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ABSTRACT

Computer-based connectionist networks are seeing
increasing use as models of human cognitive processes.
Because these processes are complex, a multi-layer network
is required. Because humans learn, the network model must
also learn. The most common learning rule for a multi-layer
network is back-propagation. The variability of the output
signal produced by the back-propagation learning rule is
usually fixed. If, instead, a parameter is added which
gradually decreases the variability, the network should
learn faster. The results of a simulation based on a
network with such a parameter confirmed this.

When parameters are added to a.network to improve
performance, the resulting network is useful as a model of
human cognition only if the parameter itself models some
aspect of the human performance. The literature pertaining
to human cognition within the context of a limited
attentional resource suggests that attention declines as
learning increases. A human learning experiment, based on a
paired-associate learning task, confirmed the decline in
attention and suggested several possible mathematical
descriptions of the change with a view to modelling this
change by gradually decreasing the variability of output
signals in a back-propagation connectionist network.

A series of simulations was implemented to determine
which of the possibilities suggested by the human learning
experiment represented the best model of the human learning
situation. The simulation results suggested that the
fastest learning performance is achieved with a linear
decreasing function, but a more faithful model of human

learning is achieved with a sigmoidal function.
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INTRODUCTION

This dissertation addresses topics from a number of
disciplines including Psychology, Education, and Computing
Science. To assist readers with a less technical background
in some of these areas, this preface will present an
informal overview of the entire research project. The more
formal dissertation will begin in the next chapter.

When I first began to study "cognition" in the early
seventies it wasn't called that, and behaviourism was
beginning to give way to associationism. The main-stream of
psychological research was concerned with the cause and
effect of cognition, not the mechanism.
| When I returned to the study of cognition in the late
eighties, the current model which seemed to best account for
the complexities of behaviour in general and learning in
particular was a cognitive model -- the kind with short-term
memory, long-term memory, and a central executive. Some
attention was now being focused on internal representations
and processing mechanisms, especially with semantic
networks.

This perspective seemed very mechanistic and overly
complicated, and it had some problems with some specific
areas of cognition in which I was particularly interested.
For example, localized representation: the notion that one

location in the net represented one thought or idea (bird,



canary, yellow,(etc.), didn't seem right in light of
evidence which suggested a more distributed representation.
Further, the models seemed to rely on some, ill-defined
central control mechanism to process input and activate the
node representing a conscious thought. And furthermofe, the
control process seemed to rely on rules, while human
behaviour mostly does not.

Perhaps the components of these models were not to be
taken so literally. The old Pandemonium model didn't mean
there were actual demons yelling in the head and semantic
network models probably didn't mean there were 'yellow',
'canary', and 'bird' neurons in the brain either. Perhaps
rules just described behaviour instead of controlling it.
But if this was the case, there should be a deeper, more
fundamental level where the components of the model were
neurologically plausible. And if this was the case, the
higher, more abstract levelé were largely allegorical, and
perhaps less useful once a deeper understanding was
achieved.

At least part of the appeal of the more mechanistic,
semantic network models is that the model (or parts of it)
can be implemented using fairly straight-forward computer
programminé techniques. I was interested in computer-based
models of cognition and these models seemed interesting at

least in part because they were implementable.



Shortly after this, I encountered connectionist models
of cognition. These models specified a distributed
representation of knowledge and no specific processing
mechanism -- or, more exactly, an automatic, distributed
mechanism.

Computer-based models of connectionist representations
were anything but straight-forward. Mostly they relied on
the stochastic nature of non-linear equations to respond to
specific inputs with a non-deterministic output. Parallel
Distributed Processing (PDP) seemed to be the most
appropriate implementation technology for connectionist
models of human cognition because of its sophisticated
learning rules involving back-propagation.

One of the terms in the set of non-linear equations
which defined back-propagation did not seem to have a
theoretical justification. It was just fixed at a value
which wérked "best" for any given implementation. The
effect of this term on processing in a PDP network seemed to
be similar to that of the temperature term in a Boltzman
machine in that when it was high, learning proceeded rapidly
and was characterized by a high level of activity and by
"divergent" processing but the error rate was also high.
When this "temperature" term was set low, learning was
slower but proceeded in a more regular fashion and the error

rate was low.



It seemed to me that optimal learning would occur if
the temperature was high when learning began and low as
mastery was approached. I developed a simulation of a
learning task based on a connectionist network using a back-
propagation learning rule where I gradually decreased the
temperature at a fixed rateras learning progressed.

The simulation with declining temperature was able to
learn significantly faster than simulations with a fixed
temperature, but I was more interested in modeling human
cognition than developing a fast-learning neural network. A
temperature factor would be useful in a connectionist model
of human cognition only if there were an equivalent factor
in human learning: something which started high then
declined during a novel learning situation, but was
relatively low once the material was mastered.

I liked one part of the more mechanistic cognitive
models -- the idea of limited attentional resources. But
without the special purpose processing mechanisms of the
cognitive models, how could a connectionist model represent
these effects? The behaviour of the simulation with the
declining temperature term seemed to have some of the
characteristics of human attention as it relates to the idea
of a limited attentional resource. By adding a
representation of attention, I hoped to show that a
simulation with a variable temperature term was a "better"

model of human cognition than one without such a term. To



do this I needed to compare human performance on a learning
task with the simulation's performance on a similar task.

Human attention certainly seems to decline as a student
masters knowledge and skillg, but what is the rate of
decline and what factors influence it? The initial
simulation reduced temperature at a fixed rate and by an
arbitrary amount. This first approximation showed the
benefit of a temperature term but it didn't seem likely that
the relationship between learning and attention was that
simple. More likely, attention declines in some non-linear
way as a function of either amount of learning or elapsed
time or séme even more complex interaction of both.

To get a more accurate picture of just how human
attention decreases, I conducted a human learning experiment
which measured attention and learning over a fixed number of
trials of a simple paired-associate learning task. I hoped
the results would provide a mathematical description of the
change in attention versus learning and/or time. I could
then use this mathematical description to vary the |
temperature term in a connectionist network to provide a-
more accurate model of human learning.

The results of the human experiment definitely showed a
decline in attention as learning proceeded and as time
passed. However, the exact mathematical relationship
‘between these was not entirely clear. In the end, I

developed seven network simulations: the conventional PDP



network with fixed temperature and a two-by-three matrix of
simulations based on either learning or time and using one
of three functions (linear, quadratic, and sigmoidal) to
determine temperature.

In terms of network performance, the original
simulation which decreased temperature in a linear fashion
with time was the clear winner. Learning was faster and
more consistent than in any of the other simulations.
However, maximizing network performance was not the
objective. Finding a more appropriate way to model human
learning was.

No one claims that human learning is either fast or
consigtent. There are many circumstances where computer
performance is much faster. So, almost by definition, the
computer-based network with the best performance is not
likely to be the best model of human learning. And, in
fact, this research suggests that the best way to model
human learning in a connectionist network is to decrease

temperature sigmoidally as learning increases.



CHAPTER ONE: CONNECTIONISM

The term "connectionism" has been applied to various
aspects of human cognition for nearly a century and,
although still not entirely accepted as a major theory of
human cognition, connectionism has gained considerable
support over the last decade. As yet, there is no clearly
accepted delineation of the connectionist realm. This
chapter will build a specific perspective on the term
connectionism and will establish a context for the rest of
this dissertation.

Computer-based connectionist networks are used by
researchers in both cognitive science and artificial
intelligence. Although the implementation details of all of
these networks may be similar, the objectives often are not.
Most artificial intelligence research tries to develop
computer-based solutions to the kinds of problems which
traditionally have been solved best by humans. Sometimes
what is known about human cognition facilitates this
development but the objective is to solve the problem in the
best way possible. On the other hand, cognitive science
research is more concerned with developing a computer
application which faithfuliy replicates some aspect of human
behavior. In general, artificial intelligence applications
attempt to maximize the performance of a network while

cognitive science research may sacrifice the absolute



performance of a network to more get a more human-like
response. It is this later perspective which is most
appropriate for this dissertation.

All connectionist models of cognition share a general
set of features. Details of how these general features
behave and interact place constraints on a model's
architecture. A number of implications arise from the
interaction of these general features within a model. The
first three sections of this chapter will describe the
general features of connectionist models, identify some
architectural constraints, and discuss the implications
these constraints hold for connectionist models.

Not all cognitive scientists accept connectionism as an
appropriate psychological model. The fourth section
identifies and discusses some of the criticisms leveled
against connectionism and the last section discusses the
relationship between connectionism and some of the more
conventional psychological paradigms. The chapter will
close with some conclusions about the use of connectionist

models to explore human cognition.

Basic Common Features
All connectionist models have, as their basis, a
network of interconnected nodes or neurons. One such node
is illustrated in Figure 1.1. Each node has one or more

input connections which come either from the external



environment or from other nodes in the network. Each node
also has a single output connection, but that output can
branch to send its signal to more than one other node or to
the outside environment. These connections carry signals
from node to node in one direction only. Each connection
has a weight associated with it. This weight modifies the

strength of any signal passing through the connection.

Activation Output

(Si;) Level

Figure 1.1 A connectionist network node receiving input (I)
modified by weights (W) on connections from three other
nodes and producing output which branches to three

other nodes.
Each node has an activation level that changes with

time. An activation function determines this activation
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level based in part on the node's previous activation level
and in part on the strengths of all of the weighted input
signals the node receives. All of the nodes in a network
use the same activation function to determine their
activation levels.

The activation level, in turn, serves as the basis for
an output function which determines the strength of the
node's output signal. Again, all of the nodes in the
network use the same output function.

The process of evaluating the weighted input signals,
calculating a new activation level, and producing an output
signal is an entirely local event analogous to the firing of
a neuron in a biological neural network. There aré two
aspects of this calculation which are characteristic of
connectionist networks. First, there is no central
controlling mechanism -- all processing is done by the
individual nodes and all nodes perform their processing at
the same time (in parallel). Second, the transformation of
input signal to output signal must be non-linear and, in
fact, some would suggest sigmoidal (Kosko, 1987).

A connectionist network reacts to signals received from
the environment. For convenience, these signals are usually
represented as coming from an input node whose activation
level is fixed at a specific value which represents the
signal from the environment. A network will usually have

more than one input node so that more than one environmental
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stimulus can be represented. Instead of allocating one node
to each stimulus, most networks represent each stimulus as a
pattern of values across all input nodes. 1In this latter
case, the input to the network is said to be non-
orthographic since two or more different stimuli may present
the same value to one or more of the input nodes.

To be useful, a network must produce a response to an
environmental stimulus. To accomplish this, one or more
nodes in a network are designated as output nodes. The
signal coming from an output node (or the pattern of signals
coming from all output nodes) represents a response from the
network.

A network may consist solely of input and output nodes
or it may include hidden nodes as well. Hidden nodes have
no direct connection to the environment. Instead, they
accept signals from other nodes, adjust their own activation
levels accordingly, and send a commensurate output signal to
other nodes.

The processing which occurs when a network responds to
a stimulus might proceed as follows:

A stimulus is presented to the network by setting the
“activation level of all input nodes to a pattern of specific
values and fixing them there. All of the input nodes then
send out signals whose strength is determined by these fixed
activation levels. These signals are sent along connections

to other specific nodes. Each connection has a weight
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attached to it and this weight modifies the strength of the
signal passing through the connection.

Any one node receiving a signal from an input node will
likely be receiving signals from other nodes as well. It
combines all of these signals and uses the result to adjust
its activation level. The node then emits its own signal
based on its new activation level.

In this way, signals are propagated through the entire
network until all output nodes are producing an output
signal. The pattern of these signals across all output
nodes is the network's response to the specific stimulus
"presented" to the input nodes. If a second, different
stimulus is now presented (by setting the input nodes to a
new pattern of activation levels), the network will respond
with a different response (paEtern of signals) at the output

nodes.

Architectural Constraints

The general features mentioned. in the previous section
are common to all connectionist models. Any one specific
model, however, will implement these basic features in its
own, unique way resulting in a specific network
architecture. The details of this specific architecture
will place constraints on the behavior of the sﬁecific
.network and, indirectly, on the connectionist model the

network represents.
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Interconnection and Layers

The amount of interconnection between nodes in a
network is determined by the number of other nodes to which
any one node may be connected. In a fully interconnected
network each node is connected to all of the other nodes.

In a partially interconnected network each node is connected
to only some of the other nodes. Most connectionist
networks, especially those with hidden nodes, are usually
partially interconnected.

In a partially interconnected network, nodes are
usually grouped into layers according to the nature of their
interconnectedness and according to the function of the node
(input, hidden, or output).

One of the oldest connectionist networks consisted of a
single layer of input nodes and a single layer of output
nodes, with all possible connections established between
layers but not within layers. This type of network is very
simple but it is quitergood at modeling human perception,
and is consequently often called a perceptron (Rosenblatt,
1962) .

Although a perceptron is quite powerful in some
situations, it is unable to address many important
processing requirements (Minsky and Papert, 1969). More
sophisticated models allow for a third layer of hidden nodes
between the input and output nodes. Some architectures

allow these hidden nodes to be connected to any combination
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of input nodes, output nodes, and other hidden nodes. Other
architectures restrict connections in some way. For
example, in a bottom-up architecture with a bottom layer of
input nodes and a top layer of output nodes, input nodes
must be connected to either hidden or output nodes and
hidden nodes cannot be connected down to input nodes

(Rumelhart, Hinton, & Williams, 1986).

© © ©
W4 ‘3;‘2
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O O O

Perceptron Hidden Nodes

Figure 1.2 Examples of two network configurations showing
different numbers of layers and different amounts of

connectivity.
< 1 .

For most connectionist models, the update of signals
within each node occurs discretely, rather than continuously
(Obermeier & Barron, 1989). This means that all of the
nodes in a network fire and then "rest" for a moment before
firing again. 1In a network with no hidden nodes this may
not seem important because the single firing will carry all

of the input signals directly to the output nodes, but this
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distinction has much more significance when hidden nodes are
introduced.

If there is a layer of hidden nodes between the input
nodes and the output nodes, a single firing of the network
will not be sufficient for the activation levels of the
input nodes to affect the output nodes. Instead, the input
activation will spread only as far as the hidden nodes, and
a second firing will be required before the final output is
generated. In networks with multiple layers of hidden nodes
(i.e., networks whgre hidden nodes can be connected to other
hidden nodes) multiple firings will be required before the
input activation has spread throughout the network and all
nodes again come to rest in a stable state.

In a richly interconnected network, it is possible for
a pattern of connections to exist such that the output
signal from a node eventually comes back as an input signal
for that same node. This is called a feedback loop. A
signal entering such a loop could resonate indefinitely and
prevent the network from ever reaching a stable state. To
prevent this, Kaplan, Weaver, and French (1990) specify
mechanisms of inhibition and fatigue to dampen activation
between and within nodes respectively. The resulting
architecture can "provide thé system with the means of
having internal, semi-autonomous, activatible
representations of reality that do not rely uniquely on the

sensory interface".
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The output pattern produced by a network in response to
a specific input pattern depends on the activation level of
the nodes in the network when the stimulus is presented and
on the weights of the connections between nodes. The
activation levels automatically change each time a new set
of signals is propagated through the network, but the
weights stay the same. It is the weights, therefore, which
represenﬁ the fixed 'knowledge' which allows a network to
produce the same (or almost the same) response any time it
is presented with the same stimulus pattern.

To establish the connection weights which will allow a
network to provide an appropriate response to each stimulus,
a network must be trained. Thisrcaﬁ either be done manually
by an outside agent or automatically by the network itself.
If a network adjusts its own connection weights, the network
is said to be able to learn. The function the network uses
to make these adjustments is called the network's learning
rule.

Hebbian Learning Rule

The basis for most connectionist network learning rules
is the Hebbian learning rule "which holds that associations
are built up between things that:occur together"

(Zeidenberg, 1987, p. 240). Any time two connected nodes

have high levels of activation, this rule increases the
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weight of the connection between them. In most cases, a
more elaborate variant of this learning rule is used.
Delta Learning Rule

The application of this rule assumes a fully
interconnected network with no hidden nodes. 1Initially the
weights of all connections are set to small random values.
The network is trained by repeatedly presenting training
pairs consisting of both the input and the desired output.
Each time the network receives the input it produces some
outéut. For each output node, the delta rule calculates the
difference between the actual and the expected output and
adjusts the weight of the connection to each node
accordingly. The amount of adjustment depends not only on
how "wrong" the output node was but on the strength of the
input to that node (Jones & Hoskins, 1987).
Back Propagation

For networks with hidden nodes, a more complicated
learning rule is required. The difference between the
actual and the expected output can only be used to update
those nodes directly connected to the output nodes.
However, the amount by which these nodes are updated can
serve as a basis for updating the nodes to which they are
connected. In this way the output error can be propagated
back through the network all the way to the input nodes.
This is much like the spread of activation forward through

the network, except that it spreads back from the output
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nodes to the input nodes and it is the connection weights
not the activation levels that are adjusted. This back-
propagation learning rule is somewhat restricted as well in
that it only works for a bottom-up network topology
(Rumelhart, Hinton, & Williams, 1986).

Back propagation is not an enti?ely new concept.
Thorndike proposed a teaching rule by which the positive
outcome strengthened connections between an immediately
preceding behavior and stimulus input present at the time,
the so-called "Law of Effect" (Walker, 1990, p. 25). This
rule has much in common with back propagation.

- - . ]

Networks with massively interconnected hidden nodes can
learn without being specifically trained. One example of
this involves the competitive learning rule. In such a
network, clusters of hidden nodes are structured in such a
way that: each node in the cluster is connected to all input
nodes; the weights of the input connections are initially
random; input connections to one node in the cluster inhibit
similar connections to other nodes in the cluster; and a
Hebbian learning rule is applied. When a competitive
learning network stabilizes, each cluster will come to
represent a general feature or characteristic of the input.
If a similar layer of hidden nodes takes its input from the
clusters in the first layer, this second layer will come to

represent more complex features of the input.
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Given a threshold number of connections between a
set of simple neurons, a form of self-organization
takes place, and from this organization collective
computational properties emerge, such as
association, generalization, differentiation,
preferential learning, optimization, and fault

tolerance (Josin, 1987, p. 184).

Characteristics of Learning in Networks

A single connectionist network can be trained to make
appropriate responses to several different stimului. The
simplest case involves mutually exclusive stimuli where the
signal strength at every input node is different for each
stimulus. An extreme example of this would be where each
stimglus sets a different input node to a high value. As
long as there are at least as many input nodes as stimuli,
the network receives unambiguous input and can learn to make
consistent, reliable responses. Even if the different
stimuli are represented as patterns of high values at
several input nodes, the network will learn to differentiate
between stimuli as long as each stimulus uses a different
set of input nodes for its patfern.

On the other hand, it is possible to have redundancy in
the input. This happens when several different stimuli set
some of the same' input nodes to similar values.
Connectionist networks have some characteristic ways of

responding to this kind of redundant input and the responses
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are often similar to the way humans respond in similar
circumstances. This section will discuss several of these
characteristic responses:

Connectionist networks can resolve ambiguous input
because they use a distributed répresentation. In contrast,
semantic networks use local representations in that a single
concept in such a network is represented in a single node.
For example the concept "grandmother" would be represented
by a single "grandmother" node. In a connectionist network,
however, a single concept is represented by a unique pattern
of connection weights distributed across the entire network
(McClelland, 1988). Walker (1990) uses a piano analogy to
deséribe distributed representation. The keys of the piano
represent all of the nodes in the network. Any one sound
coming from the piano is analogous to a single concept in
the connectionist model. This sound is "represented" by the
keys being pressed at any one instant. If a piano with 100
keys were played with one hand (5 keys pressed) there are 75
million possible sounds which could be produced.

In a connectionist network the proportion of nodes
active (keys being played) at one time is more likely to be
half of the nodes in the network which is usually
considerably more than five. In a network with only one
hundred nodes, fifty of them might have significant

activation levels at one time. If five pianists were



21

playing the piano at the same time (10 hands = 50 keys),
reporting the number of possible sounds would require a
thirty digit number. While the piano only has a few dozen
keys, the human brain has billions of neurons, even though
the human brain is not fully interconnected, the resulting
possible combinations of distributed representations should
be more than sufficient to represent all of the concepts any
one human mind could hold.

In a distributed representation, similar concepts have
similar patterns of activation oxr, to put it another way, if
large areas of two patterns of activation are the same,
those two patterns represent similar concepts. This feature
of connectionist models leads to automatic generalization.
Zeidenberg (1987) presents the following example of
automatic generalization. The concepts "gorilla" and
"chimp" are related. This means that many of the most
highly activated nodes in the gorilla pattern are also
highly activated in the chimp pattern. If the concept
'hairy' comes to be associated with gorilla, the weights
between the highly activated nodes in both the hairy pattern
and the gorilla pattern are increased or strengthened.

Since these nodes in the gorilla pattern are mostly the same
nodes as in the chimp pattern, hairy becomes associated with
chimp automatically. Similar automatic generalization is a

well established feature of human learning (Baddeley, 199Q).
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Graceful Degradation

If a connectionist network is trained to respond to one
input pattern and receives a slightly distorted version of
that input it will probably still produce the proper
response. A conventional rule-based system, on the other
hand, will just fail to produce a match for the input and
will have no suitable response at all. If the input is
distorted even more, the connectionist network will not
fail, it will just become increasingly more likely to
provide an incorrect response. The performance of the
connectionist network degrades gracefully as the quality of
the input decreases. As with automatic generalization,
graceful degradation is a common characteristic of human
performance (Norman & Bobrow, 1975).
Goals

When a connectionist network is learning, it adjusts
its connections' weights to reduce what it "perceives" to be
incongruities between the input and a desired output. The
desired output can be viewed as a "goal" and the learning
process as goal satisfaction. "Connectionist models offer
for the first time é convenient way of incorporating goals
into the dynamics of information processing systems" (Estes,
1988).
Content Addressable Associative Recall

The sharing of common elements by similar concepts

provides an automatic mechanism whereby an attempt to
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retrieve one representation automatically activates similar
representations and also activates the set of common
elements which constitute the generalization of the other
representations. The retrieval cue need contain only part
of the input that was learned. The retrieval cue can even
include incorrect information and the network will recall at
least an approximation of the original material. This
results in the instant, or at least very fast, retrieval of
information the network has "learned".
Fault Tolerance

Distributed representation makes a connectionist
network less sensitive to damage. The loss of a few nodes
which are important to a concept may make the concept a
little fuzzy but the concept can still be recalled. 1In
contrast, with the kind of local representation found in a
semantic network, loss of a node involves loss of an entire
concept. The fact that brain damage in humans does not lead
to the loss of discrete concepts suggests that the human
brain also incorporates distributed representations.
Knowledge Structures

Learning in connectionist networks is accomplished
through the automatic application of simple mathematical
expressions and results in adjustments to connection
weights. Knowledge, in such a network, is nothing more than

the set of all connection weights across the entire network.
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Many cognitive psychologists consider knowledge to be
stored in relatively complex structures variously called
frames (Minksy, 1977), scripts (Shank & Abelson, 1977), or
schema (Rumelhart & Norman, 1987). "Such knowledge
structures are assumed to be the basis of comprehension."
(McClelland, Rumelhart & Hinton, 1986, p. 9). However,
these complex constructs are only approximations of the
actual underlying structure of knowledge as represented by
the connectionist model. Although usually associated with
semantic networks, these knowledge structures can be
implemented in connectionist networks as well.

In the network, you don't explicitly define the
schemata; you only set the associations between
pairs of descriptors. The schema emerges out of
the network as a natural consequence of its
behavior. Thus, the schemata are not explicitly
represented in the network, but rather are simply
patterns of activation across a set of descriptors
(Zeidenberg, 1987, p. 237).

Such a network nicely accounts for such human cognitive
rbehavior as activation of schema on incomplete information
(associative recall) and the formation of overlapping schema
(automatic generalization).
Introspection

Knowledge in connectionist networks is embedded
inextricably in the machinery of processing. Consequently,
this knowledge is completely inaccessible to introspection

or report. "However, it should be noted that while the
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connection changes themselves are not accessible, the
patterns of activation [the connections] make it possible to
construct can be accessible to other parts of the processing

system" (McClelland, 1988, 112).

Criticisms

Although connectionist networks describe an interesting
processing mechanism which seems to have much in common with
human performance, such networks are not unconditionally
accepted as suitable models of human cognition. Criticisms
of the various connectionist models have ranged from
dissatisfaction -with the specifics of current
implementations to outright rejection of connectionism.

he T - . Limi .

The perceptron mentioned above was developed three
decades ago (Rosenblatt, 1962). This simple network
consists of input nodes and output nodes but no hidden
nodes. The result is a very simple network suitabie for
simulating (among other things) some aspects of human
perception. Th%s was the first connectionist network and
was actually built into the computer hardware.
Connectionist networks ofrthis type are seldom used today
(Hecht-Nielsen, 1988), but early criticisms of perceptrons
still hinder acceptance of modern connectionist models.

Perceptrons could learn but they could not simulate

complex performance. Minsky and Papert's (1969) much
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publicized criticism of simple, connectionist networks
involved a series of mathematical proofs which showed that a
perceptron-like network was incapable of performing a number
of elementary logical processes. However, a minor change in
architecture, the addition of hidden nodes, allows
connectionist networks to perform much more complex’
processes. Minsky and Papert were aware of the value of
hidden nodes, but networks with significant numbers of
hidden nodes are difficult to analyze in the formal manner
they used to discredit simple networks. Their book was
instrumental in discouraging research into neural networks
even though "little attention was paid to the fact that they
directed their criticism at a very simple system, the
single-layer perceptron" (Zeidenberg, 1987).

One aspect of Minsky and Papert's criticism did address
networks with hidden nodes. At that time no algorithm was
known which would allow networks with hidden nodes to learn.
They did, however, suggest that sometime in the future
"perhaps some powerful convergence theorem will be
discovered, or some profound reason for the failure to
produce an interesting 'learning theorem' for the
multilayered machine will be found" (Minsky & Papert, 1969,
p. 232). |

This represented a serious limitation of ‘connectionist
networks. Without hidden nodes, a network must rely solely

on distinctions which already exist in the input data. If
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the data is "discontinuous or nonlinearly separable" these
distinctions may not be sufficient to permit the network to
learn. Adding hidden nodes allows the network to develop
its own, internal representations, allowing it to learn
patterns which are not linearly separable (Caudill, 1988).
Much human cognition involves even less discrete input, so
it would seem that to be effective, connectionist networks
must have hidden nodes. But, if connectionist networks
require hidden nodes to simulate complex human performance,
then their value is strictly limited in the absence of the
ability of hidden units to learn. This limitation has
recently been redressed by the back-propagation learning
rule. |

In an opening talk at the 1988 IEEE International
Conference on Connectionist Networks, Marvin Minsky
acknowledged that:

Given a threshold number of connections between a
set of simple neurons, a form of self-organization
takes place, and from this organization collective
computational properties emerge, such as
association, generalization, differentiation,
preferential learning, optimization, and fault
tolerance. (Josin, 1987, 184).

In a clever and amusing account of this controversy,
Papert (1988) has also all but retracted his earlier
criticisms:

Once upon a time two daughter sciences were

born to the new science of cybernetics. One



sister was natural, with features inherited from
the study of the brain, from the way nature does
things. The other was artificial, related from
the beginning to the use of computers. Each of
the sister sciences tried to build models of
intelligence, but from very different materials.
The natural sister built models (called neural

networks) out of mathematically purified neurones.

The artificial sister built her models out of
computer programs.

In their first bloom of youth the two were
equally successful and equally pursued by suitors
from other fields of knowledge. They got on very
well together. Their relationship changed in the
early sixties when a new monarch appeared, one
with the largest coffers ever seen in the kingdom
of the sciences: Lord DARPA, the Defense
Department's Advanced Research Projects Agency.
The artificial sister grew jealous and was
determined to keep for herself the access to lorxd
DARPA's research funds. The natural sister would
have to be slain.

The bloody work was attempted by two staunch
followers of the artificial sister, Marvin Minsky
and Seymour Papert, cast in the role of the
huntsman sent to slay Snow White and bring back
her heart as proof of the deed. Their weapon was
not the dagger but the mightier pen, from which
came a book -- Perceptrons -- purporting to prove

that neural nets could never £ill their promise of

building models of mind: only computer programs
could do this. Victory seemed assured for the
artificial sister. And indeed, for the next
decade all the rewards of the kingdom came to her

28
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progeny, of which the family of expert systems did
best in fame and fortune.

But Snow White was not dead. What Minsky and
Papert had shown the world as proof was not the
heart of the princess; it was the heart of a pig.
To be more literal: their book was read as proving
that the neural net approach to building models of
mind was dead. But a closer look reveals that
they really demonstrated something much less than
this. The book did indeed point out very serious
limitations of a certain class of nets (nowadays
known as one-layer perceptrons) but was misleading
in its suggestion that this class of nets was the
heart of connectionism . ,

Connectionist writings present the story as
having a happy ending. The natural sister was
guietly nurtured in the laboratories of a few
ardent researchers who kept the faith, even when
the world at large let itself be convinced that
the enterprise was futile. . . But for the moment
suffice it to note that the princess has emeréed
from relative rags and obscurity to win the
admiration of all except a few of her sister's

disgruntled hangers-on. (Papert, 1988)
Level of Analysis

Some critics of connectionist models (e.g., Fodor &
Pylyshyn, 1988) would agree that neural networks are a
reasonable representation of brain functioning, but they
feel that psychological theories should be grounded in
higher-order structures. "Accepting the higher-level
regularities in symbol processes means accepting the charge

that the lower-level interactions are sometimes
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implementational. It does not mean accepting that they are
always or 'merely' implementational." (Walker, 1990, p. 35)
Although more physiological than cognitive, Marr's

(1982) framework of three levels of analysis is often used
to evaluate computer-based cognitive models (Sejnowski &
Churchland, 1989; Pylyshyn, 1989). This framework
distinguishes between abstract, procedural (algorithmic),
and implementational (architectural) levels of analysis, and
it suggests that analysis at one level can proceed in the
absence of understanding at lower levels. In the past, some
cognitive scientists applied this "doctrine of independence"
to study the mind at the level of symbolic algorithms at a
time when little was known about the architecture of the
brain. Unfortunately, this doctrine has also been
misapplied in that today some researchers feel that what is
now known about the implementation level of cognition has
nothing to contribute to analysis at the algorithmic level.
"In contrast to the doctrine of independence, current
tconnectionist] research suggests that considerations of
implementation are vital in the kinds of algorithms that are
devised and the kind of computational insight available to
the scientist“.(Sejnowski & Churchland, 1989, p. 303).

| Many connectioniét researchers argue that the
architecture of a model places strong constraints on the
types of algorithms the model can support. When most

cognitive models were implemented on similar serial, symbol
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processing computers, all of the models were subject to the
same constraints, and thus disregard for the lower level of
analysis may have been justifiable. Connectionist models
assume a parallel architecture (real or simulated) and thus
are subject to some different constraints than most symbol
processing models. Many connectionists argue that this
aréhitecture is more biologically plausible and that
analysis at the architectural level is as important as that
at other levels.

Tt is the architecture that determines which kinds
of algorithms are most easily carried out on the
machine in question. It is the architecture of
the machine that determines the essential nature
of the program itself. It is thus reasonable that
we would begin by asking what we know about the
architecture of the brain and how it might shape
the algorithms underlying biological intelligence
and human mental life (Rumelhart, 1989).

Another aspect of the level at which analysis proceeds
has to do with the power of a theory. Meaningful theories
must be testable. For some theorists, this means that
theories should occasionally fail. Some critics of
connectionism (Estes, 1988) feel that connectionist models
"are too powerful to be susceptible to direct empirical
test". Massaro (1988) presents a mathematical analysis of
the ability of a multi-layered, fully interconnected

connectionist network to process linguistic information, and
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concludes that such a model is too powerful to be of any
theoretical value.

In a traditional, empirical assessment of the
performance of competing models, this may pose a problem but
there are other ways of evaluating connectionist models.
Chapter 6 argues for a more qualitative methodology instead

of looking at performance based on the power of the model.

Relationship to Other Paradigms

Some cognitive scientists suggest that connectionism
may represent the start of a paradigm shift for psychology
(Schneider, 1987). I feel that while connectionism
contradicts the premises of some psychological paradigms, it
represents a synthesis of the common ground among others.
This section discusses some of that common ground. The
strength of any new theéretical perspective can be seen in
its ability to subsume, or at least co-exist with, existing
competing theories.
Constructivist

An important characteristic of connectionist models is
that input patterns are not stored. Instead, connection
strengths are modified so that, at a later date, the input
pattern can be recreated. This construétivist view suggests
that learning is a matter of "finding the right connection

strengths so that the right patterns of activation will be
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produced under the right circumstances" (McClelland,
Rumelhart & Hinton, 1986, p. 32).
Gestalt

A number of characteristics of Gestalt theories are
consistent with a connectionist perspective. They both
attempt to "explain the organization of the perceptual
world, not its relationship with the environment" and these
organizing processes are relatively automatic (Epstein,
1988) . With both Gestalt and Connectionist theories,
biologically plausible mechanisms are preferred, and in both
processing is distributed rather than under the control of a
central executive process (van Leeuwen, 1989).

o ‘Nativi

Although the emphasis within connectionism is on
systems which learn by adjusting connection weights in
response to input (empiricism), networks start with non-zero
connection wéights. These are often small random values,
but in theory, they could be significant values which
predispose a network towards some initial reaction
(nativism) .

A subsidiary role for [connectionism] could be to
inject some empiricist realism into post-
Chomskyean theories of human cognition . . . a
test of the degree to which any connectionism is
merely a neural kind of materialism (mind depends
on the brain, and the brain is a connectionist

machine) is whether it makes any predictions, both
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about experimental results and desirable social
interventions" (Walker, 1990, 34).

- o

Cognitive models are usually based on explicit rules
and provide a sophisticated mechanism for selecting and
applying the rules. Connectionist models provide a very
simple, local mechanism that does nothing more than adjust
connection strengths which allows a "network of simple nodes
to act as though it knew the rules" (McClelland, Rumelhart &
Hinton, 1986, p. 32).

The lack of a formal logic mechanism is not seen as a
limitation of connectionist models. Since logic is "a
system that was invented as a corrective for human thought
[it] constitutes an improbable candidate for being the basis
for thought" (Kaplan, Weaver, & French, 1990, p. 68).

Connectionist models "learn" how to behave. The
dynamic representation of knowledge in the ever-changing
connection weights of the network are at the heart of a
connectionist model. Cognitive models are mostly concerned
with a static representation of what is and have little
concern for how it got that way.

Bel o 3 et s

The lack of higher-order executive processes and a
concern for learning.suggest that connectionist models are
at least associationistic if not behavioristic.

Connectionist models "recapture the associationist's and
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behaviorist's interest in learning which cognitivists
largely gave up in their search for mechanisms of the mind
that were often taken to be innate" (Bechtel, 1985, 56).
Papert (1988) has even suggested that connectionism now
"promises a vindication of behaviorism". However, Kaplan,
Weaver, and French (1990) suggest that to characterize
connectionism as a "computerized revival of behaviorism" is
appropriate only for the more simplistic architectures.
Unlike behaviorism, however, connectionism is interested in

the cognitive mechanism which mediates responses to stimuli.

Conclusion
This chapter has discussed connectionism from a
theoretical perspective -- defining some basic terms and
setting a context for discussion. Now that the stage is
set, the next chapter will look at some specific

connectionist research.
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CHAPTER TWO: CONNECTIONIST RESEARCH

Connectionist theories and networks are increasingly
being used as a tool for research into human cognition.
Some connectionist research paradigms resemble the
conventional, empirical research performed by most
\experimental psychologists over the last few decades. Other
connectionist research has more of a computing-science
flavour where the intent is to build a computer simulation
of human behaviour. Some connectionist research combines
these two approaches and uses the behaviour of a simulation
to "predict" the responses of subjects in a subsequent
experiment. This section presents some examples of
connectionist research, in part to address specific
theoretical and methodological issues, and in part to
establish an approach for the research project associated
with this dissertation.

Some connectionist research focuses on the theoretical
implications of a connectionist model of human cognition.
For such theoretical models to be accepted as valid they
must account for what is already known about human
behaviour. To be accepted as useful, connectionist theories
must add something new to existing accounts of human
behaviour. The first few examples of research presented

here address specific issues or implications arising out of
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the application of connectionist theories to human
performance.

Other connectionist research actually implements
computer-based connectionist models which perform in a
manner similar to human performance with little regard for
maximizing artificial-intelligence-1like, problem-solving
performance. Several examples of this type of research are

presented as well.

Research To Support Theories

The research presented in this section was conducted to
provide evidence in support of specific aspects of
connectionist theories. Many of these specific aspects were
discussed in the previous chapter and this section is
organized to parallel that discussion.
Content Addressability

Most cognitive information processing models claim that
recall processes are mediated by the manipulation of
symbols. These models can easily handle arbitrary, symbol
based memory retrieval but have problems with content
addressable memory retrieval. The empirical data suggests
that human cognition is just the opposite. Human recall of
content addressable information is relatively easy and
natural, while any significant amount of arbitrary
information presents a major memory task (Oaksford, Charter

& Stenning, 1990).
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Starting with the assumption that the meaning of a
concept can be decomposed into its semantic elements or
features, in what way does the number of features
(complexity) of a concept affect memory load and processing
time? Within the context of the decomposition assumption,
most semantic memory models would predict an increased
processing time for more complex concepts. Klimesch (1987)
takes the fact that empirical observation does not confirm
this as evidence against the decomposition assumption.
Instead, he suggests that it is the semantic model of memory
itself which is discounted by this evidence and presents a
connectivity hypothesis with distributed representations of
concepts to account for this.

Organization theory suggests that in a free recall
experiment, as the subjects study the to-be-recalled words,
they chunk the words into subjective categories using a
process similar to automatic generalization. When they
recall the words, imperfect recall represents forgetting of
entire categories rather than just some of the words within
each category. Recall of lists of explicitly related groups
of words can be facilitated by cueing the subjects with the
name of the organizational categories. This helps because
it makes sure that the subjects do not overlook any of:the
categories. Cued recall of unrelated lists of words is less

straight-£forward.
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Penny (1988) was able to facilitate recall of unrelated
items learned incidentally during a sorting task based on
subjective categorization. On an unexpected recall text
following the sorting task, the subjects were presented one
item from each of the categqries they had established during
the sorting task and were asked to recall the others. The
results were not only consistent with organizational theory,
they also support the connectionist notion of automatic
generalization.

John, Tang, Brill, Young, and Ono (1986) mapped the
levels of activation in cat brains performing detection of
previous learned visual stimuli. They found that, depending
on how extensively the cat had been trained to the stimulus,
between 5 million and 100 million neurons were activated by
presentation of the visual cues. More important, they found
that the activated neurons were widely distributed
throughout the brain. This finding is "compatible with
prior evidence of a distributed memory system" and
rdifficult to reconcile with theories in which individual
neurons are dedicated to specific memories".

Learning Rules

As mentioned above, one of the constraints which
distinguish different connectionist architectures is the
learning rule each uses. Gluck and Bower (1988) discuss a

series of experiments which test the appropriateness of a
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least-mean-squares learning rule (similar to the delta
learning rule). They compared the performance of an'
appropriately configured connectionist network to that of
human subjects on a category learning task involving
simulated medical diagnosis. "The results of these three
experiments provide preliminary converging evidence that the
LMS rule is more general than formerly believed" (Gluck &
Bower, 1988) and is able to serve és the basis for a model

of human category learning.

Research To Model Performance

This section provides some examples of research based
on connectionist models and uses these examples to make an
argument for the suitability of one specific class of
connectionist models for thé research project associated
with this dissertation.

Gluck and Bower (1988) present two general
methodologies for using connectionist networks to
investigate human cognition. One involves selecting some
aspect of human performance and constructing a network to
perform the same task in a manner such that the "major
regularities and salient phenomena" are preserved. The
second methodology focuses on a specific gxperimental
paradigm and then builds a network whose performance will
predict human performance within that paradigm. The studies

presented here show a progression from simple to more
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complex models. Taken as a whole, these studies suggest
that a ﬁulti—layer network using a back-propagation network
is likely to be the most appropriate configuration for a
network to investigate the aspects of human cognition
addressed by this dissertation.

Simple C C N ]

Gluck and Bower (1988) present a series of three
experiments in which they simulate "human category learning"
within the Rescorla-Wagner associative learning paradigm.
They used a categorization task which consisted of
diagnosing one of two mutually exclusive diseases based on
the presence or absence of four symptoms. They used a
simple, two-layer network with four input nodes reflecting
the symptoms and a single output node reflecting the binary
categorization. They used a least-mean-squares (LMS)
learning rule (also known as the Wodrow-Hoff rule or the
delta rule) to train the network. The LMS rule implements
the Rescorla-Wagner paradigm. Their objective was to
discover the extent to which the LMS rule (and indirectly
the Rescorla-Wagner paradigm) provides "an empirically
accurate account of how people learn".

The three experiments varied the training set with
respect to: the frequency of the two diseases, the
predictive value of symptoms, and the extent to which the
absence of a symptom implies the presence of its converse.

The methodology consisted of determining the performance
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predicted by the LMS model then comparing these predictions
to the performance of human subjects. In general, the
performance of the subjécts was consistent with the
predictions of the LMS rule.

Although single-layer networks are able to simulate
human categorization tasks, they are unable to perform some
very simple discrimination tasks. The most commonly
discussed short-coming of single-layer networks is their
inability to solve the exclusive-or (XOR) problem. This
problem requires the network to respond positively if either
of two inputs is present and negatively if neither is
present or if both are present. Although single-layer
networks cannot learn to solve this problem, networks with
one or more layer of hidden nodes can.

Multi-Layer Networks

Kehoe (1989) characterizes stimulus discrimination
learning within a classical conditioning paradigm as a
special case of this XOR problem. In this case, the subject
is trained to respond only when either but not both of two
conditioned stimuli are present. The performance of a
properly configured connectionist network is extremely
similar to animals conditioned to respond to either a tone
(CST) or a light (CSL).

The topology of the network used by Kehoe is just
slightly more complicated than the minimum usually required

to solve the XOR problem in order to account for the
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presence of the unconditioned stimulus (UCS). Three input
nodes representing the UCS, CST and CSL are fully
interconnected with a hidden layer of two nodes. The two
hidden nodes are connected to a single output node
representing the presence or absence of the response (R).

Connections in multi-layer networks are usually
restricted“to adjacent layers, but Kehoe has added a
connection between the UCS node and the R node. Although
this is not typical of multi-layer topologies, it is
certainly consistent with the classical conditioning
paradigm.

Another manner in which Kehoe diverges from a
"standard" multi-layer configuration is in the assignment of
different output thresholds to the two hidden units. In
theory, all of the "knowledge" represented in a
connectionist network resides in the connections.
Occasionally, some implementations hard-wire these
connections to represent specific knowledge in the domain
within which the network is expected to perform, but in most
cases connectionist networks are  expected to "learn" what
the connection weights should be and this learning is an
important part of the simulation. Hard-wired output
thresholds constitute another form of outside knowledge.
The theoretical basis for connectionist networks does not
postulate a mechanism whereby these threshélds could be

learned.
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If the purpose of a connectionist network is to
simulate human behaviour for some practical purpose
(screening loan applicants, interpreting sonar signals,
detecting bombs, etc.), then it probably does not matter
where knowledge resides in the network or where it came
from. On the other hand, if the purpose of the simulation
is to increase our theoretical understanding of human
learning and behaviour, then any form of hard-wired
knowledge requires some theoretical explanation for its
inclusion. Kehoe provides no such justification for the
existence of the thresholds on the hidden-layer nodes or for
the values to which they are set. This diminishes the
usefulness of Kehoe's investigations in terms of a full
understanding of how classical conditioning proceeds.

Kehoe does, however, show that although Gluck and Bower
(1988) were able to simulate some aspects of human behaviour
using a simple, one-layer network, simulating other
behaviour will likely require a multi-layer network.

Further arguments in favour of multi-layer networks are
provided by Klimesch (1987).

Klimesch (1987) compared connectionist networks to
semantic netwofks with respect to their ability to predict
the human processing requirements of complex versus simple
stimuli. Connectionist and semantic models both assume that
complex stimuli can be decomposed into properties or

features and that processing a stimulus requires processing
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the individual features rather than the stimulus as a whole.
This decomposition assumption predicts that complex stimuli
(those with more features) require more processing than less
complex stimuli. Since semantic networks are essentially
serial processing models, they predict that human reaction
times should be greater when processing complex stimuli.
Connectionist networks, on the other hand, are essentially
parallel and predict equal reaction times for both simple
and complex stimuli.

Klimesch goes even further and presents a connectionist
model which predicts reduced reaction times for complex
stimuli. This model assumes a richly interconnected
topology in which signals reverberate between feature
detector nodes and response nodes until the response node
becomes sufficiently activated. In theory, a single
persistent feature will eventually produce the response, but
each additional active feature adds signal strength and
causes the activation level of the response node to increase
at a greater rate. The more features which are present, the
sooner the response node will fire. Klimesch presents the
results of a series of experiments on human subjects which
support the predictions of this model. Most implementations
of connectionist networks are much less richly
interconnected than this model, but Klimesch does provide
additional arguments indicating that connectionist models of

human behaviour require multi-layer networks.
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To facilitate understanding of human cognition, a
connectionist model should perform in a manner similar to
human behaviour, but it should also learn to perform that
way under conditions similar to human knowledge acquisition.
MacWhinney, Leinbach, Taraban and McDonald (1989) conducted
a series of simulation experiments to explore learning in a
multi-layer connectionist network. The task was to
determine the proper definite article for a series of German
language nouns.

The network consisted of four layers of nodes: an input
layer representing features of the input noun; a hidden
layer with two pools of nodes representing the gender, case,
and number (singular or plural); a second hidden layer
representing no predetermined generalizations; and an output
layer representing each of the six German definite articles.
The different experiments varied the nature of the features
represented by the input layer. 1In all, the number of nodes
in the network was approximately 100 for each experiment.

Since this was a multi-layer network, the back-
propagation learning rule was used. The 305 word training
set consisted of 102 different nouns repeated between 1 and
17 times according to their approximate frequency of
occurrence in the German language. The network was trained
to a criterion of either 100% performance or 200 times
through the training set (200 epochs). This was repeated

for twenty simulated subjects. In thirteen of the
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"subjects" the learning set was mastered. The network was
still making errors on one or two words when the remaining
seven "subjects" reached 200 epochs.

The model was successful on three counts. It performed
in a manner similar to that of human subjects with respect
to errors produced, progression of learning, and processing
of novel input. Second, the model generated some clear
predictions about performance in areas in which research on
human subjects had not yet been conducted. Finally, "the
success of the current model for this particularly difficult
problem in language learning would seem to indicate that
claims regarding the insufficiency of connectionist accounts
for language learning . . . are, to say the least,
premature" (MacWhinney, Leinbach, Taraban and McDonald,
1989, p. 275).

This model is notable in several instances. Including
more occurrences of common words in the training set exposed
the network to the words in a manner which more closely
approximates natural human learning conditions. Adding a
second layer of hidden nodes creates a more interesting
network, even though the pools were pre-established by
restricting the connections from the input layer. Finally,
this model shows that a multi—layer network using the back-
propagation leérning rule exhibits behaviour similar to ‘that

of human subjects.
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Another example of learning in back-propagation
networks is provided by Norris (1990). Some idiot savants
are able to determine the day of the week for almost any
day, month, and year. Norris attempted to construct a
connectionist network to model this behaviour.

The initial configuration of this network consisted of
a simple back-propagation network with a single layer of
hidden nodes. The input layer consisted of 31 day nodes, 12
month nodes, 5 decade nodes, and 10 year nodes; the hidden
layer consisted of 50 nodes; and the output layer consisted
of 7 day-of-week nodes. The training set consisted of one
fifth of the dates randomly selected from the period 1950 to
1999. "After 1000 iterations through the training set the
net performed reasonably well on dates on which it had been
trained. However, on new dates the net's performance was
little better than chance." (Norris, 1990, p. 280).

Norris concluded that, in order to generalize to novel
input, the network required a second layer of hidden nodes
to represent the "rules" required to perform the
calculation. In‘addition, the training set was restructured
to present the dates in order, and a more elaborate training
procedure was used where the network first learned to
process the dates in a single month and then a single year
before being exposed to the rest of the set. After each of
these stages, the associated weights were fixed to prevent

interference from future learning. The new configuration
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learned relatively quickly and reached 90% accuracy on novel
dates. In addition, most errors were for dates in the first
two months of leap years; an error profile which Norris
reports as also being common to the human idiot savants.

Although the network required help to learn, "there is
really nothing magical about the form of that help.' What we
have done is to make up for some of the deficiencies in-
currently available connectionist learning algorithms"
(Norris, 1990, p. 286). The implication is that a more
sophisticated learning algorithm would automatically
consolidate previous learning and would not require this
help.

The restructuring of the input to this network is
similar to the approach taken by MacWhinney, Leinbach,
Taraban and McDonald (1989) in constructing their training
set. Both sets of input more closely approximate the way a
human subjeét would naturally encounter the items.

The more interesting aspects of human cognition involve
something more complex than simple pattern matching. The
recent connectionist studies presented here show a move
towards multi-layer networks to capture ﬁhis complexity. In
some cases, however, researchers have also moved away from
the simple processing mechanism associated with most other
connectionist networks.

Models which have been arbitrarily configured and re-

configured until their performance meets certain
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expectations may well say more about a programmer's ability
to "hack" a solution than they say about human cognition.
This is not to say that these models are not useful
analogies of human behaviour, but they are less likely to
capture any real understanding of human cognition than a
network which learns an appropfiate configuration with
little or no help. Although back-propagation is not a
perfect learning rule, it is capable of producing learning
in a multi-layer network and, as such, is probably the most
appropriate learning rule for connectionist networks which

attempt to model human cognition.

Conclusions

There are several conclusions which can be reached from
these samples of connectionist research. First,
connectionist models certainly seem to be valid and useful
tools for studying human cognition. Second, an accurate
model of human learning would likely require a multi-layer
network with a sophisticated learning rule. And third, the
most appropriate learning rule for multi-layer networks
would seem to be some form of back-propagation. All of the
simulations presented later in this dissertation attempt to
model human cognition using a multi-layer connectionist
network with a back-propagation learning rule.

Connectionist networks represent a general class ofl

models rather than one specific modeling technology. Any
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one network implementation reflects only a specific instance
of one theoretical model. When modeling human cognition in
a connectionist network, it is important to identify the
specific features of the network implementation and to
ensure that those features model specific attributes of the
human behaviour of interest. The next chapter describes
back-propagation networks in more detail with a focus on
their implementation details, and presents the results of a

research project based on a back-propagation network.
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CHAPTER THREE: BACK-PROPAGATION

Learning rules for two layer‘perceptrons are relatively
easy to specify but such networks can't model complex
cognitive processes. Multi-layer networks (those with
hidden nodes) can model complex processes, but a suitable
learning rule is more difficult to specify. Although multi-
layer connectionist networks have been in use for some time,
suitable learniﬁg rules for these networks have been
available for less than a decade. Most such learning rules
are variations of the back-propagation procedure presented
by Rumelhart, Hinton and Williams (1986) and Rumelhart
(1989) .

This chapter presents a general description of how
back-propagation networks learn, then discusses how a back-
propagation network addresses the specific implementation
details discussed in Chapter 1. Consideration of one
specific detail of the output function leads to suggestions
for a modification of that function. The results of several
learning simulations (with and without the modification) are
presented and implicatibns of the modification are

discussed.

The Learning Rule
To understand how back-propagation works in a

connectionist network with hidden nodes, consider a network
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which learns to generate a series of outputs in response to
a finite set of inputs. The network is presented with a
number of pairs of patterns. One member of each pair is the
input pattern and the other is the'output pattern the
network is expected to produce. The input pattern is
presented and the network generates some (initially random)
.output. The difference between this output and the desired
output (the amount of error) is used to adjust the weights
so that a more appropriate output will be generated next
time. This procedure is repeated for each of the pairs of
patterns a large number of times untii the total error
across all patterns has been reduced to some acceptably
small value.

The use of an error value (the difference between
actual and expected output) is the basis for the delta
learning rule in a connectionist network. If a network has
no hidden nodes, then the delta rule is easy to apply
because all of the error resides in the output nodes and the
amount of error can be determineq by simply comparing the
actual and expected oﬁtput values. However, in a multi-
layer network the output nodes only account for some of the
total error. The rest of the error comes from the hidden
nodes. This makes application of the delta rule difficult
because there is no explicit expected output value
associated with a hidden node. Each node which acts as a

source of activation for another node (i.e., all but the
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output nodes) is at least partially responsible for the
error associated with that destination node. Back-
propagation is a technique for taking some of the error at
the destination node and allocating it back to all of the
source nodes.

The error value at a source node is based on the total
error at the nodes to which it sends output, and also on the
extent to which it is responsible for that total error. The
total error is the sum of each destination node's error
multipiied by the weight which connects that node to the
source node. The responsibility of the source node for that
total error is a function of its output value. Once the
amount of error at a source node has been determined, a
generalized delta rule can be used to adjust the weight
between the source node and each of its destination nodes.

A new pattern cén now be presented and the entire
process repeated. The back-propagation network continues to
feed input patterns forward through the network and
propagate error back until the total amount of error for all
of the nodes in the network becomes sufficiently small that
the network provides the cor?ect response to each stimulus
almost all of the time.

The amount of error in the network at any given time
has a negative impact on the performance of the network and
can thus be used as a measure (actually an inverse measure)

of the amount the network has learned to that point. In
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fact, learning in back-propagation networks is often defined
as error reduction through gradient descent.

Error reduction through gradient deécent can be
illustrated using a topographic metaphor. If all of the
potential error states that a network could ever be in can
be visualized as a multi-dimensional landscape, the current
‘error state can be represented by a point on that landscape.
If the error point is given substance it becomes a spherical
object. Changing the error in the system would then be
analogous to rolling the sphere across the landscape. High
points in the landscape represent large amounts of error and
low points less error. Untrained networks have a large
amount of error so the sphere starts out on a high poiﬁt on
the landscape. The objective of learning is to roll the
sphere across the landscape until it comes to rest in a low
spot: gradient descent.

In a simple network with no hidden nodes, the landscape
becomes a bowl-shaped valley. Initially, the sphere starts
somewhere up one side of the valley to indicate some amount
ofKerror‘greater than the minimum error at the bottom. The
objective of learning is to minimize error so, as learning
proceeds, the sphere will be moved downhill. When the
sphere reaches the bottom, a move in any direction increases
the error so learning stops. The learning rule for such a
network is simple: always move the sphere downhill, and when

you can't you're done.
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Adding hidden nodes to a network complicates the
situation immensely. Each additional node actually adds
another dimension to therlandscape but fhe effect is easier
to visualize if, instead, you think of additional nodes as
making the bowl-shaped valley more irregular. The result is
that depressions (local minima) can form at higher
elevations. If the sphere rolls into one of these
depressions it must roll uphill for a while before it can
continue down into the valley.

The difficulty lies in distinguishing between these
local minima and the bottom of the valley. If the sphere
fails to make this distinction it may either become stuck in
a local minima and thus stay at a high error level, or it
may try to roll up out of the bottom thus continuing to try
to learn when it was already at the lowest level possible.
In either case, learning will not proceed to an optimal
solution. Optimizing the gradient descent in this error-
space is the objective of many of the variations on the

basic back-propagation learning rule.

Implementation Details
So far, this discussion of back-propagation has been
very general but specific back-propagation networks often
contain variations designed to optimize the performance of

the network. These variations can be classified by how. they
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respond to the architectural constraints discussed in
Chapter 1.
Number of Layers

In theory; the back-propagation algorithm can be
applied to a network with any number of layers but, in
practice, the number of layers is usually quite small. The
amount of error in the network's response to a given inﬁut
can only be accuratély determined at the output layer. The
error values propagated back through layers of hidden nodes
only approximate the effect of that layer on the final
error. "Every time the error from the output layer is back-
propagated to a previous one, it becomes less and less
meaningful" (Caudill, 1991, p. 59).

Maren, Jones, and Franklin (1990) cite severél
mathematical proofs that suggest that no more than two
layers of hidden nodes will ever be required. In addition,
they suggest that empirical tests of back-propagation
networks show no significant advantage to having more than
one hidden layer, especially when each possible outcome is
represented by a single output node.

Number of Nodes at Each Layver

Separate considerations apply’to the number of nodes in
the input, output, and hidden layers in a network. Usually
. the number of input and output nodes is strongly dictated by
the nature of the task, but design considerations can affect

them to an extent.
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If each possible output of the network can be
represented by a discrete output node, the network will
likely only require one hidden layer (see above), but a
large number of output nodes may be required. If the output
is a continuous value or is encoded in a pattern of binary
nodes, fewer output nodes may be required'but the "use of
encoding patterns forces additional work onto the hidden
nodes, which may require an additional hidden layer" (Maren,
Jones, and Franklin, 1990). Depending on the purpose of the
network, encoding inﬁut as patterns is often just what is
wanted since many of the more interesting phenomena of
connectionist networks (automatic generalization, fault
tolerance, etc.) only apply when input is represented as a
pattern across several input nodes .

Determining the optimal number of hidden nodes is much
more difficult. Maren, Jones, and Franklin (1990) suggest
that the maximum number of hidden nodes should be less than
the number of input patterns (to avoid the formation of
rgrandmother" nodes) but more than the number of significant
features in the input (so the network needn't come up with
exactly the right representation). ‘Although the exact
number of hidden nodes is not a critical parameter, networks
with an excessively large or small number of hidden nodes
will train more slowly than ones with approximately the

right number.
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Adding a few more connections creates extra
dimensions in weight-space and these dimensions
provide paths around the barriers that create poor
- local minima in the lower dimensional subspaces
(Rumelhart, Hinton & Williams, 1986) p. 535).

In any case, Caudill (1991) suggests that when back-
propagation networks are simulated in software running on
serial rather than parallel hardware, the total size of the
network should not exceed 200 to 300 nodes.

- I

Connectivity specifies how the nodes in a layer can be
connected to other nodes in the same or other layers. Most
back-propagation networks have restrictions on the
connections which can exist. Notably, "connections within a
layer or from higher to lower layers are forbidden, but
connections can skip intermediate layers" (Rumelhart, Hinton
and Williams, 1986, p. 533).

Some models attempt to influence the performance of the
network through specific configurations of connections. To
the extent that this configuration represents "knowledge"
imposed on the network, the value of the model may be
compromised. Part of the value of connectionist models is
that they are able to learn. If, instead of learning, a
network is "hard-wired" to perform a task, then its
performance says little about how a human might learn to
perform a similar task. This Would argue in favour of a

network with a uniform connectivity configuration.
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Starting Weights

The weights in a connectionist network represent the
knowledge already in the network. In theory, one network
could learn to perform many.unrelated tasks. The weights
learned by mastering a previous task which is totally
unrelated to the current task would have a random effect on
the current task. On the other hand, if previous learning
is not totally unrelated to the current task, it could
interfere with the current task and this would appear as
non-random, potentially disadvahtageous, weights. 1In
practice, most networks are implemented to learn and perform
one task only, so starting weights are usually set to random
values.

If, by chance, a large random starting weight at one
connection is significantly different than the optimal value
for the current learning situa£ion, it will take the network
some time to "unlearn" that weight before settling into a
more appropriate value. If, on the other hand, the random
starting weights are restricted to ielatively small wvalues,
the network will never have to unlearn a significantly
inappropriate weight. Rumelhart, Hinton and Williams (1986)
suggest that, in general, connectionist networks using back-
propagation should start with all weights set to small

random values.
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. . .

The activation level at a specific node represents the
amount of input that node has received from other nodes in
the network.l It is usually just the sum of the output of
these other nodes multiplied by the weight of the connection
to the specific node. This makes a node's activation a
linear function of the inputs.
Qutput Function

One of the characteristic features of connectionist
networks is that the output of a node is a non-linear
reflection of its input. If the node's activation level is
a linear reflection of its input, some non-linear
transformation must be applied to the acﬁivation level to
determine the node's output. There is no one transformatioﬁ
function which must be used with a back-propagation network
but the function used must have a bounded derivative
(Rumelhart, Hinton and Williams, 1986, p. 534). A popular
choice is a logistic function which yields a sigmoidal
distribution of output values over the range of possible
activation values. For example:

output = 1 / (1 + e (-1 * activation),

Error Calculation Function

Back-propagation requires that an error value be
calculated for each node in the network which receives input
from other nodes (i.e., hidden and output nodes). For

output nodes this is just the difference between the actual
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and the expected output. For hidden nodés the error value
is based on the net error at the destination nodes to which
the hidden node sends output, and on some representation of
the level of that output.

The net error at the destination nodes is usually
calculated as the sum of each destination node's error value
multiplied by the weight of the connection between the
destination node and the hidden node.

The representation of the level of output at the hidden
node is based on the activation level of the node but the
function used is not the output function described above.
Instead, the derivative of that output function is used.

Applying the derivative serves two purposes.
First, it contributes to the stability of the
network since it ensures that, as the outputs
approach 0 and 1, only very small changes can
occur. Second, it helps compensate for excessive
blame attached to the [hidden node] (Caudill,
1988) .

For example, if the network's output function is the
sigmoidal function described above, the error value for a
hidden node would be:

error = (activation) (1 - activgtion) * (net error)
Momentum |

The learning function adjusts the connection weights by
applying a generalized delta rule to the output level of the

node at the source of the connection and the error value of
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the node at the destination of the connection. A momentum
term is often added to this basic calculation. If a weight
needs to be adjusted to reduce error, not all of that
adjustment should be made on a single learning cycle,
otherwise the network may over-react. If some smaller
adjustment is made on one trial, then it is reasonable to
suggest that further adjustments in the same direction wiil
be required on subsequent trials. Many networks add some
fraction of any previous weight adjustment to the current
adjustment to preserve the momentum of learning at that
weight.

Applying momentum to a back-propagation network is
almost certainly the single easiest thing you can
do to make your network train faster - sometimes
by orders of magnitude (Caudill, 1991, p. 59).

Temperature

The actual network implementations presented below
evaluate an unusual variation of the oﬁtput function in a
back-propagation network. Boltzmann machines are neural
networks which use a learning rule which is quite different
from back-propagation (Hinton & Sejnowski, 1986). As these
networks learn, they avoid local minima by gradually
decreasing the overall activation level or "temperature" of
the netwofk. A similar application of temperature might

improve the performance of a back-propagation network
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As mentioned above, the output function is usually

sigmoidal and has the following general form:

output =1 / (1 + e (-1 * activation),

This general form may not be directly applicable to any one
specific implementation because the average level of
activation will depend as much on the various implementation
details as on the input patterns to be learned. For this
reason, in a specific network implementation, the actual
activation value may be scaled by a constant value. 1In
fact, this was the case in the network-based learning
simulation presented by Caudill (1988). The formula used
was:.

output = 1 / ( 1 + exp(-1 * activation / constant) )
where exp (X) = eX. In this case, the constant had a value
of 0.2, and Caudill's justification for that specific value
was simply that it seemed to work best.

If the objective of a specific network implementation
is to maximize performance in one problem-solving domain,
anything which improves the performance of that network is
appropriate, and it is generally useful as long as it can be
successfully applied to other netwdrk implementations. It
is.not the value of the constant which determines the
usefulness of this implementation detail, but the inclusion
of a constant at all. To evaluate the usefulness of such a
constant, it is necessary to consider its effect on network

performance.



65

If, on average, the output signal is generally high for
most nodes and across most input patterns, the network will
react strongly to each input pattern and may over-react to
the point where each new pattern obliterates much of what
was learned from the previous pattern and overall learning
will be difficult. On the other hand, if the output signals
are generally small, the network will react very little to
each input pattern and learning will be siow, If an
appropriate value is chosen for the constant, some
intermediate, and hopefully optimal, general level of output
will result.

For a more graphic illustration, consider again the
metaphor of error reduction through gradient descent as a
point or sphere rolling across a landscape in error-space.
Only now, add an element of liveliness or bounce to the
sphere representing the error. As it moves through error
space, a lively sphere will bounce across local minima and
thus avoid the greatest problem with gradient descent. The
problem with a lively sphere is that even when it reaches
the bottom of the valley it will continue to bounce and the
network's performance will be erratic. A less lively sphere
will stay in the bottom onée it gets there but is still
likely to get stuck in especially deep local minima. If,
however, the liveliness of the sphere starts high and

gradually decreases, it will avoid local minima on early
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learning trials, but later it will settle down at the
optimum low point.

This would suggest that optimal learning would be
achieved if the constant in the output function was replaced
by a variable which started with a relatively high value and
then gradually decreased as the network learned. The
formula would now be: - |

~output = 1/ (1 + exp(-1 * activation / temperature) )
" where temperature is a variable which starts high and then
decreases. I use the term temperature here because it was
the description by Hinton and Sejnowski (1986) of the
annealing process in Boltzmann machines which first caused
me to consider applying a similar process to a back-
propagation network.

Another way of describing the effects of this
temperature variable is by considering the distribution of
values produced by this output function. As mentioned
above, this distribution is sigmoidal. Changes in the
temperature parameter affect the slope of the mid-range of
the function which, in Eurn, affects the variability of the
output. |

To test the effect on learning of temperature in a
back-propagation network, I ran several simulations with and
without such a variable. The specific‘implementation

details and the results are presented below.
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The Simulations

A series of network-based simulations using the back-
propagation learning rule were run to compare the relative
effect of using either a constant or a variable factor
(temperature) to scale the activation value used to
calculate the output signal from the nodes in the network.
One of the dangers of scaling the activation at .all is that
the reaction of the network to each new pattern is dampened.
The use of momentum in the learning rule would counteract
that dampening effect, but it is conceivable that the use of
both momentum and a declining témperature variable might
produce undesirable interactions. . Since momentum is a
highly-regarded and useful implementation detail, additional
simulations were run to look for interaction effects as
well.
Method

The simulations were implemented using a connectionist
network with a back-propagation learning rule. . The network
consisted of three layers with 35 input nodes, 4 hidden .
nodes, and 8 output nodes. The input and output nodes were
determined by‘the material to be learned (see below). The
number of hidden nodes in the origiﬁal Caudill (1988{
network seemed appropriate and waé retained to facilitate
comparison with that work.

The network was trained using ten pairs of patterns

based on the first ten letters of the alphabet. Each input
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pattern (stimulus) consisted of a five-by-seven bit-map of

each letter. The output patterns (response) were the eight-

bit binary representation of the ASCII value for each
letter.

Training proceeded using a étandard back-propagation
technique. To begin with, all weights in the network were
set to small random values and then the network began to
cycle through a series of training trials or epochs. Each
single epoch proceeded as follows:

o) the input nodes were set to the first input pattern

o] the input values were propagated through the hidden
nodes to the output nodes '

o} the error value for each output node was calculated as
thé difference between the output value of the node and
the value (zero or one) of the corresponding bit in the
expected output pattern

o} the error vaiue for the entire pattern was calculated
as the sum of the absolute values of the error-at each
of the output nodes

o} the error at each of the output nodes was propagated
back through the network and used to adjust the weights

o the above procedure was repeated for the next -nine
pairs of patterns.

Tﬁe simulation continued to cycle through one epoch after

another until the network learned to reliably produce the

appropriate response.
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In all, four "conditions" were simulated -~ a two-by-
two matrix with and without momentum and temperature. For
the two conditions with momentum, each time a weight was
adjusted one half of the previous adjustment for that
pattern was added as well. For thé two conditions with
temperature, the scaling factor was initially set at 0.7 and
reduced by 0.005 at the end of each epoch. To ensure that
the initial random starting weights did not bias the
results, each simulation was run twelve times to simulate
twelve "subjects" in each condition.

Results

At the end of each epoch, the amount of error for each
pattern was examined to see how well the patterns had been
learned. If the error for any one of the ten patterns was
greater than 10%, training continued, otherwise the
simulation stopped and recorded the number of epochs
required to reach this level of learning. If any simulation
ran for over 500 epochs, the simulation stopped even though
the learning criteria had not been met. This happened for
only one "subject" in each of the first three "conditions".
Since there is no way to-know how many trials it might have
taken these simulations to reach criteria (or if they ever
would), these measures must be considered conservative
estimates of how long it might have taken those simulations

to learn. The number of epochs required to reach criterion
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for the twelve simulation runs in each of the four

conditions are presented in Table 3.1 in increasing order.

Table 3.1
Number of epochs required to learn for: a basic network, a
network with just momentum, a network with just temperature,

and a network with both momentum and temperature.

Bagic Net Momentum Temperature Mom. & Temp

64 43 55 45

65 60 78 51

106 73 86 52

113 84 88 56

131 84 93 59

136 85 98 60

149 96 99 60

231 111 112 61

253 115 120 70

322 173 162 89

467 273 282 89

501* 501%* 501* 305
X 211.5 141.5 147.8 83.1
sd 142.5 123.2 120.3 68.2

* conservative estimates

When using a network with a back-propagation learning
rule, there will always be a few simulations which will take
considerably longer to learn, and there will even,

occasionally, be some which will never learn. This means
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that the distribution of possible values for the number of
epochs required to learn will be very positively skewed. In
addition, the theoretical effects of both temperature and
momentum discussed above would suggest that both of these
factors would reduce the variance in the.distribution of
possible values for learning rules including those factors.
For these reasons, a parametric analysis of variance was
considered inappropriate for this data. Instead, the
equivalent randomization test was used to test for
differences between the implementations with'temperature and
those without. The addition of a temperature term to the
back-propagation learning rule was found to significantly

improve the performance of the network (p < 0.044).

Conclusions

The inclusion of a declining temperature term in a
back-propagation network certainly seems to decrease the
amount of time it takes that network to learn. But when
connectionist networks are used to model human cognition,
the absolute performance of the network is not the most
important consideration. If, on the other hand, some aspect
of human performance behaves in a manner which is similar to
a declining temperature, then it is appropriate.to include
temperatufe in a network model of that hﬁman performance.
If, for example, there were no factor in human learning

which continually decreased as learning improved, then it
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would not be appropriate to include a declining temperature
term in a network-based model of human learning. On the
other hand, there is a factor which does decline with at
least some forms of human learning and ;hat factor is
attention. |

With continued practice, some forms of human
performance become increasingly automatic. Within the
context of a model of cognition which includes a limited
attentional resource, such a change in performance can be
characterizea as a decrease in attention with learning. A
network-based model which attempts to replicate those forms
of learning might use a declining temperature term to model
attention. The next chapter describes the theoretical basis
for declining attention in human learning with a view to .

producing a back-propagation network model of such learning.
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CHAPTER FOUR: ATTENTION

The previous chapter described the performance of
several connectionist networks which varied according to how
they treated a "temperature" term in the output function.
Simulations based on the networks which decreased
temperature as the network learned showed superior absolute
performance in that they took fewer trials to learn. |
However, Chapter 2 made the argument that networks which are
arbitrarily adjusted to produce the desired performance are
less useful as models of human cognition compared to
networks where such adjustments represent some theoretical
construct. This chapter describes the interaction between
attention and human learning leading to the conclusion that
the effect of attention on human learning could be modelled
by the temperature term in a connectionist network.

In order to identify the specific implementation
features of such a network, it is important to precisely
describe the human performance to be simulated and how that
performance is measured. In this case, the performance
involves the interaction between learning and attention,
specifically the decrease of attention required as an
increasingly automatic response is learned.

This chapter will start with a definition of attention
as a limited cognitive resource and then will discusé the

consequences of insufficient resources on cognitive
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processes. The concepts of automatic and controlled
processes and multiple concurrent processes will be
discussed within the context of this definition of
attention. Finally, a methodology for measuring the
attentional resources currently in use by a cognitive

process will be presented.

A Specific Definition of Attention

Within the context of this dissertation, the term
attention will be used as it is usually represented in an
information-processing model of cognition with a limited
attentional resource. Within such a model, not only does
cognitive processing proceed in parallel, much of the
processing proceeds without our conscious attention -- it
occurs automatically. Despite nativist claims that much of
this automatic processing is hard-wired, at least some
automatic processes are learned. The decrease in attention
associated with learning which I am attempting to model is a
reflection of the increasingly automatic nature of a
response which results from repeated learning trials.

Automatic cognitive processes can best be understood in
contrast to controlled processes. Controlled processes
require active attention. Automatic processes proceed
without attention. Further, according to Schneider and
Shiffrin (1977) "any automatic process requires an

appreciable amount of consistent training to develop fully".
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This suggests that perhaps learning, or certainly over-
learning, can be characterized as a shift from controlled to
automatic processing. If learning is defined in this
manner, it is important to know whether this shift from
controlled to automatic processing is gradual or occurs more
suddenly after a certain amount of learning has occurred:

Although it is possible that automaticity is an all-oxr-
none phenomenon, recent research suggests that it may be
considered a more continuously varying attribute of a
learning situation (Cohen, Dunbar, and McClelland, 1990).
These authors present a series of connectionist simulations
which model the relationship between automaticity and
attention within the context of the Stroop effect. They
conclude that it is appropriate to model attention as a
continuous variable:

The mechanisms used in this model show how the
principles of continuous processing, expressed in
terms of the [connectionist] framework, can be
applied to the study of attention (Cohen, Dunbar,
and McClelland, 1990, p. 358).

If the human cognitive processing mechanism converts
even some highly learned processes from controlled to
automatic ones, then there is likely some advantage to doing
so. The advantage can be seen if the human mechanism
operates within the constraints of a limited attentional

resource.
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Miller (1956) is generally credited with the notion
that individuals have a specific limit to their cognitive
processing capacity in the form of a limited attentional
resource. He put that limit in the general range of seven,
plus or minus two discrete pieces of information. Miller
presented several experiments which tested a subject's
ability to make absolute judgments about the magnitudes of
various aspects of a stimulus (for example, frequency of
tones, loudness of tones, saltiness of taste, points on a
line, etc.). In general, individuals could accurately
distinguish between approximately seven or fewer magnitudes,
but began to confuse different magnitudes when the number
was increased. This value of 7+2 is often referred to as
Miller's magic number, and is the basis for the numerous
citations of Miller's work over the years, but several other
implications of his work have been more fully developed by
those who adopted this assumption of a limited attentional

resource.

Implications of a Limited Attentional Resource
If the human cognitive processing mechanism has
limitations with regard to attention, then these limitations
will affect human performance. Research in a number of
areas has investigated these effects and some of that

research 1s discussed here.
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Graceful Degradation

The model of cognition being considered here suggests
that within an individual there is a finite limit to the
resources available at any one time. Depending on the
nature of the process being executed, there may not be
sufficient resources to meet the demand. What happens to a
process which receives a smaller allocation of resources
than it demands?

In the entirely mechanistic environment of computers, a
process will not execute at all if the resources it requires
are not available. The process will either wait until
resources become available or it will fail. Norman and
Bobrow (1975) suggest that the human information processing
system is more flexible than that. If a process does not
receive all of the resources it requires, it will attempt to
function with the resources it does receive.’ The
consequence of insufficient resources is usually a
degradation in the quality of the output of the process.

The amount of degradation will be, in some sense,
proportional to the-size of the short-fall in resources.
Only occasionally, and under situations of extreme resource
shortages, will a process fail entirely. They refer to this
as the "principle of graceful degradation".

As Norman and Bobrow see it, human cognitive processing
is similar to computer processing in that it consists of the

execution of programs, but the availability of resources
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affect the execution of those programs in different ways.

In their model of human cognition, several programs usually
work in concert as a set to achieve a specific purpose.

Such a set of programs taken together represent a single
process. Each program in the set requires some measure oOf
attentional resource. Each program also requires some input
and generates some output. The output provideq by the
entire process is likely to be a combination of the outputs
of several programs. The output of other programs provide
intermediate results which may be combined by other programs
into other intermediate results culminating in the final
output. A critical question is, in what way is the output
of one program made available to a subsequent program and
how does the availability of resources affect the exchange
of information?

In a computer based process, a program requiring input
from another must wait until the other program has entirely
finished the processing necessary to generate the required
oﬁtput. Allocating greater or fewer resources to an entire
process will only affect the time it takes to provide the
final result. Norman and Bobrow suggest with the human
information processing mechanism, programs produce
"continually available output". From the moment a program
begins to execute, it can supply output. Initially the
quality of the output will be low and, if the program is

starved for resources, it may never get much better. If,
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however, the program is receiving even minimal resources, it
can work to improve the quality of its output. Increasing
the resources available will further increase the quality of
the output. This means that a program which requires input
from another program can begin executing (and producing
output) immediately using whatever quality of input it can
get. The quality of its output will depend on the quality
of its input and on the resources it is allocated. A
general increase in the allocation of resources to the
overall process increases the quality of output from that
process.

The conclusion to be reached from this is that a
decrease in the resources available to a process produces a
graceful degradation in the performance of that process
rather than an outright failure. Further, a change in the
amount of resources allocated to a process can be inferred
from a change in the quality of its output.

In addition to quantifying the size of available
attentional resources, Miller (1956) suggested some
strategies available to cognitive processes which allow them
to process larger amounts of information with fewer
resources. Chunking is one such strategy. This strategy
devotes some of the available resources to combining and
encoding the information to be processed so that more will
fit into the remaining resources. This additional

processing adds overhead to the process, but it can result
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in a net gain. For example, in theory, a strategy
(requiring one chunk of overhead) to make a series of six
binary evaluations (using the remaining chunks) might permit
discriminations to be made between as many as 64 (26) items
instead of the usual 5 to 9. In practice, these more'
complex information processing strategies are rarely that
efficient, but Bereiter and Scardamalia (1987) suggest the
net result is that, normally, adults performing "attention-
demanding" operations have sufficient remaining capacity to
hold five chunks.

The reading and writing of text provides an excellent
example of the effects of chunking. When young children are
initially exposed to written language, it requires almost
all of their attentional resources to process individual
letters. With practice, however, they are soon able to deal
with text as a series of words instead. Eventually, with
even more practice, text is processed as a series of phrases
and sentences instead of individual words.

Chunking represents a gradual change in the way
information is processed. Specifically, with practice, the
strategy of chunking allows a cognitive mechanism to come to
process more and more information while still using the same
amount of attentibnal resource. Similarly, a mechanism can
come to process the same amount of information using fewer
and fewer resources. This is shown in the shift from

controlled to automatic processing.
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Automatic versus Controlled Processes

Schneider and Shiffrin (1977) view memory as consisting
of a large set of inter-associated nodes with the
associations established through learning (see also
Anderson, 1983). At any one time, most of the nodes are
inactive. All of the inactive nodes taken together
represent long-term memory (LTM). Also at any one time, a
small set of nodes will be active. This set of active nodes
constitutes short-term memory (STM). STM, then, consists of
nodes which would be part of LTM were they not active and
which will return to LTM when they decay from STM.

Various processes exist which influence the activation
of nodes and, hence, the flow of information into and out of
STM. According to Schneider and Shiffrin, these processes
include "decisions of all sorts, rehearsal, coding, and
search of short- and long-term [memory]". Processes are,
themselves, stored in one or more LTM nodes but they need
not enter STM to execute.

Within the context of this model, automatic processes
execute (a) in response to a specific input configuration
and (b) without the subject's attention. Such a process
requires relatively permanent associations in LTM built up
through an "appreciable amount of consistent training" and
are "difficult to suppress, to modify, or to ignore". An
example of an automatic process is a search task which

responds to a target (input) by enabling a correct detection
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to occur (output). Note that this is in response to a well
trained stimulus. This processing proceeds automatically
"regardless of concurrent inputs or memory load".

In contrast with automatic processes, controlled
processes are activated by attention. In general, only one
controlled process executes at a time (although several slow
processes can be interleaved) and are subject to STM
capacity limitations (7+2). The advantage of controlled
processes is that they are easy to set up and can respond to
novel situations for which automatic processes have not been
learned. An examplé of a controlled process is a search
task involving a target which had not yet been extensively
learned. The target is compared against all possible
responses until a match is found.

Keele (1972) also starts from the premise that
individuals have some limit on their information processing
capacity and that multiple concurrent tasks interfere with
each other to the extent that the individual's limit is
exceeded. Keele further characterizes tasks as consisting
of two sub-processes, retrieval of information from memory
and operations performed upon that information. Limitations
on an individual's ability to perform simultaneous tasks
may, theoretically, arise during either sub-process, but
Keele argues that if signals irrelevant to a task can be

shown to contact memory yet not interfere with that task,
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then, under those circumstances, competition for resources
does not occur during memory retrieval.

Keele attempted to demonstrate this with a variation on
the Stroop effect. The experiment used five types of
stimuli: colour words, non-colour words, scrambled letters
from the colour words, mixed Gibson forms (letter-like
symbols), and pure Gibson forms (a 'word' made up of the
same Gibson form repeated several times). Each stimulus
could appear printed in one of four colours of ink. The
subject's task involved pressing one of four colour-coded
keys to identify the colour of ink of the presented
stimulus.

Subjects' reaction times were significantly slower to
colour-word stimuli, with no difference among the other four
types. In particular, reaction time to non-colour words was
faster than to colour words. The subjects were obviously
discriminating between colour words and non-colour words.
This discrimination must have occurred at the semantic
level. Keele considers memory retrieval to be prerequisite
to a semantic evaluation, and therefore, all stimuli must
have contacted memory. The conclusion is that conflict
between simultaneous tasks occurs at the operations stage
and that "memory retrieval is not attention demanding".

All of this research suggests that eveﬁ moderately
complex cognitive processes may actually consist of several

sub-processes executing at the same time. If the human
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cognitive processing mechanism can support multiple
concurrent processes all of which demand attentional
resources, then it is important to consider the way in which
the mechanism responds when all demands cannot be met.
Multiple Concurrent Processes

Gopher and Navon (1980) consider the consequences when
a cognitive processing mechanism attempts to perform two
tasks simultaneously. They also begin with the assumption
of one central pool of cognitive resources. These resources
are differentially allocated to all tasks being processes
depending on task requirements. When thé requirements of
all of the tasks exceed the capacity of the central pool,
the tasks interfere with each other.

The requirements of a task, and hence the resources
allocated to that task, are not solely a ¢haracteristic of
the nature of the task. Intention on the part of the
subject caﬁ influence the resources allocated to a task,
especially when resources are scarce. Subjects can assign
priorities to tasks with high priority tasks receiving a
greater share of resources.

If time-shared tasks are assumed to compete for
allocation of the same resources, then increasing
the priority of one task should result in an
increment of its share of resources. This should
lead to an improvement in its performance.
Simultaneously, the decreased amount of resources
allotted to the other task should now lead to a
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decrement in its performance (Gopher & Navon,
1980) .

The multiple concurrent tasks used by Gopher and Navon
consisted of a two dimensional tracking task. The
assumption was that tracking in each dimension represented a
separate task. The difficulty of each task was varied by
changing the velocity of the target and the frequency with
which it changed direction. Priorities were manipulated by
varying the minimum acceptable level of tracking accuracy.

In a more natural setting, individuals do not usually
receive specific instructions about which task they should
be attending to. Instead, attentional resources are
allocated to multiple concurrent tasks on the basis of the

degree to which each task has become automated.

Measuring Attentional Resources

If a certain cognitive task currently requires a
specific amount of attentional resource and if learning is
claimed to be able to reduce the amount required, then it
becomes important to be able to measure the amount of
attentional resource a process requires both before and
after the learning takes place. The principle of graceful
degradation described above provides a way in which this can
be done.

One of the conclusions reached by Baddeley, Lewis,

Eldridge and Thomson (1984) from a series of experiments on



86

the relationship between attention and long-term memory is
that additional load placed on attentional resources during
learning decreases recall performance. This suggests that
the decrease in performance could be used as a measure of
the amount of resources being used by the additional load.

In a similar vein, Norman and Bobrow (1975) suggested a
link between reaction time and accuracy as performance
measures. Within the context of their distinction between
data-limited and resource-limited processes, paired-
associate learning involving simple or familiar stimuli
would be a resource-limited process.

When a process is resource-limited, then we expect
reaction time to be directly related to accuracy,
because better resulting output is dependent on
more processing resources being allocated to the
process (Norman and Bobrow, 1975, p. 53).

Bower and Clapper (1989), in a discussion of
experimental methods in cognitive science, also suggest a
dual task methodology for measuring attention. To the
extent that an individual has a limited attentional resource
any concurrent tasks in which the individual is eﬁgaged must
share this resource. If less attention is required by one
task, then more is available for another. If performance on
one task depends on the amount of attention it receives,
then decreased attention on another task will increase

performance on the first one.
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They suggest that a suitable measure of this type of
attention-related performance is reaction time to a probe
stimulus. This methodology asks a subject engaged in a
primary learning task to also respond to an unrelated
stimulus (probe). For example, a subject attempting to
learn a list of paired-associate items might also be asked
to press a button when a tone sounds. The subject's
reaction time to the probe "is presumed to be slower the
more absorbing the primary task is at the moment the probe
appears" (Bower and Clapper, 1989, p. 288).

In a description of attentional allocation for
concurrent tasks, Sperling and Dosher (1986) also suggest
that the amount of attentional resource allocated to each of
several concurrent tasks determines the quality of
performance on that task. Performance on the probe task is
measured by reaction time. If this task gets fewer
resources because more resources are allocated to learning,

performance will decrease and reaction time will go up.

Conclusions
The purpose of discussing the research presented here
was to present a particular perspective on the allocation of
a limited attentional resource to cognitive processes and to
discuss how the amount of resources required by a process
changes with learning. Specifically, the points raised

suggest that:
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Cognitive processes can be characterized as those which
require attention (controlled processes) and those

which do not (automatic processes).

With sufficient practice, it is possible for some types

of controlled processes to become automatic.

Each individual has a fixed amount of attentional
resource. When that individual engages in an activity
which requires a controlled cognitive process, that
controlled process monopolizes a certain amount of
attentional resource. Automatic processes require none

of the individual's attentional resource.

There is an optimum amount of attentional resource a
controlled process can use, but if the process receives
less than that amount it will degrade gracefully rather
than fail outright as long as a certain minimum amount

of attentional resource is available.

An individual can engage in a number of concurrent
tasks as long as there are sufficient attentional
resources to meet the minimum demands of all of the

controlled processes.

One way of determining the relative attentional
resource demands of two tasks is to monitor the
performance of a third task in the presence of first

one then the other of the two tasks.



89

From the point of view of this dissertation, the
question is whether a temperature term which declines as a
back-propagation network learns is a suitable model of the
decline in attentional resources allocated to a task as a
human learns to perform the task with greater andrgreater
fluency. Before such a network could be accurately
developed and evaluated, it was necessary to more precisely
establish the relationship between learning and attention.
The next chapter presents a human learning experiment which
uses the methodology discussed above to attempt to more

clearly establish that relationship.
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CHAPTER FIVE: HUMAN LEARNING EXPERIMENT

Despite its empirical methodology, this experiment was

not designed to test specific hypotheses. 1Instead, it was

intended to substantiate expected phenomena in a specific

context and gain some qualitative insight into the nature of

these phenomena with the intention of replicating the

phenomena in a connectionist network and establishing

criteria for evaluating its performance. Specifically, the

objectives of this experiment were:

(0]

Substantiate the distinction between automatic and
controlled processes as a continuous rather than
dichotomous one (i.e., some processes may be entirely
automatic, but all others are controlled to a greater
or lesser extent, depending on the amount of

attentional resources they demand).

Establish that the transition from a controlled process
to an automatic one, as the result of practice, is not
sudden. Instead, the degree to which a process is

controlled gradually declines.

Identify a mathematical description of the transition
from a controlled process to an automatic one by
monitoring the decrease in attentional resources

required.

Method

The purpose of this experiment was to obtain a

mathematical description of the transition of a simple

cognitive learning task from a controlled process to an

automatic one with "controlled" and "automatic" being
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defined in terms of the amount of attentional resource
demanded as discussed in Chapter 3. The learning task was
accompanied by a series of reaction time probes designed to
measure the learner's unallocated attentional resources and,
indirectly, the amount of attentional resources required by
the learning task. The amount of attentional resources
required by the learning process was expected to decline in
some regular way for all subjects regardless of their
absolute level of performance. It is the nature of this
regularity which is of interest here, not the absolute
performance of the subjects.
Subjects

Nothing about the nature of this experiment suggested
that any one population would be especially appropriate or
inappropriate because the results were to be based on
within-subject measures. Volunteers were solicited from a
single class of grade-ten math students attending Lester B.
Pearson High School in Calgary, Alberta. Since this
particular high school integrates all three grade-ten math .
streams, the one class represented a range of academic
ability. This school also integrates computer technology
extensively across the curriculum, so these students already
had considerable experience with computers in a variety of
domains, and had specific experience with Microsoft Windows,
the graphic user interface used for this experiment (see

Materials below). ©No counterbalancing or random assignment
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was required because all subjects participated in the same,
computer-based, learning task.
Materials

The materials for this task consisted of twelve
arbitrary paired-associate items. The stimulus half of each
pair was one of twelve small pictures selected from the
icons supplied with Microsoft Visual Basic. Each icon is a
32x32 pixel colour bitmap similar to those illustrated in
Figure 5.1. The response half of each pair was one of four
keys on a standard computer keyboard, specifically, D, F, J,
and K. These keys were chosen to allow comfortable hand
positioning and because they can be located by feel (on IBM
keypoards, the F and J keys have bumps on them). For each
subject, the specific key associated with each picture was

assigned by random selection without replacement.

Figure 5.1 Black and white representations of icons used as

stimuli.
A Visual Basic program was written to present the

stimuli and collect and record the subjects' responses,
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response latencies, and reaction times to the attention
probe. The program was run under Microsoft Windows 3.0.
Procedure

The main learning task used a variation of the paired-
associate paradigm. The subject's task was to learn,
through trial and error, which key was associated with each
picture. As noted above, the intention was to use the
results of this experiment as the basis for a simulation of
similar learning in a back-propagation network. This
learning task was structured to closely approximate the
procedure used to train such a network. With the back-
propagation learning rule, a single learning trial consists
of presenting a stimulus, allowing the network to generate a
response, then presenting the correct response so the
network can calculate the amount of error in its response
and make appropriate adjustments to the connection weights.
To approximate this procedure, in this experiment, the
subject‘was presented with an item, made a response, and
then was presented with the correct response. Unlike a
traditional paired-associate learning task, there were no
learning trials where all of the stimulus-response pairs
were presented together. The subject both studied and
responded to each item before the next item was presented.

Specifically, the experimental procedure proceeded as
follows. At the beginning of each trial, one of the

pictures (randomly selected without replacement) was
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presented and the system waited until the subject pressed
one of the four keys. The system then displayed both the
picture and the correct key for a one-second study period.
The subject was given no specific feedback about the
response they had made. The program simply displayed what
their response should have been.

The same procedure was repeated twelve times -- once
for each picture. To facilitate comparisons with the
connectionist network simulations to be presented later,
each such block of twelve presentations will be referred to

"as one epoch. After each epoch, the system immediately
began another epoch using the same twelve pictures but in a
new random order.

After the first epoch, a reaction time task was
interleaved with the learning task. On aéproximately every
third item the study period was interrupted by a reaction
time probe. The probe consisted of the entire screen going
blank. When the probe occurred, the subject was to press
the space bar as quickly as possible. As soon as the space
bar was pressed, the screen was restored and the interrupted
study period was restarted. Four of twelve items were
probed each trial with the four items determined by random
seleétion without replacement.

The system continued from one epoch to another for a
total of twenty minutes. The intention was that the

subjects would continue with the task until responses become



95

aﬁtomatic. Pilot studies conducted during the beta-test
phase of the software development suggested that twenty
minutes was more than sufficient to take most subjects well
past the point of mastery. The twenty minute experimental
session was followed by a computer-administered
guestionnaire to collect each subject's age, gender,
handedness, and a self-report of previous academic

achievement (grade 9 Math mark) .

Results

For each item, the system recorded the latency between
the onset of the picture and the subject's key press as a
measure of amount of learning for that stimulus. The system
also recorded whether the subject's response was correct or
incorrect. For each reaction-time probe, the computer
recorded the subject's reaction time as a measure of
attention during the study period. As mentioned above, only
one quarter of the latency measures were accompanied by a
reaction time probe measure. The full data set consisted of
almost five thousand latency measurements on twelve subjects
across as many as three dozen epochs each.

Two measures of the amount of learning were recorded:
number of correct responses on each trial and the average
latency of responses for each trial. The number of correct
responses is a relatively coarse measure of the amount of

learning. The latency measures were collected to provide a
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more precise measure. The subjects were instructed to
respond as quickly as possible. To the extent that subjects
did follow these instructions, the average latency for each
trial should show a negative correlation with the number of
correct responses for that trial. Figure 5.1 shows these
correlations for all twelve of the subjects sorted by the

magnitude of the correlation.

Table 5.1
Correlation between number of correct responses on
a trial and average latency of responses for that

trial sorted by magnitude of correlation.

Subject # Correlation
119 -0.83 *
121 -0.80 *
110 -0.65 *
112 -0.61 *
115 -0.53 *
106 -0.44 *
100 -0.34 ¥
109 -0.34 *
108 -0.22
104 -0.22
107 -0.17
216 0.45 *
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For eight of the subjects, there was a significant
negative correlation (p < 0.05) between the latency measures
and the number of correct responses on each of the trials.
This indicates that, as these subjects mastered the items,
they responded more quickly when tested. Three of the other
subjects did not show a significant correlation. This would
suggest that either they did not follow the instructions to
respond as quickly as possible or that they did not reach a
significant level of mastery in the twenty minutes spent on
the task. The positive correlation for one subject
indicates that they actually began to respond more slowly as
they mastered the material. In fact, inspection of the raw
data for that subject suggested that this subject was not
really attending to the task at all. In any case, this data
suggests that latency is an appropriate measure of learning
for only eight of the twelve subjects so the remainder of
the results presented here are based on just those eight
subjects.

For many subjects, both measures of learning (correct
responses and latency) began to degrade during the latter
part of the task, well after mastery had been reached. This
was not entirely unexpected since the procedure for this
learning task was designed to take the subject past the
point of mastery. Consequently, no criteria were set which
would allow a subject to stop once they had learned all of

the items. The measures collected from these subjects,
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along with feedback from pilot subjects, suggest that the
subjects eventually passed some point of persistence and
were, consequently, not working as diligently during the
latter part of the task.

For individual subjects, the average and the variance
of the scores for each trial gave some indication of the
point at which persistence began to fade. With most
subjects, the variance tended to decline through the first
two-thirds of the epochs. After this, it began to vary
widely. The epoch where the variance began to dramatically
increase was used as a clipping point. With subjects for
whom this point was not entirely clear, additional data
points were retained to provide as conservative an estimate
as possible of the point where persistence began to decline.
The amount of data "clipped" in this manner varied from
subject to subject. In several cases it amounted to only a
few epochs, but in one case just over half of the epochs
were clipped. Over all, approximately three-quarters of the
epochs were retained. Since the subjects were required to
continue with the experiment for twenty minutes even though
many of them had reached mastery long before then, the
objective of this clipping was just to discard the
measurements taken after mastery had been achieved.

The data also showed a small number of extreme outliers'
at seemingly random points. These may have been due, for

example, to the subject not pressing the key hard enough to
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register. The few moments it would take to realize that
their response had not registered would push the latency
measure to an extreme value.

To identify and eliminate the extreme outliers, the
largest scores for each subject were examined. In cases
where the largest score seemed a "reasonable" amount greater
than the second largest score all data was kept. In some
cases, however, the largest score was as much as twice the
size of the second largest score. In these extreme cases,
the abnormally large scores were dropped. In all, nine
extreme outliers were discarded. These nine scores
represented only about one half of one percent of the scores
under consideration and the reduced data set is more
coherent and more readily interpreted.

One of the objectives of this experiment was to pfovide
a basis for comparison between human subject performance and
the performance of a connectionist simulation on a similar
task. In order to be able to suggest that the learning in
these two, very different situations is comparable, it is
necessary to make qualitative comparisons of the way in
which learning progressed for both. As such, summary
statistics of the human learning would not be sufficient.
Instead, graphical representations of the subjects' '
performance were developed for later comparison with similar
graphs to be based on the performance of the simulations

(see Chapter 6).
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The seté of graphs presented on the next two pages
(Figure 5.2 and Figure 5.3) show two views of the learning
for each of the eight subjects individually -- one based on
the number of correct responses and the other based on the
latency measures. Each graph presents the actual measures
for each trial with a broken line and a running average of
these values with a solid line. The running average was
based on the five values immediately adjacent to each point
and is presented to more clearly show the learning trends in
the data. Each subject is graphed separately because there
were large differences in the magnitude of the learning
measures between subjects and it is the qualitative nature
of the learning trends which is of interest, not the speed
of learning.

The first set of graphs, depicting the number of
correct responses per trial (Figure 5.2), clearly indicates
an increase in learning for seven of the eight subjects.
Most of them show a typical positively decelerating learning
curve but a few of them seem to be just slightly sigmoidal
in that little learning seems to take place for the first
few trials. Because of the "discovery" nature of this task,
it is not surprising that some subjects required a few
trials to become'comfortable with the task.

As one would expect from the correlations presented in
‘Table 5.1, the graphé based on the average latency of

responses in each trial (Figure 5.3) mirror those based on
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correct responses to a large extent. The subjects showed
considerable variability in the magnitude of both the
latency measures and the number of trials. For subjects
with large latency measures, this had the effect of
compressing the learning curve into a narrower region of the
graph. This makes comparisons between subjects difficult
but, at this point, it is the shape of the curve, more than
the magnitude of the values, which is of interest. Most of
the latency curvesg are negatively decelerating and, as with
the curves of the number of correct responses, some show a
sigmoidal tendency.

The two sets of graphs provide evidence that learning
has occurred for at least these eight subjects. In
addition, the corresponding trends in the two sets of graphs
support the correlations in Table 5.1 in suggesting that the
latency of responses and the number of correct responses are
both appropriate measures of the amount of learning. These
graphs will serve as the basis for qualitative comparisons
between human learning and the performance of the
simulations presented in Chapter 6.

The results presented above give a picture of the
nature of the learning taking place for this task. However,
a more important issue for this investigation is the way in
which attention varied as this learning occurred.

The first possibility investigated here is that

attention (as measured by probe reaction times) changes as a
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function of amount of learning (as measured by response
latencies). Seven of the eight subjects showed a
significant positive correlation between latency and probe
reaction time on the items to which they responded correctly
(Table 5.2). Since the response latencies are a negative
measure of learning and the probe reaction times are a
positive, if indirect, measure of attention, these results
support the suggestion that attention is declining as

learning proceeds.

Table 5.2
Correlation between average probe reaction times
on a trial and average latency of responses for
that trial.

Subject # Correlation
119 0.46 *
121 0.75 *
110 0.64 *
112 0.11
115 0.52 *
106 0.48 *
100 0.54 *
109 0.45 *
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These correlations suggest that there is a relationship
between learning and attention but, in order to model this
relationship, a more precise mathematical description is
requiréd. In an attempt to determine this mathematical
description, both linear and sigmoidal curves were fitted to
the points obtained by plotting the latencies versus the
reaction times for each subject. The resulting r values are

presented in Table 5.3 below.

Table 5.3
r values of linear and sigmoidal curves fit to
plots of the latency versus reaction time

measures.

Subject # Linear Sigmoidal
100 0.67 * 0.91 *
106 0.58 * 0.63 *
109 0.45 0.50 *
110 0.42 0.45
112 0.22 0.41
115 0.36 0.51 *
119 0.47 * 0.53 *
121 0.58 * 0.77 *

* p < 0.05

As one would expect from the correlations in Table 5.2,

many of the linear curve-fits produced significant r values
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but, in all cases, the sigmoidal curve produced a larger x
value and more of the values were significant. These larger
r values suggest that a sigmoidal curve produces a better
fit with this data.

Although the above results suggest that attention is a
sigmoidal function of amount of learning, a second
possibility is that attention simply declines with time on
task. Since latency is also decreasing as the subjects
learn, this would result in just such a positive correlation
between the latency and reaction time measures as appear in
Table 5.3 above. Graphs of the change in probe reaction
time measures over time are presented in Figure 5.4 below.

As with the learning curves in Figures 5.2 and 5.3, the
actual values are presented as broken lines and a running
average over five adjacent points is presented as a solid
line. Although most of the graphs do seem to suggest a
negatively decelerating relationship between pfobe reaction
time and trial number, these curves are not as clear as the
learning curves. However, linear regression analyses on
each of the sets of data do suggest that, at least,
atfention is declining. Table 5.4 below presents the slope

and the standard error for each of these analyses.
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Table 5.4
Slope of the regression line for the relationship
between reaction time versus trial number and the

associated standard error.

Subject # Slope Standard Error
119 -0.080 5.017
121 -0.202 542
110 -0.304 7.134
112 -0.365 17.058
115 -0.136 6.164
106 -0.273 5.132
100 -0.045 8.730
109 -0.209 6.687

The fact that all eight linear regressions produced
negative slopes does suggest that the’ probe reaction times
are decreasing over time. However, the large standard
errors for most subjects suggests that a simple linear
relationship between attention and time is only a rough
approximation and that the actual relationship is more

complex.

Conclusions
The objectives of this study are mostly concerned with
changes in attention as subjects learn. Prerequisite to
these considerations is establishing that learning has
occurred and presenting'a description of the increase in

learning as the task proceeded. The two measures of
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learning, number of correct responses per trial and average
latency of responses for each trial, indicate that, for at
least eight of the subjects, learning did occur. Graphical
representations of the data describe typical negatively
decelerating learning curves with some suggestion of a
sigmoidal curve on early trials. In the next chapter, these
curves will serve as a basis for qualitative comparisons
with the performance of connectionist network simulations of
this learning task.

" With learning established for the eight subjects, their
probe reaction times provided a suitable indirect measure of
the amount of attention they were devoting to the learning
task. Although these results do not clearly show the exact
mathematical relationship between learning and attention,
they certainly helps substantiate the distinction between
automatic and controlled processes as one of degree of
attention and help characterize the transition from
automatic to controlled process due to learning as a gradual
not a sudden one.

It would have been valuable to establish a more precise
mathematical description of this continuously declining
relationship between learning and attention. Unfortunately
the measures obtained were not sufficiently regular to
conclusively establish the mathematical function which best
characterizes this relationship. However, the results do

suggest two candidates: attention decreases as a sigmoidal
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function of learning and attention decreases as some,
probably non-linear, function of time on task.

Interpreting the inconclusive results shown here within
the theoretical context of limited attentional resources can
further constrain these possibilities. If attention is to
be represented by a continuously declining function, there
are theoretical limits to the nature of that function. To
the extent that attention is a limited cognitive resource,
it is conceivable that attention could decline to zero, but
it is not meaningful to suggest that attention could ever be
negative. Declining attention could thus not be
appropriately modelled by either a negatively accelerating
or a linear declining function. Of the remaining
alternatives, parsimony would suggest either a negatively
decelerating quadratic function or a sigmoidal function.

The next chapter will present the results of a series
of simulations based on this range of possible functions.
The objective of the simulations was to determine which of
these possibilities results in the most appropriate
connectionist network model of the learning situation

presented here.
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CHAPTER SIX: CONNECTIONIST NETWORK SIMULATIONS

This chapter describes a series of connectionist
network simulations of human learning using a back-
propagation learning rule. The objective was to explore the
use of a temperature term to more accurately model attention
in human learning. The temperature term is the one
described in Chapter 3, attention is as defined in Chapter
4, and the human learning being modelled is that which took
place in the experiment described in Chapter 5.
Specifically, the objective is to model the decline in

attention which accompanies paired-associate learning.

Modeling Human Cognition

Before discussing the specific performance modelled
here, there are a number of general issues associated with
the modeling of human cognition which should be addressed.
These issues have to do with the relationship between a
simulation and a model, assessing qualitative rather than
quantitative performance, the granularity of investigation,
and alternatives to empirical hypothesis testing.
Simulations and Models

Gluck and Bower (1988) present two general
methodologies for using implementations of connectionist
networks to model human cognition. One involves selectiﬁg

some aspect of human performance and constructing a network
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to perform the same task in a manner such that the "major
regularities and salient phenomena" are preserved. The
second methodology‘focuses on a specific experimental
paradigm and builds a network whose performance will predict
human performance within that paradigm. The simulations
presented here represent the first of these methodologies.

The human learning experiment presented in Chapter 5
clearly indicated that attention declines as learning
proceeds. The results did not show precisely what the
mathematical relationship was, but it did constrain the
possibilities and point out sevéral possible approaches for
these simulations. The different simulations presented here
each model a different one of these possibilities. The
objective was to see which one most faithfully preserved the
'major regularities and salient phenomena' of the human
learning experiment.
Performance

Some computer simulations of specific connectionist
models represent attempts to solve practical problems in
research areas that are usually classified as artificial
intelligence. The objective of this type of research is to
find an optimal solution to the problem. If human
performance suggests refinements to the model, they are
useful only if they improve the quantitative magnitude of

the simulation's performance in that specific problem
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domain, but it is the magnitude of the performance, not its
qualitative aspects, which is at issue.

However, other implementations of connectionist models,
including those presented here, are more concerned with
accurately simulating human performance in a specific
domain. Refinements to the model are useful only if they
bring the qualitative performance of the simulation closer
in line with the human performance. The simulations
presented here represent alternate implementations of one
specific refinement (adding temperature to a back-
propagation network). In evaluating the performance of the
various simulations, the most useful simulation will be the
one whose.performance ié gqualitatively the most human (i.e.,
the most like the performance of the subjects in the human
learning experiment) regardless of its relative quantitative
performance.

: s Analvsi

Although part of the appeal of connectionist models is
the simplicity of their processing mechanism, that mechanism
includes a large number of parameters (number of nodes,
number of layers, learning rule used, momentum, temperature,
etc.), each of which is subject to refinement. Although
different connectionist models often focus on refinements to
one specific parameter, evaluating the effect of a single
parameter on even one aspect of the -model's performance

(e.g., learning) can be vefy difficult. Schneider (1988)
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identifies two general approaches to evaluating a model's
performance: "parameter estimation" and "sensitivity
analysis", and argues in favour of the latter.

Parameter estimation is the technique most commonly
used by.psychologists to evaluate traditional cognitive
models. This approach tries to find the values for the
parameters which will yield the best results: in this case
the best quantitative fit between model performance and
human performance. Parameter estimation is largely "results
oriented" and may be relatively insensitive EQ interactions
between parameters.

Sensitivity analysis evaluates the behaviour of the
network across the full range of meaningful values fo; the
parameters (e.g., the use of several different mathematical
functions to vary temperature in the simulations presented
here), and describes the interactions which result.

Sensitivity analysis identifies the interactions
of variations of parameters to determine where
changes in components have a large impact on the
system's performance (Schneider, 1988, p. 282).

Schneider presents a number of reasons why sensitivity
analysis is especially appropriate for evaluating
connectionist models. Connectionism as a modeling technique
is still relatively new and many possible parameters have
yet to be identified. Connectionist models use nonlinear
functions and these can obscure the impact of variations in

parameters, especially as they approach boundary conditions.
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Parameters which are itemized as features of one model may,
in fact, have little effect on its performance, with the
result that other models which appear different may be
substantially the same. In his conclusion, Schneider argues
that:

Before an author presents an extended discussion
of the importance of a parameter, it is his/her
responsibility to communicate the sensitivity of
the system to that parameter (p. 283).

The simulations presented here show both the qualitative and
gquantitative sensitivity of the back-propagation learning
rule to various implementations of a temperature parameter.
Hypothesis Testing

The traditional, empirical hypothesis-testing method
based on statistically significant differences is most
appropriate for quantitative comparisons between
implementations of a specific, isolated parameter. However,
as noted previously, there are arguments in favour of a more
qualitative comparison of the overall performance of these
simulations.

In the absence of specific, testable hypotheses there
is no basis for tests of statistical significance. Instead,
a more qualitative assessment of the performance of the
various simulations was used. Even where hypothesis-testing
might traditionally have been done, Loftus (1993) argues for
a graphical approach to the presentation and interpretation

of results over the more traditional hypothesis testing



116

approach based on tests of statistical significance. A
similar perspective seemed appropriate here.

These arguments are not intended to suggest that
research involving connectionist models should avoid
specific hypotheses -- only that the acceptance or rejection
of the hypotheses could be based on somethihg other than a
more conventional statistical test of significance. The
objective behind the simulations presented here was to
identify which of several possible implementations of
temperature in the back-propagation learning rule serves as
the best model of attention in human learning. In the end,
comparisons‘between the different simulations were based on
graphical representations rather than statistical tests

’

involving the discrete effect of a single manipulation.

Method

In all, six simulations were compared. The
implementation details of all simulations were basically the
same as the initial back-propagation network described in
Chapter 3 with three exceptions: the length of time they
were run, performance criteria measured, and the manner in
which temperature was adjusted.
Running Time

The simulation in Chapter 3 was run until the network
"mastered" the material by reaching a specific performance

criterion. The intention of the human learning experiment
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in Chapter 5 was to take the subjects to the point of
automaticity -- well past simple mastery. Some
characteristics of the human learning did not become evident
until long after mastery had been reached. To avoid
overlooking similar characteristics with the simulations
presented here, they were each run for a specific number of
epochs instead of stopping once a specific performénce
criterion was reached. On average, the simulation in
Chapter 3 reached criterion after 83.1 epochs. Each of the
simulations presented here were run for 200 epochs.
Performance Recorded

Learning in a back-propagation network is défined as
error reduction through gradient descent (see Chapter 3).
The most direct measure of learning in such a network is the
amount of error still remaining at the end of an epoch. The
simulation in Chapter 3 ran until a specific learning
criterion was met but this criterion was actually expressed
in terms of the amount of error remaining. The performance
measure recorded for that initial simulation was the number
of epochs required to reach criterion. In contrast, all of
the simulations presented here were run for a fixed number
of epochs, so a similar measure of learning performance
would not be appropriate. Instead, the average amount of
error for each epoch was automatically recorded as the
simulation ran, and these values used to produce graphs of

each simulation's performance.
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Adjusting Temperature

The simulation in Chapter 3 decreased temperature by a
specific amount each epoch (i.e., temperature was an
inverse, linear function of elapsed time). In the human
learning experiment in Chapter 5, learning increésed with
time and attention decreased with time. Within the context
of the literature on learning and attention presented in
Chapter 4, this human learning data suggests that attention
~ decreases with learning. It is possible, however, that
attention merely decreases with time-on-task, and is more or
less independent of the amount learned. Three of the
simulations presented here continued to reduce temperature
based on elapsed time (epochs), but the other three based
their temperature on the amount of learning as measured by
remaining error.

Although the human data clearly showed a decline in
attention it failed to provide a precise mathematical
description of the nature of that decline. However, again
within the context of the learning and attention literature
discussed, it did suggest several possibilities: to model
attention, the decline in temperature should be based on
either a linear, quadratic, or sigmoidal function.

Linear Function. The simplest possibility is that the
decline of attention is linear. This is not a likely
possibility because a linear decreasing function will

eventually reach zero and continue into negative values,
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but it is included here for completeness. There is nothing
about human cognition which suggests that negative attention
values would be appropriate and, in any case, learning would
stop in a back-propagation network once the temperature
reached zero. For comparison with the earlier simulation,
two of the simulations presented here used a simple linear
transformation to decrease temperature based on either
elapsed epochs or remaining error respect;vely. To ensure
at least a minimum amount of learning each epoch, a minimum
"floor" value was imposed.

Quadratic Function. The data from the human experiment
suggested that a negatively decelerating quadratic
transformation was a more likely approximation of the human
data than a linear function. Because the curve is
decelerating it can be set up so that it never reaches zero,
and thus there is no need to impose a floor. Two of the
simulations used a quadratic transformation, again with one
based on time and one on learning.

Sigmoidal Function. The early automaticity literature
argued for a threshold function to represent the change in
attention. The data from the human learning experiment
presented in Chapter 5 does not support this but at least
some of the data would be consistent with a sigmoidal
transformation. In fact, depending on the scale, offset,
and slope, a sigmoidal function could approximate either a

linear, quadratic, or threshold functions (see Figure 6.1).
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A sigmoidal transformation with a medium slope was used to

adjust temperature in the remaining two simulations.

LINEAR QUADRATIC THRESHOLD SIGMOIDAL

GENTLE SLOPE OFFSET STEEP SLOPE MEDIUM SLOPE

Figure 6.1 Sigmoidal Functions Scaled, Clipped, and
Adjusted to Approximate Linear, Quadratic, and
Threshold Functions
In all, the six simulated "conditions" for this

simulated "experiment" £ill a two by three design matrix

representing the transformation function used (linear,
quadratic, or sigmoidal) and the basis for the
transformation (elapsed epochs or remaining error).

Each time any connectionist network simulation is run
it produces slightly different results. This is analogous
to the variability of responses made by human subjects
within the same condition of an experiment. To ensure that

the results obtained from each of these simulations
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reflected the general characteristics of the specific model
which represents temperature in that way, each of the six
simulation was run twenty times to produce data for twenty

simulated subjects.

Results

Each of the six graphs presented on the next three
pages depicts the learning performance of all twenty of the
simulated "subjects" in one of the six "conditions".
Graphing each subject's individual performance (instead of
some measure of central tendency) shows the variability of
responses as well as the general trends.

Although 200 epochs were recorded for each subject, after
the first 100 epochs there was very little difference in the
performance of any of the subjects either within or between
conditions. Because of this, only the first 100 epochs are
included in the graphs. This accentuates the trends in the
early part of the learning curves.

For comparison with the human subject data presented in
Chapter 5 and with the theoretical constructs being
modelled, the graphs are labelled as representing learning
over time. In fact, time was measured in epochs where one
epoch represents one presentation of each stimulus
(analogous to a single learning trial), and learniné was
inferred from measures of the amount of error remaining in

the network at the end of each epoch.
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Figure 6.2 Temperature as-a linear function of epochs.
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Figure 6.3 Temperature as a linear function of error.
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For seven of the subjects in the human learning
experiment there was a significant correlation between the
series of response latencies and reaction times to the
attention probes. The learning performance of these
subjects formed the basis for comparisons with the
performance of the simulations. The latency measures for
these subjects produced distinct learning curves (see Figure
5.3). Figure 6.8 combines all seven learning curves in one
graph to facilitate comparisons with the data collected from

the simulations.

QB p-B R @& o B

T 1ime

Figure 6.8 Learning curves based on inverse of average

latency of response versus trial number.

3

The latencies were actually an inverse measure of

learning, so the curves from Chapter 5 have been inverted
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here to show a more "typical" learning curve. The "Time"
axis represents the trials considered for each subject.
Since this number varied considerably from subject to
subject, no units are included for that axis. Instead, for
all subjects, the curves were scaled so that the entire
length of the axis represents all of the trials considered.
The "Learning" axis represents the amount of learning shown
by each subject and, again, no units are presented since the
actual values varied considerably from subject to subject.
Each curve was clipped and scaled to represent only the
range of measures obtained for that subject over the trials
considered. The origin represents the least amount of
learning measured for the subject and the maximum value is
near the top. Two of the seven subjects did not show
appreciable learning on the first four and eight trials
respectively. It appears that these subjects took longer to
familiarize themselves with the learning task. Those

initial trials are not represented here.

Discussion
As noted above, the objective of this simulated
"experiment" was to find the mathematical function which
would cause a changing temperature in a connectionist
network to most accurately model the change in attention in
the human learning experiment. Six alternatives were

explored here and the results presented in the six sets of
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graphs (Figures 6.2 through 6.7). The one which represents
the best model of the human performance (represented by
Figure 6.8) was selected through qualitative comparisons
between the sets of graphs. There is no clear "winner" but
a process of elimination based on comparisons of the nature
of the simulations' performance and some artifacts in that
performance give some indication as to which of the six is a
better choice for modeling the effects of attention in human
learning. Comparisons of the general performance of the
simulations which varied temperature based on time versus
those which bésed temperature on learning and a
consideration of linear versus quadratic and sigmoidal
transformations also provide arguments in favour of specific
simulations.

Performance

Those factors which optimize computer performance are
rarely the ones which optimize human performance. It is
therefore not surprising that the simulation with the best
performance is mot the one which best models the human
performance.

Quantitatively, the network with superior performance
is the one in which temperature is linear with time (Figure
6.2). Early learning increases at a faster rate and the
total amount of learning after 100 epochs is higher than

with the other simulations.
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Qualitatively the learning curves for most "subjects™"
in this condition are much smoother than those in other
conditions. In connectionist network terms this smoothness
indicates fewer diversions into local minima. Again in
connectionist terms, this condition probably represents
maximum network performance, but maximizing network
pérformance was not the goal of these simulations. Instead,
the goal was to model human performance. In the human
learning experiment, human performance was much less
uniformly smooth so a simulation which produces smooth
learning curves is likely not the best model of human
performance.

Artifacts

The performance of three of the simulations resulted in
graphs with distinctive artifacts which did not appear in
the graphs of the human performance. The presence‘of these
artifacts detract from the usefulness of these simulations
as models of the human performance.

The simulation in which temperature was sigmoidal with
time (Figure 6.6) seemed to learn in a series of rapid
spurts followed by a plateau during which little or no
learning occurred. This unusual performance is probably due
to an unexpected mathematical interaction. The back-
propagation learning rule used in all simulations
incorporates a sigmoidal transformation to determine level

of activation of nodes on the forward pass of input through
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the network. Using a sigmoidal transformation to also
adjust temperature may have caused an unusual interaction in
these complex mathematical formulas resulting in the step-
like plateaus shown in the graph. In any case, it would
seem that a back-propagation network which adjusts
temperature in a manner which is sigmoidal with time is
probably not appropriate for modeling human performance,
though it may have interesting implications for other
neural-network applications.

The graphs of the performance of the simulation in
which temperature was varied as a linear function of error
(Figure 6.3) show a distinctive "saddle" in the early part
of the graph. This suggests that the rate of learning
slowed ddwn for a dozen or so epochs. Although similar
saddles appear in other conditions, it is very pronounced in
this condition.

In addition to the saddle artifact present in Figure
6.3, the simulation which varied temperature as a quadratic
function of epoch produced performance which was almost as
smooth as that shown in Figure 6.2.

A Better Choice

In contrast, the performance of the simulations in
which temperature is either quadratic or sigmoidal with
learning (Figures 6.5 and 6.7) have several characteristics
in common with the human learning data. The average

performance is good and it conform closely to the positively
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decelerating learning curves observed in most human learning
situations (see Figure 6.8). As with actual human
performance, the performance of individual simulated
"subjects" is somewhat erratic both within each subject and
between subjects in the condition even to the point where
several "subjects" might be considered outliers.
Time Versus Learning

In general, the three simulations which varied
temperature as a function of learning (error) instead of
time (epoch) produced performance which more closely
resembles the human performance. All three simulations
based on time (Figures 6.2, 6.4, and 6.6) produced learning
curves which were generally much smoother. The performance
of different simulated "subjects" was much more consistent
within each of these three "conditions", even to the point
of consistently reproducing the artifacts mentioned above.
Human performance in general has considerable variability
and the performance of the human subjects on this learning
task is no exception. Because they reflect a similar amount
of variability, one of the three models which vary
temperature as a function of learning is likely to be a
better model of human learning.
Qi  dal . 3 ouad .

Ag discussed in the Method sectionAabove, a sigmoidal
function may bear a close resemblance to either a linear or

a quadratic function depending on the slope of the function
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and any offset imposed to constrain the range of values.

For this project, the simulation which varied temperature as
a sigmoidal function of error used a balanced function with
an intermediate slope. On the other hand, if that condition
had used a sigmoidal function whose shape more closely
approximated a linear function, the performance of that
simulation would likely have approximated that of the
simulation which used an actual linear function. Similarly,
if the sigmoidal function had been clipped to resemble a
quadratic function, the performance would have been similar
to that of the simulation which used a quadratic function.
One would expect, then, that differences in simulations
using these three functions would be mostly a matter of
degree and that a sigmoidal function could be made to
approximate the performance of either of the other two
functions.

In fact, the learning curves of the three simulations
which varied temperature as a function of learning are
similar. The main difference between them is the relative
presence of the "saddle" artifact mentioned above. This
artifact is very pronounced with the linear function,
noticeable reduced with the quadratic function, and almost
unnoticeable for many of the "subjects" in the condition
which used the sigmoidal function. This would argue in
favour of the sigmoidal function for a model of human

learning.
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Conclusions

The purpose of this series of simulations was to show
that adding a temperature parameter to a back-propagation
learning rule in a connectionist model of human learning and
causing that parameter to decline as the network learns will
improve network performance and will do so in a manner which
is similar to the effect of attention in human learning.

The results of these simulations are not conclusive
but, of the transformations investigated here, it would seem
that a network which adjusts temperature sigmoidally with
learning will more closely model human performance and one
which decreases temperature linearly with time will maximize

network performance.
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CHAPTER SEVEN: CONCLUSIONS AND IMPLICATIONS

This chapter begins with a summary of the conclusions
reached throughout this research project. The summary is
followed by suggestions for further, follow-up research on
the interaction between learning and attention using
variations on the same methodology. The chapter ends with a
discussion of broader implications for research within and

across several disciplines.

Summary of Conclusions

This research project proceeded in phases consisting of
a computer-based simulation, an experiment on human
subjects, and then a series of additional computer-based
simulations. Each phase of the project resulted in specific
conclusions but each phase was also based, to at least some
extent, on the conclusions of previous phases. To preserve
the flow of the argument, the conclusions reached at each
phase of the project are presented in the chapter describing
that phase. The following is a brief summary of those
conclusions.

The discussion of connectionist networks and related
research presented in the first two chapters led to the
conclusion that such networks are useful for modelling human
cognitive processes. Further, this discussion suggested

that models of human learning would likely require a multi-
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layer network with a sophisticated learning mechanism such
as the back-propagation learning rule. |
The third chapter suggested that performance in a back-
propagation network was improved by including a
"temperature" parameter which decreased the variability of
each node's output signal as the network‘learned. Chapter 4
concluded that this temperature parameter might be used to
model attention in human learning, and suggested a
methodology for measuring attention in a learning situation.
The results of the human learning experiment presented
in the fifth chapter supported the hypothesis that attention
declines in some continuous manner as learning‘increases and
suggested several possible mathematical descriptions of that
decline. Each of these possibilities was used as the basis
for a back-propagation network simulation of the human
learning experiment and Chapter 6 reports the results. The
overall conclusion reached was that, of the possibilities
investigated here, the most appropriate model of attention
in human learning is a back-propagation network with a
temperature term which declines sigmoidally as learning

increases.

Project-Specific Implications
As with any research, some aspects of this project
worked well and others did not. The things which worked

well have implications for future research in a variety of
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areas but the things which did not work as well have equally
important implications for further research in this area and
related areas. This section will discuss some of the
limitations of the human learning experiment and the
computer-based simulations of that task with a view to
improving future research.

he H I . ; .

One difficulty with this experiment concerned the fact
that the procedure relied on reaction times as a measure of
learning and of attention. Although the subjects were
instructed to respond as quickly as possible, there is some
evidence that a number of them may not have been focusing on
these instructions. This may have been due in part to their
lack of maturity (they were all grade ten students) and, in
part, because they were focusing on learning the items to
the exclusion of everything else. Future studies using this
methodology may have more success by drawing subjects from a
more mature population. In addition, the software which
administers the learning task could be modified to provide
feedback, on the subject's speed of response. If this
feedback were provided in the form of an ongoing arcade-
style score, it is more likely that subjects would be
motivated to respond as quickl? as possible.

A second difficulty with the experimental design had to
do with the subjects' persistence. As mentioned in Chapter

5, initially it was not clear whether latency would decline
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by any appreciable amount until mastery was almost reached.
On that basis, this study was designed to continue to test
subjects long after the point of mastery. 1In fact, the data
from this study suggests that latency begins to decline
almost as soon as subjects begin to learn. Future studies
which use this methodology could avoid some of the problems
with persistence by establishing some criteria for stopping
shortly after mastery is reached.

Related to the issue of persistence is the rate with
which the subjects learned. Since the objective of this
experiment was to reach mastery, the task was made
relatively easy by having only twelve pairs of stimuli to be
learned. For many of the subjects, this meant that mastery
was' approached after only a few ﬁrials and, consequently,
most of the attention measures were taken over a relatively
small range of learning measures. Since it would seem that
attention begins to decline early in the task, the number of
items could be increased to produce a slower rate of
learning. This should delay the loss of persistence. It
should also increase the chances of determining a more
precise description of the relationship between learning and
attention by providing attention measures over a broader
range of learning scores.

The conclusions presented in the first section of this
chapter were reached largely on the basis of qualitative

comparisons between the performance of the human subjects
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and the simulations. If a more homogenous population
(perhaps using testing software which implements the above
suggestions) could produce a more consistent performance, it
might be profitable to investigate techniques for making
quantitative statistical comparisons between the graphs of
the human subjects' performance and the performance of the

simulations.

The Simulations

Arguments presented in Chapter 6 suggest that a
sigmoidal function can approximate linear and quadratic
functions as well. The specific function used for the
simulations which adjusted temperature sigmoidally had a
balanced shape with an intermediate slope. Of the three
simulations which based temperature on the amount of error,
the one with the sigmoidal function seemed to be a slightly
better model of the human performance than the ones with the
linear function and the quadratic function. It is possible
that a sigmoidal function of a different shape would produce
an even better fit with the human performance. Further
research using simulations with sigmoidal functions could
investigate a range of slopes and offsets.

In general, the performance of the simulations which
based temperature on error was more like the human
performance than the simulations which based temperature on
epoch number. The major exception to this was the presence

of a saddle-like plateau in the early learning trials of
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some simulated "subjects". Further investigation of this
"saddle" artifact is necessary, especially in comparison
with the slightly sigmoidal performance in the early

learning trials of some of the human subjects.

Broad, Interdisciplinary Implications

As mentioned in the preface, this project is based on
research from three disciplines: Education, Psychology, and
Computer Science. The rest of this chapter will discuss the
implications this research has for each of these areas and
present some suggestions for further research.

Computer Science

Because of the sophisticated technology required to
implement connectionist networks, this area of research owes
much to computer science in general and the area of
artificial intelligence in particular. However, computer
science is not generally concerned with modeling human
performance, and some aspects of the technology it produces
are more appropriate for such models than others. One such
technology is simulated annealing.

There are some similarities between the use of
temperature in a back-propagation network and simulated
annealing. In general, simulated annealing is used for
combinatorial optimization in a wide range of domains
(Laarhoven & Aarts, 1987; Vidal, 1993). One specific

application is its use in neural networks called Boltzmann
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‘machines (Hinton & Sejnowski, 19866; Aarts & Korst, 1989).
Although it is this application of simulated annealing which
inspired the use of the term temperature to describe the
modification to the back-propagation learning rule used in
the simulations for this project, the objective here was to
modify the back-propagation learning rule to more accurately
model human learning, not to model human learning using a
Boltzmann machine.

Although Boltzmann machines have recently been used to
model some aspects of human performance, there is at least
one aspect of such a model which makes it less appropriate
as a model of attention in human learning. Simulated
annealing continuously decreases the temperature of the
system in which it is implemented. No pfovision is made for
increasing temperature if the combinatorial optimization is
not going well. In some ways this could be compared with
the simulations in which temperature was based on elapsed
time but in the simulations in which temperature varies with
learning, there would be numerous instances of temperature
increases as the network escaped from local minima.

Human cognitive research borrows from computer science
but work in this area often has something to give in return.
This dissertation has focused mainly on the use of
connectionist networks to model human cognitive processes
and, consequently, more attention has been paid to the

gqualitative performance of the networks than the relative
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speeds with which they learn. However, for many computing
science researchers, the speed and accuracy of the network
are just exactly what is of interest.

Manipulating the variability of the output function in
the manner suggested here definitely improves the speed of
learning in one specific back-propagation network. More
research in this area would identify the extent to which a
temperature term is useful for other such networks and how

it influences other aspects of network performance.

Psvchology

Empirical research is strongly influenced by the
environment in which the research takes place. It is
assumed that if this environment is properly controlled the
performance of subjects can be meaningfully compared. The
problem with cognitive research is that a significant amount
of the "environment" influencing performance is inside the
subject's head. It is difficult or impossible to control
these influences.

Computer-based models of cognitive processes allow
researchers to indirectly investigate these "in-the-head"
influences to the extent that they are faithfully modelled.
The results presented here are not strong enough to argue
that the only way to faithfully model the influence of
attention is with a sigmoidally.declining temperature
parameter, but they do suggest that such a parameter is one

possible way of doing so in at least some learning
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situations. Further research would identify just exactly
what those situations might be.

Any time research within a specific paradigm
(especially a relatively new one) is successful, it argues
for the usefulness and credibility of the paradigm in
general. In addition to what this research says about the
specifics of modeling attention, it also provides general
support for connectionist models and theories. This
investigation was successful in that it definitely does
suggest that a connectionist model of human learning should
include a model of attention and that temperature may be an
appropriate way to do this. To fully substantiate 'this
suggestion, it will be necessary to conduct further research
into the performance details of human subjects' learning and
attention and into the implementation details of temperature
in connectionist networks.

Education

As a model of cognitive processing, connectionism
places a strong emphasis on learning. Intuitively, this
suggests that such a model would have implications for
education. As yet, few of these implications have been made
explicit but connectionism has only recently received
general acceptance even in the cognitive science community.

To the extent that connectionist models in general are
a faithful representation of human cognitive processes, the

characteristic responses of a connectionist network to
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learning have implications for the way human learning
environments should be structured. For example, the process
of automatic generalization suggests a mechanism whereby
generalizations will be acquired from repeatea exposure to
typical instances. This argues in favour of discovery
learning. On the other hand, this mechanism also suggests
that forming associations between new concepts and existing
super-ordinate concepts will be facilitated if the super-
ordinate concept is sensitized in advance. This suggests
that at least some form of advance organizer will assist
integration of new information. The fact that a
connectionist model incorporates both of these mechanisms
may suggest why both of these teaching strategies appear to
work.

The behaviour of the specific connectionist networks in
this research project also have implications for educational
practice. The results provide support for declining demands
on attentional resources as a cognitive skill is mastered.
Converting controlled cognitive processes to automatic ones
is an important part of learning and to optimize this
learning, attentional resources should be fully utilized.
This argues for the continuous introduction of new material
and new perspectives and maybe even new skills even while
the skill at hand is still being mastered.

To maximize learning in any one individual, that

individual's progress should be closely monitored and their



143

curriculum should be constantly updated to optimize the use
of their attentional resources. This would be almost
impossible with the currently dominant, group-centred
approach to education, but even with a more student-centred
approach there are significant practical difficulties
concerning assessment, record-keeping, and delivery of
curricﬁlum.

Computer technology is already being used to address
many of these difficulties but most of the assessment is
product oriented and delivery is rarely individualized. One
way for computer-based instruction to individualize
curriculum is to maintain a profilé of the learnér based on
on-going assessment of student performance. A measure of
the amount of attentional resources being devoted to the
task at hand could be used to adjust the pace of delivery
and even the content. To the extent that response latencies
and even reaction time probes accurately measure the use of
attentional resources, these measures should be added to the
learner profile.

People's minds are infinitely more complex than any
computer-based connectionist network but connectionist
models of human cognition can help us understand more about
human learning and this increased understanding can lead to

more informed educational practice.
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