
Dynamic and Self-stabilizing Distributed Matching

Subhendu Chattopadhyay, Lisa Higham, Karen Seyffarth

January 26, 2003

Abstract

Self-stabilization is a unified model of fault tolerance. A self-stabilizing system can recover from

an arbitrary transient fault without re-initialization. Self-stabilization is a particularly valuable at-

tribute of distributed systems since they are typically prone to various faults and dynamic changes.

In several distributed applications, pairing of processors connected in a network can be viewed

as a matching of the underlying graph of the network. A self-stabilizing matching algorithm can

be used to build fault tolerant paring of clients and servers connected in a network.

First contribution of this report is an efficient, dynamic and self-stabilizing maximal matching

algorithm for arbitrary anonymous networks. The algorithm implements a locally distinct label

generation technique that can be used by other applications. The second contribution of this report

is a dynamic and self-stabilizing maximum matching algorithm for arbitrary bipartite networks.

This is the first distributed maximum matching algorithm for networks containing cycles.

Chapter 1

Introduction

A distributed system is a collection of processes, connected by some interconnection mech-

anism, that communicate among themselves to solve a common problem. The processing units

can run in the same machine and communicate by interprocess communication such as message

queues or shared memory, or they can run in different computers and communicate by a network.

Distributed algorithms run on distributed systems to solve problems that are inherently distributed

in nature. They include problems of resource allocation, distributed consensus, symmetry break-

ing and deadlock prevention. Unlike parallel algorithms, generally distributed algorithms are not

meant to reduce the computing time of a sequential algorithm.

Often a distributed system is modelled as a graph where nodes represent processes and edges

represent the communication topology. When modelled this way, various distributed problems can

be viewed as graph theoretic problems in the underlying graph. For example, if a distributed system

consists of a network of clients and servers and we want to pair up clients with servers, the problem

can be viewed as a matching problem in the underlying graph of the network. This pairing would

be optimal if the matching is a maximum matching in the graph. For another example, a distributed

system may have costs associated with the communication channels and we may want to determine

the minimum cost broadcast route in that network. This problem can be viewed as finding the

minimum spanning tree in the underlying graph where each edge has weight proportional to the

cost of communication.

In a distributed system, each process can be modelled as a state machine and the state of a

process is the values of its variables. The collection of the states of all the processes determines

1

the system configuration. A nonempty subset of the set of configurations is defined as the initial

configurations. Another nonempty subset of the set of configurations is defined as the final or

legitimate configurations. The system starts in some initial configuration. Then, the processes

communicate with each other. Based on the information they receive, they change states and the

system enters a new configuration. Depending on the system, all processes may proceed with their

computation at the same speed, or at different speeds. After repeating this process for a bounded

amount of time, the system reaches some predetermined final configuration and remains in that

configuration thereafter. At this time, the output of the system is manifested by the states of the

processes.

A distributed system consists of many processes and communication channels. The probability

that one or more components may fail increases with the number of components. Therefore it is

desirable to design distributed systems that can withstand faults. For example, consider again a

distributed system that solves the maximum matching problem. After the system finds the maxi-

mum matching, the matching will be represented by the states of the individual processes. If the

state of a matched process becomes corrupted, then the system configuration may no longer be a

maximum matching.

Another problem with distributed systems is frequent changes in the network topology. In our

example of the distributed system consisting of clients and servers, the clients may exit the system

once they are serviced, or new servers can be added to the system. This changes the underlying

graph of the network and may render the matching between clients and servers invalid.

Once a fault or a topology change takes the system to an illegitimate configuration, one way to

fix this is to shut down the whole system, reinitialize it and then restart it. But this can be expensive

and in some cases it may even be infeasible. It would be more useful if algorithms are designed

that do not need initialization, meaning that no matter what configuration the system starts from,

after a finite amount of computation the system is guaranteed to reach a legitimate configuration.

This approach is called self-stabilization. In a self-stabilizing system, after the system reaches a

legitimate configuration, a transient fault may move the system to an illegitimate configuration.

But because of the self-stabilizing property, after a finite amount of computation the system again

reaches a final configuration, without requiring external intervention. If a self-stabilizing system

can also recover from a network topology change, it is called a dynamic system.

2

The first contribution of this report is a dynamic and self-stabilizing maximal matching algo-

rithm for arbitrary networks. The algorithm is efficient, works on a realistic model of computation

and the processes do not need identifiers. The algorithm works in two phases. In the first phase,

locally distinct labels are generated using randomization. These labels are used in the second phase

to determine a maximal matching. The combined algorithm has expected time complexity that is

logarithmic in the number of processes for most networks. The locally distinct labels can be used

for other applications.

The second contribution of this report is a dynamic and self-stabilizing maximum matching

algorithm for arbitrary bipartite networks. To the best of our knowledge, this is the first distributed

maximum matching algorithm for networks containing cycles. This algorithm also works in two

phases. In the first phase, the bipartite network is bipartitioned using a 2-coloring algorithm. This

partition information is then used in the second phase to find a maximum matching. The combined

algorithm has time complexity that is quadratic in the upper bound on the number of processes.

These algorithms can be used in a variety of applications. For example, in a distributed system

consisting of clients and servers, these algorithms can be used to pair up clients and servers opti-

mally. Since the algorithms are self-stabilizing, the system can recover from transient faults that

might corrupt the processes states. Furthermore, since the algorithms are dynamic, if the servers

are stateless, the system can automatically readjust to a maximal or a maximum matching once a

client is serviced and is removed from the system.

Outline of the report Chapter 2 contains necessary background and definitions. Related pre-

vious work is described in Chapter 3. Chapter 4 contains the maximal matching algorithm and

a randomized algorithm for distributing locally distinct labels. Chapter 5 contains the 2-coloring

algorithm and the maximum matching algorithm. Conclusions and future work are presented in

Chapter 6.

3

Chapter 2

Graph Theory and Distributed Systems

2.1 Graph Theory

2.1.1 Introduction

The following definitions and results can be found in most introductory graph theory texts (for

example [21]).

A graph G consists of a nonempty set V of nodes, a set E of edges, and an incidence relation

that associates each edge with two nodes. If x � y � V are two nodes in a graph, then an edge

incident between them is denoted as xy. If there is an edge xy between nodes x and y, then x and y

are adjacent nodes. If two edges are incident to the same node, then they are adjacent edges. An

edge with identical ends is a loop. If two or more edges are incident with the same pair of nodes,

then they are multiple edges. A graph is simple if it does not contain loops or multiple edges. In

this report we will consider only simple graphs. A graph is complete if there is an edge between

every pair of nodes.

A path in a graph is a sequence of nodes v1 ��������� vm, where vi
� V � 1 � i � m, vivi � 1

� E � 1 �
i � m and vi �	 v j � 1 � i � j � m. A cycle in a graph is a sequence of nodes v1 �������
� vm, where

vi
� V � 1 � i � m, viv � i � 1 � mod m

� E � 1 � i � m and vi �	 v j � 1 � i � j � m. The length of a path or

a cycle is the number of edges in it. A cycle is an odd cycle if it has an odd number of edges. The

distance between two nodes x � y � V in a graph, denoted d
 x � y � , is the length of the shortest path

4

between the nodes. For the sake of completeness, d
 x � x � is defined as 0. The diameter of a graph,

denoted D is,

D 	 max
�
d
 x � y ��� x � y � V � �

A graph is connected if there is a path between any two nodes in the graph.

The neighbourhood of a node x � V in a graph, denoted N
 x � , is the set of nodes adjacent to x.

Formally

N
 x � 	 �
y � V � xy � E � �

For any finite set S, the cardinality or the size of S, denoted as � S � , is the number of elements

in S. The degree of a node x, denoted δ
 x � , is δ
 x � 	 �N
 x ��� . The maximum degree of a graph,

denoted ∆, is

∆ 	 max
�
δ
 x ��� x � V � �

The neighbourhood within distance two of a node x � V in a graph, denoted N2
 x � , is

N2
 x � 	 �
y � V � 1 � d
 x � y � � 2 � �

The closed neighbourhood of a node x, denoted N � x � , is N
 x �	� �
x � .

A graph is bipartite if its node set can be partitioned into two sets U and V , such that every edge

is incident to one node from U and another node from V . Partitioning the node set of a bipartite

graph in this fashion is referred to as 2-coloring the bipartite graph. The following theorem gives

an important property of bipartite graphs.

Theorem 2.1.1 (König, 1936). A graph is bipartite if and only if it does not contain any odd cycle.

A connected graph is a tree, if it does not contain any cycle. Note that a tree with n nodes has

n
 1 edges. A node x in a tree is a leaf if � δ
 x ��� 	 1.

2.1.2 Matching

Let G be a graph with node set V and edge set E. A matching in G is a subset M of E in which no

pair of edges are adjacent. The matching M is maximal if no proper superset of M is a matching,

and is maximum if there in no matching in G with size strictly larger than the size of M. An

alternating path in G, with respect to M, is a path whose edges are alternately in M and in
 E
 M � .

5

An alternating path is an augmenting path if the first and the last nodes are not incident to any edge

in M. The following well known theorem by Berge gives not only an interesting property of

maximum matching but also leads to an algorithm to find one.

Theorem 2.1.2 (Berge, 1957). A matching M in a graph G is maximum if and only if there is no

augmenting path in G with respect to M.

Proof. Sufficiency: Let M be a matching and P be an augmenting path with respect to M. Create

M
�

from M, by excluding the matched edges in P, and including the unmatched edges of P and all

other edges of M that are not on P. Then M
�

is a matching. But the size of M
�

is one bigger than

that of M. Hence M is not a maximum matching.

Necessity: Let M be a matching that is not maximum. Let M
�

be a maximum matching. Consider

the subgraph G
�

of G consisting of its original node set and the edge set
 M �
 M � �
 M
 M
� � .

Since M is a matching, there are no adjacent edges in it. Similarly, there are no adjacent edges in

M
�

. Hence all nodes in G
�

have degree less than or equal to two. If a node has degree two, then it

is incident to one edge from M and another edge from M
�

. Hence all the connected components of

G
�

are either cycles of even length or paths. Any cycle in G
�

has an equal number of edges from M

and M
�

. But �M � � � �M � . Hence there exists a path in G
�

that has one more edge from M
�

than M.

This path must start and end with edges from M
�

and the first and the last nodes are not incident to

any edge of M. Hence this path is an augmenting path with respect to M.

If there is an augmenting path P in a graph with respect to a matching and a new matching

M
�

is created from M by excluding the matched edges of P from M and including the unmatched

edges, the size of the new matching M
�

is one bigger than that of M. This process is referred to as

augmenting an augmenting path. A simple algorithm to find a maximum matching is to start with

a null matching, then find an augmenting path, and augment along that path. This process can be

repeated until there are no more augmenting paths.

2.2 Models of Distributed Systems

A distributed system can be modelled in various ways. In this report the network in a distributed

system [14, 2] is modelled as a graph where the nodes of the graph represent the processes. If two

6

processes can directly communicate with each other, an edge is assumed between the correspond-

ing nodes in the graph. For the rest of this report, a graph means a network of processes and a node

means a process. A process is modelled as a state machine. The state of a process is the value

of its variables. A process changes state based on its current state and the state of one or more

of its neighbours (A process reads the states of its neighbours by communicating with them. The

communication process is discussed in subsection 2.2.3). The state transition function of a process

is defined by its algorithm. The collection of the states of the processes is the configuration of the

system. A nonempty subset of the system configurations is defined as the initial configurations.

Another nonempty subset of the system configurations is defined as the final configurations. Based

on the behavior of the processes and the way they communicate, distributed systems can be mod-

elled in various ways. In this report, only one such model is used. This model and some related

models and issues are described below.

2.2.1 Network topology

The network topology of a distributed system is described by the topology of the underlying graph.

The network topology can be fixed, for example a ring or a grid with a fixed number of processes.

But in most applications, the network is an arbitrary graph with an arbitrary number of processes.

The graph may have certain properties. For example, certain applications may assume the under-

lying graph is a tree, is bipartite or complete. The network topology of a system can be static or it

may dynamically change due to addition or deletion of nodes and communication channels. There

may also be restrictions on the number of nodes in the system. The nodes of the network may have

distinct identifiers. If the nodes of a distributed system do not have identifiers then the system is

anonymous. In many systems, one particular node may be distinguished by special characteristics

and act as a leader.

2.2.2 Algorithm type

Depending on its state transition function, a distributed algorithm can be deterministic or random-

ized. In a deterministic algorithm, the next state of a process is uniquely determined by its current

state and the states of its neighbours. A randomized algorithm gives a probability distribution

7

among a set of possible next states based on the current state of a process and its neighbours. A

randomized algorithm for a problem π is a Las Vegas algorithm if it solves π with probability one.

A randomized algorithm for a problem π is a Monte Carlo algorithm if it solves π with probability

p, where 0 � c � p � 1 and c is a constant. The randomized algorithm presented in this report is a

Las Vegas algorithm.

Randomization is often employed to break the symmetry in an anonymous system.

2.2.3 Communication

In a distributed system, processes can communicate either by passing messages via a communica-

tion channel or by using a shared memory.

In a message passing model, the channel can be unidirectional or bidirectional. A message

queue is assumed at the receiving end of the channel. The size of this queue can be bounded or

unbounded. The communication channel may deliver the messages in the order they were sent,

or the ordering may be arbitrary. A distributed system that communicate by passing messages is

referred to as a message passing network.

In a shared memory model, processes communicate by reading and writing to one or more

shared variables. If a shared variable is written by only one process and read by multiple pro-

cesses, the model is a single-writer multi-reader model. A shared variable can be shared by all the

processes or a subset of processes. In this report, all communications will be assumed to occur

by single-writer multi-reader shared variables. In this model, the shared variable is owned by one

process and that process can modify it, while a subset of other processes can read it. If process x

can read the shared variables of process y, then it is assumed that y can read the shared variables

of x and they are adjacent. This model is referred to as the locally shared memory model. In this

model, each process has an arbitrary ordering of its neighbours. For neighbour y of x, posx
 y �
denotes y’s position in x’s order. It is assumed that y knows its position in x’s order by some other

mechanism. For notational convenience, we will use y to mean posx
 y � , if there is no scope for

ambiguity.

Another variation of the shared memory model is the link-register model. In this model a pair

of processes can communicate by a shared register that is accessible by those two processes only.

8

This shared register is called a link-register. A link-register can be unidirectional, meaning that

only one process can write to it and the other can read; or it can be bidirectional, meaning that both

processes can read from it and write to it. In the case of the unidirectional model, a pair of registers

is normally associated with each communication edge, one for each direction of communication.

A message passing network can simulate a link-register system with some restrictions.

2.2.4 Timing model

Depending on the timing by which the processes execute their algorithms, a distributed system can

be synchronous or asynchronous.

In a synchronous message passing system, all processes send messages to all or a subset of

their neighbours, receive messages from their neighbours, and then update their states based on

the information received, in lock step. In a synchronous shared memory system, all processes

read the shared variables, perform local computation and update shared variables, in lock step. A

synchronous round is defined as one such step of computation by all processes.

In an asynchronous system, processes execute their algorithms at different speeds.

2.2.5 Refinements of the asynchronous locally shared memory model

In this report, we will use only the asynchronous locally shared memory model. This model and

the additional issues relevant to this model are described below.

Computation step A computation step by a process is the amount of computation it performs

in one atomic operation without being interrupted. A computation step consists of some com-

munication operation and local computation. The atomicity of an asynchronous shared memory

distributed system determines the granularity of a computation step. The atomicity of a system can

be read/write or composite.

In a read/write atomic system, a computation step of a process consists of a single read or write

to one of the shared variables, preceded or followed by some internal computation.

In a composite atomic system, in one computation step, a process can read all or any subset

of the shared variables, do internal computation, and then write to one or more shared variables.

9

During this entire process, none of the neighbours of the process takes any step. The composite

atomic model is not realistic. This model is used for the ease of designing algorithms. There

are compilers that transform a composite atomic algorithm to a read/write atomic algorithm under

some conditions.

A randomized algorithm can be coarse atomic or fine atomic. In a coarse atomic algorithm,

in one indivisible step, a process makes a random choice and performs the next communication

operation, without being interrupted. In a fine atomic algorithm, a process may pause its execution

after it makes the random choice but before it makes the communication operation based on that

random choice.

In an asynchronous system, processes execute their computation steps at arbitrary speeds. The

amount of time taken by a computation step is assumed to be finite but unbounded.

Execution of an asynchronous algorithm A process is enabled in a configuration c, if it can

make a state transition in c. In configuration c, let S be a subset of all enabled processes. A move

of a system is a three-tuple,
 c � S � c � � , such that if all processes in S make state transitions in c, the

system enters the new configuration c
�

.

If there are two adjacent processes in S and their computation steps involve access to the same

shared variable, it is assumed that the underlying hardware serializes these read and write opera-

tions in a total order (In other words, the shared variables are assumed to have sequential memory

consistency). A read from a shared variable returns the value of the most recent write to that

variable in the total order.

Starting from some initial configuration c0, a potential execution of a distributed algorithm is a

sequence (possibly infinite) of moves

 c0 � S0 � c1 � �
 c1 � S1 � c2 � �������
�
 ci � Si � ci � 1 � ��� ���

of the system.

An execution segment is a contiguous subsequence of an execution. Process x takes a compu-

tation step in an execution segment
 cl � Sl � cl � 1 � ���������
 cl � m � 1 � Sl � m � 1 � cl � m � � l �
0 � m �

1, if

x � l � m � 1�

i � l

Si �

10

The scheduler A schedule of an execution is an ordering of the moves of the execution. A sched-

uler is an objectification of the process that provides such a schedule. Informally, the scheduler

chooses the sets Si and determines the execution of the algorithm, starting from some initial con-

figuration. A scheduler is fair if, in an infinite execution, a process that is enabled infinitely often

is scheduled infinitely often. A scheduler is k-fair if it does not schedule a process more than k

times between two consecutive steps of any process that is enabled continuously. When k 	 1, the

scheduler is referred to as a round robin scheduler. An unfair scheduler does not have any fairness

restrictions.

In an asynchronous distributed system, processes may or may not take concurrent steps. Based

on this restriction, a scheduler can be central or distributed. A central scheduler schedules exactly

one process at a time to take a computation step. In the above definition of an execution, the

scheduler is central if � Si � 	 1 for all i
�

0. A distributed scheduler schedules any nonempty subset

of the enabled processes at any time to take a computation step simultaneously.

In an asynchronous system there can be an external entity, for example an operating system

on a single processor computer (central scheduler), that decides the order in which the processes

take steps. In some systems there is no external entity for deciding the schedule. Instead, the

processes independently take steps based on their machine speed; for example processes running

on computers connected on an intranet (distributed scheduler).

An asynchronous distributed algorithm must work for any scheduling obeying any predefined

fairness restriction. Therefore, designing and analyzing a distributed algorithm can be viewed as a

game between the algorithm designer and an adversary, the scheduler.

While the read/write atomic system is more realistic than the composite atomic system, design-

ing and analyzing algorithms for read/write atomic systems turns out to be more difficult and, in

some anonymous systems, impossible. In a read/write atomic system, in one computation step, a

process can access only one shared variable. Therefore, if the state transition requires the states of

more than one shared variables, the process must copy the shared variables to local variables and

make the state transition based on the local variables. At the time of making the state transition,

the actual values of the shared variables may have changed from their local copies. This makes

designing and analyzing algorithm for read/write atomic systems more difficult than composite

atomic systems.

11

2.2.6 Fault model

A distributed system is subject to a lot of uncertainties. In particular, the processes and commu-

nication channels are prone to faults. A process or a communication channel may permanently

fail by crashing. In the case of a transient fault, the faulty process or communication channel can

recover from the fault. A communication channel can be lossy, meaning that it may lose a subset

of the messages, or it may alter the ordering of the messages.

Fault tolerant distributed systems are built in such a way that they can withstand particular

type of faults. For example, wait free systems can tolerate permanent or transient crash failures.

In these systems, no matter how many processes or communication channels fail by crashing, the

non-faulty processes terminate correctly within a finite amount of computation.

A process or communication channel may undergo more severe Byzantine faults that may cor-

rupt its program. Hence, it may behave arbitrarily, even maliciously. There are algorithms that can

tolerate Byzantine faults of a sufficiently constrained subset of the processes.

In some applications, reliable delivery of messages is required even when processes and com-

munication channels fail. Fault tolerant point-to-point communication algorithms are available for

these applications, for example multi-path routing algorithms.

2.2.7 Self-stabilization

The fault tolerance methods used in most distributed computing literature are piecemeal approaches

to fault tolerance. A more useful approach would be a unified model of fault tolerance [16]. Recall

that a distributed system starts in some initial configuration in a set of pre-defined initial configura-

tions, and after a finite amount of computation, reaches a legitimate configuration. But a transient

or permanent fault may subsequently move the system back to an illegitimate configuration. To

re-converge to a legitimate configuration, the system must be brought back to some initial configu-

ration. If instead, distributed systems are built such that the set of initial configurations is the same

as the set of all configurations, then no matter what configuration the system starts from, after a fi-

nite amount of computation, the system will converge to a legitimate configuration. If a system has

this property, it can withstand any type of fault, except on-going Byzantine faults. This property

is referred to as self-stabilization. Since a fault can occur at any time, self-stabilizing algorithms

12

never terminate.

Let S be a distributed system and C be the set of all configurations of S. Let P be a predicate

defined over the configurations of C. Let L be the set of legitimate configurations for predicate P,

defined as

L 	 �
c � C �P
 c � � �

Then, the system S is self-stabilizing for predicate P [4], if it satisfies:

1. Closure: Once the system is in some configuration in L, all subsequent configurations are in

L in any fault-free execution, and

2. Convergence: When started in any configuration in C, after a finite amount of computation

the system reaches some configuration in L.

Self-stabilizing algorithms were first introduced by Dijkstra [3] in his well-known self-stabilizing

mutual exclusion algorithm. Dolev presents much of the previous work on self-stabilization is his

book [4] on the subject.

2.2.8 Proof techniques

The correctness proof for a self-stabilizing algorithm consists of the proof of the convergence and

the closure properties. In most applications, the closure property is easier to prove than conver-

gence. There are several techniques for proving convergence of self-stabilizing algorithms, for

example the progress and safety technique, and the variant function techniques.

The safety and progress technique provides a general approach for proving correctness of dis-

tributed algorithms. With this technique, it is asserted that after a bounded amount of computation,

the system always has certain properties, regarded as the safety properties. For example, in the

maximum matching algorithm, it is asserted that after the first round of computation, the size of

the matching never decreases. The progress property of the system ensures that within a bounded

amount of computation the system enters a configuration that is, in some way, closer to a legiti-

mate configuration. For example, in the maximum matching algorithm it is asserted that the size

of the matching increases within a bounded amount of computation, as long as the matching of

13

the system is not maximum. Together, the safety and progress properties ensure that the system

converges to a legitimate configuration within a bounded amount of computation.

The variant function technique is a formalization of the safety and progress technique. Let C be

the set of all configurations of a distributed system, and L be the set of legitimate configurations.

Let S be a totally ordered finite set with � S � �
2, and an element t, referred to as the threshold

element. The variant function f : C � S is a mapping, such that

f
 c � � t � if and only if c � L �

In this technique, to prove the safety property, it is shown that for any state transition by a process

changing the system configuration from c1 to c2, f
 c2 � �
f
 c1 � . For progress, it is shown that from

any illegitimate configuration, within a finite amount of computation, some process makes a state

transition that changes the system configuration from c1 to c2, such that f
 c2 � � f
 c1 � . Hence, in

any fault free-execution, after a finite amount of computation, the function value corresponding to

the system configuration exceeds the threshold value. At this point the system is in a legitimate

configuration and remains in a legitimate configuration. Finding such a variant function is typically

not trivial and requires a lot of intuition.

2.2.9 Fair composition

Fair composition is a technique introduced by S. Dolev et al.[5] to design and analyze self-

stabilizing solutions for complex problems.

To describe the concept of fair composition, generalize the definition of self-stabilizing systems

to stabilizing systems [1]. Let C be the set of configurations for the system S. Let P and Q be two

predicates defined over the configurations of S. Let LP be the set of legitimate configurations for

predicate P, defined as

LP
	 �

c � C �P
 c � � �

Let LQ be the set of legitimate configurations for predicate Q, given predicate P, defined as

LQ
	 �

c � LP �Q
 c � � �

Then algorithm AQ, for system S, is stabilizing for predicate Q, given predicate P if,

14

1. Closure: Once S is in a configuration in LQ, all subsequent configurations of S are in LQ, in

any fault free execution of AQ.

2. Convergence: Starting from any configuration in LP, S converges to a configuration in LQ

within a finite amount of computation, in any fault-free execution of AQ.

Let algorithm AP, for the system S, be self-stabilizing for predicate P. Also, assume that

algorithm AP does not use the variables of AQ, and algorithm AQ does not modify variables of AP.

Then it can be shown [4, pp. 22-24] that if an algorithm A is built by composing AP and AQ, in

which the processes of system S run the algorithms AP and AQ alternately (take one computation

step of each algorithm alternately), then the composed algorithm A is self-stabilizing for predicate

Q. The composed algorithm is called a fair composition of algorithms AP and AQ.

Our main algorithms are constructed by the fair-composition technique, which we assume with-

out proof.

2.2.10 Complexity measures

There are two kinds of complexity measures for distributed algorithms, time complexity and space

complexity.

Time complexity measures how long a distributed algorithm takes to solve a problem. For

deterministic algorithms, the average-case and the worst-case behavior of an algorithm are mea-

sured. In the case of randomized algorithms, the time complexity is the expected amount of time

taken to solve a problem. A self-stabilizing algorithm does not terminate even after it converges to

a legitimate configuration. Instead, a self-stabilizing algorithm iterates through its algorithm in a

do-forever loop. Hence, in the case of self-stabilizing algorithms, the most important parameter is

the amount of time taken by the algorithm to converge to a legitimate configuration. Therefore, the

time complexity of a self-stabilizing algorithm refers to the time taken by the algorithm to converge

to a legitimate configuration.

In an asynchronous distributed system, there is no notion of real time since no upper bound is

assumed for the time taken by a computation step. However, to evaluate and compare algorithms,

some notion of efficiency is necessary. One way of measuring efficiency of an algorithm is by

15

counting the number of asynchronous rounds it takes to converge to a legitimate configuration.

Recall that an execution E is a sequence of moves by the system. The asynchronous round 0 of

computation of an execution E is the empty execution prefix of E. The asynchronous round i
 �
1 �

of computation is defined inductively as follows. Let E 	 E
�

E
� �

, such that E
�

is the shortest prefix

of E containing the computation up to round i
 1. Then asynchronous round i of computation is

the shortest prefix of E
� �

containing at least one computation step by every enabled process. Note

that in any one round, some processes may take multiple computation steps. The round complexity

of an execution is the number of asynchronous rounds in it.

In the case of a composite atomic algorithm, one iteration of the algorithm consists of a single

computation step. In the case of a read/write atomic algorithm, one iteration of the algorithm may

consist of several computation steps. Generally, in one iteration of the algorithm, a process reads

the states of its neighbours, performs local computations and updates its own state. Hence one

iteration by a process may consist of as many as O(∆) reads and a constant number of writes, where

∆ is the maximum degree of the system. However, in some cases, it is much easier to count the

number of complete iterations made by a process. In these cases, the complexity of an algorithm

is measured in terms of asynchronous cycles. The asynchronous cycle 0 of computation of an

execution E is the empty execution prefix of E. The asynchronous cycle i
 �
1 � of computation is

defined inductively as follows. Let E 	 E
�

E
� �

, such that E
�

is the shortest prefix of E containing

the computation up to cycle i
 1. Then asynchronous cycle i of computation is the shortest prefix

of E
� �

containing at least one complete iteration by every process. The cycle complexity of an

execution is the number of asynchronous cycles in it.

For a composite atomic algorithm, the round complexity and cycle complexity are the same.

For read/write atomic algorithms, the round complexity is no bigger than O(∆) times the cycle

complexity. For networks where ∆ is a constant, both complexities agree asymptotically.

The round complexity of an algorithm gives an estimate of computation time when the sched-

uler schedules processes evenly. But in a round, some process may take multiple steps, while

another process takes just one step. Therefore, when the scheduler schedules some set processes

more often than other processes, the round complexity does not reflect the actual computation time.

In this case the computation time is better estimated by measuring the step complexity. The step

complexity of an execution is the total number of state transitions made by all processes in that

16

execution.

For a deterministic algorithm, the worst-case complexity of the algorithm is the maximum

number of rounds, cycles or state transitions taken by the algorithm to converge to a legitimate

configuration over all possible executions, starting from any initial configuration. Defining the ex-

pected round complexity of a randomized algorithm is a little difficult, since the number of rounds

taken by the algorithm to converge to a legitimate configuration depends both on the scheduling

and the random choices. Starting from some initial configuration, given a sequence of random

choices, there is a worst case execution taking the maximum number of rounds before the system

converges to a legitimate configuration. The expected round complexity of the algorithm from

that initial configuration is the weighted average of the number of rounds taken by the worst case

execution over all possible sequences of random choices. The expected round complexity of the

algorithm from any initial configuration is the maximum of the expected round complexity over all

possible initial configurations. The expected cycle complexity of an algorithm is defined similarly.

The complexity of an algorithm is specified as a function of the parameters of the network, such as

the number of processes, the number of edges and the diameter of the network.

The space complexity of a shared memory algorithm measures the total number of memory bits

(local and shared) used by all processes.

17

Chapter 3

Related Work

Finding a maximal or a maximum matching is a well studied problem in graph theory, for which

several efficient centralized algorithms [6, 11] exist for general and constrained families of graphs.

Much less work has been done to solve either of these problems in a distributed environment. The

few distributed algorithms for matching that we are aware of are self-stabilizing.

3.1 Previous Maximal Matching Algorithms

Hsu and Huang [12] present a self-stabilizing distributed algorithm for finding a maximal match-

ing in a general network. The model of computation is locally shared memory under composite

atomicity and a centralized scheduler. Each process has a shared variable, referred to as a pointer.

The pointer may be null or may point to a neighbouring process. If two neighbouring processes

point at each other, the processes are matched along that edge. The algorithm works in anonymous

networks, although it implicitly assumes some kind of labelling that allows a process to determine

where its neighbours are pointing. It does not require any knowledge of the network size. They

use an elegant variant function technique to prove convergence in O
 n3 � state transitions, where

n is the number of nodes in the system. However the upper bound is not tight. Tel [20] uses a

slightly different variant function to prove the upper bound to be O
 n2 � . Hedetniemi, Jacobs and

Srimani [9] use a different proof technique, which counts the number of possible moves along any

edge, to prove the bound to be Θ
 2m
�

n � , where m is the number of edges in the system.

The algorithm by Hsu and Huang does not work under a distributed scheduler. In fact an easy

18

symmetry breaking argument shows that it is impossible to solve the problem deterministically in

an anonymous general graph under a distributed scheduler. Gradinariu and Johnen [7] overcome

this problem by randomization. They first present an algorithm to assign locally distinct labels

within distance two using randomization. The model of computation of this algorithm is locally

shared memory under composite atomicity and a distributed scheduler. They then use this to ex-

tend the Hsu-Huang maximal matching algorithm to work under a distributed scheduler assuming

locally distinct labels within distance two. The model of computation of this algorithm is also

locally shared memory under composite atomicity and a distributed scheduler. A fair composition

of these two algorithms solves the maximal matching problem in an anonymous general network.

The open problem remaining after this work is to solve maximal matching in an arbitrary

anonymous network under read/write atomicity.

3.2 Previous Maximum Matching Algorithms

Karaata and Saleh [13] present a self-stabilizing distributed algorithm for finding a maximum

matching in a tree. The algorithm works in two phases. In the first phase, the undirected tree

is converted to one or two directed trees rooted at one or two distinguished processes, referred

to as centers. The second phase uses a greedy approach. First, each leaf node is matched with

its neighbour and the matched nodes become disabled. Therefore, the matched nodes and the

incident leaf nodes can be assumed to be removed from the system, resulting a smaller system.

This process is repeated until there are no more edges. It can be shown that at this time, there are

no more augmenting paths. Hence the system converges to a maximum matching. The correctness

proof of the algorithm assumes composite atomicity and a centralized scheduler, but identifiers are

not needed. The algorithm uses O
 n4 � state changes in the worst case.

3.3 Previous 2-coloring Algorithms

The maximum matching algorithm presented in this report works in a bipartite graph under the

assumption that the processes know their bipartition. A self-stabilizing 2-coloring algorithm can

be used by the processes to find their bipartition. Then a fair composition of these two algorithms

19

may be used to solve the maximum matching problem in an arbitrary bipartite graph.

Sur and Srimani [19] present a self-stabilizing distributed algorithm for 2-coloring a bipartite

graph. This algorithm needs a distinguished process (a leader). First, processes determine their

distance from the leader in a breadth first manner. Processes at an even distance from the leader

colour themselves black and processes at an odd distance from the leader colour themselves white.

The proof of correctness assumes a central scheduler and composite atomicity. However, it can

be easily shown that the algorithm is correct even under a distributed scheduler and read/write

atomicity. The correctness proof shows that the algorithm converges to a 2-coloring within a finite

amount of computation, but does not provide any upper bound on the amount of computation.

Shukla, Rosenkrantz and Ravi [17, 18] prove that there is no deterministic self-stabilizing

algorithm for 2-coloring general anonymous bipartite graphs under a distributed scheduler. The

impossibility result follows directly from a simple symmetry breaking argument. They then present

self-stabilizing 2-coloring algorithms for restricted classes of graphs: paths of odd and even length,

oriented rings, and complete bipartite graphs of odd degree. The papers are extended abstracts that

do not provide detailed proofs of correctness or complexity analysis. However, in all cases, the

correctness proof and analysis are simple and straightforward.

20

Chapter 4

Maximal Matching

4.1 Introduction

Our goal is to find a self-stabilizing algorithm that solves the maximal matching problem in a

general anonymous network, under read/write atomicity and a distributed scheduler. The following

lemma shows that this cannot be done deterministically. The proof employs an easy symmetry

breaking argument, widely used in distributed computing literature.

Lemma 4.1.1. Deterministic distributed maximal matching under read/write atomicity is impossi-

ble in an arbitrary anonymous network.

Proof. Consider a triangular network: three processes, every pair connected. Any configuration in

this system, satisfying a predicate for maximal matching, must have two of the processes matched

and the third process unmatched. Hence, in any legitimate configuration in this system satisfying

a predicate for maximal matching, the processes’ states cannot be symmetric. If all the processes

start as unmatched, some processes must write to one or more of their variables. Suppose the

scheduler runs the processes one at a time, stopping each just before it writes to one of its vari-

ables. Then it lets each process write. Because the processes start with identical states and their

neighborhoods are identical, each process writes the same value. Hence after this write operation,

all the processes are again in identical states. The scheduler can keep doing this forever and keep

the states of all processes identical after each such cycle. Hence the symmetry is never broken.

21

Note that a similar argument can be applied to a message passing system. Further note that a

self-stabilizing system can start in the same configuration as an ordinary distributed system, so the

same argument can be applied, implying that there is no self-stabilizing algorithm for distributed

maximal matching under read/write atomicity in an arbitrary anonymous network.

This impossibility can be circumvented with randomization. We first present a randomized

algorithm that assigns locally distinct labels within distance two [8] 1. We then present an algorithm

that uses these labels to solve the maximal matching problem. A fair composition of these two

algorithms solves the maximal matching problem in anonymous general networks under read/write

atomicity and a distributed scheduler.

4.2 Randomly Generating Locally Distinct Labels

A network has locally distinct labels within distance two if any two different processes x and y,

that are within distance two, have different labels.

4.2.1 Model

The model of computation is a general anonymous network with locally shared memory and a

distributed scheduler under read/write and fine atomicity.

4.2.2 Data structures

In the following descriptions, a process’s name is used for notational purposes only. Each process

x maintains a shared label called lid and a shared variable δx, which are positive integers. Process

x has a shared array Hx of sets of labels, where each set is indexed by posx
 y � for each process y in

N
 x � . Since there is no scope of ambiguity, posx
 y � is denoted as y in the following sections. Let

N
 x � 	 �
y1 ����� ��� ym � . Then

Hx � yi � 	
�
x � lid � y1 � lid �������
� yi � 1 � lid � yi � 1 � lid ������� � ym � lid �

1This paper provides interesting results about the number of labels necessary for locally distinct labelling of a

graph within distance two, for a variety of different types of graphs.

22

When process yi reads Hx it only reads Hx � yi � .
Process x has local variables ∆x holding a positive integer, A holding a set of labels, and M

holding a multiset of labels. Let mult
 S � x � denote the multiplicity of x in multiset S. Multisets

S
�

x and S
 x are identical to S except for the multiplicity of x. The multiplicity of x in S
�

x is

mult
 S � x � �
1, and the multiplicity of x in S
 x is max

�
0 � mult
 S � x �
 1 � .

When a multiset S is assigned to a set T , the operation reduces the multiplicity of all elements

of S to one and the operation is denoted by T � S.

4.2.3 Informal description of the algorithm

Process x uses the shared variable δx to inform its neighbours about the size of its neighbourhood.

A process determines the maximum neighbourhood size in its closed neighbourhood from the

shared δ variables and stores that in the local variable ∆x. Then it uses this value to determine the

range of the labels, which is � 1 � f
 ∆x � � . The function f will be defined later.

Each process collects the lid’s of the processes in its closed neighbourhood in the multiset M.

Then it builds each set of the array Hx for each of its neighbours after removing that neighbour’s

lid from the multiset M. The purpose of these sets is to inform a process about the lid’s of the

processes within a distance two.

Process x collects, for each y � N
 x � , the set Hy � x � , and stores the values in the set A. It then

checks if its own lid appears in A. If it does, the process randomly chooses a new label.

23

4.2.4 Algorithm for process x

���������	��
��
�
δx

� �N
 x ���
A � /0

M � /0

∆x
� δx

�������	���
y � N
 x �
A � A � Hy � x �
M � P

�
y � lid

∆x
� max

�
∆x � δy �

� �
(�
� ���	����� �
� � � z � A

����� ���
� � � z 	 x � lid) �
� ���
randomly choose x � lid uniformly from 1 to f
 ∆x � that is not in A

P � M
�

x � lid
�������	� �

y � N
 x �
Hx � y � � M
 y � lid

Figure 4.1: ! ��"����$#	�������	� � � �%�&�	��#���� � �
��'

4.2.5 Analysis and correctness

For process x, define

L
 x � 	 �

y (N2
� x �
�
y � lid � �

y (N � x �
Hy � x �

�
A �

The set L
 x � contains: (i) the actual labels of all neighbours of x within distance two; (ii) the labels

in the set for x in the array of each neighbour of x; (iii) the labels in x’s local set A. Define x to be

secure if x � lid)� L
 x � ; otherwise x is insecure.

For any configuration c, define predicate P
 c � to be: all processes are secure in c. Note that in

any configuration satisfying P, processes have locally distinct labels within distance two. We will

prove that the ! ��"����+* �������	� � � �%�-,���#���� � �
��' is self-stabilizing for predicate P.

24

Observation 4.2.1. After the first cycle, the shared variable δx of process x always holds the size of

its neighbourhood. Starting from the second cycle, in every cycle, process x correctly determines

the maximum degree in its closed neighbourhood and stores it in ∆x. For the rest of the proof, ∆x

represents the maximum degree in x’s closed neighbourhood. Hence δx � ∆x.

Note that the size of L
 x � is less than 3∆2
x .

Claim 4.2.2. If an insecure process x chooses a label and is still insecure, it causes at most δx

secure processes to become insecure. This happens with probability less than 3∆2
x

f � ∆x � .

Proof. Let N
 x � 	 �
y1 ������� � ym � for some process x. Then N2
 x � ��� m

i � 1 N � yi � . If zi
� N � yi � is a

secure process, then there cannot be another process u � N � yi � with u � lid 	 zi � lid. Hence there

can be at most m secure processes z1
� N � y1 � ������� � zm

� N � ym � in N2
 x � such that zi � lid 	 z j � lid for

1 � i � j � m. If process x is insecure and choses the label z1 � lid, then it remains insecure and

makes processes
�
z1 �������
� zm � insecure. Since process x has at most δx neighbours, it can make at

most δx secure processes insecure by one choice.

There are less than 3∆2
x elements in the set L
 x � for process x. A process x chooses a new label

uniformly from the range � 1 � f
 ∆x � � . Hence the probability that process x chooses a label in L
 x �
and stays insecure is less than 3∆2

x
f � ∆x � .

Claim 4.2.3. An insecure process cannot remain insecure continuously for more than two cycles

without choosing a new label.

Proof. If process x is insecure because x � lid � A, then process x either updates A and becomes

secure or chooses a new label in the current cycle. If it is insecure because x � lid � Hy � x � for some

process y � N
 x � , then either y updates Hy � x � and x becomes secure or x � lid appears in set A in

the next cycle and x chooses a new label in the same cycle. If it is insecure because x � lid 	 y � lid
for some process y � N2
 x � , then either x becomes secure because y chooses a new label different

from x � lid, or x � lid appears in Hz � x � for some z � N
 x � and subsequently, either x becomes secure

or chooses a new label within two cycles.

Theorem 4.2.4. If f
 ∆ � �
6∆2
 ∆ �

1 � , then starting from an arbitrary configuration the system

converges to a legitimate configuration within an expected 2log2 n
�

5 cycles, where n is the number

of processes in the system.

25

Proof. The proof is motivated by the standard randomized attrition technique [10].

Define a super-cycle as two consecutive cycles of computation. Define a random variable Xi as

the number of insecure processes in the system at the start of super-cycle i
�

1. If at the beginning

of super-cycle i
�

1 there are l insecure processes, say processes 1 ����� ��� l, in the system, then by

Claim 4.2.3, each one of these process either becomes secure or chooses a new label within one

super-cycle. When an insecure process j � 1 � j � l chooses, it stays insecure with probability less

than
3∆2

j

f � ∆ j � . Hence the expected number of processes among those l insecure processes that can stay

insecure is less than
l

∑
i � 1

3∆2
j

f
 ∆ j �
�

Since each process j � 1 � j � l can make at most ∆ j secure processes insecure (Claim 4.2.2),

E
 Xi � 1 �Xi
	 l � �

l

∑
j � 1

3∆2
j

f
 ∆ j �
�

l

∑
i � 1

∆ j
3∆2

j

f
 ∆ j �

�
l

∑
j � 1

3∆2
j
 ∆ j

�
1 �

f
 ∆ j �

�
l

∑
j � 1

3∆2
j
 ∆ j

�
1 �

6∆2
j
 ∆ j

�
1 �

Since f
 ∆ � �
6∆2
 ∆ �

1 �
	 l

∑
j � 1

1) 2

	 l) 2

E
 Xi � 1 � 	 ∑
l

�
0

E
 Xi � 1 �Xi
	 l � Pr � Xi

	 l �

� ∑
l

�
0

l
2

Pr � Xi
	 l �

	 1
2

E
 Xi �

Thus if the system starts with m

� n � insecure processes, then after log2 m super-cycles, the

expected number of insecure processes is reduced to at most one. Let E
 i � j � � 0 � j � i � n, denote

the expected number of cycles for the number of insecure processes to go down from i to at most

j. Then E
 m � 1 � 	 log2 m, and if there is only one insecure process, say x,

26

E
 1 � 0 � � 1 � � 1
 3∆2
x

6∆2
x
 ∆x

�
1 ��� � 3∆2

x

6∆2
x
 ∆x

�
1 � E
 ∆x � 0 �

E
 1 � 0 � �
�

1
 1
2∆x

�
2 � � 1

2∆x
�

2

 E
 ∆x � 1 � �

E
 1 � 0 ���

E
 1 � 0 � �
�

1
 1
2∆x

�
2 � � 1

2∆x
�

2

 log2 ∆x

�
E
 1 � 0 ���

 2∆x
�

1 � E
 1 � 0 � � 2∆x
�

1
�

log2 ∆x

E
 1 � 0 � � 1
� log2 ∆x

2∆x
�

1
� 2 �

Thus, if there is only one insecure process, then within an expected two super-cycles all pro-

cesses become secure. Hence the system converges to a legitimate configuration within an expected

2log2 n
�

5 cycles.

Theorem 4.2.5. If f
 ∆ � �
6∆2
 ∆ �

1 � , then the expected number of random choices by all pro-

cesses until the system converges to a legitimate configuration is at most 2n.

Proof. Initially the system may start with some insecure processes. By Claim 4.2.3, an insecure

process, say x, either becomes secure or makes a random choice. If it makes a random choice, it

either becomes secure or stays insecure and makes at most ∆x additional secure processes insecure.

The probability px that x becomes secure is greater than 1
 3∆2
x

f � ∆x �
�

1
 3∆2
x

6∆2
x
� ∆x � 1 � . Probability qx

that x stays insecure is less than 3∆2
x

f � ∆x � � 3∆2
x

6∆2
x
� ∆x � 1 � . We want an upper bound on the expected

number of random choices before all processes become secure. This expectation is maximized by

assuming that initially all processes are insecure, and when a process makes a random choice and

stays insecure, it makes any ∆x secures processes insecure.

Let E
 Xi � denote the expected number of secure processes before the i’th random choice.

E
 Xi � 1 �Xi
	 l � �
 l �

1 � px
�
 l
 ∆x � qx

	
 px
�

qx � l �
px
 qx∆x

�
l

�
1
 1

2
 ∆x
�

1 �

∆x

2
 ∆x
�

1 �
	 l

�
1) 2

27

This expectation is independent of l and x. Hence, starting from any initial condition, within

expected 2n random choices, all processes become secure.

Convergence: Both Theorem 4.2.5 and Theorem 4.2.4 establishes that, starting from an arbi-

trary configuration, the system converges to a legitimate configuration within a finite amount of

computation.

Closure: Note that if all processes are secure, the condition for the choice operation is false for

all processes, and no process chooses a new label. Hence once the system reaches a legitimate

configuration, processes’ labels do not change and all processes remain secure in any subsequent

configuration.

Complexity: Theorem 4.2.4 establishes that the expected number of cycles before the system

converges to a legitimate configuration is at most 2 log2 n
�

5.

For determining the step complexity of the algorithm, note that shared variable H is an array

of the shared variables lid. The change in the variable lid by a process can cause state change of

all its neighbours due the changes in their H variables. A process can have at most ∆ neighbours.

Hence, the total number of state transitions by all processes of the system is in the order of ∆ times

the total number of changes to the shared variables lid. By Theorem 4.2.5, the expected number of

changes to the shared variables’ lid is less than 2n. Hence, the step complexity of the algorithm is

in O(n∆).

4.3 Maximal Matching

This section presents a stabilizing algorithm for finding a maximal matching in an arbitrary net-

work, given locally distinct labels within distance two.

4.3.1 Model

The network is a general graph. The model of computation is locally shared memory under

read/write atomicity with a distributed scheduler. Processes do not need any global information

28

about the network topology. The network has locally distinct labels within distance two. Labels

are chosen from the set of positive integers � 1 � R � , and are stored in the shared variables lid.

4.3.2 Informal description of the algorithm

The algorithm implements, in a distributed manner, the following graph theoretic scheme for find-

ing a maximal matching.

Suppose that the nodes of a graph have locally distinct labels within distance two, and that the

labels are chosen from a totally ordered set. Then the graph has local minima within distance 2

(defined below). Match a local minimum within distance 2 with its neighbour holding the smallest

label. Remove the matched nodes and incident edges. The resulting graph has the same property

as the original graph. Hence this process can be repeated until there are no more edges. At this

point, the set of matched edges is a maximal matching.

4.3.3 Algorithm for process x

Process x has a shared variable called pref (short form for preference) that takes its value from the

set of non-negative intergers � 0 � R � . It also has a local variable Sx, which is a set of labels.

���+�����	��
����
Sx

� /0
����� �	���

y � N
 x �
� �

y � pref 	 0
���

y � pref
�

x � lid
Sx

� Sx �
�
y � lid �

� �
Sx

	 /0

x � pref � 0
�	� � �

x � pref � min
�
Sx �

Figure 4.2:
����� � ' �	� ' � � � � � �	# �	��#���� � �
��'

29

4.3.4 Analysis and correctness

A process x is a local minimum within distance 2 if x � lid � y � lid for all y � N2
 x � .
To prove the stabilizing property of this algorithm, instead of giving a predicate for legitimate

configurations, we explicitly define the set of legitimate configurations. The set contains only one

configuration, described below.

Let x be a local minimum within distance 2 and y � N
 x � the neighbour of x holding the min-

imum label among all processes in N
 x � . Set x � pref 	 y � lid and y � pref 	 x � lid. Remove processes

x and y and the edges incident to them from the system. Repeat the above process until there are

no more edges. Set the preference variables of the remaining processes (if any) to 0. The resulting

configuration is the only legitimate configuration of the system, denoted cM. Note that configu-

ration cM is unique, given a network with locally distinct labels within distance 2. We will prove

that, given locally distinct labels within distance two, the algorithm stabilizes to cM.

Let M 	 �
xy � x � pref 	 y � lid and y � pref 	 x � lid � .

Lemma 4.3.1. The set M is a matching.

Proof. A process can have at most one non-zero preference at a time. Hence there can never be

two adjacent edges in M, and so M is a matching.

If for processes x and y, xy � M, then x and y are matched with each other.

Note that in cM, M is a maximal matching.

Theorem 4.3.2. Starting from an arbitrary configuration, the system converges to cM within 2r
�

2

cycles, where r 	 min
�
R � n) 2 � , and n is the number of processes in the system.

Proof. After one cycle, x � pref 	 0 or x � pref � N
 x � for each process x. Suppose x is a local

minimum within distance 2, and let y be the process with minimum label in N
 x � . Since x is a

local minimum within distance 2, x � lid � z � lid for all z � N � y �
 �
x � . Because y � lid � u � lid for

all u � N
 x �
 �
y � , x � pref 	 y � lid after the second cycle and this never changes. Furthermore,

y � pref 	 x � lid after the second cycle (since x is a local minimum within distance 2) and this never

changes. After the second cycle, let z � N
 x �
 �
y � . Then z � lid � y � lid 	 x � pref, so x � lid �� Sz, and

z � pref is never set to x � lid. Similarly if u � N
 y �
 �
x � , then u � lid � x � lid 	 y � pref, so y � lid �� Su,

and u � pref is never set to y � lid.

30

Therefore, after the first two cycles, a local minimum within distance 2, x, is matched with its

neighbour with minimum label, y, and these matches never change. Also, no neighbour of x, other

than y ever tries to prefer x. Similarly, no neighbour of y, other than x ever tries to prefer y. The

algorithm now proceeds as if the local minima within distance 2 and their neighbours holding the

minimum label along with the edges incident upon them have been removed from the system. In

the resulting system, the labels of the processes are in the set � 2 � R � and the number of remaining

processes is at most n
 2. A similar argument can be applied to show that any process with label 2

is either isolated after the third cycle, or gets matched and is removed from the system after cycle

5 and the number of remaining processes is at most n
 4. If R � n) 2, it follows by induction on R

that after 2R
�

1 cycles, any process is either matched and removed from the system, or is isolated.

If n) 2 � R, it follows by induction on n that after n
�

1 cycles, any process is either matched and

removed from the system, or is isolated. After that, the preference variable of each isolated process

is set to 0 in one cycle. Hence the system converges to cM within 2r
�

2 cycles.

The closure property can be established by noting that in cM, no process can change its prefer-

ence.

4.3.5 A worst case execution

Let the network be a path of processes labelled 1 �������
� n, where the process labelled i is adjacent

to the process labelled i
�

1 for 1 � i � n
 1. Let all processes, except the process labelled 2,

start with preference value zero. The process labelled 2, starts with preference value 3. Then the

following schedule takes n) 2 cycles to stabilize to a maximal matching. In this schedule, when

the scheduler schedules a process, it performs a complete iteration of its algorithm. For example,

when process labelled n is scheduled for the first time, it reads the states of all its neighbours (there

is only one) performs local computation and then sets the pref variable to n
 1. The scheduler

then schedules the process labelled n
 1.

Run one: n � n
 1 ���
����� 4 � 3 � 1
At this point the preference of process labelled i is set to i
 1 for 3 � i � n. Preference value

of the process labelled j is set to j
�

1 for 1 � j � 2.

Run two: n � n
 1 ����� ��� 5 � 4 � 2

31

This is the end of the first cycle and processes labelled 1 and 2 are matched with each other and

are no longer enabled. The system can now be assumed to be comprised of only processes labelled

n � n
 1 ��� ����� 4 � 3.

Run three: n � n
 1 ��� ����� 5 � 3
At this point the preference of process labelled i is set to i
 1 for 5 � i � n. Preference value

of the process labelled j is set to j
�

1 for 3 � j � 4. The reduced system is now in a similar

configuration as the original system after run one. This can be repeated n) 2 times to give an n) 2

cycle execution.

4.4 Fair Composition

The ! ��"��	� * �����
�	� � � � �-,���#���� � �
�
' is self-stabilizing, and in any legitimate configuration, the

system has locally distinct labels within distance two. The
����� � ' ��� ��� � � � � �	#�,���#���� � �
�
' stabi-

lizes to a maximal matching given locally distinct labels within distance two. The ! ��"��	� * �������	� � � �%�
,���#���� � �
��' does not use the variables of the

����� � ' �	� ��� � � � � �	#�,���#���� � �
��' , and the
����� � ' �	�

��� � � � � �	#�,���#���� � ���
' reads the variables of the ! ��"��	� * ��������� � � �%� ,���#���� � ���
' , but does not

modify them. Hence a fair composition of these two algorithms is self-stabilizing for maximal

matching in an anonymous general network under a distributed scheduler and read/write atomic-

ity.

Complexity of the composed algorithm: The locally distinct labels are chosen from the set of

positive integers � 1 � 6∆2
 ∆ �
1 � � . In networks where ∆ is a constant, by Theorem 4.3.2, the maximal

matching algorithm stabilizes within a constant number of cycles. However, the label generation

algorithm itself takes O(logn) expected number of cycles. Thus, the composed algorithm has

O
 logn � expected cycle complexity. For graphs with ∆ � O
 n � , the following example shows that

the composed algorithm takes O(n) cycles to stabilize.

Consider a network that consists of a path of processes labelled 2 �������
� n, where the process

labelled i is adjacent to the process labelled i
�

1 for 2 � i � n
 1, and another process labelled 1,

which is adjacent to all other processes. The system starts as if the label generation algorithm has

stabilized to the above labelling, and processes labelled 1 and 2 are matched with each other. Let

32

all other processes start with preference value zero. Then the execution shown in Subsection 4.3.5

takes O(n) cycles for the maximal matching algorithm to stabilize.

The worst-case example shown above is possible in a self-stabilizing system, but is not likely.

Generally, the system starts in a configuration where most of the processes do not have any label

and labels are distributed by the ! ��"��	� #	��������� � � �%� �	��#���� � ���
' . In this case, the probability of

a long chain of processes having increasing labels without an intervening local minimum is low.

33

Chapter 5

Maximum Matching

This chapter presents a self-stabilizing algorithm for finding a maximum matching in a bipar-

tite graph. First we present self-stabilizing algorithm for 2-colouring a bipartite network, where

the processes have distinct identifiers. Then we present a self-stabilizing maximum matching al-

gorithm in an anonymous bipartite network, where each process knows its bipartition. A fair

composition of these two algorithms solves the bipartite maximum matching problem.

5.1 A 2-colouring Algorithm

The algorithm presented in this section is motivated by the well known leader election algorithm

[4, pp. 34-36].

5.1.1 Model

The model of computation is locally shared memory, under read/write atomicity and a distributed

scheduler. All processes have distinct id’s. Every process has an upper bound N for the number of

processes in the system. The network is an arbitrary bipartite graph.

5.1.2 Informal description of the algorithm

The basic idea is to propagate the colour and id of the process with minimum id. To do so, every

process maintains, along with its colour, an origin field containing the id of the source of the

34

colour (i.e. the id of the process that was used to choose a colour). Because this is a self-stabilizing

algorithm, the system may start in a configuration with spurious origins. One way to get rid of

these is to introduce a distance field, that keeps track of the distance of a process from its origin.

When the process with minimum id sets its colour to U and sets its origin to itself, it also sets

its distance to 0. When a process gets its colour by complementing the color of its neighbour, it

increases the distance by one. This means that the distance of a spurious origin keeps increasing

as it gets copied until it reaches N. Eventually all the spurious origins are removed and the system

converges to a 2-colouring within D
�

1 cycles, where D is the diameter of the graph.

5.1.3 Definitions and data structures

The state of a process is a 4-tuple (id, colour, origin, distance); id is the read-only identifier of a

process and can be any positive integer; colour is either U or V ; orig (short form of origin) of a

process is null (denoted 0), or an id of a process; dist (short form of distance) is the distance of the

process from the origin and can be any non-negative integer less than N.

Since the objective is to 2-colour, the complements of colours U and V are denoted as U 	 V

and V 	 U respectively.

For process x, let C
 x � 	 �
y � N
 x � � y � orig �	 0 and y � orig � x � id and y � dist � N
 2 � . Note

that to construct C
 x � , process x needs to read the states of all its neighbours. Define the minimum

origin of x, denoted m
 x � , as

m
 x � 	
���� y if y � C
 x � and � z � C
 x � �
 y � orig � y � id ���
 z � orig � z � id �

0 if C
 x � 	 /0

(with � denoting lexicographic order).

35

5.1.4 Algorithm for process x

���������	��
��
�
� �%� � � � ��� � C
 x �
� �%� � � � ��� � m
 x �
� �

(m
 x � 	 0)

x � colour � U

x � orig � x � id
x � dist � 0

��� � �
x � colour � m
 x � � colour

x � orig � m
 x � � orig

x � dist � m
 x � � dist
�

1

Figure 5.1:
����� ����� � � � �	# ,���#���� � �
�
'

5.1.5 Analysis and correctness:

Let π be the process with the minimum identifier. The predicate P is defined over the configurations

of the system as follows. For any configuration c, P
 c � is true if and only if for any process x,

x � dist 	 d
 π � x � , x � colour 	 U if d
 π � x � is even, x � colour 	 V if d
 π � x � is odd, and x � origin 	
π � id. Note that there is only one configuration satisfying P and in that configuration, the network

is properly 2-coloured. We will prove that the
����� ����� � � � �	# ,���#���� � ���
' is self-stabilizing for

predicate P.

An origin of a process x is real if x � orig 	 0 or there exists a process y, such that x � orig 	 y � id.

If the origin of a process is not real, then it is spurious.

Lemma 5.1.1. After N cycles, there is no spurious origin in the system.

Proof. Note that in every cycle, a process sets all of its variables. The proof proceeds by induction

on the value of the distance field.

36

Whenever a process x sets its distance field to 0, it sets x � orig 	 x � id. Hence after the first cycle,

the origin of every process x, with x � dist 	 0, is real.

Assume that after l
�

1 cycles, there is no spurious origin with distance less than l. During

cycle
 l �
1 � , if process x sets x � dist 	 k � l, then m
 x � � dist � l
 1. By the induction hypothesis

m
 x � � orig is real. Hence after cycle
 l �
1 � , there is no spurious origin with distance less than

(l
�

1). Since no process copies an origin with distance more than N
 2, the result follows.

Lemma 5.1.2. If there there is no process with a spurious origin, then the system converges to the

legitimate configuration within D
�

1 cycles.

Proof. Suppose that the system has no spurious origin and let π be the process with the minimum

id in the system. After the first cycle, m
 π � is always 0. Hence π � color 	 U , π � dist 	 0 and

π � orig 	 π � id, and this never changes.

A process x is properly coloured with respect to process π if x � dist 	 d
 π � x � � x � orig 	 π � id and

x � colour 	
�� � U if d
 π � x � is even

V if d
 π � x � is odd

Let x be a process with d
 π � x � 	 k
�

1. A straightforward induction on k ensures that x is properly

colored with respect to π after k
�

1 cycles, and the result follows.

Theorem 5.1.3. Starting from an illegitimate colouring, the system converges to the legitimate

configuration within N
�

D
�

1 cycles.

Proof. The proof follows immediately from Lemma 5.1.1 and 5.1.2.

The above theorem proves the convergence property of the
����� ����� � � � �	# ,���#���� � �
�
' . The

closure property is established from the fact that no process can change the value of its variables,

once the system converges to the legitimate configuration.

5.2 Maximum Matching

5.2.1 Model

The model of computation is an anonymous network with locally shared memory, under composite

atomicity and a centralized scheduler. The network is a bipartite graph with bipartitions U and V .

37

Each process knows its bipartition and some upper bound N on the number of processes in the

network.

5.2.2 Informal description of the algorithm

The protocol is motivated by the well-known sequential maximum matching algorithm for bipartite

graphs [15, pp. 218-224]. In this algorithm, some edges (initially none) are matched. If the

matching is not maximum, an augmenting path is detected, and augmentation along this path

increases the size of the matching by one. The algorithm terminates when no more augmenting

paths exist, implying that the matching is maximum. To implement this idea in a distributed

asynchronous network, the processes themselves must identify non-intersecting augmenting paths

and then augment along them.

The state of a process, x, consists of four variables: preference, choice, augment-status and

distance. Each variable can assume a finite number of values implying the state space of a process

is bounded and a process can be modelled as a finite state machine. For process x, each of the

preference and the choice fields is either null, or is a pointer to one of x’s neighbours. Informally,

the preference field is intended to record with which neighbour a process is currently matched,

if any, and the choice field records a possible new match arising from an augmentation process.

The augment-status is either silent, requesting, acknowledging or changing, and conveys how a

process is currently participating in trying to realize an augmenting path. The distance field is a

non-negative integer less than N, intended to record the distance to an endpoint of an augmenting

path. It is used to prevent processes from identify an alternating cycle instead of an alternating

path when searching for an augmenting path.

In each composite step, a process reads all its neighbours’ states and then performs a sequence

of four internal steps. Initially, the state of a process may be arbitrary. However, not all com-

binations of preference, choice, augment-status and distance could arise during the course of the

algorithm, so in Step 1 a process checks that its state is valid and resets otherwise. Furthermore,

some valid states are not consistent with neighbours in other valid states, so in Step 2 a process

resets if it is inconsistent with its neighbours. Step 3 ensures that preferences are mutual and thus

form a matching, unless they are in the process of changing due to an augmentation. These three

38

steps ensure that after a few initial rounds of computation, the global state of the network has

enough consistency that Step 4 eventually augments the matching if an augmenting path exists.

For the description of Step 4 it is helpful to imagine that a process “sends” information to

its neighbours and “propagates” information through the network, although this is achieved by a

process’s state changes as observed by its neighbours. The protocol is initiated by any unmatched

U process. Such a process (a source) sends a request to each of its neighbours (necessarily V

processes). Each such request propagates along alternating paths that may branch at U processes

in the network and forms a tree structure (a requesting tree) rooted at the source. If a requesting

branch encounters an unmatched V process (a sink), then the path through this requesting tree from

the sink back to the source is an augmenting path. Sinks try to reserve an augmenting path. To do

so, each sink initiates an acknowledgment that is sent toward the source along the alternating path

in the requesting tree, reserving the processes on the path as it goes. When an acknowledgment

arrives at a branching node of the requesting tree, it prunes away all the node’s siblings as the

acknowledgment is forwarded toward the source. Thus, eventually, only one sink succeeds in

marking a path all the way to the source of its requesting tree, and the tree has been pruned to a

single augmenting path. When an acknowledgment reaches a source, the source initiates a change

demand that travels back along this path to the sink, updating the matching to the augmented

matching as it goes.

While a tree is growing through request propagation and being pruned by returning acknowl-

edgments, its nodes have only local information about the tree structure. Specifically, each process

knows its parent, and as a potential augmenting path is being constructed, each U process knows

its chosen child. (Parents and children are defined by the state of a process and the states of its

neighbours.) Nodes in the pruned subtrees of a tree have no immediate way of detecting that they

are no longer attached to the source. Parts of these subtrees may continue to grow because requests

are still propagating; other parts may be further pruned into smaller trees by other sinks that have

initiated acknowledgments. Some restoration mechanism is needed to alert these orphaned nodes

and make it possible for them to participate in subsequent augmentation attempts. Step 2 does this

restoration as well as the initial repair already described. A node v (necessarily in V) is pruned

only if its parent has accepted the acknowledgment of one of v’s siblings. This is detectable by

v from the state of its parent and causes v to reset. This reset propagates from the root of each

39

Silent

Requesting

Acknowledging

U10

V11

U1

U2

U3

U4

U5

U6

U7

U8 U9

V1

V2

V3

V4

V5

V6

V7

V8

V9

V10

Arrow shows the
parent pointer

U Processor:

V Processor:

Matched edge:

Unmatched edge:

Shape key

Colour key

Figure 5.2: A requesting tree

40

pruned piece to its descendants. It is also possible that a reset process subsequently attaches itself

to a new requesting tree before its reset state has propagated to one or more of its subtrees. In this

case, such a subtree may simply become part of the new requesting tree, without even discovering

that its source has changed.

For example, in Figure 5.2, if process U3 accepts the acknowledgment of V3 and chooses pro-

cess V3 as its child, then the requests of processes V7 and U8 become spurious and the processes

V8 � V9 � U9 and V10 become orphans. But this guarantees the existence of the partially acknowledged

augmentation path U1 � V1 � U2 � V2 � U3 � V3 � U4 � V4.

In the pruned subtree, rooted at V7, only V7 can detect that it has been pruned. So V7 will reset

to silent. This reset may propagate to V8; or, depending on the scheduler, a request may arrive at

U7 from the source U5, and V7 may attach itself to this new requesting tree. Note that for this to

happen, the distance of V7 from the old source U1, must be the same as the distance of V7 from the

new source U5.

5.2.3 The algorithm

Definitions: The state of a process x is a 4-tuple (pref, aug, choice, dist); pref (short for pref-

erence) of a process can be null or p in N
 x � ; aug(short for augment) of a process is s(silent),

r(requesting), a(acknowledging) or c(changing); choice of a process can be null or y in N
 x � ;
dist(short for distance) of a process can be any non-negative integer less than or equal to N
 2. If

process x has x � aug 	 r, then process x is requesting. The terms silent, acknowledging and chang-

ing are defined similarly. If a process x has x � dist 	 d then process x has distance d. Throughout

this section, a letter (p � y or d) denotes a non-zero or non-null value of a variable. Both zero and

null are denoted by 0. Each process x can determine for each of its neighbours y if y’s pref (or

choice) is null, points to x, or points elsewhere.

Let
�

N
 x � denote the set N
 x �
 �
x � pref � . A process’s state is valid if it is in state u.1 through

u.6 or v.1 through v.5 in Table 5.1 and its choice is null or in
�

N
 x � ; otherwise it is invalid.

Implicit dereferencing of pointers is assumed. For example, if process x has x � pref 	 p, then

p � dist refers to the distance field of the process y � N
 x � that is pointed to by p.

To simplify the description of the algorithm, child and parent relationships are defined for

41

processes that are participating in the search for augmenting paths. Once an augmenting path is

fully identified, these relationships are the natural ones along that path. The actual definitions are

more complicated than this only because adjacent processes have various combinations of states in

the course of an augmentation process.

For a process u � U with u � aug 	 r, let

C
 u � 	 �
v � �

N
 u � � v � choice 	 u and v � aug 	 a � �

The minimum acknowledging child of process u, denoted by mac
 u � , is defined as

mac
 u � 	
���� v if v � C
 u � and � w � C
 u � �
 v � dist � posu
 v �����
 w � dist � posu
 w ���

0 otherwise (if C
 u � 	 /0).

(The symbol � denotes lexicographic ordering.)

For a process v � V with v � aug 	 s, let P
 v � 	 �
u � N
 v � � u � aug 	 r � . The minimum requesting

parent of process v, denoted by mrp
 v � , is defined as

mrp
 v � 	
�� � u if u � P
 v � and � w � P
 v � �
 u � dist � posv
 u ��� �
 w � dist � posv
 w ���

0 otherwise (if P
 v � 	 /0).

Let u � U be a process with u � aug 	 a, then

child
 u � 	

�
�
�
��
�
�
�

� v if u � choice 	 v, v � choice 	 u,

v � aug 	 a, u � dist 	 v � dist
�

1;

0 otherwise.

Let v � V be a process with v � aug 	 a, then

child
 v � 	

�
�
�
��
�
�
�

� u if v � pref 	 u, u � pref 	 v,

u � aug 	 a, v � dist 	 u � dist
�

1;

0 otherwise.

Let u � U be a process with u � aug 	 r or u � aug 	 a, then

parent
 u � 	

�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�

�

v If u � pref 	 v, v � pref 	 u, and

[(u � aug 	 v � aug 	 r, u � dist 	 v � dist
�

1), or

(u � aug 	 v � aug 	 a, v � dist 	 u � dist
�

1), or

(u � aug 	 a, v � aug 	 r)];

0 otherwise.

42

States for a process u in partition U :

No. State Consistency predicate Reset state

u.1
 0 � s � 0 � 0 � true Not applicable

u.2
 0 � r� 0 � 0 � true Not applicable

u.3
 p � s � 0 � 0 � true Not applicable

u.4
 p � r� 0 � d � parent
 u � �	 0
 p � s � 0 � 0 �
u.5
 p � a � y � d � child
 u � �	 0 and
 parent
 u � �	 0 or p � pref �	 u �
 p � s � 0 � 0 �
u.6
 p � c � 0 � 0 �
 p � aug 	 a and p � choice 	 u � or p � pref 	 u
 p � s � 0 � 0 �
States for a process v in partition V :

No. State Consistency predicate Reset state

v.1
 0 � s � 0 � 0 � true Not applicable

v.2
 0 � a � y � 0 � parent
 v � �	 0
 0 � s � 0 � 0 �
v.3
 p � s � 0 � 0 � true Not applicable

v.4
 p � r� y � d � parent
 v � �	 0
 p � s � 0 � 0 �
v.5
 p � a � y � d � parent
 v � �	 0 and child
 v � �	 0
 p � s � 0 � 0 �

Table 5.1: Consistency predicates for valid states

Let v � V be a process with v � aug 	 r or v � aug 	 a, then

parent
 v � 	

�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�

�

u If v � choice 	 u and

[(v � aug 	 u � aug 	 r, v � dist 	 u � dist
�

1), or

(v � aug 	 u � aug 	 a, u � dist 	 v � dist
�

1, u � choice 	 v), or

(v � aug 	 a, u � aug 	 r), or

(v � aug 	 a, u � aug 	 c, u � pref 	 v)];

0 otherwise.

Observation 5.2.1. If child
 x � 	 y for processes x and y, then parent
 y � 	 x. If x and y are both

acknowledging processes and parent
 x � 	 y, then child
 y � 	 x.

43

State transitions for a process u in partition U :

No. Current state Guard Next state

1
 0 � s � 0 � 0 � true
 0 � r� 0 � 0 �
2
 0 � r� 0 � 0 � mac
 u � 	 v and v � dist � N
 2
 v � c � 0 � 0 �
3
 p � s � 0 � 0 � p � aug 	 r and p � dist � N
 3
 p � r� 0 � p � dist

�
1 �

4
 p � r� 0 � d � mac
 u � 	 v and v � dist � N
 4
 p � a � v � v � dist
�

1 �
5
 p � a � y � d � p � pref �	 u
 y � c � 0 � 0 �
6
 p � c � 0 � 0 � p � pref 	 u
 p � s � 0 � 0 �
State transitions for a process v in partition V :

No. Current state Guard Next state

7
 0 � s � 0 � 0 � mrp
 v � 	 u and u � dist � N
 2
 0 � a � u � 0 �
8
 0 � a � y � 0 � y � aug 	 c and y � pref 	 v
 y � s � 0 � 0 �
9
 p � s � 0 � 0 � mrp
 v � 	 u and u � dist � N
 4
 p � r� u � u � dist

�
1 �

10
 p � r� y � d � p � aug 	 a and p � dist � N
 3
 p � a � y � p � dist
�

1 �
11
 p � a � y � d � y � aug 	 c and y � pref 	 v
 y � s � 0 � 0 �

Table 5.2: State transitions

44

Algorithm for process x: In each composite step, a process reads all its neighbour’s states and

then performs the following internal computation.

Step 1 (State validity check): If process x is in an invalid state, it resets to state u.1 or v.1 depending

on its partition.

Step 2 (State consistency check): If the state consistency predicate in Table 5.1 is false, the process

resets to a new state as given in Table 5.1.

Step 3 (Preference consistency check): If a process x is in state u.3, u.4, v.3, v,4 or v.5 and x � pref 	
p and p � pref �	 x then x resets to state u.1 or v.1 depending on its partition.

Step 4 (State transition): The process x makes the state transition in Table 5.2 corresponding to its

state if and only if the guard for that state is true.

Figure 5.3:
� ��� ��� � � � � ����� � ' � ' ��� � � � � �	#�,���#���� � ���
'

5.2.4 Analysis and correctness

The acknowledgment of a process x is real if either x is in partition V and in state v.2 (process x is

called a sink), or child
 x � 	 y and y’s acknowledgment is real. If a process’s acknowledgment is

not real then it is spurious.

The predicate P is defined over the configurations of the system as follows. For any configura-

tion c, P
 c � is true if and only if, in c, the system is in a maximum matching and no process has a

spurious acknowledgment.

We will prove that the
� ��� ��� � � � � ����� � ' � ' ��� � � � � �	# ,���#���� � �
�
' is stabilizing, given that

the processes know their bipartition.

Overview of the proof: The proof of correctness follows the conventional safety and progress

method. Since the algorithm is self-stabilizing, the processes can start in any arbitrary state. A

process can detect the validity of its state locally. If a process starts in an invalid state, it is detected

in the first round and the process resets to state u.1 or v.1 depending on its partition. Lemma 5.2.2

ensures that once a process is in a valid state, it is always in a valid state.

45

The matching of the underlying graph is determined by the states of the processes. Lemma 5.2.3

ensures that the matching determined by the processes’ states is a matching of the underlying

graph.

The safety property is that the size of the matching of the system never decreases. This is

established by Corollary 5.2.8, which uses Lemma 5.2.6 and Lemma 5.2.7.

The progress property of the system is established by proving that as long as the matching of

the system is not maximum, an augmenting path is detected by the processes and an augmentation

along that path subsequently increases the size of the matching. This is proved in several steps.

Recall that an acknowledgment is initiated only by an unmatched V process, referred to as a

sink. This acknowledgment is then copied back to the source by other processes on the augment-

ing path. Such a path along which an acknowledgment is copied, is called an acknowledging path.

However, since the algorithm is a self-stabilizing algorithm, a process may start as an acknowledg-

ing process, even though the acknowledgment is not associated with a sink. This acknowledgment,

referred to as a spurious acknowledgment, may get copied to other processes along an alternating

path. Since each process has knowledge only about its neighbourhood, only the process at the

very end of this path can detect the spurious nature of its acknowledgment. Lemma 5.2.9 and

Corollary 5.2.10 establishes that no new spurious acknowledgments are created and Lemma 5.2.11

ensures that if the system starts with some spurious acknowledgments, they disappear within N

rounds. Hence after N rounds, if any process is acknowledging, then there is an acknowledging

path from that process to a sink.

While finding an augmenting path, a requesting tree is built, rooted at a source. Lemma 5.2.12

establishes that the path from the source to the sink, determined by the parent pointers, is an

augmenting path based on the current matching. Lemma 5.2.13 ensures that once an augmenting

path is detected, some augmenting path is reserved all the way to the source within a bounded

number of rounds. Lemma 5.2.14 ensures that once an augmenting path is reserved from sink to

source, the augmentation process is completed within a bounded number of rounds and the size of

the matching increases.

Due to the pruning process, a non source node can become the root of a pruned subtree. No

process in that subtree participates in the current augmentation process. Thus, a requesting process

in that subtree has a spurious request and an acknowledging process is an orphan, meaning that

46

they are no longer associated with a source. Spurious requests may obstruct progress by prevent-

ing a real request from being propagated. Lemma 5.2.16 establishes that if new spurious requests

are created (this can happen only due to a pruning process) then there exists an augmenting path

that augments the matching within a bounded number of rounds. Lemma 5.2.17 establishes that

if no new spurious request is created, the existing spurious requests either disappear, or attach

themselves to a requesting tree and become real within a bounded number of rounds. Similarly,

Lemma 5.2.15 establishes that if new orphan acknowledgments are created (again, this can happen

only due to a pruning process) then there exists an augmenting path that augments the matching

within a bounded number of rounds. Lemma 5.2.18 establishes that if no new orphan acknowledg-

ment is created, the existing orphan acknowledgments either become silent or attach themselves to

a requesting tree and become non-orphan within a bounded number of rounds.

Finally, progress of the algorithm is established by Lemma 5.2.19. This lemma establishes that

as long as the matching is not maximum, an augmenting path is detected and an augmentation

along that path increases the size of the matching within a bounded number of rounds. Stability of

the maximum matching is established by Lemma 5.2.20.

Recall the definition of a valid state, given in subsection 5.2.3.

Lemma 5.2.2. After the initial round, each process is always in some valid state.

Proof. Any process x is in a valid state immediately after its first execution of Step 1. After any

state transition, the next state is always u.1 through u.6 or v.1 through v.5. Process x always sets

its choice to a member in
�

N
 x � . Whenever x � pref changes, x � choice is set to null. Hence x � choice

is always either null or in
�

N
 x � .

Lemma 5.2.2 implies that Step 1 is a no-op after the first round. The reminder of the proof

applies after the first round.

Let M 	 �
xy � x � pref 	 y and y � pref 	 x � .

Lemma 5.2.3. The set M is a matching.

Proof. A process can have at most one non-null preference at a time. Hence there can never be

two adjacent edges in M, and so M is a matching.

47

The set M is the matching of the system, and the size of M is �M � . A process x is matched if

xy � M for some process y, and x is matched with y if xy � M. If a process is not matched, then it

is unmatched.

Observation 5.2.4. A process does not change its preference in Step 2.

Observation 5.2.5. If a process is matched or its preference is null, then the condition in Step 3 is

false and therefore Step 3 is a no-op.

Lemma 5.2.6. A U process does not change its preference while it is matched.

Proof. By Observations 5.2.4 and 5.2.5, the only way a matched U process can change its pref-

erence is in Step 4. A non-null preference changes in Step 4 only in Row 5 of Table 2, when a

process is not matched.

Lemma 5.2.7. A matched V process never becomes unmatched.

Proof. By Lemma 5.2.6, a U process never changes its preference while matched. Hence the only

way a matched V process may become unmatched is if it changes its own preference. Because no

process changes its preference in Step 2, and Step 3 is no-op for a matched process, the only way

a matched V process can change its preference is in Step 4, by executing Row 11 of Table 5.2. In

this case it is immediately matched with its choice.

Corollary 5.2.8. The cardinality of M never decreases.

Recall the definition of a real acknowledgment, given at the beginning of this subsection. Infor-

mally, a real acknowledgment refers to an acknowledging process that is on an alternating path that

is reserved all the way to an unmatched V process (a sink). If x1 is an acknowledging process and

it’s acknowledgment is real, then by definition either x1 is a sink or there exists a path x1 ��������� xm

such that child
 xi � 	 xi � 1 � 1 � i � m
 1, and xm is a sink. This path is called an acknowledging

path. Observe that by definition of child, processes x2 ��������� xm � 1 �
 m � 3 � , are matched.

Lemma 5.2.9. If x1 ��������� xm �
 m �
2 � is an acknowledging path leading to sink xm, then no process

on this path can change state before x1 changes.

48

Proof. Since xm has zero preference, by Observation 5.2.5, Step 3 is no-op for xm. The state

consistency predicate for xm (Row v.2 in Table 5.1) is true. The guard in Row 8 in Table 5.2 is false

for xm as long as xm � 1 is acknowledging. Hence xm can not change state before xm � 1. This proves

the lemma for m 	 2.

Let m � 2. Each xi � 2 � i � m
 1, is either in state u.5 or v.5. By definition of a real acknowl-

edgment, each has a non-zero child and by Observation 5.2.1 each also has a non-zero parent.

Therefore the state consistency predicate is true and Step 2 is a no-op for xi � 2 � i � m
 1.

Since xi � 2 � i � m
 1, is matched, Step 3 is no-op for xi � 2 � i � m
 1, by Observation 5.2.5.

Each U process in the path xi � 2 � i � m
 1, is in state u.5 of Table 5.1 and is matched.

Therefore its guard in Row 5 of Table 5.2 is false. Hence no U process in this path can make a

state change before x1.

Any V process, v, other than xm, on the acknowledging path is in state v.5 of Table 5.1. Let

parent
 v � 	 v � choice 	 u. Then u must be a U process on the acknowledging path. For the guard in

Row 11 of Table 5.2 to be true, u � aug 	 c. But no U process on the acknowledging path has changed

state. So the guard in Row 11 of Table 5.2 false. Hence no V process on the acknowledging path

can change state before x1.

Corollary 5.2.10. After the initial round, a real acknowledgment never becomes spurious.

Proof. By Lemma 5.2.2 any process v in V with v � pref 	 0 and v � aug 	 a must be in state v.2,

which is, by definition, real.

Let x1 be a real acknowledging process with non-zero preference. Then there exists an ac-

knowledging path x1 ��������� xm (to a sink), and no process on this path can change state before x1.

Hence x1’s acknowledgment never becomes spurious.

Lemma 5.2.11. After N rounds, no process has a spurious acknowledgment.

Proof. The proof proceeds by induction on the value of the distance field of an acknowledging

process.

By Lemma 5.2.2, after the initial round, any acknowledging process with zero distance must

be in state v.2, which is by definition real.

Suppose that after k
�

1 rounds, any acknowledging process x with x � dist � k
 1 has a real

acknowledgment. Let x be an acknowledging process with x � dist 	 k at the start of round
 k �
1 � .

49

By definition, child
 x � 	 0 or child
 x � 	 y for some acknowledging process y with y � dist 	 k
 1.

If child
 x � 	 0, then the state consistency predicate (states u.5 or v.5 in Table 5.1) for x is false,

triggering a reset to x � aug 	 s. Otherwise, by the induction hypothesis, y’s acknowledgment is

real. Therefore x has a real acknowledgment. Hence at the end of round
 k �
1 � , x has a real

acknowledgment or is no longer acknowledging. Also during round
 k �
1 � , if a process x becomes

acknowledging with x � dist 	 l � k, then child
 x � has distance � k
 1, which ensures that child
 x �
has a real acknowledgment. Thus x has a real acknowledgment.

Since no process copies an acknowledgment with distance
�

N
 2, the lemma follows.

Let x be a requesting, acknowledging or changing process. If parent
 x � 	 0, then root
 x � 	 x. If

parent
 x � �	 0, then there exist processes x1 ��������� xm such that parent
 x � 	 x1, parent
 xi � 	 xi � 1 � 1 �
i � m
 1, and parent
 xm � 	 0. In this case root
 x � 	 xm.

A process u � U is a source if u is in state u.2, or u is in state u.6, or u is in state u.5 with

u � pref 	 v and v � pref �	 u.

Lemma 5.2.12. If u is a source and v is a sink such that root
 v � 	 u, then the path Q 	 v � x1 �������
� xm � u
with parent
 v � 	 x1, parent
 xi � 	 xi � 1 � 1 � i � m
 1, and parent
 xm � 	 u is an augmenting path

based on M. Furthermore, the state consistency predicate is true for every process on this path.

Proof. If m 	 0, then u and v are two adjacent unmatched processes. Hence u � v is an augmenting

path of length one.

If m
�

1, then rewrite the path as Q 	 v � u1 � v1 � u2 � v2 ��������� ul � vl � u, where l 	 m) 2. Then parent
 ui � 	
vi � 1 � i � l. By definition of parent of a U process uivi

� M. Hence Q is an augmenting path.

Every process x on Q, except for the source, has parent
 x � �	 0. If x and y are two processes on Q

such that parent
 x � 	 y and y � aug 	 a, then by definition of parent, x � aug 	 a and by Observation 1,

child
 y � 	 x. Hence the state consistency predicates are true for all processes on Q.

Let x1 be a process with x1 � aug 	 r and root
 x1 � 	 xm, where xm is in state u.2. Then there

exists a path x1 ��������� xm, such that parent
 xi � 	 xi � 1 � 1 � i � m
 1. This path is called a requesting

path.

Observe that by definition of parent, xi � aug 	 r� 1 � i � m. Also process xi � 2 � i � m
 1, is

matched.

50

Let Q 	 v � x1 �������
� xm � u with parent
 v � 	 x1, parent
 xi � 	 xi � 1 � 1 � i � m
 1, and parent
 xm � 	 u

be an augmenting path between sink v and source u. Then Q is a partially acknowledged augment-

ing path or simply a PA-path. If u � aug �	 r then Q is called a fully acknowledged augmenting path

or an FA-path.

If there exist processes xi and xi � 1 (or u) on this PA-path such that xi � aug 	 a and xi � 1 � aug 	 r

(or u � aug 	 r), then the path xi � 1 �������
� xm � u is a requesting path. The size of the unacknowledged

part of the PA-path is defined as the number of processes on the path xi � 1 ��������� xm � u.

An augmenting path that is identified through the parent pointers can be either fully acknowl-

edged (FA-path) or partially acknowledged (PA-path), depending on whether it is reserved all the

way to the source or not. Partially acknowledged augmenting paths are the key to progress, as

outlined in Lemmas 5.2.13 and 5.2.14.

Lemma 5.2.13. After N rounds, if there is a PA-path such that the size of it’s unacknowledged part

is k, then within k rounds there is an FA-path.

Proof. The proof proceeds by induction on the size of the unacknowledged part of a PA-path.

Suppose there is a PA-path Q whose unacknowledged part has size one. Then

Q 	 v � x1 ��������� xm � u

where u is a source with u � aug 	 r, and xm ��������� x1 � v is an acknowledging path with parent
 xm � 	 u.

Hence the guard in Row 2 of Table 5.2 is true for u, and after u executes Row 2, Q is an FA-path.

Assume that the result is true for some k
�

1 and suppose that R 	 v � x1 ��������� xm � u is a PA-path

with source u whose unacknowledged part has size
 k �
1 � ; i.e, u � aug 	 r and xi � aug 	 r� m
 k

�

1 � i � m. By Lemma 5.2.9 the only process that can change state on the path xm � k ������� � x1 � v is

xm � k. But xm � k cannot change state before parent
 xm � k � 	 xm � k � 1 changes state.

By Lemma 5.2.12, R is an augmenting path, implying that x2i
� V � 1 � i � m) 2, and x2i � 1x2i

�

M. The only possible state change for a requesting V process xi � m
 k
�

1 � i � m on R is Row 10

of Table 5.2. But this requires xi � 1 � aug 	 a, which is only possible if i 	 m
 k
�

1. If xm � k � 1

changes state, the path R is a PA-path whose unacknowledged part has size k.

The possible state changes for a requesting U process on R are Row 2 of Table 5.2, for source

u, and Row 4 of Table 5.2, for any other process xi � m
 k
�

1 � i � m. In either case there exists

51

a V process v with a real acknowledgment such that parent
 v � 	 u or parent
 v � 	 xi. Since v has

a real acknowledgment (Lemma 5.2.11), there is an acknowledging path v � y1 ������� � yl � l �
1. If u

executes Row 2, we have an FA-path u � v � y1 �������
� yl. Otherwise, if xi executes Row 4, there is a

PA-path u � xm �������
� xi � v � y1 ����� ��� yl whose unacknowledged part has size at most k. Hence the result

follows by induction.

Lemma 5.2.14. After N rounds, if there is an FA-path, then the size of the matching increases

within n rounds.

Proof. The proof proceeds by induction on the length of the FA-path.

Suppose u � v is an FA-path of length one. If u � aug 	 a then the guard in Row 8 is false for v

and guard in Row 5 is true for u. Hence after the first round, u � aug 	 c making the guard in Row 8

true for v. During the second round, v executes Row 8, and u and v are matched with each other.

Since they were unmatched before, the cardinality of the matching increases by one.

Assume that the result is true for all FA-paths with length k or less and let u � x0 ��� � xk be a FA-

path of length k
�

1 with source u. If u � aug 	 a, then by definition of source, the guard in Row 5

is true for u, and in the next round, u � aug 	 c. If u � aug 	 c then, since parent
 x0 � 	 u, the guard

in Row 11 is true for x0. After x0 takes that step, x1 becomes the new source. Hence there is an

FA-path of length k
 2 within two rounds. The result follows by induction.

Thus the size of M increases if there is a PA-path, and certain changes of the configuration

of the system guarantee the existence of a PA-path. One such change is when an acknowledging

process becomes an orphan (defined below), a consequence of the pruning process. A second

change that ensures the existence of a PA-path is the creation of a spurious request (defined later),

another consequence of the pruning process.

An acknowledging process x is an orphan if its acknowledgment is real, root
 x � 	 y and y is a

not a source.

Lemma 5.2.15. After N rounds, if an acknowledging process becomes an orphan, then there exists

a PA-path.

Proof. Let x be a non-orphaned process with a real acknowledgment. Then there exists a path

Q 	 x1 � x2 ������� � xl � 1 � xl
	 x � xl � 1 �������
� xm

52

where xm is a sink and root
 xl � 	 x1 is a source. If xl becomes an orphan, then some process

xi � 1 � i � l
 1, changes state. We consider three cases depending on the state of the source x1.

If x1 is in state u.6, then x2 must be acknowledging. Because x2 �������
� xm is an acknowledging

path to a sink xm, Lemma 5.2.9 guarantees that the only process on this path that can change state is

x2. The only possible state change for x2 is Row 11, making x3 a source. Thus xl does not become

an orphan.

If x1 is in state u.5, then x1 ��������� xm is an acknowledging path to a sink xm. Again, Lemma 5.2.9

ensures that the only process on this path that can change state is x1. The only possible state change

for x1 is Row 5. But this does not change parent
 x2 � , and x1 remains a source. Hence xl does not

become an orphan.

Thus, if xl becomes an orphan, x1 must be in state u.2. This implies that for some k � 1 � k �
l
 1, x1 � x2 ��������� xk is a requesting path, and xk � 1 � aug 	 a. Since xk � 1 ��������� xm is an acknowledging

path to a sink xm, Lemma 5.2.9 ensures that only process on this path that can change state is xk � 1.

However, xk � 1 cannot change state before its parent, xk changes state.

If xk
� V , then the only possible state change is Row 10. This state change does not alter the

parent value of any process on Q. If xk
� U , then the possible state changes are Row 2 or Row 4.

In either case the execution of these lines requires a process v � V with parent
 v � 	 xk. Since

v’s acknowledgment is real (Lemma 5.2.11), either v is a sink or there exists an acknowledging

path v � y1 �������
� yt ending at sink yt . In the first case x1 ��������� xk � v is a PA-path. In the second case

x1 ������� � xk � v � y1 ������� � yt is a PA-path.

The request of a process x is real if root
 x � 	 y and y is in state u.2. If the request of a process

is not real, then it is spurious.

Lemma 5.2.16. After N rounds, if the request of a process changes from real to spurious, then

there exists a PA-path.

Proof. By Lemma 5.2.2, after the first round, any requesting process is in state u.2, u.4 or v.4. If

process is in state u.2, then it is real and cannot be spurious.

Suppose process x1 is in state u.4 or v.4 and has a real request. Then by definition there exists

a requesting path x1 �������
� xm ending at source xm. Suppose x1’s request becomes spurious because

of the state change of some process xi on this path with parent
 xi � 1 � 	 xi, i � 1. If xi is in partition

53

V , then by definition of parent of a U process, xi � pref 	 xi � 1. The only state change possible

for xi (state v.4) is Row 10, and this requires xi � 1 � aug 	 a. But xi � 1 � aug 	 r. Hence xi can not

be in partition V . The possible state changes for a requesting U process are either Row 2 for

process xm in state u.2, or Row 4 for process xi
 i � m � in state u.4. In either case, there exists an

acknowledging V process v with parent
 v � 	 xi. Since v’s acknowledgment is real (Lemma 5.2.11),

either v is a sink or there exists an acknowledging path v � y1 ������� � yl ending at sink yl . In the first

case xm �������
� xi � v is a PA-path. In the second case xm ��������� xi � v � y1 ��������� yl is a PA-path.

Lemma 5.2.17. If no process’s request changes from real to spurious in rounds r through
 r �
l �

inclusive, r � N � l � N, then there is no spurious request in rounds
 r �
N � to
 r �

l � inclusive.

Proof. The proof proceeds by induction on the value of the distance field of a requesting process.

By Lemma 5.2.2, after round r, any requesting process with zero distance must be in state u.2,

which is by definition real.

Suppose that after r
�

k (k
�

0) rounds any requesting process x with x � dist � k has a real re-

quest. Let x be a requesting process with x � dist 	 k
�

1, at the start or round
 r �
k

�
1 � . By defini-

tion, parent
 x � 	 0, or parent
 x � 	 y for some requesting process y with y � dist 	 k. If parent
 x � 	 0,

then the state consistency predicate (state u.4 or v.4 in Table 5.1) for x is false, triggering a reset

to x � aug 	 s. Otherwise, by the induction hypothesis, y’s request is real. Therefore x has a real

request. Hence at the end of round
 r �
k

�
1 � , x has a real request or is no longer requesting. Also

during round
 r �
k

�
1 � , if a process x becomes requesting with x � dist 	 l �
 k �

1 � , then parent
 x �
has distance � k, which ensures that parent
 x � has a real request. Thus x has a real request.

Because no process copies a request with distance
�

N
 2, the lemma follows.

Lemma 5.2.18. After N rounds, if there is no spurious request for n consecutive rounds, then either

all orphaned processes become silent or there exists a PA-path.

Proof. Suppose xi is an orphaned process, with root
 xi � 	 x1. By definition, x1 is not a source.

Since there is no spurious request, x1 � aug 	 a. Also since xi is real there exists an acknowledging

path x1 �������
� xi �������
� xm ending at sink xm. Hence x1 �������
� xm is an acknowledging path of length m
 1

and all processes on this path are orphans. Since there can be no path of length greater than n
 1,

it suffices to show that after one round, either the length of this path decreases or there exists a

PA-path.

54

Since parent
 x1 � 	 0 and x1 is not a source, the state consistency predicate is false for x1. Hence

after the first round, either parent
 x1 � 	 y for some requesting process y, in which case we have a

PA-path, or x1 becomes silent, in which case the length of the acknowledging path decreases. Thus

after n rounds, either all orphaned processes become silent or there exists a PA-path.

Lemma 5.2.19. After N rounds, if the matching is not maximum, then its cardinality increases

within N
�

4n rounds.

Proof. Consider an interval I of N
�

2n rounds beginning at round r � N.

If during interval I, the request of a process changes from real to spurious, or any acknowledg-

ing process becomes orphaned, then by Lemma 5.2.16 or Lemma 5.2.15 respectively, there is a

PA-path.

Otherwise, during I, no process’s request changes from real to spurious and no process becomes

orphaned. By Lemma 5.2.17, after round
 r �
N
 1 � , there are no spurious requests. Thus by

Lemma 5.2.18, either there is a PA-path, or there are no orphaned acknowledging processes after

round
 r �
N

�
n
 1 � .

In the second case, since the matching is not maximum, there is an augmenting path. An

easy induction on the length of this path shows that, if there is no spurious request or orphaned

acknowledging process, a request propagates from a source to a sink giving a PA-path within n

rounds. Hence before the end of round
 r �
N

�
2n
 1 � , there is a PA-path.

In all cases there is a PA-path before the end of round
 r �
N

�
2n
 1 � . It now follows from

Lemma 5.2.13 and Lemma 5.2.14 that the cardinality of M increases within another 2n rounds.

Lemma 5.2.20. After N rounds, if the matching is maximum, then no matched process changes its

preference.

Proof. Suppose M is a maximum matching and uv � M. By Lemma 5.2.6, u � pref does not change

as long as uv � M (i.e. v � pref 	 u). If v � pref changes, then it must be by Row 11. In this case v is in

state v.5 and by Lemma 5.2.11 its acknowledgment is real. Thus there is an acknowledging path

v � x1 �������
� xm, where xm is a sink. Also, there must be a process u0 in state u.6, such that v � choice 	 u0

and u0 � pref 	 v (refer to the guard in Row 11). Hence parent
 v � 	 u0, and therefore u0 � v � x1 ��������� xm

is an FA-path. By Lemma 5.2.12, this is an augmenting path, contradicting the assumption that M

is maximum. Therefore the matching does not change.

55

Lemmas 5.2.19 and Corollary 5.2.8 combine to prove the main result.

Theorem 5.2.21. Starting from an arbitrary configuration, the system converges to a maximum

matching within O
 Nn � rounds.

Closure: Lemma 5.2.11, Corollary 5.2.8 and Lemma 5.2.20 together prove that once the system

is in a legitimate configuration, it always remains in a legitimate configuration.

Convergence: Recall that in a legitimate configuration of the system, no process has a spurious

acknowledgment and the system is in a maximum matching. Lemma 5.2.11 establishes

that the there are no spurious acknowledgment in the system within a bounded number

of rounds. Theorem 5.2.21 establishes that the system converges to a maximum matching

within a bounded number of rounds. Together they establish that starting from an arbitrary

configuration, the system converges to a legitimate configuration within finite amount of

computation.

5.3 Fair Composition

We proved that the
����� ����� � � � �	# ,���#���� � �
�
' is self-stabilizing and the

� � � ��� � � � � ����� � ' � '
��� � � � � �	#�,���#���� � ���
' is stabilizing, given that the processes know their bipartition. The

����� ����� � � � �	#
,���#���� � �
��' does not use the variables of the

� ��� ��� � � � � ����� � ' � ' ��� � � � � �	#�,���#���� � �
�
' . The
� ��� ��� � � � � ����� � ' � ' ��� � � � � �	#�,���#���� � �
�
' only reads the partition information of the

����� � ��� � � � �	#
,���#���� � �
��' . Hence a fair composition of these two algorithm solves the bipartite maximum match-

ing problem in an arbitrary bipartite network with distinct identifiers. The combined algorithm

takes O
 Nn � cycles (recall that the round complexity and cycle complexity are the same for com-

posite atomic algorithms) to converge to a legitimate configuration in the worst case.

56

Chapter 6

Comments and Future Work

For the sake of clarity, we assumed the locally shared memory model for the maximal and the

maximum matching algorithms. In the case of link register model, a process has to copy its shared

memory contents to all the link registers. In the case of the composite atomic model, this operation

can be done in one atomic step. Hence very little modification is required in the algorithm and

no modification is needed for the correctness proof. In the case of read/write atomic model, the

process has to copy the shared memory contents to one link register at a time. We are currently

working to prove that even in this case, the algorithm works correctly.

Both the maximal matching and the maximum matching algorithms are dynamic, meaning that

if the network size and topology change, the system will re-converge to a legitimate configuration.

The maximal matching algorithm does not require any global information about network topology.

Hence in this case, a network topology change is equivalent to a system configuration change

and the self-stabilizing property of the system ensures that the system re-converges to a legitimate

configuration within finite amount of computation. The maximum matching algorithm needs an

upper bound on the network size. As long as the topology change does not violate this upper

bound, a network topology change is again equivalent to a system configuration change.

The following sections describe the issues relevant to each problem.

57

6.1 Maximal Matching

Maximal matching is a local property in a graph. Therefore, processes need only local knowl-

edge to solve this problem. Ideally, a self-stabilizing algorithm should need only a constant num-

ber of cycles to converge. But the
���
� � ' �	� ' � � � � � ��# ����#���� � �
�
' finds the particular maximal

matching defined by the graph theoretic scheme, presented in subsection 4.3.2. To determine this

particular maximal matching, processes may need to propagate information throughout the entire

network and hence may need a linear number of cycles to converge.

Once a self-stabilizing algorithm converges to a maximal matching, a transient fault may leave

the system in a configuration that is not a maximal matching. Ideally, if the fault is local, it should

be contained and fixed locally. That means that the disturbance created by the local fault should

not propagate more than a constant distance from the region of the fault. But because the
����� � ' �	�

' � � � � � �	# �	��#���� � ���
' finds a particular maximal matching, the disturbance may propagate to the

entire network and re-convergence can be as costly as n) 2 cycles.

A fair composition of the label generation algorithm and the maximal matching algorithm

solves the maximal matching problem in a general anonymous network under read/write atomicity.

In our maximal matching algorithm, we observed that the algorithm is not local if the labels are

chosen from a large set and are assigned in an unfavourable manner. However, this cannot happen

if the labels are assigned using the label generation algorithm and the maximum degree of the

network is constant.

In general, it is difficult to design and analyze read/write atomic algorithms. Since processes

are forced to take decisions based on outdated information, the scheduler has a great deal of extra

power to avoid convergence beyond that power available for composite atomic systems. We present

an obvious extension of the Hsu-Huang algorithm in Appendix A, using randomization. We prove

that the algorithm works for trees under read/write atomicity. This algorithm has the local re-

convergence property, meaning that a local fault is contained and corrected locally. This algorithm

does not work in a general network. We are currently working on finding the step complexity of

the
����� � ' �	� ��� � � � � �	#�,���#���� � ���
' .

The label generation algorithm can be used for other applications. A self-stabilizing algorithm

to determine a maximal independent set in a graph is presented in Appendix B. This algorithm

58

needs locally distinct labels that can be generated using the label generation algorithm.

6.2 Maximum Matching

The proof of the maximum matching algorithm assumes composite atomicity as opposed to the

more realistic read/write atomicity. Also, the maximum matching algorithm only works for bipar-

tite graphs. In a general graph, the presence of odd cycles makes it difficult to find augmenting

paths. There is a simple technique [15, pp. 226-243] to overcome this problem in a sequential

algorithm. Implementing this technique in a distributed setting poses challenges. Our future work

will be directed towards solving these problems.

59

Bibliography

[1] A. Arora and M.G. Gouda. Closure and convergence: a foundation of fault-tolerant computing. IEEE

Transactions on Software Engineering, 19:1015–1027, 1993.

[2] H. Attiya and J. Welch. Distributed computing: fundamentals, simulations and advanced topics. The

Mc-Graw Hill Companies, 1998.

[3] E.W. Dijkstra. Self-stabilization in spite of distributed control. In Selected Writings on Computing: A

Personal Perspective, pages 41–46. Springer-Verlag, 1982. Original year of publication of the paper is

1973.

[4] S. Dolev. Self-stabilization. The MIT Press, 2000.

[5] S. Dolev, A. Israeli, and S. Moran. Self stabilization of dynamic systems. In Proceedings of the MCC

Workshop on Self-Stabilizing Systems, MCC Technical Report No. STP-379-89, 1989.

[6] J. Edmonds. Paths, trees and flowers. Canad. J. Math, pages 449–67, 1965.

[7] M. Gardinariu and C. Johnen. Self-stabilizing neighbourhood unique naming under unfair schedular.

In Euro-Par 2001, volume 2150, pages 458–465. Springer-Verlag, 2001.

[8] J.R. Griggs and Y.K. Roger. Labelling graphs with a condition at distance 2. SIAM J. on Discrete

Mathematics, 5:586–95, 1992.

[9] S.T. Hedetniemi, D.P. Jacobs, and P.K. Srimani. Maximal matching stabilizes in time O
�
m � . IPL,

80:221–223, 2001.

[10] L. Higham. Simple randomized leader election with extensions. Technical Report TR90/407/31,

Department of Computer Science, University of Calgary, 1990.

60

[11] J.E. Hopcroft and R.M. Karp. A n5
�
2 algorithm for maximum matching in bipartite graphs. SIAM J.

on Computing, 2:225–31, 1973.

[12] S.-C. Hsu and S.-T. Huang. A self-stabilizing algorithm for maximal matching. IPL, 43:77–81, 1992.

[13] M.H. Karaata and K.A. Saleh. A distributed self-stabilizing algorithm for finding maximum matching.

Computer Systems Science and Engineering, 3:175–180, 2000.

[14] N. A. Lynch. Distributed algorithms. Morgan Kaufmann Publishers, 1996.

[15] C.H. Papadimitriou and K. Steiglitz. Combinatorial optimization: algorithms and complexity.

Prentice-Hall, 1982.

[16] M. Schneider. Self-stabilization. ACM Computing Surveys, 25:45–67, 1993.

[17] S. Shukla, D. Rosenkrantz, and S. Ravi. Developing self-stabilizing coloring algorithms via systematic

randomization. In Proceedings of the International Workshop on Parallel Processing, pages 668–673,

Bangalore, India, 1994. Tata-McGrawhill, New Delhi.

[18] S. Shukla, D. Rosenkrantz, and S. Ravi. Observations on self-stabilizing graph algorithms for anony-

mous networks. In Proceedings of the Second Workshop on Self-Stabilizing Systems, pages 7.1–7.15,

1995.

[19] S. Sur and P.K. Srimani. A self-stabilizing algorithm for coloring bipartite graphs. Information Sci-

ences, 69:219–227, 1993.

[20] G. Tel. Maximal matching stabilizes in quadratic time. IPL, 49:271–272, 1994.

[21] D.B. West. Introduction to graph theory. Prentice-Hall, 2001.

61

Appendix A

Maximal Matching for Trees

A.1 Maximal Matching for Trees

A.1.1 Model

The network is an anonymous, arbitrary tree. The model of computation is locally shared memory

and a distributed scheduler under read/write and fine atomicity.

The name of a processes, used in the following subsections, is for description purposes only.

These names are not available to the processes.

A.1.2 Algorithm for processes x

Processes x has a shared variable ptr, that is either
� � ���

, denoted 0, or points to a processes in N
 x � .
Each processes x can determine, for each of its neighbours y, if y’s ptr is null, points to x, or points

elsewhere. Function
�	���	�

(x) returns a pointer to a random processes, chosen uniformly from N
 x � .
Local variable temp holds a ptr. The pseudocode of the algorithm is provided in Figure A.1.

A.2 Proof of correctness

A non-leaf processes is a pendant if it has at most one non-leaf neighbour. Processes x and y are

matched, it x � ptr 	 y and y � ptr 	 x and neither of their pointers ever subsequently changes.

62

do forever

1: if x � ptr 	 0 then

2: if ��� ���	����� �
� � � y � N
 x � ��� � ����� � � y � ptr 	 x then

3: x � ptr � y

4: else

5: temp � �	�����
 x �
6: if temp � ptr � �

0 � x � then

7: x � ptr � temp

8: end if

9: end if

10: else

11: if
 x � ptr � � ptr ��
�
0 � x � then

12: x � ptr � 0

13: end if

14: end if

end forever

Figure A.1:
���
� � ' �	� ��� � � � � ��#��������	�	��� �

63

Lemma A.2.1. In any tree, if there is a non leaf node, then there is a pendant node.

Proof. Let T be any tree with at least one non-leaf node. Create a new graph F by deleting all the

leaf nodes and their adjacent edges of T . Since T has at least one non leaf node, F must have at

least one node. Since T does not have any cycle and we have not added any edge, F must be a

forest. Hence F must have a component with at least one leaf node, say x. In F the degree of x is

1. Hence in T � x has at most one non-leaf neighbour. Hence x is a pendant in T .

The program counter of a processes x, denoted x � pc, represents the line of the algorithm, pro-

cesses x executes next.

Lemma A.2.2. If a processes x points to a leaf y, then x never changes its pointer and x and y get

matched within one cycle.

Proof. Since y has no other neighbour other than x, y � ptr can only be x or 0. Hence the condition in

line 11 is never true for x. Hence condition x � ptr 	 y holds forever. If y � ptr 	 x and y � pc � 11 then

condition in line 11 is never true for y and x and y are matched. In other case, y � ptr 	 0. After that,

whenever the scheduler schedules y, it executes line 2. Then processes y finds the condition in line

2 is true for processes x. Consequently processes x and y become matched in one cycle.

Lemma A.2.3. If a pendant processes executes line 3, there will be a match within one cycle.

Proof. If the pendant processes x executes line 3 and points to leaf, then by Lemma A.2.2 they

become matched within one cycle. If it points to a non-leaf processes y, then it must have executed

line 2 before and read y � ptr 	 x. At that time y � pc �	 12, because in that case x � ptr 	 z at some earlier

time, when processes y executed line 11. Since z is a leaf node, by Lemma A.2.2, processes x and

z get matched and processes x never executes line 3, a contradiction. Hence y � pc � 11. Therefore,

the condition in line 11 is never true for processes x and y and they are matched.

Lemma A.2.4. With probability 1/2 a pendant processes becomes matched within four cycles.

Proof. Within two cycles, a pendant processes either gets matched or drops its pointer. In the

second case, if it executes line 3, then by Lemma A.2.3 it gets matched within one cycle. Otherwise

it executes line 5, and with probability at least 1/2, it chooses a leaf node. After that, when it

executes line 6, it finds the condition true and points to the leaf. Then by Lemma A.2.2, it becomes

matched within one cycle.

64

Theorem A.2.5. Starting from an illegitimate configuration, the system converges to a legitimate

configuration within expected O(n) cycles, where n is the number of processes in the system.

Proof. If the graph is just an edge then the two processes get matched trivially. In any other case,

by Lemma A.2.1, there is a pendant processes, say x. By Lemma A.2.4, within expected 8 cycles,

x becomes matched. After that, no other processes ever points to x and the node it is matched

with. This essentially leads to a smaller system excluding x, the node it is matched with, and its

neighbouring leaves, containing at most n
 2 nodes. The theorem now follows by induction on

the number of processes.

65

Appendix B

Maximal Independent Set

Definition: An independent set of graph G with node set V and edge set E, is a set U
�

V , such

that no two nodes in U are adjacent. An independent set is maximal, if no independent set properly

contains it.

A network has locally distinct labels, if any two adjacent processes have different labels.

Model: The network is a general graph. The model of computation is locally shared memory

under read/write atomicity with a distributed scheduler. Processes do not need any information

about the network topology. The network has locally distinct labels. Labels are assigned from the

set of positive integers and are stored in the shared variables lid.

Algorithm for process x: Process x has a shared variable called Σ that takes a boolean value. It

also has a boolean local variable L.

Proof of correctness: The maximal independent set of the system is the set of processes with

Σ = � � � � .

Process x is a local minimum, if for all process y � N
 x � , x � lid � y � lid.

Theorem B.0.6. The system converges to a maximal independent set within n cycles, where n is

the number of processes in the system.

66

���������	��
��
�
L � � � � �
�������

ll y � N
 x �
� �

y � lid � x � lid ���	�
y � Σ = � � � �

L � �	�	� � �
Σ � L

Figure B.1:
����� � ' �	��� �	�	� � ���	�	��� ��� � �

Proof. After the first cycle, a local minimum sets its Σ variables to � � � � and never changes. Af-

ter the second cycle, each neighbour of a local minimum sets its Σ variable to
�	�	� � �

and never

changes. The algorithm now proceeds as if the local minima and their neighbours are removed

from the system, resulting a new system containing at most n
 2 processes. It follows by induc-

tion on the number of processes, that the system converges to maximal independent set in at most

n cycles.

Observe that the
���
� � ' �	��� ���	� � �����	��� ��� � � algorithm needs locally distinct labels. A fair

composition with the ! ��"��	�+#	��������� � � �%�&����#���� � �
�
' solves the Maximal Independent Set prob-

lem in an anonymous general network. However, the
����� � ' �	��� �	�	� � ���	�	��� ��� � � algorithm

needs only locally distinct labels, as opposed to locally distinct labels within distance 2. Hence a

simpler algorithm to generate locally distinct labels will suffice.

67

