
Genetic search and the dynamic layout problem

Jaydeep Balakrishnan
Faculty of Management,
University of Calgary,

Calgary, Alberta T2N1N4, Canada.
Ph: (403) 220 7844 Fax: (403) 282 0095

Email: balakris@ucalgary.ca

Chun Hung Cheng
Department of Systems Engineering and Engineering Management,

The Chinese University of Hong Kong,
 Shatin, Hong Kong.

Email: chcheng@se.cuhk.edu.hk

Revised version published in Computers and Operations Research, 27, 2000, 587-593.

mailto:balakris@mgmt
mailto:chcheng@se.cuhk.edu.hk

Genetic search and the dynamic layout problem

 Scope and Purpose

Many organizations today are operating in a dynamic and market-driven environment. To stay

competitive, their facilities must be adaptive to market fluctuations. The dynamic layout problem

devises a multiperiod layout plan based on these demand fluctuations. In this paper, we propose an

improved implementation of an existing genetic algorithm for solving the dynamic layout problem.

Abstract

An improved genetic algorithm for the dynamic layout problem, based on a paper that was published in

this journal, is formulated and tested in this research. Our genetic algorithm differs from the existing

implementation in three ways: first, we adopt a different crossover operator, second, we use mutation,

and third, we use a new generational replacement strategy to help increase population diversity. A

computational study shows that the proposed GA is quite effective.

Genetic search and the dynamic layout problem

1. Introduction

In a paper published in this journal, Conway and Venkataramanan [1] examined the suitability of

genetic algorithms (GA) for the dynamic layout problem. A genetic search uses the mechanics of natural

selection and natural genetics to evolve a population of initial solutions into a near-optimal solution

[2,3]. This approach is suited to handle multiple and nonlinear objective functions as well as side

constraints.

In their procedure, a string in the population consists of nHt digits, where n is the number of

departments in the layout and t is the number of periods in the planning horizon. So a string represents

every department in each period. To crossbreed, two strong strings (based on the fitness function) from

the population are selected. Then a random splicing position is generated and the strings are split.The

substrings are then swapped. Since these swaps may create infeasible solutions (eg. two occurences of

department 5 in one period), additional digit swaps are done to ensure feasibility.The string with lower

cost is allowed to survive to the next generation. In tests, where cross-breeding was done for up to 100

generations using population sizes of upto 800, the algorithm performed well compared to dynamic

programming for six and nine department problems.

Our GA differs from the GA in [1] in three aspects:

1. We employ a different crossover operator to increase the search space.

2. Mutation is used to increase population diversity.

3. We use a generational replacement approach to increase population diversity.

Computational results show that the proposed GA generally performs better than the GA in [1] with

respect to the cases tested..

2. The proposed Nested Loop GA

The suggested procedure uses a GA with nested loops. The inner loop uses a steady state replacement

approach, and replaces the most Aunfit@ individual in each generation. The outer loop will replace a

large number of Aunlucky@ individuals in a generation.

Inner Loop

As in [1], let p[i] denote layout string i, an individual. When n = 6, and p = 5, individual i with p[i] =

243156 342651 342615 342615 342561 has department 2 assigned to location 1 in the first period,

department 4 to location 2 and so on with department 1 being assigned to location 6 in period 5 . We

will randomly generate a set of layouts as the initial population. From this population, a pair of parents

are chosen randomly. Then a point-to-point crossover operator is used. In a point-to-point crossover, we

no longer cut layout strings randomly at one position. Instead, we cut them at every position, starting

from the first position to the last position in the string. The fitness function is identical to that in [1]. To

illustrate the procedure, consider a six department, two period problem. We select two layouts from the

population: layout A and layout B. Let the configurations of these layouts be:

layout A: p[A] = 214563 345621

layout B: p[B] = 123456 234561

If we swap the departments in the first positions of the two layouts, two new child layouts or strings will

be formed, layout 1 and layout 2, as follows:

p[1] = 114563 345621

p[2] = 223456 234561 (split at the 1st position)

Now the layouts are split at position 2 and the departments in the second positions are swapped. This

gives the following layouts 3 and 4.

p[3] = 124563 345621

p[4] = 213456 234561 (split at the 2nd position)

This is done for each position. After the final swap we get new layouts 21 and 22 as follows:

p[21] = 123456 234561

p[22] = 214563 345621 (split at the 11 position). th

Note that we do not split at the 12 position as this is would result in the same strings denoted by theth

initial layouts A and B. Thus, the point-to-point crossover operator produces 2(nt-1) child layouts.

Although many child layouts are illegal (an illegal child layout is one with a duplication of any

department in a period), at least one child layout is legal under the point-to-point crossover. For

example, in this case we are guaranteed to have legal child layouts after a split at position 6. Here, out of

22 layouts, six child layouts (i.e., p[3], p[4], p[11], p[12], p[21], p[22]) are legal. A feasibility test is

applied each time to eliminate illegal child layouts. The minimum cost legal child layout will replace

the maximum cost parent in the population.

1

Mutation may occur in the minimum cost legal child layout. However, the probability of this is quite

small. We first randomly choose a period in which mutation will take place. Then within the period

chosen, two departments will be randomly chosen for interchange. For example, mutation applied to

p[22] = 214563 345621 will result in p[22=] = 214563 365421 when the second period and departments

4 and 6 are chosen for swapping. This mutated child will then replace the maximum cost parent.

As the selection and mutation process continues, the population will evolve over successive

generations. The loop terminates when the difference between the best child layouts in two successive

generations is less than a very small threshold value. A flowchart of the procedure is presented in

Figure 1b.

Outer Loop

The outer loop consists of periodically replacing a number of >poor= parents in the population. The initial

population is called the >old= population. First, the inner loop replaces some of the individuals in this

population. Then, in the outer loop process, a number of new layouts or individuals are generated

randomly. These layouts then replace the poorest layouts in the >old= population. This creates a >new=

population consisting of some parents from the >old= population, the children created through the inner

loop, and the randomly created new individuals. This new population will serve as the >old= population

for the next run of the inner loop. The outer loop process stops when the difference between the average

cost of two successive outer loops is less than a minimum threshold value. The flow chart for the outer

loop process is shown in Figure 1a.

Figure 1a Figure 1b

Outer Loop Inner Loop

Select two parentsSTART

Apply crossover

Initialize Population

Apply feasibility test

Apply
the evolution process

of Method 1

Inner
loop

Outer loop

Apply mutation

Replace
some poor layouts
in the population

Replace the worst

Satisfy
the stopping
condition?

No
Yes

Satisfy
the stopping

Find the minimum

No
Yes

END

3

3. Rationale for the Nested-Loop Process

The point-to-point crossover of the inner loop process has some advantages over the GA in [1]. Since

every individual gene is crossbred, the search space within each population is larger than in the case of

the single-point crossover. The feasibility test is also simpler.

Mutation is useful, since it creates children with characteristics that would not normally occur by cross

breeding. However, the frequency of mutation is deliberately kept low. Since mutation is done on the

best child, frequent mutation would result in the loss of good children. Thus, low mutation rates result in

occasion injection of new characteristics into the population without destroying the existing genetic

characteristics of the population.

Since each inner loop works with the same population, the GA might end up in a local optimum if only

an inner loop were done. The outer loops ensure that that inner loops work with different populations.

This enlarges the search space and should lead to better solutions.

4. Computational Results

The computational experiment has the following factors:

1. Planning horizons: Two different planning horizons of 5 periods and 10 periods are used. This

will give us an idea of the effectiveness of the algorithms over longer term planning horizons.

2. Sizes of layouts (departments or machines): Three layout sizes of 6, 15, and 30 departments are

used. This will help us determine the effectiveness of the algorithms for larger layouts.

This gives us 2H3 or 6 different situations. Eight replications were performed for each situation. Each of

the eight problems was randomly generated and is similar to the problem shown in [1]. For each

problem, the sum of the flows in a layout during a period was constant during the entire horizon. This

prevented any one period=s cost from dominating the others. The average shifting cost for a department

was set to be 15% of the average material handling cost for the department. The five period problems

use the first five periods of data from the ten period problems. In each problem, some departments had

high inflows as compared to the others. These high inflow departments were changed in every period to

simulate demand changes.

A initial experiment was done to test the different parameters. We ran tests with population sizes of

100, 500, and 1000. We also performed experimental runs with mutation probabilities of 0.001, 0.002,

and 0.003. Finally, we tested threshold values (for the stopping conditions) of 1%, 5%, and 10%. Based

on the results, we found that the following parameter values gave the best results for the nested-loop

GA: population size = 500, mutation probability = 0.002, and the threshold value for the stopping

condition = 5%.

The comparison results are shown in Tables 1 - 6. Each table gives the minimal cost solution for each

of the 8 problems using the following methods:

1. Genetic Search by Conway and Venkataramanan: CONGA

2. Nested-Loop Genetic Algorithm: NLGA

The better solution for each test problem is highlighted. In the 6 department situation (Tables 1 and 2),

NLGA performs better than CONGA in fourteen out of the sixteen cases (in one of the cases, the costs

5

were identical). In Table 3 (15 department, 5 period) CONGA performs better than NLGA in six out of

the eight cases. In Table 4 (15 department, 10 period), NLGA performs better than CONGA in all

cases. Finally, in the 30 department problems (Tables 5 and 6), the NLGA performs better in all cases.

Given given our test problems, it appears that NLGA generally performs better than CONGA. It is

interesting to note that for the three largest types of problems, NLGA performed better than CONGA in

every problem tested. Similarly, the NLGA appears to be better than CONGA in the 10 period

problems where it performed better on every problem.

5. Conclusion

In this paper we examined the use of genetic search in solving the dynamic layout problem. Our genetic

algorithm differs from the existing algorithm in many ways including using a new crossover operator, a

mutation approach, and a new generational replacement strategy. The computational results showed that

the proposed algorithm is quite effective.

Acknowledgements

The authors wish to thank Professor D.G. Conway for the use of his GA code, to the Natural Sciences and

Engineering Research Council (NSERC) of Canada and the Research Grant Council of Hong Kong for their

financial support..

References

1. D.G Conway and M.A.Venkataramanan, “A Genetic search and the dynamic facility layout
problem”, Computers & Operations Research, 21, 8, 955-960, 1994.

2. L.D. Chambers, Practical Handbook of Genetic Algorithms, Volume I, CRC Press, Boca Raton,
FL (1995).

3. L.D. Chambers, Practical Handbook of Genetic Algorithms, Volume II, Applications, CRC
Press, Boca Raton, FL (1995).

Table 1

6 Departments and 5 periods

1 2 3 4 5 6 7 8

CONGA 108976 105170 104520 106719 105628 105606 106439 104485

NLGA 106419 104834 104320 106515 105628 104053 106978 103771

Table 2

 6 Departments and 10 periods

1 2 3 4 5 6 7 8

CONGA 218407 215623 211028 217493 215363 215564 220529 216291

NLGA 214397 212138 208453 212953 211575 210801 215685 214657

Table 3

15 Departments and 5 periods

1 2 3 4 5 6 7 8

 CONGA 504759 514718 516063 508532 515599 509384 512508 514839

NLGA 511854 507694 518461 514242 512834 513763 512722 521116

Table 4

15 Departments and 10 periods

1 2 3 4 5 6 7 8

CONGA 1055536 1061940 1073603 1060034 1064692 1066370 1066617 1068216

NLGA 1047596 1037580 1056185 1026789 1033591 1028606 1043823 1048853

Table 5

 30 Departments and 5 periods

1 2 3 4 5 6 7 8

CONGA 632737 647585 642295 634626 639693 637620 640482 635776

NLGA 611794 611873 611664 611766 604564 606010 607134 620183

Table 6

30 Departments and 10 periods

1 2 3 4 5 6 7 8

CONGA 1362513 1379640 1365024 1367130 1356860 1372513 1382799 1383610

NLGA 1228411 1231978 1231829 1227413 1215256 1221356 1212273 1245423

7

