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ABSTRACT

Although experts have difficulty formulating their knowledge explicitly as rules, they find it easy to
demonstrate their expertise in specific situations. Schemes for learning concepts from examples
offer the potential for domain experts to interact directly with machines to transfer knowledge.
Concept learning methods divide into similarity-based, hierarchical, function induction, and
explanation-based knowledge-intensive techniques. These are described, classified according to
input and output representations, and related to knowledge acquisition for expert systems. Systems
discussed include candidate elimination, version space, ID3, PRISM, MARVIN, NODDY, BACON, COPER,
and LEX-I. Teaching requirements are also analyzed.

The difficult process of knowledge acquisition (KA) has emerged as a key technology underpinning the creation
of expert systems. Unfortunately there is no all-encompassing, unified theory of how knowledge is acquired,
and probably never will be. Consequently, practical KA systems must strive to provide a variety of different
services, hoping to cover the requirements for many diverse domains of expertise.

Although experts have trouble formulating their knowledge explicitly as rules, they find it easy to demonstrate
their expertise in specific situations. This paper reviews the potential contribution of published schemes for
learning concepts from examples to knowledge acquisition for expert systems. The next section identifies a
number of roles which leaming might play in KA systems. Following that we discuss the meaning of concept
leamning, classify methods for doing it, and describe alternative representations for what is learned. The next
sections present several schemes for learning, structured according to the classification (see Table 1). Then we
consider the role of the teacher, for in the present primitive state of the art, concept leaming systems need
someone who not only has an analytical understanding of the problem domain, but also is acquainted with some
of the internal workings of the system itself. Finally we discuss how each scheme meets the requirements for
knowledge acquisition, and suggest areas where more work is needed to render the results of concept learning
research accessible to practical KA systems.

Only techniques based on clearly defined algorithms are described here. In general, this means ones that we
know have been replicated, in essence if not in detail, by researchers other than their inventors or colleagues.
This eliminates a number of successful systems which have not been defined publicly in enough detail to be
reproduced by others.

THE ROLE OF LEARNING IN KNOWLEDGE ACQUISITION

What would it be like to use a KA system that was capable of leaming? The target expert system’s knowledge
base will contain facts, inference rules, and possibly some representation of the system’s goals. Accordingly,
there are a number of rather different opportunities for leaming.



Acquiring facts

Rote leaming of facts is a mundane requirement expected of all KA systems. The expert states facts explicitly
and the system must store, index, and retrieve them as appropriate. For example, the user might say *‘Here are
facts about fungal infections. There are three main types: a, b,andc. ...”".

More challenging is the acquisition of procedures. The target system may be expected to execute various action
sequences 1o acquire or process data relevant to the case in hand. The expert may prefer to communicate
procedures by entering examples of their execution, instead of formulating an imperative program which covers
all cases. By generalizing action sequences, the system is able to perform automatically tasks such as reading
data from an instrument, formatting it, and activating appropriate analysis routines.

Learning rules

If the expert can articulate the general rules that embody his expertise, the process of knowledge transfer reduces
to rote leaming. For example, the expert might enter **All fungal infections are treated with drug p, g, or r; the
explanation being that these drugs all create an environment inhospitable to fungi’’. However, it has long been
recognized that experts find it very hard to formulate their rules explicitly.

Rules may be learned from selected test cases, if the expert can give examples which make the ‘‘how to”
information clear. For instance, ‘“This is an example of how to select a treatment for fungal infections of types
aand b: skin infection symptoms are x, y and z, so you prescribe p and q”’. The more explicitly the expert can
indicate the pertinent conditions surrounding an example, the less generalization is required of the system.
Existing elicitation techniques give the expert the tools to study examples himself and extract the important
factors.

Rules might be leaned from hosts of examples. Many expert systems are designed to replace or augment a
manual operation. It may be possible to extract rules by processing past cases and analyzing them for
similarities. Such examples may be preselected by an expert to cover all major possibilities with little
duplication. Alternatively they may constitute a random sampling of cases.

Active learners ask questions. The system might analyze the knowledge it has acquired, seeking alternative
interpretations of cases it has encountered. When alternatives are found, it asks for more information, perhaps
by creating a test case which discriminates between them and presenting it to the expert for judgement.

Learning what to do

While an expert system’s goals are often implicit, or stored in the form of unanalyzable text strings, real experts
understand their goals and can reason about them in a wider context. Moreover, they know their limitations,
when to refer a case to another expert or seek a second opinion, and so on. The expert may be able to teach the
system metaknowledge about its own goals and capabilities; for example, ‘“Your aim is to take inputs of the
type skin infection and produce outputs of the type treatment and explanation’.

Learning from users

Real experts continually improve their performance on the job, by analyzing new situations brought to them for
advice or judgement, and learning from them (Hawkins, 1983). They exploit these cases to acquire new
knowledge, to increase their understanding of what they already know, and to operationalize existing knowledge
from theory into rules which can be recalled rapidly in future. They are capable of ‘‘sustained learning™’, the
integration of substantial new knowledge into a large established knowledge base on a continual, ongoing basis.

CONCEPT LEARNING

Current knowledge acquisition techniques take care of routine housekeeping, permit rote leamning of whatever
can be communicated explicitly, and are able to elicit relatively simple rules based on the attributes of example
cases (eg Boose & Bradshaw, 1987). But they do not permit the inference of rules which operate on more
powerful representations {eg nested structures), nor can they learn from cases presented to them by non-expert
users. Methods of concept learning may be able to overcome these limitations, although the present state of the



art is primitive and offers ideas rather than well-developed algorithms to the KA toolbox. Concept learning
systems take examples — which experts can provide — and create more general descriptions, often in the form
of rules, which expert systems need.

What is meant by *‘concept learning™? Dictionary definitions of *‘concept’” are remarkably vague, but have in
common the abstract idea of a class of objects, particularly one derived from specific instances or occurrences.
“‘Learning’’ also is a very broad term, and denotes the gaining of knowledge, skill, and understanding from
instruction, experience, or reflection — in other words, ‘‘knowledge acquisition’ by people. Notwithstanding
the grand and sweeping nature of these ideas, the notion of concept learning as used in Al is much more
constricted and specific. We will take it to denote the acquisition of structural descriptions from examples of
what is being described.

Others have defined terms such as ‘‘generalization™ (Schank et al, 1986), ‘‘inductive learning” (Michalski,
1983), and “‘inductive modeling™ (Angluin & Smith, 1983) in almost identical ways. Not only are these all
used to mean much the same thing, but what is learned is sometimes called a ‘‘generalization”, a
““description”’, a ‘‘concept”’, a “‘model’’, a ‘‘hypothesis™. The field has not yet been successful in developing a
satisfactory technical vocabulary; which term one favors seems purely a matter of taste.

Concept learning implies the acquisition of descriptions which make the structure of generalizations explicit.
When a person learns a new concept, what she gains is knowledge that she can use in a rich variety of different
ways: apply it to a particular case, reflect on it, tell it to a friend, criticize it, relate it to other ideas, and so on.
For a person, learning is not simply a matter of acquiring a description, but involves taking something new and
integrating it fully with existing thought processes. Existing programs which embody concept leaming are not
nearly so capable! However, they do acquire descriptions which are explicit in the sense that they can be
communicated economically (for example, in the form of rules) and could plausibly support a variety of
different kinds of reasoning. This orientation rules out, for example, connectionist models of leaming, which
embed knowledge in high-dimensional numerically-parametrized spaces, making learning into a process of
weight adjustment. Since this does not result in concept descriptions that can be communicated economically or
reasoned about, we will not discuss it further.

Mechanisms

There are almost as many paradigms for machine learning as there are systems. In fact, the variety of different,
evocative, connotation-laden words used to describe simple mechanisms is one of the biggest problems in
coming to grips with the field. Methods have been reported for learning by analogy, being told, debugging,
discovery, doing, examples, experimentation, exploration, imitation, instruction, observation, rote, and taking
advice. The apparent richness and variety of these approaches may give a misleading impression of a field
teeming with fruitful techniques, with a selection of well-defined methods for tackling any given problem. Not
S0.

Here we distinguish the classes of concept learning mechanisms given below, and summarized in Table 1.
While many taxonomies are possible, this one is intended to support distinctions that are particularly relevant to
KA applications.

¢ Parameter learning, where the task is to optimize numerical parameters, often by detecting regularities in
noisy situations. It assumes a particular description from the start, leamning only the parameters of the
model. Generally, large numbers of examples are used to allow incremental, hill-climbing style
optimization and to overcome the effects of noise. We do not address parameter learning here.

* Similarity-based learning, where the space of concept descriptions is delineated in advance and searched
for concepts which best characterize the structural similarities and/or differences between known examples.

* Hierarchical learning, where the concept description language is augmented as each concept is learned, so
that new descriptions can build on old ones.

* Function induction, which constructs a function that accounts for a set of observed input-output tuples.

¢ Knowledge-intensive learning, which tackles the problem of relating new information to an existing body
of knowledge. This area is as yet too undeveloped to attempt a taxonomy. Significant approaches are
explanation-based learning, where a substantial chunk of information is learned by intensive analysis of
just one example, and learning by discovery, where the system operates autonomously, performing



experiments to enhance its knowledge base.

Concept representation

Another important dimension of classification is how systems represent what they leam. Knowledge
representation has always been a central topic in Al, and Barr & Feigenbaum (1982, pp.143-222) identify the
representation schemes of logic, procedural representations, semantic networks, production systems, direct
(analogical) representations, semantic primitives, and frames and scripts. It is worth pointing out that a data
structure is not knowledge, any more than an encyclopaedia is. A representation of facts or rules only becomes
knowledge when used by a program to behave in a knowledgeable way.

The requirement to acquire knowledge automatically from teacher or environment and integrate it with what is
already known means that only the simplest representations are used by programs for machine leamning.
Separate representations are required for input examples and output concepts. Representations used for input
include

o attribute vector (eg see Figure 1)
 combination of predicates (eg see Figure 2)
¢ nested term (eg see Figure 6)

e input-output tuples (eg see Figure 6);

and for concepts,

o vector of generalized attributes (eg see Figure 1)

 combination of predicates (eg see Figure 2)

e decision tree (eg see Figure 3)

¢ production rule (eg see Figures 3, 4)

 concept tree or semantic network (eg see Figure 5)

e recursive functional relationship (eg see Figure 6)

e nested numeric expression (eg see Figure 6)

* polynomial or other constrained numerical function (eg see Figure 6).

Table 1 shows the input and concept representations for the methods reviewed below.

Many learning methods apply to examples which can be expressed as vectors of attributes. The values an
attribute can have may be nominal, linear, or tree-structured (Michalski, 1983). A nominal attribute is one
whose values form a set with no further structure. A linear attribute is one whose values are totally ordered;
ranges of values may be employed in descriptions. A tree-structured attribute is one whose values are ordered
hierarchically. Only values associated with leaf nodes are observable in actual objects; descriptions, however,
can employ internal node names where necessary. A nominal attribute is a special case of tree-structuring with
no levels other than root and leaves; a linear attribute can be represented as a tree structure of intervals.
Figure 1 shows an example of each kind, along with a sample object and a sample concept description which
includes it. :

Attribute vectors are not powerful enough to describe situations where each example comprises a ‘‘scene’
containing several objects. The classic example is Winston’s (1975) arch concept, defined as three blocks, two
having the attributes required of columns and the third having those required of a lintel, with the columns set
apart from each other and each supporting the lintel. Objects are characterized by their attributes. Moreover,
pairwise (or more complex) relations may exist between objects. Such relations can be described by functions
which, like attributes, may be nominal, linear, or tree-structured. For example, the result of a function relative-
position which takes two objects as arguments could be a pair of linear values x-distance, y-distance.
Alternatively it could be tree-structured, as illustrated in Figure 2. Objects and concepts in such domains are
characterized by combinations of predicates.



Method System | Input representation Concept representation Teacher
similanty based
version space {many) aftribute vector vector of generalized attributes supplies examples one at a time;
(many) | combination (invariably combination of predicates results are insensitive to order,
conjunction) of predicates searching is not
decision rules D3 b a decision tree supplies examples all at once;
PRISM attirbute vector production rules examples may be noisy
hierarchical MARVIN concept tree supplies examples and
ALVIN nested term semantic net classifies ones suggested by
system
function induction MARVIN recursive functional relationship
NODDY | input-output tuples nested numeric expression supplies examples one at a time
BACON product of finear and derivative operators | supplies table of experimental data
COPER | input-output tuples polynomial of suitably transformed supplies initial data, perfforms
+ dimensions arguments experiments as suggested
knowledge-intensive
explanation-based | LEX-Il conjunction of predicates production rules supplies examples one at a time
discovery-based AM domain simulation frames containing rules can suggest directions to explore

Table 1
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SIMILARITY-BASED LEARNING

Given a set of objects which represent examples and counterexamples of a concept, a similarity-based learner
attempts to induce a generalized description that encompasses all the positive examples and none of the
counterexamples. Interesting general issues include the conditions under which the procedure converges to a
single description, whether the system can know that it has converged, whether the final concept may depend on
the order of presentation of examples, and whether the training set is expected to be exhaustive (so that the
concept description just discriminates between the examples presented) or representative (in which case some
‘‘generalization’’ is expected).

Candidate elimination and version spaces

A number of methods stem from the early experiments of Bruner ez al (1956), who presented subjects with cards
on which were drawn various figures differing in size, shape, color, etc, and indicated whether they were
positive or negative examples of a concept. Attempts to inject some realism into this artificial task indicated
that subjects behave differently when they can relate the various attributes to the real world. However,
experimental studies continued to be preoccupied with information-processing aspects of the problem.

In situations where objects can be described by a finite vector of attributes, the inductive problem of creating an
appropriate description can be transformed into a deductive one by circumscribing the language in which
descriptions are expressed and searching for that description (or set of descriptions) which fits the examples
given. The ‘‘version space” approach to concept leaning (Mitchell, 1982) postulates a language in which
objects are expressed, a language in which concept descriptions are expressed, a predicate which determines
whether a particular object matches a particular description, and a partial ordering on descriptions (interpreted as
generalization/specialization). Given a set of positive and negative examples of a target description, the problem
is to find all descriptions that are consistent with the examples. This set is called the “version space”’.

In principle, the problem can be solved by enumerating candidate descriptions and striking out those which do
not fit the examples that are presented. A positive example rules out all descriptions that it does not match,
while a negative one eliminates those it does match. This is called the ‘‘candidate elimination’ method. As
each example is encountered, the set of remaining descriptions shrinks (or stays the same). If only one is left, it
is the target description. If several are left, they may still be used to classify unknown objects. An unknown
object which matches all remaining descriptions is included in the target; if it fails to match every one it is
excluded by the target description. Only when it maiches some descriptions but not others is there ambiguity; in
this case if the classification of the object were known it would cause the version space to shrink.

Candidate elimination does not use the partial ordering on descriptions. The essential insight of the version
space method is that the descriptions in the version space need not be stored explicitly, but can be inferred from
its upper and lower boundaries in the partial order. The upper boundary comprises all members that are
maximally general, the lower boundary all that are maximally specific. The boundaries can be updated
incrementally as new examples are encountered. The upper boundary is initialized to comprise all maximally
general descriptions (there may be several). In principle, the lower one could be initialized to comprise all
maximally specific descriptions; since there may be a large number of these it is instead initialized to include
the first example only (which must be positive).

Vectors of attributes. The candidate elimination and version space methods apply simply and directly when
each object is described by an attribute vector, and the performance of version space algorithms in such domains
has been studied extensively. It is well known that allowing disjunctions in the description language causes the
version space to explode. Even with purely conjunctive concepts, however, if the number of attributes is large
the size of one version space boundary can grow exponentially in the number of examples. This and other
complexity results are discussed by Haussler (1987a).

Combinations of predicates. In structural domains, each example (or counter-example) comprises a ‘‘scene’’
containing several objects. Part of the problem in matching a scene with a structural description is determining
an appropriate mapping between objects in the scene and those specified in the description. Figure 2 shows an
example scene containing three particular objects — a, b and ¢. It also gives a description which refers to two
variable objects x and y. Binding x to a and y to ¢ shows that something matching the description is
contained within the scene. But it is necessary to clarify how the description is to be interpreted. It might be
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prefaced by a statement such as
there exist different x, y with ...

giving what Stepp (1987) calls “‘contains’ semantics. This is distinguished from ‘‘is>> semantics, where the
scene must have those parts mentioned in the description and only allowable extras. Under ‘‘is’’ semantics,
optional parts (eg vines, spiders, dust, on an arch) would be observed in positive examples, and as more were
seen the concepts used to describe optional parts would become more and more general. Negative examples
containing oraments would prohibit adomments of that kind.

Haussler (1987b) has obtained several theoretical results which indicate that, even with the simpler ‘‘contains’’
semantics, extreme computational complexity can be involved in working with version spaces of structured
objects. The problems of testing whether one description is more general than another, and whether a
description contains a given scene, are both NP-complete if we allow arbitrarily many objects in scenes and
arbitrarily many variables in descriptions. Furthermore, the boundaries of the version space can become
arbitrarily large. Even when each scene has exactly two objects, no binary relations are defined between the
objects, and each object has only two-valued attributes, the size of boundaries can grow exponentially in the
number of examples if there are sufficiently many attributes. Moreover, under these conditions it is NP-
complete to determine if there exists any concept consistent with a given set of examples. These pessimistic
results may indicate why even though Winston’s early machine leamming system used structured objects,
relatively few subsequent projects have worked with structured examples (Stepp, 1987).

Creating decision rules

Another way to tackle the problem of concept learning is to use the training set to construct a decision tree or
collection of rules which discriminates positive from negative examples. In the case of a tree, the root specifies
an attribute to be selected and tested first, then depending on its value subordinate nodes dictate tests on further
attributes. The leaves are marked to show the classifications of the objects they represent. For two-class
problems these classifications are simply “‘positive’ and ‘‘negative’, but it is easy to accommodate situations
where more than two classes must be distinguished. In the case of production rules, the training set is used to
construct a set of rules which can be interpreted by an expert system in standard forward- or backward-chaining
manner. In both cases, it is normally assumed that all examples are available and can be processed together to
construct the tree or rules.

Decision trees. Procedures for top-down induction of decision trees were developed many years ago to model
human performance in concept leamning (Hunt, 1962; Hunt et al, 1966). It was found that subjects focus on
positive instances, and they are assumed to build up a decision tree in order to categorize instances. These early
programs sought an attribute which distinguished positive from negative instances; if there were none, they
selected a frequent characteristic of the positive instances and made this the first test in the decision tree. The
set of instances that passed the test were treated as a subproblem in exactly the same way.

The ID3 algorithm (Quinlan, 1986a) is a popular modern incarnation of these ideas. It does not attempt to model
human performance but rather aims to minimize the number of nodes in the tree. It uses an information-
theoretic heuristic to determine which attribute should be tested at each node, looking at all members of the
training set which reach that node and selecting the attribute that most reduces the entropy of the
positive/negative decision. By the nature of the algorithm, correct performance is guaranteed on the training set.
Any “‘generalization’’ achieved depends purely on the representation of objects and the choice of training set.
By seeking the simplest decision tree, ID3 finds the most economical way to classify the examples given.

Because of its simplicity and elegance, the ID3 procedure has been replicated and studied extensively. Having
performed well in the domain of chess end-games (where the problem is more to summarize a large body of
decisions economically than to generalize), it was soon adopted for a number of commercial applications. When
presented with noisy data, the basic ID3 algorithm constructs huge decision trees which reflect the detail of every
example seen. The resulting uneconomical representation is not a suitable vehicle for generalization, and several
research efforts are underway to develop improved algorithms which copy with noise (eg Quinlan, 1986b;
Niblett & Bratko, 1986).



An example of operation of ID3 (from Cendrowska, in press) concerns an adult spectacle wearer who consults an
optician with a view to purchasing contact lenses, bringing along her spectacle prescription. We assume that,
from the optician’s point of view, this is a three-category problem with four factors a, b, ¢, and d to take into
consideration. The complete decision table is given in Figure 3, and ID3 .produces the tree shown.

Production rules. For incorporation into expert systems, the decision tree is usually converted into production
rules such as those of Figure 3. These rules are supposed to represent the professional judgement of the
optician, which he is likely to state in forms such as

This patient is not suitable for contact lens wear because her tear production rate is reduced
(rule 1: a=1 — decide 3).

This patient can only be fitted with hard contact lenses because she is astigmatic. As she is young and has
a normal tear production rate, hard lenses are not contraindicated
(rule 6: b=1 & c=2 & d=2 — decide 1 and rule 7: a=1 & b=2 & c=2 & d=2 — decide 1).

However, Cendrowska (in press) has noticed that even when a decision tree has the minimal number of nodes,
there may be redundancy in the rules extracted from it. One manifestation of this is that there is no single rule
which corresponds to the second example above; rules 6 and 7 between them cover the situation. Because of
the existence of rule 6, rule 7 could be generalized to

rule 7’: a=1 & ¢=2 & d=2 — decide 1

without affecting the outcome. The additional clauses in the ID3 rules could cause an expert system to call for
redundant tests to be made, in this case by demanding a value for b even when a, ¢, and d are known and
together determine the result.

Rather than attempting to clean up the production rules generated from the ID3 decision tree, it is possible to
dispense with the tree altogether and generate rules directly. The PRISM procedure (Cendrowska, in press)
generates those shown in Figure 4 for the example problem. Although the number of rules is the same as for
D3, they are simpler and more general — six have had redundant terms removed. On a larger problem with a
training set of 647 examples, PRISM found 15 rules containing a total of 48 terms where ID3 found 52 rules
containing 337 terms. Both sets correctly classified all members of the training set.

Limitations of similarity-based learning

Similarity-based methods are the most mature and immediately applicable for the purpose of knowledge
acquisition. However, it has often been pointed out (eg see Schank er al, 1986, for a recent discussion) that
these methods hardly relate to what people do in real life.

First, they use the wrong sorts of concept, representing an object like ‘‘chair’” or ‘“‘table’” as a certain
configuration of sticks and boards. Many everyday concepts do not even involve a common function, let alone a
common appearance (Wittgenstein, 1958). Second, they embed examples in an artificial scenario where objects
are lifted out of context, isolated, cleaned up, and presented individually to the system. Third, they assume the
existence of a teacher who decides when to create a new concept and when to modify an old one. In real life,
the environment neither identifies nor labels instances. Fourth, systems tend to embody the implicit assumption
that categories are defined by a collection of features that are individually necessary and collectively sufficient.
Real instances have indefinite numbers of features, some explicit, some inferred.

Attempts have been made to go some way towards meeting such objections by designing new leaming
mechanisms which are embedded in richer knowledge-based systems. These are discussed below under
‘‘Knowledge-intensive learning”’.
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Rules produced by PRISM

(adapted from Cendrowska, in press)




HIERARCHICAL LEARNING

It would be attractive if learning systems could build upon concepts already leamed, and use them as
components in newly-constructed descriptions. This might allow learning to be sustained over an extended
period of time, instead of being done on a one-off basis. A mechanism for attempting this is reviewed below.
However, it cannot support indefinitely sustained learning, for two reasons. First, the search space involved
grows exponentially with the number of known concepts. Much more attention must be paid to the use of
domain knowledge to curtail this growth before such systems become practical. Second, in order for leamning to
be truly sustained the teacher has to be able to correct misconceptions after they have occurred. Shapiro’s
(1983) techniques for debugging declarative programs may possibly provide a handle on this problem.

Examples which are presented to these systems may be atomic names rather than vectors of attributes or
structures built from components. Concepts are stored in the form of a logic program. Each concept may be
described by several clauses, which are interpreted as disjuncts. Each clause may have several terms which are
interpreted as conjuncts. Terms are either primitives provided in the system, or other concepts; thus the
structure is hierarchical.

Examples do not have to be atomic. They can have nested structure and, when used recursively, are capable of
representing arbitrary list structures. If non-atomic examples are presented, they are decomposed to see if they
can be expressed as compositions of other concepts. The process permits recursion, so that the concept of a
number as a list of digits, as well as the procedure for appending such lists, can be taught by example.

Concept trees. A system called MARVIN learns hierarchical structures of concepts (Sammut & Banerji, 1983,
1986). Given an example, it searches for alternative ways to express it in terms of known concepts. Instead of
awaiting further examples from the teacher to constrain its choice of expressions, however, it selects a tentative
description, synthesizes a *‘crucial object’’ to determine if that description is a correct generalization, and asks
whether it too is an example of the concept. If so, the tentative description is accepted as a valid generalization
and attempts are made to generalize it further. If not, the tentative description is specialized to rule out the
negative example and a new crucial example is synthesized. Thus a sequence of generalizations and
specializations is made, each being tested by asking the teacher to classify a crucial example. When all
possibilities for generalization have been exhausted, the description is stored and the teacher is asked for another
example of the concept.

As an example, suppose MARVIN already has the concept fish, which includes flying fish, cod and trout as
illustrated in the upper part of Figure 5. Upon leaming that trout is a swimmer, it will hypothesize that all fish
are swimmers and test this hypothesis by asking whether cod is a swimmer. Since it is, and no further
generalizing hypotheses can be made, the system will record the fact that fish implies swimmer and await a new
example from the teacher. Given whale as a new example, the concept is expanded by adding as a disjunct the
fact that whale implies swimmer.

Semantic nets. The method implemented by MARVIN breaks down if the concepts are not structured and taught
in the form of a tree. For example, the lower part of Figure 5 illustrates the swimmer concept in a richer,
partially-ordered, knowledge base representing an animal kingdom. To create a strictly hierarchical structure it
would be necessary to have used subclasses such as swimming flightless bird and swimming aerial bird when
teaching the original bird concept. This is illustrated in the middle part of the Figure for a fragment of the
animal kingdom. Notice that in the non-hierarchical representation on the right, each object can be represented
by an attribute vector. Real-world knowledge bases are likely to fall between the extremes of hierarchical and
completely flat representations.

It is desirable that new concepts (such as swimmer) can be added to general knowledge structures (like that
illustrated at the bottom of Figure 5) without interfering in any way with previously learned concepts. This
requires a more sophisticated method of selecting examples to be presented to the teacher. Given, for instance,
that man is a swimmer, it is not immediately clear whether this is because it is a mammal and all mammals are
swimmers, or because it is a flyer and all flyers are swimmers, or because it is both mammal and flyer, or purely
by virtue of being a man. The question would be further complicated if there were superclasses of the man
concept. Each hypothesis must be investigated. If a crucial object exists within the current tentative hypothesis
but not within any competing ones, it is presented to the teacher. If such an object does not exist, the
alternative hypotheses are investigated to discover the most general valid description (Krawchuk, 1987).
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FUNCTION INDUCTION

Given a number of input-output (10) tples, function induction creates a function which computes the output of
each pair from its input. In general this is very difficult, although for numerical functions whose form is known
there is a well-developed body of theory in numerical analysis to calculate parameters of the relationship, Most
artificial intelligence work on function induction concems structured functions which are at least partially non-
numeric. It is hard to identify common approaches, except to say that a massive search space is involved and
searching is relatively unguided, since there is little potential for heuristically evaluating competing functional
expressions. A selection of systems are reviewed briefly below.

MARVIN can be used for function induction as well as for hierarchical learning. Examples of functions which
have been learned include

o list manipulation: appending, finding the maximum, and so on;
¢ arithmetic on numbers represented as strings of binary digits;
¢ simple insertion sort.

The first part of Figure 6 shows examples of the ‘‘append’ concept, and the resulting function description.
MARVIN proceeds by producing successively better approximations of the concept, oscillating between over-
generalization and under-generalization until the target is finally reached. Each approximation is ‘‘tested’’ by
synthesizing a new object and asking the teacher if it is an example of the concept. MARVIN’S greatest weakness
is that it cannot invent new existentially quantified variables. This eliminates the possibility of learning many
interesting procedures (including, for example, more efficient sorting algorithms such as quicksort).

Function induction is employed as a component of NODDY, a system for learning robot programs from traces of
their execution (Andreae, 1984a, 1984b). When presented with a list of 10 pairs gleaned from successive
incamations of the same robot procedure, and a list of known constants that can be used, it attempts to induce
the IO function. The partially complete function is represented as an expression which contains a “‘gap’. This
expression is initialized to the identity function with the gap standing for the unknown function to be induced.
A list of candidate operators is programmed in, and the gap is closed if a single operator is found which
generates each output from the corresponding input. Moreover, if there is an operator which maps all IO pairs
to the same constant, the gap can be closed by using that operator’s inverse. Otherwise, a new set of
expressions is constructed, each of which modify the gap by adding an operator to it. Along with each new
expression, a new set of IO pairs is constructed by applying the new operator to the input values. After pruning
duplicate expressions and expressions corresponding to inconsistent IO pairs, the algorithm repeats.

It proves surprisingly difficult to characterize the functions that this method can induce. They are of course
limited to combinations of the operators provided. The algorithm is constrained to introduce no more than one
new constant, to avoid searching the infinitude of functions like f(x)=x+a+b where a+b=c. (Actually,
functions may have several inputs, and a separate constant can be introduced for each input variable.) Although
the search for functions is strongly constrained by typing variables and operator arguments, it is nevertheless still
an incredibly expensive search, and NODDY attempts function induction only when other evidence suggests that a
functional relation may exist, and simpler methods fail. The middle part of Figure 6 shows example IO tuples
and the nested expression that NODDY generates.

One AI system which works on wholly numeric functions is BACON, which attempts to discover empirical
scientific laws by inducing functions that account for observed data (Langley et al, 1983). It is given as input a
table of values of dependent and independent variables, and looks for monotonic relations between them. If one
is found, it is tested to see if it is linear. If not, the slope of the curve relating the two variables is calculated
and added to the table as a new variable. The lower part of Figure 6 illustrates the input and concept
descriptions. From appropriate tables of data, the system discovered various relations in physics (eg Snell’s law,
conservation of momentum, gravitation); adding a heuristic which finds common divisors allowed it to interpret
correctly data on the results of various chemical reactions. More recent work on the system is aimed at making
it able to deal with noisy data using a hill-climbing strategy (Langley et al, 1986).

A more structured approach to deducing physical laws is to use dimensional analysis in concert with observed
data. Kokar’s (1986) system COPER works with physical quantities, for instance 3 m, 5 kg/m?, 7 s. It takes a set
of numeric observations, along with the dimensions of the variables involved (eg m'kg's™ for force). It is also



told which are dependent and which are independent variables. When given data representing the observations
in appropriate experiments, the system uses dimensional analysis to tell whether the independent variables are
complete (ie sufficient to determine the dependent variable’s value uniquely). For example, given a set of data
representing speed, time, and distance traveled by a falling body, the system can detect that a variable (g, the
acceleration due to gravity) has been omitted. It then suggests experiments from which it can infer the
dimensions of the missing variable (m/s?).

Having determined the necessary arguments, COPER goes on to discover the exact functional relationship by
searching the space of polynomial functions. Any function (fulfilling some formal conditions) can be
approximated to arbitrary accuracy by a polynomial. However, alternative sets of arguments can be used for the
functional relationship, and if the wrong set is chosen this may lead to an artificially complex form. For
example, suppose area (m?), time (s) and mass (kg) are the arguments. Even though complete they may result
in an overly complex polynomial, for it may be necessary to approximate a square root to derive distance (m).
Consequently after searching polynomials up to a certain complexity the system selects alternative bases and
tries those instead. If none gives a satisfactory result (ie a good approximation), each base is reconsidered using
more complex polynomials.

KNOWLEDGE-INTENSIVE LEARNING: EXPLANATION BASED

It is often argued that an explanation-driven process is essential for reasonable generalization. Correlations
derived purely from empirical observations are much less convincing than a theory which explains them.
Explanation-based generalization methods take a single example and deduce a general rule by relating it to an
existing theory. They do not learn the theory. Indeed, since the general rule is already implicit in the theory,
they learn nothing new. What they do is use examples to guide the operationalization of knowledge already
implicitly known, so that it can henceforth be employed more efficiently. The knowledge operationalized
pertains to the original example, and probably to many others.

The earliest example of explanation-based learning is LEX-I, which learns problem-solving heuristics in the
domain of symbolic integration. It starts with a set of operators for performing integration, corresponding to a
table of integrals and a set of techniques for integration (eg integrating by parts). With each operator are
specified preconditions which indicate when it can validly be applied. Solving a problem consists of applying a
series of operators to derive an equivalent expression containing no integrals. The heuristics that LEX leamns
indicate when it is useful to apply the operator to solve an integration problem. Given an example expression to
integrate, LEX embarks on an extensive search to obtain an appropriate sequence of operators. It then traces the
example back through the sequence, at each stage using the preconditions to generalize the expression as much
as possible consistent with that operator still being applicable. The result is an integration sequence for a more
general expression than the original example. Finally, the operators used are stored along with the generalized
expression to which they apply, so that they can be quickly chosen if in future a matching expression is
encountered.

Figure 7 illustrates explanation-based learning in a blocks world (Mitchell et al, 1986). The goal concept is
safe-to-stack, where

it is safe to stack object x on object y if y is not fragile or x is lighter than y,

An example is given which says that it is safe to stack a particular box (whose color, density, volume are given
as attributes) on a particular endtable. According to the domain theory, which is known in advance, endtables
have a weight of 5 and can be deduced to be fragile. Moreover, the theory shows how to calculate weight from
volume and volume, and how lighter is defined. The goal concept cannot be applied directly because fragile
and lighter are not “‘operational’’ concepts; that is, they are not given directly but must be derived from the
attributes of the objects through a proof procedure. Once a proof has been found for this particular example,
however, the concepts involved can be generalized to produce the rule

it is safe to stack object x on an endtable provided its volume times its density does not exceed 5.

Notice that the rule suppresses irrelevant details of the example (box, color) and identifies the relevant
constraints on the other attributes (weight, density). It can be used to test rapidly whether objects are stackable



SO0 < —0

Goal concept safe-to-stack(x, y)

Training example on(object1, object2)
isa(object1, box)
color(objectt, red)
volume(objecti, 1)
density(object1, 0.1)
isa(object2, endtable)
color(object2, blue)

Concepts operational ' non-operational

volume fragile
color lighter
density safe-fo-stack
less weight

Domain theory safe-to-stack(x, y) <=> not(fragile(y)) or lighter(x, y)
volume(x, v) & density(x,d) —> weight(x, v*d)

weight(x, v1) & weight(y, v2) & less(vi,v2) —> lighter(x,y)

isa(x, endtable) —> weight(x, 5)
less(0.1, 5)

QOooOocood®0

Explanation tree safe-to-stack(object1, object2)

lighter(object!, object2)

[ I 1
weight(objectt, 0.1)  less(0.1, 5) weight(object2, 5)

volume(objectt, 1)
density(object1, 0.1)

Operational rule  volume(x, v) &
density(x, d) &
less(vd, 5) &
isa(y, endtable) —> safe-to-stack(x, y)

Figure 7 Explanation-based generalization
(adapted from Mitchell et al, 1987)

isa(object2, endtable)




on endtables.

Explanation-based generalization is a two-step process, first creating an explanation that distinguishes the
relevant features of the examples from the irrelevant ones; and then analyzing it to determine the minimum
constraints that are sufficient for the explanation to apply in general. Because the explanation is created for the
given training example, it does not necessarily explain every possible example of the goal concept. The final
concept is typically a specialization of the goal concept rather than a direct re-expression of it.

A number of extensions to the view of explanation-based leamning presented here have been identified (DeJong
and Mooney, 1986). First, the proof on which generalization is based need not be discovered by the unaided
system; any hints which a teacher might be able to provide can be taken into account, giving the system the
character of an apprentice. Second, concept learning often involves specialization as well as generalization, and
the explanation-based approach can be used for this too. Third, in more complex domains it becomes necessary
to consider how predicates might be generalized; otherwise spurious conditions could become embedded in the
generalized rule. Finally, the method described operates only on attributes and should be extended to structured
objects.

Explanation-based learning usually presumes the existence of a strong domain theory in which proofs can be
constructed that show why a particular example is valid. Some experiments have been reported with a kind of
explanation-based learning supported by a very weak theory (Pazzani, 1987a). The domam chosen is physical
causality for everyday events, and rules include

if an action on an object always precedes a state change for the object, then it may cause the state change;

if two similar actions performed on an object by different actors have different results, the differing
features of the actors may be responsible for the different results.

Such rules are used to construct “‘explanations’” for example events; competing explanations are resolved by a
preference ordering on the rules. The explanation is used to choose which features of the events should be held
accountable for their classifications. Of course, subsequent examples may contradict the reasoning, in which
case an alternative explanation is constructed using lower-priority rules.

KNOWLEDGE-INTENSIVE LEARNING: DISCOVERY BASED

Explanation-based learning only addresses part of the objections to similarity-based learning which were raised
earlier. Isolated attempts have been made to meet what is perhaps the major shortcoming, that examples are
lifted out of the world, cleaned up, and presented to the system by a teacher who makes all the important
decisions about when to create new concepts. Still the most impressive are the AM and EURISKO systems of
Lenat (Lenat, 1978, 1983; see in particular Lenat & Brown, 1984) which work on their own to discover
interesting concepts in elementary mathematics and interesting heuristics. However, research in this area is quite
immature and does not yet form a foundation for practical KA techniques.

TEACHING REQUIREMENTS

A concept learning system’s practical utility obviously depends critically on its teaching requirements. Teaching
differs from programming in that a teacher does not use a formal model of the learner whereas a programmer
normally expects to know exactly how his instructions are going to be interpreted. In other words, a teacher
adopts the intentional stance while a programmer adopts the design stance (Dennett, 1981). Ideally, therefore,
to be a good teacher one need know nothing about the internal structure of the leamer, mor about the
representation it uses for concepts.

Moreover, experts who use concept learning for knowledge acquisition are unlikely to have a clear analytical
understanding of the task domain — otherwise more explicit methods of knowledge transfer will probably prove
more appropriate. In general, people find it difficult to translate their own expertise into explicit descriptions.
Consequently concept learning systems should be able to work with the kind of examples that a teacher finds it
natural to provide, ordered in a way that is natural to him.



The teaching requirements and conditions under which leaming is to occur provide a useful dimension for
classifying learning mechanisms. Anything that is leamed must be communicated through the expert- or user-
machine interface. For example:

® How cooperative/skillful is the teacher? This dimension ranges from no teacher at all (input coming raw
from the environment) through a naive user, a domain expert, to a teacher who is prepared to program in a
conventional programming language and thereby circumvent the need for learning. Must the teacher show
all working, give ‘‘near-miss’’ examples, teach simple concepts before complex ones, and so on (Witten &
MacDonald, 1987)?

¢ How reliable are the examples? The examples provided may be noisy or exact. Much work in concept
learning assumes exact data so that structural regularities can be learned without the problems of statistical
detection.

o Is learning done incrementally or retrospectively? It may be that the current description must be
augmented as each example is encountered; alternatively it might be possible to process all examples
together. Batch operation is infeasible for systems which attempt sustained learning. In the incremental
case, is the final concept supposed to be independent of the order of examples?

o How much knowledge must the system have already? There is an oft-quoted aphorism that in order to
learn something, you must nearly know it already. The amount of knowledge that a system already
possesses about the problem domain critically affects the kind of things it can be expected to leamn. Even
similarity-based techniques embody substantial a priori knowledge in the form of languages in which
examples and concepts are expressed.

Table 1 provides some indication of the teaching requirements for each method discussed.

Formal aspects

A basic theoretical distinction has been shown between presenting positive examples only, presenting both
positive and negative examples, and allowing the learning system to choose examples itself and have them
classified by an informant. In the first case, it is assumed that all examples are included eventually. In the
second, it is assumed that every member of some universe which contains all possible descriptions is shown -
eventually; this allows an informant to be simulated by simply waiting until a selected example occurs in the
presentation sequence. Under these conditions, Gold (1967) proved formally what one expects intuitively,
namely that the second and third methods are more powerful than the first. They permit primitive recursive
languages, which include the context sensitive, context free, and regular languages, to be learned eventually,
whereas with positive presentations only, the inclusion of even one infinite language in the set of potential
concepts can destroy leamnability.

There is a curious theoretical result which relates to the sequence of examples presented. Gold (1967) showed
that descriptions unlearnable from positive and negative examples can be learned under a special condition: the
presentation sequence must be sufficiently regular. Moreover, positive examples alone suffice! For instance,
descriptions from the class of recursively enumerable languages (which include the primitive recursive ones
mentioned above, and more besides) are not normally identifiable even from positive and negative examples, nor
indeed using a helpful informant who is prepared to classify arbitrary examples. But a suitable, highly
contrived, presentation sequence of positive examples can render such descriptions learnable. In essence the
learner can identify the algorithm used to select the examples, thereby identifying the set from which they are
drawn. Here the importance of the teacher’s selected example sequence is clearly reflected at the theoretical
level. A good sequence of examples does more than speed the search, it makes learnable the otherwise
unleamnable.

Felicity conditions

A skilled teacher will select illuminating examples himself and thereby simplify the learner’s task. The benefits
of carefully constructed examples were appreciated in the earliest research efforts in concept learning. Winston
(1975) showed how “‘near misses’’ — constructs which differ in just one crucial respect from examples of a
concept being taught — could radically reduce the search required for generalization. Confident that its teacher
is selecting examples helpfully, a leaming system can assume that any difference between an example being
shown and its nascent concept is in fact a critical feature.



The notion of a sympathetic teacher has been formalized in terms of *‘felicity conditions™, constraints imposed
on or satisfied by a teacher that make leamning better than from random examples (Van Lehn, 1983). One
obvious condition is that the teacher should classify examples correctly, and not (intentionally or unintentionally)
mislead the student. Another is that if the absence of something is important, the teacher should point it out
explicitly. If in the classic example of the concept of “‘arch’ it is necessary that a gap be left between the
pillars, the gap should be explicitly labeled in examples. More generally, the teacher should show all work and
avoid glossing over intermediate results. Examples should not by coincidence include features that might
mislead the leamner. Finally, the teacher should introduce one essentially new feature per lesson and not try to
teach multiple differences at once — a similar condition to Winston’s *‘near miss”* approach.

Intermediate results, and other implicit parts of examples, are difficult for a system to learn since they
necessarily involve a large search. The system must consider everything that might be absent, and the numerous
relationships it may have with other parts of the description. Andreae’s (1984a, 1984b) “justified
generalization” addresses this problem by using the amount of justification associated with a conjecture to
determine which of three different levels of search to undertake. When the evidence is sufficiently strong, it
will expend considerable resources seeking implicit relationships between parts of a description.

Although it does not increase formal learning power, the possibility of a system constructing its own examples
and having them classified by an informant has considerable potential to speed up learning and reduce
dependence on the skill of the teacher. This potential can only be realized if the system is able to synthesize
“crucial examples” which discriminate effectively between alternative hypotheses consistent with the
information seen so far. This ability seems to be one of the chief distinguishing characteristics of people who
are good leamners. To take the generation of examples one step further, if there is an automatic way of
classifying examples as positive or negative, a system can attempt to leam autonomously through the paradigm
of ““learning by discovery’’.

CONCLUSION

Many present applications of concept learning techniques to knowledge acquisition for expert systems fall into
the area of learning classification rules. For example, Carter & Catlett (1987) describe how a training set of 350
applications for credit cards, each classified as accepted or rejected, can be processed by ID3 into a decision tree
which classifies around 80% of test cases ““correctly”” (ie according to the judgement of a human expert). Since
the input is an attribute vector and the situation is noisy, top-down decision methods such as ID3 and PRISM are
well suited to the task.

The version space technique represents a bottom-up approach. Its advantages are firstly in producing a result
that is independent of the order of presentation of examples, and secondly in dealing with structured domains
that cannot be captured by simple attribute-value vectors. These are offset by the fact that the version space
collapses if the input is noisy. Moreover, the amount of computation does depend on the order of presentation
of examples, and is very high in structured domains.

Hierarchical leamning systems offer considerable promise but again suffer from excessive computational
complexity and have only been applied to toy domains. A major research effort is required to integrate them
with other techniques and use domain knowledge to constrain the search for alternative hypotheses which
account for the examples seen so far.

Methods for function induction are ripe for exploitation in expert systems. Existing systems illustrate how
constrained search can find the simplest input-output relation that accounts for given input-output tuples, and
some (eg NODDY’s) are not limited to purely numerical relationships. COPER shows how dimensional analysis
can serve to determine the relevant arguments to functions, and how alternative bases can be searched to find
economical expression of polynomial functions. Whether the same idea can be applied to more generalized
typing and dimensional constraints is at present an open question.

Explanation-based generalization seems an attractive component for any knowledge-based system. Expert
systems can be viewed as knowledge-intensive programs as opposed to domain-independent general-purpose
problem solvers. Much work is required to build and debug the knowledge base of an expert system. This may
take the form of extracting and operationalizing appropriate knowledge from a general theory. If so, an



alternative is to define the general knowledge needed for a problem-solver, but this is bound to be incfficient
because it must search extensively for solutions. Explanation-based learning is able to operationalize just the
knowledge needed to process typical examples (Pazzani, 1987b). This paradigm offers some promise for
emulating the ability to learn from cases supplied by users, the hallmark of human expert behavior.

Finally, there are many opportunities for combining the various different learning methods. At the simplest, one
can imagine a set of independent ‘‘learning experts™’, all receiving the same data, and reporting if and when
they discover interesting structure. More interesting is the integration of different learning paradigms. Pazzani
(1987a) describes an early experiment in which

¢ if an existing schema accounts for an event, it is indexed in memory by features which elaborate on that
schema;

e otherwise, if existing schemata can be combined to explain it, a new schema is constructed using
explanation-based learning;

e otherwise, if there are several similar examples, a new schema is created by similarity-based methods;

o otherwise, the event is simply added to memory.

Although this research is in a very early stage, it illustrates how different mechanisms can be brought into play
depending on the knowledge available. Only in this way can we expect to build systems capable of sustained
learning, continually expanding their knowledge base, drawing new lessons and insights from every example
they encounter, the way real experts do.
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