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ABSTRACT 

Computer-based connectionist networks are seeing 

increasing use as models of human cognitive processes. 

Because these processes are complex, a multi- layer network 

is required. Because humans learn, the network model must 

also learn. The most common learning rule for a multi- layer 

network is back-propagation. The variability of the output 

signal produced by the back-propagation learning rule is 

usually fixed. If, instead, a parameter is added which 

gradually decreases the variability, the network should 

learn faster. The results of a simulation based on a 

network with such a parameter confirmed this. 

When parameters are added to a ,network to improve 

performance, the resulting network is useful as a model of 

human cognition only if the parameter itself models some 

aspect of the human performance. The literature pertaining 

to human cognition within the context of a limited 

attentional resource suggests that attention declines as 

learning increases. A human learning experiment, based on a 

paired- associate learning task, confirmed the decline in 

attention and suggested several possible mathematical 

descriptions of the change with a view to modelling this 

change by gradually decreasing the variability of output 

signals in a back-propagation connectionist network. 

A series of simulations was implemented to determine 

which of the possibilities suggested by the human learning 

experiment represented the best model of the human learning 

situation. The simulation results suggested that the 

fastest learning performance is achieved with a linear 

decreasing function, but a more faithful model of human 

learning is achieved with a sigmoidal function. 
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I 

INTRODUCTION 

This dissertation addresses topics from a number of 

disciplines including Psychology, Education, and Computing 

Science. To assist readers with a less technical background 

in some of these areas, this preface will present an 

informal overview of the entire research project. The more 

formal dissertation will begin in the next chapter. 

When I first began to study " cognition" in the early 

seventies it wasn't called that, and behaviourism was 

beginning to give way to associationism. The main- stream of 

psychological research was concerned with the cause and 

effect of cognition, not the mechanism. 

When I returned to the study of cognition in the late 

eighties, the current model which seemed to best account for 

the complexities of behaviour in general and learning in 

particular was a cognitive model -- the kind with short-term 

memory, long-term memory, and a central executive. Some 

attention was now being focused on internal representations 

and processing mechanisms, especially with semantic 

networks. 

This perspective seemed very mechanistic and overly 

complicated, and it had some problems with some specific 

areas of cognition in which I was particularly interested. 

For example, localized representation: the notion that one 

location in the net represented one thought or idea (bird, 
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canary, yellow,' etc.), didn't seem right in light of 

evidence which suggested a more distributed representation. 

Further, the models seemed to rely on some, ill-defined 

central control mechanism to process input and activate the 

node representing a conscious thought. And furthermore, the 

control process seemed to rely on rules, while human 

behaviour mostly does not. 

Perhaps the components of these models were not to be 

taken so literally. The old Pandemonium model didn't mean 

there were actual demons yelling in the head and semantic 

network models probably didn't mean there were ' yellow', 

'canary', and ' bird' neurons in the brain either. Perhaps 

rules just described behaviour instead of controlling it. 

But if this was the case, there should be a deeper, more 

fundamental level where the components of the model were 

neurologically plausible. And if this was the case, the 

higher, more abstract levels were largely allegorical, and 

perhaps less useful once a deeper understanding was 

achieved. 

At least part of the appeal of the more mechanistic, 

semantic network models is that the model ( or parts of it) 

can be implemented using fairly straight- forward computer 

programming techniques. I was interested in computer-based 

models of cognition and these models seemed interesting at 

least in part because they were implementable. 
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Shortly after this, I encountered connectionist models 

of cognition. These models specified a distributed 

representation of knowledge and no specific processing 

mechanism -- or, more exactly, an automatic, distributed 

mechanism. 

Computer-based models of connectionist representations 

were anything but straight- forward. Mostly they relied on 

the stochastic nature of non-linear equations to respond to 

specific inputs with a non-deterministic output. Parallel 

Distributed Processing ( PDP) seemed to be the most 

appropriate implementation technology for connectionist 

models of human cognition because of its sophisticated 

learning rules involving back-propagation. 

One of the terms in the set of non-linear equations 

which defined back-propagation did not seem to have a 

theoretical justification. It was just fixed at a value 

which worked"best" for any given implementation. The 

effect of this term on processing in a PDP network seemed to 

be similar to that of the temperature term in a Boltzman 

machine in that when it was high, learning proceeded rapidly 

and was characterized by a high level of activity and by 

"divergent" processing but the error rate was also high. 

When this " temperature" term was set low, learning was 

slower but proceeded in a more regular fashion and the error 

rate was low. 
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It seemed to me that optimal learning would occur if 

the temperature was high when learning began and low as 

mastery was approached. I developed a simulation of a 

learning task based on a connectionist network using a back-

propagation learning rule where I gradually decreased the 

temperature at a fixed rate as learning progressed. 

The simulation with declining temperature was able to 

learn significantly faster than simulations with a fixed 

temperature, but I was more interested in modeling human 

cognition than developing a fast- learning neural network. A 

temperature factor would be useful in a connectionist model 

of human cognition only if there were an equivalent factor 

in human learning: something which started high then 

declined during a novel learning situation, but was 

relatively low once the material was mastered. 

I liked one part of the more mechanistic cognitive 

models -- the idea of limited attentional resources. But 

without the special purpose processing mechanisms of the 

cognitive models, how could a connectionist model represent 

these effects? The behaviour of the simulation with the 

declining temperature term seemed to have some of the 

characteristics of human attention as it relates to the idea 

of a limited attentional resource. By adding a 

representation of attention, I hoped to show that a 

simulation with a variable temperature term was a "better" 

model of human cognition than one without such a term. To 
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do this I needed to compare human performance on a learning 

task with the simulation's performance on a similar task. 

Human attention certainly seems to decline as a student 

masters knowledge and skills, but what is the rate of 

decline and what factors influence it? The initial 

simulation reduced temperature at a fixed rate and by an 

arbitrary amount. This first approximation showed the 

benefit of a temperature term but it didn't seem likely that 

the relationship between learning and attention was that 

simple. More likely, attention declines in some non-linear 

way as a function of either amount of learning or elapsed 

time or some even more complex interaction of both. 

To get a more accurate picture of just how human 

attention decreases, I conducted a human learning experiment 

which measured attention and learning over a fixed number of 

trials of a simple paired- associate learning task. I hoped 

the results would provide a mathematical description of the 

change in attention versus learning and/or time. I could 

then use this mathematical description to vary the 

temperature term in a connectionist network to provide a' 

more accurate model of human learning. 

The results of the human experiment definitely showed a 

decline in attention as learning proceeded and as time 

passed. However, the exact mathematical relationship 

•between these was not entirely clear. In the end, I 

developed seven network simulations: the conventional PDP 
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network with fixed temperature and a two-by- three matrix of 

simulations based on either learning or time and using one 

of three functions ( linear, quadratic, and sigmoidal) to 

determine temperature. 

In terms of network performance, the original 

simulation which decreased temperature in a linear fashion 

with time was the clear winner. Learning was faster and 

more consistent than in any of the other simulations. 

However, maximizing network performance was not the 

objective. Finding a more appropriate way to model human 

learning was. 

No one claims that human learning is either fast or 

consitent. There are many circumstances where computer 

performance is much faster. So, almost by definition, the 

computer-based network with the best performance is not 

likely to be the best model of human learning. And, in 

fact, this research suggests that the best way to model 

human learning in a connectionist network is to decrease 

temperature sigmoidally as learning increases. 
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CHAPTER ONE: CONNECTIONISM 

The term " connectionism" has been applied to various 

aspects of human cognition for nearly a century and, 

although still not entirely accepted as a major theory of 

human cognition, connectionism has gained considerable 

support over the last decade. As yet, there is no clearly 

accepted delineation of the connectionist realm. This 

chapter will build a specific perspective on the term 

connectionism and will establish a context for the rest of 

this dissertation. 

Computer-based connectionist networks are used by 

researchers in both cognitive science and artificial 

intelligence. Although the implementation details of all of 

these networks may be similar, the objectives often are not. 

Most artificial intelligence research tries to develop 

computer-based solutions to the kinds of problems which 

traditionally have been solved best by humans. Sometimes 

what is known about human cognition facilitates this 

development but the objective is to solve the problem in the 

best way possible. On the other hand, cognitive science 

research is more concerned with developing a computer 

application which faithfully replicates some aspect of human 

behavior. In general, artificial intelligence applications 

attempt to maximize the performance of a network while 

cognitive science research may sacrifice the absolute 
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performance of a network to more get a more human- like 

response. It is this later perspective which is most 

appropriate for this dissertation. 

All connectionist models of cognition share a general 

set of features. Details of how these general features 

behave and interact place constraints on a model's 

architecture. A number of implications arise from the 

interaction of these general features within a model. The 

first three sections of this chapter will describe the 

general features of connectionist models, identify some 

architectural constraints, and discuss the implications 

these constraints hold for connectionist models. 

Not all cognitive scientists accept connectionism as an 

appropriate psychological model. The fourth section 

identifies and discusses some of the criticisms leveled 

against connectionism and the last section discusses the 

relationship between connectionism and some of the more 

conventional psychological paradigms. The chapter will 

close with some conclusions about the use of connectionist 

models to explore human cognition. 

Basic Common Features 

All connectionist models have, as their basis, a 

network of interconnected nodes or neurons. One such node 

is illustrated in Figure 1.1. Each node has one or more 

input connections which come either from the external 
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environment or from other nodes in the network. Each node 

also has a single output connection, but that output can 

branch to send its signal to more than one other node or to 

the outside environment. These connections carry signals 

from node to node in one direction only. Each connection 

has a weight associated with it. This weight modifies the 

strength of any signal passing through the connection. 

Figure 1.1 A connectionist network node receiving input ( I) 

modified by weights (W) on connections from three other 

nodes and producing output which branches to three 

other nodes. 

Each node has an activation level that changes with 

time. An activation function determines this activation 
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level based in part on the node's previous activation level 

and in part on the strengths of all of the weighted input 

signals the node receives. All of the nodes in a network 

use the same activation function to determine their 

activation levels. 

The activation level, in turn, serves as the basis for 

an output function which determines the strength of the 

node's output signal. Again, all of the nodes in the 

network use the same output function. 

The process of evaluating the weighted input signals, 

calculating a new activation level, and producing an output 

signal is an entirely local event analogous to the firing of 

a neuron in a biological neural network. There are two 

aspects of this calculation which are characteristic of 

connectionist networks. First, there is no central 

controlling mechanism -- all processing is done by the 

individual nodes and all nodes perform their processing at 

the same time ( in parallel). Second, the transformation of 

input signal to output signal must be non-linear and, in 

fact, some would suggest sigmoidal (Kosko, 1987) 

A connectionist network reacts to signals received from 

the environment. For convenience, these signals are usually 

represented as coming from an input node whose activation 

level is fixed at a specific value which represents the 

signal from the environment. A network will usually have 

more than one input node so that more than one environmental 



stimulus can be represented. Instead of allocating one node 

to each stimulus, most networks represent each stimulus as a 

pattern of values across all input nodes. In this latter 

case, the input to the network is said to be non-

orthographic since two or more different stimuli may present 

the same value to one or more of the input nodes. 

To be useful, a network must produce a response to an 

environmental stimulus. To accomplish this, one or more 

nodes in a network are designated as output nodes. The 

signal coming from an output node ( or the pattern of signals 

coming from all output nodes) represents a response from the 

network. 

A network may consist solely of input and output nodes 

or it may include hidden nodes as well. Hidden nodes have 

no direct connection to the environment. Instead, they 

accept signals from other nodes, adjust their own activation 

levels accordingly, and send a commensurate output signal to 

other nodes. 

The processing which occurs when a network responds to 

a stimulus might proceed as follows: 

A stimulus is presented to the network by setting the 

activation level of all input nodes to a pattern of specific 

values and fixing them there. All of the input nodes then 

send out signals whose strength is determined by these fixed 

activation levels. These signals are sent along connections 

to other specific nodes. Each connection has a weight 
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attached to it and this weight modifies the strength of the 

signal passing through the connection. 

Any one node receiving a signal from an input node will 

likely be receiving signals from other nodes as well. It 

combines all of these signals and uses the result to adjust 

its activation level. The node then emits its own signal 

based on its new activation level. 

In this way, signals are propagated through the entire 

network until all output nodes are producing an output 

signal. The pattern of these signals across all output 

nodes is the network's response to the specific stimulus 

"presented" to the input nodes. If a second, different 

stimulus is now presented 

new pattern of activation 

with a different response 

nodes. 

(by setting the input nodes to a 

levels), the network will respond 

(pattern of signals) at the output 

Architectural Constraints 

The general features mentioned. in the previous section 

are common to all connectionist models. Any one specific 

model, however, will implement these basic features in its 

own, unique way resulting in a specific network 

architecture. The details of this specific architecture 

will place constraints on the behavior of the specific 

• network and, indirectly, on the connectionist model the 

network represents. 
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Interconnection and Layers  

The amount of interconnection between nodes in a 

network is determined by the number of other nodes to which 

any one node may be connected. In a fully interconnected 

network each node is connected to all of the other nodes. 

In a partially interconnected network each node is connected 

to only some of the other nodes. Most connectionist 

networks, especially those with hidden nodes, are usually 

partially interconnected. 

In a partially interconnected network, nodes are 

usually grouped into layers according to the nature of their 

interconnectedness and according to the function of the node 

(input, hidden, or output). 

One of the oldest connectionist networks consisted of a 

single layer of input nodes and a single layer of output 

nodes, with all possible connections established between 

layers but not within layers. This type of network is very 

simple but it is quite good at modeling human perception, 

and is consequently often called a pe'ceptron (Rosenblatt, 

1962) . 

Although a perceptron is quite powerful in some 

situations, it is unable to address many important 

processing requirements (Minsky and Papert, 1969). More 

sophisticated models allow for a third layer of hidden nodes 

between the input and output nodes. Some architectures 

allow these hidden nodes to be connected to any combination 
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of input nodes, output nodes, and other hidden nodes. Other 

architectures restrict connections in some way. For 

example, in a bottom-up architecture with a bottom layer of 

input nodes and a top layer of output nodes, input nodes 

must be connected to either hidden or output nodes and 

hidden nodes cannot be connected down to input nodes 

(Rumeihart, Hinton, & Williams, 1986) 

Figure 1.2 Examples of two network configurations showing 

different numbers of layers and different amounts of 

connectivity. 

Signal Propagation  

For most connectionist models, the update of signals 

within each node occurs discretely, rather than continuously 

(Obermeier & Barron, 1989). This means that all of the 

nodes in a network fire and then " rest" for a moment before 

firing again. In a network with no hidden nodes this may 

not seem important because the single firing will carry all 

of the input signals directly to the output nodes, but this 
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distinction has much more significance when hidden nodes are 

introduced. 

If there is a layer of hidden nodes between the input 

nodes and the output nodes, a single firing of the network 

will not be sufficient for the activation levels of the 

input nodes to affect the output nodes. Instead, the input 

activation will spread only as far as the hidden nodes, and 

a second firing will be required before the final output is 

generated. In networks with multiple layers of hidden nodes 

(i.e., networks where hidden nodes can be connected to other 

hidden nodes) multiple firings will be required before the 

input activation has spread throughout the network and all 

nodes again come to rest in a stable state. 

In a richly interconnected network, it is possible for 

a pattern of connections to exist such that the output 

signal from a node eventually comes back as an input signal 

for that same node. This is called a feedback loop. A 

signal entering such a loop could resonate indefinitely and 

prevent the network from ever reaching a stable state. To 

prevent this, Kaplan, Weaver, and French ( 1990) specify 

mechanisms of inhibition and fatigue to dampen activation 

between and within nodes respectively. The resulting 

architecture can "provide the system with the means of 

having internal, semi- autonomous, activatible 

representations of reality that do not rely uniquely on the 

sensory interface". 
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Training and Learning  

The output pattern produced by a network in response to 

a specific input pattern depends on the activation level of 

the nodes in the network when the stimulus is presented and 

on the weights of the connections between nodes. The 

activation levels automatically change each time a new set 

of signals is propagated through the network, but the 

weights stay the same. It is the weights, therefore, which 

represent the fixed ' knowledge' which allows a network to 

produce the same ( or almost the same) response any time it 

is presented with the same stimulus pattern. 

To establish the connection weights which will allow a 

network to provide an appropriate response to each stimulus, 

a network must be trained. This can either be done manually 

by an outside agent or automatically by the network itself. 

If a network adjusts its own connection weights, the network 

is said to be able to learn. The function the network uses 

to make these adjustments is called the network's learning 

rule. 

Hebbian Learning Rule  

The basis for most connectionist network learning rules 

is the Hebbian learning rule "which holds that associations 

are built up between things that occur together" 

(Zeidenberg, 1987, p. 240). Any time two connected nodes 

have high levels of activation, this rule increases the 
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weight of the connection between them. In most cases, a 

more elaborate variant of this learning rule is used. 

Delta Learning Rule  

The application of this rule assumes a fully 

interconnected network with no hidden nodes. Initially the 

weights of all connections are set to small random values. 

The network is trained by repeatedly presenting training 

pairs consisting of both the input and the desired output. 

Each time the network receives the input it produces some 

output. For each output node, the delta rule calculates the 

difference between the actual and the expected output and 

adjusts the weight of the connection to each node 

accordingly. The amount of adjustment depends not only on 

how "wrong" the output node was but on the strength of the 

input to that node (Jones & Hoskins, 1987). 

Back Propagation  

For networks with hidden nodes, a more complicated 

learning rule is required. The difference between the 

actual and the expected output can only be used to update 

those nodes directly connected to the output nodes. 

However, the amount by which these nodes are updated can 

serve as a basis for updating the nodes to which they are 

connected. In this way the output error can be propagated 

back through the network all the way to the input nodes. 

This is much like the spread of activation forward through 

the network, except that it spreads back from the output 
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nodes to the input nodes and it is the connection weights 

not the activation levels that are adjusted. This back-

propagation learning rule is somewhat restricted as well in 

that it only works for a bottom-up network topology 

(Rumelhart, Hinton, & Williams, 1986). 

Back propagation is not an entirely new concept. 

Thorndike proposed a teaching rule by which the positive 

outcome strengthened connections between an immediately 

preceding behavior and stimulus input present at the time, 

the so-called " Law of Effect" (Walker, 1990, p. 25) . This 

rule has much in common with back propagation. 

Competitive Learning Rule  

Networks with massively interconnected hidden nodes can 

learn without being specifically trained. One example of 

this involves the competitive learning rule. In such a 

network, clusters of hidden nodes are structured in such a 

way that: each node in the cluster is connected to all input 

nodes; the weights of the input connections are initially 

random; input connections to one node in the cluster inhibit 

similar connections to other nodes in the cluster; and a 

Hebbian learning rule is applied. When a competitive 

learning network stabilizes, each cluster will come to 

represent a general feature or characteristic of the input. 

If a similar layer of hidden nodes takes its input from the 

clusters in the first layer, this second layer will come to 

represent more complex features of the input. 
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Given a threshold number of connections between a 

set of simple neurons, a form of self- organization 

takes place, and from this organization collective 

computational properties emerge, such as 

association, generalization, differentiation, 

preferential learning, optimization, and fault 

tolerance ( Josin, 1987, p. 184) 

Characteristics of Learning in Networks 

A single connectionist network can be trained to make 

appropriate responses to several different stimului. The 

simplest case involves mutually exclusive stimuli where the 

signal strength at every input node is different for each 

stimulus. An extreme example of this would be where each 

stimulus sets a different input node to a high value. As 

long as there are at least as many input nodes as stimuli, 

the network receives unambiguous input and can learn to make 

consistent, reliable responses. Even if the different 

stimuli are represented as patterns of high values at 

several input nodes, the network will learn to differentiate 

between stimuli as long as each stimulus uses a different 

set of input nodes for its pattern. 

On the other hand, it is possible to have redundancy in 

the input. This happens when several different stimuli set 

some of the same input nodes to similar values. 

Connectionist networks have some characteristic ways of 

responding to this kind of redundant input and the responses 
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are often similar to the way humans respond in similar 

circumstances. This section will discuss several of these 

characteristic responses: 

Distributed Representation 

Connectionist networks can resolve ambiguous input 

because they use a distributed representation. In contrast, 

semantic networks use local representations in that a single 

concept in such a network is represented in a single node. 

For example the concept " grandmother" would be represented 

by a single " grandmother" node. In a connectionist network, 

however, a single concept is represented by a unique pattern 

of connection weights distributed across the entire network 

(McClelland, 1988). Walker ( 1990) uses a piano analogy to 

describe distributed representation. The keys of the piano 

represent all of the nodes in the network. Any one sound 

coming from the piano is analogous to a single concept in 

the connectionist model. This sound is " represented" by the 

keys being pressed at any one instant. If a piano with 100 

keys were played with one hand (5 keys pressed) there are 75 

million possible sounds which could be produced. 

In a connectionist network the proportion of nodes 

active (keys being played) at one time is more likely to be 

half of the nodes in the network which is usually 

considerably more than five. In a network with only one 

hundred nodes, fifty of them might have significant 

activation levels at one time. If five pianists were 
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playing the piano at the same time ( 10 hands = 50 keys), 

reporting the number of possible sounds would require a 

thirty digit number. While the piano only has a few dozen 

keys, the human brain has billions of neurons, even though 

the human brain is not fully interconnected, the resulting 

possible combinations of distributed representations should 

be more than sufficient to represent all of the concepts any 

one human mind could hold. 

Automatic Generalization  

In a distributed representation, similar concepts have 

similar patterns of activation or, to put it another way, if 

large areas of two patterns of activation are the same, 

those two patterns represent similar concepts. This feature 

of connectionist models leads to automatic generalization. 

Zeidenberg ( 1987) presents the following example of 

automatic generalization. The concepts " gorilla" and 

"chimp" are related. This means that many of the most 

highly activated nodes in the gorilla pattern are also 

highly activated in the chimp pattern. If the concept 

'hairy' comes to be associated with gorilla, the weights 

between the highly activated nodes in both the hairy pattern 

and the gorilla pattern are increased or strengthened. 

Since these nodes in the gorilla pattern are mostly the same 

nodes as in the chimp pattern, hairy becomes associated with 

.chimp automatically. Similar automatic generalization is a 

well established feature of human learning (Baddeley, 1990). 
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Graceful Degradatior  

If a connectionist network is trained to respond to one 

input pattern and receives a slightly distorted version of 

that input it will probably still produce the proper 

response. A conventional rule-based system, on the other 

hand, will just fail to produce a match for the input and 

will have no suitable response at all. 

distorted even more, the connectionist 

fail, it will just become increasingly 

If the input is 

network will not 

more likely to 

provide an incorrect response. The performance of the 

connectionist network degrades gracefully as the quality of 

the input decreases. As with automatic generalization, 

graceful degradation is a common characteristic of human 

performance (Norman & Bobrov', 1975). 

Goals  

When a connectionist network is learning, it adjusts 

its connections weights to reduce what it "perceives to be 

incongruities between the input 

desired output can be viewed as 

process as goal satisfaction. 

for the first time a convenient 

and a desired output. The 

a flg0a111 and the learning 

'Connectionist models offer 

way of incorporating goals 

into the dynamics of information processing systems" ( Estes, 

1988) 

Content Addressable Associative Recall  

The sharing of common elements by similar concepts 

provides an automatic mechanism whereby an attempt to 
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retrieve one representation automatically activates similar 

representations and also activates the set of common 

elements which constitute the generalization of the other 

representations. The retrieval cue need contain only part 

of the input that was learned. The retrieval cue can even 

include incorrect information and the network will recall at 

least an approximation of the original material. This 

results in the instant, or at least very fast, retrieval of 

information the network has " learned". 

Fault Tolerance  

Distributed representation makes a connectionist 

network less sensitive to damage. The loss of a few nodes 

which are important to a concept may make the concept a 

little fuzzy but the concept can still be recalled. In 

contrast, with the kind of local representation found in a 

semantic network, loss of a node involves loss of an entire 

concept. The fact that brain damage in humans does not lead 

to the loss of discrete concepts suggests that the human 

brain also incorporates distributed representations. 

Knowledge Structures  

Learning in connectionist networks is accomplished 

through the automatic application of simple mathematical 

expressions and results in adjustments to connection 

weights. Knowledge, in such a network, is nothing more than 

the set of all connection weights across the entire network. 
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Many cognitive psychologists consider knowledge to be 

stored in relatively complex structures variously called 

frames (Minksy, 1977), scripts ( Shank & Abelson, 1977), or 

schema (Rumelhart & Norman, 1987). " Such knowledge 

structures are assumed to be the basis of comprehension." 

(McClelland, Rumelhart & Hinton, 1986, p. 9). However, 

these complex constructs are only approximations of the 

actual underlying structure of knowledge as represented by 

the connectionist model. Although usually associated with 

semantic networks, these knowledge structures can be 

implemented in connectionist networks as well. 

In the network, you don't explicitly define the 

schemata; you only set the associations between 

pairs of descriptors. The schema emerges out of 

the network as a natural consequence of its 

behavior. Thus, the schemata are not explicitly 

represented in the network, but rather are simply 

patterns of activation across a set of descriptors 

(Zeidenberg, 1987, p. 237) 

Such a network nicely accounts for such human cognitive 

behavior as activation of schema on incomplete information 

(associative recall) and the formation of overlapping schema 

(automatic generalization). 

Introspection  

Knowledge in connectionist networks is embedded 

inextricably in the machinery of processing. Consequently, 

this knowledge is completely inaccessible to introspection 

or report. "However, it should be noted that while, the 
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connection changes themselves are not accessible, the 

patterns of activation [the connections] make it possible to 

construct can be accessible to other parts of the processing 

system" (McClelland, 1988, 112) 

Criticisms 

Although connectionist networks describe an interesting 

processing mechanism which seems to have much in common with 

human performance, such networks are not unconditionally 

accepted as suitable models of human cognition. Criticisms 

of the various connectionist models have ranged from 

dissatisfaction with the specifics of current 

implementations to outright rejection of connectionism. 

The Perceptron Controversy: Limits to Learning  

The perceptron mentioned above was developed three 

decades ago (Rosenblatt, 1962),. This simple network 

consists of input nodes and output nodes but no hidden 

nodes. The result is a very simple network suitable for 

simulating ( among other things) some aspects of human 

perception. This was the first connectionist network and 

was actually built into the computer hardware. 

Connectionist networks of this type are seldom used today 

(Hecht-Nielsen, 1988), but early criticisms of perceptrons 

still hinder acceptance of modern connectionist models. 

Perceptrons could learn but they could not simulate 

complex performance. Minsky and Papert's ( 1969) much 
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publicized criticism of simple, connectionist networks 

involved a series of mathematical proofs which showed that a 

perceptron-like network was incapable of performing a number 

of elementary logical processes. However, a minor change in 

architecture, the addition of hidden nodes, allows 

connectionist networks to perform much more complex 

processes. Minsky and Papert were aware of the value of 

hidden nodes, but networks with significant numbers of 

hidden nodes are difficult to analyze in the formal manner 

they used to discredit simple networks. Their book was 

instrumental in discouraging reearch into neural networks 

even though " little attention was paid to the fact that they 

directed their criticism at a very simple system, the 

single- layer perceptron" ( Zeidenberg, 1987). 

One aspect of Minsky and Papert's criticism did address 

networks with hidden nodes. At that time no algorithm was 

known which would allow networks with hidden nodes to learn. 

They did, however, suggest that sometime in the future 

"perhaps some powerful convergence theorem will be 

discovered, or some profound reason for the failure to 

produce an interesting learning theorem' for the 

multilayered machine will be found" (Minsky & Papert, 1969, 

p. 232) 

This represented a serious limitation of connectionist 

networks. Without hidden nodes, a network must rely solely 

on distinctions which already exist in the input data. If 
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the data is " discontinuous or nonlinearly separable" these 

distinctions may not be sufficient to permit the network to 

learn. Adding hidden nodes allows the network to develop 

its own, internal representations, allowing it to learn 

patterns which are not linearly separable ( Caudill, 1988). 

Much human cognition involves even less discrete input, so 

it would seem that to be effective, connectionist networks 

must have hidden nodes. But, if connectionist networks 

require hidden nodes to simulate complex human performance, 

then their value is strictly limited in the absence of the 

ability of hidden units to learn. This limitation has 

recently been redressed by the back-propagation learning 

rule. 

In an opening talk at the 1988 IEEE International 

Conference on Connectionist Networks, Marvin Minsky 

acknowledged that: 

Given a threshold number of connections between a 

set of simple neurons, a form of self- organization 

takes place, and from this organization collective 

computational properties emerge, such as 

association, generalization, differentiation, 

preferential learning, optimization, and fault 

tolerance. (Josin, 1987, 184) 

In a clever and amusing account of this controversy, 

Papert ( 1988) has also all but retracted his earlier 

criticisms: 

Once upon a time two daughter sciences were 

born to the new science of cybernetics. One 
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sister was natural, with features inherited from 

the study of the brain, from the way nature does 

things. The other was artificial, related from 

the beginning to the use of computers. Each of 

the sister sciences tried to build models of 

intelligence, but from very different materials. 

The natural sister built models ( called neural 

networks) out of mathematically purified neurones. 

The artificial sister built her models out of 

computer programs. 

In their first bloom of youth the two were 

equally successful and equally pursued by suitors 

from other fields of knowledge. They got on very 

well together. Their relationship changed in the 

early sixties when a new monarch appeared, one 

with the largest coffers ever seen in the kingdom 

of the sciences: Lord DARPA, the Defense 

Department's Advanced Research Projects Agency. 

The artificial sister grew jealous and was 

determined to keep for herself the access to lord 

DARPA's research funds. The natural sister would 

have to be slain. 

The bloody work was attempted by two staunch 

followers of the artificial sister, Marvin Minsky 

and Seymour Papert, cast in the role of the 

huntsman sent to slay Snow White and bring back 

her heart as proof of the deed. Their weapon was 

not the dagger but the mightier pen, from which 

came a book -- Perceptrons -- purporting to prove 

that neural nets could never fill their promise of 

building models of mind: only computer programs 

could do this. Victory seemed assured for the 

artificial sister. And indeed, for the next 

decade all the rewards of the kingdom came to her 
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progeny, of which the family of expert systems did 

best in fame and fortune. 

But Snow White was not dead. What Minsky and 

Papert had shown the world as proof was not the 

heart of the princess; it was the heart of a pig. 

To be more literal: their book was read as proving 

that the neural net approach to building models of 

mind was dead. But a closer look reveals that 

they really demonstrated something much less than 

this. The book did indeed point out very serious 

limitations of a certain class of nets (nowadays 

known as one- layer perceptrons) but was misleading 

in its suggestion that this class of nets was the 

heart of connectionism . . . 

Connectionist writings present the story as 

having a happy ending. The natural sister was 

quietly nurtured in the laboratories of a few 

ardent researchers who kept the faith, even when 

the world at large let itself be convinced that 

the enterprise was futile. . . But for the moment 

suffice it to note that the princess has emerged 

from relative rags and obscurity to win the 

admiration of all except a few of her sister's 

disgruntled hangers-on. ( Papert, 1988) 

Tvel of Analysis 

Some critics of connectionist models ( e.g., Fodor & 

Pylyshyn, 1988) would agree that neural networks are a 

reasonable representation of brain functioning, but they 

feel that psychological theories should be grounded in 

higher- order structures. "Accepting the higher- level 

regularities in symbol processes means accepting the charge 

that the lower- level interactions are sometimes 
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implementational. It does not mean accepting that they are 

always or ' merely' implementational." (Walker, 1990, P. 35) 

Although more physiological than cognitive, Marr's 

(1982) framework of three levels of analysis is often used 

to evaluate computer-based cognitive models ( Sejnowski & 

Churchiand, 1989; Pylyshyn, 1989). This framework 

distinguishes between abstract, procedural ( algorithmic), 

and implementational ( architectural) levels of analysis, and 

it suggests that analysis at one level can proceed in the 

absence of understanding at lower levels. In the past, some 

cognitive scientists applied this " doctrine of independence" 

to study the mind at the level of symbolic algorithms at a 

time when little was known about the architecture of the 

brain. Unfortunately, this doctrine has also been 

misapplied in that today some researchers feel that what is 

now known about the implementation level of cognition has 

nothing to contribute to analysis at the algorithmic level. 

"In contrast to the doctrine of independence, current 

[connectionist] research suggests that considerations of 

implementation are vital in the kinds of algorithms that are 

devised and the kind of computational insight available to 

the scientist" ( Sejnowski & Churchland, 1989, p. 303) 

Many connectionist researchers argue that the 

architecture of a model places strong constraints on the 

types of algorithms the model can support. When most 

cognitive models were implemented on similar serial, symbol 
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processing computers, all of the models were subject to the 

same constraints, and thus disregard for the lower level of 

analysis may have been justifiable. Connectionist models 

assume a parallel architecture ( real or simulated) and thus 

are subject to some different constraints than most symbol 

processing models. Many connectionists argue that this 

architecture is more biologically plausible and that 

analysis at the architectural level is as important as that 

at other levels. 

It is the architecture that determines which kinds 

of algorithms are most easily carried out on the 

machine in question. It is the architecture of 

the machine that determines the essential nature 

of the program itself. It is thus reasonable that 

we would begin by asking what we know about the 

architecture of the brain and how it might shape 

the algorithms underlying biological intelligence 

and human mental life (P.umelhart, 1989). 

Another aspect of the level at which analysis proceeds 

has to do with the power of a theory. Meaningful theories 

must be testable. For some theorists, this means that 

theories should occasionally fail. Some critics of 

connectionism ( Estes, 1988) feel that connectionist models 

"are too powerful to be susceptible to direct empirical 

test". Massaro ( 1988) presents a mathematical analysis of 

the ability of a multi- layered, fully interconnected 

connectionist network to process linguistic information, and 



32 

concludes that such a model is too powerful to be of any 

theoretical value. 

In a traditional, empirical assessment of the 

performance of competing models, this may pose a problem but 

there are other ways of evaluating connectionist models. 

Chapter 6 argues for a more qualitative methodology instead 

of looking at performance based on the power of the model. 

Relationship to Other Paradigms 

Some cognitive scientists suggest that connectionism 

may represent the start of a paradigm shift for psychology 

(Schneider, 1987) . I feel that while connectionism 

contradicts the premises of some psychological paradigms, it 

represents a synthesis of the common ground among others. 

This section discusses some of that common ground. The 

strength of any new theoretical perspective can be seen in 

its ability to subsume, or at least co- exist with, existing 

competing theories. 

Constructivist  

An important characteristic of c.onnectionist models is 

that input patterns are not stored. Instead, connection 

strengths are modified so that, at a later date, the input 

pattern can be recreated. This constructivist view suggests 

that learning is a matter of " finding the right connection 

strengths so that the right patterns of activation will be 
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produced under the right circumstances" (McClelland, 

Rumelhart & Hinton, 1986, p. 32). 

Gestalt  

A number of characteristics of Gestalt theories are 

consistent with a connectionist perspective. They both 

attempt to " explain the organization of the perceptual 

world, not its relationship with the environment" and these 

organizing processes are relatively automatic ( Epstein, 

1988) . With both Gestalt and Connectionist theories, 

biologically plausible mechanisms are preferred, and in both 

processing is distributed rather than under the control of a 

central executive process (van Leeuwen, 1989) 

Empiricist/Nativist  

Although the emphasis within connectionism is on 

systems which learn by adjusting connection weights in 

response to input ( empiricism), networks start with non- zero 

connection weights. These are often small random values, 

but in theory, they could be significant values which 

predispose a network towards some initial reaction 

(nativism) 

A subsidiary role for [ connectionism] could be to 

inject some empiricist realism into post-

Chomskyean theories of human cognition . . . a 

test of the degree to which any connectionism is 

merely a neural kind of materialism (mind depends 

on the brain, and the brain is a connectionist 

machine) is whether it makes any predictions, both 
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about experimental results and desirable social 

interventions" (Walker, 1990, 34). 

Cognitive  

Cognitive models are usually based on explicit rules 

and provide a sophisticated mechanism for selecting and 

applying the rules. Connectionist models provide a very 

simple, local mechanism that does nothing more than adjust 

connection strengths which allows a " network of simple nodes 

to act as though it knew the rules" (McClelland, Rumeihart & 

Hinton, 1986, p. 32) 

The lack of a formal logic mechanism is not seen as a 

limitation of connectionist models. Since logic is " a 

system that was invented as a corrective for human thought 

[it] constitutes an improbable candidate for being the basis 

for thought" ( Kaplan, Weaver, & French, 1990, p. 68). 

Connectionist models " learn" how to behave. The 

dynamic representation of knowledge in the ever-changing 

connection weights of the network are at the heart of a 

connectionist model. Cognitive models are mostly concerned 

with a static representation of what is and have little 

concern for how it got that way. 

Behaviorist/Associationist  

The lack of higher- order executive processes and a 

concern for learning suggest that connectionist models are 

at least associationistic if not behavioristic. 

Connectionist models " recapture the associationist's and 
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behaviorist's interest in learning which cognitivists 

largely gave up in their search for mechanisms of the mind 

that were often taken to be innate" (Bechtel, 1985, 56). 

Papert ( 1988) has even suggested that connectionism now 

"promises a vindication of behaviorism". However, Kaplan, 

Weaver, and French ( 1990) suggest that to characterize 

connectionism as a " computerized revival of behaviorism" is 

appropriate only for the more simplistic architectures. 

Unlike behaviorism, however, connectionism is interested in 

the cognitive mechanism which mediates responses to stimuli. 

Conclusion 

This chapter has discussed connectionism from a 

theoretical perspective -- defining some basic terms and 

setting a context for discussion. Now that the stage is 

set, the next chapter will look at some specific 

connectionist research. 
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CHAPTER TWO: CONNECTIONIST RESEARCH 

Connectionist theories and networks are increasingly 

being used as a tool for research into human cognition. 

Some connectionist research paradigms resemble the 

conventional, empirical research performed by most 

experimental psychologists over the last few decades. Other 

connectionist research has more of a computing- science 

flavour where the intent is to build a computer simulation 

of human behaviour. Some connectionist research combines 

these two approaches and uses the behaviour of a simulation 

to "predict" thO responses of subjects in a subsequent 

experiment. This section presents some examples of 

connectionist research, in part to address specific 

theoretical and methodological issues, and in part to 

establish an approach for the research project associated 

with this dissertation. 

Some connectionist research focuses on the theoretical 

implications of a connectionist model of human cognition. 

For such theoretical models to be accepted as valid they 

must account for what is already known about human 

behaviour. To be accepted as useful, connectionist theories 

must add something new to existing accounts of human 

behaviour. The first few examples of research presented 

here address specific issues or implications arising out of 
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the application of connectionist theories to human 

performance. 

Other connectionist research actually implements 

computer-based connectionist models which perform in a 

manner similar to human performance with little regard for 

maximizing artificial- intelligence- like, problem- solving 

performance. Several examples of this type of research are 

presented as well. 

Research To Support Theories 

The research presented in this section was conducted to 

provide evidence in support of specific aspects of 

connectionist theories. Many of these specific aspects were 

discussed in the previous chapter and this section is 

organized to parallel that discussion. 

Content Addressab±l±ty  

Most cognitive information processing models claim that 

recall processes are mediated by the manipulation of 

symbols. These models can easily handle arbitrary, symbol 

based memory retrieval but have problems with content 

addressable memory retrieval. The empirical data suggests 

that human cognition is just the opposite. Human recall of 

content addressable information is relatively easy and 

natural, while any significant amount of arbitrary 

information presents a major memory task (Oaksford, Charter 

& Stenning, 1990) 
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Starting with the assumption that the meaning of a 

concept can be decomposed into its semantic elements or 

features, in what way does the number of features 

(complexity) of a concept affect memory load and processing 

time? Within the context of the decomposition assumption, 

most semantic memory models would predict an increased 

processing time for more complex concepts. Klimesch ( 1987) 

takes the fact that empirical observation does not confirm 

this as evidence against the decomposition assumption. 

Instead, he suggests that it is the semantic model of memory 

itself which is discounted by this evidence and presents a 

connectivity hypothesis with distributed representations of 

concepts to account for this. 

Automatic GeneraLization  

Organization theory suggests that in a free recall 

experiment, as the subjects study the to-be- recalled words, 

they chunk the words into subjective categories using a 

process similar to automatic generalization. When they 

recall the words, imperfect recall represents forgetting of 

entire categories rather than just some of the words within 

each category. Recall of lists of explicitly related groups 

of words can be facilitated by cueing the subjects with the 

name of the organizational categories. This helps because 

it makes sure that the subjects do not overlook any of the 

categories. Cued recall of unrelated lists of words is less 

straight- forward. 
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Penny ( 1988) was able to facilitate recall of unrelated 

items learned incidentally during a sorting task based on 

subjective categorization. On an unexpected recall text 

following the sorting task, the subjects were presented one 

item from each of the categories they had established during 

the sorting task and were asked to recall the others. The 

results were not only consistent with organizational theory, 

they also support the connectionist notion of automatic 

generalization. 

Disi.rj.bute.d Representation. 

John, Tang, Brill, Young, and Ono ( 1986) mapped the 

levels of activation in cat brains performing detection of 

previous learned visual stimuli. They found that, depending 

on how extensively the cat had been trained to the stimulus, 

between S million and 100 million neurons were activated by 

presentation of the visual cues. More important, they found 

that the activated neurons were widely distributed 

throughout the brain. This finding is " compatible with 

prior evidence of a distributed memory system" and 

"difficult to reconcile with theories in which individual 

neurons are dedicated to specific memories". 

Learning Rules  

As mentioned above, one of the constraints which 

distinguish different connectionist architectures is the 

learning rule each uses. Gluck and Bower ( 1988) discuss a 

series of experiments which test the appropriateness of a 
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least-mean- squares learning rule ( similar to the delta 

learning rule) . They compared the performance of an 

appropriately configured connectionist network to that of 

human subjects on a category learning task 

simulated medical diagnosis. "The results 

experiments provide preliminary converging 

involving 

of these three 

evidence that the 

LMS rule is more general than formerly believed" (Gluck & 

Bower, 1988) and is able to serve as the basis for a model 

of human category learning. 

Research To Model Performance 

This section provides some examples of research based 

on connectionist models and uses these examples to make an 

argument for the suitability of one specific class of 

connectionist models for thd research project associated 

with this dissertation. 

Gluck and Bower ( 1988) present two general 

methodologies for using connectionist networks to 

investigate human cognition. One involves selecting some 

aspect of human performance and constructing a network to 

perform the same task in a manner such that the "major 

regularities and salient phenomena" are preserved. The 

second methodology focuses on a specific experimental 

paradigm and then builds a network whose performance will 

predict human performance within that paradigm. The studies 

presented here show a progression from simple to more 
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complex models. Taken as a whole, these studies suggest 

that a multi- layer network using a back-propagation network 

is likely to be the most appropriate configuration for a 

network to investigate the aspects of human cognition 

addressed by this dissertation. 

Simple Connectionist Network 

Gluck and Bower ( 1988) present a series of three 

experiments in which they simulate "human category learning" 

within the Rescorla-Wagner associative learning paradigm. 

They used a categorization task which consisted of 

diagnosing one of two mutually exclusive diseases based on 

the presence or absence of four symptoms. They used a 

simple, two- layer network with four input nodes reflecting 

the symptoms and a single output node reflecting the binary 

categorization. They used a least-mean- squares ( LMS) 

learning rule ( also known as the Wodrow-Hoff rule or the 

delta rule) to train the network. The LMS rule implements 

the Rescorla-Wagner paradigm. Their objective was to 

discover the extent to which the LMS rule ( and indirectly 

the Rescorla-Wagner paradigm) provides " an empirically 

accurate account of how people learn". 

The three experiments varied the training set with 

respect to: the frequency of the two diseases, the 

predictive value of symptoms, and the extent to which the 

absence of a symptom implies the presence of its converse. 

The methodology consisted of determining the performance 
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predicted by the LMS model then comparing these predictions 

to the performance of human subjects. In general, the 

performance of the subjects was consistent with the 

predictions of the LMS rule. 

Although single- layer networks are able to simulate 

human categorization tasks, they are unable to perform some 

very simple discrimination tasks. The most commonly 

discussed short- coming of single- layer networks is their 

inability to solve the exclusive- or (XOR) problem. This 

problem requires the network to respond positively if either 

of two inputs is present and negatively if neither is 

present or if both are present. Although single- layer 

networks cannot learn to solve this problem, networks with 

one or more layer of hidden nodes can. 

Multi-Layer Netwcrks.. 

Kehoe ( 1989) characterizes stimulus discrimination 

learning within a classical conditioning paradigm as a 

special case of this XOR problem. In this case, the subject 

is trained to respond only when either but not both of two 

conditioned stimuli are present. The performance of a 

properly configured connectionist network is extremely 

similar to animals conditioned to respond to either a tone 

(CST) or a light ( CSL). 

The topology of the network used by Kehoe is just 

slightly more complicated than the minimum usually required 

to solve the XOR problem in order to account for the 
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presence of the unconditioned stimulus (UCS). Three input 

nodes representing the UCS, CST and CSL are fully 

interconnected with a hidden layer of two nodes. The two 

hidden nodes are connected to a single output node 

representing the presence or absence of the response (R). 

Connections in multi- layer networks are usually 

restricted to adjacent layers, but Kehoe has added a 

connection between the UCS node and the R node. Although 

this is not typical of multi- layer topologies, it is 

certainly consistent with the classical conditioning 

paradigm. 

Another manner in which Kehoe diverges from a 

"standard" multi- layer configuration is in the assignment of 

different output thresholds to the two hidden units. In 

theory, all of the " knowledge" represented in a 

connectionist network resides in the connections. 

Occasionally, some implementations hard-wire these 

connections to represent specific knowledge in the domain 

within which the network is expected to perform, but in most 

cases connectionist networks are expected to " learn" what 

the connection weights should be and this learning is an 

important part of the simulation. Hard-wired output 

thresholds constitute another form of outside knowledge. 

The theoretical basis for connectionist networks does not 

postulate a mechanism whereby these thresholds could be 

learned. 
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If the purpose of a connectionist network is to 

simulate human behaviour for some practical purpose 

(screening loan applicants, interpreting sonar signals, 

detecting bombs, etc.), then it probably does not matter 

where knowledge resides in the network or where it came 

from. On the other hand, if the purpose of the simulation 

is to increase our theoretical understanding of human 

learning and behaviour, then any form of hard-wired 

knowledge requires some theoretical explanation for its 

inclusion. Kehoe provides no such justification for the 

existence of the thresholds on the hidden- layer nodes or for 

the values to which they are set. This diminishes the 

usefulness of Kehoe's investigations in terms of a full 

understanding of how classical conditioning proceeds. 

Kehoe does, however, show that although Gluck and Bower 

(1988) were able to simulate some aspects of human behaviour 

using a simple, one- layer network, simulating other 

behaviour will likely require a multi- layer network. 

Further arguments in favour of multi- layer networks are 

provided by Klimesch ( 1987). 

Klimesch ( 1987) compared connectionist networks to 

semantic networks with respect to their ability to predict 

the human processing requirements of complex versus simple 

stimuli. Connectionist and semantic models both assume that 

complex stimuli can be decomposed into properties or 

features and that processing a stimulus requires processing 
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the individual features rather than the stimulus as a whole. 

This decomposition assumption predicts that complex stimuli 

(those with more features) require more processing than less 

complex stimuli.,, Since semantic networks are essentially 

serial processing models, they predict that human reaction 

times should be greater when processing complex stimuli. 

Connectionist networks, on the other hand, are essentially 

parallel and predict equal reaction times for both simple 

and complex stimuli. 

Klimesch goes even further and presents a connectionist 

model which predicts reduced reaction times for complex 

stimuli. This model assumes a richly interconnected 

topology in which signals reverberate between feature 

detector nodes and response nodes until the response node 

becomes sufficiently activated. In theory, a single 

persistent feature will eventually produce the response, but 

each additional active feature adds signal strength and 

causes the activation level of the response node to increase 

at a greater rate. The more features which are present, the 

sooner the response node will fire. Klimesch presents the 

results of a series of experiments on human subjects which 

support the predictions of this model. Most implementations 

of connectionist networks are much less richly 

interconnected than this model, but Klimesch does provide 

additional arguments indicating that connectionist models of 

human behaviour require multi- layer networks. 
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To facilitate understanding of human cognition, a 

connectionist model should perform in a manner similar to 

human behaviour, but it should also learn to perform that 

way under conditions similar to human knowledge acquisition. 

MacWhinney, Leinbach, Taraban and McDonald ( 1989) conducted 

a series of simulation experiments to explore learning in a 

multi- layer connectionist network. The task was to 

determine the proper definite article for a series of German 

language nouns. 

The network consisted of four layers of nodes: an input 

layer representing features of the input noun; a hidden 

layer with two pools of nodes representing the gender, case, 

and number ( singular or plural); a second hidden layer 

representing no predetermined generalizations; and an output 

layer representing each of the six German definite articles. 

The different experiments varied the nature of the features 

represented by the input layer. In all, the number of nodes 

in the network was approximately 100 for each experiment. 

Since this was a multi- layer network, the back-

propagation learning rule was used. The 305 word training 

set consisted of 102 different nouns repeated between 1 and 

17 times according to their approximate frequency of 

occurrence in the German language. The network was trained 

to a criterion of either 100 performance or 200 times 

through the training set ( 200 epochs). This was repeated 

for twenty simulated subjects. In thirteen of the 
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"subjects" the learning set was mastered. The network was 

still making errors on one or two words when the remaining 

seven " subjects" reached 200 epochs. 

The model was successful on three counts. It performed 

in a manner similar to that of human subjects with respect 

to errors produced, progression of learning, and processing 

of novel input. Second, the model generated some clear 

predictions about performance in areas in which research on 

human subjects had not yet been conducted. Finally, " the 

success of the current model for this particularly difficult 

problem in language learning would seem to indicate that 

claims regarding the insufficiency of connectionist accounts 

for language learning . . . are, to say the least, 

premature" (MacWhinney, Leinbach, Taraban and McDonald, 

1989, p. 275) 

This model is notable in several instances. Including 

more occurrences of common words in the training set exposed 

the network to the words in a manner which more closely 

approximates natural human learning conditions. Adding a 

second layer of hidden nodes creates a more interesting 

network, even though the pools were pre- established by 

restricting the connections from the input layer. Finally, 

this model shows that a multi- layer network using the back-

propagation learning rule exhibits behaviour similar to that 

of human subjects. 
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Another example of learning in back-propagation 

networks is provided by Norris ( 1990). Some idiot savants 

are able to determine the day of the week for almost any 

day, month, and year. Norris attempted to construct a 

connectionist network to model this behaviour. 

The initial configuration of this network consisted of 

a simple back-propagation network with a single layer of 

hidden nodes. The input layer consisted of 31 day nodes, 12 

month nodes, S decade nodes, and 10 year nodes; the hidden 

layer consisted of 50 nodes; and the output layer consisted 

of 7 day- of-week nodes. The training set consisted of one 

fifth of the dates randomly selected from the period 1950 to 

1999. "After 1000 iterations through the training set the 

net performed reasonably well on dates on which it had been 

trained. However, on new dates the net's performance was 

little better than chance." (Norris, 1990, p. 280) 

Norris concluded that, in order to generalize to novel 

input, the network required a second layer of hidden nodes 

to represent the " rules" required to perform the 

calculation. In addition, the training set was restructured 

to present the dates in order, and a more elaborate training 

procedure was used where the network first learned to 

process the dates in a single month and then a single year 

before being exposed to the rest of the set. Aftereach of 

these stages, the associated weights were fixed to prevent 

interference from future learning. The new configuration 
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learned relatively quickly and reached 90 accuracy on novel 

dates. In addition, most errors were for dates in the first 

two months of leap years; an error profile which Norris 

reports as also being common to the human idiot savants. 

Although the network required help to learn, " there is 

really nothing magical about the form of that help. What we 

have done is to make up for some of the deficiencies in 

currently available connectionist learning algorithms 

(Norris, 1990, p. 286). The implication is that a more 

sophisticated learning algorithm would automatically 

consolidate previous learning and would not require this 

help. 

The restructuring of the input to this network is 

similar to the approach taken by MacWhinney, Leinbach, 

Taraban and McDonald ( 1989) in constructing their training 

set. Both sets of input more closely approximate the way a 

human subject would naturally encounter the items. 

The more interesting aspects of human cognition involve 

something more complex than simple pattern matching. The 

recent connectionist studies presented here show a move 

towards multi- layer networks to capture this complexity. In 

some cases, however, researchers have also moved away from 

the simple processing mechanism associated with most other 

connectionist networks. 

Models which have been arbitrarily configured and re-

configured until their performance meets certain 
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expectations may well say more about a programmer's ability 

to "hack" a solution than they say about human cognition. 

This is not to say that these models are not useful 

analogies of human behaviour, but they are less likely to 

capture any real understanding of human cognition than a 

network which learns an appropriate configuration with 

little or no help. Although back-propagation is not a 

perfect learning rule, it is capable of producing learning 

in a multi- layer network and, as such, is probably the most 

appropriate learning rule for connectionist networks which 

attempt to model human cognition. 

Conclusions 

There are several conclusions which can be reached from 

these samples of connectionist research. First, 

connectionist models certainly seem to be valid and useful 

tools for studying human cognition. Second, an accurate 

model of human learning would likely require a multi- layer 

network with a sophisticated learning rule. And third, the 

most appropriate learning rule for multi- layer networks 

would seem to be some form of back-propagation. All of the 

simulations presented later in this dissertation attempt to 

model human cognition using a multi- layer connectionist 

network with a back-propagation learning rule. 

Connectionist networks represent a general class of 

models rather than one specific modeling technology. Any 
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one network implementation reflects only a specific instance 

of one theoretical model. When modeling human cognition in 

a connectionist network, it is important to identify the 

specific features of the network implementation and to 

ensure that those features model specific attributes of the 

human behaviour of interest. The next chapter describes 

back-propagation networks in more detail with a focus on 

their implementation details, and presents the results of a 

research project based on a back-propagation network. 
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CHAPTER THREE: BACK- PROPAGATION 

Learning rules for two layer perceptrons are relatively 

easy to specify but such networks can't model complex 

cognitive processes. Multi- layer networks ( those with 

hidden nodes) can model complex processes, but a suitable 

learning rule is more difficult to specify. Although multi-

layer connectionist networks have been in use for some time, 

suitable learning rules for these networks have been 

available for less than a decade. Most such learning rules 

are variations of the back-propagation procedure presented 

by Rumeihart, Hinton and Williams ( 1986) and Rumeihart 

(1989) 

This chapter presents a general description of how 

back-propagation networks learn, then discusses how a back-

propagation network addresses the specific implementation 

details discussed in Chapter 1. Consideration of one 

specific detail of the output function leads to suggestions 

for a modification of that function. The results of several 

learning simulations (with and without the modification) are 

presented and implications of the modification are 

discussed. 

The Learning Rule 

To understand how back-propagation works in a 

connectionist network with hidden nodes, consider a network 
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which learns to generate a series of outputs in response to 

a finite set of inputs. The network is presented with a 

number of pairs of patterns. One member of each pair is the 

input pattern and the other is the output pattern the 

network is expected to produce. The input pattern is 

presented and the network generates some ( initially random) 

output. The difference between this output and the desired 

output ( the amount of error) is used to adjust the weights 

so that a more appropriate output will be generated next 

time. This procedure is repeated for each of the pairs of 

patterns a large number of times until the total error 

across all patterns has been reduced to some acceptably 

small value. 

The use of an error value ( the difference between 

actual and expected output) is the basis for the delta 

learning rule in a connectionist network. If a network has 

no hidden nodes, then the delta rule is easy to apply 

because all of the error resides in the output nodes and the 

amount of error can be determined by simply comparing the 

actual and expected output values. However, in a multi-

layer network the output nodes only account for some of the 

total error. The rest of the error comes from the hidden 

nodes. This makes application of the delta rule difficult 

because there is no explicit expected output value 

associated with a hidden node. Each node which acts as a 

source of activation for another node ( i.e., all but the 
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output nodes) is at least partially responsible for the 

error associated with that destination node. Back-

propagation is a technique for taking some of the error at 

the destination node and allocating it back to all of the 

source nodes. 

The error value at a source node is based on the total 

error at the nodes to which it sends output, and also on the 

extent to which it is responsible for that total error. The 

total error is the sum of each destination node's error 

multiplied by the weight which connects that node to the 

source node. The responsibility of the source node for that 

total error is a. function of its output value. Once the 

amount of error at a source node has been determined, a 

generalized delta rule can be used to adjust the weight 

between the source node and each of its destination nodes. 

A new pattern can now be presented and the entire 

process repeated. The back-propagation network continues to 

feed input patterns forward through the network and 

propagate error back until the total amount of error for all 

of the nodes in the network becomes sufficiently small that 

the network provides the correct response to each stimulus 

almost all of the time. 

The amount of error in the network at any given time 

has a negative impact on the performance of the network and 

can thus be used as a measure ( actually an inverse measure) 

of the amount the network has learned to that point. In 
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fact, learning in back-propagation networks is often defined 

as error reduction through gradient descent. 

Error reduction through gradient descent can be 

illustrated using a topographic metaphor. If all of the 

potential error states that a network could ever be in can 

be visualized as a multi-dimensional landscape, the current 

error state can be represented by a point on that landscape. 

If the error point is given substance it becomes a spherical 

object. Changing the error in the system would then be 

analogous to rolling the sphere across the landscape. High 

points in the landscape represent large amounts of error and 

low points less error. Untrained networks have a large 

amount of error so the sphere starts out on a high point on 

the landscape. The objective of learning is to roll the 

sphere across the landscape until it comes to rest in a low 

spot: gradient descent. 

In a simple network with no hidden nodes, the landscape 

becomes a bowl- shaped 

somewhere up one side 

of error greater than 

objective of learning 

valley. Initially, the sphere 

of the valley to indicate some 

starts 

amount 

the minimum error at the bottom. The 

is to minimize error so, as learning 

proceeds, the sphere will be moved downhill. When the 

sphere reaches the bottom, a move in any direction increases 

the error so learning stops. The learning rule for such a 

network is simple: always move the sphere downhill, and when 

you can't you're done. 
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Adding hidden nodes to a network complicates the 

situation immensely. Each additional node actually adds 

another dimension to the landscape but the effect is easier 

to visualize if, instead, you think of additional nodes as 

making the bowl- shaped valley more irregular. The result is 

that depressions (local minima) can form at higher 

elevations. If the sphere rolls into one of these 

depressions it must roll uphill for a while before it can 

continue down into the valley. 

The difficulty lies in distinguishing between these 

local minima and the bottom of the valley. If the sphere 

fails to make this distinction it may either become stuck in 

a local minima and thus stay at a high error level, or it 

may try to roll up out of the bottom thus continuing to try 

to learn when it was already at the lowest level possible. 

In either case, learning will not proceed to an optimal 

solution. Optimizing the gradient descent in this error-

space is the objective of many of the variations on the 

basic back-propagation learning rule. 

Implementation Details 

So far, this* discussion of back-propagation has been 

very general but specific back-propagation networks often 

contain variations designed to optimize the performance of 

the network. These variations can be classified by how. they 
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respond to the architectural constraints discussed in 

Chapter 1. 

Number of Layers  

In theory, the back-propagation algorithm can be 

applied to a network with any number of layers but, in 

practice, the number of layers is usually quite small. The 

amount of error in the network's response to a given input 

can only be accurately determined at the output layer. The 

error values propagated back through layers of hidden nodes 

only approximate the effect of that layer on the final 

error. " Every time the error from the output layer is back-

propagated to a previous one, it becomes less and less 

meaningful" ( Caudill, 1991, p. 59) 

Maren, Jones, and Franklin ( 1990) cite several 

mathematical proofs that suggest that no more than two 

layers of hidden nodes will ever be required. In addition, 

they suggest that empirical tests of back-propagation 

networks show no significant advantage to having more than 

one hidden layer, especially when each possible outcome is 

represented by a single output node. 

Nunthar of Nodes at 1ac.h Layer 

Separate considerations apply to the number of nodes in 

the input, output, and hidden layers in a network. Usually 

the number of input and output nodes is strongly dictated by 

the nature of the task, but design considerations can affect 

them to an extent. 
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If each possible output of the network can be 

represented by a discrete output node, the network will 

likely only require one hidden layer ( see above), but a 

large number of output nodes may be required. If the output 

is a continuous value or is encoded in a pattern of binary 

nodes, fewer output nodes may be required but the "use of 

encoding patterns forces additional work onto the hidden 

nodes, which may require an additional hidden layer" (Maren, 

Jones, and Franklin, 1990). Depending on the purpose of the 

network, encoding input as patterns is often just what is 

wanted since many of the more interesting phenomena of 

connectionist networks ( automatic generalization, fault 

tolerance, etc.) only apply when input is represented as a 

pattern across several input nodes. 

Determining the optimal number of hidden nodes is much 

more difficult. Maren, Jones, and Franklin ( 1990) suggest 

that the maximum number of hidden nodes should be less than 

the number of input patterns ( to avoid the formation of 

"grandmother" nodes) but more than the number of significant 

features in the input ( so the network needn't come up with 

exactly the right representation). Although the exact 

number of hidden nodes is not a critical parameter, networks 

with an excessively large or small number of hidden nodes 

will train more slowly than ones with approximately the 

right number. 
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Adding a few more connections creates extra 

dimensions in weight- space and these dimensions 

provide paths around the barriers that create poor 

local minima in the lower dimensional subspaces 

(Rumeihart, Hinton & Williams, 1986, p. 535) 

In any case, Caudill ( 1991) suggests that when back-

propagation networks are simulated in software running on 

serial rather than parallel hardware, the total size of the 

network should not exceed 200 to 300 nodes. 

Connectivity  

Connectivity specifies how the nodes in a layer can be 

connected to other nodes in the same or other layers. Most 

back-propagation networks have restrictions on the 

connections which can exist. Notably, " connections within a 

layer or from higher to lower layers are forbidden, but 

connections can skip intermediate layers" (Rumeihart, Hinton 

and Williams, 1986, p. 533) 

Some models attempt to influence the performance of the 

network through specific configurations of connections. To 

the extent that this configuration represents " knowledge" 

imposed on the network, the value of the model may be 

compromised. Part of the value of connectionist models is 

that they are able to learn. If, instead of learning, a 

network is " hard-wired" to perform a task, then its 

performance says little about how a human might learn to 

perform a similar task. This would argue in favour of a 

network with a uniform connectivity configuration. 



60 

Starting Weights  

The weights in a connectionist network represent the 

knowledge already in the network. In theory, one network 

could learn to perform many unrelated tasks. The weights 

learned by mastering a previous task which is totally 

unrelated to the current task would have a random effect on 

the current task. On the other hand, if previous learning 

is not totally unrelated to the current task, it could 

interfere with the current task and this would appear as 

non-random, potentially disadvantageous, weights. In 

practice, most networks are implemented to learn and perform 

one task only, so starting weights are usually set to random 

values. 

If, by chance, a large random starting weight at one 

connection is significantly different than the optimal value 

for the current learning situation, it will take the network 

some time to "unlearn" that weight before settling into a 

more appropriate value. If, on the other hand, the random 

starting weights are restricted to relatively small values, 

the network will never have to unlearn a significantly 

inappropriate weight. Rumelhart, Hinton and Williams ( 1986) 

suggest that, in general, connectionist networks using back-

propagation should start with all weights set to small 

random values. 



61 

Activation Function  

The activation level at a specific node represents the 

amount of input that node has received from other nodes in 

the network. It is usually just the sum of the output of 

these other nodes multiplied by the weight of the connection 

to the specific node. This makes a node's activation a 

linear function of the inputs. 

Output Function 

One of the characteristic features of connectionist 

networks is that the output of a node is a non-linear 

reflection of its input. If the node's activation level is 

a linear reflection of its input, some non-linear 

transformation must be applied to the activation level to 

determine the node's output. There is no one transformation 

function which must be used with a back-propagation network 

but the function used must have a bounded derivative 

(Rumeihart, Hinton and Williams, 1986, p. 534). A popular 

choice is a logistic function which yields a sigmoidal 

distribution of output values over the range of possible 

activation values. For example: 

output = 1 I (1 + e (-1 * activation)) 

Error Calculation Function 

Back-propagation requires that an error value be 

calculated for each node in the network which receives input 

from other nodes ( i.e., hidden and output nodes). For 

output nodes this is just the difference between the actual 
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and the expected output. For hidden nodes the error value 

is based on the net error at the destination nodes to which 

the hidden node sends output, and on some representation of 

the level of that output. 

The net error at the destination nodes is usually 

calculated as the sum of each destination node's error value 

multiplied by the weight of the connection between the 

destination node and the hidden node. 

The representation of the level of output at the hidden 

node is based on the activation level of the node but the 

function used is not the output function described above. 

Instead, the derivative of that output function is used. 

Applying the derivative serves two purposes. 

First, it contributes to the stability of the 

network since it ensures that, as the outputs 

approach 0 and 1, only very small changes can 

occur. Second, it helps compensate for excessive 

blame attached to the [hidden node] ( Caudill, 

1988) 

For example, if the network's output function is the 

sigmoidal function described above, the error value for a 

hidden node would be: 

error = (activation) (1 - activation) * (net error) 

Momentum 

The learning function adjusts the connection weights by 

applying a generalized delta rule to the output level of the 

node at the source of the connection and the error value of 
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the node at the destination of the connection. A momentum 

term is often added to this basic calculation. If a weight 

needs to be adjusted to reduce error, not all of that 

adjustment should be made 

otherwise the network may 

adjustment is made on one 

on a single learning cycle, 

over- react. If some smaller 

trial, then it is reasonable to 

suggest that further adjustments in the same direction will 

be required on subsequent trials. Many networks add some 

fraction of any previous weight adjustment to the current 

adjustment to preserve the momentum of learning at that 

weight. 

Applying momentum to a back-propagation network is 

almost certainly the single easiest thing you can 

do to make your network train faster - sometimes 

by orders of magnitude ( Caudill, 1991, p. 59). 

Temperature 

The actual network implementations presented below 

evaluate an unusual variation of the output function in a 

back-propagation network. Boltzmann machines are neural 

networks which use a learning rule which is quite different 

from back-propagation (Hinton & Sejnowsk±, 1986). As these 

networks learn, they avoid local minima by gradually 

decreasing the overall activation level or " temperature" of 

the network. A similar application of temperature might 

improve the performance of a back-propagation network 
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As mentioned above, the output function is usually 

sigmoidal and has the following general form: 

output = 1 I (1 + e ( -1 * activation)) 

This general form may not be directly applicable to any one 

specific implementation because the average level of 

activation will depend as much on the various implementation 

details as on the input patterns to be learned. For this 

reason, in a specific network implementation, the actual 

activation value may be scaled b a constant value. In 

fact, this was the case in the network-based learning 

simulation presented by Caudill ( 1988). The formula used 

was: 

output = 1 I ( 1 + exp(-1 * activation / constant) ) 

where exp(X) = J. In this case, the constant had a value 

of 0.2, and Caudill's justification for that specific value 

was simply that it seemed to work best. 

If the objective of a specific network implementation 

is to maximize performance in one problem- solving domain, 

anything which improves the performance of that network is 

appropriate, and it is generally useful as long as it can be 

successfully applied to other network implementations. It 

is not the value of the constant which determines the 

usefulness of this implementation detail, but the inclusion 

of a constant at all. TO evaluate the usefulness of such a 

constant, it is necessary to consider its effect on network 

performance. 
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If, on average, the output signal is generally high for 

most nodes and across most input patterns, the network will 

react strongly to each input pattern and may over- react to 

the point where each new pattern obliterates much of what 

was learned from the previous pattern and overall learning 

will be difficult. On the other hand, if the output signals 

are generally small, the network will react very little to 

each input pattern and learning will be slow. If an 

appropriate value is chosen for the constant, some 

intermediate, and hopefully optimal, general level of output 

will result. 

For a more graphic illustration, consider again the 

metaphor of error reduction through gradient descent as a 

point or sphere rolling across a landscape in error- space. 

Only now, add an element of liveliness or bounce to the 

sphere representing the error. As it moves through error 

space, a lively sphere will bounce across local minima and 

thus avoid the greatest problem with gradient descent. The 

problem with a lively sphere is that even when it reaches 

the bottom of the valley it will continue to bounce and the 

network's performance will be erratic. A less lively sphere 

will stay in the bottom once it gets there but is still 

likely to get stuck in especially deep local minima. If, 

however, the liveliness of the sphere starts high and 

gradually decreases, it will avoid local minima on early 
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learning trials, but later it will settle down at the 

optimum low point. 

This would suggest that optimal learning would be 

achieved if the constant in the output function was replaced 

by a variable which started with a relatively high value and 

then gradually decreased as the network learned. The 

formula would now be: 

output = I' / ( 1 + exp(-1 * activation I temperature) ) 

where temperature is a variable which starts high and then 

decreases. I use the term temperature here because it was 

the, description by Hinton and Sejnowski ( 1986) of the 

annealing process in Boltzmann machines which first caused 

me to consider applying a similar process to a back-

propagation network. 

Another way of describing the effects of this 

temperature variable is by considering the distribution of 

values produced by this output function. As mentioned 

above, this distribution is sigmoidal. Changs in the 

temperature parameter affect the slope of the mid- range of 

the function which, in turn, affects the variability of the 

output. 

To test the effect on learning of temperature in a 

back-propagation network, I ran several simulations with and 

without such a variable. The specific , implementation 

details and the results are presented below. 
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The Simulations 

A series of network-based simulations using the back-

propagation learning rule were run to compare the relative 

effect of using either a constant or a variable factor 

(temperature) to scale the activation value used to 

calculate the output signal from the nodes in the network. 

One of the dangers of scaling the activation at all is that 

the reaction of the network to each new pattern is dampened. 

The use of momentum in the learning rule would counteract 

that dampening effect, but it is conceivable that the use of 

both momentum and a declining temperature variable might 

produce undesirable interactions. Since momentum is a 

highly- regarded and useful implementation detail, additional 

simulations were run to look for interaction effects as 

well. 

Method  

The simulations were implemented using a connectionist 

network with a back-propagation learning rule. The network 

consisted of three layers with 35 input nodes, 4 hidden 

nodes, and 8 output nodes. The input and output nodes were 

determined by the material to be learned ( see below). The 

number of hidden nodes in the original Caudill ( 1988) 

network seemed appropriate and was retained to facilitate 

comparison with that work. 

The network was trained using ten pairs of patterns 

based on the first ten letters of the alphabet. Each input 
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pattern ( stimulus) consisted of a five-by- seven bit-map of 

each letter. The output patterns ( response) were the eight-

bit binary representation of the ASCII value for each 

letter. 

Training proceeded using a standard back-propagation 

technique. To begin with, all weights in the network were 

set to small random values and then the network began to 

cycle through a series of training trials or epochs. Each 

single epoch proceeded as follows: 

o the input nodes were set to the first input pattern 

o the input values were propagated through the hidden 

nodes to the output nodes 

o the error value for each output node was calculated as 

the difference between the output value of the node and 

the value ( zero or one) of the corresponding bit in the 

expected output pattern 

o the error value for the entire pattern was calculated 

as the sum of the absolute values of the error at each 

of the output nodes 

o the error at each of the output nodes was propagated 

back through the network and used to adjust the weights 

o the above procedure was repeated for the next nine 

pairs of patterns. 

The simulation continued to cycle through one epoch after 

another until the network learned to reliably produce the 

appropriate response. 
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In all, four " conditions" were simulated -- a two-by-

two matrix with and without momentum and temperature. For 

the two conditions with momentum, each time a weight was 

adjusted one half of the previous adjustment for that 

pattern was added as well. For the two conditions with 

temperature, the scaling factor was initially set at 0.7 and 

reduced by 0.005 at the end of each epoch. To ensure that 

the initial random starting weights did not bias the 

results, each simulation was run twelve times to simulate 

twelve " subjects" in each condition. 

Result s  

At the end of each epoch, the amount of error for each 

pattern was examined to see how well the patterns had been 

learned. If the error for any one of thd ten patterns was 

greater than l0, training continued, otherwise the 

simulation stopped and recorded the number of epochs 

required €o reach this level of learning. If any simulation 

ran for over 500 epochs, the simulation stopped even though 

the learning criteria had not been met. This happened for 

only one " subject" in each of the first three " conditions". 

Since there is no way to. know how many trials it might have 

taken these simulations to reach criteria ( or if they ever 

would), these measures must be considered conservative 

estimates of how long it might have taken those simulations 

to learn. The number of epochs required to reach criterion 
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for the twelve simulation runs in each of the four 

conditions are presented in Table 3.1 in increasing order. 

Table 3.1 

Number of epochs required to learn for: a basic network, a 

network with just momentum, a network with just temperature, 

and a network with both momentum and temperature. 

Basic Net Momentum Temperature Mom. & Temp 

64 43 55 45 

65 60 78 51 

106 73 86 52 

113 84 88 56 

131 84 93 59 

136 85 98 60 

149 96 99 60 

231 111 112 61 

253 115 120 70 

322 173 162 89 

467 273 282 89 

501* 501* 501* 305 

211.5 

sd 142.5 

141.5 

123.2 

147.8 83.1 

120.3 68.2 

* conservative estimates 

When using a network with a back-propagation learning 

rule, there will always be a few simulations which will take 

considerably longer to learn, and there will even; 

occasionally, be some which will never learn. This means 
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that the distribution of possible values for the number of 

epochs required to learn will be very positively skewed. In 

addition, the theoretical effects of both temperature and 

momentum discussed above would suggest that both of these 

factors would reduce the variance in the distribution of 

possible values for learning rules including those factors. 

For these reasons, a parametric analysis of variance was 

considered inappropriate for this data. Instead, the 

equivalent randomization test was used to test for 

differences between the implementations with temperature and 

those without. The addition of a temperature term to the 

back-propagation learning rule was found to significantly 

improve the performance of the network (p < 0.044). 

Conclusions 

The inclusion of a declining temperature term in a 

back-propagation network certainly seems to decrease the 

amount of time it takes that network to learn. But when 

connectionist networks are used to model human cognition, 

the absolute performance of the network is not the most 

important consideration. If, on the other hand, some aspect 

of human performance behaves in a manner which is similar to 

a declining temperature, then it is appropriate to include 

temperature in a network model of that human performance. 

If, for example, there were no factor in human learning 

which continually decreased as learning improved, then it 
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would not be appropriate to include a declining temperature 

term in a network-based model of human learning. On the 

other hand, there is a factor which does decline with at 

least some forms of human learning and that factor is 

attention. 

With continued practice, some forms of human 

performance become increasingly automatic. Within the 

context of a model of cognition which includes a limited 

attentional resource, such a change in performance can be 

characterized as a decrease in attention with learning. A 

network-based model which attempts to replicate those forms 

of learning might use a declining temperature term to model 

attention. The next chapter describes the theoretical basis 

for declining attention in human learning with a view to 

producing a back-propagation network model of such learning. 
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CHAPTER FOUR: ATTENTION 

The previous chapter described the performance of 

several connectionist networks which varied according to how 

they treated a " temperature" term in the output function. 

Simulations based on the networks which decreased 

temperature as the network learned showed superior absolute 

performance in that they took fewer trials to learn. 

However, Chapter 2 made the argument that networks which are 

arbitrarily adjusted to produce the desired performance are 

less useful as models of human cognition compared to 

networks where such adjustments represent some theoretical 

construct. This chapter describes the interaction between 

attention and human learning leading to the conclusion that 

the effect of attention on human learning could be modelled 

by the temperature term in a connectionist network. 

In order to identify the specific implementation 

features of such a network, it is important to precisely 

describe the human performance to be simulated and how that 

performance is measured. In this case, the performance 

involves the interaction between learning and attention, 

specifically the decrease of attention required as an 

increasingly automatic response is learned. 

This chapter will start with a definition of attention 

as a limited cognitive resource and then will discuss the 

consequences of insufficient resources on cognitive 
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processes. The concepts of automatic and controlled 

processes and multiple concurrent processes will be 

discussed within the context of this definition of 

attention. Finally, a methodology for measuring the 

attentional resources currently in use by a cognitive 

process will be presented. 

A Specific Definition of Attention 

Within the context of this dissertation, the term 

attention will be used as it is usually represented in an 

information-processing model of cognition with a limited 

attentional resource. Within such a model, not only does 

cognitive processing proceed in parallel, much of the 

processing proceeds without our conscious attention -- it 

occurs automatically. Despite nativist claims that much of 

this automatic processing is hard-wired, at least some 

automatic processes are learned. The decrease in attention 

associated with learning which I am attempting to model is a 

reflection of the increasingly automatic nature of a 

response which results from repeated learning trials. 

Automatic cognitive processes can best be understood in 

contrast to controlled processes. Controlled processes 

require active attention. Automatic processes proceed 

without attention. Further, according to Schneider and 

Shiffrin ( 1977) " any automatic process requires an 

appreciable amount of consistent training to develop fully". 
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This suggests that perhaps learning, or certainly over-

learning, can be characterized as a shift from controlled to 

automatic processing. If learning is defined in this 

manner, it is important to know whether this shift from 

controlled to automatic processing is gradual or occurs more 

suddenly after a certain amount of learning has occurred. 

Although it is possible that automaticity is an all- or--

none phenomenon, recent research suggests that it may be 

considered a more continuously varying attribute of a 

learning situation ( Cohen, Dunbar, and McClelland, 1990) 

These authors present a series of connectionist simulations 

which model the relationship between automaticity and 

attention within the context of the Stroop effect. They 

conclude that it is appropriate to model attention as a 

continuous variable: 

The mechanisms used in this model show how the 

principles of continuous processing, expressed in 

terms of the [ connectidnist] framework, can be 

applied to the study of attention ( Cohen, Dunbar, 

and McClelland, 1990, p. 358) . 

If the human cognitive processing mechanism converts 

even some highly learned processes from controlled to 

automatic ones, then there is likely some advantage to doing 

so. The advantage can be seen if the human mechanism 

operates within the constraints of a limited attentional 

resource. 
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Miller ( 1956) is generally credited with the notion 

that individuals have a specific limit to their cognitive 

processing capacity in the form of a limited attentional 

resource. He put that limit in the general range of seven, 

plus or minus two discrete pieces of information. Miller 

presented several experiments which tested a subject's 

ability to make absolute judgments about the magnitudes of 

various aspects of a stimulus ( for example, frequency of 

tones, loudness of tones, saltiness of taste, points on a 

line, etc.). In general, individuals could accurately 

distinguish between approximately seven or fewer magnitudes, 

but began to confuse different magnitudes when the number 

was increased. This value of 7±2 is often referred to as 

Miller's magic number, and is the basis for the numerous 

citations of Miller's work over the years, but several other 

implications of his work have been more fully developed by 

those who adopted this assumption of a limited attentional 

resource. 

Implications of a Limited Attentional Resource 

If the human cognitive processing mechanism has 

limitations with regard to attention, then these limitations 

will affect human performance. Research in a number of 

areas has investigated these effects and some of that 

research is discussed here. 
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Graceful Degradation 

The model of cognition being considered here suggests 

that within an individual there is a finite limit to the 

resources available at any one time. Depending on the 

-nature of the process being executed, there may not be 

sufficient resources to meet the demand. What happens to a 

process which receives a smaller allocation of resources 

than it demands? 

In the entirely mechanistic environment of computers, a 

process will not execute at all if the resources it requires 

are not available. The process will either wait until 

resources become available or it will fail. Norman and 

Bobrow ( 1975) suggest that the human information processing 

system is more flexible than that. If a process does not 

receive all of the resources it requires, it will attempt to 

function with the resources it does receive. The 

consequence of insufficient resources is usually a 

degradation in the quality of the output of the process. 

The amount of degradation will be, in some sense, 

proportional to the size of the short- fall in resources. 

Only occasionally, and under situations of extreme resource 

shortages, will a process fail entirely. They refer to this 

as the "principle of graceful degradation". 

As Norman and Bobrow see it, human cognitive processing 

is similar to computer processing in that it consists of the 

execution of programs, but the availability of resources 
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affect the execution of those programs in different ways. 

In their model of human cognition, several programs usually 

work in concert as a set to achieve a specific purpose. 

Such a set of programs taken together represent a single 

process. Each program in the set requires some measure of 

attentional resource. Each program also requires some input 

and generates some output. The output provided by the 

entire process is likely to be a combination of the outputs 

of several programs. The output of other programs provide 

intermediate results which may be combined by other programs 

into other intermediate results culminating in the final 

output. A critical question is, in what way is the output 

of one program made available to a subsequent program and 

how does the availability of resources affect the exchange 

of information? 

In a computer based process, a program requiring input 

from another must wait until the other program has entirely 

finished the prcessing necessary to generate the required 

output. Allocating greater or fewer resources to an entire 

process will only affect the time it takes to provide the 

final result. Norman and Bobrow suggest with the human 

information processing mechanism, programs produce 

"continually available output". From the moment a program 

begins to execute, it can supply output. Initially the 

quality of the output will be low and, if the program is 

starved for resources, it may never get much better. If, 
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however, the program is receiving even minimal resources, it 

can work to improve the quality of its output. Increasing 

the resources available will further increase the quality of 

the output. This means that a program which requires input 

from another program can begin executing ( and producing 

output) immediately using whatever quality of input it can 

get. The quality of its output will depend on the quality 

of its input and on the resources it is allocated. A 

general increase in the allocation of resources to the 

overall process increases the quality of output from that 

process. 

The conclusion to be reached from this is that a 

decrease in the resources available to a process produces a 

graceful degradation in the performance of that process 

rather than an outright failure. Further, a change in the 

amount of resources allocated to a process can be inferred 

from a change in the quality of its output. 

In addition to quantifying the size of available 

attentional resources, Miller ( 1956) suggested some 

strategies available to cognitive processes which allow them 

to process larger amounts of information with fewer 

resources. Chunking is one such strategy. This strategy 

devotes some of the available resources to combining and 

encoding the information to be processed so that more will 

fit into the remaining resources. This additional 

processing adds overhead to the process, but it can result 
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in a net gain. For example, in theory, a strategy 

(requiring one chunk of overhead) to make a series of six 

binary evaluations (using the remaining chunks) might permit 

discriminations to be made between as many as 64 (26) items 

instead of the usual 5 to 9. In practice, these more 

complex information processing strategies are rarely that 

efficient, but Bereiter and Scardamalia ( 1987) suggest the 

net result is that, normally, adults performing " attention-

demanding" operations have sufficient remaining capacity to 

hold five chunks. 

The reading and writing of text provides an excellent 

example of the effects of chunking. When young children are 

initially exposed to written language, it requires almost 

all of their attentional resources to process individual 

letters. With practice, however, they are soon able to deal 

with text as a series of words instead. Eventually, with 

even more practice, text is processed as a series of phrases 

and sentences instead of individual words. 

Chunking represents a gradual change in the way 

information is processed. Specifically, with practice, the 

strategy of chunking allows a cognitive mechanism to come to 

process more and more information while still using the same 

amount of attentional resource. Similarly, a mechanism can 

come to process the same amount of information using fewer 

and fewer resources. This is shown in the shift from 

controlled to automatic processing. 
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Automatic versus Controlled Processes  

Schneider and Shiffrin ( 1977) view memory as consisting 

of a large set of inter- associated nodes with the 

associations established through learning ( see also 

Anderson, 1983). At any one time, most of the nodes are 

inactive. All of the inactive nodes taken together 

represent long-term memory ( LTM) . Also at any one time, a 

small set of nodes will be active. This set of active nodes 

constitutes short-term memory ( STM). STM, then, consists of 

nodes which would be part of LTM were they not active and 

which will return to LTM when they decay from STM. 

Various processes exist which influence the activation 

of nodes and, hence, the flow of information into and out of 

STM. According to Schneider and Shiffrin, these processes 

include " decisions of all sorts, rehearsal, coding, and 

search of short- and long-term [memory]". Processes are, 

themselves, stored in one or more LTM nodes but they need 

not enter STM to execute. 

Within the context of this model, automatic processes 

execute ( a) in response to a specific input configuration 

and (b) without the subject's attention. Such a process 

requires relatively permanent associations in LTM built up 

through an " appreciable amount of consistent training" and 

are " difficult to suppress, to modify, or to ignore". An 

example of an automatic process is a search task which 

responds to a target ( input) by enabling a correct detection 
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to occur ( output) . Note that this is in response to a well 

trained stimulus. This processing proceeds automatically 

"regardless of concurrent inputs or memory load". 

In contrast with automatic processes, controlled 

processes are activated by attention. In general, only one 

controlled process executes at a time ( although several slow 

processes can be interleaved) and are subject to STM 

capacity limitations ( 7±2). The advantage of controlled 

processes is that they are easy to set up and can respond to 

novel situations for which automatic processes have not been 

learned. An example of a controlled process is a search 

task involving a target which had not yet been extensively 

learned. The target is compared against all possible 

responses until a match is found. 

Keele ( 1972) also starts from the premise that 

individuals have some limit on their information processing 

capacity and that multiple concurrent tasks interfere with 

each other to the extent that the individual's limit is 

exceeded. Keele further characterizes tasks as consisting 

of two sub-processes, retrieval of information from memory 

and operations performed upon that information. Limitations 

on an individual's ability to perform simultaneous tasks 

may, theoretically, arise during either sub-process, but 

Keele argues that if signals irrelevant to a task can be 

shown to contact memory yet not interfere with that task, 
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then, under those circumstances, competition for resources 

does not occur during memory retrieval. 

Keele attempted to demonstrate this with a variation on 

the Stroop effect. The experiment used five types of 

stimuli: colour words, non- colour words, scrambled letters 

from the colour words, mixed Gibson forms ( letter- like 

symbols), and pure Gibson forms ( a ' word' made up of the 

same Gibson form repeated several times). Each stimulus 

could appear printed in one of four colours of ink. The 

subject's task involved pressing one of four colour- coded 

keys to identify the colour of ink of the presented 

stimulus. 

Subjects' reaction times were significantly slower to 

colour-word stimuli, with no difference among the other four 

types. In particular, reaction time to non- colour words was 

faster than to colour words. The subjects were obviously 

discriminating between colour words and non- colour words. 

This discrimination must have occurred at the semantic 

level. Keele considers memory retrieval to be prerequisite 

to a semantic evaluation, and therefore, all stimuli must 

have contacted memory. The conclusion is that conflict 

between simultaneous tasks occurs at the operations stage 

and that "memory retrieval is not attention demanding". 

All of this research suggests that even moderately 

complex cognitive processes may actually consist of several 

sub-processes executing at the same time. If the human 
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cognitive processing mechanism can support multiple 

concurrent processes all of which demand attentional 

resources, then it is important to consider the way in which 

the mechanism responds when all demands cannot be met. 

Multiple Concurrent Processes  

Gopher and Navon ( 1980) consider the consequences when 

a cognitive processing mechanism attempts to perform two 

tasks simultaneously. They also begin with the assumption 

of one central pool of cognitive resources. These resources 

are differentially allocated to all tasks being processes 

depending on task requirements. When the requirements of 

all of the tasks exceed the capacity of the central pool, 

the tasks interfere with each other. 

The requirements of a task, and hence the resources 

allocated to that task, are not solely a characteristic of 

the nature of the task. Intention on the part of the 

subject can influence the resources allocated to a task, 

especially when resources are scarce. Subjects can assign 

priorities to tasks with high priority tasks receiving a 

greater share of resources. 

If time-shared tasks are assumed to compete for 

allocation of the same resources, then increasing 

the priority of one task should result in an 

increment of its share of resources. This should 

lead to an improvement in its performance. 

Simultaneously, the decreased amount of resources 

allotted to the other task should now lead to a 



85 

decrement in its performance (Gopher & Navon, 

1980) 

The multiple concurrent tasks used by Gopher and Navon 

consisted of a two dimensional tracking task. The 

assumption was that tracking in each dimension represented a 

separate task. The difficulty of each task was varied by 

changing the velocity of the target and the frequency with 

which it changed direction. Priorities were manipulated by 

varying the minimum acceptable level of tracking accuracy. 

In a more natural setting, individuals do not usually 

receive specific instructions about which task they should 

be attending to. Instead, attentional resources are 

allocated to multiple concurrent tasks on the basis of the 

degree to which each task has become automated. 

Measuring Attentional Resources 

If a certain cognitive task currently requires a 

specific amount of attentional resource 

claimed to be able to reduce the amount 

becomes important to be able to measure 

attentional resource a process requires 

and if learning is 

required, then it 

the amount of 

both before and 

after the learning takes place. The principle of graceful 

degradation described above provides a way in which this can 

be done. 

One of the conclusions reached by Baddeley, Lewis, 

Eldridge and Thomson ( 1984) from a series of experiments on 
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the relationship between attention and long-term memory is 

that additional load placed on attentional resources during 

learning decreases recall performance. This suggests that 

the decrease in performance could be used as a measure of 

the amount of resources being used by the additional load. 

In a similar vein, Norman and Bobrow ( 1975) suggested a 

link between reaction time and accuracy as performance 

measures. Within the context of their distinction between 

data- limited and resource- limited processes, paired-

associate learning involving simple or familiar stimuli 

would be a resource- limited process. 

When a process is resource- limited, then we expect 

reaction time to be directly related to accuracy, 

because better resulting output is dependent on 

more processing resources being allocated to the 

process (Norman and Bobrow, 1975, p. 53). 

Bower and Clapper ( 1989), in a discussion of 

experimental methods in cognitive science, also suggest a 

dual task methodology for measuring attention. To the 

extent that an individual has a limited attentional resource 

any concurrent tasks in which the individual is engaged must 

share this resource. If less attention is required by one 

task, then more is available for another. If performance on 

one task depends on the amount of attention it receives, 

then decreased attention on another task will increase 

performance on the first one. 
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They suggest that a suitable measure of this type of 

attention- related performance is reaction time to a probe 

stimulus. This methodology asks a subject engaged in a 

primary learning task to also respond to an unrelated 

stimulus (probe). For example, a subject attempting to 

learn a list of paired- associate items might also be asked 

to press a button when a tone sounds. The subject's 

reaction time to the probe " is presumed to be slower the 

more absorbing the primary task is at the moment the probe 

appears" (Bower and Clapper, 1989, p. 288). 

In a description of attentioral allocation for 

concurrent tasks, Sperling and Dosher ( 1986) also suggest 

that the amount of attentional resource allocated to each of 

several concurrent tasks determines the quality of 

performance on that task. Performance on the probe task is 

measured by reaction time. If this task gets fewer 

resources because more resources are allocated to learning, 

performance will decrease and reaction time will go up. 

Conclusions 

The purpose of discussing the research presented here 

was to present a particular perspective on the allocation of 

a limited attentional resource to cognitive processes and to 

discuss how the amount of resources required by a process 

changes with learning. Specifically, the points raised 

suggest that: 
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o Cognitive processes can be characterized as those which 

require attention ( controlled processes) and those 

which do not ( automatic processes) 

o With sufficient practice, it is possible for some types 

of controlled processes to become automatic. 

o Each individual has a fixed amount of attentional 

resource. When that individual engages in an activity 

which requires a controlled cognitive process, that 

controlled process monopolizes a certain amount of 

attentional resource. Automatic processes require none 

of the individual's attentional resource. 

o There is an optimum amount of attentional resource a 

controlled process can use, but if the process receives 

less than that amount it will degrade gracefully rather 

than fail outright as long as a certain minimum amount 

of attentional resource is available. 

o An individual can engage in a number of concurrent 

tasks as long as there are sufficient attentional 

resources to meet the minimum demands of all of the 

controlled processes. 

o One way of determining the relative attentional 

resource demands of two tasks is to monitor the 

performance of a third task in the presence of first 

one then the other of the two tasks. 
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From the point of view of this dissertation, the 

question is whether a temperature term which declines as a 

back-propagation network learns is a suitable model of the 

decline in attentional resources allocated to a task as a 

human learns to perform the task with greater and greater 

fluency. Before such a network could be accurately 

developed and evaluated, it was necessary to more precisely 

establish the relationship between learning and attention. 

The next chapter presents a human learning experiment which 

uses the methodology discussed above to attempt to more 

clearly establish that relationship. 
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CHAPTER FIVE: HUMAN LEARNING EXPERIMENT 

Despite its empirical methodology, this experiment was 

not designed to test specific hypotheses. Instead, it was 

intended to substantiate expected phenomena in a specific 

context and gain some qualitative insight into the nature of 

these phenomena with the intention of replicating the 

phenomena in a connectionist network and establishing 

criteria for evaluating its performance. Specifically, the 

objectives of this experiment were: 

o Substantiate the distinction between automatic and 

controlled processes as a continuous rather than 

dichotomous one ( i.e., some processes may be entirely 

automatic, but all others are controlled to a greater 

or lesser extent, depending on the amount of 

attentional resources they demand). 

o Establish that the transition from a controlled process 

to an automatic one, as the result of practice, is not 

sudden. Instead, the degree to which a process is 

controlled gradually declines. 

o Identify a mathematical description of the transition 

from a controlled process to an automatic one by 

monitoring the decrease in attentional resources 

required. 

Method 

The purpose of this experiment was to obtain a 

mathematical description of the transition of a simple 

cognitive learning task from a controlled process to an 

automatic one with " controlled" and " automatic" being 
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defined in terms of the amount of attentional resource 

demanded as discussed in Chapter 3. The learning task was 

accompanied by a series of reaction time probes designed to 

measure the learner's unallocated attentional resources and, 

indirectly, the amount of attentional resources required by 

the learning task. The amount of attentional resources 

required by the learning process was expected to decline in 

some regular way for all subjects regardless of their 

absolute level of performance. It is the nature of this 

regularity which is of interest here, not the absolute 

performance of the subjects. 

Subjects  

Nothing about the nature of this experiment suggested 

that any one population would be especially appropriate or 

inappropriate because the results were to be based on 

within- subject measures. Volunteers were solicited from a 

single class of grade- ten math students attending Lester B. 

Pearson High School in Calgary, Alberta. Since this 

particular high school integrates all three grade- ten math. 

streams, the one class represented a range of academic 

ability. This school also integrates computer technology 

extensively across the curriculum, so these students already 

had considerable experience with computers in a variety of 

domains, and had specific experience with Microsoft Windows, 

the graphic user interface used for this experiment ( see 

Materials below). No counterbalancing or random assignment 
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was required because all subjects participated in the same, 

computer-based, learning task. 

Materials  

The materials for this task consisted of twelve 

arbitrary paired-associate items. The stimulus half of each 

pair was one of twelve small pictures selected from the 

icons supplied with Microsoft Visual Basic. Each icon is a 

32x32 pixel colour bitmap similar to those illustrated in 

Figure 5.1. The response half of each pair was one of four 

keys on a standard computer keyboard, specifically, D, F, J, 

and K. These keys were chosen to allow comfortable hand 

positioning and because they can be located by feel ( on IBM 

keyboards, the F and J keys have bumps on them). For each 

subject, the specific key associated with each picture was 

assigned by random selection without replacement. 

Figure 5.1 Black and white representations of icons used as 

stimuli. 

A Visual Basic program was written to present the 

stimuli and collect and record the subjects' responses, 
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response latencies, and reaction times to the attention 

probe. The program was run under Microsoft Windows 3.0. 

Procedure  

The main learning task used a variation of the paired-

associate paradigm. The subject's task was to learn, 

through trial and error, which key was associated with each 

picture. As noted above, the intention was to use the 

results of this experiment as the basis for a simulation of 

similar learning in a back-propagation network. This 

learning task was structured to closely approximate the 

procedure used to train such a network. With the back-

propagation learning rule, a single learning trial consists 

of presenting a stimulus, allowing the network to generate a 

response, then presenting the correct response so the 

network can calculate the amount of error in its response 

and make appropriate adjustments to the connection weights. 

To approximate this procedure, in this experiment, the 

subject was presented with an item, made a response, and 

then was presented with the correct response. Unlike a 

traditional paired-associate learning task, there were no 

learning trials where all of the stimulus- response pairs 

were presented together. The subject both studied and 

responded to each item before the next item was presented. 

Specifically, the experimental procedure proceeded as 

follows. At the beginning of each trial, one of the 

pictures ( randomly selected without replacement) was 
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presented and the system waited until the subject pressed 

one of the four keys. The system then displayed both the 

picture and the correct key for a one- second study period. 

The subject was given no specific feedback about the 

response they had made. The program simply displayed what 

their response should have been. 

The same procedure was repeated twelve times -- once 

for each picture. To facilitate comparisons with the 

connectionist network simulations to be presented later, 

each such block of twelve presentations will be referred to 

as one epoch. After each epoch, the system immediately 

began another epoch using the same twelve pictures but in a 

new random order. 

After the first epoch, a reaction time task was 

interleaved with the learning task. On approximately every 

third item the study period was interrupted by a reaction 

time probe. The probe consisted of the entire screen going 

blank. When the probe occurred, the subject was to press 

the space bar as quickly as possible. As soon as the space 

bar was pressed, the screen was restored and the interrupted 

study period was restarted. Four of twelve items were 

probed each trial with the four items determined by random 

selection without replacement. 

The system continued from one epoch to another for a. 

total of twenty minutes. The intention was that the 

subjects would continue with the task until responses become 
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automatic. Pilot studies conducted during the beta- test 

phase of the software development suggested that twenty 

minutes was more than sufficient to take most subjects well 

past the point of mastery. The twenty minute experimental 

session was followed by a computer-administered 

questionnaire to collect each subject's age, gender, 

handedness, and a self- report of previous academic 

achievement ( grade 9 Math mark). 

Results 

For each item, the system recorded the latency between 

the onset of the picture and the subject's key press as a 

measure of amount of learning for that stimulus. The system 

also recorded whether the subject's response was correct or 

incorrect. For each reaction- time probe, the computer 

recorded the subject's reaction time as a measure of 

attention during the study period. As mentioned above, only 

one quarter of the latency measures were accompanied by a 

reaction time probe measure. The full data set consisted of 

almost five thousand latency measurements on twelve subjects 

across as many as three dozen epochs each. 

Two measures of the amount of learning were recorded: 

number of correct responses on each trial and the average 

latency of responses for each trial. The number of correct 

responses is a relatively coarse measure of the amount of 

learning. The latency measures were collected to provide a 
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more precise measure. The subjects were instructed to 

respond as quickly as possible. To the extent that subjects 

did follow these instructions, the average latency for each 

trial should show a negative correlation with the number of 

correct responses for that trial. Figure 5.1 shows these 

correlations for all twelve of the subjects sorted by the 

magnitude of the correlation. 

Table 5.1 

Correlation between number of correct responses on 

a trial and average latency of responses for that 

trial sorted by magnitude of correlation. 

Subject # Correlation 

119 -0.83 * 

121 -0.80 * 

110 -0.65 * 

112 -0.61 * 

115 -0.53 * 

106 -0.44 * 

100 -0.34 * 

109 -0.34 * 

108 -0.22 

104 -0.22 

107 -0.17 

216 0.45 * 

* p < 0.05 
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For eight of the subjects, there was a significant 

negative correlation (p < 0.05) between the latency measures 

and the number of correct responses on each of the trials. 

This indicates that, as these subjects mastered the items, 

they responded more quickly when tested. Three of the other 

subjects did not show a significant correlation. This would 

suggest that either they did not follow the instructions to 

respond as quickly as possible or that they did not reach a 

significant level of mastery in the twenty minutes spent on 

the task. The positive correlation for one subject 

indicates that they actually began to respond more slowly as 

they mastered the material. In fact, inspection of the raw 

data for that subject suggested that this subject was not 

really attending to the task at all. In any case, this data 

suggests that latency is an appropriate measure of learning 

for only eight of the twelve subjects so the remainder of 

the results presented here are based on just those eight 

subjects. 

For many subjects, both measures of learning ( correct 

responses and latency) began to degrade during the latter 

part of the task, well after mastery had been reached. This 

was not entirely unexpected since the procedure for this 

learning task was designed to take the subject past the 

point of mastery. Consequently, no criteria were set which 

would allow a subject to stop once they had learned all of 

the items. The measures collected from these subjects, 
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along with feedback from pilot subjects, suggest that the 

subjects eventually passed some point of persistence and 

were, consequently, not working as diligently during the 

latter part of the task. 

For individual subjects, the average and the variance 

of the scores for each trial gave some indication of the 

point at which persistence began to fade. With most 

subjects, the variance tended to decline through the first 

two-thirds of the epochs. After this, it began to vary 

widely. The epoch where the variance began to dramatically 

increase was used as a clipping point. With subjects for 

whom this point was not entirely clear, additional data 

points were retained to provide as conservative an estimate 

as possible of the point where persistence began to decline. 

The amount of data " clipped" in this manner varied from 

subject to subject. In several cases it amounted to only a 

few epochs, but in one case just over half of the epochs 

were clipped. Over all, approximately three-quarters of the 

epochs were retained. Since the subjects were required to 

continue with the experiment for twenty minutes even though 

many of them had reached mastery long before then, the 

objective of this clipping was just to discard the 

measurements taken after mastery had been achieved. 

The data also showed a small number of extreme outliers 

at seemingly random points. These may have been due, for 

example, to the subject not pressing the key hard enough to 
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register. The few moments it would take to realize that 

their response had not registered would push the latency 

measure to an extreme value. 

To identify and eliminate the extreme outliers, the 

largest scores for each subject were examined. In cases 

where the largest score seemed a " reasonable" amount greater 

than the second largest score all data was kept. In some 

cases, however, the largest score was as much as twice the 

size of the second largest score. In these extreme cases, 

the abnormally large scores were dropped. In all, nine 

extreme outliers were discarded. These nine, scores 

represented only about one half of one percent of the scores 

under consideration and the reduced data set is more 

coherent and more readily interpreted. 

One of the objectives of this experiment was to provide 

a basis for comparison between human subject performance and 

the performance of a connectionist simulation on a similar 

task. In order to be able to suggest that the learning in 

these two, very different situations is comparable, it is 

necessary to make qualitative comparisons of the way in 

which learning progressed for both. As such, summary 

statistics of the human learning would not be sufficient. 

Instead, graphical representations of the subjects' 

performance were developed for later comparison with similar 

graphs to be based on the performance of the simulations 

(see Chapter 6) 
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The sets of graphs presented on the next two pages 

(Figure 5.2 and Figure 5.3) show two views of the learning 

for each of the eight subjects individually -- one based on 

the number of correct responses and the other based on the 

latency measures. Each graph presents the actual measures 

for each trial with a broken line and a running average of 

these values with a solid line. The running average was 

based on the five values immediately adjacent to each point 

and is presented to more clearly show the learning trends in 

the data. Each subject is graphed separately because there 

were large differences in the magnitude of the learning 

measures between subjects and it is the qualitative nature 

of the learning trends which is of interest, not the speed 

of learning. 

The first set of graphs, depicting the number of 

correct responses per trial ( Figure 5.2), clearly indicates 

an increase in learning for seven of the eight subjects. 

Most of them show a typical positively decelerating learning 

curve but a few of them seem to be just slightly sigmoidal 

in that little learning seems to take place for the first 

few trials. Because of the " discovery" nature of this task, 

it is not surprising that some subjects required a few 

trials to become comfortable with the task. 

As one would expect from the correlations presented in 

Table 5.1, the graphs based on the average latency of 

responses in each trial ( Figure 5.3) mirror those based on 
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correct responses to a large extent. The subjects showed 

considerable variability in the magnitude of both the 

latency measures and the number of trials. For subjects 

with large latency measures, this had the effect of 

compressing the learning curve into a narrower region of the 

graph. This makes comparisons between subjects difficult 

but, at this point, it is the shape of the curve, more than 

the magnitude of the values, which is of interest. Most of 

the latency curves are negatively decelerating and, as with 

the curves of the number of correct responses, some show a 

sigmoidal tendency. 

The two sets of graphs provide evidence that learning 

has occurred for at least these eight subjects. In 

addition, the corresponding trends in the two sets of graphs 

support the correlations in Table 5.1 in suggesting that the 

latency of responses and the number of correct responses are 

both appropriate measures of the amount of learning. These 

graphs will serve as the basis for qualitative comparisons 

between human learning and the performance of the 

simulations presented in Chapter 6. 

The results presented above give a picture of the 

nature of the learning taking place for this task. However, 

a more important issue for this investigation is the way in 

which attention varied as this learning occurred. 

The first possibility investigated here is that 

attention ( as measured by probe reaction times) changes as a 
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function of amount of learning (as measured by response 

latencies). Seven of the eight subjects showed a 

significant positive correlation between latency and probe 

reaction time on the items to which they responded correctly 

(Table 5.2) . Since the response latencies are a negative 

measure of learning and the probe reaction times are a 

positive, if indirect, measure of attention, these results 

support the suggestion that attention is declining as 

learning proceeds. 

Table 5.2 

Correlation between average probe reaction times 

on a trial and average latency of responses for 

that trial. 

Subject # Correlation 

119 0.46 * 

121 0.75 * 

110 0.64 * 

112 0.11 

115 0.52 * 

106 0.48 * 

100 0.54 * 

109 0.45 * 

* p < 0.05 
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These correlations suggest that there is a iSelationship 

between learning and attention but, in order to model this 

relationship, a more precise mathematical description is 

required. In an attempt to determine this mathematical 

description, both linear and sigmoidal curves were fitted to 

the points obtained by plotting the latencies versus the 

reaction times for each subject. The resulting r values are 

presented in Table 5.3 below. 

Table 5.3 

values of linear and sigmoidal curves fit to 

plots of the latency versus reaction time 

measures. 

Subject # Linear Sigmoidal 

100 0.67 * 0.91 * 

106 0.58 * 0.63 * 

109 0.45 0.50 

110 0.42 0.45 

112 0.22 0.41 

115 0.36 0.51 

119 0.47 * 0.53 

121 0.58 * 0.77 

* 

* 

* 

* 

* p < 0.05 

As one would expect from the correlations in Table 5.2, 

many of the linear curve- fits produced significant i. values 
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but, in all cases, the sigmoidal curve produced a larger . 

value and more of the values were significant. These larger 

r values suggest that a sigmoidal curve produces a better 

fit with this data. 

Although the above results suggest that attention is a 

sigmoidal function of amount of learning, a second 

possibility is that attention simply declines with time on 

task. Since latency is also decreasing as the subjects 

learn, this would result in just such a positive correlation 

between the latency and reaction time measures as appear in 

Table 5.3 above. Graphs of the change in probe reaction 

time measures over time are presented in Figure 5.4 below. 

As with the learning curves in Figures 5.2 and 5.3, the 

actual values are presented as broken lines and a running 

average over five adjacent points is presented as a solid 

line. Although most of the graphs do seem to suggest a 

negatively decelerating relationship between probe reaction 

time and trial number, these curves are not as clear as the 

learning curves. However, linear regression analyses on 

each of the sets of data do suggest that, at least, 

attention is declining. Table 5.4 below presents the slope 

and the standard error for each of these analyses. 
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Table 5.4 

Slope of the regression line for the relationship 

between reaction time versus trial number and the 

associated standard error. 

Subject 1* Slope Standard Error 

119 -0.080 5.017 

121 -0.202 4.542 

110 -0.304 7.134 

112 -0.365 17.058 

115 -0.136 6.164 

106 -0.273 5.132 

100 -0.045 8.730 

109 -0.209 6.687 

The fact that all eight linear regressions produced 

negative slopes does suggest that th& probe reaction times 

are decreasing over time. However, the large standard 

errors for most subjects suggests that a simple linear 

relationship between attention and time is only a rough 

approximation and that the actual relationship is more 

complex. 

Conclusions 

The objectives of this study are mostly concerned with 

changes in attention as subjects learn. Prerequisite to 

these considerations is establishing that learning has 

occurred and presenting a description of the increase in 

learning as the task proceeded. The two measures of 
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learning, number of correct responses per trial and average 

latency of responses for each trial, indicate that, for at 

least eight of the subjects, learning did occur. Graphical 

representations of the data describe typical negatively 

decelerating learning curves with some suggestion of a 

sigmoidal curve on early trials. In the next chapter, these 

curves will serve as a basis for qualitative comparisons 

with the performance of connectionist network simulations of 

this learning task. 

With learning established for the eight subjects, their 

probe reaction times provided a suitable indirect measure of 

the amount of attention they were devoting to the learning 

task. Although these results do not clearly show the exact 

mathematical relationship between learning and attention, 

they certainly helps substantiate the distinction between 

automatic and controlled processes as one of degree of 

attention and help characterize the transition from 

automatic to controlled process due to learning as a gradual 

not a sudden one. 

It would have been valuable to establish a more precise 

mathematical description of this continuously declining 

relationship between learning and attention. Unfortunately 

the measures obtained were not sufficiently regular to 

conclusively establish the mathematical function which best 

characterizes this relationship. However, the results do 

suggest two candidates: attention decreases as a sigmoidal 
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function of learning and attention decreases as some, 

probably non-linear, function of time on task. 

Interpreting the inconclusive results shown here within 

the theoretical context of limited attentional resources can 

further constrain these possibilities. If attention is to 

be represented by a continuously declining function, there 

are theoretical limits to the nature of that function. To 

the extent that attention is a limited cognitive resource, 

it is conceivable that attention could decline to zero, but 

it is not meaningful to suggest that attention could ever be 

negative. Declining attention could thus not be 

appropriately modelled by either a negatively accelerating 

or a linear declining function. Of the remaining 

alternatives, parsimony would suggest either a negatively 

decelerating quadratic function or a sigmoidal function. 

The next chapter will present the results of a series 

of simulations based on this range of possible functions. 

The objective of the simulations was to determine which of 

these possibilities results in the most appropriate 

connectionist network model of the learning situation 

presented here. 
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CHAPTER SIX: CONNECTIONIST NETWORK SIMULATIONS 

This chapter describes a series of connectionist 

network simulations of human learning using a back-

propagation learning rule. The objective was to explore the 

use of a temperature term to more accurately model attention 

in human learning. The temperature term is the one 

described in Chapter 3, attention is as defined in Chapter 

4, and the human learning being modelled is that which took 

place in the experiment described in Chapter 5. 

Specifically, the objective is to model the decline in 

attention which accompanies paired-associate learning. 

Modeling Human Cognition 

Before discussing the specific performance modelled 

here, there are a number of general issues associated with 

the modeling of human cognition which should be addressed. 

These issues have to do with the relationship between a 

simulation and a model, assessing qualitative rather than 

quantitative performance, the granularity of investigation, 

and alternatives to empirical hypothesis testing. 

Simulations and Models  

Gluck and Bower ( 1988) present two general 

methodologies for using implementations of connectionist 

networks to model human cognition. One involves selecting 

some aspect of human performance and constructing a network 
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to perform the same task in a manner such that the "major 

regularities and salient phenomena" are preserved. The 

second methodology focuses on a specific experimental 

paradigm and builds a network whose performance will predict 

human performance within that paradigm. The simulations 

presented here represent the first of these methodologies. 

The human learning experiment presented in Chapter 5 

clearly indicated that attention declines as learning 

proceeds. The results did not show precisely what the 

mathematical relationship was, but it did constrain the 

possibilities and point out several possible approaches for 

these simulations. The different simulations presented here 

each model a different one of these possibilities. The 

objective was to see which one most faithfully preserved the 

'major regularities and salient phenomena' of the human 

learning experiment. 

Performance  

Some computer simulations of specific connectionist 

models represent attempts to solve practical problems in 

research areas that are usually classified as artificial 

intelligence. The objective of this type of research is to 

find an optimal solution to the problem. If human 

performance suggests refinements to the model, they are 

useful only if they improve the quantitative magnitude of 

the simulation's performance in that specific problem 
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domain, but it is the magnitude of the performance, not its 

qualitative aspects, which is at issue. 

However, other implementations of connectionist models, 

including those presented here, are more concerned with 

accurately simulating human performance in a specific 

domain. Refinements to the model are useful only if they 

bring the qualitative performance of the simulation closer 

in line with the human performance. The simulations 

presented here represent alternate implementations of one 

specific refinement ( adding temperature to a back-

propagation network). In evaluating the performance of the 

various simulations, the most useful simulation will be the 

one whose performance is qualitatively the most human ( i.e., 

the most like the performance of the subjects in the human 

learning experiment) regardless of its relative quantitative 

performance. 

Sensitivity Analysis  

Although part of the appeal of connectionist models is 

the simplicity of their processing mechanism, that mechanism 

includes a large number of parameters (number of nodes, 

number of layers, learning rule used, momentum, temperature, 

etc.), each of which is subject to refinement. Although 

different connectionist models often focus on refinements to 

one specific parameter, evaluating the effect of a single 

parameter on even one aspect of the-model's performance 

(e.g., learning) can be very difficult. Schneider ( 1988) 
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identifies two general approaches to evaluating a model's 

performance: "parameter estimation" and " sensitivity 

analysis", and argues in favour of the latter. 

Parameter estimation is the technique most commonly 

used by psychologists to evaluate traditional cognitive 

models. This approach tries to find the values for the 

parameters which will yield the best results: in this case 

the best quantitative fit between model performance and 

human performance. Parameter estimation is 

oriented" and may be relatively insensitive 

between parameters. 

Sensitivity analysis 

largely " results 

to interactions 

evaluates the behaviour of the 

network across the full range of meaningful values for the 

parameters ( e.g., the use of several different mathematical 

functions to vary temperature in the simulations presented 

here), and describes the interactions which result. 

Sensitivity analysis identifies the interactions 

of variations of parameters to determine where 

changes in components have a large impact on the 

system's performance ( Schneider, 1988, p. 282). 

Schneider presents a number of reasons why sensitivity 

analysis is especially appropriate for evaluating 

connectionist models. Connectionism as a modeling technique 

is still relatively new and many possible parameters have 

yet to be identified. Connectionist models use nonlinear 

functions and these can obscure the impact of variations in 

parameters, especially as they approach boundary conditions. 
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Parameters which are itemized as features of one model may, 

in fact, have little effect on its performance, with the 

result that other models which appear different may be 

substantially the same. In his conclusion, Schneider argues 

that: 

Before an author presents an extended discussion 

of the importance of a parameter, it is his/her 

responsibility tocommun±cate the sensitivity of 

the system to that parameter (p. 283). 

The simulations presented here show both the qualitative and 

quantitative sensitivity of the back-propagation learning 

rule to various implementations of a temperature parameter. 

-Iypothesis Testitig 

The traditional, empirical hypothesis- testing method 

based on statistically significant differences is most 

appropriate for quantitative comparisons between 

implementations of a specific, isolated parameter. However, 

as noted previously, there are arguments in favour of a more 

qualitative comparison of the overall performance of these 

simulations. 

In the absence of specific, testable hypotheses there 

is no basis for tests of statistical significance. Instead, 

a more qualitative assessment of the performance of the 

various simulations was used. Even where hypothesis- testing 

might traditionally have been done, Loftus ( 1993) argues for 

a graphical approach to the presentation and interpretation 

of results over the more traditional hypothesis testing 
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approach based on tests of statistical significance. A 

similar perspective seemed appropriate here. 

These arguments are not intended to suggest that 

research involving connectionist models should avoid 

specific hypotheses -- only that the acceptance or rejection 

of the hypotheses could be based on something other than a 

more conventional statistical test of significance. The 

objective behind the simulations presented here was to 

identify which of several possible implementations of 

temperature in the back-propagation learning'rule serves as 

the best model of attention in human learning. In the end, 

comparisons between the different simulations were based on 

graphical representations rather than statistical tests 

involving the discrete effect of a single manipulation. 

Method 

In all, six simulations were compared. The 

implementation details of all simulations were basically the 

same as the initial back-propagation network described in 

Chapter 3 with three exceptions: the length of time they 

were run, performance criteria measured, and the manner in 

which temperature was adjusted. 

Running Time  

The simulation in Chapter 3 was run until the network 

"mastered" the material by reaching a specific performance 

criterion. The intention of the human learning experiment 
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in Chapter 5 was to take the subjects to the point of 

automaticity -- well past simple mastery. Some 

characteristics of the human learning did not become evident 

until long after mastery had been reached. To avoid 

overlooking similar characteristics with the simulations 

presented here, they were each run for a specific number of 

epochs instead of stopping once a specific performance 

criterion was reached. On average, the simulation in 

Chapter 3 reached criterion after 83.1 epochs. Each of the 

simulations presented here were run for 200 epochs. 

Performance Recorded 

Learning in a back-propagation network is defined as 

error reduction through gradient descent ( see Chapter 3). 

The most direct measure of learning in such a network is the 

amount of error still remaining at the end of an epoch. The 

simulation in Chapter 3 ran until a specific learning 

criterion was met but this criterion was actually expressed 

in terms of the amount of error remaining. The performance 

measure recorded for that initial simulation was the number 

of epochs required to reach criterion. In contrast, all of 

the simulations presented here were run for a fixed number 

of epochs, so a similar measure of learning performance 

would not be appropriate. Intead, the average amount of 

error for each epoch was automatically recorded as the 

simulation ran, and these values used to produce graphs of 

each simulation's performance. 



118 

Adjusting Temperature  

The simulation in Chapter 3 decreased temperature by a 

specific amount each epoch ( i.e., temperature was an 

inverse, linear function of elapsed time). In the human 

learning experiment in Chapter 5, learning increased with 

time and attention decreased with time. Within the context 

of the literature on learning and attention presented in 

Chapter 4, this human learning data suggests that attention 

decreases with learning. It is possible, however, that 

attention merely decreases with time- on- task, and is more or 

less independent of the amount learned. Three of the 

simulations presented here continued to reduce temperature 

based on elapsed time ( epochs), but the other three based 

their temperature on the amount of learning as measured by 

remaining error. 

Although the human data clearly showed a decline in 

attention it failed to provide a precise mathematical 

description of the nature of that decline. However, again 

within the context of the learning and attention literature 

discussed, it did suggest several possibilities: to model 

attention, the decline in temperature should be based on 

either a linear, quadratic, or sigmoidal function. 

Linear Function The simplest possibility is that the 

decline of attention is linear. This is not a likely 

possibility because a linear decreasing function will 

eventually reach zero and continue into negative values, 
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completeness. There is nothing 

suggests that negative attention 

and, in any case, learning would 

stop in a back-propagation network once the temperature 

reached zero. For comparison with the earlier simulation, 

two of the simulations presented here used a simple linear 

transformation to decrease temperature based on either 

elapsed epochs or remaining error respectively. To ensure 

at least a minimum amount of learning each epoch, a minimum 

"floor" value was imposed. 

Quadratic 

suggested that 

transformation 

Funtion. The data from the human experiment 

a negatively decelerating quadratic 

was a more likely approximation of the human 

data than a linear function. Because the curve is 

decelerating it can be set up so that it never reaches zero, 

and thus there is no need to impose a floor. Two of the 

simulations used a quadratic transformation, again with one 

based on time and one on learning. 

Sigmoidal Function The early automaticity literature 

argued for a threshold function to represent the change in 

attention. The data from the human learning experiment 

presented in Chapter 5 does not support this but at least 

some of the data would be consistent with a sigmoidal 

transformation. In fact, depending on the scale, offset, 

and slope, a sigmoidal function could approximate either a 

linear, quadratic, or threshold functions ( see Figure 6.1). 
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A sigmoidal transformation with a medium slope was used to 

adjust temperature in the remaining two simulations. 

LINEAR QUADRATIC THRESHOLD SIGMOID7L 

GENTLE SLOPE OFFSET STEEP SLOPE MEDIUM SLOPE 

Figure 6.1 Siginoidal Functions Scaled, Clipped, and 

Adjusted to Approximate Linear, Quadratic, and 

Threshold Functions 

In all, the six simulated " conditions" for this 

simulated " experiment" fill a two by three design matrix 

representing the transformation function used ( linear, 

quadratic, or sigmoidal) and the basis for the 

transformation ( elapsed epochs or remaining error). 

Each time any connectionist network simulation is run 

it produces slightly different results. This is .analogous 

to the variability of responses made by human subjects 

within the same condition of an experiment. To ensure that 

the results obtained from each of these simulations 
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reflected the general characteristics of the specific model 

which represents temperature in that way, each of the six 

simulation was run twenty times to produce data for twenty 

simulated subjects. 

Results 

Each of the six graphs presented on the next three 

pages depicts the learning performance of all twenty of the 

simulated " subjects " in one of the six " conditions". 

Graphing each subject's individual performance ( instead of 

some measure of central tendency) shows the variability of 

responses as well as the general trends. 

Although 200 epochs were recorded for each subject, after 

the first 100 epochs there was very little difference in the 

performance of any of the subjects either within or between 

conditions. Because of this, only the first 100 epochs are 

included in the graphs. This accentuates the trends in the 

early part of the learning curves. 

For comparison with the human subject data presented in 

Chapter 5 and with the theoretical constructs being 

modelled, the graphs are labelled as representing learning 

over time. In fact, time was measured in epochs where one 

epoch represents one presentation of each stimulus 

(analogous to a single learning trial), and learning was 

inferred from measures of the amount of error remaining in 

the network at the end of each epoch. 
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Figure 6.2 Temperature as'a linear function of epochs. 

Figure 6.3 Temperature as a linear function of error. 



Figure 6.5 Temperature as a quadratic function of error. 
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Figure 6.4 Temperature as a quadratic function of epochs. 
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Figure 6.6 Temperature as a sigmoidal function of epochs. 

Figure 6.7 Temperature as a siginoidal function of error. 
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For seven of the subjects in the human learning 

experiment there was a significant correlation between the 

series of response latencies and reaction times to the 

attention probes. The learning performance of these 

subjects formed the basis for comparisons with the 

performance of the simulations. The latency measures for 

these subjects produced distinct learning curves ( see Figure 

5.3). Figure 6.8 combines all seven learning curves in one 

graph to facilitate comparisons with the data collected from 

the simulations. 

Figure 6.8 Learning curves based on inverse of average 

latency of response versus trial number. 

The latencies were actually an inverse measure of 

learning, so the curves from Chapter 5 have been inverted 
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here to show a more " typical " learning curve. The "Time" 

axis represents the trials considered for each subject. 

Since this number varied considerably from subject to 

subject, no units are included for that axis. Instead, for 

all subjects, the curves were scaled so that the entire 

length of the axis represents all of the trials considered. 

The " Learning" axis represents the amount of learning shown 

by each subject and, again, no units are presented since the 

actual values varied considerably from subject to subject. 

Each curve was clipped and scaled to represent only the 

range of measures obtained for that subject over the trials 

considered. The origin represents the least amount of 

learning measured for the subject and the maximum value is 

near the top. Two of the seven subjects did not show 

appreciable learning on the first four and eight trials 

respectively. It appears that these subjects took longer to 

familiarize themselves with the learning task. Those 

initial trials are not represented here. 

Discussion 

As noted above, the objective of this simulated 

"experiment" was to find the mathematical function which 

would cause a changing temperature in a connectionist 

network to most accurately model the change in attention in 

the human learning experiment. Six alternatives were 

explored here and the results presented in the six sets of 
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graphs ( Figures 6.2 through 6.7). The one which represents 

the best model of the human performance ( represented by 

Figure 6.8) was selected through qualitative comparisons 

between the sets of graphs. There is no clear "winner" but 

a process of elimination based on comparisons of the nature 

of the simulations' performance and some artifacts in that 

performance give some indication as to which of the six is a 

better choice for modeling the effects of attention in human 

learning. Comparisons of the general performance of the 

simulations which varied temperature based on time versus 

those which based temperature on learning and a 

consideration of linear versus quadratic and sigtnoidal 

transformations also provide arguments in favour of specific 

simulations. 

Performance  

Those factors which optimize computer performance are 

rarely the ones which optimize human performance. It is 

therefore not surprising that the simulation with the best 

performance is not the one which best models the human 

performance. 

Quantitatively, the network with superior performance 

is the one in which temperature is linear with time ( Figure 

6.2). Early learning increases at a faster rate and the 

total amount of learning after 100 epochs is higher than 

with the other simulations. 
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Qualitatively the learning curves for most " subjects" 

in this condition are much smoother than those in other 

conditions. In connectionist network terms this smoothness 

indicates fewer diversions into local minima. Again in 

connectionist terms, this condition probably represents 

maximum network performance, but maximizing network 

performance was not the goal of these simulations. Instead, 

the goal was to model human performance. In the human 

learning experiment, human performance was much less 

uniformly smooth so a simulation which produces smooth 

learning curves is likely not the best model of human 

performance. 

Artifacts  

The performance of three of the simulations resulted in 

graphs with distinctive artifacts which did not appear in 

the graphs of the human performance. The presence of these 

artifacts detract from the usefulness of these simulations 

as models of the human performance. 

The simulation in which temperature was sigmoidal with 

time ( Figure 6.6) seemed to learn in a series of rapid 

spurts followed by a plateau during which little or no 

learning occurred. This unusual performance is probably due 

to an unexpected mathematical interaction. The back-

propagation learning rule used in all simulations 

incorporates a sigmoidal transformation to determine level 

of activation of nodes on the forward pass of input through 
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the network. Using a sigmoidal transformation to also 

adjust temperature may have caused an unusual interaction in 

these complex mathematical formulas resulting in the step-

like plateaus shown in the graph. In any case, it would 

seem that a back-propagation network which adjusts 

temperature in a manner which is sigmoidal with time is 

probably not appropriate for modeling human performance, 

though it may have interesting implications for other 

neural-network applications. 

The graphs of the performance of the simulation in 

which temperature was varied as a linear function of error 

(Figure 6.3) show a distinctive " saddle" in the early part 

of the graph. This suggests that the rate of learning 

slowed down for a dozen or so epochs. Although similar 

saddles appear in other conditions, it is very pronounced, in 

this condition. 

In addition to the saddle artifact present in Figure 

6.3, the simulation which varied temperature as a quadratic 

function of epoch produced performance which was almost as 

smooth as that shown in Figure 6.2. 

A Better Choice  

In contrast, the performance of the simulations in 

which temperature is either quadratic or sigmoidal with 

learning ( Figures 6.5 and 6.7) have several characteristics 

in common with the human learning data. The average 

performance is good and it conform closely to the positively 
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decelerating learning curves observed in most human learning 

situations ( see Figure 6.8). As with actual human 

performance, the performance of individual simulated 

"subjects" is somewhat erratic both within each subject and 

between subjects in the condition even to the point where 

several " subjects" might be considered outliers. 

Time Versus Learning  

In general, the three simulations which varied 

temperature as a function of learning ( error) instead of 

time ( epoch) produced performance which more closely 

resembles the human performance. All three simulations 

based on time ( Figures 6.2, 6.4, and 6.6) produced learning 

curves which were generally much smoother. The performance 

of different simulated " subjects" was much more consistent 

within each of these three " conditions", even to the point 

of consistently reproducing the artifacts mentioned above. 

Human performance in general has considerable variability 

and the performance of the human subjects on this learning 

task is no exception. Because they reflect a similar amount 

of variability, one of the three models which vary 

temperature as a function of learning is likely to be a 

better model of human learning. 

Sigmoidal as Linear and Quadratic  

As discussed in the Method section above, a sigmoidal 

function may bear a close resemblance to either a linear or 

a quadratic function depending on the slope of the function 



131 

and any offset imposed to constrain the range 

For this project, the simulation which varied 

a sigmoidal function of error used a balanced 

an intermediate slope. On the other hand, if 

of values. 

temperature as 

function with 

that condition 

had used a sigmoidal function whose shape more closely 

approximated a linear function, the performance of that 

simulation would likely have approximated that of the 

simulation which used an actual linear function. Similarly 

if the sigmoidal function had been clipped to resemble a 

quadratic function, the performance would have been similar 

to that of the simulation which used a quadratic function. 

One would expect, then, that differences in simulations 

using these three functions would be mostly a matter of 

degree and that a sigmoidal function could be made to 

approximate the performance of either of the other two 

functions. 

In fact, the learning curves of the three simulations 

which varied temperature as a function of learning are 

similar. 

presence 

artifact 

The main difference between them is the relative 

of the " saddle" artifact mentioned above. This 

is very pronounced with the linear function, 

noticeable reduced with the quadratic function, and almost 

unnoticeable for many of the " subjects" in the condition 

which used the sigmoidal function. This would argue in 

favour of the sigmoidal function for a model of human 

learning. 
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Conclusions 

The purpose of this series of simulations was to show 

that adding a temperature parameter to a back-propagation 

learning rule in a connectionist model of human learning and 

causing that parameter to decline as the network learns will 

improve network performance and will do so in a manner which 

is similar to the effect of attention in human learning. 

The results of these simulations are not conclusive 

but, of the transformations investigated here, it would seem 

that a network which adjusts temperature sigmoidally with 

learning will more closely model human performance and one 

which decreases temperature linearly with time will maximize 

network performance. 
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CHAPTER SEVEN: CONCLUSIONS AND IMPLICATIONS 

This chapter begins with a summary of the conclusions 

reached throughout this research project. The summary is 

followed by suggestions for further, follow-up research on 

the interaction between learning and attention using 

variations on the same methodology. The chapter ends with a 

discussion of broader implications for research within and 

across several disciplines. 

Summary of Conclusions 

This research project proceeded in phases consisting of 

a computer-based simulation, an experiment on human 

subjects, and then a series of additional computer-based 

simulations. Each phase of the project resulted in specific 

conclusions but each phase was also based, to at least some 

extent, on the conclusions of previous phases. To preserve 

the flow of the argument, the conclusions reached at each 

phase of the project are presented in the chapter describing 

that phase. The following is a brief summary of those 

conclusions. 

The discussion of connectionist networks and related 

research presented in the first two chapters led to the 

conclusion that such networks are useful for modelling human 

cognitive processes. Further, this discussion suggested 

that models of human learning would likely require a multi-
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layer network with a sophisticated learning mechanism such 

as the back-propagation learning rule. 

The third chapter suggested that performance in a back-

propagation network was improved by including a 

"temperature" parameter which decreased the variability of 

each node's output signal as the network learned. Chapter 4 

concluded that this temperature parameter might be used to 

model attention in human learning, and suggested a 

methodology for measuring attention in a learning situation. 

The results of the human learning experiment presented 

in the fifth chapter supported the hypothesis that attention 

declines in some continuous manner as learning increases and 

suggested several possible mathematical descriptions of that 

decline. Each of these possibilities was used as the basis 

for a back-propagation network simulation of the human 

learning experiment and Chapter 6 reports the results. The 

overall conclusion reached was that, of the possibilities 

investigated here, the most appropriate model of attention 

in human learning is a back-propagation network with a 

temperature term which declines sigmoidally as learning 

increases. 

Project- Specific Implications 

As with any research, some aspects of this project 

worked well and others did not. The things which worked 

well have implications for future research in a variety of 
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areas but the things which did not work as well have equally 

important implications for further research in this area and 

related areas. This section will discuss some of the 

limitations of the human learning experiment and the 

computer-based simulations of that task with a view to 

improving future research. 

The Human Learning Experiment  

One difficulty with this experiment concerned the fact 

that the procedure relied on reaction times as a measure of 

learning and of attention. Although the subjects were 

instructed to respond as quickly as possible, there is some 

evidence that a number of them may not have been focusing on 

these instructions. This may have been due in part to their 

lack of maturity ( they were all grade ten students) and, in 

part, because they were focusing on learning the items to 

the exclusion of everything else. Future studies using this 

methodology may have more success by drawing subjects from a 

more mature population. In addition, the software which 

administers the learning task could be modified to provide 

feedback, on the subject's speed of' response. If this 

feedback were provided in the form of an ongoing arcade-

style score, it is more likely that subjects would be 

motivated to respond as quickly as possible. 

A second difficulty with the experimental design had to 

do with the subjects' persistence. As mentioned in Chapter 

5, initially it was not clear whether latency would decline 
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by any appreciable amount until mastery was almost reached. 

On that basis, this study was designed to continue to test 

subjects long after the point of mastery. In fact, the data 

from this 

almost as 

which use 

study suggests that latency begins to decline 

soon as subjects begin 

this methodology could 

with persistence by establishing 

shortly after mastery is reached. 

Related to the issue of persistence is 

to learn. 

avoid some 

some 

Future studies 

of the problems 

criteria for stopping 

the rate with 

which the subjects learned. Since the objective of this 

experiment was to reach mastery, the task was made 

relatively easy by having only twelve pairs of stimuli to be 

learned. For many of the subjects, this meant that mastery 

was approached after only a few trials and, consequently, 

most of the attention measures were taken over a relatively 

small range of learning measures. Since it would seem that 

attention begins to decline early in the task, the number of 

items could be increased to produce a slower rate of 

learning. This should delay the loss of persistence. It 

should also increase the chances of determining a more 

precise description of the relationship between learning and 

attention by providing attention measures over a broader 

range of learning scores. 

The conclusions presented in the first section of this 

chapter were reached largely on the basis of qualitative 

comparisons between the performance of the human subjects 
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and the simulations. If a more homogenous population 

(perhaps using testing software which implements the above 

suggestions) could produce a more consistent performance, it 

might be profitable to investigate techniques for making 

quantitative statistical comparisons between the graphs of 

the human subjects, performance and the performance of the 

simulations. 

The Simulations  

Arguments presented in Chapter 6 suggest that a 

sigmoidal function can approximate linear and quadratic 

functions as well. The specific function used for the 

simulations which adjusted temperature sigmoidally had a 

balanced shape with an intermediate slope. Of the three 

simulations which based temperature on the amount of error, 

the one with the sigmoidal function seemed to be a slightly 

better model of the human performance than the ones with the 

linear function and the quadratic function. It is possible 

that a sigmoidal function of a different shape would produce 

an even better fit with the human performance. Further 

research using simulations with sigmoidal functions could 

investigate a range of slopes and offsets. 

In general, the performance of the simulations which 

based temperature on error was more like the human 

performance than the simulations which based temperature on 

epoch number. The major exception to this was the presence 

of a saddle- like plateau in the early learning trials of 
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some simulated " subjects". Further investigation of this 

"saddle" artifact is necessary, especially in comparison 

with the slightly sigmoidal performance in the early 

learning trials of some of the human subjects. 

Broad, Interdisciplinary Implications 

As mentioned in the preface, this project is based on 

research from three disciplines: Education, Psychology, and 

Computer Science. The rest of this chapter will discuss the 

implications this research has for each of these areas and 

present some suggestions for further research. 

Computer Science  

Because of the sophisticated technology required to 

implement connectionist networks, this area of research owes 

much to computer science in general and the area of 

artificial intelligence in particular. However, computer 

science is not generally concerned with modeling human 

performance, and some aspects of the technology it produces 

are more appropriate for such models than others. One such 

technology is simulated annealing. 

There are some similarities between the use of 

temperature in a back-propagation network and simulated 

annealing. In general, simulated annealing is used for 

combinatorial optimization in a wide range of domains 

(Laarhoven & Aarts, 1987; Vidal, 1993). One specific 

application is its use in neural networks called Boltzmann 
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machines (Hinton & Sejnowski, 19866; Aarts & Korst, 1989). 

Although it is this application of simulated annealing which 

inspired the use of the term temperature to describe the 

modification to the back-propagation learning rule used in 

the simulations for this project, the objective here was to 

modify the back-propagation learning rule to more accurately 

model human learning, not to model human learning using a 

Boltzmann machine. 

Although Boltzmann machines have recently been used to 

model some aspects of human performance, there is at least 

one aspect of such a model which makes it less appropriate 

as a model of attention in human learning. Simulated 

annealing continuously decreases the temperature of the 

system in which it is implemented. No provision is made for 

increasing temperature if the combinatorial optimization is 

not going well. In some ways this could be compared with 

the simulations in which temperature was based on elapsed 

time but in the simulations in which temperature varies with 

learning, there would be numerous instances of temperature 

increases as the network escaped from local minima. 

Human cognitive research borrows from computer science 

but work in this area often has something to give in return. 

This dissertation has focused mainly on the use of 

connectionist networks to model human cognitive processes 

and, consequently, more attention has been paid to the 

qualitative performance of the networks than the relative 
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speeds with which they learn. However, for many computing 

science researchers, the speed and accuracy of the network 

are just exactly what is of interest. 

Manipulating the variability of the output function in 

the manner suggested here definitely improves the speed of 

learning in one specific back-propagation network. More 

research in this area would identify the extent to which a 

temperature term is useful for other such networks and how 

it influences other aspects of network performance. 

PEychol Qgy  

Empirical research is strongly influenced by the 

environment in which the research takes place. It is 

assumed that if this environment is properly controlled the 

performance of subjects can be meaningfully compared. The 

problem with cognitive research is that a significant amount 

of the " environment" influencing performance is inside the 

subject's head. It is difficult or impossible to control 

these influences. 

Computer-based models of cognitive processes allow 

researchers to indirectly investigate these " in- the-head" 

influences to the extent that they are faithfully modelled. 

The results presented here are not strong enough to argue 

that the only way to faithfully model the influence of 

attention is with a sigmoidally declining temperature 

parameter, but they do suggest that such a parameter is one 

possible way of doing so in at least some learning 
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situations. Further research would identify just exactly 

what those situations might be. 

Any time research within a specific paradigm 

(especially a relatively new one) is successful, it argues 

for the usefulness and credibility of the paradigm in 

general. In addition to what this research says about the 

specifics of modeling attention, it also provides general 

support for connectionist models and theories. This 

investigation was successful in that it definitely does 

suggest that a connectionist model of human learning should 

include a model of attention and that temperature may be an 

appropriate way to do this. To fully substantiate 'this 

suggestion, it will be necessary to conduct further research 

into the performance details of human subjects' learning and 

attention and into the implementation details of temperature 

in connectionist networks. 

Education 

As a model of cognitive processing, connectionism 

places a strong emphasis on learning. Intuitively, this 

suggests that such a model would have implications for 

education. As yet, few of these implications have been made 

explicit but connectionism has only recently received 

general acceptance even in the cognitive science community. 

To the extent that connectionist models in general are 

a faithful representation of human cognitive processes, the 

characteristic responses of a connectionist network to 
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learning have implications for the way human learning 

environments should be structured. For example, the process 

of automatic generalization suggests a mechanism whereby 

generalizations will be acquired from repeated exposure to 

typical instances. This argues in favour of discovery 

learning. On the other hand, this mechanism also suggests 

that forming associations between new concepts and existing 

super- ordinate concepts will be facilitated if the super-

ordinate concept is sensitized in advance. This suggests 

that at least some form of advance organizer will assist 

integration of new information. The fact that a 

connectionist model incorporates both of these mechanisms 

may suggest why both of these teaching strategies appear to 

work. 

The behaviour of the specific connectionist networks in 

this research project also have implications for educational 

practice. The results provide support for declining demands 

on attentional resources as a cognitive skill is mastered. 

Converting controlled cognitive processes to automatic ones 

is an important part of learning and to optimize this 

learning, attentional resources should be fully utilized. 

This argues for the continuous introduction of new material 

and new perspectives and maybe even new skills even while 

the skill at hand is still being mastered. 

To maximize learning in any one individual, that 

individual's progress should be closely monitored and their 
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curriculum should be constantly updated to optimize the use 

of their attentional resources. This would be almost 

impossible with the currently dominant, group- centred 

approach to education, but even with a more student- centred 

approach there are significant practical difficulties 

concerning assessment, record-keeping, and delivery of 

curriculum. 

Computer technology is already being used to address 

many of these difficulties but most of the assessment is 

product oriented and delivery is rarely individualized. One 

way for computer-based instruction to individualize 

curriculum is to maintain a profile of the learner based on 

on-going assessment of student performance. A measure of 

the amount of attentional resources being devoted to the 

task at hand could be used to adjust the pace of delivery 

and even the content. To the extent that response latencies 

and even reaction time probes accurately measure the use of 

attentional resources, these measures should be added to the 

learner profile. 

People's minds are infinitely more complex than any 

computer-based connectionist network but connectionist 

models of human cognition can help us understand more about 

human learning and this increased understanding can lead to 

more informed educational practice. 
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