interest, it can be shown that a machine which is allowed to
flip only double-sided fair coins can simulate any probabilistic Turing Machine with
only a polynomial slow-down in time. That is to say, allowing the machine to flip
unfair multi-sided coins does not decrease the time of the computation by more than

a polynomial factor. [3, 4]

Embodying these concepts into a formal setting, we restrict the range of the transi-
tion function ¢ (from definition 2.1) to the interval [0, 1]. Having done so, we consider
6(k1,01,k9,02) = a to imply that if the Turing Machine is in state &, scanning
the symbol oy, it will write o3 on the tape and go into state k, with probability c.
The function delta thereby dictates the probability with which each transition of the
Turing Machine shall occur.

To ensure that the machine conforms to the laws of probability we must require
that given a configuration z, the sum of the probabilities of those configurations which
z yields be 1. Formally this requires us to restrict § in the following way:

For every fixed k; € K and 0, € ¥,

(1) > 6(k1,01,ke,09) = 1
k2€ KU{h},02€ZU{L,R}
As a consequence, for every configuration z the sum of the probabilities of all reachable

configurations from z must be one. [3, 4]

EXAMPLE 2.2. To illustrate the operation of a probabilistic Turing Machine we
augment the Turing Machine in Example 2.1 so that erasure of a tape cell occurs
with probability % If the cell is not erased than a 1 is written in the cell. We define
the Turing Machine M = (K, X, é, s) such that K = {p,q}, L = {0,1,#]}, s = p, and,

(1) 8(p,1,q,#) =3
(2) 8(p,0,q,#) =1
(3) é(p1,9,1) = 3

(4) 8(p,0,9,1) =}

(5) 6(p,#,h,#) =1
(6) 6(q,#,p, R) =1
(7) 6(g,1,p, R) =1

(8) é(¢,0,p,R) =1

(9)

9) For all other 4-tuples z we define §(z) = 0.
9

We can now show the Turing Machine’s computation when started in the initial
configuration (p, #004).

In the first step, the computation will either write a blank or a one on the tape,
each with probability 1 (these are transitions 2 and 4). Thus with probability 3 the
machine takes one of two computational paths, both shown below. (The transitions

used are shown in brackets.)

(p, #004)
M (g, ##04) transition 2 RN (g,7#104) transition 4
M, (p, #40#) transition 6 N (p, #10#) transition 7

We have now reached step 3, and once again, the machine has a choice between
transitions 2 and 4. Each will be chosen with probability %, and thus each path
above splits into two paths again. Configuration (p, ##0+#) yields the following two

computation paths:

(p.##0#)
LN (g, ##+4#) transition 2 M, (g, ##1#) transition 4
RN (p, ##44#) transition 6 M, (g, ##14) transition 7
N (h, ###4) transition § My (h,#414) transition 5

The configuration (h, ###%#) appears with probability % since transition 2 must be
chosen twice in order to get to it (each time with probability 7). For the same reason
configuration (h,##14) appears with probability %.

We now turn our attention to configuration (p,#10#) which yields the following

two computation paths:

(p, #10#)
=N (g, #144#) transition 2 2L (g, #11#) transition 4
2 (p #1#4#) transition 6 RN (g, #11#) transition 7
M, (h,#14#) transition 5 RN (h,#11#) transition 5

10

As above, the two halted configurations appear with probability 1 each. Note that
when we take the sum of the probabilities of each possible halted configuration we

get 1.

The computation of a PTM can also be viewed as a leveled tree whose construction
is based on the configuration graph G as follows: the root is the initial configuration,
and every other node is a child if the parent can yield it with non-zero probability.
Thus each level of the tree represents one step in the computation. Since it is possible
for a single configuration to yield more than one configuration, it is possible for a
level of a tree to contain more than one node, each corresponding to a different
configuration. In such a case we say that the machine is in a superposition of the
configurations. Note that it is possible for a single configuration to be duplicated in
the tree by being reached from a different parent node every time. The probability
of reaching any particular node in the tree after k steps of the computation is the
product of the probabilities along all the edges in the path leading to that node.
Therefore the probability of reaching any particular configuration z after k steps is
precisely the sum of the probabilities of reaching all those nodes in the k-th level that
are labeled by z. Note that if a configuration appears at some level k of the tree
then the probability of reaching that configuration after k steps, must be positive

(i.e. non-zero). [4]

EXAMPLE 2.3. The configuration tree of the computation in Example 2.2 is illus-

trated in Figure 2.1.

We can also view the computation in a more mathematical context. We attempt to
represent each superposition of configurations by a vector and represent the computa-
tion as applying a linear operator to the vector. A necessary and sufficient condition
to guarantee that a a superposition can be succinctly represented by a vector, is that
the set of all possible configurations must be countable. This indeed is the case, and

thus we represent a superposition by a vector know as a state vector. [3, 4] Each entry

11

A superposition

(h, #1140

Note that the sum of the probabilities at each level is 1.

FIGURE 2.1. Leveled Tree of Configurations for the computation in Example 2.2

12

in the vector will correspond to a particular configuration. If the entry corresponding
to a configuration c is p., then we will say that the probability of the machine being
in state ¢ is p.. Since such a vector precisely indicates what the probability of each
configuration of a superposition is, it in fact gives an accurate description of the state
or current condition of the machine. For that reason it is called a state vector. Since
each vector contains in its entries the probability of each and every possible config-
uration in the machine, the sum of the probabilities along a particular state vector
must be 1, i.e. 3°. p. = 1. [3] This is due to the fact that the probability space is the
set of all configurations, and the sum is across the entire space.

In order to facilitate a short description of the state vector we will adopt the
convention of writing only those configurations which have non-zero probabilities.
Each such configuration ¢ will be denoted by |c) and a prefix coefficient a, to indicate
it’s probability in the superposition. The entire state vector will then be written as

the sum

Zac|c).

In order to simplify some of the analyses below we shall adopt another method of
writing a particular configuration, different from the one introduced in definition 2.2.
Since the set of configurations is countable, we can encode each configuration by
some binary representation. In the discussion that follows, the binary encoding is
often used in the representation of a configuration. Moreover, in our discussion of the
quantum model, we resort to using the binary encoding in almost all cases, and in
many cases where there is no fear of a contradiction we shall consider |c) to denote

only the contents of the tape rather than the entire configuration.

EXAMPLE 2.4. Suppose that the state vector has 1 in the entry corresponding to
the configuration encoded by 00, % in the entry corresponding to the configuration
encoded by 11 and 0’s everywhere else. Then we write the machine’s superposition

13

as
1 1
=100) 4+ - |11
5100) + 3 [11)

and the probability of seeing each of the states {00) and |01) is 3.

As the Turing Machine operates the state vector changes and in accordance with
the transition function §. From this perspective we see that 6 effectively dictates a
linear mapping in the space of superpositions; it maps one superposition to another,
or one state vector to another with the corresponding probabilities. This mapping
can be represented by a matrix whose rows and columns correspond to configura-
tions enumerated in the same order as they are in the state vector. We require the
enumeration to be in the same order so that the entry in the row corresponding to
configuration ¢; and the column corresponding to configuration c; is the probability
with which ¢; yields ¢,. This probability is known, since it is the value of § evaluated
at the tuple which transforms ¢; into ¢;. For a given PTM, M = (K, X, 4, s), we will

denote the transition matrix by Mjs, and refer to Ms as the time evolution operator.

EXAMPLE 2.5. From Example 2.2, the entry of M; at the column corresponding
to configuration (p,#10#) and the row corresponding to configuration (g, #1##) is
1. 1t is exactly 6(p,0,q,#) (This is transition 2.)

Note that along a column corresponding to a particular configuration ¢ in the
time evolution operator we have the probabilities with which c yields each possible
configuration. Since those configurations which ¢ yields with non-zero probability are
dictated by the state of ¢ and the current symbol under the head in ¢, we conclude
that the the sum along each column of the matrix is equal to 1 (by equation 1). [3]

For the purpose of this discussion we will assume that the probabilistic Turing Ma-
chine works in a black box, and that its operation is hidden from the user. In order
to determine the outcome of a computation, or a partial result in the computation we
must make an observation. It is easy to see that opening the black box and observing

the current state of the machine will fix the machine in a particular state, eliminating

14

the uncertainty in the operation. Observing a particular bit in the machine’s config-
uration will restrict the set of possible configurations to only those that agree with
the outcome of the observation. This will in effect reset all those entries in the state
vector that do not agree with the outcome to 0 and normalize the remaining entries
to ensure their sum is one. If we view the computation as a tree then observing a
bit at a particular level k¥ will in fact eliminate all those nodes in level k and their
corresponding children that do not agree with the outcome. Clearly, observing the
machine’s operation does not perturb the final output distribution. While this last
fact is trivially true we mention it for contrast with our new computation model in
which this does not hold. [3]

Both the probabilistic Turing Machine and the deterministic Turing Machine are
considered classical Turing Machines. They behave in accordance with the laws of
classical physics. The operation of both is intuitive to our understanding of the world
in which we live. Both are logical consequences of two models of interactions: one
which assumes a predetermined universe, in which every action is predictable, and
another which presupposes an uncertainty factor to the extent that actions occur
with certain probability, and thus a certain factor of non-determinism is involved.
In the following chapter, we develop a model of computation which based on the
model of interactions among atomic and sub-atomic particles. This model combines
both deterministic and probabilistic aspects, and is based on the theory of Quantum

Mechanics developed in the middle of this century.

15

CHAPTER 3
The Quantum Turing Machine

3.1. Quantum Phenomena

In the late nineteenth and early twentieth century a number of seemingly mysterious
phenomena were observed. A series of experiments with small atomic and subatomic
particles, seem to have produced results which contradicted all contemporary theories
of particle interactions. A number of theories conjectured at the time attempted to
explain the eccentric results of these experiments with little success. As a precursor
and motivation to our discussion of the Quantum Turing Machine, we present one of
these experiments that exhibits the prominent characteristics and effects of Quantum
Mechanics — the double slit experiment.

Suppose that we were to place an electron gun in front of a wall which has a slit
large enough for one electron to pass through. Behind the wall we place a backstop
which absorbs the electrons and prevents them from going further. The backstop will
also have a detection mechanism which records the distance from the centre of the
backstop to the position where an electron was stopped and absorbed. We will also
assume that our electron-gun is a poor one, and thus does not necessarily shoot the
electrons directly, but rather scatters them across an angle. Since the electrons could
hit the sides of the slit and bounce, they could essentially end up anywhere on the
backstop; however, we expect most of the electrons to be located around the centre
of the screen. This indeed happens as seen by the diagram in Figure 3.1, which shows

16

both the experiments and the number of electrons recorded at every distance, z, from

the centre of the slit in a given period of time. [§]

Electron Gun U

Wall 1 C

Backstop
&
Detector

Electrons

A

» Distance from x

FIGURE 3.1. Single Slit Distribution of Electrons

We now consider what would happen if we were to have two slits in the wall.
It would be reasonable for us to expect that the electrons from hole 1 would be
distributed as shown by the graph of P1 and the electrons from hole 2 would be
likewise distributed as in the graph of P2, both shown in Figure 3.2. The total
scattering of electrons would thus be expected to be the sum of the two distributions
as shown in the graph P = P1+ P2 in Figure 3.3. However the total scattering turns
out to be drastically different and is shown in Figure 3.4.

It turns out that the resultant graph is a consequence of a phenomenon known as
interference. The electrons going through the slits interfere with each other to exhibit
the graph’s strange behaviour. The points on the graph where the concentration of

electrons is high are places where constructive interference took place, whereas the

17

Electron Gun H

Wall e

B ackstop R s s
& X

Detector
€ Electrons

» Distance from x

FIGURE 3.2. Double Slit Experiment and Expected Outcome

Electrons

P=P1+P2

» Distance from x

A

FIGURE 3.3. Expected Total Distribution of Electron Scattering

Electrons

- » Distance from x

FIGURE 3.4. Actual Total Distribution of Electron Scattering

18

points of low concentration are points where destructive interference took place.[§]
In algorithms used by our new model of computation, the effects of constructive and
destructive interference are manipulated such that constructive interference occurs at
places corresponding to desirable outputs, whereas destructive interference occurs at
places corresponding to undesirable or incorrect outputs.

However, there is no free lunch. The effects of constructive and destructive interfer-
ence are not handed to us without cost. Being able to observe the output distribution
as shown above, is conditional upon our not knowing through which of the two holes
a given electron passes. In fact, an interesting thing occurs when we try to ascertain
this. If we place a light source next to the wall, so that we can detect a scattering
of the light by the electron as it passes through one of the two holes, we will be able
to determine which of the two holes the electron passes through. When we start
shooting electrons out of the electron gun, we find that the distribution of electrons is
perturbed, and now looks like the one in Figure 3.3. [8] The implication is of course
that our observance of the electrons as they pass through the slit, actually perturbs
their output distribution.

This second phenomenon of our observation of the experiment affecting the actual
outcome is a consequence of Heisenberg’s Uncertainty Principle. Applying this Prin-
ciple to our experiment, it essentially states that we can not determine at the same
time both the distribution of the electrons and the hole through which they passed.
We can measure one or the other but not both. Until the advent of Quantum Mechan-
ics both interference and Heisenberg’s Uncertainty principles could not be explained.
Theories which explained one phenomenon or the other existed, however, it was only
Quantum Mechanics which managed to reconcile both effects, and incorporate them
into one unifying theory.

The model we introduce, known as the quantum Turing Machine is based on the
theory of Quantum Mechanics. It will thus be subject to both Heisenberg’s uncer-

tainty principle and interference. As we shall see this has interesting consequences,

19

and yields intriguing results.

3.2. The Model

A quantum Turing Machine (QTM) is one which is similar in many respects to
the probabilistic Turing Machine. The main difference between the two models is
that while in a probabilistic Turing Machine we associate with each transition a
probability which can be any real number in the interval [0,1], in a quantum Turing
Machine we have amplitudes which are any complex number. The entries of the
state vector are therefore amplitudes that relate to the probability of seeing a given
configuration in the following way: If the amplitude of a particular configuration ¢ in
some superposition is ¢, then the probability of seeing ¢ when observing the machine
in this superposition is |a|? [3]. As before we will adopt the shorter summation
notation in writing the state vector. For example if configurations |00) and |11) have
amplitudes 715 and % respectively and all other configurations have amplitude 0 then

we write the state vector or superposition as:

75 100)+ <511
Upon observation of this superposition, we see configuration |00) with probability
half, and configuration |11) with probability ;. As before we must require that the
model conform to probabilistic axioms, and consequently we require that the sum of
the squares of the magnitudes of the amplitudes, (i.e. the sum of the probabilities) in
the state vector be 1. Now, consider a state vector whose entries are the amplitudes

oy, g, O3, We require that |og|?+]as|2+|as|?, ... = 1. This is equivalent to insisting

that \ﬂalP + |az|? + |aa|?,... = 1. However, this latter quantity is the Euclidean
length of the state vector, and therefore requiring the sum of the probabilities to be
1 is equivalent to requiring the state-vector to preserve unit length. We will therefore
say that a QTM is well-formed if it’s operation preserves length. [3]

20

To ensure that the vector possesses unit length, we must insist that the Turing
Machine’s time evolution operator preserve length. As the following theorem by
Bernstein and Vazirani shows this is equivalent to requiring the time evolution oper-
ator Ms to be a unitary matrix (one such that M;Ms = MsM; = I, where M} is the

transpose conjugate of M;.)

THEOREM 3.1. A QTM M = (K,X,6,s) is well-formed if and only if it’s time-

evolution operator is unitary [3]

PROOF For every i € N, let é; be the state vector with a 1 in the i-th entry and
0 everywhere else. Let M; be a unitary time-evolution operator and let @ and 1 be
state vectors. We write ¥ = ¥,y ai€; and @ = ¥, n Bj€;, and compute the inner

product,

(M5, Msw) = <M5 i, Ms > ﬂjé}'>

1€EN JEN
(S atma, ¥ A5
1€EN JEN
YD (ai(Msér), Bi(Msey))
1EN jEN

> > aif; (Msé;, Msé;)

i€N jEN

(The bar denotes the complex conjugate.) However, multiplying the vector € by
the matrix Mjs is equivalent to selecting the i-th column in Ms which we will denote
by ¢. Furthermore, note that Ms’s unitary property implies that the inner product

21

(G,¢)=01if i # j and (&, ¢;) =1 if ¢ = j. Thus the above reduces to:

= Y Y ap;a,q)

1EN jEN

= Z ai/éi (6;1 C_’:>
iEN

= Z ai/gi = <17, lE)
1EN

Whence, Ms unitary implies that Mj preserves length.

Conversely, suppose that M; preserves length. We first show that My M; = I. To
that end, observe that the entry in the i-th row and j-th column of the matrix M} M;
is the inner product (&,), due to the fact that the columns of a unitary matrix are

an orthonormal set. Since My preserves length,
(€5, €) = (M55, Msé) = (cj, i)

and (€;,€;) = 0if 7 # j and 1 otherwise. Consequently, we conclude that the entry
in the i-th row and j-th column of the matrix MfM; is 1 if ¢ = j, and 0 otherwise,
which is precisely the description of I. So My M;s = I. If Ms is onto, then it has an

inverse in which case

MsM; = MsM;(I)
= MM (MM
= Ms(M; M5)M;!
= M;IM;?
= MiM;'=1
So suppose Mjs is not onto. Then there must be some configuration ¢ which can not
be reached from any other configuration. However, this implies that any configuration
that looks locally like ¢ can not be reached. We say that a configuration looks locally

like c if it is one that in in the same state as ¢, is scanning the same symbol as ¢

and has the same symbols written to the immediate left and right of it’s tape head.

22

Such a configuration can not be reached since any way to reach it would also imply a
way to reach c. (The transition function is defined independently of c.) Now consider
any n consecutive cells, and let S, be the set of configurations that have their tape
head inside those cells and whose tapes are blank everywhere else. The number of
possible such configurations is |S,| = n|K||X|", since n is the number of possible head
positions, |X[" is the number of possible distinct contents of n cells, and |K| is the
number of possible states. It is clear that the set of configurations reachable from
configurations in S, are those that are in S, already in addition to the configurations
that are reached by moving out of the n cells. The number of configurations reachable
from S, by moving out of the n cells is at most 2|X|"|K| since the n cells could still
have |X|" possible contents in conjunction with | K| different states, however there are
now only 2 possible head positions, namely those corresponding to the left and right
ends of the n cells. In total therefore we have (n + 2)|K||Z|" possible configurations
that can be reached from configurations in S,,. However, the number of configurations
in S, that look locally like ¢ is (n — 2)|Z|"~3 because we are not restricted to the
contents of n — 3 cells, and the three contiguous cells around the head (that give the
configuration the look of ¢) can appear in any one of n — 2 different positions. This
leaves us with only (n 4 2)|K||X|" — (n — 2)|Z|"~ possible reachable configurations,
which is less than n|K||Z|" if we choose n > |K||Z]® + 2.

This last fact shows that, in total, the configurations in S, can reach at most r
configurations where r < |5,,|, thereby showing that in the every column correspond-
ing to a configuration in S, there are at most r non-zero entries, and each of those
entries appears along some set of r rows. Consequently, this implies that the columns
corresponding to the elements in S, can not all be mutually orthogonal, contradicting
the fact that M{Ms = I. So M;s must be unitary. Note that the proof was dependent
on the fact that the machine has a two way infinite tape, and that the theorem would
not hold had the tape been infinite in only one direction. [J[3]

The theorem, while suggesting a very rigid condition to ensure a machine is well

23

formed is in practice difficult to apply as it would mean verifying that an infinite
dimensional matrix is unitary. However, if we restrict the number of bits encoding
the configuration to some finite number n (Note that this will of course limit the
number of tape cells we use) then we are only required to check that the matrix
operating on those n bits is unitary, as all other configurations essentially play no
part in the computation and we can thus disregard them. In general this matrix will
be of size 2" x 2". Furthermore, if the operation is concerned with only a certain
number of bits k then it is sufficient for us to specify a unitary matrix operating on
those k bits, as this will not change the larger matrix. [3, 4] Perhaps an example is

at this point in order.

EXAMPLE 3.1. Consider a Turing machine whose operation can be fully described
by configurations of 3 bits, i.e. a configuration can be encoded as one of 000, 001,

010, 011, 100, 101, 110 and 111. Then applying the unitary matrix

1 1
M:[% 75}

to the last bit in the configuration should have the effect of flipping a fair coin on the

last bit. This is equivalent to applying the matrix

000 001 010 011 100 101 110 111
[]

000 % 75 0 0 0 0 0 0
001 % % 0 0 0 0 0 0
010 0 0 —}5 % 0 0 0 0
011 0 0 55 % 0 0 0 0
100 0 0 0 0 &% % 0 0
101 0 0 0 0 = % 0 0
110 0 0 0 0 0 0 NG
m [0 0 0 0 0 0 I |

to all three bits. The numbering on the top and to the side of the matrix, indicates the

24

ordering used in the state-vector and the matrix. If we observe the column indexed
by 010 we notice that it has two non-zero entries, each containing the amplitude %
- one corresponding to the row 010 and the other corresponding to the row 011. This
means that the configuration 010 would yield configurations 011 and 010 each with
amplitude % In other words all bits stay the same with the exception of the last
whose bit is flipped with amplitude % More generally, applying an operator M
(2% x 2¥) to the last & bits in an n-bit configuration scheme is equivalent to applying
the Kronecker product M ® I to all n bits where I is the 2(*=%) x 2("=%) identity

matrix. (The Kronecker product of two n x n matrices A = (a;;) and B = (b;;) is
anB (llnB
defined to be A® B = : : in block form.) It is clear that such an

auB ... a.B
operation preserves the unitarity of the computation and we will thus not specify the

entire matrix but rather only that portion which pertains to the bits we are interested

in operating on. [4, 9]

This suggests that for the Turing Machine to be well-formed there may be some
characterizations which are easier to verify given finite means. Towards that end the

following theorem was proved by Bernstein and Vazirani:

THEOREM 3.2. A QTM M = (K, X,$,s) is well-formed if and only if the following
three conditions hold: [3]

(1) The superposition of state-symbol pairs (i.e. resulting configurations) leaving

any particular state-symbol pair has unit length, i.e. for all (p,0) € K x &,
Z la(pv o,4, T)I2 =1
q,T

(2) The superpositions of symbol and new state leaving any two different state-

symbol pair are orthogonal, i.e. for all (p1,01) # (p2,02) € K X ¥ we have

Z 6(p17 71,49, 7')5*(172, 72,4, T) =0

q,T

25

(3) The space of all linear superpositions of states, C!, consists of three mutually
orthogonal subspaces @1, @r and s, the first two corresponding to a direction
of movement, and the last corresponding to transitions which write a symbol
under the head, such that if we fix all of §’s parameter except for the new state
so that it dictates a head movement to either the left or right or a writing of a
symbol, then the resulting superposition will lie in the subspace corresponding
to the movement of the tape head, or the writing of a symbol. Formally,
3Q1,Qr, Qs C C¥l mutually orthogonal subspaces, such that the following
hold:

(a) For all (p,o) € K x &,
Y. 68(p,o,9,R) lg) € Qr
€K

(b) For all (p,0) € K x %,
> 6(p,0,q,L)1q) € Qr
€K

(c) For all (p,o,7) € K x X x &,
> 8(p,0,9,7)la) € Qs

qeK

PROOF By Theorem 3.1, for M to be well-formed, the transition function Ms must be
unitary, and Mj; is unitary if and only if the columns of My are orthonormal. Hence,
in order to prove the theorem it suffices to show that the above three conditions are
equivalent to stating that the columns of M;s are orthonormal. It is clear that the
first condition states that each column has unit length, for it claims that the sum of
all possible amplitudes leaving a particular state-symbol pair, and hence a particular
configuration, is 1. It remains to show that the last two conditions are equivalent
to the columns of M; being orthogonal. Towards that end we consider two columns
of Ms labeled by configurations a and b. Clearly, if configurations a and b differ

by a cell that is not under the tape head in configuration @, and is not under the

26

tape head in configuration b, then the set of possible configurations which a yields
is disjoint from the set of possible configurations that b yields. This is because the
machine can not change cells that are not under the head in one step. Consequently,
there will be no entry which is non-zero in both columns a and b of Mj, and thus the
inner-product of the two columns will be zero. Furthermore, this argument extends
to those configurations whose tape head is more than 2 cells apart. So it is only those
configurations whose heads are within two cells of each other that can possibly yield
similar configurations. Now, the second condition takes care of all those cases in which
the state and symbol are distinct under the two tape heads, making sure that such
columns are orthogonal. Consequently, two configurations can not have their heads
on the same cell, be reading two distinct symbols, and yielding two non-orthogonal
superpositions. It remains to ensure that those configurations whose tapes are the
same in content, and are one or two cells apart in their head position, yield two
orthogonal superpositions. The third condition does that adequately since it ensures
that movements to the left, to the right and the writing of a symbol remain mutually
orthogonal. A careful exhaustion of all possible ways in which two configurations
that are one or two cells apart shows that indeed this suffices. Thus the above three
conditions are equivalent to column orthonormality in Ms; and hence to the well-
formedness of M;. ([[3]

If we observe the conditions in Theorem 3.2 it is easy to see that they are indepen-
dent of the time evolution operator in the sense that for a given machine M, each one
can be verified without referring to the operator. In fact, each one of the conditions
can be checked and ascertained to be true by finite means. We only require knowl-
edge of the definition of the Turing Machine. The above conditions for that reason
are known as locality constraints, since they are concerned with the operation of the
machine on a single tape cell rather than on the entire tape. These locality constraints
allow us to specify a local unitary matrix as part of a computation (or algorithm)

on a Quantum Turing Machine. In practice, we already assumed this property in

27

Example 3.1.

3.3. Interference

Just like a Probabilistic Turing Machine, the quantum Turing machine’s compu-
tation can also be viewed as a leveled tree, with each level representing a step in
the computation. The amplitude of reaching any particular node is the product of
the amplitudes of all the edges in the path to the node, and as with probability in
the PTM, the amplitude of reaching a particular configuration z after k£ steps in the
computation is precisely the sum of the amplitudes of reaching all those nodes in the
k-th level that are labeled by z. [4]

While it appears as though the QTM’s computation is similar to the PTM’s, the
fact that the value of the amplitude function can be any complex number leads to
curious effects. Consider for example a configuration z, that is duplicated exactly
twice at the k-th level of the tree at nodes 1 and 2. Suppose that the amplitude of
reaching node 1 is a; and the amplitude of reaching node 2 is a;. Then, by definition
the amplitude of reaching configuration z is a; + a2. The probability of reaching
that configuration is therefore (a; + az)?. However, if a; = —az, then the probability
of reaching configuration z is 0, notwithstanding it’s appearance in the tree. This
has interesting consequences, for it means that the computation of a function on
a quantum Turing Machine is affected by all other computations paths. Sounds
familiar? This is precisely the phenomenon of interference from section 3.1 in our
quantum Turing Machine. This effect is very heavily used in the algorithms below.
3, 4]

With interference, enters the issue of Heisenberg’s Uncertainty Principle. Applied
to our machine it states that the observation of the machine’s operation actually
affects the distribution of the outcomes. As an example, consider a machine in the

configuration |0). We apply what is considered to be the one bit quantum coin flip

28

unitary operator,

11
U=|v: V2
1 -
v

to the bit in the configuration and arrive at the superposition

50+ 51
Suppose that we decide to observe the bit at this stage of the computation. We will
see |0) with probability (%)2 = 7 and |1) with probability (%)2 = 7. We now apply
U to the outcome and arrive at either

70+
or

2510 -—=1)
depending on whether the outcome from the first trial was |0) or |1} respectively.
In either case we see |0) with probability ; and |1) with probability 1. This makes
sense in a classical setting since flipping a coin twice should not affect the output
distribution of the second coin flip.

However, consider what would have happened had we not observed the outcome

after the first step. We would then apply U to the superposition

250+ ==
and arrive at the superposition
(50 +) + 5 (10 - Z5m) =
The output is undistributed, and we have effectively unflipped the coin. The only
difference between the first experiment and the second is that in the first case we
observed the outcome after the first coin flip, whereas in the second we flipped the bit
twice without observing it midway through the computation. This means that the

our act of observing the machine as it operates actually has an effect on the outcome.

29

The implications and questions this raises are numerous.

The first question that must be asked is, If we can’t observe the machine, how
will we ever know that it has halted? This turns out to be nothing more than a
technical detail. To overcome this difficulty we alter the machine so that it contains
a cell called the acceptance cell whose contents will indicate whether the machine has
halted or not. We observe this cell after every step in the computation to determine
whether the machine has or hasn’t halted. It is clear that if the machine has not
halted, our observation of that particular cell does not perturb the distribution of
the configurations, as all possible configurations have not halted. Moreover, our
observation becomes inconsequential once the machine has halted since at that point
we are interested in observing all the cells and not just the acceptance cell. [3]

Having surpassed the technical difficulties, we come to the deeper, more profound
questions. Is the interference phenomenon an advantage or a disadvantage of the
quantum Model? Assuming it is not a disadvantage, how big an advantage is it?
Can the quantum model solve problems more efficiently than the classical models?
Moreover, is it possible that interference allows us to compute non-recursive functions
on the quantum Turing Machine, thereby allowing us to solve classically undecidable
problems such as the halting problem? If we can not compute non-recursive functions,
then what limitations does the quantum Turing Machine have? The next theorem
is an attempt to answer the first of these questions. The next few theorems and the
remainder of this paper attempt to provide partial responses to some of these ques-
tions. Admittedly, not all these questions are adequately answered, and furthermore
we find that it is unlikely for us to solve some of these problems as their solution

settles other problems which have been open for a long time.

30

CHAPTER 4

Efficient Computation

In order to be able to answer questions regarding the relative efficiency between the
classical Turing Machines and the quantum Turing Machine, we must be able to have
some measure of what we call an efficient computation. Towards that end we must
define how we measure the amount of time a computation takes. In the case of a
Turing Machine the length of the computation, or the number of transitions shall be
considered the amount of time required for the computation. Clearly the length of
time that a machine requires to compute any reasonable function is dependent upon
the length of the input. Firstly, a longer input will take longer to read, and secondly,
the function itself may have properties that require an increase in the computation
time for longer inputs. In classical complexity theory it is generally accepted that
for most problems an efficient solution is one which takes time that is no longer than
some fixed polynomial in the length of the input. The class of languages that can
be decided in polynomial time by a deterministic Turing Machine, is the well known
class P. An analogous class, BPP, exists for the probabilistic Turing Machine. For

reference a definition of both is given.

DEFINITION 4.1. A language L is in the class P if there exists a deterministic
Turing machine M with a distinguished acceptance cell y and a polynomial p such
that given any string x the contents of the acceptance cell y at time p(|z|) correctly

classifies x with respect to L. [7]

31

DEFINITION 4.2. A language L is in the class BPP if there exists a probabilistic
Turing Machine M with a distinguished acceptance cell y and a polynomial p such
that given any string = the contents of the acceptance cell y at time p(|z|) correctly

classifies x with respect to L with error at most 1/3. That is to say,

if £ € L then y indicates that = € L with at least 2 probability; and
ifz ¢ L then y indicates that = ¢ L with at least 2 probability.

For a complete discussion of the above two classes see Computational Complezity
[7].

We now introduce two new classes - EQP and BPP. EQP is the class of languages
that can be decided in polynomial time by a quantum Turing Machine with certainty,
while BQP is the class of languages decidable on a quantum Turing Machine in

polynomial time with non-negligible probability.

DEFINITION 4.3. A language L is in the class EQP (exact or error-free quantum
polynomial time) if there exists a quantum Turing Machine with a distinguished
acceptance cell and a polynomial p, such that given any string z as input, observing
the acceptance cell at time p(|z|) correctly classifies z with respect to L. Furthermore,
L is in the class BQP (bounded-error quantum polynomial time) if we allow the

classification to be correct within a two-sided error of at most 1/3. 3]

At this point we have the tools necessary to start comparing the efficiency of the
classical Turing Machine to the Quantum Turing Machine. The first observation we
make is that the Quantum Turing Machine possesses no less computational power
from a complexity theoretic standpoint than its classical predecessors. As evidenced
by the following theorem, anything which can be computed in polynomial time on
a classical Turing Machine can also be computed in polynomial time on a quantum

Turing machine:

THEOREM 4.1. P C EQP and BPP C BQP. [3]

32

PROOF To show both statements it would suffice to prove that anything which can
be efficiently computed by a classical Turing Machine can be efficiently computed by
a quantum Turing Machine. We begin by showing that the randomness in a PTM
can be efficiently simulated on an QTM. This is due to the fact that it suffices for us
to simulate a one bit fair coin flip on a quantum Turing Machine, which can be easily
done by the unitary transformation shown before. Should we need to flip a coin again,
we simply do so on a different part of the tape, thereby ensuring that no interference
takes place. Thus, it remains to show that any deterministic computation can be
efficiently simulated on a quantum Turing Machine. Towards that end we consider
the class of reversible deterministic Turing Machines: a Turing Machine M is said to
be reversible if reversing the arrows in the configuration graph gives a deterministic
mapping of configurations M’ that reverses the operation of M, i.e. if M transforms
configuration ¢ to d, then M’ transforms configuration d back to c. It is clear that not
all Turing Machines are reversible. In particular consider a Turing Machine which
computes a function f on input z such that only f(z) is written on the tape when the
machine has halted. Then if f is not one-to one it is clear that the machine can not be
reversible. However, an important result by Bennett [10] shows that for any Turing
Machine M computing a function f(x) on the tape, there exists a reversible Turing
machine M which computes g(z) = (z, f(z)) with only a constant slow down in time.
In other words, a function can be computed reversibly provided that the input is not
erased from the tape. Therefore, to prove the theorem it suffices to show that any
classical reversible Turing Machine is also a quantum Turing Machine. However this
is almost trivial, since if we observe the time evolution operator M of a reversible
deterministic Turing machine, it has nothing but 0 and 1 entries in all columns. Since
it’s reversible, there is no row or column with two or more 1’s (otherwise it computes
a function that is not one-to-one). Furthermore, since M is reversible it must be
onto, and thus each row and column contain exactly one entry that is 1. A simple

observation reveals that the conjugate transpose of such a mapping is it’s inverse

33

mapping, which implies that M is unitary. Applying Theorem 3.1 we conclude that
M is a well-formed QTM. In light of our previous observations, this suffices to show
that P C EQP and BPP C BQP 3]

In the above proof we used Bennett’s result, for reference, we state Bennett’s result

in the following theorem:

THEOREM 4.2. Let f : {0,1}" — {0,1}™ be some function, that is computable
in polynomial time, p, by some classical deterministic Turing machine. Then, there
exists a reversible deterministic Turing Machine M (and hence a quantum Turing
machine), such that given |z,y) on the tape, where z € {0,1}" and y € {0,1}™, (we
omit the state and head position here) M computes |z,y & f(z)) in time at most cp,

for some constant c. [10]

Theorem 4.1 proves essentially that anything which is efliciently computable by a
classical Turing Machine is also efficiently computable by a quantum Turing Machine.
At the very least, this suppresses any concerns that the QTM’s well-formedness con-
straint imposes a disadvantage on the model. However as we shall now see there
appears to be evidence that the quantum Turing Machine can efficiently compute

functions that are not easily computable by any classical Turing Machine.

34

| CHAPTER 5
The XOR Mask Problem and its Quantum

Solution

The first evidence that there may be languages in BQ P which are not in BPP, came
to light in the form of a promise problem. In 1994, Daniel Simon presented a problem
for which there appears to be no classical solution in polynomial time, yet has a very
elegant solution on a quantum Turing Machine. While Simon’s problem is somewhat
concocted with no immediately apparent applications, it does serve to highlight the
potential promise in the quantum Turing Machine. The problem, known as the XOR

Mask problem is presented below: [4]:

PROBLEM 5.1. XOR Mask. Given a deterministic Turing Machine that computes
a 2 to 1 function f : {0,1}" — {0,1}"! such that for all z,y € {0,1}", f(z) = f(y)
iff £ =y @ s for some mask s € {0,1}". Find s. [4]

In this problem, a description of a Turing Machine is given. It is promised that this
Turing machine computes some 2 to 1 function from {0,1}" to {0,1}"~!. Moreover,
this function is also promised to have the property that there exists some string
s € {0,1}™ such that whenever two string z,y € {0,1}" are mapped to the same
value in {0,1}""!, their XOR value, i.e. z @y is s. We give an example of such a

function:

EXAMPLE 5.1. Let n = 3. Then, we would like to describe a function that com-
putes a 2 to 1 function from {000,001,010,011,100,101,110,111} to {00,01,10,11}.

If we denote the three bits as (i, ,, z3), then the function g(z1, 22, z3) = (z1,72) is

35

a 2-1 function such that g(z) = g(y) iff z @y = s for s = 001. To see this we observe

that ¢g(z1, 22, 23) = 9(y1,¥2,y3) Iff (21, 22) = (y1,y2). Hence the function will produce
the following mapping:

00 if z = 000 or z = 001
01 if 2 =010 or z = 011
10 if 2 =100 or z = 101
11 fz=1100r z = 111

g(z) =

Note that 000 @ 001 = 010 ¢ 011 = 100 & 101 = 110 ¢ 111 = 001. Hence, g is an

example of a promise function described in problem 5.1.

A careful examination of the above example reveals that the function could have
been constructed in at least 7 different ways, each corresponding to a different mask.
The only mask which could not be used in this example is 000, since such a mask
forces the function to be 1-1 rather than 2-1. (Clearly there is no 1-1 function from
{0,1}" to {0,1}**.) In general, the mask used by the function in problem 5.1 can
take on 2" — 1 distinct values, i.e. any value from the set {0,1}"\ {0"}. The enormous
number of possible values for s is the source of the problem’s difficulty in the classical
sense.

In the following theorem we show that if the Turing Machine M from problem 5.1
is given as an oracle, than there is no probabilistic Turing Machine that can find the
mask s in polynomial time with non-negligible probability for any M. In particular
what we show is that there exists a 2-1 function f such that if M is an oracle for
a 2-1 function which is randomly chosen from a subset of all 2-1 function satisfying
the condition in problem 5.1 then the chances of a probabilistic Turing Machine

identifying s is small.

THEOREM 5.1. For any Turing Machine M using at most k steps, there exist a 2-1
function f : {0,1}* — {0,1}"7?, such that f(z) = f(y) iff =y @ s, and an oracle O
36

computing f, such that M can not correctly output s with probability greater than

k2
2n—-1°

Note that if k is a polynomial, than the probability that the answer is correct is
exponentially small.
PROOF We first construct a set of functions F of size 2" — 1 such that each function
fi € Fis2to1 from {0,1}" to {0,1}"! and f(z) = f(y) iff z = y & s; where the s;’s
are distinct. Thus, each function in F' satisfies the promise in problem 5.1 and each
such function has a distinct mask s. To that end, let s; = ¢ for all ¢ € {0,1}™\ {0"}.
Then let

Di = {(z,y)lz € {0,1}%y € {0, 1}z & y = si}
Observe that the size of D; is 2", hence there exist approximately (n — 1)! one-

to-one and onto functions g : D; — {0,1}""!. We randomly choose ¢, and define

fi :{0,1}" — {0,1}™1 as follows:

fiz) = g((z,z & si))
Then define
F={fili € {0,1}" \ {0"}}.
It’s clear that F is indeed as required.

Let M be a Probabilistic Turing Machine using k steps. To show the existence of a
function as in the statement of the theorem we use a probabilistic technique. We show
that if a function f; is randomly chosen from F' then the probability that M guesses s;
correctly given f; as an oracle, O, is negligible. To that end, let f; be chosen randomly
uniformly from F. Then, since the number of steps the Turing Machine uses is k,
it can make at most k queries to the oracle. We will call a set of k£ distinct queries
to the oracle {my, my, m3,...,m;} good if there exist p,q € {1,2,3,..k}, p # ¢ such
that the oracle returns the same answer on both m, and m,. For any particular m,,
querying the oracle returns no information other than O(m,), except to the extent

37

that O(m,) can be the same or different from O(m,), because the function g above
was randomly chosen. For that reason, we may consider the choices of the m;’s to
be independent of each other. Now, the only way that the machine would be able to
find s is if it had a good set of queries. The probability that a set of k queries is good
is,
Pr[O(m,) = O(m,) for some p,q € {1,2,3, ..k}, p # ¢l
= Pr[m, ®m, = s; for some p,q € {1,2,3, ..k}, p # ¢

S ZP;G€(1,2,3,..I=} Pr[mp @ mq = Si]
p#g

We can now show that the Pr[m, @& m, = s;] is small since that is the same as the
probability with which s; equals some particular string. Since f; was chosen uniformly
and randomly from F and since s; is distinct for every f;, the probability that s; is
chosen is the same as the probability of choosing f;. Hence we have that

1
o —1

Pr[m, & m, = s;] = Pr[choosing fi] =
The sum above now reduces to

1
Zp,qE{lﬂ,&uk},p#q 271

1
ToT Lpg€{1,2,3,.k} kg 1

k2
< .

What we have shown is that if f is a random function from F' than the probability
that M correctly guesses s is small. Hence there must exist some function for which
this is true, proving the theorem. [4] O

The above theorem gives some evidence to the conjecture that the XOR Mask
problem is hard. It is important to note that this is only evidence rather than proof.
It may very well be that a probabilistic or deterministic Turing Machine can indeed
solve the problem by analysing the description of the Turing Machine computing the
function rather than simply using it as an oracle. However, the next theorem shows

that the XOR-Mask problem does have a polynomial time solution on a quantum

38

Turing Machine, given that the input Turing Machine computes the function f in

polynomial time.

THEOREM 5.2. There exists a Quantum Turing Machine M such that given a Tur-
ing Machine N computing a 2 to 1 function f : {0,1}* — {0,1}""! such that for all
z,y € {0,1}"*, f(z) = f(y) iff e = y ® s for some mask s € {0,1}", M finds s in time
polynomial in n and t(n), where t(n) is the time it takes N to compute f(z) on input
z € {0,1}". [4]

PROOF Consider what would happen if we were to successively apply the unitary

transformation
11
U=|v2 V2
1 -1
vz V2

to each of n-bits on a tape containing the n-bit string |ay, @z, ..., @,). Applying it to
a; would yield the superposition:

1) 1 -
75(—1)"‘1 210, ag, .oy @) + 75(—1) 1, ag,y ey o)

applying U to oy would then yield the superposition

1 1

\/Qz(—l)“l“’*"‘z‘“ [0,0,...,an) + —ﬁ(—uavwrl 10,1,...,) +
1 1

_(__1)011-1+az-0 |1’0, . an> + 2(_1)a1-1+cx2.l llv 1, .y an)

vz V2

Therefore, after n iterations we will arrive at the superposition:

1 «Q
Z (_1)a1ﬁ1+azﬁz+... nBn |ﬂ1,,32, ~-,ﬂn>

ﬁlyﬁZv"'vﬂne{oJ} \/in
or if we write 8 = (B4, fa, ..., Bn) and @ = (a1, @y, ..., @) we could write this as

1
> T=(=1)71B)
pe{o,1}" \/2—'[
where by o - § we mean the dot product of the two vectors mod 2. This is the result

of applying the transformation F = U ® U ® ® U (The Kronecker product) to all
~——

n

39

n-bits.
Given this result, using a QTM that initially contains on its tape k copies of a

string of n zeros, we perform the following algorithm & times — once on each set of n

zeros. In other we begin with a TM that initially contains on its tape [0™,07,...,0™).
—_————

n—times

and apply the following algorithm to each of the 0" strings:

(1) Apply the transformation F above to all n 0 bits to arrive at the superposition
> =l
ze{o,1}n V2" :
(2) Reversibly compute |z, f(z)) on the tape, using Theorem 4.1.
(3) Apply F to all n bits of = to arrive at the superposition
S Y) f(a)
y€{0,1}7 ze{0,1}»
When we make an observation we will see some configuration |y, f(z)) on the tape,
with probability equal to the square of the sum of the amplitudes of all those paths
leading to |y, f(z)). However we note that there are only two such paths, namely,

the path that wrote |y, f(z)) and the path that wrote |y, f(z @ s)). The probability

is thus,
1 - r@Ps)- 1 x- - 5
o (-1) y+(_1)(®)y) - Q_n((_l) y+(_1)(¥)&(y))
= S(FDTH(DERY sy 20
=0

This shows that the only possible outcomes for y are those such that y-s=0. A
closer observation will reveal that y is uniformly distributed over the set {d|d-s = 0}.
But this means that over the vector space Z," we consistently get vectors y that are
certain to be orthogonal to s. Clearly, if we are trying to find s, it is sufficient for
us to collect n — 1 linearly independent such vectors, since then we would then have

enough information to construct a system of equations whose solution is either s or

40

0. It turns out to be sufficient to collect k = O(n) such vectors in order to ensure
that n of them are linearly independent with high probability. To solve such a system
would require us to be able to solve an n x n system of equations over the field Z,.
This however, is easily done in time that is polynomial in n. [4] O

As an immediate corollary from Theorems 5.1 and 5.2 we get the following:

‘THEOREM 5.3. There exists an oracle O relative to which BQP ¢ BPP. [4]

41

CHAPTER 6
The Discrete Log

The most substantial evidence to date regarding the power of the quantum Turing
Machine was offered by Shor. In a paper published last year he presents an algorithm
for the Discrete Log and Integer Factorization problems, which runs in polynomial
time on a quantum Turing Machine. Although there is no proof that one can’t solve
these problems in polynomial time on a classical Turing machine, it has been a long
standing conjecture. While integer factorization is a well-known problem, the discrete-
log problem is somewhat less famous. We present it here along with an explanation

and its quantum solution.

6.1. Background

Since the problem is an algebraic problem, we will require a number of definitions
before it can be properly introduced. To that end we bring a number of definitions

from abstract algebra.

DEFINITION 6.1. A set G with a binary operation o is called a group if it satisfies

the following four axioms:

(1) G is closed under the binary operation o. That is to say, if g,h € G then
goh€d.
(2) The operation is associative, so (aob)oc=ao(boc).

42

(3) G has a unity, meaning there exists an element e € G such that for all g € G,
eog=g=goe
(4) Every element of G has an inverse in G, so that for all g € G there exists
¢! € G such that
glog=e=gog™’
Furthermore, G will be an abelian (commutative) group if it satisfies axiom

5.
(5) Forallg,h € G,goh="hog

For convenience we shall hereinafter denote g o h by gh, g o g will be denoted by ¢*
and the unity e will be denoted by 1. [11]

DEFINITION 6.2. A generator of a group G is element g € G, such that for all
z € G,

¢" =z for some k € Z
A group G is cyclic if it is has one generator.
DEFINITION 6.3. The order of a group G is the number of elements in it |G|, and

the order of an element g € G is the smallest integer k such that gF = 1. [11]

27k

EXAMPLE 6.1. For any positive integer n, the set U, = {e n |k € Z} 1s a cyclic

abelian group closed under multiplication. It’s unity is 1 = 5% Tt is easy to see
that e is a generator of the group. In fact, U, is generated by any element ¢*5"
such that ged(k,n) = 1. Note that U, is the set of all n-th roots of unity, evenly

spaced around the unit circle.

EXAMPLE 6.2. For any prime p, the set Zy = Z,\ {0} is a cyclic abelian group
closed under multiplication.

PROOF Proposition II.1.2 in A Course in Number Theory and Cryptography by Neal
Koblitz [12] O

43

EXAMPLE 6.3. For any positive integer m, let Z? denote all those elements in Z,,
for which property 4 of definition 6.1 holds under the operation of integer multipli-
cation. Then Z7, is as well a group. The elements in ZZ will be all those elements

7 € Zp, such that ged(r,m) = 1.

A thorough discussion of the above concepts and definitions is beyond the scope
of this paper. For a more extensive treatment of the subject the reader is referred to

Nicholson’s excellent book, An Introduction to Abstract Algebra [11].

6.2. The Fourier Transform

In order to solve the discrete log problem using Shor’s method we are required
to perform a particular unitary transformation using our quantum Turing Machine.

This transformation is known as the discrete Fourier Transform.

DEFINITION 6.4. Given a vector & = (2o, Z1,...,Zn-1) In an n-dimensional vector

space V over the field C, the discrete Fourier Transform F,, is defined as:
n—1

o 1 n-1 1 n—1)i
Fo(Z) = (ﬁjz:;)mjw) Z:c,w) Zx]) - ..,%]_:Zozjw(1)’) .

where w = e“:w2 the n-th root of unity.

Note that the above transformation can also be represented by the following matrix:

w0x0 w01 WOx2 . wa(n—l)
w10 wix1 wlx? L wlx(n—l)
w?2X0 w2x1 w2 w2x(n-1)

Bl

w(n—l)xo w(n—l)x] w(n—l)x2 w(n—l)x(n—l)

2miaf
In particular, row o, column 3 is the entry (Fy,)op = Te n .

44

EXAMPLE 6.4. If V is a 3-dimensional vector space, then since the 3-rd root of

unity is e = w, the Fourier Transform on V will be the matrix:

waO wal w0x2 1 1 1
1
fS — | Wixoe wlxl wlx2 —_ 1 wl w?
V3
w2x0 w2x1 w2x2 1 w2 wl

We are interested in applying the transformation F, to a configuration in our
quantum Turing Machine. Given the discussion in Chapter 3, we are required to
show that F, is a well-formed quantum step before we can use it in a quantum

Turing Machine. Towards that end we prove the following lemma

LEMMA 6.1. For all positive integers n and m # 0 (mod n), the sum

n—1 amik

TtRm
S e
k=0

PROOF Let n and m be positive integers. Write d = gcd(m,n), and let m’ = 2 and
= Z. Then,
n-l 21rtkm 21r1km
Se Z e .
k=0

We now index the sum using two indices j and r such that k = jn’ + r to get

Zl Z_ 2mi Z" +r m’
7=0 r=0
d-1n'/-1
_ Z Z 27ru-rn
. 2miry 2mirg . .
Now if e™»™ = e™w", then ry = r (mod n’). This means though, that if r; # r,
2mirg 2mirg 2mirm! |
(mod n') then e = e = . But this implies that 3" 'e™ » , is a sum over n'

distinct n'-th roots of unity, i.e. this is the sum over all the n’-th roots of unity evenly
spaced around the unit circle. This is zero for all but the first root of unity. Since

m # 0 (mod n), we have d # n and thus n’ # 1. Therefore Y™ ;! e =0. O

2mrm

45

The next theorem shows that F,, is a well-formed quantum step:
THEOREM 6.1. F), is a unitary operator.

PROOF It suffices to show that the columns of F,, form an orthonormal set in C".
Let w = e, and consider rows a and b in F,, where a < b without loss of generality.
We take the inner product of the two rows. Remember that since the inner product
is in C*, it is defined as the dot product of the entries in row a with the complex

conjugates of the entries in row b (The complex conjugate is denoted by a bar). So,

n—1
< Row,, Row, > = (Fa)ak(Fn)ok
k=0
n—1
1 1 =
— bk
= ——w*w
= Vn \/7—1
1) i 5mr
= —_ € n € n
n k=0
. . . mibk 2mi(n—bk)
It is easily verified that ¥ = ¢ 5. Therefore the above reduces to
13 omiar 2nitrosh)
(3) = —Z 2T€ n
L
]. n-l 2mi(n4(a—b)k)
(4) = — Z [n
n k=0
1% amigabp
(5) framad — Z [n
n k=0

Now, if @ = b then the above is just the length of row a, which is

So each row is indeed a normal vector. If a # b then write t = a — b, and since a < b,

46

t is positive. Applying Lemma 6.1, we have 3 reducing to is:

1 nol 2mitk
= —_ e n

™ k=0
= 0.
Therefore the rows of F, form an orthonormal set, whence F, is unitary. [

Hence, F, is a unitary matrix, and we can use it in a quantum computation. This
being our goal, it is useful to describe the action of F), on a particular state vector of
configurations. Translating definition 6.4 to our notation of superpositions, we find
that the action of F,, on a configuration |z) where z is an element of Z,, (encoded in
binary representation) results in the superposition

1 2miys
ﬁyeizjne n ly)-
Note that this last sum is column z of F,, in its matrix representation from 2. Fur-
thermore, an observation of this superposition would yield y € Z,, with probability
1

> and as a result we can view the Fourier Transform as a form of randomly and

uniformly choosing an element in Z,. (Although, this is a very simplistic approach.)

6.3. The Problem

Before presenting the problem, and in order to facilitate an understanding of the
Discrete Log problem we give the more popular continuous logarithm problem. Note
that the two are similar in many respects, and in fact Discrete Log is the the contin-

uous log problem in a finite, cyclic, abelian group.

PROBLEM 6.1. Continuous Log. Given two numbers g,z € R, we would like to

find a number r € R such that ¢" = z. Note that the number r = log ().

Given the above definitions we are now ready to present the problem. Contrast

and compare it to problem 6.1.

47

PROBLEM 6.2. Discrete Log. Given three numbers, a prime p, an element g € Z
such that g is a generator of Zy, and z € Zj, we would like to find a numberr € Z;_,

such that ¢" = z.

EXAMPLE 6.5. Given p = 5, ¢ = 2 and = 1, the correct solution to problem 6.2
would be 0 since 2° = 1. Note that 2 generates Z} since 2° = 1 (mod 5)), 2! = 2
(mod 5), 22 =4 (mod 5) and 2° = 3 (mod 5).

EXAMPLE 6.6. Given p =7, g = 3 and z = 5, the correct solution to problem 6.2
would be 5 since 3° = 243 =5 (mod 5).

We begin by treating an easy case of problem 6.2. In this simplification of the
problem we shall restrict the groups that we are analysing to those groups Z3 such
that p—1 has a particular property. In order to facilitate this property’s definition, we
fix some positive real number ¢ which will remain constant throughout this discussion.

Then we define the following:

DEFINITION 6.5. A number n = pipyps...px is smooth if all the p;’s are distinct
primes such that for all i € {1,2...k}, p; < clog(n). That is to say, n has no prime

factor that is larger than a logarithm in n.

6.4. A Solution of Discrete Log in a Restricted Setting

We first solve the Discrete Log problem over all groups Z; such that p—1 is smooth.
This is the easy case of the algorithm that Shor presents in his paper.

THEOREM 6.2. There exists a quantum Turing Machine M and a polynomial P,
such that given an n bit prime p where p — 1 is smooth, a generator ¢ € G and a
number z, M returns a number r € Z,_; such that ¢" = z, in time P(n) with error

at most 1/3. [9]

PROOF Initially the Turing Machine has p,g and z written on the tape, and is in
some state ¢. Since p,g, and z all remain constant throughout the computation and

do not change, we will not write them when writing a configuration. Furthermore,

48

since the machine will never be found in a superposition of states we will not write the
state of the machine in the configuration. In other words, the machine moves from
one state to the next in a deterministic fashion, never making a probabilistic choice
between two states. Those superpositions that are formed are made by a choice of
symbols to write on the tape, rather than a choice of states to enter. We will therefore
mention that portion of the tape, whose contents change. Given this, the tape will
operate on a tape of all zero’s once the input p, ¢ and z has been read.

Initially we let the machine choose two random values a and b in Z,_;. These
two values can be chosen in a classical probabilistic way, and thus by the application
of Theorem 4.1 can be chosen by M. If these values are selected in a way which is
random and uniform, each one appears with probability p+1 and hence with amplitude

ﬁ. After choosing the first number a, our machine will be in superposition

Note that the sum is over 0 to p—2 since p—2 is the largest element of Z,_;. Choosing

b randomly, then places us in the superposition:

1 p—2p-2
ZZIab
=0 a=0

p—2p-2
= —ZZ|a b).
b_Oa.—O

We now deterministically compute g®z=" on the tape. This computes a particular
element in Z7. Since a and b are not erased from the tape, we can do this reversibly
and thus such a computation is feasible using M. Once we have completed this, our

machine should be in the superposition:

P—2p-2

— Z Y la,b,g%7").

b=0a=0

Now, since a is in Z,_;we can apply the Fourier Transform to it to get the super-

49

position:
—2p~2p=-2

ZZZ =5 e, b, "z ™).

c-—O b=0 a—O

Likewise, since b is in Z,_;we apply the Fourier Transform to it and get:

p=2p—2p-2p-2
Z Z Z Z 2mca 21ndb|c d g z >
d 0¢=0b=0a=0 VP VP

P ZP 2P 2p 2 m ca+db

= 222226 = e, d, g%z ™).

d=0 ¢=0 =0 a=0

Since g is a generator of Z; there exists a solution r such that z = g". Therefore, the

above superposition can be written as

p- 2P 2p—2p—2 mca+db

1)2 Y YT Y S e d gt)

d=0 ¢=0 =0 a=0
—2p—2p-2p-2 mca-}-db
wzzzzewlwfw
d=0 ¢c=0 b=0a=0

When we observe the machine we will see some configuration |c,d, g*) for some k €
Z,-1. Note that k will depend on a,b and r, and in fact k = a —rb (mod p—1). Now
consider the probability with which we see such a state. This is the square of the
absolute value of the amplitude of being in configuration |c, d, ¢*). The amplitude of
observing this particular state is the sum of the amplitudes of each path that could
lead us to such a configuration. Those paths arise from all possible values of a and b
such that £ = @ — rb (mod p — 1). Therefore the probability of arriving at this state
is:
1 3 2mi(actbd)

(p—1)° -
a,bEZp..
a—rb=k (mod p-1)

50

Now substituting for @ in the amplitude we get:

2
2mi k+rb ctbd
p-1
o L
2
2mi kc+ d+rc
= P— 1
—1) (o—1)2 Z €
2mike p—2 2
e p-1 2mib(d+re)
= — p-l
— 2
(r-12i=
—2 2
amike |2 1 R 2min(dirg
= r—1 E e p-i
(p—1)?

2mikc
Since e’ 7-1 is just a p — 1-th root of unity, it is situated on the unit circle and its

absolute value is therefore 1. Thus the probability reduces to:

1 piz 2mib(d4re)
[
(p—1)2 b=0

Now, suppose that d + rc # 0 (mod p — 1), then applying Lemma 6.1 we have the

probability being 0. Therefore, the pairs of d and ¢ that we do get must have the
property that d = —rc¢ (mod p—1). Let ¢ = (—c) (mod p—1). Then if ¢’ and p—1
are relatively prime then ged(c¢/,p — 1) = 1, and we can use the extended Euclidean
algorithm to find two integers s and v such that 1 = s¢’ + v(p—1). But then 1 = s¢'
(mod p — 1) which means that s is the inverse of ¢’ in Z,_;*. So we can find r simply
by computing ds. It remains to show then that indeed ¢’ and p — 1 are relatively
prime with high probability. Since c is essentially chosen randomly and uniformly

from Z,-1, so is ¢’ random and uniform. The probability that ¢’ is relatively prime

51

to p— 1 is therefore:

{k € Zp_1|ged(k,p—1) =1} |{k € Z,_1|k is prime and k |/p — 1}|
p—1 - p—1
[{k € Zp1|k is prime}| — |{k € Zp—1| k|p — 1}]
> p—1

(The notation & |/p— 1 is used to denote k does not divide p—1.) The prime number

theorem states that the number of primes not exceeding a number z is in @(@),

and [{k € Z,_1| k|lp — 1}| < log(p—1) is trivial. So there exists some constant p such

that:
{k € Z,|ged(k,p—1) =1} ari —log(p — 1)
p—1 - p—1
p_ log(p—1)
log(p — 1) p—1
T
log(p — 1)

for some constant . If we perform this algorithm ¢ = l"—g(p——gﬁ@l times, we will get

a collection of independently chosen ¢}, c}, ¢y, ..., ¢;. Now, the probability that this

algorithm fails to find one ¢; which is relatively prime to p — 1 is

t

Prffor all i € {1,2,..,t}, ged(ci,p— 1) # 1] I1 Prlged(ci,p — 1) # 1]

I

_ lj(l ~ Prfged(clyp—1) = 1]
¢ 0

< H(lm>

(7 Y

- (1 log(p—l))

< (e“ﬁ?h)t

<!

3
We have thus exhibited a quantum computation which is correct within an error

52

bound of —15 It remains to show that this computation is feasible in polynomial time.
A quick observation shows that with the exception of the computation of F, on a and
b above, all other steps can be performed in polynomial time. The discussion in the

next section and its culmination in Lemma 6.3 completes the proof. [9] [

6.5. Efficient Computation of the Fourier Transform

In order to justify Shor’s algorithm in Theorem 6.2 we must show that the Fourier
Transform can indeed be computed in time that is polynomial in the length of the
binary representation of the input. Since the output of the Fourier Transform on a
given configuration |z), where z € Z,, is the superposition

1 2miys
= e |y).
N e ly)

Y€Zn

it is not at all clear that F), is an operator computable in polynomial time. In fact,
since the binary representation of z € Z, has length b = [log(n)], the number of
possible resulting configurations is n, which is greater than 2% (an exponential in the
length of the representation.) Furthermore, it is not known how to compute F, in
general for any n in polynomial time. However, if n is a smooth number, there is
an elegant construction which allows us to compute F,. In fact, there are a number
of other restrictions that one can place on the Fourier Transform problem to ensure
that it can be computed in polynomial time. For example, Coppersmith [13] shows
how to compute F), in polynomial time for cases where n is a power of 2.

In order to show that this construction is polynomial in nature we will require the

following lemma:

LEMMA 6.2. Let f : {0,1}" — {0,1}™ be a function such that both f and f™! :
{0,1}™ — {0,1}" can be computed in polynomial time by a classical deterministic
Turing Machine. Then there exists a quantum Turing machine M which given an

input |z) where z € {0,1}" computes |f(z)) on the tape and erases the input z.

53

PRrROOF Since f is polynomial time computable, we appeal to Bennett’s result (The-
orem 4.2) and compute |z, f(z)) on the tape. We then appeal to Bennett’s result
again and compute f~! on f(z) to get |f~1(f(z)) Dz, f(z)). (Note that Theorem 4.2

is applied in reverse order of input and output.) However,

[(f(@) @z, f(2)) = le @z, f(z)) = [z Bz, f(2)) = f(2)) O

The next theorem completes the justification of Theorem 6.2 and provides us with
a method for computing the Fourier Transform on vector spaces of dimension n where
n is a smooth number. The proof of the theorem was proposed by Wayne Eberly.

(14]

THEOREM 6.3. There exists a quantum Turing Machine M and a polynomial P,
such that given a smooth number n, M computes the n-bit Fourier Transform F, on

an input |z) where ¢ € Z,, in time polynomial in log(n). [9]

PROOF Let n be some smooth positive number. If n is a smooth number then its
prime factorization p;p,ps..px can be computed in polynomial time, since a simple
trial and error which attempts to divide n by all numbers up to clog(n) would reveal
all the primes. (c is the constant which we fixed above.) Since each p; > 2 for all ¢, we
have that k < log(n). Such a computation is clearly polynomial on a deterministic
Turing Machine, and since we are not restricted to erasing the input n, it can be
done in polynomial time on a quantum Turing Machine. The algorithm will do the

following:

(1) Given that n = pypaps--- pi, the algorithm divides n into ¢ = p; and r =
D2-- Dk

(2) Since n is smooth, ged(g,r) = 1, and thus we can use the Extended Euclidean
Algorithm to find two elements s,t € Z such that sqg + tr = 1.

(3) Given |z) reversibly compute |v,w) where v = (tz mod ¢) and w = (sz
mod 7).

54

(4) Since v € Z,, and g is guaranteed to be logarithmic in n, we can compute F,
on v in polynomial time.

(5) Since w € Z,, we can compute F, recursively on w using our algorithm, unless
of course r = 1, at which point we stop.

(6) The computation of steps 4 and 5 yields some configuration |v’,w’) where

v' € Z, and w' € Z,. Given these as inputs, we reversibly compute a y € Z,,

such that y = v’ (mod ¢) and y = v’ (mod r).
In order to show that this algorithm does indeed compute F, in polynomial time,
we must show that all six steps of the algorithm can be computed in polynomial
time, and that the algorithm is indeed correct. We begin by showing that each step
is a polynomial time well-formed quantum computation. We have already argued
that step one is well-formed and polynomial time computable when n is smooth.
The Extended Euclidean Algorithm is a polynomial time algorithm and it does not
require us to erase the inputs. Appealing to Bennett’s result, step 2 is a polynomial
time well-formed quantum step. In order to show that the same is true of step 3, we
prove two facts. Firstly, we show that the function f : Z, — Z, x Z,, f(z) = (tz
(mod ¢),sz (mod r)) where sq + tr = 1, is a polynomial time computable function
on a deterministic Turing Machine, and secondly we show that =1 : Lgxlp— Ly
is computable in polynomial time on a deterministic Turing machine. We then apply
Lemma 4.2.

It is obvious that f can be computed in polynomial time on a deterministic Turing
Machine, since the entire computation involves two multiplications and two divisions.
The inverse is a bit trickier. We are given (v,w) € Zy X Z, and we are interested in
getting the element « € Z, such that v = tz (mod ¢) and w = sz (mod r). Since
sq +tr = 1, we have that tr = 1 (mod ¢) and s¢ = 1 (mod r). Therefore in Z,,
t™' =r, and in Z,, s7! = ¢. Thus if we compute rv = r(tz) = (t"'t)z = z (mod q)
and qw = ¢(sz) = (s7's)z = z (mod r), we will have (z mod r) and (z mod g).
With the use of Chinese Remaindering (Theorem 3.28 in Abstract Algebra [11]), we

55

can now find z in Z,. So f~! is as well computable in polynomial time, and hence,
step 3 is a well-formed polynomial time quantum computation. A similar but easier
argument applies to step 6 in the computation.

Step 4 can be done trivially in polynomial time, and step 5 can be computed in
polynomial time by induction. It therefore remains to show that this computation is
indeed the computation of F,.

Starting with input |z), we compute |v,w) where v = (tz mod ¢) and w = (sz

mod 7). We then compute F, on v and arrive at the superposition:

qX_i 1 21n1w |)
—€ 7 |[V,W
Vi

v'=0

In step 5 we compute F, on w, to get the superposition:

M 2mivw’ 1] I;
e L |y)

21n! ruu'+quI! '
— e @ [v', w')

—~

Now, back substituting n = gr, tz (mod ¢)) and w = (sz mod r) we get:

-1 r-1

2mi(r(tz (mod q))v +q(sz (mod r))w’)
\/ﬁ 3P o', ')
v'=0 w'=0

In order to simplify the notation we let w =e % and so the above is:

-1 r-1
Z Z r(tz (mod q))v'+g(sz (mod r))w')|'UI, wl>

v’—O w!=0

As the last step we compute y such that y = v’ (mod ¢), and y = w’ (mod r) to

arrive at the superposition:

1 Z w(r(t:z: (mod ¢))(y mod g)+q(sz (mod r))(y mod T)|y>

\/ﬁ yGZn

We now want to show that,

[r(tz (mod ¢))(y mod ¢)] mod ¢ =[rtzy] mod q.
56

But, we know that for some integers oy, € Z,y = (21 + ay¢) and tz = (22 + a2q).

So,

rtzy = r(z2+ 02q)(z1 + aq)

r2221 + rq(2200 + 210 + Q019)

rz221 + n(z00 + 2105 + 01 q)

I

Taking (mod n) on both sides we get:
rtzy = rz2z; (mod n)
Observe that z; = (y mod n) and z; = (fz mod n). So indeed
[r(tz (mod @))(y mod)] = [rtzy] (mod q).
In the same way we show that
[4(sz (mod r))(y mod r)] = [gszy] (mod g).

This means that the above superposition can be written as:

Z (rtzy+qszy) Iy

yEz
— Z W rt+qs)|y
yEz
1
= —= > ")
\/EyGZn

Note that this is precisely the action of the Fourier Transform on input |z), and we can

therefore conclude that the algorithm is correct and will compute F, on |z).[14] O

6.6. The General Solution

Prior to exhibiting the algorithm for the general, unrestricted case of the Discrete
Log problem as it is presented in problem 6.2, we require a number of intermediate

results which are algebraic and number theoretic in nature. Their proofs are some-

57

what cumbrous and the reader is therefore advised that it may behoove their general
understanding to skip the proofs of Lemmas 6.3, 6.4 and 6.5 on an initial reading.
Nevertheless, for the benefit of interested readers the proofs are presented in their

logical order.

6.6.1. Producing smooth numbers. The general solution to the Discrete-Log
problem is analogous to the solution of the smooth case. The main problem is that
we are unable to compute the Fourier Transform F,, in polynomial time as we did
in the previous section. It is unknown how to compute F, in polynomial time for
a general number n, and we are therefore required to find a way to circumvent this
problem. In Theorem 6.2 we restricted the solution of the problem to those groups
Z};, where p — 1 was a smooth number. This is a solution for such groups where the
order of the group is a smooth number itself. We will show that it is suffices to find
a smooth number that is close to the order of the group in order to find a solution
that is satisfactory within an error bound of 3.

Thus, we will require our choice for a smooth number ¢q to be within a factor of 2
away from p, i.e. ¢ will be smooth such that p < ¢ < 2p. Before we use this, we must

first show that there exists such a q and that it can be found in polynomial time.

LEMMA 6.3. There exists a quantum Turing machine M and a polynomial P, such
that given a number p, M finds a smooth number q such that p < ¢ < 2p in time

P(|p|) where p is encoded in binary. [9]

PROOF Since we are not required to erase the input p from the tape it is sufficient
for us to exhibit a classical deterministic algorithm and apply Bennett’s result. The
algorithm is quite simple.

(1)
2)
3) while (§ < p) do
4) if (k is prime) then

—1
—2

I >

(
(
(

58

5
6

(5) gegxk
(6) ke—k+1
(7) while(¢ > 2p)
(8) if (k is a prime) then
(9) if (£) then
(10)
(11)
)

-
k—k—-1
(12) g =4

This algorithm multiplies the primes § =2-3-5-7 - p,, until the product is larger
than p. If the product is larger than 2p it divides by the largest number that keeps the
product larger than p. So it is guaranteed that p < ¢ < 2p. We must argue, however,
that this algorithm is indeed polynomial. There are known randomized algorithms
to perform the primality testing in lines 4 and 8 in polynomial time. [12, 15] So it
remains to show that k never exceeds a polynomial in log(p). Furthermore, we must
show that the resulting ¢ is indeed smooth, and so p, can not exceed clog(p) for some
fixed constant c. The final value of k, however, is the last prime that is multiplied
say pr. So k < p,, and both facts are shown if we prove that p, is less than clog(p).
The Prime Number Theorem states that the number of primes less then or equal to
T isin @(ﬁ) Let p., be the m-th prime number, and use the fact that the number

of primes less than p,, is exactly m. So for some constants o and 3,

AP /Hpm
<m<
In(pm) = 7 In(pm)

Therefore, for all m > 1,

1 1
—mln(pn) < pm < om In(pm).

B
Applying this inequality again to p,, we get,

1
lmln(lmln(pm)) < pm < émln(amln(pm))-

g8
59

Which implies that,

Zmlin(Gm) + (ln(p))] < pn < mfla(Zm) + In(n(pn)]

But its clear that In(p,) < m. (It is an easy induction given Theorem 418 in An
Introduction to the Theory of Numbers [16] which states that for all positive integers
z there exists a prime between z and 2z.) Therefore, it’s clear from the above that

there exist constants o/ and 4’ such that:
a'mln(m) < pn, < f'mlIn(m)

The number ¢ is the product of the first r primes with the exception of 1, and
since we are interested in a lower bound for this number, we may assume that it is
the product of the first r — 1 primes. Moreover, this product is guaranteed to be less

than 2p. Thus,
=1
2p > Il
i=1

Using the inequality in 6, we have,

> ﬁa'iln(i)
> (-1
S ((r_l))<"‘)

The last step is an immediate result of Stirling’s approximation of r!. [17].

Taking the natural logarithm of both sides we arrive at
In(2p) > (r—1)In(r —1) = (r—1)

For r sufficiently large, there exists a constant § such that rln(r) < §(r—1)In(r —1).
Therefore,
rln(r) < é6(In(2p) + (r — 1))
60

Through the use of equation 6 we deduce that,
pr < B'rin(r)
Combining the last two facts two we get,
pr < B'6(In(2p) + 7 - 1)
Since r < 1n(2p) trivially, we conclude that

pr < 28'6(In(2p))
which shows that p, is indeed in O(log(p)).[9] O

6.6.2. A Solution to a set of Equations. Unlike the solution for the smooth
case of the Discrete Log problem, where we are guaranteed to ultimately arrive at
a congruence of the form ar = b(mod p — 1), where r is the discrete logarithm,
the general case does not have this property. We will therefore require the next two

lemmas. The proof of the first was proposed by Wayne Eberly [14]

LEMMA 6.4. There exists a quantum Turing Machine M and a polynomial P, such

that given a number n = ph pke pke ---pf', and the t simultaneous equations:

air = di (mod n)
ayr = d; (mod n)
ar = dt (mod n)

with the promise that a solution r exists, and that for every p;, there exists a j such
that p; |/a; (p; does not divide a;,) M returns r in time P(u) where u is the length of
n and the congruences in binary representation. Note that n is given to the machine

without its prime factorization.

61

PROOF Since we are not required to erase the inputs, we once again appeal to
Bennett’s result (Theorem 4.2) and thus exhibit a polynomial time deterministic
algorithm solving the problem.

Given the above equations, we begin by computing ¢; = ged(a;,n) for all ¢ €
{1,2,...,t}, and thus g;|a; and g;|n. Since a;r = d (mod n), we have that g;|d; (for

otherwise there is no solution.) But now we can divide the equation through by g¢; to

()= 0)

Let r; = r mod Z. So r; is a solution to the new equation. Since ged(%,2) =1, it
g1 9 gi ?

get a new equation:

is the unique solution, and furthermore, it is easily found.

So we now have a new set of congruences:

n
r = r; (mod —
1(!]1)

n

r = ry (mod —
2 92)
r=r (modﬁ)
gt

Let m; = 2, and note that for any positive integer A, if h|m;, then

r=r; (mod ﬁ)

h

We desire a set of equations with relatively prime moduli say m}, mj, ..., m}. If we can
find equations for r in relatively prime moduli mj,mj,...,m/ then, Chinese remain-
dering and the fact that Zpms..mt = Loy X Ly X« - - Ly, (Theorem 3.28 in Abstract
Algebra [11]) will provide a solution r € Zpim;..m,. It can easily be shown that
n|lem(my, my, ...,m;). Thus, if we can further construct mj,mj, ..., m{ such that that
lem(m}, m}, ...,m}) = lem(my, ma, ..., my), we will easily be able to find a solution for
rin Zy,.

62

We derive the new set of moduli by initially letting m} = m;. We then process
each m;, ¢ € {2,..,1} in turn, each time constructing a new set of relatively prime
moduli m’s, j € {2,..,s;} where the s;’s are simply an increasing sequence whose
values will be determined by the algorithm as it progresses. The final number in this
sequence s; will be equal to s. We will also require that after processing m; the new
set of mi’s, j € {2,..,s;} will obey lem(my, my,,m;) = lem(my, my, ...,m}). The
construction of this new set will be based on the old set of moduli m},mj,...,m/,
and on m;. In particular, we would like to extract all the new information which
m; possesses, i.e., those factors which are not found in any of m},m/, wymy, . To

. A

careful observation will reveal that u; consists of only and all those primes whose

that end, for each j € {2,..,s;} we let u; = and we let v; =

m ™
ged(mj,mi) ged(mj m.)

power in m; is strictly smaller than their power in m’. Likewise, v; has as factors
only and all those primes whose power in m; is strictly larger than their power in m.
Let w = log(max(mq,my, ..., m;)), where w represents some polynomial upper bound
on the largest power of any prime factor in any of the moduli my,ms,...,m;. Set
a = ged(uf, m;), B = ged(v¥,my), ¥ = ged(u¥, m;) and § = % Thus a is composed
of all those primes whose power in m; is strictly larger than their power in m;, and,
moreover, the power of those primes in « is precisely equal to the power of those
primes in m;. 7 has the same prime divisors as « except the power of those primes
in 7 is equal to their power in m;. Likewise, 3 is composed of all those primes whose
power in m; is strictly smaller then their power in m;, and the power of those primes
is equal to their power in m;. Thus, § is composed of exactly those primes that appear
with equal powers in both m; and m/. Note that o and & are relatively prime and
hence we replace the modulus m; by the two moduli @ and 6. This process seperates
the new prime powers introduced by m; from prime powers which have already been
incorporated. The only new information brought about by m; is now contained in 3
and thus we replace the modulus m; with 8. It is quite evident that this procedure

will yield a new set of relatively prime moduli whose least common multiple is the

63

same as lem(mq, my,....,m;). This completes the proof.

LEMMA 6.5. There exists a quantum Turing Machine M and a polynomial P, such

that given a number n = p*, (p prime) and the congruence:
ar = d (mod n)

with the promise that a solution r exists, M returns r in time P(u) where u is the
length of n and the congruence in binary representation. In this case n is given to

the machine with its prime factorization.

PROOF Once again we don’t need to erase the input, so we simply exhibit a deter-
ministic algorithm for the problem. Now, if ged(a,n) = 1 we simply find ¢! and
we are done. Otherwise, we can assume that p' = gcd(a,n), where [< k, since p
is prime. Then, p'|a,p'|p* and p'|d (otherwise the equation has no solution). This

implies that we can divide the equation through by p', and observe that

k
ra =d (mod n) if and only if (%) a= (il) (mod p—,)
p p p

However, in the latter equation <%

») is relatively prime to (1’;), thus we can invert a

I3
and solve for r. [

6.6.3. The Solution. Given the above results, we are now able to devise an
algorithm for solving problem 6.2. Shor’s major result is the following theorem,

solving the Discrete Log problem in quantum polynomial time.

THEOREM 6.4. There exists a quantum Turing Machine M and a polynomial P,
such that given an n bit prime p, a generator g € Z}; and a number x € Zy, M returns
a number r € Z,_, such that ¢" = z in time P(u) with error at most 3, where u is

the length of p, g,and x in their binary representation. [9]

PROOF We begin the proof by presenting an algorithm similar to the one used in
the proof of Theorem 6.2. We then define what we consider to be good outputs from

the algorithm, and argue that a polynomial sample of good outputs will enable us to

64

deduce the discrete logarithm r. Finally, we show that the algorithm gives a good
output with constant probability.

Just as in the proof of Theorem 6.2, we will not mention in the description of any
particular configuration any of those values that are never erased (such as the inputs).

So given a prime p, a generator g € Z, and a number z € Z;. The algorithm will be

as follows:

(1) Use Lemma 6.3 to find a smooth number g such that p < ¢ < 2p.

(2) Choose two elements a, b from Z,_, at random, to get |a,b) on the tape.
(3) We compute g°z~" on the tape to get |a, b, g*z~*).

(4)

4) Compute Fy on a and F, on b.

A quick observation and appeal to Lemma 6.3 and Theorem 4.1 reveals that each
one of these steps can be done in polynomial time. The only step which requires some
justification is step 4, in which we compute F; on a and b. In this case we compute F,
on a and b despite of the fact that both elements are in Z,_, rather then Z,. However
since ¢ > p, we can view Z, as a subset of Z,. Since ¢ is smooth, we can compute F,
in polynomial time by appealing to Lemma 6.3.

Now consider the state of the machine after step 2. It is found to be in a superpo-

sition of all possible choices for a and b as follows:

-2p-2

—ZZlab

b 0 a=0
Step 3 will place the machine in the superposition:

p—2p—2

—Zz|abgz

b=0a=0
Breaking down step 4, we first compute F; on a to get the superposition:
9—-1p—-2p-2

oYY S e

c—Ob 0 a=0

65

We then compute F, on b to get the superposition:

g—1g=—1p=2p-2 1

p—1§§§§ N \/

lq 19-1p—-2p-2

_ _Zzzzez,ﬁcﬁibd|c7 d,gaz_b>

lq 150 =0 5= am0

27nac 2mibd

eq‘cdg -

Observing the machine upon termination of the algorithm, we will find it in a state
le,d,y) where y = gi for some k € Z,_1. We will define a good output to be a state
le,d,y) that bears the following two properties:

(1) |7'c + d — lele=l) modg] p‘;_lmOd . ‘ < 2 {mod ¢}

(2) [e(p—1) mod ¢] < 3%

By {mod ¢} we mean the remainder after division of a real number by ¢, (e.g.
5.5{mod 3} = 2.5.) We intend to show that given a polynomial size sample of good
final states we can deduce r. To that end, we will show how to extract an equation of
the form ar = b (mod p — 1) from property 1, and then using a polynomial sample
of these with property 2 will indeed be enough to solve for r.

Property 1 states that:

retd— rle(p—1) mod g] < l{mod 7
p—1 2
Dividing through by ¢ we get:
re d_ rle(p —1) mod g] < 1{m0d I
7 q (p—1)g 2

Rearranging terms and factoring r we arrive at:

(©) [§+ (§ =) mod q])

1
<— .
< 2 {mod 1}

We let,
ofp—1)—[e(p—1) modgq]
q

and rewrite 6 as

1
< —{mod 1}.
29

Note that « is an integer, since g|[(c(p — 1) — [¢(p — 1) mod ¢]). Now, by simply

1

rounding off the number % to the nearest multiple of ol

d’ '
say .=7, we can find d' such

that
d' d

p=1 ¢ 7 2p-1)
{mod 1}, as follows:

R '
We now consider ’%"—‘

d'+ra

p—1 P—

d d d ra
=R R
2(pl_1) + 2lq {mod].} .

= G-ttt {medn)

IN

{mod 1} by triangle inequality

INA

Multiplying both sides by p — 1 we get,

p—1 p—1

|d' +ral < +
Sty

1 p—1

< 2t3pon

= 1{mod p—1}

Hence, |d' + ra| < 1{mod p — 1}, but d' + ra is an integer, whence d’ + ra = 0
(mod p — 1). At this point we once again encounter the problem of being unable to
invert o = —a unless it is relatively prime to p — 1. We claim though that while in
general o’ won’t be relatively prime to p — 1, a polynomial sample of such equations
will indeed allow us to deduce r.

We write p — 1 = pliph .-+ pfm where the p;’s are the prime factors of p — 1 in
increasing order. Using the fact that for any number w = wyw,, if ged(wy,w,) = 1,

then Z,, =2 Z,,, X Z,,, we decompose

Lig A2l oy XL oky X oo XD ke XZL & ko
p-1 ! Py et N A

where 1 < ¢ < s implies that p; < 40. This decomposition can be done in polynomial
time since we are only required to find the factors of p — 1 that are less than forty.

Since the two groups are isomorphic, it is suffices for us to solve the equation d’' = ro/

67

in each one of the groups Z i, Z i,, .. Lok, T st kot2 i from the decomposition.
Py P Peg1 Peg2 'Pm
The answer in Z,_jcan then be recovered using Chinese remaindering. Now, for each
1 <1< s, we can solve the equation in Z,x; using Lemma 6.5.
We now observe that if p; > 40 is a prime such that p;|p — 1 then % is an upper
bound on the probability that p;|o/. From the algorithm we can generate a set of ¢,

o’s uniformly and randomly satisfying o/r = d; (mod p—1). The probability of any

i
particular prime p; > 40 dividing all of the ¢, a;’s is thus at most (f}—?) . Now,

Pr

pi>40
there exists a p;|p — 1 such that p; divides all ¢ a”s]

IN

> Prlp; divides all ¢ o'’s]
pi>40
pilp—1

20*
> (%)

pilp-1
5

< e ift>2

IA

If t is large enough then ¢ can be made small enough to ensure that for every prime
pilp, pi > 40, there exists some o such that alr = d; (mod p — 1) for some d; and
p; [/ (Pr; does not divide ;. We now apply Lemma 6.4 to solve these equations. To
summarize, we have thus far shown that if we can could obtain a polynomial number
of good states then we would be able to solve for r.

It remains to show that we get a good output with constant probability. We begin
by analyzing the probability of arriving at a particular state |c,d,y) where y = ¢*.

Since after step four of the algorithm the machine is the superposition

—lg-1p=2p- 2miact bd

ZZZZG ©leyd gt

d 0¢=0 b=0 a=0

68

the desired probability is:

1 2mi(ac+bd
eI
a,bEZp_l

a—rb=k (mod p-1)
Observe that because br+k = (br+k (mod p—1))+(p—1) [j we can substitute

br+k
p—1

a=br+k—(p—l){

in the equation above to get

2

-2
: 1)] o 3 (brth—(p~1) | 3£ |)e+bd)
p—1)qg b=0

2mike
We eliminate a constant factor of e ¢ and arrive at,

1 2mi brik
3 2 (brotbd—c(p—1) | Z2E |)
e 9 P .
‘(p —1)giZ

We then add and subtract a term of p”%l[c(p —1) mod g] which yields,

2

Z 21r|b

(P—l)madd)ezf," 225 [2 le(p~1) mod g]

We want to analyse the magnitude of this quantity in the case of a good output. So
we begin by first considering the somewhat simpler sum, which does not include the

second exponential:

1 pz_f 2mib br_[c(p—1)modg])
e 9 p=1
(p—1)q b=0
We rewrite it as:
1 - 0262’""(rc+d— br[e(p—1)modq])
q p—1

The first thing to observe is that the sum is a sum of vectors in the complex plane.
This is because each one of these vectors is simply some g¢-th root of unity situated
on the unit circle. We can view the quantity in the brackets as taking the “average”

of all these vectors. We are interested in lower bounding this so called average for

69

those cases where the output is good. Recall that in a good output:

r

S=|rc+d—
p—1

le(p—1) mod g]| < 5 {mod g}

So in fact as b ranges from 0 to p—2 the angles in the sum range from 0 to 2—“”;—2)—5 <.
Hence, all the vectors in the sum are in the top half of the unit circle. Figure 6.1

depicts this situation.

TR P
¢ 9 ¢

FIGURE 6.1. Vectors Around the Unit Circle

Now, if we want to lower bound the average of the vectors, we can simply choose a
direction and lower bound the average of the vectors by the average of the projections
of all the vectors in that direction. We choose the direction of the vector (),

This direction is chosen specifically since it is expected to be close to the average

70

direction of all the vectors (note that the angle formed by this vector and the first
vector bisects the one formed by the last and first vectors.) The projection of an
arbitrary vector eg?ﬂb's, for b < 7’;—2 is cos(6;) where 6, is the angle between 7% and

2mi (p—2 e
(), However, as seen in Figure 6.1, if 6} is the angle between e’s"% and the

&
y-axis then
cos(0h) > cos(8}) = sin(~ —) = sin(>%b8) > sin(™).
2 q 2p
Therefore,

P—2 2mibs %2
! e p—1] > ngin(lb)
7 |b=0 q 2p

b=0

~ 2 / * sinbdb
qr Jo
1
e 00
q

However, the sum we that we are actually interested in lower bounding contains the

s

same angles shifted by at most, J;

(this is the only effect that the second exponential
has.). If we apply this shift in a way that minimizes the possible resulting projection
we get,

2 (% . 1

= / sinbdb € Q(-)

qr J 3¢ q
Therefore the probability of each good state is in Q(q%) Now, for every c there is
exactly one d such that condition 1 holds, and there are approximately 2 ¢’s such
that condition 2 holds. For each pair ¢ and d there are p — 1 possible values for y.
Thus, there are L%)—q possible good states. The probability of obtaining some good
state is therefore in Q (ip_;}ﬁ) = ()(3), and hence it is constant. This completes the

2
proof. (9] O

71

CHAPTER 7

Factoring

Perhaps the most striking result in the quantum computation theory is Shor’s result
regarding the factoring of integers. Factoring of an integer into it’s prime factors is
considered a very difficult problem on a classical Turing Machine, and one for which
no known polynomial time algorithm exists. In his paper Shor proves that a quantum
Turing machine can compute the prime factors of an integer in polynomial time. In
order to prove Shor’s result, we will require some background in the elegant theory

of continued fractions.

7.1. Continued Fractions

A finite continued fraction is a fraction of the form

1
ao +

a; +

az +

ap-1+ —
a

n

where each of the a;’s are integers.
Every rational number can be expressed as a finite continued fraction, and the
sequence of integers ai,as,das,...a, is called the continued fraction expansion. In

order to find the continued fraction expansion of a particular rational number z,

72

we let ap = |z], and 2o = = — |z]. Then, for each i > 1, let a; = lz—l_—J and
z; = =~ —a;. When z; = 0 we stop and set n = ¢. The claim is that this algorithm

Ti—1

produces ag, ay, ..., a, such that

1
T =ag+
1
ay +
1
a; +
1
An—1 + -
an
This can be seen by observing that if z; = I'l—_l — a; then z;_, = le_a‘,. Recursively
applying this equation we get:
1 1
T=ag+To=ag+ =@+ ——m=...
a + 2 1
a; +
et Z2

When z; = 0 this process terminates. It is easy to show that the z!s are fractions with
decreasing denominators, and thus this process will indeed terminate if z is rational.
Furthermore, we can define the sequences b; and ¢; relative to a given continued

fraction expansion a; to be:

b; 1
C;

a1 +

az +

1
iy + —
a;
We call the sequence of fractions %‘L the convergents of z, and present the following
algorithm to find them.

73

b — & b= ; i aibioitbio
Let o= and o= @%lﬂ Then for every i > 2, let %— = JTiii._—i The
correctness of this algorithm is easily proven by induction (we omit the proof here).
Moreover, it can be shown that ged(bi,c;) = 1 for all 7 > 1. In lieu of a proof
we provide an example, which will illustrate the method behind continued fraction

expansion.

EXAMPLE 7.1. Consider the fraction %. Then

o =[5 =1 2= (32 -1=12 bt
w=ll=2 wm=l®]-2em B=inR =
=% =2% w=|8]-26=2 b foad 2
=3 =2 z=|3-2=1 a=REu =
as= 3] =3 z5=[3] ~3=0 gE%:gg.

Note that the algorithm is simply performs an efficient top down evaluation of the

continued fraction expansion of

s _
562 1
1+

2+
1
26+ ——
1

94 _
+3

This algorithm runs in time polynomial in log(z) on a deterministic Turing Ma-
chine. This is easily seen from the fact that the algorithm is essentially Euclid’s
greatest common divisor algorithm applied to fractions. We can use it to find all of
the convergents to any rational number z. Since this algorithm is not required at
any stage to erase the rational number input, we have effectively proven the following

lemma.

74

LEMMA T7.1. There exists a Quantum Turing Machine M and a polynomial P, such
that given a rational number §, M finds all the convergents to § in time P(log(a) +

log(b), i.e. polynomial in their binary representation.

7.2. The order of an element in Z

The Integer Factorization problem is the following:

PROBLEM 7.1. Integer Factorization. Given a composite number n, we would like

to find p > 2 and ¢ > 2 such that n = pq.

The algorithm proposed by Shor to solve Integer Factorization attempts to find
the order of an element in a multiplicative group Z:. There exists a BPP reduction
proposed by Miller [15] from factoring into determining the order of an element. Thus,
given an algorithm to find the order of an element in Z? for any n, we can use this
reduction to factor any integer. The idea in the reduction is that given a number n
to factor, we randomly and uniformly choose an element z € Z, and then compute

Iz
2

its order r;. Using Euclid’s algorithm we find d = gcd(z %, n). It can be shown, that
with high probability d is neither 1 nor n and thus d is a non-trivial divisor of n.
In this section we present Shor’s algorithm for the order of an element together

with it’s analysis. For clarity we define the Order of an element problem:

PROBLEM 7.2. Order of an element. Given a positive integer n and an element

z € Zy, we would like to find the least positive integer r such that " =1 (mod n).

The algorithm and the analysis is somewhat easier than the one for the general
case of the Discrete Log problem. Just as in Discrete Log, we define which of the
algorithm’s outputs are considered good for our purposes, and then show that such
outputs are expected with high probability. The idea being that a collection of good
outputs will allow us through the use of continued fractions to deduce some fraction
¢ (for which we will know both the numerator and denominator), and such that r is

the order of the element z, in Z?. This will prove the following theorem:

75

THEOREM 7.1. There exists a quantum Turing Machine M and a polynomial P,
such that given a positive integer n and an element z € Z% M finds the order of

x € Z}, in time P(log(n) + log(z)).

PRrROOF Given n, and z € Z}, the quantum algorithm begins by finding a number g
such that 2n? < ¢ < 4n®. This step can be done in polynomial time using Lemma 6.3.

Initially we start the machine in the state |0). As before the inputs are not men-
tioned since they are never erased. Using Lemma 6.3 we will compute the Fourier
Transform Fj on the tape to get,

19
7 ;J |a)

(Note that this is equivalent to choosing an arbitrary element in Z,). We now re-

versibly compute £ mod n on the tape to arrive a the superposition:

12
% Z la,2® mod n).
a=0

At this point the machine is in ¢ distinct states. However, the second component
of the state, is some element in Z} since z € Z}. Furthermore, there are exactly r
possible values for the second component, since r is the order of the element. Because
q > 2n? > 2r? some of these states must have the same element in the second
component.

At this point we compute F,; again on the first component of the tape, and the

machine is then found in the superposition:

1 g-1¢-1

=>>> le;2z* mod n).

q ¢=0 a=0
When the algorithm stops we observe the outcome, and find the machine not in a
superposition of states but rather in some particular state |¢c,z2* mod n). We call

such a state a good state if it satisfies:
- r
(7) I[rc mod n]| < 2

76

The wedge above the mod is to indicate that [rc mod n] is in the range =€ to
ie,

_—rc<[rc modn]<—

q q

as opposed to [rc mod q] which is in the range 0 to ¢ — 1. Given the above, let us see

that for a good state there exists exactly one rational number with a denominator r,

which is within a ;—q neighborhood of 5, i.e. it satisfies:

c d

q

<L
r S o

To that end suppose that the state is good; then, by the Division Theorem, there
exists d > 0, d € Z, such that r¢ = dg + [rc mod n]. (Note that d = HEJ, but we

can’t find it since we lack knowledge of r.) Together with the condition 7 we have

T
—dal < =
re—da| < %
Dividing by r and ¢q we get,
c_q 1
¢ T 2
So the fraction exists. Now suppose that there are two such fractions d;’ and %. Then,
d d| _|d ¢ ¢ d
ror| |r q q¢ T
S A
T q q r
1 + 1 <1 1 < 1
29 T q T 2n? T 2r2

Hence, |d' — d| < %, with d’ and d integers, which implies that d' = d. So indeed
there is exactly one fraction with denominator r satisfying the above condition for
any particular good state. Since we are dealing with a good state we have,

1
4n?

c q

q T
We now appeal to Theorem 185 in An Introduction to the Theory of Numbers [16],

<Ll o
2 - 2r2

77

which states that for any integers « and 3, and any rational number z, if ‘% - x} < §—lﬁ—2,
c_ g

then £ is a convergent of z. In our case, since
B ’ T

< 75, we must have that g— is

a convergent of £ and thus we can find it using Lemma 7.1. We will set the fraction
% to be the first convergent we find with denominator less than n.

The only problem which may arise in this scheme is that d may not be relatively
prime to r and thus the fraction g which we desire may not be in it’s lowest terms
(which would imply that Lemma 7.1 won’t find it.) However, consider all possible
numbers d < r such that d is relatively prime to r. Suppose that there are « such

numbers. Then, every one of the a fractions % is close to some multiple ¢ of the

fraction %, where by close we mean,

c

q

=3

<l
<2

This is due to the fact that there is always some multiple of % that lies in the ;—q
neighborhood of any real number. Hence, every d relatively prime to r has a good
state associated with it, and that state is unique with respect to ¢. Therefore, the
number of ¢’s such that gcd(d,r) = 1 is a. Now, in each state we have |c,2?), and
for each ¢ there are exactly r possible values which z* can take. Thus in total, the
number of good states |c,z*) that have d relatively prime to r is ra. But the number
of elements relatively prime to r can be shown to be in (-5 (this was done in the

log(r)
proof of Theorem 6.2.) So there are Q(log%), possible good states from which we can

deduce d.

We now show that each such state is seen with probability (). This completes
the proof for it means that the probability of seeing a good state from which we can
deduce 7 is in Q(%). To see this we need to approximate the probability of seeing
any particular state |c,z*). If we observe the final superposition, we find that there
is more than one computation path leading to every such state. In particular, all

those states |c, %), such that z* = z* (mod n)) are in the same computation path

and interfere with each other. If we take the square of the absolute value of the sum

78

of the amplitudes we get

1 !

2miac
e
9 =

go=zk

* (mod n), then z°* =1 (mod n), which implies that the order, r, of

Now,if z* ==z
z divides a — k. Conversely, if r|(a — k), then 2* = z¥ (mod n). Therefore a — k = rb

where 0 < b < [ff—'lJ Substituting for a, the probability of any given state is:

2

€ q

==

1 T
q b=0
[g—k—l J 2
1 r 2mibre 2mikc
= - Z e 9 € 9
-

2mire

Since e ¢ is constant with respect to b, we can take it out of the sum. Furthermore,

since it’s magnitude is 1, we ignore it completely, and the above reduces to:

2

1 l- _I:—l J 2mibre
— Z e 49
q b=0

We replace rc by [re mod nl, in the sum (since all multiples of ¢ can be factored

out). If the state is a good state, we know that

[rc mod n] <

N3

Therefore the angles of the complex vectors in the above sum range from 0 to:

2m [g:—lf:lj [rc mod n] - 27 lH#J 5 <
<.

q q
Hence all the vectors lie in the first half of the unit circle. As we did in the general
case of the Discrete-Log problem, we lower bound this sum, by the projection of each
of the complex numbers on the y-axis, i.e. we consider only each vector’s imaginary

component’s contribution to the sum. Thus, the quantity above is bounded below

79

S o (2) e i)

q b=0

We approximate the value of the sin function by its integral to get a lower bound:

E / == (27r (S) [re mod n]) db

We use the substitution y = s, so dy = %db, and we have,

2

4=t T
! sin (277[rc mod n]y) dy
0
R 1| g=k=1[|2
— cos (271'[7‘c mod n]y) il==
B 97[rc mod n] o
N ke 2
_ 1 A _ cos (27r[7'c mod An]% lgr—lJ)
27[rc mod n] 2r[rc¢ mod n]

But cos (27r[7‘c mod n];— lt}:—iJ) < 715, if [rc mod n] > I, since the last angle is

then larger than . Under this condition the quantity above is,

2

1--1
- V2
27[re¢ mod n]
1 2

67+/2[rc mod n]

Since this is a good state, [rc mod n] < %, thus we can bound the quantity above

below by

2
>

2 _ 1
T 36m2r?’

2
6m/2r

This last quantity is clearly in {2 (%) . A similar argument works when [remodg] < L.

1

67r

In that case we approximate the sum of the vectors by their projection on the real

80

number line rather than the imaginary. The proof is complete.

81

CHAPTER &
Limitations of the Model

Shor’s and Simon’s result suggest that the quantum Turing Machine has a tremendous
potential. Thus far they have provided us with three problems which are not known
to be efficiently solvable on a classical Turing Machine, yet have eflicient solutions
on a probabilistic Turing Machine. All three problems are in NP, and none are
known to be in P. Unfortunately, complexity theory has not yet managed to classify
the Discrete-Log problem or the Integer Factorization problem as N P-complete, and
that does not seem to be a likely result in the near future. There is therefore a gap
in knowledge regarding the relative complexity of the above problems to the N P-
complete problems, and we are tempted to ask whether is it possible to solve one of
the N P-complete problems in polynomial time on a quantum Turing Machine?
Unfortunately, the answer seems to be as before - we don’t know. However, the
following theorem suggests that the Quantum Turing Machine exhibits the same

difficulty as all other models to date.

THEOREM 8.1. Relative to a random oracle R, with probability 1, N PE includes
languages not in BQPF [5]

This theorem suggests that in order to have any hope of deciding a random language
in NP in polynomial time on a QTM we must explore the description of the oracle
beyond using the oracle as a verifier. This, however, is also the state of the art in the

continuing efforts to solve the P = N P problem in the classical setting.

82

In order to prove Theorem 8.1, we must first define the notion of indistinguishable
final superpositions. The definition is introduced in order for us to discuss limitations
on the decidability of languages. In order to motivate the definition, we consider a
quantum Turing Machine M deciding some language L € BQP. By definition of
BQP, we know that the Turing Machine will classify an input z with respect to

L with an error bound of at most % Now, suppose that another quantum Turing

5.

Machine does the same with error bound of at most J3;

in that case, both machines
will classify = with respect to L correctly up to a constant difference in the error
bound. It is easy to see that running the latter machine 7 times on the same input
and computing the majority function on the results decreases it’s probability of failure

to less than 3. Hence, the two machines are equivalent within a constant factor in

the running time.

DEFINITION 8.1. Given an quantum Turing Machine M, an input z, and two quan-
tum oracles O, and ', let M©[z] and M'[z] be the the final state vectors of the
quantum Turing machine operating on input z with oracles O' and O respectively.
We will say that the Turing Machine does not distinguish between the oracles, if the
probability of associated with any subset of configurations in M°[z] is different from
the probability of associated with the same subset of configuration in M°'[z], by at

1
most 13°

Given this, we are able to introduce the following theorem:

THEOREM 8.2. Let M be a BQP machine that runs in time p(n), O be an oracle
computing g : {0,1}" — {0,1}", and = € {0,1}". Then for any subset S C {0,1}"
of size greater than 20p(n), there exist two strings sy, s; € S, 81 # g, such that if an

83

oracle O’ computes the function ¢' : {0,1}" — {0,1}" where,

g(t) ift# sy andt+# sy,
g(t) = g(s2) ift=s,
g(s1) ift=ss.

then, M©[z] is indistinguishable from M°'[z].

PROOF Let M be a BQP machine that runs in time p(n),0 be an oracle computing
g:{0,1}" — {0,1}", and = € {0,1}". Let S C {0,1}" be such that |S| = k. We
consider the computation of a BQ P machine running in time p(n). Since the number
of tape cells used in any polynomial time computation is a polynomial in n, we can
consider the computation to be a sequence of applications of finite unitary matrices

on the initial state vector. The composition of these unitary matrices is
U,0U,-10U,_; - - - OUs.

where each the U;’s correspond to a computation which does not query the oracle, and
O corresponds to an oracle query. We will reserve a certain portion of the machine’s
tape for oracle queries, and thus the representation of any configuration will require
2™™ entries in the state vector, for some m. (The proof itself is independent of m.)
Let Z be the initial state vector. Then & has a 1 in the entry corresponding to input

z, and (’s everywhere else. Let

pa]
I
&
~~
8]
N

and

T, = U;O0(z¢24).
Then, it is easy to see that the final superposition vector is ;. We consider the
superposition of states in the state vector z;. It has 2™*" configurations that are
about to query O. (Although only some of them have amplitudes of magnitude
greater than 0.) However, only k2™ of those configurations are about to query strings

84

in 5. Define @) to be the set of configurations that are about to query strings in 5.
Let x4, denote the entry in #; corresponding to configuration ¢; then,

Z |xtq|2 S].

geQ

This is simply because each of the z,’s is an entry in the state vector and the sum
of the squares of the amplitudes in the state vector is always 1. Therefore,

ZT: Y |z <

i=09€Q
However, since we chose to reserve n bits on the tape for oracle queries each config-
uration ¢ can be indexed by js = ¢, where j € {0,1}™ and s € § C {0,1}". So we
write,
®) Y Y lel<r

=0 s€5 je{0,1}™

By the pigeon hole principle, there exists s; € S such that

3 NINLI D S
(9) Z E |xt(151)| > |S| = |S|—1

=0 je{o,1}m

However, from 8 we can also deduce that
- 2
2 Y X lmgl s
=0 s€S5\{s1} j€{0,1}™
and applying the pigeon hole principle again we get,
r T
(10) YooY el < EoT
i=0 je{0,1}m
We now construct the oracle O’ as in the statement of the theorem, and consider the

magnitude of the difference in the computation of M using O and the computation

of M using O'. This difference is:
|UrO'U,—q - - Uy O'Up(Z) — U,OU,_y - - - U OUy(F)| -

We would like to show that this distance is small. Towards that end, we write

85

each vector &; = v} + W;, where v; is the vector which has non-zero entries only in
components corresponding to configurations querying s; or s,, and w; has non-zero
entries only in components corresponding to configurations which do not query either
s1 or s;. In the same way, we introduce a new sequence of vectors a?;, 1;{ and u;{, such

that a;; = 1;{ + 1;{, together corresponding to the computation of M using O'. Now,

7 = U,0(2%)
= U]O(v_é—*-’u_)'o)

= U,0(5) + U0 (xih)

Also, consider z}

~

g = U,0'(z%)
= U,0'(vo +)

= U10'(v) + U,0'(wo)

Since O operates the same way as O’ does on the vector wy, we have
oy = U,0'(%) + UyO(wh)
= U,0'(v) + U10(25) — U10(vg)

= 2+ U,0'(vg) — U10(vp)

We have established in the last step a relationship between x_;l and 77, and we shall
now attempt to find such a relationship in general. To that end, we do the same with

86

2}y as follows:
zy = U,0'(s})

= U,0'(21 + U;0'(vo) — U1 O(wp))

= U,0'(27) + U:0'0,0' (%) — U0'U,O(v)
O'(v; + W) + U,0'U,0' () — U,0'U, O(3%)
= U,0'(w1) + U,0' (@) + U,0'U, O' (%) — U, 0'Uy O(wp)
= U0'(67) + U,O(uih) + U, 0'U, O' (%) — U O’ Uy O ()
= U0'(41) + U:0(z1) — U,0(5%) + U;0'T, O' (%) — U, O'U, O(w)
= @5+ U,0'(91) — Uy0(9}) + U,0'U, O/ (5) — U,0'U, O(wp)

In general,

axd

z
m—‘t + Utol(vt——'l) - UtO(v[Ll) + UtO’Uc_lO'(v{Lz) — UtOlUt_lO('Ugiz)
+ tre + UgOIUt_]Ol Tt UlO’(vT)) — UtOIUt_l OI e U]O(U_E))

Therefore the magnitude in the difference between the two computations:
|7} — &} < U0 = O)(via)| + [UO'U, 1 (O = 0)(v,2,)|
44 |UTO'U,_1O' e U](OI bt O)(U_E))I

However, these matrices are unitary, and they therefore preserve length. Hence the

above is,
= (0" = O)(uZ)| + (0" = O)(w:Za)| + -+ + (0" = O)(wo)|
2lve]+ 2lv 2] 4 - 4 g

r—1
23 l4.
=0

IN

1

87

We now note that [0i| = ¥;e(013m [Zijsy)|* + |Zi(jsy)|*, and using equations 9 and 10
we have,

N T

B <23 X faige + i

=0 je{0,1}m
2r
9 —=—
(|5| - 1)

Since r < p(n), we set |S| — 1 > 20p(n). So that,

IA

|} — 2| <

| =

We will now show that the difference in the probabilities between :v_;T and Z, over any
subset of configurations is less then 35. Let T C {0,1}" 4+ m, so T is a subset of all

possible configurations. Recall that the Cauchy-Schwartz inequality implies that,

Lol < (Sl (Ter)
c [+

Sl P =Y laner < Jak — & Plal +

ceT ceT
N EAE AL (AR EANE
< 2z a:"|2<2(1>2< !
- T =T\5) T 12

Hence the two final outcomes are indistinguishable. O

Theorem 8.2 essentially states that a quantum Turing Machine can not be sensitive
to more than a polynomial number of queries. Theorem 8.1 is a corollary to that,
since a non-deterministic Turing Machine is clearly not plagued by such a limitation.
It should be mentioned that the authors of Strengths and Weakness of Quantum
Computation claim that Theorem 8.2 shows that given a random permutation oracle
0, there exist no quantum Turing Machine which inverts O in polynomial time with

non-negligible probability. This result is not presented in their paper, and after having

88

spent some time contemplating this it appears to be a true statement which is by no
means an obvious corollary to Theorem 8.2.

On a final note, in reference to the question posed in Chapter 3, regarding whether
or not it is possible for a non-recursive function to be computed on a quantum Turing
Machine, the answer is clearly no. It is obvious from the model’s definition that it
can be simulated by a deterministic Turing Machine. In fact, Bernstein and Vazirani
prove that any BQP machine can be simulated by a deterministic Turing Machine

using at most a polynomial number of tape cells, which puts the question to rest.

89

CHAPTER 9

Conclusion

In this paper we have attempted to show the potential promise that the quantum
Turing Machine possesses. This is undoubtably done most adequately by Shor’s
result regarding the factoring of integers and Discrete Log. His results have multiple
implications. If we suppose for a moment that Integer Factoring and Discrete Log
are indeed not in P, then by showing that Integer Factoring and Discrete Log are
computable in polynomial time on a quantum Turing Machine, Shor has effectively
shown that BQP # P. Such a result is indeed likely as evidenced by Simon’s result
providing the oracle separation between the two classes. Let us contemplate the
question of P < BQP for a moment. While there is no definite answer, we do
know that a positive answer is unlikely, as P = BQP would also imply P = BPP,
and the latter is a long standing open problem. Thus, there is relatively compelling
evidence to suggest that the quantum Turing Machine is more powerful than its
classical predecessors.

Unfortunately, current technology does not allow for the building of a quantum
computer. There are significant physical obstacles which must be overcome before
such a computer can be built. However, the construction of any such computer would
change the field of computer science quite drastically. Perhaps the most immediate
application of a quantum computer is in the area of cryptography. Given the exis-
tence of a quantum computer, the well known RSA cryptosystem would effectively

become obsolete, as it is based on the conjecture that factoring is hard. Likewise,

90

any cryptosystem based on Discrete Log would as well be rendered obsolete, and it
may be that the only solution left for cryptography would be quantum cryptosystems.
These are as well a field of research today. [18]

Finally, I sincerely hope that this paper can be used as an introduction to the field

by those who are interested and have no knowledge in the area.

91

Bibliography

[1] Richard P. Feynman, “Simulating physics with computers”, in International
Journal of Theoretical Physics, vol. 21, pp. 467488, 1982.

[2] D. Deutsch, “Quantum theory, the Church-Turing principle and the universal
quantum computer”, in Proc. R. Soc. Lond., vol. A400, pp. 73-90, 1985.

[3] Ethan Bernstein and Umesh Vazirani, “Quantum complexity theory”, in Proc.
25th ACM Symp. on the Theory of Computation, pp. 11-20, 1993.

[4] Daniel R. Simon, “On the power of quantum computations”, in Proc. of 85th An-
nual Symp. on Foundations of Computer Science. IEEE Press, November 1994.

[5] Ethan Bernstein Charles H. Bennett, Gilles Brassard and Umesh V. Vazirani,
“Strengths and weaknesses of quantum computing”, Manuscript, May 1994.

[6] Harry R. Lewis and Christos H. Papadimitriou, Flements of the Theory of Com-
putation, Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1981.

[7] Christos H. Papadimitriou, Computational Complezity, Addison-Wesley Publish-
ing Company, 1994.

[8] Richard P. Feynman, The Feynman Lectures on Physics, Addison-Wesley Pub-
lishing Company, 1965.

[9] Peter W. Shor, “Algorithms for quantum computation: Discrete logarithms and
factoring”, in Proc. of 85th Ann. Symp. on Foundations of Computer Science.
IEEE Press, November 1994.

92

