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ABSTRACT

Incidence matrices associated with a pair of partitions of n are introduced
to describe the homomorphisms between permutation modules. A partial
solution to the description of the correspondence between two labellings of
irreducible modules is given. All partitions g such that there are non-—zero
homomorphisms from S(n—l’l) into S# are found. The Specht module S’\,

where A = (A,A,,17) with r > 2, is proved to have socle length one.
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CHAPTER 1
INTRODUCTION

The representation theory of finite groups has its roots in character
theory, emerging around the turn of this century as the work of Frobenius,
Schur and other authors. In this theory, the symmetric group &, is a simple
but important case, simple because its characters and irreducible
representations can be found in the rational field, important because every

finite group can be embedded in some symmetric group.

It was Alfred Young’s achievement to find a natural classification of all
irreducible representations of &, in terms of "Young tableaux" over the
rational field. W. Specht’s alternative approach in this topic showed how to
derive representations by considering submodules of a polynomial ring
K[xx,,...,x,], where K is a; field, and this method yielded interesting results
without referring to the characteristic of the field K. We shall follow the
approach in [James and Kerber (1981)] by using modules isomorphic to those
of Specht.

The modular structure of permutation modules M)‘

and the Specht
modules S)‘ is still at the center stage of the representation theory of
symmetric groups. The homomorphisms between permutation modules and
Specht modules provide useful informatiqn in many aspects. There are several
different ways to describe homomorphisms, for instance, Carter and Lusztig
found a K-basis for the space of homomorphisms from a Specht module to a

permutation module in terms of so—called semistandard tableaux. In this

dissertation, we introduce matrices with non-negative integer entries, which we



call incidence matrices corresponding to each pair of compositions A and g of
n, and use them to describe homomorphisms from M’\ to M”. One of the
advantages of these incidence matrices is their natural connection with the
bilinear forms on M}‘ and M". Special cases of the incidence matrices are the
% maps introduced in [James, (1977a)].

The construction of the modular irreducible representations was given by
G.D. James in 1976. Each equivalence class of irreducible représentations is
labelled by a so-called "row p-regular" partition of 7, where p is the
characteristic of the ground field K. An alternative way of labelling the
irreducibles 'is by using the "column p-regular" partitions. An interesting
question was raised in [James, (1977b)] : what is the connection between the
two labellings? In §3D of this dissertation, we attempt to describe the links
between the two labellings by making use of some special features of certain
incidence matrices. A partial solution of the above question is obtained and

presented in that section.

The complete determination of the homomorphisms between two Specht
modules S)‘ and S¥ for a pair of distinct partitions A and g of n» is a difficult

open question. G.D. James found all partitions x such that Hom .o (5(m, 5 H
n

is non—zero; and Gwendolen Murphy made a thorough analysis of the space

Hom g (SO0, §(00k0). Also, some very useful information concerning this
i ,

subject can be found in [Carter and Lusztig (1974)] and [Carter and Payne
(1980)]. 1In §3E, all partitions u such that Hom g (S17°0Y, S ¥ is non—zero
n

are found and K-bases are given in each case, using computation of

homomorphisms in terms of incidence matrices.



In Chapter 4, we investigate the socle length of some Specht modules by
using endomorphisms of the permutation modules with certain special
properties. In the first three sections of Chapter 4, we use our own machinery
to reproduce the results concerning the socle lengths of Specht modules
associated with hook partitions and two-parts partitions obtained by M. Peel
and Gwendolen Murphy in [Peel (1971)] and [Murphy (1982)] respectively. In
§4D we extend these result to the Specht modules associated with partitions of

the form (A,A,1%), with r > 2 by calculating the K—space Hom K6 (S)‘*,S’\).
n

This provides another example of the application of incidence matrices.



CHAPTER 2
BASIC FACTS

§2A Modules and Their Duals over a Group Algebra

Let K be a field and G be a finite group. An element ¢ in the group

~algebra KG can be written in the form

E= % ¢ o, ¢ €K
oeG ¢ g

The group anti-automorphism

T: @ — @G

g — ¢!

can be extended by linearity to a K—algebra anti—automorphism of KG :

T: ¥ ¢ o0 — X ¢ ol
oeG ¢ oeG ¢

We shall write ¢¥ = T(¢) for ¢ € KG.

Unless specified, "a KG-module" means a left KG-module which is also
a K-space of finite dimension, in most parts of this dissertation. Let M be a
KG-module. Then M* = Hom K(M,K) becomes a KG—Ir;odule, called the dual
of M, if we define

(&) (m) = f(¢"m)



for fe M¥, ¢ € KG, m € M.

Assume that M is a KG-module with a K-valued non—degenerate,

symmetric bilinear form < , > satisfying

*
< €my, my > = < my, £€my >,

for m;, m, € M and £ € KG. Define

0: M — M

m— §

by setting

Then for ¢ € KG, m, m’ € M,
ben(m’) = < ém, m’ > = < m, &m’ > = §,(Em) = (¢6,)(m).

Thus 6 : m +— 6, is a KG-homomorphism from M to M. In fact, 4 is a

K(G—-isomorphism since dim KM = dim KM* , and < , > is non—degenerate:
Ker(d) = {me M| <mm >=0 (¥m’ e M) } = 0.

Let U be a KG—submodule of M, then

VF={meM|<mu>=0 (Vuel}



is a KG—-submodule of M. The following is proved in §1 [James (1978D)]:

(2.1) LEMMA. Let M be a KG-module with a non—degenerate, symmetric
bilinear form satisfying < &my, my, > = < my, .f*m >, for my, m, € M and
v My it 2 v My
¢ € KG. Let U U, and U, be KG-submodules of M and assume that U <
1 2 & 1

U,, then

(i) U* is ¢« KG-submodule of M and U; < Uy.

i) U™ =1U

(i) dimpU + dim U = dim M.
(iv) (U,/U)* v U;/U;, in particular, U~ (M/U")* as KG-modules J

Note. In §1 [James (1978b)], the adjective '"non-singular" was used for

"non—degenerate", both mean for every non-—zero m in M, there is some m’ in

M, such that < m, m’ > # 0.]]

Let ¢ be an element in KG. M. Peel proved a lemma concerning the

dual of the left ideal KG¢ of KG :

(2.2) LEMMA. (Lemma 1. [Peel (1981)]) Let K be a field, G be a finite
group. Then if ¢ € KG,

(KGE)* v KGT(¢) = KGE
as KG-modules.|j

The proof for (2.2) can be found in Peel’s original paper. An alternative

proof, which was suggested by H. K. Farahat, is given in 4.2 [Yang (1984)].



Next we turn to some general results about KG-modules and their dual

modules, where G is an arbitrary finite group.

For each KG-module M, there is a natural KG-homomorphism from M
onto M**:

A *
where z (f) = f(z), z € M, fe M, since

(&) (f) = f(¢a) = (& F)a) = o(£F) = (¢ ) f).

Let L and M be KG-modules. Each ¢ € Hom, ~(L,M) determines a
KG-homomorphism r
(p* . M — LF

f— fo
Further, the mapping

p € HomKG(L,M) — 0" € HomKG(M*,L*)

is a K-isomorphism, since we can identify Hom KG(L**,M* ") with

Hom KG(L,M) and the composite mapping

* *k

is eséentia,llfy the identity mapping on Hom KG(L,M). Thus we have (c.f. 4.12
[Yang (1984)])



(2.3) LEMMA. Let L and M be be KG-modules, then

Hom (L, M) ¢ Hom j(M",L7)
as K—spaces.||

The proof of the following lemma concerning dual modules and short

exact sequences can be found in (4.12) [Yang (1984)] :

(24) LEMMA. Let L, M and N be be KG-modules and L*, M* and N* be
their dual modules. Then

(i) The sequence

o ¢
0 —=L—M-—-N—=0 (a)

I

is exact if and only if the sequence

* *

o-—»N*ﬂM*ﬂL*—»o (™)

18 exract.

(ii) The sequence (a) is split if and only if (a™) is split.
Let G be a finite group and M be a KG-module. Let
M=MO>M1>...>MI"1>MI'=O (b)

be a composition series of M, i.e. a chain of submodules of M, in which



is an irreducible KG-module, 1 = 0, 1, ... , r—1. The composition series (b)

of M determines a sequences of irreducible KG—modules
(Jy o oo 4d),

which is called the composition factor sequence associated to (b). The number

r is called the composition length of M.

We shall give the proof of the following standard result about the
composition factor sequences of a KG-module M and its dual M*.

(2.5) LEMMA. Let
M=M,>M >+ >M_, ,>M=0 (b)
be a composition series of a KG—module M. Assume that
(Jy Jor - 4Jp)

is the composition factor sequence of M associated to (b). Then there ezists a

composition series

M*=N,>N,>:- >N, >N, =0 (b
such that
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(J5 .., TH

is the composition factor sequence of M* associated to (b*).

PROOF. TUse induction on the composition length r of the KG-module M.
The statement is trivial from (2.4) when r = 1. Now assume 7 > 2 and the
statement in (2.5) is true for all KG-modules with composition lengths less

than or equal to (r—1). The exact sequence
0—=J,— M— M/J — 0
has its "dual" exact sequence

0— (M/J)" = M — JF — 0

by (2.4). The KG-module M/J, has a descending chain of KG—submodules

But
Mi -1/Jr
Y

R N

N
i
|
o
Il
©
=i
7
N

Therefore (c) is a composition series for M/J. and the composition factor

sequence associated to (c) is (J;, ... ,J,

-1), up to isomorphism. By induction

hypothesis, (3/J.)* has a composition series

*
(M/Jr)*=Ni>"'>Nr~1>Nr:O (C)
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*
such that the composition factor sequence associated to (¢ ) is

* ‘ *
(Jr_l, see Ji).
Clearly
: *
M*=N0>N1>"'>Nr-1>Nr=0 (b)

is a composition series of M*, and the composition factor sequence associated
*
to (b ) is
* * *
(J; Jrepp ooy J1) 1

(2.6) NOTES ON THE RADICAL AND THE SOCLE OF A MODULE M
(§5 [Curtis and Reiner (1981)})

Let A be a ring with 1, and M be a (left) A-module. The radical of
M, denoted by rad(M), is defined as the intersection of all maximal

submodules of M,
rad(M) = n{ N< M| Nis a maximal submodule of M }.
The socle of M, denoted by soc(M), is the sum of all the irreducible
submodules of M. The radical of the ring A is the radical of the Ileft
A-module A. In fact, rad(4) is a two-sided ideal of 4, and
rad(4) = { Ann 4(S) | § is an irreducible A-module }.

Moreover, the radical of the factor ring A/rad(4) is 0.

A r1ing A is said to be left artinian if the left ideals of A satisfy the
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descending chain condition, i.e. for every descending sequence of left ideals of
4,

L > Ly> -+
there exists an integer k£ such that

Ly = Ly, = -+ .

Clearly, if G is a finite group, K is a field, then the group ring KG is left
artinian since K is a finite dimensional K-—space.
Let A be a left artinian ring, then A/rad(ﬂ) is a semisimple ring.

Furthermore, if M is an A-module, then
rad(M) = (radd)M

and M/radM is a semisimple A-module. In fact, rad(M) is the smallest

submodule of M such that the factor module is semisimple.

The f{following lemma links wup the two semisimple KG-modules:
M/radM and soc(M"). The proof can be found on page 57, Chapter 4 [Yang
(1984)] :

(2.7) LEMMA. Let M be o KG—module, where G is a finite group and K is
a field. Then

Mjrad(M) ¥ [soc(M5)]*
as KG—-modules.J



§2B Partitions and Tableaux

We denote by &, the group of permutations of the set n = {1, 2,..., n},
which is called the symmetric group of degree n. The alternating group £, is
the subgroup of &, consisting of all the even permutations of & . Denote by
K&, and K2, the group algebras of &, and %A, over a field K respectively.

Let X be a subset of n. We write

GX]={re&, | (i) =i (Vie n\X) }.
Clearly &[X] is a subgroup of &, and
Sln] = Sns 6[Q)] = {1}

The product &[X].-G[Y] is again a subgroup of &, if X C n, Y C n , and
XnY = 9. For X = {i;, 4,..., 4} C n, we shall write

GlX] = Biy, iy,..., @)
by omitting the braces { }.

Let 7v: G — K be a K—valued function on a finite group G. We write
for H C G,
1H) = ¥ Ao)o.
H

S

13
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The following two K-valued functions play significant roles in the

representation theory of & :

¢ is called the trivial character, while ¢ is called the alternating character of
&,

The left ideals K& u(&,) and K& ¢(S,) are K—spaces of dimension 1

(one). Clearly they are irreducible K& —modules.

A composition A of a positive integer n is a sequence (A,A,,...) of

non-negative integers such that

if, in addition,
A(2 A2 -e,

then A is called a partition of n.  Abbreviations such as (3,0,2,2,0,...)

(3,0,2,2) = (3,0,22) will usually be adopted.

= (A},A},...) by setting

For a composition A = (A,A,,...) of n, define A’

Al equal to the cardinality of
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(N 126

Note that X’ is a partition of n. For example, if A = (3,0,2%) and p = (8,2%)
then
N o= (3%1) = p.

When A is a partition of n, the mapping
Ar— X

is a bijection from the set of partitions of n onto itself. A’ is called the

conjugate partition of A in this case.

A diagram D is a finite subset of NxN. For a composition A of =, [A] is

the diagram

{ (Z)]) | .7= 11 2)"') )‘i) Z‘= 1) 27 }

A )-tableau ¢ is a bijection from [A] onto the set n = {1, 2,..., n}. We shall
write &; for (4,7 ), (45 ) € [A]. A A-tableau ¢ can be depicted by replacing
the nodes (4,7 ) in [A] by ;. For example, if A = (3,0,1,2), then

426
t = ——
3
15
is the A-tableau such that ¢ = 4, {, = 2, ... , etc.
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The group &, acts on the set of A-tableaux by letter permutations.

That is

(rt);; = n(ty), 7€ &y (45) € [AL

For example, if

Ll V]
>

T = (1,2,4) € 8y, then

DN >~

7t

We shall use the lower case letters ¢, z, y, ... to denote tableaux. Let 2
be a tableau of a composition of n : A = (A A,...). For a fixed 4, the

subset of n :
Xi=A{o | (47) €A}

is the set of elements in the i—th row of (the depiction of) z. Similarly for a

fixed j, the set of elements in the j—th column of z is

X =A{m| (55) €A}

The row stabilizer and column stabilizer of the A—tableau z are defined as

Rz = H 81Xy,
Oz = H &[x].
i
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The elements in Rz (Cz) are called row (column) permutations of z.

Let z and y be two tableaux of a composition A of n. There exists 7 in

G,, such that y = 72. It is easy to verify that

R(7z) = n(Ro)7,
C(7z) = 7(Cr)7L.

Two A-tableaux z and y are said to be row-equivalent, if y arises from z by

a row permutation of z :
T~y & dr € Rz, y = 7z

The equivalence class of z is denoted by z , called the A-tabloid of z. It is

convenient to treat z as a sequence of subsets of n :
(Xi} XZ, ooo)o
Our convention is the following

(2.8) DEFINITION. For a A—tableau z, the A—tabloid z is the column vector
Xy
Xy

whose entries are subsets of n :

G={ag | (i) e} i=12 ..
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When we want to emphasize the composition A, the notation

Xy

Xy
A

is adopted.}}
For example, say A = (3,2%),
=456

17
23

we also follow the notation invented by G.D. James (3.9 [James (1978Db)]):

IRl
il
=
ot
[@x]

|
-3

S
VL]

There is a natural & —action on the set of A-tabloids :

where 7 € &, and z is a A-tableau.

Let z be a A-tableau and {7, .. , 7} be a set of left coset

representatives of Rz in &,. It is easily seen that

{(mz|i=12 ..,h}
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is the set of all A-tabloids, and the mapping

4

is a one—to—one mapping from the set of A—tabloids onto the set of left cosets

of Rz in &,. The & ~action on A-tabloids agrees with the one which is the

left multiplication of &, on the set of the left cosets of Rz in &,.



§2C Specht Modules and Their Duals

Specht modules can be defined in a few equivalent ways. In this sectioﬁ,
we shall state the definitions of permutation modules and Specht modules

given in [James and Kerber (1981)].

Let K be an arbitrary field. We shall denote the group algebra K&, by
I’ For a composition A of n, consider the K-space M_;‘( having as basis the
set of all A-tabloids. The & -action on the A-tabloids (c.f. the end of last
section)

T t=7t, T € &,, tis a A-tableau,

[RS8

extends to an & -action on the K-space M;‘{ by K-linearity and- turns M}‘{

into a I' = K&, module. Thus M7}, , which will be abbreviated as M if the

K ]
field K is fixed in the context, is a cyclic I'-module, generated over I' by any
one A-tabloid. We call M}‘ the permutation module associated with the

composition A of n.

Let ¢, and ¢, be A-tableaux, such that ¢, = =t,, for some 7 € &,. Then

in the T—module M,

(Ct) T = 7 (Ct) ni(n ) = w (Ct) ; .

We now define the Specht module S}‘{ = S)‘ associated with a composition A
of n to be the cyclic module

re(cy 1,

20
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where { is an arbitrary A-tableau. By the remark above; the definition of S)‘
does not depend on the choice of A—tableau ¢ Clearly S)‘ is a cyclic
I'—submodule of M)‘.

Define a K-bilinear form on M)‘, by setting

- 1, ittt =1,
- — 0 otherwise,

where ¢; and ¢, are A-tableaux and extending this to m by K-linearity. We

see that < , > becomes a non-—degenerate, symmetric bilinear from on M/\,
satisfying

< émy, my > =< my, f*m2_>, My, My € M}‘, Eel.
The crucial result about this bilinear form on m is the following
(2.9) JAMES’S SUBMODULE THEOREM [4.8 James (1978b)]
Let K be an arbitrary field. If X is a partition of n and U < M)‘, then

either U > S or U< S |

With the aid of the Submodule Theorem, one can see that if % { S)‘L,

then SANSM is the unique maximal submodule of S*. This leads to

(2.10) THEOREM. (4.9 [James (1978b)]) Let X be a partition of n. Then
S)‘/ (S)‘ﬂS)‘J') is either zero or an irreducible T'—module.]

The I'-module S)‘/(S)‘nS}“L) is called the James module associated with
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the partition A of n, denoted by J}‘.

Let ) be a partition of n. We can write

A= (n7(n—1)m1. 17,
where r; is a non-negative integer, : = 1, 2,..., n. For m € N, we say that A

is row m-regular, if r; < m for each ¢ ; otherwise, A is row m-singular.

Say A is column m-—regular (singular), if A’ is row m-regular (singular).

The following theorem, acknowledged as a breakthrough in the
representation theory of symmetric groups during the last two decades, was

proved by G. James in 1976:

(2.11) THEOREM. (Theorem 2 and 6 [James (1976)]) Let K be a field of
characteristic p (p > 0), A be a partition of n.

(i) A # 0 if and only if X is row p—regular.

(i) The set

{ 7 | X is a row p—regular partition of n }
is a complete set of inequivalent irreducible T'—modules.]]
It is profitable to find certain left ideals, of the group ring I' = K&,

which are isomorphic to the modules M)‘, .5’)‘ and J)‘ respectively. Recall that

if ¢ is a A—tableau, where A is a partition of n, then
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t(REY) = ¥ o,
ogER?
e(Ct) = X sgn(og)o.
oeCt

Write f, = ¢( Rt), o, = ¢ ( Ct), then the mapping

fi M — TB,
§ 1 B, (el

is a I'-isomorphism from M)‘ onto I'f,, and the restriction of f to S)‘, denoted

by f, is a I'-isomorphism from S)‘ onto I'e;f,. We shall call T'a,f, the Young
module associated with the A-tableau ¢, denoted by Y(¢). If ¢, and ¢, are

A-tableaux, ¢, = 7t;, 7 € &, then
e(Ct)(Rt) = 7 e(Ct)r'r o (Rt = 7 e( Ct) o ( Rt)7™

The mapping

£ — ¢ ql
is a I'isomorphism from Y{t,) onto Y(%,).

The fact that the James modules are also isomorphic to some left ideals

of ' = K& was first proved in §2 [Farahat and Peel (1980)].

(2.12) THEOREM.: Let K be a field of characteristic p (»p > 0), and X be a
partition of n. Assume that t is a A—tableau.

wner Laot,. 18 zero, or Lo as € unique mazrimai SuomoauLe
1) Bither Ta B, i Taf, has the uni imal submodul
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and Ta B, is isomorphic to the corresponding irreducible factor module.
(2) Taf, is non—zero if and only if A is a row p—regular partition of

n.J

Combining (2.9) and (2.12), we have

(2.13) COROLLARY. Ift is a A—tableau, A is a partition of n, then

A

J' v Teafo,. |

At this stage, we can find two isomorphic copies for the dual of S)‘,

when ) is a partition of n :

(2:14) LEMMA. Let t be a A—tableau.
(b) S & Tu(RE) e( CY).

ne

1na

PROOF. (a) is a straightforward application of (2.1) (iv). For proving (b),
recall that

T: % a o — Y a ot

o6, ° o6,

is an anti—automorphism of the group algebra I' = K& , and
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since €(0) = e(o), o € &,. Note that

Tle(CH) o(RY] = T (R Tle( Ct)] = +( RE) ¢( CY).
By (2.2)
Y(t)* = [Pe(Ct) «(RE)" v T T[e(C ¢+ (RY)] = Tu(RE) e( CoJ

(2.15) REMARKS. By the method of the proof in (2.14), one can easily
show that
I, ¥ (T,
Ta, ¥ (Ta,)”,
Tayfiog @ (Tyfiey)”

Thus the permutation module m and the James module J’\ are self dual.j]

Let G be a finite group and K be a field. For each linear representation
of G:
v: G — K,

there is a K-—algebra automorphism

<I>,\f . KG N KG

Y a_ o +— ¥ a_q(o)d.
€6 ¢ €6, ¢

Let M and N be KG-modules. The tensor product of M and N over K,
denoted by M ® N, becomes a KG-module such that
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O'(E mi® 'nl) =3 (U'mi)®(0'ni), g € G, mi € M ni € N.
i i

The following lemma was first proved in [Peel (1981)].

(2.16) LEMMA. Let v: G — K be a linear representation of a finite
group G over o field K, such that y(0) = v(c™), c € G If £ € KG, then

KG¢ v KG<I>,Y(§) ® KGYG)
as KG—-modules.
SKETCH OF PROOF. Define a mapping

f: KG— KG®.[(¢) e KGY(G)
n— n[2 () e 1(G].

Check that fis a KG-epimorphism and Ker(f) = £.Anng(§), where

LAmp (&) ={n]| neKG ni=0}]

Let A’ be the conjugate partition of A. Clearly
(Gi) eVl & (49 €[A
For a A-tableau ¢, let ¢’ be the X *tableau such that
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It can be easily seen that
Rt = C¢,
Ct = Rt

t’ is called the conjugate tableau of { The relationship between the Young
modules Y(f) and Y(¢’) was discovered by M. Peel in 1981 :

14

(2.18) PROPOSITION. [Peel (1981)] Let ¢ be a A—tableau, t’ be the

conjugate tableau of t, where X\ is a partition of n. Then
Y(t) & Y(£)"e Te(B)).

PROOF. Recall that

is a linear character of G, Apply (2.16),

Y(t) = Te( Ct) L( Rt)
¥ T8 Je (OF) o( Re)] © Te(S,)
= TI'u( Ct)e (Rt) © T'e(S,)
= Tu( Ri)e( Cf) 8 Te(6,).

Thus  ¥(¢) © Y(£)* Te¢(S,) by (2.14) (b) and the fact ¥(f) ¥ 5" stated in
the notes following (2.11).]
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(2.19) REMARKS. Applying the same method in the proof of (2.18), one
obtains
T'.(Rt) ¥ Te( Rt) @ I'e(S,),
T'e (Ct)o (Rt)e (Ct) ¥ T Co)e (Rt ( Ct) ® Te(S,) .
Also, as a corollary of (2.18), we have
M w M e Te(s,)

for each partition A of =]}

At the end of this section, we are to state the result concerning the

K—dimension and the K-bases for the Specht modules.

Let A be a partition of n. Say a A-tableau z is standard, if

oij) < o(ig+1),
o45) < a(i+1,5)

whenever (3,5), (4,7+1) and (i+1,7) belong to the A-diagram [)].
(2.20) THEOREM. [3.5. Peel (1975)] The set
{ €(Cz) z | z is o standard X —tableav }

forms a K—basis for the Specht module S}‘.l



CHAPTER 3
INCIDENCE MATRICES AND HOMOMORPHISMS

§3A Homomorphisms

In this section, we shall construct a K-basis for the K-space
‘HomP(M)‘,M“), where A and p are compositions of n. A general treatment
concerning homomorphisms between permutation modules can be found in §10

[Curtis and Reiner (1981)].

(3.1) DEFINITION. Let A and p be compositions of n. A matrix M =
(mz'j)’ (4,7) € NxN, is called a (A,u)-incidence matrix, if my; is a non—negative
integer, such that

for all (4,5) in WNxN. The set of (\,u)-incidence matrices is denoted by D(A,u).

Let z be a A-tableau, and

X

-_;iz
Xo

be the corresponding A-tabloid, viewed as a column vector with entries subsets
of n . For a ()\p)-incidence matrix M = (mz'j)’ denote by (M, z ) the set of

p—tabloids in the form
XU X, U
Xzi U X22 U-c.

where for all (3,5),

29
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liJ Xij = Xj y X | = My;
That is to say, a p-tabloid y = [Y], Y,, ... ]T belongs to (M, z ) if and only
if for each 4, ¢ > 1, Y; has m;, elements coming from X,, m;, elements coming

from X,, ... , etec.

(3.2) EXAMPLE. When X = (8,2) and p = (4,1), there are two (Au)-

incidence matrices:

M=[31], N=7J2
01 1

]

, then the first column [g] of M

Take a (3,2)-tableau z = i g 3

indicates that 1, 2 and 3, the elements in the first row of z, all lie in the
first row in each of the (4,1)-tabloid in (M, z ); while 4 and 5, the elements

in the second row of z, are sent to two different rows in all possible ways to
obtain all the (4,1)-tabloids in (M, z ), according to the second column m of

M. Thus

Similarly we have

(N,T23)={T245,1
15 3 2

345,2345 1]
T

The set (M, z ) is in fact an Rz—orbit of p—tabloids. Some useful facts

concerning the (A,p)-incidence matrices are listed in the following
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(3.3) OBSERVATION. Let z be a A-tableau.

" (i) Each p—tabloid falls into o set (M, T ) for some (A, p)—incidence
matriz M.

(i) The set (M, z ) is an Rz—orbit of u—tabloids, where Rz is the row

stabilizer of z, for each M in IM(\,u). ‘

(iii) For m € &, and M € IM(\,u), we always have

(M, 7z ) = 7(M, z).
(iv) (M, z) and (N, ) are distinct Rz—orbits if M # N.

PROOF. (i) Let
_ Y,
¥= Y,

be an arbitrary p-tabloid. Put Xz'j = Yz’ nx i for all ¢ and j, then

Define a matrix M = (mzj) via My; = |Xz'j|’ for all (4,7) in WNxN. Then

y € (M,

R3]

).
() If y, z arein (M, z ), then
| Y, n le = My = |Z; n X].|

for all 4 and 5 Thus there exists o in Rz, such that UYz' = Zz' for each i,

hence oy = z Conversely, if o € Rz, it is clear that
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therefore oy € (M, z ), whenever o € Rz.

(iii) Take y € (M, z ), then
— Yy
¥= Y,|
where | Y, N le = my; for all ¢ and 5. Thus

— TY;
4= TY,|
where 7 € &, and
(r¥) n (7er) = (¥, n Xj)
has cardinality My for all i and j. Thus 7y € (M, nz ). This shows that -
7(M, z ) C (M, 7z ). The inclusion in the other direction can be proved by

the same argument. The proof of (iv) is omitted.]|

(3.4) PROPOSITION. Let P be a (\p)-incidence matriz.  There is a
f-homomorphism }
Pp M)‘ — W,
such that for any A—tableau z
op(z)=3{yglye(pz)}

PROOF. First we fix an arbitrary A-tableau 2  According to (3.3) (ii)

above, there exists a I'~homomorphism
' Py M)‘ — M*
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such that
vo(z)=3{y|lye(pz)}

Let z be a A-tableau. Then we can find v € &, such that z = 7z Thus
by (3.3)(iii),
wplz)=wp(mz)=mp(2)=n{y|ye(Pz)}

=¥{ylyenPz)}
=¥{yglyge(Pz)}h

(3.5) PROPOSITION. Let A and u be compositions of n. Then the set
{ o | PeDAp) }
forms a K—basis for the K—space HomP(M)‘,Mﬂ).

PROOF. The above set is linearly independent over K because of (3.3)(iv).
Let ¢: M’\ — M” be a I'~homomorphism, z be a A-tableau. Write

where the sum is taken over all p-tabloids y. We shall show that if y and z

are p—tabloids and z = oy, 0 € Rz, then of ¥ ) = o z ). We have

>=<¢(z)og>=<0'9z)y>

7—}Z>=<(p(__"l_’))g>=a(ﬂ)-

Thus y and 2z have their coefficients equal in ¢( z ), whenever they are in the
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same Rg-orbit. This proves ¢ is a K-linear combination of ¢,, P € M(\,u).B

(3.6) REMARKS.

(i) In practice, there is no harm in writing a (A,u)-incidence matrix as
a row— and column— finite matrix according to the number of non-—zero parts
of A and p. Also, it is convenient to identify a (A,u)-incidence matrix P and
the T-homomorphism ¢, given in (3.4) above without much risk of ambiguity.

Thus, we shall say that 9(\,u) is a K-basis for Hom M)‘,Mﬂ), and for P in

pl
M(\, ), we write

Hz)=%{z|ze(Pz)}

IRl

(i) Let z and y be A- and p-tableaux respectively. There is a
one-to—one correspondence between the set of Rz-Ry double coset
representatives in &, and the set M(\,p). For 7 € &,, define a matrix P" =
(pij) in the following manner:

Py = lerZ- n Xj], (i.7) € INxIN.
If 7, ® € &, then P" = P" if and only if for all 7 and 7,
|7Y, n XJ. | = [rY,n Xj l,
if and only if 7y = owy for some o € Rz, if and only if

T = 07T, o € Rz, 7 € RyJ

In §9 [James (1977a)], the Specht module S)‘, where ) is a partition of
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n, is characterized as the intersection of some particular I'~homomorphisms
from M)‘ to other permutation modules. Those homomorphisms, which are
called 9-maps by James, will play very important roles in our discussion. We
shall give the definition of those maps in our language, which is equivalent to

the one given by James in §8 [James (1977a)].

Let A = (A,A,y...) be a composition of n. Note that the (A,\)-incidence

matrix

A
1)\2

represents the identity mapping of the I'-module M)‘. Let k£ and .I be two
distinct positive integers. If 0 < w < A , demote by (k Y, D) the

(A,u)-incidence matrix

At

AZ+1

in case k < I, and with the similar convention if £ > I

By (3.4), we have immediately if z is a A-tableau and T = [X,X,,..]"

is the corresponding tabloid,
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T
w e —
B.IES) 7 = 2 [x,, X, XAW, Xpp 1 Xpg XU W, Xl+1,...] .

ﬁ’(_ZXk
| 7]=v
For example, if A = (8,3,2) and z is the A-tableau

3
6

- B =

2
5
8

then

=12356+12346+12345'
4 5

5 &

00

7 8 7.8 7

|

(3.8) LEMMA. Ifw > )‘k - )‘l , )‘k > w > 0, then for any A—tableav z ,
(k =1) (Cn) T = 0,

PROOF. Let y be an arbitrary tabloid in the set
(629, ).

Then y is of the form

T
[ X%, X)W, Xpp1rXpgs XU W, X0y ]

where W is some subset of X; with cardinality w. The /-th row of y has
A+ w > A elements, all from X, UX, . The elements of the set XkUXZ
appear in max{)\k,)\ l} columns of z. It follows that two elements in the Ith

row of y , say a and b, appear in the same column of z. Thus

[1 - (a”b)] ﬁ = 0.
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Hence ¢(Cz) annihilates y, since {1,(a,b)} is a subgroup of Cz. As ¥ is
arbitrary, we have

0= (CO)(k L D(T) = (k% De(Ca)( 3 )

If A = (ApA,,...) is a partition of n, then Ap— A< w for all £ > I

and w > 0. Therefore, one can easily deduce that

A c ﬂ ﬂ Ker(k 4 0).
k>l 0<ng]c

One of James® results is the following

(3.9) THEOREM. (17.18 [James (1978b)]) Let A = (A;A,.0p) be a
partition of n with A n > 0, then

-1
s = ) () Xe(i+r L. §
7;-_-1 0<wSAk

This powerful theorem has many applications. For instance, if ¢ €

HomP(M)‘,M’u), where 4 is a partition of n, the Imep ¢ S¥ if and only if

(+1 L dp=0 i=1,2 ..,0< w< Hipq-
To determine the K-dimension of HomP(M’\,S/"’), we must calculate in general
(k X 1)P, where P is a ()u)-incidence matrix. We shall derive a formula,
found by G.D. James in his proof of 24.6 [James (1978b)], by using our own

machinery. Many of our later discussions and calculations are based on that
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formula.

Consider compositions A and g of n. Assume that 0 < w < e Let v

be the composition defined as

V. =
?

b ifi¢ k,i#1;
{uk—w, ifi=%;
py + w, ifi=1.

For each P € 9M(A,u), there is a diagram:

L gt
(ERANSRCER)
MV

Thus (k % )P is a I'-homomorphism from M to MY , and we can write

(k2 0P =Y @@ (@ ek
Q € M(A, )

Since the mapping (k Y, l) keeps all the rows of a p—tabloid unchanged

except the rows k and I, we may study a two—parts composition p = (p,u,)

first, and then extend the result easily to the general case.

Let g = (p,p,) be a two—parts composition of n, and

p21 pzz

pn p12 ]



be a (A,u)-incidence matrix. Our goal is to find o Q) in the expression

2% 1P = 2 (@) Q.
Q € M(Ap)

Let z be a A-tableau. If y is a p-tabloid in (P, z ), then

2 %) Yol = 2 YIUW}.
Y.
? eyl B\ W
|¥]="w
Look at one of the resulting r~tabloid

where W is a subset of Y, with cardinality w. Write

.= WﬂX, '=1,2,...
w; I JI g
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Then (w,,w,,...) is a composition of the integer w, satisfying 0 < w, < Py; » for

;<
all 5. Thus the v—tabloid

Y,\ W
belohgs to the Rz—orbit (@, z ), where

=' p“-l-w]_ p1j+'wj e | .
Poy =Wy - p2j"—wj
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Thus (2 % 1)P is a I-linear combination of the (),v)-incidence matrices of
the form @ above,ﬂ where (w;,w,, ... ) is a composition of w satisfying wj < p2j
for all j . To see the (integer) coefficient of @ above in the expression of

2 % 1)P, we notice that in the Rz—orbit (P, z ), there are exactly

1

J

Pt ¥
Yj

p—tabloids yielding the v-tabloid

Y, \ W

under the action of (2 ¥+ 1). Therefore, we have

where the sum is over all compositions (wyw,,...) of the positive integer w,
satisfying 0 < w. < p,, .

ying U g 5 2 p?j

In general, if A and p are compositions of n, k£ and [ are positive
integers, 0 <w < b P = (pz'j is a (\,u)-incidence matrix, then

(3.10) FORMULA.
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where the sum is over all compositions (w,w,,...) of w satisfying 0 <w; Spkj for

all j.

In particular, if A is a composition of n, 0 < w < }‘k , U+ v = w we

have the following diagram:

M)‘(I—C%I)M”
N ()
M
where
/.cz.zuz.z)\z., ifes4¢ k 141;
B = Ap—
ul=/\l+u;
z/k=)\k-—'w;
z/l=/\l+'w.

Noticing that (& % ) is the (),u)-incidence matrix
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we can apply (3.10) above to obtain

(3.11) COROLLARY. (k% 1) (k% 1) = [“fg ”] (Y o

A reasonable question is whether any of the kernels in (3.9) can be
ommitted. A discussion of which kernels are redundant when the field has
characteristic 2 or zero is given in §3 [James (1976)] and 12.1 [James (1977a)].

We shall study the general case by making use of the formula in (3.11) above.

If char(K) = 0, the binomial coefficient (u':;”) is never zero. Thus by
(3.11),

Ker(K“IY 1) 2 Ker(k L 1),

Ker(k Y1) 2 Ker(k ©1), w2 w
we have at once

(3.12) COROLLARY. When char(K) = 0, if A = ()‘1’)‘2’ ,)\h) is a

partition of n with }‘h >0

1
st = [ Ke(it1 2 9
i=1

Now consider a field K of characteristic p, where p is a positive prime.
Let
a=ay,+ ap + ... + ap, 0<ae; <D,
b=by,+ bp + ... + by, 0<b <p.
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The congruence (1 + z)? = 1 + 2% (mod p) easily gives the following

(3.13) LEMMA. [Z] . [gﬁ] [?ﬂ [Z;] (mod p).

In particular, p divides [ g ] if and only if a; < b; for some i .J
Consider the intersection

Ker(k % ).
0<w$,\]c

Write
Ap =6+ ap+ ... +ap, 0<¢<p,a>0
w=0b,+ bp+ ...+ bp, 0<d <op

Assume that bs > 0, bj= 0if 0 ¢ j< s. Then

BRSNS

[ fs J (mod p)

i

b, (mod p)

which is nonzero modulo p . Therefore for each w, 0 < w < )‘k’ there exist

some s, 0 < s £ 7, such that



s
Ker(k ¥ 1) 2 Ker(k & 1),
This proves that

r ]

(3.14) ﬂ Ker(k % ) = ﬂ Ker(k = ) |

O<wiA k 5=0
As a summary, we have

(3.15) PROPOSITION. Let A = (Ay,Ag, - ,Az) be a partition of n with
Ap > 0.
(i) If char(K) = 0, then

(ii)) If char(K) = p > 0,
h—1

= () () Relit1 L9
=1 j
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where the second intersection is taken over all j < )‘z' 11 such that j 1s a

power of p.J|



§3B Adjoint Maps

Recall that for each composition A of 7, a non—degenerate, symmetric

K-bilinear form is defined on the permutation module M}‘ via

1, ifz=3,
> = {

0, otherwise,

where z and y are A-tabloids, and the submodule of M which is orthogonal

to SN is given by .
S/\L={mEM)‘|<m,m’>=0,(Vm’€S)‘)}

(cf. §2C). In §3 [James (1977b)], SM is characterized as the sum of images
of I'-homomorphisms from some permutation modules into M)‘, where ' =

K&,. In order to study the K-space
Homp(M" /S, 10%),

we shall use the concept of adjoint maps, which will provide a shorter proof of
Theorem 2 in [James (1977b)], and make a comparison between the K-spaces
Homp(M",5") and Homp (/™ 1).

In general, let us consider KG-modules M, and M, (here we allow M; to
be a finite or infinite dimensional K-space), where K is an arbitrary field and
G is a finite group. Assume that a non—degenerate, symmetric K-bilinear

form < , >; is defined on M;, which is G—invariant, i.e. satisfying

45
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< ém, m >; = < m, f*m’ >.

1

for m, m € My, ¢ = % a0, € = 3ao'in KG. Let g M, — M, be
geG geG

a K-homomorphism. A K-homomorphism ¢: M, — M, is called an adjoint

of ¢, if the following equality holds for all m; in M;, 1 = 1, 2:
< g(m), my >, = < my, P(my) >,
We shall state the following basic facts on the adjoints without proofs:
(3.16) FACTS. '
(i) If ¢: M, — M, has an adjoint, then it is unique. The adjoint of ¢

15 denoted by ¢‘A‘.

(i) If both M, and M, are finite dimensional K—spaces, then each
K—homomorphism ¢: M, — M, has its adjoint.
(iii) If My is also a KG-module equipped with a non—degenerate,
G—invariant, symmetric K-bilinear form < , >,, and
¢: M, — M, , ¥: M, — M,
are K—homomorphisms, such that ¢A, ¢A and (¢¢)A ezist, then

(#9)* = ¢*4*1

We are interested in the case ¢§: M; — M, is a KG-homomorphism.
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(3.17) LEMMA. If ¢ M, — M, is a KG—homomorphism and ¢A ezists,
then ¢* M, — M, is also a KG—homomorphism.

PROOQF. It suffices to show that for all m; € M, m, € M,, { € KG,

< my gHEmy) >, = < my, E44(my) >,
But
< my $Hémy) >, = < §(my), tm, >,
= < £(my), my >,
= < ¢({’*m1), my >,
= < &my, §1(my) >,

A
= < my, £ (my) >
Before working on the family of permutation modules
{ m | Ais a composition of n }

we shall try to unify the K-bilinear forms on M}"s by defining a I'-module
with each M)‘ being a direct summand, where I' = K& . TFix an integer n.

Let M " be the K—space with the following set as a K-—basis:

U{z| zis a A\tabloid },
5 ‘

the union is taken over all compositions of n. The & -action on the above

set is defined via



48

oX, |, cge B
X,

e B

which makes Mn a T-module by K-linearity. It is clear that Mn is the
internal direct sum of all the permutation modules M)‘, where A is a

composition of = :

M, = o { m | A is a composition of n }.
Define a K-bilinear form on Mn’ by setting

1, ifs=7,
<

I8l

y Q > = { .
0, otherwise.
and extending this to Mn by K-linearity. It can be easily shown that < , >

above is & —invariant, non—degenerate, symmetric. Also, we can see that
A b o —
< M, M"” > =0, whenever A # u.

The bilinear form on M defined in §2C is the restriction of the one above to

the I'~submodule M)‘ of Mn )

Let A and g be compositions of n. We have seen in §3A that the sets
of incidence matrices (\,x) and Y u,)\) are K-bases for Homl-.(M)‘,Mﬂ) and
HomP(M“,M)‘) respectively.  The following lemma reveals that the natural
bijection '

P e M(A\u) — P* € M(p,))
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is identical to the map P +— P
(3.18) LEMMA. Each P € 9(\,pu) has its adjoint, and PP = P M(p,A).
PROOF. It is enough to show that

<P)y>=<3gP(g)>

for arbitrary A-tabloids = [ X,, X,, ... |%, utabloids 7 = [ Y,, Y, ... |%.
Recall that A

- — T .
PE)=3{2=[2% 2 - I'| | Z0 % | =p; (Vi) }.
Thus
o 1, if | Yz.an|=pZ-j,forallz',j,
<Pz)y>=
0, otherwise.
Meanwhile,
- 1, 1f|XZ.an|=ij.,forallz,],
< zP(y)>=

0, otherwise.
{1, if | Yz.anl =pz.j,for all 4, 7,

0, otherwise.

=<P(E)7ﬂ>'l

(3.19) COROLLARY. The adjoint of
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2 a(P)P: M — MM, o P) e K,
Pe (A u)

is 2 o PYPY: M* = M)
Pe M(Ap)

Let 4,7 and w be positive integers, with j5 > i. The K-homomorphism
LWL
G=19: M, — M n
is defined in the following manner:

(= d(z)=0 H|X]<uw;

T

GLiz)= Z [Xl, s X gy XL UW, XjU W Xj+1, ]
|F|=w
Fex .
=7

if | Xj[ > w. It can be easily verified that (5 % ) : M, — M, s a

I'-homomorphism (comparing with the definition of (¢ % ) in §3A).
Similarly, one can defined (i & j) when j > i. Let A be a composition of n,
and assume that A i > w. The restriction of (j ¥ 9) to M)‘, still denoted by

(4 w, %), is a I'-homomorphism from M)‘ to W, where p is the composition

()\1, evey )\Z-_l, Ai+w, }\Z-+1,---, Aj_l, A-j_w, Aj_i_l,...).

The I'~homomorphism (5 % i) : M — M* is an element in M) (cf.
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the matrix illustration of (k %5 I) in §3A). We have at once
LW, AT W .t A
G=9 =0G=2): — M.
Thus according to the viewpoint in (3.18), we obtain

(3.20) PROPOSITION. The I'—homomorphisms
Gy M — M
(i 4 N M Ny 72

are adjoints of each other|]

(3.21) REMARKS. As I'-endomorphisms of M_, the relation
(G )t = (%

“still holds, since it is true on every direct summand m of Mn'l

The following lemma is a restatement of Theorem 2 in [James (1977b)],

but our proof is shorter due to the adoption of adjoint maps.

(3.22) LEMMA. The sequence

. LW .
] =+ 7
WA U D

has the property

Im(i % j) = [Ker(j % o))"

PROOF. We have to show that m ¢ Ker(j ¥ i) if and only if
<mm>=0 Vmelm@t% ).

Note that
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m € Ker(j % 4)

GY% dm =0

<G gm m*>=0 (Vm" e MY
<m (i % pm" > =0 (Ym" € MH

r v g1

<m m >=0, (¥YmeImiE% 5|

By (3.9), if X is a partition of n,

s = ﬂ m Ker(j % 1)

j >4 w21
= ﬂ ﬂ Ker(i+1 s 4)
121 w1l

Therefore, combining the result in (3.22), we deduce that

(3.23) PROPOSITION. (Corollary 2 [James (1977b)]) If A is a partition of

n,

M=y Y miy

>t w21

= 2 2 Im(i & i+1). ]

121 w2l

Consider the subspace of EndF(M’\)z

H)\ = { ¢ € EndF(M)‘) | Ker(¢) ) S)\'L })
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where ) is a partition of n. It is clear that
A oA A
H, v Homp(M"/$", M™)

as K-spaces. The K-space HA and HomF(M’\,S}‘) are linked up in the

following

3.24) PROPOSITION. ¢ € H, if and only if ¢A, the adjoint of ¢, belongs to
A
HomP(M)‘,SA). In other words, the mapping

jeH, — ¢ ¢ Homp(d5")
18 a K—isomorphism.
PROOF. Let ¢ be a I'-endomorphism of M)‘. Then ¢ € H A if and only if

g% Hy=0  i21, w1,
by (8.23); if and only if
G % )t =0, ix1L, w21
if and only if
(51 2 gt

0,221, w>1

by (3.16)(iii); if and only if ¢* ¢ Homp(),5%) by (3.9



§3C Bases for HomP(S’\,Mﬂ)

A theorem concerning K-bases and K-dimension of HomP(SA,M”) was
first proved in §3 [Carter and Lusztig (1974)], and the proof was modified in
§13 [James (1978b)]. In this section, we shall describe the ideas of the above
authors briefly and state the main results about HomF(S)‘,Mﬂ) needed in our

later discussions.

We have seen in §3A that 9(\,u) forms a. K-basis for HomP(M)‘,Mﬂ)
since we can characterize an Raz-orbit of p-tabloids by a (A,u)-incidence
matrix, where z is a A-tableau. The following sequence of definitions is

essentially an alternative way of describing an Rz—orbit of u-tabloids.

Let A and p be compositions of n. A function T : [A] — N, where [}]

is the diagram of ), is called a (A,u)-tableau, if the cardinality of

{ (k) e | TK) =1}

is equal to 1 for each 4. (T was called a A-tableau of type p by Carter,
Lusztig and James in the references above.) For example, if A = (4,1), p =
(3,2), we define
T(1,1) = T(1,2) = 2,
T(1,3) =T(1,4) =T(2,1) = 1,
then T is a ((4,1),(3,2))-tableau, depicted as

2211.
1
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The set of all (A,u)-tableaux is denoted by T(A,u).

A X-tableau z induces an & —action on the diagram [A] via

o-(49) = zloz(sg), (47) €[], c € &,

That is to say, (o-): [A] — [A] is the bijection which makes the following

diagram commute

o1 7

fl?l TZ-I

L — n
o

An & ~action on the set T(A,x) can be defined in the following manner:
ol = T(c.).

It is easy to check that the above action on T(A,x) is eventually the place

permutation of (\,u)-tableaux. For example, if

zr=1234

and T is the ((4,1),(8,2))-tableau ? 211 , then

(23)T=2121
1
_1221

(123)T = |
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We say that T and T, in ¥(),u) are row equivalent, if

7T = T, for some 7 € Rz.

2211is

In the above example, the row equivalence class of T = 1

(2211,2121,2112,1212,1122,1221,
1 1 1 1 1 1

A one-to-one correspondence between T(),z) and the set of u~tabloids
can be established as follows: fix a A-tableau =z, for each T € T(\,u), let v, (T)
be the p-tabloid satisfying that B lies in the T'(4,5)-th row of 7 (T'). It is
not difficult to check that v, is a bijection. ~We shall prove that if T €
T(A,u), then
{ 7(T) | T,is row equivalent to T }

is an Rz-orbit of p-tabloids, stated in the following lemma.

(3.25) LEMMA. Fiz a A—tableav z, let T, T; € T(\p), P € M(\,u). Then
(i) 7(T) belongs to the Rz—orbit (P, z ) if and only if the number of
t’s wn the j—th row of T is equal to p; i for all i and j.
(ii) T, is row equivalent to T if and only if v (T) and 7,(T) belong to

the same Rz—orbit.

PROOF. It suffices to show (i). Let
Yy
7x(T) = | Y|
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Recall that ;) lies in the T(kJ)~th row of 7 (T). Thus
the number of #’s in the j~th row of T
= the cardinality of { z; | TG = i}

= IYz'anl =p for all i and j[f

i’
(3.26) DEFINITIONS.

(i) A (\p)-tableau T is said to be semistandard (reverse semistandard)
if the numbers in the depiction of T are non—decreasing (non-increasing) along
the rows of T and strictly increasing ( strictly decreasing) down the columns
of T.

(ii) A I'~homomorphism P € MM(A,x) is said to be semistandard (reverse
semistandard), if for some A-tableau z, (P, z ) contains a p—tabloid 7,(7T),
where T is semistandard (reverse semistandard). This condition is independent

of the choice of z. Note also that T is uniquely determined by 7, (7).

(3.27) EXAMPLE. Let A = (2,2), p = (2,1%), and z be a (2,2)-tableau.

There are four (A,p)-incidence matrices (Rz—orbits):

) ={ %G5, xG D},

[
1831

={ i3, %D, %D, nGDHy,

=
<
1831
N’
|

) ={ %G, wlHy,

=
181

= { x5, b, wihy.

=
1831
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“ 2 0 0 2
The TI'-homomorphism lO 1] is semistandard, while |1 0} is reverse
0 1 1 0

semistandard.j

(3.28) THEOREM. (§3 [Carter and Lusztig (1974)], and §13 [James (1978Db)]
Let A and p be partitions of n, % be the restriction of P € IM(\,u) to S’\.
Unless char(K) = 2 and X is row 2—singular,

(P P & M(\p), P is semistandard }
forms a K-basis of HomF(S)‘,Mﬂ). The set
{ P | P e MM(Au), P is reverse semistandard }
also forms o K-basis of HomF(S}‘,Mﬂ).l

It is sometimes handy if we have a criterion for semistandard (reverse
semistandard) homomorphisms according to the features of the incidence
matrices themselves.  The following facts concerning reverse semistandard

homomorphisms will be used in the later sectionms.

(3.29) LEMMA. Let A and pu be partitions of n, and let N = (nzj)
(A,u)—~ incidence matriz. Then N : Y

be a
— M* is a reverse semistandard

homomorphism if and only if

- z(niﬂ,j—n@jﬂ)zo, k=1,2 . ,§=12 ...
1=k

[11]
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PROOF. We shall prove that the above condition is necessary, the converse

part can be proved by the similar argument.

Assume that N: M — M* is reverse semistandard. Let z be a
A-tableau and T be the reverse semistandard (),u)-tableau such that +,.(T)
" belongs to (N, £ ). The numbers along each row of T are non—increasing, and
the number of #'s in the jth row of T is nj (cf. 3.25 and 3.26). The
(7+1)-th row of T is thus of the form

I ... 1 (l+1) cen (Z+1) vee 2 ...21 ... 1
—— S—— N N
nl,j+1 nl—l,j+1 n2,j+1 nl,j+1

For each entry 1 (one) in the (/41)-th row of T, there must be an entry in
the same column and the j~th row, which has the value greater than 1 (one).
Therefore, necessarily, the number of entries with values greater 1 in the j-th
row of T must be at least the number of all entries in the (j+1)-th row of T.

That is

® [¢1]
2 Bit1,5 2 2 g1
i=1 i=1

i.e.

(Mi1,5~ Mie1) 2 0

1

1))
7=
Similarly, for each entry 2 in the (j+1)-th row of T, there must be an entry
with its value greater than 2 in the same column and the jth row of T.

This forces



i (Mi1,5 = Piger) 20
1=2
Repeating this process, we have
®
i=k

The converse part of the proof can be done by the same argument.|]

Yo (g mp) 20 k=L, =10
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§3D On the Labelling of the Irreducibles

When the ground field K has its characteristic p, p > 0, the irreducible
'-modules can be labeled by row p-regular partitions of n, where I' is the
group algebra K&, , since each Specht module S’\, with A row p-regular, has

the unique maximal submodule S’\ n S’\J‘, and the set of factor modules
{7 = S (8™ | A is a row pregular partition of n }

forms a complete set of inequivalent irreducible I'-modules (see 2.11). By
working with $¥, where p is a column p-regular partition of n, we can find

another labelling of irreducible I'— modules, based on the following facts:

(3.30) LEMMA. Every Specht module s# , with p a column p-regular partition

of n, has the unique irreducible submodule L”, and the set
{ I* | 1 is o column p—regular partition of n }
forms a complete set of inequivalent irreducible T—modules.

SKETCH OF THE PROOF. Note that a pa,ftition A of n is row p-regular if
and only if its conjugate partition A’ is column p-regular. A Specht module
S has the unique maximal submodule if and only if (S}‘)*, the dual of S)‘,
has the unique irreducible submodule by (2.7); if and only if SN has the

unique irreducible submodule, because of (2.18):

My (5Me Te(s,).
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It is easy to see that

My e re(s,),

14

and thus the mapping J)‘ — L’\, is a bijection from the set

{ JA | A is a row p-regular partition of n }
onto the set

{ I* | 1 a column p-regular partition of n }.J]

A difficult question was raised at the end of [James (1977c)]: what is
the connection between the two labellings? In the proof of the above lemma,
we have seen that temsoring with T e(&,) yields a bijection (up to
isomorphism) from the set of inequivalent irreducibles onto itself :

7 e res,) v IV,
for each row p-regular partition of n. A much harder problem is the

following:

(3.31) PROBLEM. For each row p—regular partition X of n, search for a
column p—regular partition of n, denoted by ¥ (A), such that s isomorphic

to the unique irreducible submodule LQP()‘) of SQP()‘)I

(3.32) NOTE. When p = 2, ¢(6,) = (&,). Thus

My P re(s,) = o TyS,) v I,
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and the mapping &, is the trivial one:
§,(A) = X, for all 2-regular M.

If p > n, for each partition A of n the Specht module S)‘ is irreducible
over T', hence &, () = Al

We shall give a partial solution for Problem 3.31 by showing that if A is
a row p-regular partition satisfying some stronger conditions, there is an easy
combinatorial way to describe &,(A).

Let A and p be partitions of n. Write g = (pply-oty), by, > O
According to (3.9), a I'~homomorphism ¢: M — M¥ has its image contained
in S#if and only if

(i+1 %L g =0 i=12 ..,51 0< URNE

In some ideal cases, we can find an element N in the basis D(\,p) of

Homp(M", M), satisfying
(+1 LN =0, i=1,2 ..,k 0<w¢< Pigq:
Let o and b be non—negative integers. Write
b=1by+ bp+ ... +bp", 0<b<wp b >0

The integer p™*! is the smallest power of p larger than b. Denote (r+1) by
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14 p(b). When b = 0, define £, (b) = 1. The following result can be deduced
from 22.5 [James (1978 )] .

(3.33) LEMMA. (a—lu—)w) = 0(mod p) for all w, 0 < w £ b, if and only if
a = —1(mod pep(b)).l

The following proposition, first proved by G.D. James, is our main tool

in this section:

(3.34) PROPOSITION. (24.6 (i) [James (1978b)] Let X and u be partitions
of n. If N = (ny) € DYAp) satisfies

ny; = —1(mod pzp(ni’fl’j)). 1=1, 2, ...,

then Tm(N) ¢ S¥.

PROOF. Recall the formula in (8.10), for each %, w

(i+1 & 2 H [ " +'w ] (w,w,,...) ?

where the sum is taken over all compositions (w,,w,,...) of w satisfying

0 < wj < ni+1;j7

for all j,

and N( ) is the incidence matrix having the rows ¢ and (i+1) of the

1,'11)2,...
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form

[nﬂ+w1 Mg + Wy ..oy oW ]

[ ni+1,1_ w1 ni+1,2 - ’w2 e . ni,‘_l,j - Wj .« . .:I
and the other rows identical to the corresponding rows of N. The conditions

ng; = —1(mod pep(ni*‘i’j)). 1=1, 2, ...,

];]: [ niqju';'wj ] = 0(mod p)

assures that

for all 4, all compositions (w;,w,,...) of w satisfying

0<w < n

) ispj for all 7,

by (8.33) above. Therefore
(i+1 % )N =0,  for all 4, w,
and it follows that Im(N) ¢ S¥ by (3.9).]]

G.D. James obtained the following result concerning HomP( S (n), S ,u) by

- applying the proposition above:

(3.35) COROLLARY. (24.4. [James (1978b)]) Let p = (Lphge-iy) be @
partition of n. The trivial module J (n)= S(n) 18 isomorphic to a submodule

of S* if and only if
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b = —l(mod phollindy. 5= 1 2 .. 1

(3.34) has many other applications. For each partition A = (ApAgAy)
of m, with A, > 0, we can comstruct a partition 0,(1) and a (A,0,(}))

incidence matrix N (2.2) , such that
tm( ¥ (PA)y ¢ (A,

(3.36) CONSTRUCTION. Let A = (A,Ay,...) be a partition of n. Write for
each j,
Ay =8 - 1) + 1, 0<¢n<p-L

Let N(p A) be the integral matriz whose j—th column is

The row sums of N (2,2) determines a partition of n, denoted by 0,(}).
Clearty NP ¢ (3,0 (0)

According to this construction and (3.34), we have at once
3.37) Im( N(PA)) ¢ s0(A)

When X is a partition satisfying certain conditions, more information
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about the irreducible submodules of S ﬂp()‘) can be found through the

I'-homomorphism N (v ’}‘). We shall prove the following combinatorial lemma:
(3.38) LEMMA. Let A = (A,Ay,..,A,) be a partition of n satisfying

Ap > 0,

AJ_)\J+12p_1’ _7= 1, 2, ...,h—‘l.

Then
(i) The T'—homomorphism N (BA), 3, 38 (N) is reverse semistandard.

(i) 8,(A) is a column p—regular partition of n.

PROOF. (i) Write N(PY) = (ny) and

Ay =g -1) + 1y, 0<n<p-1,343=1,2 .., h

For each j, 1 < j< h -1, we have
A= A= (s sudlp -1 + (- 29— 1

It is clear that |ry — ryyy| <p-1. If

0§rj—rj+1<p—1,

one must have

(5 = s5)(@ = 1) 2 (p = 1) = (1 = m3y) > 0.

Thus s - s, 2 1, it follows that the (sj+1+2,y)—entry in N(p”\) is either
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(p-1) or 7, i.e. the columns j and (j4+1) are of the form

1 [p -1 p—-1]
$isp |P-1 p-14, ifsj—sj,,i:l;
p—l TJ+1
Sjart2| Ty
or
1 p—-1 p-1]
$i+y |P-1 p-14, ifsj~sj+122.
p—l 7"j+1
Sjv1t2ip -1 0
8:+1 r O
! 0’ 0

If 'rj - Tj*’l < 0, then

(5= s -1) 2 (-1 + (1~ 1y )

.

Hence s; — s;,0 2 2, and the jth and the (j+1)-th column of N(p’)‘) are of

the form shown above. In either cases,

Miapj = Mpjey = 0, 1 1< 854

Tespi = Mcspist 2 0 where k = s,

Therefore the conditions in (3.29) are satisfied:
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z (ni-l-l?j - ni:j+1) 2 0, k=12, .
1=k

w

Since j is arbitrary, we have proved that N (7,2) is reverse semistandard.

(ii) The first column of the matrix N (7:2) getermines the lengths of the

first (p — 1) columns in the diagram of 0,()). Since the first column of

N(P,/\) is
- 1]
. S
p-1 ] 1

the first r; columns in the diagram of 8,(A) have their lengths equal to s+ 1,
and the next (p — 1 — ;) columns have lengths equal to s,. According to the
discussion in the proof of (i), either
§§—8 =1 or s — 38 22
When s, ~ s, = 1, ry — 7, 2 0, since A\; — Ay > p — 1. There are
(p-1-r1)+

columns with lengths s; in the diagram of 8,(1). But

p-1-r)+mry=p-1-(r,-1r)<p-1
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When s; — s, 2 2, the columns p to 2(p — 1) in the diagram of 0,()) have
their lengths less than s;. Repeating this process, we can prove that no more
than (p — 1) columns in the diagram of 0,()\) have the same lengths, hence

0,(}) is column p-regular.li

The I'~homomorphism N (22) has some interesting properties when X is

a partition described in (3.38):
(3.39) PROPOSITION. Let A = (AAy,...,A,) be a partition of n satisfying

Ay > 0,
Ay = A 2p-1,  i=1,2, .., kL

Then
(i) S* s not contained in Ker[ N(p’}‘)].

(ii) S)‘ = Ker] N(Z”\)], hence (S}‘) s isomorphic to a submodule of
gﬂ (A)
P\,

PROOF. (i) By (3.38)(i), N@A. A ) g reverse semistandard
I'~homomorphism. Thus N (p”\)(S’\) # 0, since the restriction of N (22) 45 oA
is an element in a K-basis of HomF(S}‘, M ﬂp(’\)), according to (3.28).

(ii) We first show that sht C Ker[N(p’}‘)]. By (3.23),

sM = Y Y mi i),

121 w>l
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Thus it is enough to show that
NONGE, 1y =0, 1<i< Al w) L
Let N* be the transpose of N (p,), By (8.16)(iii), it is enough to show that

(NP L et = o,
ie.

(i+1 2% YN =0, 1< i< A1, w1,

by (3.18) and (3.20). Notice that in the matrix N (p,)\), the last non-zero

entry in the j-th column, 7,

proof of (3.38) (i). Thus the matrix N® satisfies the conditions in (3.34),

is also the last non—zero entry in its row, by the
which imply that

(1% )N =0, 1<i<hl, w1l
Thus S)‘*(_Z Ker[N(p’)‘)]. The submodule Ker[N(,p’)‘)] of M does not contain
s by (i), hence it is contained in S by the Submodule Theorem (2.8).
Therefore S'* = Ker[ N (7 ’)‘)]. To verify the last statement, we simply apply
(2.14):

(N w18,

and note that there is a monomorphism from M}‘/S)‘J‘ into S 0,(3) induced by
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It is worth naming those partitions described in (3.39) at this stage:

(3.40) DEFINITION. A partition X = (ApAy,...,Ay) 8 said to be strongly row

p—regular, if A\, > 0, and

Aj— A 2p-1 j=1,2 .., kL
A partition p is said to be strongly column p—regular, if its conjugate |’

is strongly row p—regular.|

(3.41) THEOREM. Let X be a strongly row p—regular partition of n. Let
0,(2) be the partition constructed in (3.36). Then 0,(}) is column p—regular,

and the unique irreducible submodule of S ﬂp(’\)v s isomorphic to J)“

PROOF. Only the last statement need to be. verified. By (8.39) above,
(S)‘)* is isomorphic to a submodule of s By (S}‘)* has its unique
irreducible submodule isomorphic to J}‘, by (2.7). Thus as 8,(A) is column

p—regular, J)‘ is isomorphic to the unique irreducible submodule of Sﬂp()‘).l

An alternative proof of the last statement above is the following (see

also, 24.6, 24.7 in [James (1978D)]):

(3.42) PROPOSITION. If X is a strongly row p—regular partition of n, then
N (p,)\), the restriction of N.(p’)‘) to S)‘, 18 a non—zero I'—homomorphism from

S)‘ to Sgp(}‘). Furthermore, there exists a T'—homomorphism

g 7 —sl(A)
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which makes the following diagram commute:

A
S A
T
aA
S
2N SPLNCY
Shn st

where w is the coset map.

PROOF. Imv (P ¢ §%(A) vy (3.37). @Y. & _ §9() i5 nonsero
since N (7:2) is reverse semistandard, hence N(p ’)‘)(S}‘) # 0, as seen in (8.39).
By (3.39) (ii),

A = Ker[N(p’)‘)

thus
Ker| V(P = A g M)
and
N sA
Stnstt

(3.43) REMARKS. Tor a positive prime p, 0_ is a map from the set of

P
partitions of n to itself. ~When p = 2, 0, sends each partition to its
conjugate, hence 0, is a bijection. When p > 2, 8, is neither one-to-one nor

onto. For example, when p = 3, n = 9,

04(7,2) = (4,251) = 0,(7,1%),
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while the partitions (1°), (2,17), etc., are not in the image set of 8, Recall
that in Problem (3.31), we look for a column p-regular partition &,()), when

A is row p-regular.
According to our Theorem (3.41), we have & ()) = 0,()), when X is
strongly row p-regular. Now we reverse the problem as follows: if a strongly

column p-regular partition p is given, can we find a row p-regular partition A,

such that

(A =p?

The answer is yes and the proof is based on Peel’s result (2.18) and Theorem

(3.41) above.J
We state the following lemma without proof:
(3.44) LEMMA. Let M and N be T'—modules. The mapping
¢ € Homp(M,N) +— ¢’ € Homp[M @ T'e¢(&;), N © I'e(&,)]
where @' is defined by
plm © (&y)] = p(m) @ (&), me M,

is a K-—isomorphism. Furthermore, ¢ is onto (one—to—one) if and only if ¢’

is onto (one—to—one).j

Let A be a row p-regular partition of n, v be a column p-regular
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partition of #, such that v = Qp(/\). That is to say, there are

I'-homomorphisms in the following sequence
A Y 14
such that 7 is onto and ¢ is one-to—one. In the dual sequence, by (2.4),
6% 5 (Y 5 (Y,

* *
we have § onto and 7 one-to-one. Applying (3.44) above, one obtains

* *

"o re(e,) W (Mo res,) @) (Yo res,),

* * *
in which (¢ )’ is onto and (v )’ is one-to-ome. Notice that 4 s (J}‘)

(2.19), and by (2.18) and (2.19) :

by

Therefore 'we have a sequence

¥y

y T )
sV 25 e rgs,) = SV,

in which 7, is onto and ¢, is one—to—one, »* is row p-regular, X\’ is column

p-regular. It also means
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JV w e re(s,)
is isomorphic to the unique irreducible submodule of S)". That is to say,

(3.45) PROPOSITION. Let A (v) be row (column) p—regular partition of n.
Then v = §,(A) if and only if X’ = & ()]

For example, if p = 3, n = 9, 'noticing that (8,1) = (2,17), we have

@ 3(871) = (3723)7
5(4%1) = (2,17,

The above observation is useful when we look for a row p-regular

partition A, such that #,A) = p, where p is a given strongly column

p-regular partition. Since ' is strongly row p-regular, we have

by (3.41). Thus we can find & (s) through the following algorithm:
por—= o B,(w) — 0, () = 854 (k)
for each strongly column p-regular partition u-of 7.
When A is a row and column p-regular partition of n and the Specht

module $* is irreducible over T' = K&, the answer to (3.31) concerning A is

certainly 8,(A) = A. We now summarize our results in this section which
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provide partial answers to Problem (3.31):

(3.46) THEOREM. (1) Let A be a strongly row p—regular partition of n.

Then ¥,(A) = B,(A).

- (2) If p is a strongly column p—regular partition of n, Ql;l([l,) = 0,(w).

(3) If X is a row and column p—regular partition of n and the Specht module
S is irreducible over T = K8, then &,(}) =

(3.47) EXAMPLE. Take n = 6. All partitions of 6 are listed below in
pairs of conjugation:
(6), (1%
(5.1), (2,19
(4,2), (22,19
(4,19, (3,1%)
(3%), (2%
(3,2,1), (3,2,1)
(a) When char(K) = 2, the mapping &, sends every 2-regular partition to its
conjugate, as we have seen in (3.32).
(b) When char(K) = p > 6, every partition of 6 is row and column

p-regular, and the mapping &, is the identity mapping on the set of partitions
of 6, by (3.32).

(c) When char(K) = 3, there are seven row 3-regular partitions: (6), (5,1),
(4,2), (3%, (4,1%), (3,2,1), (2%1%). Among them, (6), (5,1) and (4,2) are
strongly row 3-regular, hence their conjugates (15), (2,1%) and (2%1%) are
strongly column 3-regular. The following table lists all strongly 3-regular
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A)

partitions of 6, the matrices N (7, and the partitions 0,(A) by the

construction of (3.36):

A (300 6,0
2
(6) H (29)
2
T
(5,1) 20 (3,2,1)
L 1 0 -
@ | [35] | @
6y | |11] | @2
1) | [355] | @2
@20 | |155]] 6
(22,12 |[2211]] (6)

By applying (3.46)(2), we have

851(1%) = (2% = (3%,
§§1(2714) = (3,2,1) = (3,2,1),
58T = (42) = (2219)

In the set of row 3-regular partitions of 6, (4,1%) is the only one whose
& ,~image can not be found by using (3.45). But (3,1%) is the only leftover in

the set of column 3-regular partitions, thus we are lucky to see that
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8,(4,1%) = (3,1%).
In the following diagram, we list all 3-regular partitions of 6 along the
vertical line, in the dictionary order. Their conjugates are listed along the
horizontal line, from right to the left. The circles with coordinates (&,(A),A)

illustrates the correspondence §,.

(6) ..................... 0

| 1 1 ! | i |

(4,2) (3,2,1) (2% (3,1%) (2%1%) (2,1%) (19)

(d) When char(K) = 5, all the partitions of 6 are row 5-regular except (1),

but (6) and (5,1) are the only strongly row 5-regular ones. By applying
(3.46), we have

QS(G) = (472))
(}5(5)1) = (5)1)7
§5(22712) =(16):
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3,(2,1%) = (2,1%).

We may apply (3) in Theorem (3.46) to get more information about the
correspondence &, . The detail is omitted here. In general there might be
more leftovers after we apply ﬂp to strongly row p—regular” partitions and QI;I
to strongly column p-regular partitions. A complete description of the

correspondence Qp is still an open question.]]



§3E The Homomorphisms from S(n—l’l) to Other Specht Modules

The determination of the A—dimension of HomF(S)‘, SH) for a pair of
partitions of n, where T = K&, is a difficult question. When char(K) = 0,
or char(K) = p, p > n,

1, if A = g,
0, if A #

dim Homp,(8", ) = 6, , = {

since { s | A is a partition of n } forms a complete set of inequivalent
irreducible I'-modules. In the case char(K) = p < n, some partial results
have been obtained by a few authors. G. James solved the problem when A .
is the partition (n) and p is arbitrary in 24.4 [James (1978b)] (see 3.35 in
§3D), while another special case, when both A and p are two-parts partitions

of n, was studied in [Gwendolen Murphy (1982)].
We set up our goal in this section as the following:

(3.48) PROBLEM. Let K be a field of characteristic p > 0.

(a) Find all partitions p of n such that
Homp( § ("), 5 + 0.

When Homr( S(n—l’l), S”) $ 0, ezhibit a K—basis for this K—space thus find

the K—dimension.
(b) Find all partitions u of n, n > 3, such that the irreducible module

81
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J (n-1,1) is isomorphic to a submodule of S M.I

For a pair of partitions A and px of n, we may list all the semistandard
(reverse semistandard) I-homomorphisms from m to MH and then test
whether some K-linear combinations of them send S)‘ into the kernel

intersection in (8.9).

(3.49) NOTATIONS AND NOTES.
(i) For a partition g = (Lyfg.ty) Of m, py > 0, there are h
((n~1,1),p)incidence matrices, each of which has zero in all but one place in

its second column. Denote by P; the ((n-1,1),u)-incidence matrix whose

second column has 1 (one) in the i—th row, i.e.

[ 1y 0]
Bi-g 0
M((n-1,1),p) =1 P; = |p; -1 1 i=12, ..., h
Bivy O
fn O
It can be easily checked that P;, ... , P, are reverse semistandard, by the

criteria in (3.29).

() I o:M (mL1) _, b 5 a I'-homomorphism, we shall use ¢ to

denote the restriction of ¢ to S(n_l’l). Thus according to (3.28):

{Pi|i=1,2,...,h—1}

is a K-basis for the K-space Homp(S (n—l,l), M*™). 1In this section we choose
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those reverse semistandard homomorphisms to work with because they seem to
have a better performance in our very last section, although we believe that

the results of this section are independent of the choice of the basis.

(iii) Let z be the (n—1,1)-tableau

13- 1
5 :

Our later analysis is based on the positions of the elements 1 and 2 in some
tabloids. Let v be a composition of n. The sum of all v—tabloids with 1

(one) in the i—row and 2 in the j—th row is written as

Yy
Z v, =0 |1ten2ev
14
or abbreviated by
Yl
Z{yy 1eY1,2<—:Yj}=2 Y
eyt dv
2 €Y,

For example, if P; is the ((n~1,1),u)-incidence matrix defined in (i) then we

can write

R
181

=X T {g]renren]
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(iv) In the notation of (iii), we have

(1,2)2{@ 1eYi,2eYj}=Z{@

where (1,2) is the transposition in &,. It is clear that

1eYj,2eYi}

[1—-(1,2)]2{@‘leYi,2eYi}=0,

for all ¢ and any composition v of n.J]

Assume that

h-1 _ ‘

i=1

is a [-homomorphism, z; € K. Let z be the (n-1,1)~tableau % § oo
From (3.9) and (3.28), the restriction ¢ of ¢ to S(n_l’l) is a
I~homomorphism from S (n-1,1) to SH if and only if @{[1-(12)] z} €S kit

and only if

h-1
(350) [1-(1,2)] (41 %4 % z2P(Z2) =0, 1<i<hl, 1< w< gy ;

i=1

if and omly if

(351) [1-(L2)] (D) % 2P(3) =0, k>1>1,1<w<

1=1

-
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Both (3.50) and (3.51) yield systems of linear equations in unknowns
{zi}l;i over K. When we want to find the necessary conditions on ¢, (3.51)
provides a faster algorithm, although some of the linear equations given by
(3.51) are clearly consequences of those given by (8.50). The following arises

from (3.10):

(3.52) FORMULAE.

(i) For k=2,3,..,hw=12, . u,
i ,ui""']. ]. i i /Ll—’l'l'w 1 |
by 0 fo 0
% 1P, = (k% 1) = [ /"1‘%0*"“’]
e 0 pe—w 0
b O fip 0
(i) For k = 2, ... , k-,
a0
-y 0
(k5 )P = (k1) |m -1 1
Peeg 0
pp 0




[ ptw 0 [ ptw-1
+ P-4 0 + . Pr-1 0
w w -
= [/Li w ] m-l—w 1 | + [#1 W —1 ] p—w 0
Prs+y O bysy 0
bn 0 fn O
if 1 < w< py; and
[ by ] [yl 1
Px -1 Fr-1 O
P Fox -
(E= VP = (k=1 -1 1| =[mFaT 0 0
-1
P+ 1 Hi Bre O
F b0
() For k=2, ..,h1, 2< i< h1andi#k
[ py O [ ptw 0]
k| #x O w0
(k% 1P, = (kL 1) .= [#1‘1;?”]
i opl 1 pi—l o1
pp O pp 0
for all w, 1 < w < fy.
n-1,1
(3.53) LEMMA. (a) Let ¢ = % zp, : M("hY)

86
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I'—homomorphism satisfying (3.51). Then
e+ pzy =0, k=2, .., h-1
Hence ¢ must be of the form

2(P; — pPy — .. — Py, 2z € K.

(b) The K-dimension of Homp( S (n—l,l)’ SHY is either zero or ome.
HomF( S(n_l’l), SH) has dimension one if and only if

Py —p(Py + -+ + Pyy)
satisfies (3.50) or (3.51).

PROOF. To prove (a), we take w = 1 in Formulae (3.52) above. Let v be

the composition of n

(.u’1+17 Hoy «ev s /"'k_]-a AR :u'h)

We have by (i) in (3.52)

Ky

Ey
(kl_’ 1)P = [/h]

pp 0

Thus in (k L 1)P,( z ), the sum of v»—tabloids
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PR

1eYh,2eY1}

has coefficient p,. Meanwhile, for 2 < £ < h — 1, by (3.52)(ii),

,Uri"l‘l 0 /‘61 1
. ) P-4 0 Py -1
(k= 1P, == [/'Li T ] m——2 1| + o , i 2 2
Pevg O P+ 1
fn O b 0
[ 1y 1]
) . P -1
P +1
b 0

In both cases, the sum of v-tabloids

Y%

in (8L 1)P( T ) has coefficient 1 (ome). If i # k 2 < ¢ < h—1, by

1eYh,2EY1}

(3.52)(iii),
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[ p+l 0
m—1 0
L 1P, = [”1 + 1]
pi—l o1
“kn O

Therefore 2{ y_y ' l1eY,2¢cY, } does not occur in (k& 1 )P z ), if

t# k 2 <4< h-1. Also, we notice that

Y%

has coefficient zero in (k L, 1)P; , 1 ¢ j < h-1. Therefore in the expression

of

1eY1,2eYh}

the sum of v~tabloids 2{ Y, ‘ leY,2¢cY } has coefficient

v I

while 2{ y_y ‘ leY,2eY, } has coefficient zero. It follows that in the
expression

1 h-1 _
[1-(12)] (k=>1) ¥ %P z),

the sum
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2{§;I1EYh,2€Y1}—2{§;‘1eYI,2e Yh}

h-1
has coefficient (z + p.2,). Since ¢ = % 2z.P; satisfies (3.51), we must have
i=1

2 + pzy = 0, k=2 .., h-1
(b) is an easy corollary of (a).]
When p = (py, #4), @ two-parts partition, {P;} is a K-basis for

HomP(S(n_l’l), MH™. Thus the K-space Homp( S(n_l’l), 5*) is non—zero if

and only if
p( sl ¢ gk

This is the special case of 2.12 in [Gwendolen Murphy (1982)]. We shall state

and sketch the proof of the following

(3.54) PROPOSITION. If p = (pg, fo)y By 2 ly > 1, is a two-—parts
partition of n, then the K-dimension of Homp( S(n_l’l), S s either zero or
one. HomF( S (n—l,l), SH) has dimension one if and only if

gy = 0 (mod pzp(/j’z_l)).

Note. The definition of £,(b), b a positive integer, is given in §3D, prior to

(3.33).
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PROOF OF (3.54). Take k = 2 in Formulae (3.52)(i):

pe-1 1 1 pe-1l+w 1

w w +w
(2——’1)131:(2——’1)[#2 0]=[#1'w ] Hyg — W 0
where w = 1, 2, ... , py. For w =1, 2, ... ,u~1, let v(w) be the partition of

n: (ptw, p—w), then

(25 1)P(T)

— [u1~3u+w] 2 ij(w) + 2 [%ﬂy(w)] .
1eY, 1eY,
2€Y, 2e Y,

By applying (3.49)(iv), we have

[1-(12)] 2= 1)P(z)

SEE I DR D W N
1€ Y, 1€Y,
2 €Y, - 2 €Y,

Therefore, P, S 1)) ¢ g¥ only it

{pi—l +w]

w 0 (mod p), for w=1,2, .. ,u-1.

By (3.33), this is equivalent to,
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py — 1 = -1 (mod pep(“z—l)),

ie.

gy = 0 (mod pzp(ﬂfl)).
Conversely if p, = 0(mod pep(“fl)), then

-2 2% 1)P(z)=0, forw=12 .., u-L

K -
It is clear that [1 — (1,2)] (2 - 1)P( z) = 0, since 1 and 2 lie in the same

[ -
row of each tabloid occuring in (2 = DP(z )l

Now we assume that p = (4, g, .. , M), 4 > 0, B 2 3. Consider the

following cases:

CASE A. p divides p,.
CASE B. p does not divide p,.

. In CASE A, p, = 0 (mod p), Homr( S(n_l’l), SH is non—zero if and

only if P ( S(n_l’l)) ¢ SH by (3.53)(iii). We have the the following assertion
by making use of Formulae (3.52):

(3.55) PROPOSITION. Let p = (py, ... , fy), Such that p, > 0, h > 3.

Then P S LUy ¢ 5% if and onty if

p; = -1 (mod pgp(”i"l)), 1= 2, ..., h-1.
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PROOF. First assume that P S(" L)) ¢ K ie.
[1-(12)] (1 %) P(Z)=0, 1<i<hl, 1< w< g,

Take & = 2 in (3.52),

=

u1—1+’w
2% P = [“1—11”_'-“)] H3 0,1<w< py

o

b 0

Since h > 3, the sum

2{_—%[2@ ‘16Yh,2eY1}

where »(2,w) is the composition (p+w, pe—w, pg, ... , fy), has coefficient

[#1—i+w] in the expression of (2 ¥ 1) P(%), 1< w< p, Thus the sum

Z{m '16 Yh,zelq}—it{yﬂlﬂl ‘16 Y, 2 € Yh}
has coefficient [,u 1—zlu+w] in
-2 L )p(z)=0 forw=12, ..,
Therefore

[“1_1%)'*'1”] = 0 (mod p), for w=1, 2, ... i

i.e.
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4 = 0 (mod plolka)y).

Furthermore, for each 4, 2 < ¢ < h-1,
et
P

(i+1 L )P, = [ ﬂiﬁu")’“’] ptw 0|, 1< w< gy

i —W

bn 0
By counting the coefficients of

2{“_“yy[iw] |1<—:Yi,2<-: Yl}

where z/( is the composition

i,w)
(:up A /*Li+'w) Hipg~W, ... ;u’h)7

in (i+1 v, 9)P( z ), we must have [“i;w] = 0 (mod p), w = 1,2,..., 04,

Thus

p; = —1(mod pep('ui“i)), i =2, .., h-1.

The converse part of the proof is clear from the above discussion.|j

It remains to study the case p does not divide p,. We first assume that

p = (g, Ko [g), & 3-parts partition of n.  Then HomF( S (n—l,l), SH is
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non—zero if and only if

(P, - (8P LDy sk

by (3.53). Put k= 3, w = 1 in (3.52):

py 1
(31—’1)P1= [/fl] gy 0
ps-l 0
. . ptl 0
+
(3= 1P, = [ ﬂ11 g1 1
pe—1 0

Thus the sum

Yy
Li|letazely,

Sy

where v = (p+1, py, pq-1), has coefficient g, in (8 L, 1)P( z ), and zero in
(3L 1)P,( 3 ), while

leY,2c¢ Yz}

has coefficient (y+1) in (3 L 1)P,( z ), zero in (3 1, 1)P(

the sum

1821

). Therefore

1e€Y,2c¢ Y2}
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has coefficient p, — (—p)(p+1) in

1 - (1,23 5 1P, - wP)(T)

It forces that

gy + py(pytl) = 0(mod p),
ie.
p(p+2) = 0(mod p).
Because p does not divide p; by assumption, it follows that
(3.56) (p+2) = O(mod p).

Hence we have

(3.57) PROPOSITION. If p = (py, py, k3) 48 a partition of m, py s an odd

integer, then
Homp( §(" 1Y), s4) =
when I' = K&, n 2 3, char(K) - 2.1

Assume now char(K) = p » 3. By taking k = 2 in (3.52):
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(2% 1P, = [M_’Llu-*_w] pomw 0|, 1S w S py
Hg 0
potw 0 ptuw-1l 1
2% 1)p [“1+ "”] p—w—1 1| + [“,bfbl"‘l] po—w 0|,
P 0 P 3 0
if 1< wg pyl;
Ho +u,—1 Prbwd L
(2 = 1)P, = [Mﬁzﬁf ] 0 0
gy 0
Write (w) = (ptw, pw, fy). For w =1, 2, ..., p,—1, the coefficient
of
Y
Y. 0 1€ Yy,2¢€7,
= (w)

2{? 1EY26Y] Z{? 16Y2€YJ
3 2 - 2 3
Yzy(w) Yiy('w)

has coefficient —ui[/"i';w] in

[1 - (1,2)](2 = D(Py = P 7).
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This forces

[#1:;10] = 0(mod. p), for w=1, 2, ... ,u1;
ie.

gy = -1 (mod pep(“fl)).
Combining this with (3.56):
p+2 = 0 (mod p),
we must have p, — 1 = 0, hence y, = p; = 1. We now state tile following :

(3.58) PROPOSITION. Let p = (g, Boy B3) be a 3—parts partition of n, such
that g ds not be divisible by p. When p 3 -3, Homp( §("L1), 5#) 4

non—zero if and only if

py = =2 (mod p)
by = pg = L.
n—1,1)

Under the above conditions, the restriction of (P; + 2P,) to S ( i a

K—basis for Homp( S(n_l’l), SH.
PROOF. We have shown that the conditions

fy = =2 (mod p)
o = pg = L.



are necessary for HomP( S(n“l’l), S*) being non—zero in the note above.

show that they are sufficient, it is enough to check that

[1- (1L2I2 5 (P + 2P)( ) = 0,
L - (1,23 & 2)(P, + 2P)(E ) = o.

We have
plo 1 Fy
2L )E+2p) =25 1) 1 0| +2/0 1
1 0 1 0
By 1 By
=m0 0]+2/0 0
1 0 1 0
g
= (pt+2)| 0 0| =0,

since (p+2) = 0 (mod p); and

3L 2)(P, + 2P)( )
pel 1 Hy
=12 2 0[|+21 1| |(z)

0 O 0 0

99

To
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1

Y,

U

-3 3|

i=1,2
j=1,2

HYi,zeyj],
v

therefore

[1 - (12))(8 & 2)(P, + 2P,)( 3 ) = 0l
The remaining case is p = ( gy, ..., ), with g, > 0, such that A > 3
and p does not divide y,. We intend to show that Homl-.( S (n—l,l), S “) =0
whenever 4 is a partition of the above type. Suppose
1,1
Homp( 5 ("1, 5#) 4 o,
then according to (3.53), the restriction of
p = Pi_iuI(PZ + oo Ph)

n~L1) .o ok Necessarily,

to S(n—l’l) is a non—zero I'-homomorphism from S(

L-@2@ %L De(E)=0, 1<wgp,

Recalling (iii) in Formulae (3.52), for each 4, 2 < 7 < h-l,
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[ ptw 0
Ho—W
K3
(2 % 1)P; = [“1‘5,“’] : , 1< wp
i =11
fn O

Thus 2{ _V | leYy,2€eY; } , where v = (p+w, po—w, fg,..., ), has

coefficient

neitherz @yleYh,2eYi}nor2{@

in (2 %

[Mi :; Y'in (2% 1)P;( z ). We notice that if j# 4, 1 < j < k-1,

leY,2el } occurs

1)P( z ). It follows that

has coefficient —ul[“1 ;"U w] in

[L - (1212 5 1)¢(

181
~—

since p does not divide p, that forces
?

Therefore

Since p, > 1, the above condition implies



Hence

On the other hand, ¢ must satisfy

We have

(h =

Let y(h) be the composition (g, ...

has coefficient (u,.r+1) in (h 24 h-1)P( E ), zero in (b & A-1)P( T ), for

gy = —1(mod p).

p=P —p(Py+ -+ + P) =P + Py + ---

1 - (1,2)](a 5 b-1)p( T ) = 0.

1 4+ .
(h = B1)P, = [”1”1 ]

1P, = (b5 h-1)

o = O

y M-t Au’h_]')'

p-1 1

Ha 0
/Lh:.1+1 0
b=l 0

= [

2{ ) ’ leY,,2¢€ Yl}

+ Py

Ky
Hn-o

Pp-1
N

102

The sum of y(h)-tabloids
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2{ ) | 1eY,2€ Y, }

has coefficient p_; in (h i, h-1)Py_( T ), zero in (h 1, W-1)P( Z ), when
i=1 2, .., 2. Therefore,

2{ yygh! l le Yy 2 € Yi}—z{ yl/(h) ‘ 1eY,2c¢ Yh-1}

has coefficient

(bn+1) = ppy = 1.
in {1 - (1,2)](h L h-1)o( z ). This is a contradiction, since we must have
1 - @W2(h L h-1)e( T ) =0,
accor'ding to our analysis above. Thus we have proved

(3.59) PROPOSITION. Let p = ( py -, i) be a partition of n, such that
pn > 0, b > 3, p does not divide p,. Then

Homp( §(" 1Y), sH) = o
As a summary, we have the following

(3.60) THEOREM. Let K be a field of charcteristic p, p > 0. The
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K—dimension of Homp( S(n_l’l), SH) s either one or zero. The K—space
HomP( S(n—l’l), S/“L) has dimension one if and only if p is a partition of n .

belonging to one of the following categories:

(a) 4 =0 (mod pep(/“‘Z)), p; = —1(mod pgp(”i+1)), i > 2. In this case,
B, is o K-basis for Homp( §(" L), g#)

(b) 1 = (g M)y By > 1, py = 0 (mod pep(”fl)). In this case, P, is a
K-basis for Homp( S(n_l’l), SH.

() u=(pp 1%, py = -2 (mod p), p > 3. In this case, P+ 2P, is a
K-basis for Homp( S(n_l’l), SH.

(d) p = (n-1,1) dtself]]

(3.61) COROLLARY. The James module J (n=11) 4 isomorphic to a
submodule of S*, where p # (n—1,1), if and only if p és a partition in ome of
the categories (a), (b) and (c) in (3.60).

n—1,1)

PROOF. Assume that J ( is isomorphic to a submodule of S ,u,, then

S(n_lal) T, J(n—]-)l) LSIL

gives a mnon-zero I'-homomorphism 67 from S(n_l’l) to S¥, where 7 is the

coset map and @ is the monomorphism. Thus Homr( S (n—l,l), S “) # 0. Now

apply (3.60).
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Conversely, assume that HomP( S(n~1’1), S'“) £ 0. We mneed the

structure theorem of the I'-module S(n“171)

, proved by H.K. Farahat in 1961:
THEOREM. (5.2 [Farahat (1962)]) Let K be a field with characteristic p,
p >0 S (n-1,1) 18 an irreducible T'—module if and only if p does not divide

n. When p divides n, S(n—l’l) 18 reducible, and there ezists an exact sequence

0 _,J(n) _’S(n—l,l) _,J(n“l,l) — 0.

Accor_ding to the above result, we have only to wverify that J () is not
isomorphic to a submodule of S# if Homp( S (n—l,l), Sy is non-zero.  (3.35)
in §3D gives the criterion of y, for J (n) being isomorphic to a submodule of
. S#.  Since none of the partitions in categories (a), (b) and.(c) satisfies the

conditions in (3.35):

p; = —1(mod pep(#i+1)), i 2 1,

(n—1,1)

we can conclude that J is a submodule of S¥Jj



CHAPTER 4
SOCLE LENGTH OF SOME SPECHT MODULES

§4A The Problem of Calculating Homp(3,5")

Let A be a partition of n. Write ' = K& If J is an irreducible

submodule of S*, then

n°

M Py T
by (2.1)(iv) and (2.19). Thus
Mot g b

12
<

A
gives a non—zero element in HomP(M)‘,S)‘), where 7 is the coset map and § is
the inclusion map. Assume that the socle of s (cf. 2.6) is the direct sum of
irreducible submodules Jy, ..., J; of M.
Ay —

soc(87) = J@ +-- @ J,
and ¢; is the non-zero homomorphism constructed above corresponding to Jj,
1 < ¢ < k. Then it is not difficult to show that ¢, ..., ¢, are linearly

independent elements in HomP(M}‘,S}‘). Hence we have

(4.1) LEMMA. The socle length of s does not exceed the K—dimension of
A A
HomP(M SR

We notice that the K—dimension of HomP(S)‘,M)‘) is equal to 1 (one) in

most of the cases, according to (3.28).

106
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(42) LEMMA. Unless char(K) = 2 and ) is a row 2-singular partition, the
K-space HomF(S)‘,M)‘) is isomorphic to K.

PROOF. By (3.28), unless char(K) = 2 and X is a row 2-singular, the
K—dimension of HomP(S)‘,M’\) is equal to the number of semistandard (A,\)

tableaux. But there is only one semistandard (A,A)-tableau for each partition

A of nJ

When char(K) = 0, the K-algebra I' = K&, is semisimple, thus
HomF(M)‘,S)‘) has also K—dimension one. In the case char(K) = p > 0, we
only know that

. A oA
dim pHomp(M",57) 2 1.

Since the dimension of HomP(M)‘,S)‘) gives an upper bound of the socle length
of S)‘, by (4.1), we shall discuss this problem in general and calculate the
K—dimension of HomP(M}‘,S)‘) when A is a "hook" partition of n and char(K)
# 2 in this section.

Let ¢ M)‘ — M)‘ be a I'-endomorphism, where ) is a partition of n.

Then Im(p) < $” if and only if
(k—w—»€)<p=0, E>£4>1, w>0,

by (3.9). Let M(A,A) be the set of (A,A)-incidence matrices, viewed as a
K-basis of EndF(M}‘) (see 3.5 and 3.6). We can express ¢ as
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p = 2 zPP, zPeK.
P e 9M()\N)

The conditions

(432) (kL ¢) 2 P =0, EkE>£21 u>0

P e M(A,N)
yield a system of homogeneous linear equations in the set of unknowns

{2 | PemO)) }

over K. In fact,

(4.3b) OBSERVATION. The K-dimension of Homp(M*,S") s equal to the

dimension of the solution space determined by (4.3a).}

Solving such a linear system is certainly a tedious task, but not

altogether impossible. We shall try to classify the set 9%(A,)), hoping that

some of the "large" linear equations will break into "smaller" linear equations
which are easier to work with.

Let A be a partition of n, such that

A = 0, if k> htr.
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(4.4) DEFINITION. The block of a (A,A)-incidence matrix M consisting the
first A rows of M is called the hat of M. Say that M and N in DYA,)) are
hat—equivalent, if the hats of M and N are the same. This is an equivalence
relation on the set Y(A,A). An equivalence class in (A,A) is called a
hat—class.||

Let M be a (A A)-ncidence matrix, viewed as an (h+7)x(h+7) matrix.
If h < ¢ < htr, the i—th row of M is E, for some k, where E, is the k—th

basic row vector with (hA+7) components:

k
B, =(0,..,0,1,0 ..,0).
Thus every M in 9(\,)) defines a function
m: {ht+l, ... ,btr}— {1, 2 ..., htr},

such that Em(i) is the i—th row vector of M, i = A+1l, ... , ht+r. I we
denote the hat of M by H,., then M can be written as

Hyr

u— | Fm(h41)

i Em( h+1)]

(4.5) LEMMA. For each i, b < i < h+tr,
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(i+1 L 9) 2 aM =0, 1z ¢k
Me MmO, N)

implies that

(i+1 L 9 2 a M =0, =z €k
Me$

for each hat—class $ in IM(A,N).

PROOF. (i+1 L, i) M can be calculated by applying the formula in (3.10),

for 1 = h+1, ..., htr-1:
Hyr
E
15 ) m= (1l g | mAHD
Em( h+r)
=k M1
where
Hyr
Em( h+1)

1~ Em(h+z') + Em(h+z'+1)
0

Em( h+1)

and k, ,-is 1 if m(h+i) = m(h+itl), or 2 otherwise, according to (3.10).
Thus if M and N are in 9(),)), Hyr# Hy , then M, # N, in
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(+1 L ) Y M=o
Me M, N)
Therefore

(1 L ) Z 24 M = 0
Mes$

for each hat—class § in D(A,N).J

The above lemma suggests a thorough investigation on the equations

(i+1 L 4) 2 2 M =0
MedH

for a hat—class $ and for each 7, i = h+1, ... , A+r—1. The following simple .

observation is the base of our further discussion:

(4.6a) LEMMA. If M and M’ are (A\,\)—incidence matrices in o hat—class 9,
then M’ arises from M by permuting the rows h+1, ... , htr of M.

PROOF. Here we treat M (M’) as an integral matrix (not a
'-homomorphism), hence we can perform matrix operations on M (M’). The

partition A of n can be viewed as a row vector

Dy o A Apsp oo Apad:

Write
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i Em( h+7)]

We have, by the definition of (A,A)-incidence matrices,

)\ = [Al’ vee Ah’ Ah-;-p .y )‘h+r]
=[1, 1, .., 1M
=11, .., l]HM + Em(h+1) +oe ot Em(h+7“)'

If M’is also a (A\,\)-matrix with the same hat as M, it follows that

Em(h+1j o Em(h+7’) = Em’(h+1) o Em’(h+r)’

where m’ is the function defined by M’ The basic row vectors Ek thus occur

with the same frequency on both sides of this. And thus the lemma follows.|]

Let G, be the group of all the permutations on the set {1, 2, ... , h+r},
such that
i) =4, 1<i<h.
Define a G,-action on the hat—class $ in 9UA,\) in the following manner: if

T € G, M € %, then m+M is the incidence matrix
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mr~1(h+1)

| Emw'l(hw)_

It is easy to check that

(mmo)M = mp(myx M),
Ty, Ty € G, M € . We can restate (4.6a) as follows

(4.6b) If M and M’ are (A A)—incidence matrices in some hat—class 5 of
DM(A,A), then
M’ = oM

for some 7 in G}

For example, if A = (2,1%) and

2000
0100
M=\ ,0510]¢€PXA);
0001
then '
2000 2000
10010 10001
(2,3)xM = 0100 | (2,3,4)xM = 0100
0001 0010

It is worth noting that the group G, is generated by the transpositions

(h+1,h42), (h+2,h+3), ... , (At+r=1,h+7).
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(4.7) LEMMA. If M and N are (A \)—incidence matrices in some hat—class
5, such that N = (4,i+1)xM for some i, h < i < h+r, then

(i+1 L 4) Z 2,P =
Pe$
implies

zN+ Zyr = 0.

PROOF. Write

, 1 . , 1 .
(i+1 = ) M = (i+1 = 19) : = i,MM'

where

i1 = Em(h+z') ¥ Em(h+z’+1) ’
0

Em(hw)

k. 2r =

2, if m(h+r) = m(h+r+1),
M {

1, if m(h+r) # m{h+r+1).
It is clear that if M’ belongs to the same hat—class in which M lies, then

(1L ) =(+1 L) m
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if and only if

E

CE iy Broharirr) 3 = 1 Bhrsy Brm(ppirn) 5

if and only if
M = (4,i+1)+M, or M’ = M.
Assume now that
(i+1 L ) Z 2P = 0
Pe$

for some hat—class $ of MY(A,A). It follows that

2 Zp ky pPiq = 0.
Pe$H

If M e $ and kz. y = 2, then M = (4,4+1)*M, and
J

0=22% = 2y + 2 41 1)u

from the comments above. If b, y=1L M# (4,7+1)xM, then
2

g + 204, 4e1) sl My = 0
it follows that

Zy + z(i,z’+l)*li[ = 0.

Thus (4.7) holds.J
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(4i8) COROLLARY. Let M and N be two arbitrary (X,A)—incidence matrices

in o hat—class 5. The conditions

(i+1 L ) 2 2P =0, h<i<htr
Pes

imply that either Zy =y O Zy=—Zy.

PROOF. There exists a set of transpositions 7y, 7,, ... , 7, in the set of

u

generators of the group G

{ (4,541) | i = b+l ..., htr1 }
such that
N=r

ok kT kM.

Now apply (4.7) above repeatedly.]|

(49) COROLLARY. Assume that char(K) # 2. If M is a (A \)-incidence

matriz of the form

By

L)

. ?

| Zn(her))

such that the function m: {h+1,...h+7} — {1,2,...,h+7} is not one—to—omne,

then the conditions
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(i+1 L 4) z 2P =0, h<i<htr
PeMA,A)

imply 2= 0.
PROOF. Let 5 be the hat—class in 2U(A,A) to which M belongs. By (4.5),

(i+1 L ) z 5P =0, h<i<htr

PeMA,N)
imply

(i+1 5 4) Z 2P =0, h<i<hir
Pe$

According to (4.8), it is enough to show that 2y = 0, for some @ in £.

Note that if @ € %, then HM = Hq ,

By

Q = Eq(h+1)

| Fq(her))

The function ¢: {h+1, ... , h+7} — {1, 2, ... , h+r} determined by Q is not

one-to-one, since ¢ = mo for some ¢ in G,. Take @ in §, such that

q(7) = q(i+1), for some 7, A+l < i < htr,

then Q = (i,i+1)+Q since By = By, 4y, and
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(i+1 L ) z 2P = 0
Pe$

implies 22, = 0 by (4.7). Therefore 7 =0 since char(K) # 2.}

Now we are ready to study the K-space HomP(M)‘,S}‘), where

a hook partition of n. Our goal is to show the following
(4.10) PROPOSITION. Assume that char(K) # 2, and X\ is the partition
(n-r1%), 1< 7r<n-2

Then dim ,Hom (M)‘ .5')‘) <14

K r ! =

The proof consists of a sequence of notes ending on page 126.
(4.11) NOTES. Let A = (n—nl"), 1 < r < n-2.
(i) Two (A,A)-incidence matrices M and N belong to the same

hat—class if and only if their first rows are identical.

(i) If M e 5, where § is some hat—class in D(A,)), we shall write
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The function m: {2,..,~+1} — {1,2,...,r+1} is not one-to—one if and only if

for some v and v, 2 < u < v < r+1,

It is clear that in this case we must have

Em(u) = Em(v)'= [, 0, ..., 0] = B,

Thus m is not one-to-onme if and omly if m; ¢ n-r2.

conditions
(+1 L 4) 2 2P =0, 2<igr,
Pe MM, A)
imply that
z, = 0,  whenever my < n—r-2,

if char(K) # 2.

By (4.9), the

(iii) Thus we only have to take account of the following hat—classes in

the calculation of HomF(M)‘,S)‘) :



120

5(1) = { Me MON) | my = n-r )
(g = { MeDMAN) | my = n—r-1, myg =1}

for ¢ = 2, 3, ... , r+1.

(iv) From (4.8), we know that if M, N € $(3), for some 4, 1 <i € r+1,

then either Zy = 4, 0T 2 = — 4 Our next task is to discover the links

between $5(¢) and $(j) when ¢ # . We shall concentrate on the conditions

2L 2 2,P = 0]
Pe M, A)

Let us start with the case r» > 2 and consider

H52) = { MeMAA) | my = n-r-1, my, =1}

H53) = { M-e MM | my=n-r-1, my=1}
Take
n-r-1 1 0
0 0 1] 0
M= 1 00 € 95(2),
0 | I, .,
n-r-1 0 1
0 1 0f 0O
N= | 1 0.0 € 5(3).
0 ] I,

Apply (3.10),
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@b nM=M,=025y
where
n-r-1 1 1
0 0 0| 0
My, =|_1 00
0 ’ I,

We want to show that if

r+1
PEUﬁ(z’), P4 M PN,

then

Pyy # My,

where Pl;l arises from (2 i, 1)P = k PP1 r p € Z.  Consider the

following cases:

(i) P e $(1). Then p;; = n—r, py = 0. Hence the (1,1)-entry of

P. . is n—r. It is clear that P1 1 + M

1,1 1,1

(i) P e H5(2), P+ M. There exists an integer £, 2 < £ < r+1, such
that the ¢—th row of M of P is different from the Z—th row of M. Therefore
the £—th row of P1 1 is different from the /-th row of M1 1

(iii) P e $5(3), P+ N. Use the same argument in (ii).

(iv) P e $5(g), ¢ > 3. Then Piq = 1 and py, = 0. The (1,g)-entry
of P1’1 is then p + pyqg = 1 + 0 = 1. Therefore Pl,l # Ml,l since the
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(1,¢)-entry of Ml,l is 0 when ¢ > 3.

Hence
or+d
1 .
(2_,1)2{ zPPl Pe U,sa(z)}=o
7=1 ‘

implies

1

(2 — 1) [ZMM + ZNN] = (ZM + ZN) M]_,]_ = 0)
which forces
Zy + o = 0

The above discussion shows that if M, N € £(2) U £i(3), then either z, = z,

or Zy = - 2, by combining the result in (4.8). In general, we have

(4.12) LEMMA. Assume A = (n-n1%), r > 2. Let M and N be elements in

$5(2) U H(B) U -+ U H(r+1),

then
(i+1 5 g) z 2P =0 1<i<m
Pe M, N)
imply that Zy = 4 OT Zp = = 4

PROOF. The similar argument can be applied to
$5(2) U 5(4), ., 52) U H(r+1).1

Finally, we study the links between $)(1) and $(q), ¢ > 1. Take



123

n-r 0 l 0
p=|-0 1 e H(1),
0 r-1 ,
n-r-1 1 ’ 0
Q = 1_0 € 9H(2).
0 Ir-i

We intend to show that if A = (n—n1%), r > 2, then

(4.13) OBSERVATION. The condition

r+1

(2-1-+1)E{ zMM' Me | 5(@)}:0
1
implies that z

where

We must show that if
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r+1

M e U (i), M$ P, M#Q
¢=1

then M11 ¢ P where M11 arises from (2 i, M = le k e 1.

1,1’
Consider the following cases:

1’

(i) M e $(1), M+ P. Notice that in the incidence matrix P,
Ep(Z) = EZ , 7/ - 2) e 7"+1.

If M # P, There exists an integer £, 2 < £ < r+1, such that

Fm) ¥ %0 = Ppey

But Em(é ) and Ep (t) are the /—th rows of Ml,l and Pl,l respectively. Thus
My # Py

() Me $5(2), M+ @Q The argument is similar to (i).

(iii) M € $(v), v 2 3. Then m,, = 1, and thus the (1,)-entry of Ml,l

is one, but the (1,v)—entry of P. . is zero, which means M, , # P, ..
1,1 1,1 F St

Therefore the condition

r+1

2L 1)2{ zMM‘ me | ) }: 0
i=1
implies
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ie.
Thus
as claimed.}]

When A = (n-1,1), there are only two (A,A)-incidence matrices

it is easy to check that (2 L 1)(zpP + ng) = 0 implies that
zp + (n—l)zg = 0.
We summarize the above investigations in the following :

(4.14) NOTES. Assume that char(K) # 2 and A = (n—-n17), 1 < r £ n-2.
Let { z, | M € 9M(A,A) } be a solution to

(i+1 L 9) 2 P =0 1<i¢n
Pe A, N)
Then
r+1

(1) z, = 0 whenever M ¢ U $(1).
1=1



(2) If z, =1, t € K, for some M € $(2), then

r+1

U s

=1

126

z. € Kt, for each N in

N

The notes above gives a proof for Proposition (4.10).

(4.15) EXAMPLE.

Take A

(3,12).

The following table gives the

(A, A)-incidence matrices and the results of (#+1 — %)M by applying (8.10) :

e M, N) Lo L
30 0] 300 3 1 0]
¥, = 010 011 000
001 000 001
300 300 30 1]
Hy= (001 011 000
01 0] 000 0 1 0]
210 210 31 0]
By = [100 101 000
001 000 001
20 1 20 1 30 1]
r,= (100 110 000
010 000 0 1 0]
21 0] 210 21 1]
H,= (001 101 000
10 0] 00 0] 10 0]
20 1] 20 1] 21 1]
By = 1010 110 000
10 0] 000 10 0]
11 1] 111 2 1 1]
H, = [100 200 000
100 000 100
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111
Note that M, = {1 0 0} is the only element in 2U(A,A) with two rows
100

identical below the hat. We can see from the column (3 1, 2)M in the table
that

3L 2)m, = 2[

. :
hence i§1zi(3 1, 2)M; = 0 yields

2z, = 0,
ie. z; = 0, when char(K) # 2.

The other six matrices split into three hat—classes:

H5(1) = { M, My },
5(2) =,{ My, M; },
H53) = { My Mg }.
Again from the column (3 L, 2)M in the table, we deduce that (refer to 4.8):
Zy + 2y =0,

23 + 25 = 0,

z4+26=0.

6
the condition Y z(2 L 1)M; = 0 yields three equations (Refer to 4.13):
i=1
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which links up $(1) and $(2);

. Zz + 3Z4 = 0,
which links up $(1) and $(3); and the equation

linking up $(2) and £(8). Put z, = f, then

Zy = 1,

23 = 25 = -,
2, = 3%,

2y = =3t

It is easy to check that

300 300 201 210 210 201
=010 -3{001 + {100 100{+ (001 -1(010
001 010 010 001 100 100

is a ['-homomorphism from M to S)‘, and spans the K—space HomP(M)‘,S)‘),

where ' = K8, char(X) + 2.1
In (4.1), we have seen that

dim KHomF(M’\,S)‘) > the socle length of > 0.
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Thus (4.10) in fact provides the proof of the following
(4.10a) THEOREM. Assume that char(K) #+ 2 and
A=(n-nl"), 1< r<n-2

Then HomP(M)‘,S)‘) has K—dimension 1 (one), and S* has a unique trreducible

submodule.J]



§4B The Two—parts Partitions : Special Cases

When r is an integer, 1 < r < n/2, A = (n-nr) is called a two—parts
partition. Although a great effort has been made by many authors at clearing
up the modular structure of the Specht modules S 'u', 4 is a partition of n, it
seems that most of the Specht modules are still left in mystery, except those
of hook partitions and two-parts partitions. The homomorphisms from
S(n—r,r) to S{"E) Gere studied by Gwendolen Murphy, who proved that
S(n—r,r) has a unique irreducible submodule, hence its socle length is equal to
one (see [Murphy, (1982)]). G.D. James found a way of determining the
decomposition numbers of .SUHW) in §24 [James, (1978b)]. According to his
result, each composition factor of S(n—r,r) has multiplicity exactly one.

*
Combining these two facts we can deduce that the K—space Hom g (S)‘ ,S)-‘)
n

has dimension one, when A = (n-r7). In the following two sections, we

*
attempt to prove the fact dim, Hom o (S)‘ ,.5')‘) =1, A = (n-r7), by
n

direct computations with incidence matrices corresponding to endomorphisms of

1AP=T7) : : MR A :
. Our interest in Hom (87 ,587) originated in a separate study of
n

the Specht modules restricted to the alternating groups.

Let A = (A;,A,) be a two—parts partition of n, i.e.
Ay + Ay =1,
0 < Ay & X

The set M(A,A) consists of the following incidence matrices:
A 0 A1 1 Ay Ay
0 )\ ] 1 Az'—'l g eeeey Az O .

130
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It is clear that each P = (pij) in 9M(A,A) is uniquely determined by p,, or

Py We shall denote the incidence matrix

Ak &
EoAgk

by Py, ¥ = 0,1,...,A,, We notice that each P, in M(A,A) is a symmetric

matrix, hence in the points of view in §3B, we have

(4.16) LEMMA. Let X = (A,),) be a two—parts partition of n.

(i) FEach T'—endomorphism ¢ of M is self—adjoint, i.e. (pA =

(i) If ¢ is a T'—endomorphism of M)‘, then Im(p) < § if and only if
Ker(p) » S

PROOF. Write ¢ = ¥ 5Py, % € K. Then
k

by (3.9); if and only if for w = 1, 2, ..., A,,

(pA(2 v, 1)A

il
=2

if and only if
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since ¢* = ¢ and (2% 1)A = (1 % 2) by (3.20); if and only if

A5 = 0
by (3.23).]

The lemma above implies that

(4.17)  COROLLARY. If X is a two—parts partition of n, then the
K—dimensions of HomP(M)‘,S)‘) and HomP(M)‘/S}‘L,S)‘) are equal.]

Let ¢ = % %P, be a I'-endomorphism of M)‘, A = (ApAy). For an

integer w, 0 < w < A,, the condition

(418) (2% 1)§ 2P, =0

yields a homogeneous linear system in the set of unknowns {z | %k = 0,..,A,}

over K. Applying Formula (3.10), we have

(4.19)
2% 1)[A1—k k] = z [/\1—14:+w1] [k+w2] [A1~k+w1 kt+w, J
E Ak T w, w, k—w, A,—Fkw
0<w <k

which is a I-linear combination of (A,u(w))—incidence matrices @Q,, for all 7,
0 < 4 ¢ Ay~w, where

ww) = (Atw, Ay—w),
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Q= [M\—i wti ]|, 0<i<A-w

Let c:'j be the (integer) coefficient of z in the equation concerning @),

given by (4.18) above. Then the homogeneous system on %, § = 0,1,...,A, has

its coefficient matrix C(w) of the size (Aqw+1) by (A,+1).

(4.20) OBSERVATIONS.

(i) Let c‘;’j be the integer coefficient of

in

ci: =0 ifi>7 orj> wti
(ii) If we agree with the convention
{g’] =0 ifb<0,

the general formula can be written as

[PaN
o>
PaN
D

™

S
—
N\
g
Pas
poy

[

LA D) w1 .
G = 5 w2 tieg) - 0ci<hn 0
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(iii) From (ii) above the set of non—zero entries of the integral matrix
C‘(w) has the shape of a parallelogram :

* * 0
* *
0 * *
in which the (i+1)-th row is as follows :
2 Zi-1 % Zisy e z

i+w Zivwel 2,

[Alﬂ [waz’] -

o PRI Lo

In particular, the first and the last (from left to the right) non-zero entries in
the (i+1)-th row of A are

LA 'LU+Z w _ )\1_.
Cij = w |0 0 Ciiw T .

(4.21) EXAMPLE. Take A

= (12,4), a partition of 16. There are 5

(A,A)-incidence matrices, labelled

12 0 11 1 10 2 9 3 8 4
NN S N
The condition

(2

ll—l
=
~—
e
-
i
o
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yields a homogeneous linear system in the unkmowns 2, k = 0,1,2,3,4, with |

coefficient matrix

i ]

When K is the field of rational numbers Q, it is clear that the solution space
has dimension one, since the first four columns of C(l) form a submatrix

which has non—zero determinant.

(4.22) OBSERVATION. If K has characteristic zero, the K-—space

A
Homp (M

,S)‘) has dimension one, where A is o two—parts partition of n .
PROOF. & = Ker(2 1+ 1) when char(K) = 0, by (3.12). Thus the
K—dimension of HomP(M)‘,S}‘) is equal to the dimension of the solution space

on unknowns { # }k)_‘g yielded by
2L 5 4Py = 0.
The coefficient matrix C‘(l) has rank X, according to the analysis in (4.20).

Therefore

. A A
dim - Homp(M",5") = L]
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The above result is true for all partition A when Q is the ground field,
in fact HomP(M)‘,S)‘) is isomorphic to HomP(S}‘,M)‘) as Q-spaces since T' =
06, is a semisimple ring. When char(K) is a positive prime p, the matrix
C(l) has rank less than or equal to A, over K. Denote by C(w)(mod p) the
matrix Obtained from C(w) by taking every entry modulo p, where p =

char(K). For instance, in Example (4.21),

10
C(l)(mod 2) = 0 i 0
01
which has rank 3 over 7, ; and
10
Dot 3y = | 22
10

which has also rank 3 over I,.

Let K be a field of characteristic p where p is a positive prime. If A =

A, A,) 1S a two-parts partition of n, then
I

st = () Ker2 & 1)

by (3.14) and (3.15). If
Mg = bpF + bt oo+ bp by 0 < b < p-l, B> 0,

we can work on the linear system with coefficient matrix
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- C(l) _ - C’(l) (mod p)-
o C@ or  C(mod p) = 0(2_7) (mod p)
i C(f?r)_ i C’(Z.’r)(mod )]

In fact,
(4.23) LEMMA. The K—dimension of Homp(M",S") is equal to
(Ay+1) — rank[C(mod p)]. |
Let N, be the set of non-negative integers. We shall write

@ = (85,054, 01,00)

if o € Ny and o = ap® + a1 + -+ + ap + g, 0 < g5 < p. For
non-negative integers o and b, we say that e ¥ bif a > b, k> 0. This
P

defines a partial order on the set N.

If o, b € M, and o < b, we write [a,b] to denote the set of consecutive
integers {a,a+1,...,0}. For example, [0,4] = {0,1,2,3,4} and the diagram of the
poset ([0,4], » ) is as follows :

3

(1,1) = 4 2
N4
N

0

3 = (1,0)4e
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i n

Note that 2 = (2), and 4 = (1,1), are the two maximal elements in this set
1
under the order *

3

In general, there might be more than one maximal elements in the poset
(S, ¥ ), for a subset S of N,, We shall soon see that in the homogeneous
P

system on z, z,..., %, with coefficient matrix

o
oo | P

)

the values of z,’s, where m is one of the maximal elements in the poset

([0,A,), * ), play important roles in the solutions.
D

(4.24) LEMMA. Assume that 0 ¢ a < b < Xy, and b > j for all j in
P
([a,bl,2). If [Co,Cl,...,sz]T is a solution to the system
P

then ¢; € K¢, for all j in [a,b].
PROOF. It suffices to show the following

(4.25) There exists a submatriz of C, consisting of (b—a) rows of C, which is
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of the form

2

ta, * ¥ .. %
¢ * L. 0k

0 atl 0
0 b1

satisfying ¢, # 0 (mod p), i = @, a+1, ... , b1

Wl‘ite b = (br)br-]_)"')b]_)bo)p

integer in the set [a,b], then

y b > 00 I i = (ighpesiyly), B8 an

kazk, k=0, 1, e 3 1

since b » ¢ by assumption. If a < 7 < b, there exists s, 0 < s < r, such that
P

Consider the block ¢P’) of ¢ By (4.20) (iii), the first non-zero integer

S
entry in the (i+1)~th row of A? ) is

By (3.13),
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since 0 ¢ 4 < p-1. Furthermore, if j > b, then j > 7+p5 since 15 < b

Thus by (4.20) (i),

S
cgj = 0, whenever j > b.

Therefore the submatrix claimed in (4.25) does exist and (4.24) is proved.J

(4.26) NOTES ON THE PARTIAL ORDER " "
P
d,,.

(1) Let p be a positive prime and d = (d,...,d;,dy), > 0, 0 < di< p-1,

p
(Vi). Examine the sequence d,, d, .. , d. Let &k be the first index such
that £ > 1, d +# 0, and the set {d,, d;, ... , dy.} contains a digit different

from (p-1), if such a k exists. Then define

f(d) = (dyyship1,p-1,..,p-1), - -

This defines f(d) for all d not of the form d = (d,p-1,..,p-1), for 7 > 1, or
0 < d < p-1. We shall state and prove the following facts.

the poset ([0,d], ¥ ).

PROOF. It is enough to show that if j € (]0,d],

(2) If f(d) is defined for some d, then f(d) is a maximal element in
r
D

) and j * f(d), then
P

kelb g

j=f(d). Obviously f(d) < j< d Wrte j = (Ju--ofido)pr then j = dyye.rs
Jert = Gap and G = -+ = g, = p-1. j is either d or d 1. Notice that
one of dy_; , dyy ,..., dy is less than p-1, according to the comstruction of f(d).

Suppose j, = d,, then
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j= (dl'""’dk+17dk7p—1""7p—1)p > d,
a contradiction. Therefore j, = d—1. It follows that j = f(d).

(3) If f(d) is defined for some d, then & » 4 for all 4 in [ f(d)+1,d].
P
PROOF. Assume that f(d) < i < d, ¢ = (4y-0ply)y 0 < 4 < p-1, for
all s. We must have i = d, ... i, = dy,, Noticing that

Z' Zf(d)"‘l = (dr""’dk‘*l’dk’o""’O)p’

we can see that 4 = dy, hence i = (d...,dy4p, 0 gpes%)p.  Suppose that

G = =t =0, dep4#0
Then
oy = 00 =G =0, G S Qe
and by construction of f(d) dy 4. = -+ = dy = p-1. It follows that d ¥ ¢
P

for all ¢in [ f(d)+1,d].

(4) If f(d) is defined for some d, then f(d) is the largest maximal
element in ([0,d-1], ¥).
P
PROOF. This is a corollary of (3).

(5) For d = (dy...,dpdg), > 0, 0 < d< p-1, (V9), 4 > 0, we can
construct a sequence in the set [0,d] as follows. Take d as the first term. If
f(d) is not defined, stop. Otherwise, take f(d) to be the second term.

Applying the process in (1) to f(d), we either stop or construct
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F4d) = f(f(d)).

Repeat this process, to obtain

d, f(d), ..., f%(d),

such that f[ f5(d)] is not defined. This is the descending sequence of all the
maximal elements in the poset ([0,d], ), by (2) and (8) above. In particular,
D
the smallest maximal element in ([0,d], ¥) is d itself when f(d) is not defined,
D

and is (d~1,p-1,....p~1), = d

T

p* -1 otherwise.Jj

In the poset ([0,\,), * ), let A, = m(0) > --- > m(s) be the
D
descending sequence of all the maximal elements constructed as in (4.26)(5),

then we have immediately from (4.24) and (4.26)(2) and (3):

(4.27) COROLLARY. If [Co;C1;---;C>\2]T is a solution to the system
2, |
c|?|=0o,

,'z>\2

then ¢; € K(pixy, m(k+1) < j< m(k), k=10,1, ..., s-1; and

(; € Klnesy »  Jor all jin [0,m(s)].]}

In (4.25), we carefully choose a submatrix whose (a+1)-th,
(a+2)-th,...,b—th columns form an wupper triangular matrix. =~ A parallel

discussion leads to a lower triangular one.

(4.28) LEMMA. Assume that A~y < a < b < A, and b % j for all §in
P
([a,b], % ). If [CO,CI,...,()\Z]T is a solution to the system
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then Cxl—k € KC)‘{b for all k in [a,b].
PROOF. If k< band k= (kr,kr_i,...,ki,ko)p Ij) b = (br,br_l,...,bi,bo)p,
b, > 0, there exists s, 0 < s < 7, such that

0 <k < b < p-l,

k. = b

i J,05j<3.

In the (i+1)-th row of C(ps), the last (from left to the right) non-zero entry
is
& [Ai—z'] ,

i i+ps

by (4.20) (iii). Put ¢ = A~ k — p5, then

s S S
K ims = dog = [11F] = [klerl] (mod p) # 0 (mod p).

Thus we can choose a submatrix of C, consisting of (b—a) rows of C, in the

form
(4.29)
I AN bt A b AN bttt AN e T By,
L N 0
0 0
* * {



144

satisfying ¢ # 0 (mod p), j = a, a+l, ... , b-LJ

(4.30) EXAMPLES AND REMARKS.
(1) We shall complete the computation started in (4.21) dealing with
A = (12,4). By applying (4.20), we have

- : [ o }

4 9

ol

ol 1 24 66
[1;] [g] = 3 33 55
L] 6 40 45

[N RL]
—
[
et
et ek
\ J \u . J
DN =W O

_ {1 36 198 220
- 4 66 220 165

o - (13 (60 (6 (09 (0] - 0o

(2) Assume that char(K) = 2. The diagram of the poset ([0,4], b ) is

as follows :
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(171)2

/
= (1>0)2
N\

3 =
°
l o 4= (17070)2
i
0

3 = (1,1), is the smallest maximal element in the poset above, while 4 =
(1,0,0), is another maximal element. The K—dimension of

Homp (M54 %D where T = KG,,

is now equal to the solution space of the system

% A1)
z
Cla| =0, where C= c(zg
Z 4
2 d
Using (1), we have
112 1 Lo '
2 11 0 1
3 10 10
_ 4 9| _ 11
C= 12260 =T o0 (mod 2).
3 33 55 111
6 40 45 0 0 1
148 396 880 495] [t 0 0 0 1

In the integral matrix C, the first, sixth and the third rows form form a

submatrix

112 10
335 | = 11 (mod 2).
3100 1
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Put z; = ¢, t € K, then

On the other hand, the poset ([8,12], 4 ) has two maximal elements
11 = (1,0,1,1), and 12 = (1,1,0,0),.

We can find a submatrix of C according to (4.28) :

001
111
01

which gives 2z, = 2, = 0, 2, = z;. Combining these results, we have the

general solution

[§0>C1’C2;€3;C4]T = t[o,l,o,l,O]T, t e K.

(3) Assume char(K) = 3. There are two maximal elements in ([0,4],%):

2 = (2); and 4 = (1,1),. We are now working on the linear system

%)
2y
C |z =0,
23
%4
where
(112 i [ 1 0
ey 2 11 2 2
C=| "3 = 3 10 = 0 1 (mod 3).
c 4 9 10
1 36 198 220 ~ 1 0 0 1
1010,

4 66 220 165]
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The first two rows of C constitute the submatrix corresponding to ([0,2],%).

We have z, = 0, 2, = —2z,. The poset ([8,12],%) has maximal elements

8 = (2,2);, 11 = (1,0,2), 12 = (1,1,0),.
The second and the third rows make up the submatrix corresponding to
([9,11], 4 ), which gives 23 = 0, 2, = —z, - This example show that the

information from (4.25) and (4.28) is not adequate in determining the

dimension of the solution space. In fact, we need the last row of C:

Zy + 23 = 0.
Thus 2y = ~z; = 0, and 2z, = —z; = 0. Setiing

Z4 = t, t € K,

we obtain the general solution

T T

[C01C1;<2><37<4] = t[O)OaO:O:l] ) t € KI
In the remaining part of this section, we shall prove that HomF(M)‘,S}‘)

has dimension one if ) is a two—parts partition with some special features, by
making use of (4.25) and (4.28), and leave the proof for a general two-parts

partition to the subsequent section by using mathematical induction.

(4.31) LEMMA. Let A = (A,A,) be a two—parts partition of n. If
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Ay ¥ i, forall 4 0< i<,
p

then
. A oA
dim - Homp(M”,87) = L.
PROOF. According to (4.24),
. A oA
dim ;- Homp(M7,57) < 1.

Recall (4.1),
dim - Hom (M’\ S)‘) >0
K r ’ ’

. A oA
Therefore dimj Homp(M",57) = 1]

(4.32) LEMMA. The K-—dimension of HomF(M)‘,S)‘) is equal to ome, if A is
the partition (0,0) and T' = K&y,

PROOF. Write b = (bybegrnbpbe)yy 0 € b5 € p1, (¥), b > 0. T b < p
or b = -1 (mod p"), we can apply (4.31). Now assume that b > p and b #
-1 (mod p*). We shall prove that the dimension of the solution space to

z - 0(1) -
0

C| % | =0 where C= C(Z.)) :
2 AP%)

does not exceed one.

By (4.26)(5), m = bp" — 1 is the smallest maximal element in the poset

({0,8], » ). Thus, if [y, ¢ - Cb]T is a solution to the above system, then
P
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(; € K¢ J € [0, m],

by applying (4.27). Meanwhile, (4.28) gives

Cb-k € ch_m, k € [0, m]

Note that
2m = 2(bp" - 1)
= (bp™~ 1) + (b~1)p" + (p-1)p"" + -+ + (p-1)p + (p-1)
= (bpp—1,..,p=1), = 1 + (b-1)p"
> (br:br-p'-vbpbo)p = b.
Therefore

b—m< m,
and it follows from the discussion above

Coom € Ky
Hence

(; € K¢,  for all jin [0,8].

This proves that

. A

dim pHomp (M ,S)‘) < 1L
Thus

. A oA

dim pHomp(M",5%) = 1
by (4.1).1



§4C Two—parts Partitions : General Case
In this section we shall complete the proof of the following :

(4.33) THEOREM. Let A = (A,A,) be a two—parts partition of n and K is

an arbitrary field. Then

dim ,Hom M)‘,SA) = 1}

gHom e (

In the previous section, we have seen in (4.30) that if X, » ¢ for all 4
P
0 < % < A, then the conclusion in (4.33) above holds. In particular, if X is

the partition (n—1,1), dim Hom . (M)‘,S)‘) = 1 for all n. This suggests the
n

mathematical induction for proving (4.33), based on the following
(4.34) LEMMA. If2 < r < nf2, then

dimK—Hong (M( n-Ir) ,'S( n-IT) ) < dimKHongn_l(M( n-rr-1) ,S( n-r,r-1) )I

n

The method applied in the proof of the lemma above is quite different
from the argument used in §4B. We need to take some notes on the

invariants and standard tableaux.

Let A be a partition of n and z be a A—tableau. Recall that Rz is the

row group of z. Define

S;={u65)‘|7ru=u for all 7 in Rz },

150
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then Si‘; is a K-subspace of s Note that M is a cyclic K&, —module

generated by z , where z is the corresponding A-tabloid. For each u in Si ,

there is a K& —homomorphism ¢: )

8 satisfying ¢,( 2 ) = v .
Conversely, if 9 : M)‘ — ,5’)‘ is a KSn—homomorphism, then it is easy to
verify that

Y=, where v =Y z).
Thus

(4.35) The map u € Si‘: — @, € Hom K6 (M)‘,S)‘) is a K—isomorphism.
n

Let & be the group of all permutations on the set N = {1,2,..}. The

symmetric group &, on the set n can be viewed as the subgroup of & :
{r7e& | ak) =k k>n}

In this point of view, &, is a subgroup of &, whenever m < n. We shall
write T’ for the group algebra K& in this section. Thus every I'—module is
also a T',_-module in the natural manner. In the following we shall have a
classification of standard (nm—rr)-tableaux (ref. 2.20) in order to analyze the
I,.-structure of M™™" and S®™H, A general treatment on the

restrictions of Specht modules can be found in §15 [Peel (1969)].
(4.36) NOTES ON STANDARD TABLEAUX

(1) Recall that a A-tableau is a bijection =z : [A] — n , where [)] is
the diagram of the partition A\. Let p : NxN — N Dbe the function
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p(i,3) =14,  (35) € NxN.
Write

A

T = { 2| zis a standard A-tableau },

Th={z|oeT pwim) =i}, i=12.,
then

q(n-nr) — K(ln'r’r)U cI(Zn—r,r).
(2) Assume r < n/2, hence r < n-r. Let
y: [(n-r-Lr)] — n=l
be a standard (n—r—1,r)-tableau. define a A-tableau f(y) : [(n—r-1,7)] — n
‘via

o)(ng) =y i (45) € [(n—r-1,7)] ;
hy,n-r) = n

Then f, : F(TbT) — TIOOD) §g g bijection.

(3) Let g : [(n—rr)] — n be a A-tableau in T{*T) | hence z,, = n.

Define g,(z) to be the restriction of z to [(n—r,r—1)]. Then
go . ic(zn-ryr) — :K:(n-r,r-l)
is a bijection.|]

(4.37) NOTES ON THE I')_ ~MODULE STRUCTURE OF M(»™D
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(1) The I' ~module M‘®™T) has a K-basis (ref. §2C)

{_Tz_::[%ﬂ IXIUX2=n, XnX,=90X| =n-r}l

Let

= XA

X3 n

M=y K[%ﬂ .

Xy

Then M, and M, are T',_-submodules of M(*™0 .  Furthermore, M, is

isomorphic to M‘®T-bT 11, is isomorphic to MR a5 D _-modules.

(2) M™™Y is the internal direct sum of M; and M, over T _.

(3) For a (n—r-1,r)—tabloid y = B:lj , define

I,
2 {(n-r-1,r) 2 (n-rr)

then fextends to a I'j_~homomorphism from M(®T-bD) o pr(n-DI),

(4) For a (n—r,r)-tabloid z = [§1] , define
2
X ’ .
i) e

0, otherwise.
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Then g extends to a I')_—homomorphism from MR 4o ppenemT-D)

(5) The short I',_-sequence

0 — M(n-r-br) [_, M(n-r) g_, MinTr-l) _, g
is split exact.J|

(4.38) LEMMA. Assume that 2 < 7 < nf2.
(i) f(S(n-I‘-l)I‘)) S S(n-r;r) .
(ii) g(S(n-mr)) S S(n-r;r-l) .

(iii) The short T' _—sequence
A A
0 — ginr-bLr) _,; g(n-mr) _, g(n-nr-l) _,

is ezact, where. f and g are corresponding restrictions of f and g respectively.

PROOF. (i) Let

Yig o Yir Yoret ° Yoner+

y= Yot = Yor

be an (n—r-1,r)-tableau. S(*Tb) i generated over I' ., by ¢(Cy) y , where

¢(Cy) can be written as

Let z be the (n—rr)-tableau
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Yiu = U Ypr+1 *°° Yoo P
Yor =+ Yy

Then the column groups of y and z are identical, hence ¢(Cz) = ¢(Cy). Note
that 2 = f ¥y ) by (4.37) (3), and €(Cy) € T,

fe(Cy) T) = () A7) = () Z,
which is an element of S(™®™T_  This proves (i).
(i) S has its standard basis :
{ e(Cr) z| zegrmn) }
If o .e TN | then z,,, = n Since n—r > r by assumption,

Loy <oy <1 1<5¢<m

thus

T
dc)) = [] 1t - eya)l € T
i 1

Therefore

Je(Cz) 2] = ¢(Cr)g( z) = 0
" by (4.37) (4).

If z € ™Y, then =, = n, consider the (n—r,r—1)-tableau



156

Tyg o Zopr-r °° ZTpnr
t = I) = .
gO( ) $21 PR x27r_1
We have
r ,
w=[1 (aga)] = (COIL = (sgm)].
Therefore

de(Ce) T1 = o(C) g {1 ~ (agm)] & }

Tyg v Tpp-1 Wt Tppy

e(Ct) gz -
(€t) 9|2 Loy Tgop-y Ty

(Ct) g(z)=€Cl) g(1)

by (4.37) (4).
(iii) The restriction f of fto S‘™T-bT) js one-to-one, since fis. In fact, if y

is a standard (n—r-1,r)-tableau, then e¢(Cy) y is a member. in the standard

basis of S®T-bN) | and we have seen in the proof of (i) that
FdCy) g) = e(C2) z,
where z = fy(y) (ref. 4.36). Thus

F(smTiny = N K (Cr) 2

2 € gynoT)
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By the proof of (ii), if z € TH™D,
de(Ce) 31 = «(CH T,

where ¢ = g,(z). Since g, : FITN — T(AOD g 3 bijection,
7: Samn _, glnnr

is onto. It is also clear from the proof of (ii) that

Ker(g) = Y KecH)z= Im( 7).

ze€ TR

Recall that if z € T{™™T), the row group of g,(z) can be viewed as a

subgroup of Rz :
{me Rz | n(n) =n}
Thus if v € S{"™7 and 7 is in the row group of gy(3),
mo(uw) = g(rv) = g(u).
This proves

(n-rr) (n-r,r-1)
(4.39) LEMMA. ?(Sm )gsg0 3 1
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We shall analyze the K—space f(S(2T-b1) n SETD), in the 'y -exact

sequence

AN AN

0 — S(n-r-l;r) —_ S(n-r,r) i S(n-r,r-l) — 0.

If we can prove that f(S(»T-bT) n S;;n'r’r) = 0, then the restriction of g to

S(nr-br) ig a one-to-one K-linear mapping into S‘gn(';jr'”, and (4.34) will
0

follow.

From the proof of (4.38) :

by = N Ke(Ch) Z -

z € ZnmT)
A finer classification of the set (™™ is needed at this stage. Let

Ty={zeXTPTD | pgn) =1, pgYn1) =1},
Ty = { 56T | i) = 1, pa(n) = 2 ).

Informally speaking, ¥, is the set of standard (n—r,r)—tableaux such that both
n and (n-1) lie in the first row, while ¥,, consists of all standard
(n—r,r)~tableaux with n in the first row and (n-1) in the second row. It is

clear that

TP =%, U %,

Assume that ¢ is a standard (n—r,r)-tableau in ¥, Then
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Ly;

hence

r
€(Cr) = H [1 = (bysty)] € Ty = K&y,
J=1

and ¢(Ct) commutes with the transposition (n—1,n). Therefore
(n—1,n) e(Ct) T = e(Ct) (n—-1,m)(T) = €(C¥) T .

If ¢ € %y say
tu e ti?r tm+1' t ti?n-r

b)

t21 e tz:r

with ¢, . = n, t,, = n—1. Then

doy = J] - oty
j=1
r-1
= { []w- (tlj,tzj)]} [L = (tym-1)] .

7 =1

r-1
It is clear that H [1 = (¢425;)] commutes with (n—1,n), and

=1

(n-1,m)-[1 - (tir:n_l)]'(n—lin) =1- (tir)n)7
hence

(n—1,n) €(Ct) ¢
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[1 = (gota]- (m=Ln)-[1 = (tn-DI( )
r-1
= ] & - Gyt (e-10) 2 = (En-D]-(e-L( F)

r-1
= H [1 = (tgty)] (1 = (tm)]-(n—Lm)( T )
j=1

= «ct’) ¥,
where
% byg oot Bpppeg Tpopes Bl

=
by =** Loypeg ’

which is a standard (n-—rr)-tablean in T{"™ (cf. 4.36 (i)). We claim the

following based on the discussion above :

(4.40) OBSERVATION. f(S»Ttm)n stmon ¢ 2 K eC2) Z.

2 €%

PROOF. Let u be an element in f( S(**-b1) n SRTn . Write

u = 2 a, €C2)

zZ €L,

€ K.

x|

) a,

Then necessarily (n—1,n)u = u, hence by the notes above
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u= Y o {CYZ + Y o O]
2 €%y t €%,

= (n-1,m)u

= Y o, dME + Y ot F
zZ €%y te T,

it follows that o, = 0, ¢t € T;, [l

If n—r = r+l, then T, = @, f(STTP0) n SO = 0 by (4.40).

Hence (4.34) holds in this case. Assume that n—r > r+1, i.e.
n—r 2 r+2,

then X, # 0 and T,; = %,;, U %,;,, where
Tu={2ze% | pri(n-2) =1}
Ty ={2€%Ty | pa(n-2) =2}

Let © be an element in
stamm) 2 K e(Ch) % .

z2 €%,

Then by comparing the both sides of (n—2,n~1)u = wu, the similar argument as

in (4.40) leads us to

f( S(n-r-l:r)) n S{(Bn-rﬂ') C Z KE(CZ) Z .

Z €%
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Repeating this process, we find that it remains to consider the following case :
(4.41) n-r > 2r

In this case,
Fsmrtny g g ¢ Y K ((Ch) 7,
Z2 € Ry
where
T« = { 2z | zis a standard (n—r,r)-tablesu, pz (k) = 1,
k= n-r+l, ..., n-1, n}

Informally speaking a standard (n—r,r)—tableau 2z is in Ty if and only if the

numbers n—r+1, ... , n—1, n are all lying in the first row of z
Note that
U= 2 K €(C?) z
Z € fC*

is a T',_~submodule of S‘®»™T)  isomorphic to the Specht module S(*-2"1) ovyer

I, Take the (n—rr)—tableau z to be

n-r

1 2 RN A & O RN A
n—r+l n-r+2 --- n ’

then the stabilizer group of the first row of z is the symmetric group &, on

the set {1,2,...,n—r}. If

A
ue_UnSz,
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then necessarily

mu = u  for all 7 in G .

Suppoée u # 0, then Ku is a T',_—submodule of

U= 2 K e(Ch) % .

ZET*

Note that Ku is isomorphic to the trivial module over T',_, while U is

isomorphic to the Specht module S‘™2™") over I' . By appying (3.35) to
the T' .,—module S‘®?7)  we learn that S(®2" has a submodule isomorphic
to the trivial I',_—module if and only if
- Y
n—2r = -1 (mod p°),
where £ = £ (r) (c.f. the note prior to 3.33). Therefore, we have proved
(4.42) OBSERVATION. Assume that 2 < r < nf2. Unless
- 1 _
n - 2r = -1 (mod p°), £ = L),
f(grr-bny ST =0, hence
i (n-mr) i (n-r,r-1)
dim - S < dim, Sgo(.’l:) J

If X\ = (n-rr),2<r<nf2, n-2rz-1(mod pg), where £ = £.(7),
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we can prove that the Specht module S(™™™ is irreducible over I' . The
general criterion for a Specht module being irreducible was conjectured by

R. W. Carter (ref. 1.2 [James (1978a)]) and was proved in [James (1978a)]
and [James and Murphy (1979)]. Instead of quoting this deep result, we
adopt a sufficient condition found by James in 24.9 [James (1978Db)] :

(4.43) LEMMA. Let A = (A, X;) be o two—parts partition of n. Assume
that char(K) = p and

A, <Ay = ~1 (mod p%),
where £ = £,(),), then the Specht module §* is irreducible over I, = K8

n*

PROOF. (c.f. the proof of 24.1 in [James (1978b)])

Consider the T’ ~endomorphism of M :

A 1—)‘2 AZ
Q = )‘2 0 )

By (8.29), @ is reverse semistandard homomorphism, hence Q(S)‘) 0 (cf
3.28). By the Submodule Theorem (2.8), Ker( @) ¢ SM. The condition

assures that

by (3.33) and (3.34). Thus Im( Q) < % Also notice that @ = @,
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QL =[eL T =% el =0

by (3.16) (iii) and (3.18). It follows from (3.23) that S < Ker( Q),
hence .

M = Ker( Q).
Q thus induces a I' ~isomorphism from M’\/S)‘JL onto S since

and dim " = dim($")*. Therefore ( $')* ¥ $*. Let U be an irreducible
submodule of S)‘, then S}‘ has a submodule V, such that

SMNve T,
by (2.4) and (2.19), therefore

ANy U s

is a non—zero homomorphism from S)‘ to itself. By assumption, A; > Ay, A is

row p-regular for any prime p. But (4.2) gives

: A

dim - Homrn(S’\,M ) =1.
This forces that S = U is irreducible.]j

(4.44) LEMMA. Assume that S¥ is irreducible over T, where p is a

partition of n. Unless char(K) = 2 and p is row 2-singular,
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dim 5 Hoan( MH sH = 1.

PROOF. According to (2.3) and (2.19),

Homp, ( MF, F) v HomPn( SH* MH*y w HomPn( SH MM

n

as K-spaces. Now apply (4.2).]

(4.45) COROLLARY. Let A = (A )\, be a two—parts partition of n.
Assume that char(K) = p and
9

b

A{ =A, = -1 (mod p

where € = £ (},). Then dim g Homp (M)‘,S)‘) = 1]
n

K
When A; = n-r, A, = r, the condition

n — 2r = -1 (mod pg), £ = £,()
is equivalent to

A A = -1 (mod p%), £ = £,(,).

Therefore, combining (4.42) and (4.45), we have proved Lemma (4.34),

presented at the beginning of this section.

(4.46) THE PROOF OF THEOREM (4.33). Let A = (A ),) be a two—parts
partition. If A, = A, (4.33) follows from (4.32). Assume A, > X, Use
induction on X,. When A, = 1, (4.33) holds because of (4.31). Assume that
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(4.33) holds for some S()‘i’)‘fl), A, > 1. That is to say,

: ApAg—l . ApAal) (ApA—l)y
dim 5 Sg(ji 1) = dim 5 HomPn_l(M( 172 ),S( L2 )) =1

for any (A;,A,~1)-tableau y. Apply Lemma (4.34), when A, = n—r, X, = 7,

. ApA ApA . ' ApAgl) o(ApA,—l
dim p- HomPn(M( L 2),5( b 2)) < dim ;- Homy, (M( 172 ),S( e )) = 1.

n-1

But dim HomPn(M’\,S)‘) > 1 by (4.1). Therefore (4.33) holdsJ

By using (4.1), we have immediatedly

(4.47) COROLLARY. The Specht module S)‘ has unigque irreducible submodule

over K& for arbitrary field K, when X is a two—parts partition of n.J}



§4D The Calculations of HomI,(S)‘*,SA)

Let A be a partition of n. Consider the K-subspace of EndP(M)‘),
where I' = K&

n :
_ A A AL
Dy = { ¢ € Endp(M") | Im(p) C 57, Ker(yp) 2 57 }.

Wiite = M — M’\/S)‘J‘ as the coset map. FEach ¢ ¢ D, induces a
*
I-homomorphism 1 from M)‘/S)“L N (S’\) into S*

p
VN L V4
T
L/
(]

which makes the above diagram commute. On the other hand, if

is a TI'-homomorphism, then it is clear that r € D/\. Therefore DA is
isomorphic to HomP(S)‘*,S}‘) as K-spaces. D, can also be viewed as a
K-subspace of HomF(M)‘,S)‘). In (4.1), we have seen that the socle length of
§* does not exceed the K—dimension of HomP(M)‘,S)‘). In fact, the similar

argument leads to

(4.48) 1 < socle length of s < dimg(D,) < dimKHomP(M)‘,S)‘).l

Let ¢ be an element in EndP(M)‘). Take 9Y(A,A) as the K-basis of

168
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Endp(M"). Then

Q= 2 zPP, %, € K,
P e MA,N)

is in Dy if and only if, by (3.9) and (3.23),

449) () (% mp= (Y m) 2 z,P = 0,
P e M(A,N)

) p (m Y 2) = 2 2,P (m 2y €)= 0,
P e M(A,A)

forall £ > m21, w> 0]

(4.50) REMARKS.

(i) In §4A, we have proved that if char(K) # 2, A = (n—n1"), then
HomF(M)‘,S)‘) has K-dimension 1 (one). Thus (4.48) above implies that

L A _ o DS

1 = socle length of §” = dlmK(D)\) = dim zHomp(M",5%).

(i) In §4B and §4C, we have proved that for any charx(K) = p,
dim KHomF(M)‘,S)‘) = 1 when A = (A,)A,) is a two-parts partition of n. By
(4.16) and (4.17),

A A

it follows that dimp(D,) = 1 when A = (A;A,).
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(i) In this section, we shall study the K-space D,, when A is the -
partition (A,A,17), by combining the results and techniques in the previous
three sections. Since the case A, = 1 and the case r = 0 have been discussed
before, we shall always assume that A, > 2 and 7 > 1. In the first half of
this section, we shall be carefully classifying the (X,A)-incidence matrices in
order to analyze the solution space of the linear system yielded by (4.49) in
the unknowns { z, | P e M(A,A) }.

(4.51) NOTES ON THE CLASSIFICATION OF (A,A,,17)-INCIDENCE
MATRICES

(i) Each (A A)-incidence matrix @, where A = (A;,A,1%), can be

partitioned into blocks in the following manner:

2 r
A B o
Q= [OD]r

In the point of view of §4A (c.f. the note following 4.4), the block [ 4,B ] is
called the hat of Q. FEach row of [ C,D | is of the form E, for some £,

1 < k < r+2, where E]c is the k—th basic row vector with (r+2)—components.
Each @ in 9Y(A,A) defines a function:

¢ [3,r+2] — [1,r42],

such that Eq(i) is the i—th row of @, 3 < ¢ < 2. Thus, we can write



171

Eq( 3)

[ CD]

Eq(r+2) ,

Similarly @ also defines a function
g’ : [3,7+2] — [1,7+2],

such that E'g,( j) is the j—th column of @, 3 < j< r+2. This is to say,

5] = Fow B

(ii) We shall concentrate on those Q% in D(A,)\) satisfying that both

functions ¢ and ¢ are one-to—one. The cardinality of the set

{ie[3re2) | o) €2)

is equal to the number of non-—zero entries in block C of @, which can be 0, 1

or 2.
(iii) If C = 01in @, then
dd) > 2 3 < i< .

and ¢(i) #+ q(j) if ¢ # j, since ¢ is one—to—ome. That implies that the rxr

matrix D can be obtained by permuting the rows of the r~r identity matrix
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I.. Hence B must also be zero matrix. The block A can then be written as

Ak ok
{ k Az—kl’ 0< k<A,

which is a [(A;,A,), (A,A,)]-incidence matrix.

(iv) We claim that if

2 T
- [43):
C D|r

is a (A,A)-incidence matrix such that both functions ¢ and ¢’ are one-to-one,

then the block C has exactly one non—zero entry if and only if B does.

From the definition of (A,A)-incidence matrices, each row of [ C,D ] has
its entries summed up to 1 (one). If C has exactly one non—zero entry (which
is 1), D must have (r—1) non—zero entries located in different columns, since ¢
is one-to-one. Hence D has exactly one zero column. This fofces that B has
exactly one non-zero entry. The converse part can be shown by the same

argument.

(v) The notes (iii) and (iv) above imply that if r > 2, C has exactly
two non—zero entries if and only if B does. It is clear that the two non—zero
entries of C (B) are in different columns (rows), since ¢ and ¢’ are

one-to-one. The block A in this case is a (At,At)—incidence matrix:
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ook | 0S RS,

here At is the partition (A-1,A,-1) of n-2.

(vi) Return to the case C (hence B) has exactly one non—zero entry.

Let @ be such a (A,A)-incidence matrix, satisfying

q(i) £ 2, q(k) > 2 i k # 4
¢’(5) <2, ¢'(k) > 2if k # j

There are four possibilities concerning the values of ¢(%) and ¢’(j) :

If ¢(i) = ¢’(j) = 1, then A must be of the form

Aelk k
l: k )\2_ij ) 0<k< IIllIl{ /\1—1,)\2}.

If ¢g(i) = 1, ¢’(5) = 2, then A must be of the form

Ak k
k-1 Ak |0 LTSRS

If g(i) = 2, ¢’(j) = 1, then A must be of the form

Ak k-1
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If ¢(i) = ¢’(j) = 2, then A must be of the form

Bk |0 0<ECAE
" (4.52) NOTES AND DEFINITIONS ON (¢ % m)P

(i) This might be the right time to introduce some new tools before
diving into the calculations in front of us. Let’s turn back to a partition
po= (g .. , py,) of n. Assume that 1 < £, m < h £ # m 0 < w < pp-  Let

v be the composition of n, such that

VZ = I.LE - w,
Vp = by + W,
Let P be a (pu)-incidence matrix. (£ % m)P is then a I'~homomorphism

from MM to M.

L Yy
7 3
TEENAN ;{V( 2

) (¢ % m)P, P e M(up), is a I-linear combination of elements in

M(,v) by (3.10), say

(¢Zmp= Y o@Q, oQcelL
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Define the support of (£ 24 m)P to be the subset of 9M(y,v) in which each

element has non—zero coefficient in the expression of (£ *L m)P, denoted by
supp{({ L m)P} = { Qe Mpuv) | 0¢# Q) e Lin (£ m)P }.
(iii) Let @ be a (pv)-incidence matrix. (m % ¢) is a

I'—homomorphism from M’ to M¥, hence (m % £)Q is a T'endomorphism of

MM

ik (m Y Z)QMu
CETY A;VQ

Write according to (3.10):

(m% Q=Y BRE AR L
R e M(p,p)

Similar to (ii) above, we can define
supp{(m - €)@} = { R € M(up) | 0 # AR) € Lin (m = £)Q }.
(iv) For P € M(p,p), @ € M(p,v), we have the following simple but
significant fact: P belongs to supp{(m % £)@} if and only if Q belongs to

supp{(£ £ m)P}.

(v) Consider the condition (c.f. 4.49 (i)):
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(% m) 2 zP = 0.
P e M\, \)

For each @ € M(u,v), one can find supp{(m v £)Q} by computing (m Y, 0Q
according to (3.10). For each P in supp{(m ¥ £)Q}, assume that the integer
coefficient of Q in (£ ¥ m)P is 9(Q,P), then the coefficient of Q in

(L% m) 2 zP =0
P e MM(A,N)
is

Y (@Ps, | Pesuppitn ¥ 00} } .

Thus, we have an equation on { z, | P e M(u,p) } regarding @ in M(p,v):

2{ ’Y(Q;P)ZP | P € supp{(m 4 2)Q} } = 0.

In fact, every linear equation on z,’s yielded by (4.49) (i) arises in this

manner.
(vi) In our later calculation, we are sometimes concentrating on 2 for

some particular M in 9(u,p). The following algorithm will be used for finding

linear equations involving 2y yielded by

(4.53) ALGORITHM.
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(a) Find supp[(£ % m)M], for M in SN(p,p).
(b) For Q in supp[(¢ -~ m)M], find supp{(m ¥ £)@}.
(

c) For each P ¢ supp{(m ¥ £)Q}, calculate the (integer) coefficient
HQP) of @ in (¢ X m)P.

(d) Write down the equation

2{ "QP)z, | P € supp{(m Yoo } = Oil

(4.54) EXAMPLE. Let p = (5,2,1), v = (6,1,1), partitions of 8. Take

= o
O ==

0

1} € M(p,p).
0

Consider the equations yielded by

2L 2 2,P = 0.
P e M), A)

(a) supp{(2 & 1)M} = { @ @}, where

() supp{(1 1 2)Q} = { M N, P}, where

= = o
O =
oo

S
oo

Ll =g

OO
—_
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(c) By applying (3.10), we have the coefficient of @ in (2 i, 1) M,

Loyw, e L 1P are

(2=

’Y(Q}M) = 1, 7(@;1\[) = 4, ’Y(Q)P) = L
(d) Thus the equation regarding Q is
2, + 4z + z, =.0.

Similarly we can find the equation regarding @’ The detail is ommitted

here.|j

(4.55) NOTES ON P(m % ¢)
Let 4 and v be compositions of n as in (4.52). The linear equations

yielded by

2 2, P (m Y, 0 =0
P e M(A,A)

are closely related to those yielded by

% m) 2 zpP = 0.
P e M(A,A)
Notice that :

Il
o

z 2, P (m Y, 0
P e IM(A,A)
is equivalent to
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Z 2P (m % O = o.
Pe MA, A)

By (3.16) (iii) and (3.19),

2 zp (£ Y, m)P' = 0.
P e M(A,A)

Let @ be an arbitrary (p,v)-incidence matrix, ~( Q,P") be the (integer)
coefficient of @ in (£ Y, m)P, then (4.53) gives

2{ ’Y(Q,PT)zP | P supp{(m 1 £)Q} } = 0.

Note that the following equation

Z{ 7(QP)z, | P e supp{(m ¥ £)Q} } =0

is yielded by

(% m) Z z,P = 0.
P e MmN

Therefore, there is a one—to—one correspondence between the two homogeneous

systems, given by (i) and (ii) in (4.49), summarized as the following:

(4.56) OBSERVATION. The condition (4.49) (i) yields an equation
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Y P)m =0, P)eK
P e Mp,p)

if and only if the condition (4.49) (ii) yields

Y AP)z =0, (P eK
P e DM(p,p)

where Q = P J]

Let us now turn back to the partition A = (A, X,,17), Ay 2 2, » 2 L
Assume that (zP)Pe?Jﬁ( A is a solution to (4.49) (i) and (ii). We intend to
give an estimation of the dimension of the solution space by revealing the
interrelation. of the z,’s.

(4.57) OBSERVATION. Let @ be a (M A)—incidence matriz, ¢ and ¢’ be the
functions from [3,1+2,] to [L,x+2] determined by @ as in (4.51) (i).
(i) If ¢: [3,x4+2,] — [1,14+2] is not one—to—one, then (4.49) (i) yields

an equation

() If ¢ [31+42,) — [1,x42] is not one—to—one, then (4.49) (i) yields

an equation
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PROOF. (i) Although this follows from the proof of (4.9) in §4A, we shall
sketch the proof by making use of the machinery in (4.53). Write

2 T E
3
Q=[‘é,g}i, where [ C, D ]| = q:()

Eq(r+2)

There exist £ and m, 3 < m < £ < 2, satisfying ¢(£) = ¢(m), since q is

not one-to-one by asumption. Apply Algorithm (4.53) to @ : -

(2) supp{(¢ L m)Q} = { Q"}, where

-Eq(3)
2 r m |28
SRTEI TR
e | o
)

(b) supp{(m 4 )@} = { @ }.
() (&5 m@ = 29"

(d) The equation regarding Q* in

is 2z = 0.
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(ii) is a corollary of (4.56) and (i) above.]

(4.58) OBSERVATIONS. Let Q be a (\A)—incidence matriz such that both

functions q and q’ are one—to—one. Then

for some @, which is one of the following (A,\)—incidence matrices listed

below:

>
_

{
&
e
o

EooAp-lk 0
@ ME) =73 1 |ol o |+ E=01 . 21
0 0| I,
Ak k|1
Eoagk|o] O
B M =[5 1 1ol o 1> k=1 .,
0 0|1,
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A~k k 0
Bl A,k 0
(4) P(k) = 1 0 0 0 ) k=1, y Ag
0 0| I,
i Ai_l'—k k 1 ]
ko Ak |o0]| O
(5) Qk) = 1 0 0 0 , 0 < k< min{A-1,0,}
0 0] I,
A 1=k k 0
(6) R(k) = k )\2'—1_‘k 0 1 ’ k = 0, 1, cen Az"‘l.
0 0
L 0 0 Ir-2 J

Note. R(k) occurs omly if 7 > 2.

PROOF. In this proof, we shall write 2{@] for the unknown 2y Q@ € MM(AA)
( for the sake of typing). Write (c.f. the notes 4.51)

Q= [A B]z'
C . D|r

According to (4.51), there are three possibilities for the block C:
(a) C=0.

(b) C (hence B) has exactly one non-zero entry.
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(c) C (hence B) has two non—zero entries in different rows (columns).
In the case (b) above, We have four subcases as shown in (4.51) (vi).

We shall prove the following:

If ¢(i) = ¢(j) = 1, for some ¢ and j in [3,r+2], ¢(1) > 2, ¢’(1) > 2
whenever | # 4, | # j then 2[Q] € K Q(k)] for some k 0 < k < min{A~1,),}.

For a (A,A\)-incidence matrix @ described above, its block A is a

(p,p)-incidence matrix, where g = (A1, A,). Thus A must be of the form

ALk k
koo Ak

for some £ 0 < &k < min{A-1,)\,}. Applying (4.8) to @, we have

40 = AM], or Q] = —M]

for some

10
M= |4 B ) Where01=(_)(.)
Cc, D -

00
Note that
W = [AT 011'] .
B} Dj

Applying (4.8) to MT,

AMY] = AN,  or MY = —N]
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for some
A = AT C"f
B, D,
where
1 r-1
(1)8 0 o017t
By=1..|: Dy=1, I |t
00

From (4.56) the equation ZM'] = ZN'] (or ZM*] = —[N"] ) has its "dual"
equation 2[M] = 2[N] (or 2[M] = —2[{N] ). Therefore we have

4Q] = 4N or  AQ] = N

Notice that

(A -lk k|1 ]
Eooak|o| O
N=1"9""9 Jo| o |=9)
0 0l I,

for some k 0 < k < min{\-1,),}. Thus we arrive at

4¢] € KAQ(F)].

The similar discussions will cover the other cases. The detail is omitted here.

(4.59) OBSERVATION.



(1) 2L (k) + kZN(k) + (Ai—k)zQ(k) =0, foreachk 1<Ek<A,.

PROOF. We apply Algorithm (4.53) to the following cases.

(a)

186

A, 0 0 ]
Hk=00(0)= |0 220 0 | 44
0 0 1
0 Ir-i
I 1 0 1
supp{ (3 1+ 1)L(0) } = { Ly = | 0 22 0] O
0 0
- Ir-l_
: 0 0| 0
supp{ (1 & 3)L, } = 1 L(0), ; g ; = {£(0), Q(O)}.
0 Ir-l
6L o) =1L, 6L 1)QO) =xrL,
There arises an equation
HO< k<A <A,or 0< k< Ay= 2,

supp{ (3 55 )L(K) } = { Iy =

o
o

o | O ©
o
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(b) supp{ (1 & 3)L, } = { L(k), N(K), Q(A) }.
(c) The coefficient of L, in (3 1 1)L(k), (3 L 1)ME) and (3 L1+ 1)Q(k) are
1, k and (A —k) respectively.

(d) There arises an equation

%, 00 + kzN(k) + (A1‘k)ZQ(k) = 0.
If Ay = Ay and k = A,
(0 A, 1

(a) supp{ (3 L DL } =7 Ly = Ay 0,01 O
2 0 0 0

0 I

) swpp{ (1 L 3)L, 3 = { Z0W), MO }

(@) (B85 DLOY) =Ly, (85 DN =ML .

(d) There arises an equation, which is a special case of (1) :

Note. (2) can be viewed as the special case of (1) if we agree with the

convention zN(O) = 0'.
(4.60) OBSERVATION. For each k, 0 < k¢ Ag-l,

PROOF. We can apply (4.53) to the following cases:
(i) k=0.
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(i) 0 < k< AL
We shall work out the detail for case (ii), and case (i) can be done by the

same argument.

() supp{(2 L+ 1)M(K)} contains

o
=

O | O] © =
o

(b) supp{(1 L 2)M} = {M(k), N(k+1), N(B)}.

(¢) (2% 1)M(E) = M’ The coefficient of M’ in (2 & 1)N(k+1) and

(2 1, 1)N(k) are (A~k) and k respectively.

(d) There arises an equation

In case (i), we have the equation

viewed as the special case of the equation obtained in (d) when £ = 0.]

(4.61) OBSERVATION.

(1) Zp(k) + (Ai—k)zQ(k) 4 kZQ(k—l) =0, foreachk 1< k<A if
AL > Ay and for each k, 1 < k< Ay if A = A,
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PROOF. In order to prove (lj we apply (4.53):

A~k k
k=1 A,k

(@ P=["7 4 o | € swp{2 L PR},

O | O] © ==

0

r-1

(b) supp{(1 L 2)P} = {P(R), Q(R), Q(k-1)}.

where

Q(k_l) = 1 0

Ol o] © =
(o]

r-i

(c) The coefficient of P’ in (2 1 1)P(R), (2 L 1)QR), (2 & 1)Q(k-1) are 1,

(Ak) and k respectively. Thus

When k= X, = A, we obtain equation (2) by the similar method:
Py Aoy = O
Note. (2) can be viewed as the special case of (1) in (4.61) if we agree to

define
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(4.62) OBSERVATION. For each k, 1 < k < A,

PROOF. This is a corollary of (4.56) and (4.61) above. Notice that
NK) = P, Q) = QB
From (4.61), we have
and (4.56) claims that
— = < .
(4.63) OBSERVATION. Assume that char(K) # 2. For each k, 0 < k < Ay,
PROOF. By computing

(A -lk k
EooAk

—
o
olo|lo ~
o
i
-

where
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A-l-k & 0
Q = ko Ak ,
0
0 0 0
L 0 0 Ir -2

we have supp{(4 L 2)Q(K)} = { Q). When 0 < &k < ),

supp{(2 1+ 4)Q} = {Q(¥), R(K), V(R)},

where
A-1-k k 1 | 0
V(k) = -1 A~k 0 1
1
1 0 0
L 0 0 I r-2

The coefficients of @’ in (4 1, 2)Q(k), (4 1 2)R(k) and (4 1, 2)V(k) are 1,
(A,—k) and k respectively. Therefore

20(k) + (Az—k)zR(k) +kzv(k)= 0.

By (4.57) (i), sz(k) = 0, because there are two rows identical in V(%). Thus
2y = 0, since char(K) # 2. We then have for 0 < k < A,,

Zo(k) t (Az—k)zR(k) = 0.

When k = 0, supp{(2 L, 4)Q%t = {Q(0), R(0)}, and the coefficients of
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@’ in (4 1 2)Q(k) and (4 L, 2)R(k) are 1 and A, respectively. There arises

Therefore the equation
is valid for £ = 0, 1, ..., A—LH

(4.64) REMARKS. The above observation shows that every ZQ(k) A be

solved in terms of zR(k), for k=0, 1, ..., AL If X, = A,

Q(O)a Q(l)) ) Q()‘Z_l)

are all the (A,A\)-incidence matrices of type (v) in (4.58). When A, > A, the

incidence matrix

A, o0 o O
Q(Az) = 1 0 0 0
-0 0 Ir-i

is not covered by (4.63). But it is not hard to show that if char(K) # 2,

200n,) = 0, by the same type of calculations in (4.63). Note that
2
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(4 = 2)Q(},) = A, 0 0 1 = Q%
0
0 0 0
- 0 0 Ir-z

The support of (2 1, 4)Q" contains two elements: @Q(),) and

A A1 A, |1 .
V) = | Ayl 0
10
L o | o
_ 0 o | I,

Thus, by calculating the coefficient of Q*, we have

Q) T My = 0

Hence 2000,) = 0, since char(K) # 2 and 2Y(n,) = 0.1

2

At this stage it is wise to make a general survey of the situation after
obtaining the observations from (4.59) to (4.64). We order the unknowns 2’8,
where @ is a (AA)-incidence matrix listed in (4.59) from (i) to (vi), in the

following manner:



(4.59)
(4.60)
(4.62)
(4.61)

(4.63)
(4.64)

) o ML)
Wy N

WPy - 1 P

“Quoy - o) ™ = miALA
R0y RO

We also order the equations obtained in those observations as

L)t kzN(k) + ()‘1_k)ZQ(k) =0, k=0,..,A
o) + B ¥ Qo By = 0 k=0, ., AL
I T Rgeer) T AeBzga) =0 E=1 Ay
o) ¥ Rguer) t CiBege =0 k=1, %
o) + Ca~Bzggy =0, k=0, .., min{Ar1,),}

The coefficient matrix of the equations above is of the form

194
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(4.65)
“L(k) PH(k) PN(R)  PP(k)  Pq(k)  FR(k)
10
. 0 * 0 * 0
1
1-
. * 0 0 0
1
1-
. 0 * 0
1
1
. ) .
1
1
1

This suggests the further analysis on the equations yielded by (4.49), in which
R(k), k=1, 2, ... , A\;~1, are involved.

Each R(k) (c.f. (vi) in 4.58) can be written as

By I, 0 Ak k
0 0 I, ’

for 0 ¢ k& < A1, here At is the partition (A-1,A,~1) of n-2.  The
"embedding" R, ~—— R(k) is a one—to-one mapping from YA, AT) onto the
set { R(k) | 0 < k< A1} We shall compare the equation system yielded
by
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with the one yielded by

2 % 1) 2 2pRE) = 0.
2

It is conceivable that our results concerning two-parts partitions in §4B and

§4C are coming into play.

(4.66) NOTES.

(i) Let us start with a 2x2 matrix with non-negative entries:
_ la b
7= [o

viewed as an incidence matrix in 9M(p,v) for suitable compositions p and v.

The matrix

is abbreviated in this note by

e & 1 0
[rni=¢ 451}
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its 2x4 block at the upper left corner, since the rows from 3 to (r+2), as well
as the columns from 5 to (r+2), remain unchanged under the left action of

2% 1)and 1 % 2).

(ii) For each w, 0 < w < ¢+d,

W _ a +w] [0+ w at+w, b+w
Y A R R

the sum is taken over all ordered pairs (wj,w,), such that
Oﬁwiﬁc,()ﬁ'wzﬁd, ’LU1+'LU2='LU,
by Formula (3.10). Therefore, every element in the set supp{(2 *> 1)P} is

uniquely determined by some ordered pair (w,w,) satisfying the above

conditions. Similarly

W _ a + w (b + w atw, b+w, 1 w
R RS D) | | o R

where the sum is taken over all triples (w,, w,, w,), satisfying

It is clear that each element in supp{ (2 ¥ 1)[ P, I, 7 } is uniquely
determined by some triple (w;, w, w,) described above. There is an injection

from the set supp{(2 % 1)P} into the set supp{ (2 v, DLpLITYG:
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otw; b+w, atw, b+w, 1 0
c—w, d—w, c—w;, d—w, 0 1
! T
(w,wy) - (w, wy 0)

Or we can simply write this injection as
Qesupp{@ L )P} — [ @ Lleswpp{ @5 D[P LT}

(ifi) Let

o- s

be a 2x2 matrix with non-negative entries. For each w, 0 < w < etf, there
is a one-to—one correspondence between the set supp{ (1 Y9 I, ] } and

the set of triples (w;, w,, w,), satisfying

The correspondence is given by

e-w, f-w, 1l—w, 0
I[g+wi h+w§ 'w33 1]| — (g Wy, Uy

Similar to (ii) there is an injection from the set supp{(1 *& 2)Q} into the set

supp{ (1 = 2)[ @ L, ]} :
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[ e—w, f——wz] |[e—w1 f-w, 1 0]'

gtw, htw, gtw; htw, 0 1
! T
(w, wy) - (wy, wy 0)

(iv) Now we turn back to the partition A = (A, A, 17) of n, A2,
722, and the partition )\T = (A1, A,-1). For an integer w, 0 < w < A1,

take an incidence matrix

such that
e+ f=A-1+w g+h=2%-1-uw

In supp{(1 % 2)Q}, the (AT,AT)—incidence matrix determined by the ordered

pair (w,, w,), where 0 < w; < ¢, 0 < w, < d, w, + wy, = w, is

[e—~w1 f——wz]
gtw, htw, | -

The (integer) coefficient of @ in (2 ¥ 1)[ ;Izwul iJ:IZZ ] is [S)J [z];]
1 2 2

The coefficient of @ in

2 Y 1)2zpp= 0
P et ah

is zero, which yields a linear equation on z'’s. If P € supp{(1 % 2)Q} and
P

P is determined by (w,, w,), we shall write
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7, = ((wy, wy).

2 [;J [1{)2] {(wy w,) = 0.

W+ y=w
0<w<e
0wy f

Thus

Also, we know that every linear equation on 2y’ yielded by

2 1)2zPP =0
7

arises in this manner.

(v) Consider the set supp{ (1 ¥ 2)[ @ I, ] } in DM(A,)A). The
incidence matrix in supp{ (1 * 2)L @ I, ] } determined by the triple
(wy,wy,w,) i

e—w;, f-w, l—wy 0
gtw, htwy, wy; 1]

where 0 ¢ w; e, 0 < w < f, 0<w <1, w + w + wyg = w The

coefficient of [ @, I, ] in

W e—~w; f-wy, l—w,; 0
(2_—'1)‘[ g+wi btw, wy 1

is [;J [,{;J If Me supp{ (1 & 2)[ @ I, ] }, determined by the triple

(wy, w,,wg), We write

< C(wy, w,, ws).
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Then the coefficient of [ @, I, ] in

2 Y I)ZZNN=0

N e (A, N)
is
0 = 2 [5}1] [Z{}J C(wp Wy, 'w3)
(wy>wy,w,)
= 2 {;J [@];2] ((wy, w,, 0) + z (5,1] [,LJ;J C(wy, 1wy, 1).

W+, =W wtw=w—1

0<w <e 0<w,<e

0w & f 0<w,<f

(vi) I Nesupp{ (1 L 2[ @ I, ]} and N arises from a triple

(w;,w,,1), then

e-w; f-wy | 0 O 0
N = gru,  htw,
0 0
L 0 0 Ir-2 J

The third and the fourth columns of N are identical. By (4.57), 2z, = 0.
Thus, if char(K) # 2,

C(wy, wy, 1) = 2, = 0.

Hence the equations obtained in (iv) and (v) are
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¥ (o)[3)cws w) =0,

(wyu0,)

2 {;J [1{,2] {(wy, wy 0) = 0,

(wy,u,)

where (w,w,) runs over all ordered pairs such that w, + w, = w. 0 < w, < ¢,

0 ¢ Wy < fl
The notes above provide the_ proof of the following lemma:

(4.67) LEMMA. Assume that char(K) # 2,. For each linear equation
A 5"

2 aszk =0

k=0

yielded by

2(2 L 1) B =0,
k

there exists an equation, yielded by

(ZQ—»m)ZzMM=O, £>m, v>0,
M e MM(A,N)

which is of the form
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(4.68) THEOREM. Assume that char(K) # 2. If A = (A,A,17) is a partition
of m, Ag 2 2, 72 2. Then

. A* oAy
dim pHomp (5" ,57) = L

PROOF. By (4.48), it is enough to show that the solution space of (4.49) (i)

and (ii) has dimension less than or equal to 1 (one).
By (4.33) in §4C, we know that
. AT oAt
dim pHomp(M™,57) =1, At = (A1, A1)

That is, the solution space of

)\2-1

2(2 Y, 1)szRk =0, w>0,
k=0

has dimension 1 (one). Assume that T is the coefficient matrix of the

unknowns { %, | £ =0,.,A-1}. ie

Then the lemma (4.67) above gives
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Combining this system with the one in (4.65), we conclude that the solution

space of (4.49) (i) and (ii) has dimension less or equal to 1 (one).J

(4.69) REMARKS. Surprizingly, it is hard to give a satisfactory estimation
*

of the K—dimension of,HomP(S)‘ ,S’\), when A = (A1), Ay 2 2. For time

being, we only know that (4.68) fails to hold for A = (5,2,1), when char(K) is

3.

(1) One can check that the trivial K&g-module S'® is isomorphic to a
submodule of $(¥*1 by applying (3.35) in §3D.

(2) The Specht module S‘%3 is irreducible over K&, by (4.45) in §4C.

(3) The K&;—homomorphism

: 3
f = [2 0} - MDY .y g5 21)

has the property #(S'®®) # 0, since 6 is reverse semistandard (c.f 3.28 and

3.29 in §3C); furthermore, Im(4) C S(®%D  since over the field K = 1I,,
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(cf 3.9 in §3A).

(4) From (i) and (iii) above, we know that S(%®D has at least two
non—isomorphic irreducible submodules, isomorphic to S(¥ and §(%% = j(53)
respectively.

(6) By direct calculations on the system

2 (Zﬂim)zPP=0, £>m, w> 0,
P e M(A,A)

when char(K) = 3, we can find that
dim

A o)
KHomKGS(M ,$7) = 2

In fact the homomorphisms

OO

T NN

OO
[ ——

and

b=y Q
Q € M(A,A)
Q+ P

form a K-basis for Hom ;o (M)‘,S}‘). It can also be verified that
8

P(SM™) =0, ¢ =o.

*
Thus the K-dimension of Hom .o (S)‘ ,S)‘) is equal to two.
8
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(iv) From the facts above, we conclude that S(®*1) hag socle length

Y |

(4.70) COROLLARY. When char(K) # 2, if A = (A ,A,17) is a partition of

n, T 2 2, the Specht module S)‘ has unique irreducible submodule.J]



LIST OF SYMBOLS

Symbol Meaning Definition on p.
Abbreviations

Ann annihilator

char characteristic

dim dimension

End endomorphism ring

Ker kernel ‘

rad Jacobson Radical

soc - socle

Number System

N the set of positive integers

N, the set of non-negative integers

I the ring of integers

Q the field of rationals

a|b o divides b

(z’r,...,z'l,z'o)p =4p" + - +ip+ 4, 0<g < p-Ll 63, 137
£,(%) = r+1, if § = (i, ,ip0), & # 0. 63
> a partial order on N, 137
D

Set Theory and Combinatorics

) empty set

| Al cardinality of set A = number of elements in A

Vz for all z

n the set {1, 2, ... , n} ~ ‘ 13
Al v : compositions (partitions)of n 14
A the conjugate of a partition A 14
Al A—diagram 15
a,b] the set of integers {a,a+1,...,0} if b > a 13

L, T, ¥ tableaux 16



X ‘
z = |X, A-tabloid of the tableau z 17

A
4 conjugate tableau of ¢ 27
M, N, P, incidence matrices 29
DA, 1) set of (\,u)-incidence matrices 29
(M, z) Rz—orbit of tabloids determined by M 29
(¥m) certain homomorphism 35
®p mapping on set of partitions 66
e, correspondence between two labellings
of irreducibles 62
T(A, 1) set of (A,u)-tableaux 55
1, T) a u-tabloid determined by (A,x)-tableau T
and A-tableau z ‘ 56
A set of standard A—tableaux 152
§C>1\ 152
C&")i‘j certain subsets of T 158
L 162
abc 2x4 block at the upper left corner of some
e fgh
incidence matrix 196

Group Theory and Group Algebra

G finite group
G, symmetric group on the set n 13
A alternating group on n 13
S[B] {re&, | n(ky="Fifk¢ B}, BCn 13
¥(H) certain element in KG determined by 7 and H C G 13
alternating character 14
trivial character : 14
Rt row stabilizer of a tableau ¢ 16
Ct column stabilizer of a tableau ¢ 16
ay = ¢(Ct) 23
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By
(e,)

= y Rt)
transposition of the numbers ¢ and b

Module Theory and Linear Algebra

K
kS,

r

]'—‘Il
Homp(M,N)
Endp(M)
N<M

o M.

. 1

1

M, ® M,
Me N

a field

group algebra of & over a field K

K—spaces of '~homomorphisms from M to N

= Homp(MM)
module inclusion

internal direct sum of modules
tensor product of modules M and N over K

K~-bilinear form

dual module of a module M

={meM| <mu>=0,Vue U}, for U< M
permutation. module associated with A

Specht module associated with A

James module associated with A

Young module associated with tableau ¢
adjoint of homomorphism ¢

radical of module M

Jacobson radical of a ring A

a K-algebra isomorphism of KG defined by
a linear character v of G

certain subspaces of EndF(M)‘)

k-th basic row vector

hat—class

some hat class

a block in the coefficient matrix of
some linear system
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23

13
20
151

5, 21

20
20
21

23
46

11
11

25
52, 168
109
109

120

133



INDEX

page
adjoint map 45, 46, 51
alternating character 14
alternating group 13, 130
bilinear form 2, 21, 45, 47

cardinality

character theory
characteristic

column permutation
column p-regular partition
column stabilizer
composition factor sequence
composition length
composition series
congruence

conjugate tableau

coset map

descending chain condition
diagram

double coset

dual

endomorphism
exact sequence

factor module

group algebra
G—invariant

hat
hat—class

14, 32, 36, 39, 54, 171
1, 22, 23, 61, 81
17

2, 22, 61, 62, 67, 70, 72, 76, T7
16

9, 11

9, 10

8, 9

43

27

73

12
15, 54, 69
34

4, 24, 61

13
8, 10, 105, 154, 158

12, 24, 61

4, 13, 20, 24, 61
45, 46, 48

109, 112
109, 110, 115, 116,117, 118, 119



hook partition

incidence matrix
internal direct sum
irreducible representation
irreducible module

James module

Kernel Intersection Theorem
K—valued function

labelling of irreducibles
left artinian ring
letter permutation

(A, p)—tableau
A—tableau of type p

maximal element

maximal element, largest
maximal element, smallest
maximal submodule

non-degenerate

orbit
orthogonal

paralellogram
partial order
partition
permutation module
poset

radical of a module
radical of a ring
rational field

reverse semistandard
row equivalent tableaux
row permutation

row p-regular partition
row stabilizer

row 2-singular

13, 107

2, 29
48, 153
1

1, 14, 21, 24, 81
21, 23, 25, 104

37
13

2, 61
11

16

54, 55
54

138, 146, 147
141

142, 145, 148
61

5, 21, 45, 48

30, 31, 39, 54, 56
45

134

143

14, 21, 22, 24, 28
1, 20, 25

142

11
11
1

57, 58, 59, 67, 69, 70, 82, 164, 204
56

17

2, 22, 61, 62, 74, 76, 77
16, 31

58, 107, 165
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self-adjoint

semisimple module
semistandard tableau
short exact sequence
socle

socle length

Specht module
standard basis
standard tableau
strongly row p-regular
strongly column p-regular
Submodule Theorem
support

symmetric group
symmetric matrix

tableau

tabloid

tensor product
3—parts partition
transposition
trivial character
trivial module
two—parts partition

unique irreducible submodule

Young tablean
Young module

131
12

1, 57, 58, 82

8

2

106, 130, 168, 169, 206
1, 20

155, 156

150, 151, 152, 158, 162
72

74, 76, T7, 80

21, 71, 164

175

1, 13, 22, 151

131

15, 16, 18, 21, 24, 26, 27, 31
17, 19, 29, 30, 31, 151
25

08
84, 113, 116, 159

14

65, 163, 204

3, 38, 81, 90, 130, 135, 147, 150, 169

61, 62, 72, 76, 129, 167
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