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Abstract

A cycle double cover (CDC) of a graph is a collection of cycles of the graph with the
property that every edge of the graph is included in exactly two cycles. The Cycle
Double Cover Conjecture, proposed by both Seymour and Szekeres, independently,
states that every bridgeless graph has a CDC.

A small cycle double cover (SCDC) of a simple graph on n vertices is a CDC
with at most n — 1 cycles. The Small Cycle Double Cover Conjecture, due to Bondy,
states that every simple, bridgeless graph has an SCDC.

If a graph has a CDC with certain properties, then its line graph (a simple
graph) has an SCDC. By showing that all complete multipartite graphs have CDCs
with appropriate properties, it is thus proved that the line graphs of all complete

multipartite graphs except K; . (whose line graph has a bridge) have SCDCs.
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Chapter 1

Introduction

1.1 Overview

There are numerous problems in graph theory concerning the covering of the edges
of a graph with paths or cycles. One of the best known problems of this type requires
that each edge of a graph be covered by exactly two cycles; the resulting collection
of cycles is called a cycle double cover (CDC) of the graph. A bridge, or cut-edge, of
a graph cannot be contained in a cycie, and thus for a graph to have a CDC, it must
necessarily be bridgeless. Seymour [29] and Szekeres [30] independently theorized

that this condition is also sufficient, and conjectured the following.

Conjecture 1 (Cycle Double Cover Conjecture) Every bridgeless graph has a

cycle double cover.

A natural extension of the CDC Conjecture arises from attempts to find CDCs
with the smallest possible number of cycles. The number of cycles in a CDC of a
graph with multiple edges or loops cannot be related to the number of vertices in
that graph because the number of edges of that graph cannot be given in terms of
the number of vertices. For example, a graph on two vertices with m > 2 edges
between them has a CDC with no fewer than m cycles. However, because a vertex of
degree d requires d cycles to cover all of its incident edges twice, and since a simple

graph on n vertices has maximum degree at most n — 1, a general lower bound on



the number of cycles in a CDC of a simple graph is n — 1. Whether this value of
n — 1 is also an upper bound on the minimum number of cycles required to cover a
simple graph is yet to be determined. This counting of cycles in a CDC gives rise
to the notion of a small cycle double cover (SCDC), a CDC of a simple graph on n
vertices which contains at most n —1 cycles (see [4]). As with CDCs, any graph with

an SCDC must be bridgeless. Bondy [4] thus proposes the following.

Conjecture 2 (Small Cycle Double Cover Conjecture) Fuvery simple, bridge-

less graph has a small cycle double cover.

Various types of graphs which satisfy the SCDC Conjecture are mentioned in
the following chapter, while the remainder of this thesis is devoted to proving the
SCDC Conjecture for line graphs of complete multipartite graphs. In Chapter 3,
lemmas developed in [24] which prove the existence of an SCDC of a line graph,
L(G), when a CDC of the graph, G, has certain properties, are proved. Subsequent
chapters then show that there exist CDCs of complete multipartite graphs possessing
these properties. A number of technical results are presented in Chapter 4, including
proofs of the existence of CDCs$ with the required properties for specific classes of
graphs. Finally, the main result is proved in Chapter 5. This result shows that the

line graph of any complete multipartite graph (excluding K3 2) has an SCDC.

1.2 Notation and Terminology

A graph, G, consists of a set of vertices, V(G), and a collection of edges, E(G),
where each edge is an unordered pair of vertices. For an edge e = {u,v}, u,v € G,

we write e = uv and say that u and v are the endpointsof e. If e € E(G) and e = uv,



then u and v are adjacent, and are joined by edge e. As well, e is incident with u
and v. Similarly, if e, f € E(G) and e and f have a common endpoint, then e and f
are adjacent. The neighbour set of a vertex v € V(G), denoted N(v), consists of all
vertices in V(&) which are adjacent to v.

For a vertex v € V(G), the degree of v, denoted d(v), is simply the number of
edges incident with v. A graph is even if each of its vertices has even degree, and is
odd if each of its vertices has odd degree. A graph is k-regular if each of its vertices
has degree k. If a graph is 3-regular, we also say it is cubic.

A loop is an edge whose two endpoints coincide, and a multiple edge in a graph
occurs when two vertices are joined by more than one edge. A simple graph is a
graph that has no loops and no multiple edges, whereas a multigraph is a graph that
may contain loops or multiple edges. From now on, the term graph will always refer
to a simple graph.

Let G be a graph with edge set E(G) = {e1,e2,..-,en}. The line graph of G,
denoted L(G), is a graph with vertices V(G) = {e1, €2, . .., €r}, Where e;e; € E(L(G))
if and only if e; and e; are adjacent in G.

A subgraph, H, of a graph, G, is a graph with a vertex set V(H) C V(G), and
an edge set E(H) C E(G), such that if an edge, e, is in E(H), then both endpoints
of e are in V(H). For a set S C V(G), G[S] is the subgraph induced by S, and
consists of the vertices in S and every edge of G whose two endpoints are vertices in
S. Subgraphs Hi, H,,...,H, of G partition the edge set of G if every edge of G is
in exactly one of the subgraphs.

For a finite set, X, we use |X| to denote the number of elements in X, and call

|X| the cardinality, or size, of X.
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The complete graph of n vertices, K,, is a graph where every pair of vertices is
Joined by an edge. A cligue of a graph, G, is a subgraph of G that is a complete
graph.

In a graph, G, a subset S C V(G) is independent if and only if G[S] has no edges.
For integers m,n > 1, K., , denotes the complete bipartite graph, a graph whose
vertex set is partitioned into two nonempty, independent sets, X and Y, called the
parts of K, n, with [X| = m and |Y| = n, where every vertex in X is adjacent to
every vertexin Y. Similarly, a complete multipartite, or p-partite graph, p > 2, has a
vertex set that is partitioned into p nonempty, independent sets, or parts, such that
any two vertices from different parts are joined by an edge.

A path in a simple graph is a sequence of distinct vertices, wvov; ... vr, where
vertices v;—; and v; are joined by an edge. A cycle is similar to a path, except that
its first vertex is the same as its last vertex. It should be noted that paths and
cycles can be considered to be sequences of vertices and edges within a graph, or to
be graphs, themselves. The length of a path or of a cycle is the number of edges it
contains. The term k-cycle refers to a cycle of length k. A 2-cycle (possible only in
multigraphs) is also called a digon.

An edge of a graph is covered by a path or by a cycle if the path or cycle contains
that edge.

A path double cover (PDC) is a collection of paths of a graph such that each edge
of the graph is covered exactly twice. A perfect path double cover (PPDC) is a PDC
where every vertex occurs twice as an endpoint of a path (and hence, the number of
paths is equal to the number of vertices).

A cycle decomposition of a graph, G, is a collection of cycles in G such that every



edge of G lies in exactly one of the cycles.

Let ¢ = vovy...v;...v;...v:v9 be a cycle in a graph, G. The edge e = v;v; is
called a chord of c if and only if v; and v; are not adjacent in ¢ but are adjacent
in G. The cycle is said to be chordless if it has no chords. Let C be a collection of
cycles in a graph, G. Then we define 8, to be the number of cycles in C that contain
exactly n chords. Let H be a subgraph of G and suppose c is a cycle in H. Then ¢
is also a cycle in G, and we define ck(c) to be the number of chords of ¢ when ¢ is
considered as a cycle of G. If Cy is a collection of cycles in H, we denote by ck(Cx),
the total number of chords of the cycles of Cyr when these cycles are considered on
the subgraph G[V(H)]. We define the function v(Cx) to be v(Cx) = |Cx| + ch(Csx).

A graph is connected if there is a path between any two of its vertices. A cut-
edge or cut-vertez of a connected graph, G, is an edge or vertex, respectively, whose
deletion results in a graph that is no longer connected. An edge cut or vertez cut of
G is a subset E' C E(G) or V' C V(G), respectively, such that G\ E’, or G\V' is
not connected. A graph is thus k-edge-connected or k-connected, respectively, if the
size of its smallest edge cut or vertex cut is at least £+ 1. A bridge in a graph is a
cut-edge and so a graph is bridgeless if it has no cut-edges.

For any terms not defined here, see [5].



Chapter 2

CDCs and SCDCs

In 1736, in what is considered to be the first paper in graph theory, Euler proved that
if each edge of a connected multigraph can be covered exactly once by a sequence
of vertices and edges, starting and ending on the same vertex, and passing through
adjacent edges (a closed tour, or Euler tour), then the multigraph is necessarily even
[8]. Although Euler also stated the converse, it was not until over a century later,

in 1873, that Hierholzer [15] published a proof of the fact that any even, connected
multigraph has an Euler tour. Further properties of multigraphs with Euler tours,
called eulerian multigraphs, were investigated by Veblen [33], who characterized these
multigraphs in terms of cycle decompositions. It thus follows that for a connected
multigraph, M, the following are equivalent:

1. M is eulerian.

2. M is even.

3. M has a cycle decomposition.

A proof of this equivalence can be found in [11].

Because every cycle through a vertex requires two edges incident with that vertex,
no graph with vertices of odd degree can be decomposed into cycles. However, if
every edge of a graph, G, is replaced by a digon, then the resulting multigraph, G',
has only vertices of even degree. Thus G’ has a cycle decomposition, where some

cycles may have length two. A cycle of length two in G, a digon, corresponds to an

edge rather than to a cycle in G. However, other cycles in G’ correspond to cycles

6



in G, and so if G’ has a cycle decomposition with no cycles of length two, then this
same collection of cycles, considered as cycles of G, forms a cycle double cover (CDC)
of G. Therefore, a CDC generalizes the concept of cycle decomposition to graphs
containing vertices of odd degree.

There is also a connection between CDCs of graphs and graph embeddings. A
multigraph is embeddable on a surface if it can be drawn on that surface so that none
of its edges intersect except at their ends. A strong embedding of a multigraph on a
surface is an embedding where the boundary of each face is a cycle. If a multigraph
has a strong embedding, then it also has a CDC composed of cycles corresponding to
its face boundaries. Therefore, the truth of the CDC Conjecture could be deduced

if the following were true.

Conjecture 3 (Strong Embedding Conjecture [16]) Every 2-connected multi-

graph has a strong embedding (on some surface).

The CDC Conjecture has been studied extensively by numerous authors. One
approach to solving the problem has been an attempt to describe the characteristics
of a minimum counterexample to the conjecture (a counterexample with the smallest
number of vertices, and subject to this condition, the smallest number of edges), with
the hope that it will then be possible to show that no such counterexample exists.
Let the multigraph, G, be a minimum counterexample to the CDC Conjecture. By
minimality, G is connected and thus has no vertices of degree zero, and since G is
bridgeless, it has no vertices of degree one. Suppose G has a vertex, v, of degree two,
and let its two adjacent vertices be v and w. Let G’ be the multigraph obtained from

G by deleting v (thus eliminating edges uv and vw) and adding an edge uw (there



may already be one or more of these edges). By the minimality of G, the multigraph
G’ has a CDC with the new edge uw contained in two cycles. A CDC of G can be
obtained from the CDC of G’ simply by modifying the cycles passing through the
new edge, so that instead, they pass through edges uv and vw. Consequently, if G is
a minimum counterexample to the CDC Conjecture, it must have minimum degree
at least three.

Suppose now that G has a vertex, v, of degree greater than three. Fleischner
[10] has proved that there are two edges, uv and vw, incident to v such that the
multigraph, G’, obtained by the deletion of these two edges and the addition of an
edge, uw, is still bridgéless. By minimality, G has a CDC, and thus the new edge
uw 1s included in two cgcles. Therefore, a CDC of G exists and is obtained from
the CDC of G’ by altering the cycles passing through uw so that they pass through
uv and vw instead. The minimum counterexample to the CDC Conjecture must
therefore be 3-regular.

Finally, G has no edge cut of size two. To see this, suppose that G does have
an edge cut of size two. Contracting one of the edges in this edge cut results in a
bridgeless multigraph, G', with fewer edges than G. By the minimality of G, the
multigraph G’ has a CDC which can be modified to produce a CDC of G [16].

We can also see that G is not 3-edge-colourable. If it were, then each colour class
would be a perfect matching, and each of the three pairs of perfect matchings would
form a 2-regular, spanning subgraph of G. Each 2-regular subgraph is a collection
of cycles, so the union of these subgraphs would be a CDC of the graph. Another
property of the minimum counterexample, G, is that it must be cyclically—tl—edge-

connected [16], meaning that if V(G) is partitioned into sets S and V(G)\S so that



G[S] and G[V(G)\S] each contain a cycle, then there are at least four edges in G
which have one endpoint in S and one endpoint in V(G)\S.

A minimum counterexample to the CDC Conjecture, a multigraph which is 3-
regular, cyclically-4-edge-connected, and is not 3-edge-colourable, is called a snark
(see [12]). Goddyn [13] shows that a minimum counterexample to the CDC Conjec-
ture has girth (length of the shortest cycle in the graph) at least ten, and it has been

been conjectured that no snarks of this girth exist [18].

The CDC Conjecture has also been proved for various classes of multigraphs.
It has been shown that it holds for multigraphs with Hamilton paths [32] and for
4-edge-connected graphs [17].

Alspach, Goddyn and Zhang [1] have addressed the more general problem of
covering the edges of a weighted multigraph with cycles, where the weight of an
edge corresponds to the number of times that the edge must be covered. When all
edges are assigned weight two, the problem is reduced to that of finding a CDC of
the multigraph. These authors show that a 2-edge-connected multigraph has a CDC
provided that it has no subgraph homeomorphic with the Petersen graph. In other
words, a 2-edge-connected multigraph has a CDC if none of its subgraphs can be

transformed into the Petersen graph through a series of edge contractions.

As previously observed, the Small Cycle Double Cover (SCDC) Conjecture can
be viewed as a strengthening of the CDC Conjecture that restricts the number of
cycles. However, it can also be considered to be a generalization of the following

conjecture due to Hajés (see Lovisz [23]).
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Conjecture 4 (Hajés) If G is a simple, even graph on n vertices, then G can be

decomposed into |[(n — 1)/2)] cycles.

Originally, Hajés conjectured that the number of cycles should be at most /2,
but Dean [7] shows that the value [(n —1)/2)] is equivalent.

If Hajés’ Conjecture holds, then every eulerian graph has an SCDC obtained by
taking two copies of the cycles used in its decomposition. As Hajés’ Conjecture is
true for even graphs with maximum degree four ([9], [14]) and for planar graphs
([26], [31]), these graphs have SCDCs. Using the fact that Hajés’ Conjecture holds
for planar graphs, Seyffarth [28] proves that every 4-connected planar graph has an
SCDC.

Other classes of graphs have also been shown to satisfy the SCDC Conjecture.
Bondy [4] describes how to construct SCDCs of complete graphs, K,, n > 3, and
complete bipartite graphs, Kmn, m,n > 2. The SCDCs of the complete graphs
consist of n — 1 Hamilton cycles, while those of the complete bipartite graphs consist
of max{m,n} cycles, each of length min{2m,2n} [4].

Bondy verifies that the SCDC Conjecture holds for squares of trees [3], and also
studies the conjecture as it applies to trigraphs (see [3]). A trigraph is defined to
be a connected graph, G, with a spanning tree, T', such that the addition to T of
any edge of G not already in T results in a triangle. The tree T is called a tritree
of G. Bondy shows that every simple trigraph has an SCDC if and only if every
simple, bridgeless trigraph also has a perfect path double cover (PPDC) [3]. Li [22]
has proved that every simple graph admits a PPDC, and so it follows that every

simple, bridgeless trigraph has an SCDC.
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Bondy and Seyffarth [27] show that a simple triangulation of any surface has an
SCDC.

The verification of the SCDC Conjecture has been approached from the point
of view of finding a minimum counterexample, as has been done with the CDC
Conjecture. However, unlike the CDC Conjecture, it is not sufficient to prove the
SCDC Conjecture for 3-regular graphs, because the reductions used to obtain these 3-
regular graphs may change the simple graphs into graphs with multiple edges. Bondy,
however, has shown [4] that a minimum counterexample to the SCDC Conjecture is 3-
connected and cyclically-4-edge-connected. For 3-regular graphs, Bondy [4] proposes

the following stronger version of the SCDC Conjecture.

Conjecture 5 (Bondy) Let G be a simple, 2-connected, 3-regular graph on n ver-

tices, n > 6. Then G has a cycle double cover, C, such that |C| < n/2.

Lai, Yu, and Zhang [21] prove that if a 2-connected, 3-regular graph on n vertices
has a CDC, it has a CDC with at most n/2 cycles, showing that Conjecture 5 is

equivalent to the CDC Conjecture for 2-connected, 3-regular graphs.

Because of the need to count cycles, it seems that generally, more information
about the structure of a graph is required to prove the existence of an SCDC than to
prove the existence of a CDC. The well-defined structures of complete graphs, com-
plete bipartite graphs, and simple triangulations of surfaces make the construction
of their SCDCs straightforward. Line graphs also have well-defined structures, and
so they are an ideal class of graphs to study with respect to the CDC Conjecture
and the SCDC Conjecture.
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Cai and Corneil prove that if a graph has a CDC, its line graph also has a CDC
[6]- The authors note that any graph can be obtained by contracting cliques in the
line graph of its subdivided graph. This relationship between the graph and its line
graph means that if a bridgeless line graph has a CDC, then every bridgeless graph
has a CDC, and so proving the CDC Conjecture for line graphs is equivalent to
proving the CDC Conjecture [6].

Klimmek [20] proves that every eulerian line graph with n vertices has a cycle
decomposition into |[(n — 1)/2)] cycles, thus verifying Hajés’ Conjecture for such
graphs. By taking two copies of the cycle decomposition, the SCDC Conjecture is
also verified for these graphs. Since a line graph, L(G), is eulerian if and only if the
graph, G, is connected and either even or odd, the line graph of every even graph
and of every odd graph has an SCDC. Additionally, MacGillivray and Seyffarth [24]
prove that if G is a complete graph, a complete bipartite graph, or a planar graph,
and L(G) is bridgeless, then L(G) has an SCDC. We note that of all line graphs of

complete bipartite graphs, only L(Kj ) has a bridge.



Chapter 3

Theory Relating CDCs of Graphs to SCDCs of

Line Graphs

In their paper [24], MacGillivray and Seyffarth prove that line graphs of complete
graphs and of complete bipartite graphs (except K ;) have SCDCs. Our proof that
line graphs of all complete multipartite graphs (except K;2) have SCDCs uses the
techniques that they developed, and so we begin with a review of some of their
results. Lemmas 6, 7, 8, and 9 can all be found in [24].

A transition at a vertex, z, in a graph, G, is a pair of distinct edges {az,zb}
incident with that vertex. Therefore, any cycle which passes through vertex z defines
a transition at z. If C is a CDC of G, then the collection of cycles in C containing
vertex z defines a system of transitions, denoted T'(z), consisting of all the transitions
at z defined by the cycles in the collection. It is clear that for all z € V(G),
IT(2)] = d(=)-

A vertex, z, in a graph, G, corresponds to a clique, K(z), on d(z) vertices, in the
line graph, L(G). If zy € E(G), then in L(G), the cliques K(z) and K(y) intersect
at the vertex zy. Since every complete graph, K,, n > 1, has a perfect path double
cover (PPDC) (see [2]), every clique K(z) in L(G) also has a PPDC, P(z). Thus by
taking all of these PPDCs, we see that the line graph L(G) has a PDC, P.

Let G be a bridgeless graph, C a CDC of G, and P a PDC of the line graph, L(G).
The PDC, P, of L(G) and the CDC, C, of G, are compatible if and only if, for every

13
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vertex £ € V(G), there is a bijection between the transitions in the set T(z) and
the endpoints of the paths in P(z), requiring that every transition, {az, zb} € T'(z),
corresponds to a path in P(z) with endpoints az and zb. Let f. be such a bijection.
We will call

f=: T(z) - P(z)

a compatibility function.

A simple test for compatibility between a CDC of a graph and a PDC of a line
graph is desirable, and with this in mind, we introduce transition multigraphs and
associated multigraphs.

The transition multigraph, Mr(z), of a vertex z € V(G), is the graph on the
vertices of the neighbour set, N(z), with edges {ab : {az,zb} € T'(z)}. Because the
cycles defining the transitions in T'(z) are part of a CDC, each edge incident to z
occurs in two transitions in T'(z). Therefore, M7(z) is 2-regular.

The associated multigraph, Mp(z), of a vertex z € V(G), is also a graph on the
vertices of the set N(z); endpoints vz and uz of a path in P(z) give rise to the edge
vu in the associated multigraph Mp(z). Because P(z) is a PPDC of the clique K(z),

each vertex in the clique is an endpoint of two paths, and thus Mp(z) is 2-regular.

The concepts of transition, compatibility, transition multigraphs, and associated
multigraphs are illustrated using the graph, G, shown in Figure 3.1. The graph has

vertex set V(@) = {u,v,z,y, z}, and edge set E(G) = {uv, uz, uy,uz, vz, zy,z2,yz}.
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Let C consist of the following cycles.

Cl = uvzu
C2 = uzyu
C3 = uyzu
C4 = zyzzx
C5 = uvzzu

It can easily be verified that C is a CDC of G. Vertex v in G has degree two, and
corresponds to clique K(v) in L(G), a graph with vertices uv and vz connected by
an edge which we write as (uv)(vz).

In G, cycle C1 passes through v and defines the transition {uw vz} at ». The

only other cycle in C passing through v is cycle C5, which also defines the transition
{uv,vz} at v. The paths P1 = (uv)(vz) and P2 = (uv)(vz) form a PPDC, P(v), of
K (v) and their endpoints, uv and vz for P1, and uv and vz for P2 correspond to
the transitions at v defined by the cycles C1 and C5.

The transition multigraph of v, Mr(v), consists of two copies of edge uz, one
copy contributed by cycle C1 and the other by cycle C5, and so is a digon. The
associated multigraph of v, Mp(v), also consists of two copies of» edge uz, one copy
contributed by path P1, and the other by path P2.

Cycles C1, C2, C3, and C5 pass through vertex u and define the system of
transitions

T (u) = {{zu, wv}, {yu, uz}, {zu, vy}, {zu,uv}}.
The transition multigraph of u, M7(u), consists of edges zv, yz, zy, and zv, and is

thus a 4-cycle through vertices z, y, 2, and v.
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z y

Figure 3.1: Graph G.

Paths

Pl = (uwv)(uz)(uy)(uz)
P2 = (uz)(uz)(uv)(uy)
P3 = (uz)(uv)(uz)(uy)

P4 (wv)(uy)(uz)(uz)

form a PPDC, P(u), of K(u), and their endpoints uv and uz, uz and uy, uz and uy,
and uv and uz correspond to the transitions in T'(u). Like the transition multigraph
Mr(u), the associated multigraph Mp(u) consists of the 4-cycle through the vertices
z, Yy, 2z, and v.

For K(z), K(y), and K(z), the PPDCs P(z), P(y), and P(z) that follow complete
a PDC of L(G) that is compatible with the CDC, C, of G.

P(z) = {(zv)(zu)(zy)(zz), (zu)(zz)(zv)(zy),
(zv)(z2)(zy)(zv), (zy)(zv)(zu)(zz)}
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P(y) = {(yz)(wu)(v2), (yu)(y2)(yz), (y2) (=) (yu)}
P(2) = {(zu)(zz)(zy), (zz)(2zy)(zu), (zy)(zu)(2z) }

The following lemma shows that we may test for compatibility by examining the

transition multigraphs and associated multigraphs of vertices of a graph.

Lemma 6 Let G be a bridgeless graph, C a cycle double cover of G, and P a path
double cover of the line graph, L(G), consisting of perfect path double covers, P(z),
of the vertez cliques K(z), z € V(G). Then C and P are compatible if and only if,
for each vertezx x € V(G), the transition multigraph, Mz(z), is isomorphic to the

associated multigraph, Mp(z).

Proof: Suppose the CDC, C, and the PDC, P, are compatible. Then for every vertex
v € V(G), there exists a compatibility function f, : T(v) — P(v). For a particular
vertex z € V(G), with a neighbour set N(z) = {y1,¥2,-.-,¥n}, the compatibility

function induces a bijection, g., on the vertices in N(z), where
9z : V(Mz(z)) = V(Mp(z)),

and g(y;) = y:- If the edge yiy; € E(Mr(z)), then {y:z,zy;} € T(z), and so yix
and zy; are endpoints of a path in P(z). Therefore, y:y; € E(Mp(z)). Similarly, if
v:y; € E(Mp(z)), then y;y; € E(Mr(z)), and so the function g is an isomorphism.

To prove the converse, again let z € V(G), and let z have the neighbour set
N(z) = {y1,¥2,---:Yn}. Suppose g is an isomorphism between the multigraphs
My (z) and Mp(z). Then the edge y;y; € E(Mz(z)) if and only if the edge

9=(¥:)9=(y;) € E(Mp(z)).
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Because P(z) is a PPDC of the clique K(z), any permutation in the labelling of the
vertices of K(z) results in a PPDC. Therefore, we can choose labels of the vertices
and thus also determine the labelling in the paths, so that g. is the identity function.
If, for every z, g is the identity function, then for all z € V(G), y:y; € E(Mr(z)) if

and only if y;y; € E(Mp(z)), and thus C and P are compatible.

Now that we have a method for determining the compatibility of a CDC of a
graph and the PDC of its line graph, we will develop a technique for finding an
SCDC of the line graph using our knowledge about compatibility. The following
lemma is not directly applied to this problem but will be used in the proof of the

subsequent lemma.

Lemma 7 If H is a stimple, eulerian graph with k vertices of degree four, and all
other vertices of degree two, then H has a cycle decomposition with at most k + 1

cycles.

Proof: We proceed by induction on k. When & = 0, H is a cycle, and so the
statement is clearly true. Now suppose the result holds for all simple, eulerian
graphs with [ vertices of degree four, 0 < ! < k, £ > 1, whose remaining vertices all
have degree two, and let H be a simple, eulerian graph with & vertices of degree four,
and all other vertices of degree two. Construct an Euler tour of H. The tour passes
through all vertices of degree two once, and all vertices of degree four twice. Because
H is simple, this tour can be described by the sequence of vertices through which it
passes. In such a sequence, there is at least one subsequence, starting and ending

on the same vertex of degree four, but otherwise having no repetition of vertices.
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This subsequence corresponds to a cycle, ¢, in the graph, H, and the removal of its
edges and any isolated vertices results in a simple, eulerian graph, H’, with at most
k — 1 vertices of degree four, and all other vertices of degree two. By the induction
hypothesis, H" has a cycle decomposition with at most (k — 1) + 1 = k cycles; these
cycles, along with the cycle, ¢, give us a cycle decomposition of H with at most k41

cycles.

The next lemma gives us the desired technique for finding an SCDC of a line

graph using compatible CDCs and PDCs.

Lemma 8 Let G be a bridgeless graph, C a cycle double cover of G, and P a path
double cover of the line graph, L(G), consisting of the perfect path double covers,
P(z), of the vertez cliques, K(z),z € V(G). Assume that C and P are compatible.
For each vertez u € V(G), fix a compatibility function f, from T(u) to P(u). Let
C = UgV1...Vy-1V be a cycle in C, and for each i, 0 <i < q—1, let f; = f,,. By the
definition of a compatibility function, fi({vi—1v:,vivit1}) = P;, where P; is a path in
P(vi) with endpoints v;_1v; and v;viy, (subscripts taken modulo q). Then,

(i) E. = U P; is an eulerian subgraph of L(G) with mazimum degree at most four.
Also,

(ii) if for each c € C, D(c) is the set of cycles in a cycle decomposition of E., then

C = Ucec D(c) is a cycle double cover of L(G), and |C| < [C| + ch(C) = v(C).

Proof:
(i) Because P; is a path with endpoints v;_jv; and v;v;4; (subscripts taken modulo

q), an Euler tour of E. can be constructed by joining, successively, all paths P;,
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0 < i < g—1. Therefore E. is eulerian.

Notice that paths P; and P;;; both have the endpoint v;v;y;. Suppose a path
P;, j # 1, 7 # i+ 1, also contains vertex v;v;4;. Then v;viy; is a vertex in K(v;)
and so in G, edge v;v;4; must be incident with vertex v;. This is impossible as the
edge v;v;4+1 has only two endpoints, v; and v;y;. Therefore, v;v;41 is an endpoint of
two paths, P; and P;y;, and is not contained in any other path, and so, in E., we
conclude that for all z, 0 < z < ¢ — 1, vertex v;vi4; has degree two.

Let zy be a vertex in E, that is not an endpoint of a path P;, 0 < 7 < g—1. Then
zy ¢ {vov1,v1v2,...,V4-1V0}, the set of endpoints of all paths P;. We claim that zy
lies in at most two paths P;, 0 < : < ¢— 1. To see this, suppose that zy lies in three
paths, P;, P;, and ka, 0<z.73.k<qg-—1,1, 3, k distinct. Then zv is a vertex in the
cliques K (v;), K(v;), and K(vg), and so, in G, the three distinct vertices v;, v;, and
v, must all be incident to edge zy. This is impossible, hence zy lies in at most two
paths P;,0<{:<¢—1.

If zy lies in one path P, 0 < z < ¢—1, then it has degree two in E,., whereas if it
lies in two such paths, it has degree four in E.. Suppose a vertex zy has degree four
in E, and lies in paths P; and P;,0<:,5 < ¢—1,:%# j. Then z = v; and y = v;, or
z = v; and y = v;. However, zy ¢ {vov1,v1v2,...,v5—1v0} so ¢ # j = 1. Therefore,
v; and v; are not adjacent in the cycle ¢ and so the vertex zy of degree four in E,.
corresponds to a chord in c.

(ii) Because C and P are compatible, there is a one-to-one correspondence between
transitions of the cycles in C and paths in P. Thus, the transitions of a cyclec € C
have a one-to-one correspondence with the paths in E,, and thus, every path in P

lies in exactly one E.. Therefore, if D(c) is the set of cycles in a cycle decomposition
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of E., c € C, then C = .¢¢c D(c) is 2 CDC of L(G).

Since each E. is an eulerian graph with maximum degree four, where each vertex
of degree four corresponds to a chord in the cycle, ¢, then by applying Lemma 7, we
see that E. has a decomposition into at most 1 + ch(c) cycles. There are |C| cycles
in the CDC, and so

ICl < 3_(1+ch(c))

cecC
= [C]| + ch(C)

= v(C).

We have now determined that a graph, G, has a CDC, C, and its line graph,
L(G), has a PDC, P, which are compatible if and only if the associated multigraph
and transition multigraph of each vertex are isomorphic (Lemma 6). We have also
shown that if there is a CDC, C, compatible with a PDC, P, then there is a CDC,
C, of the line graph L(G), with |C| < |C| + ck(C) (Lemma 8).

Because a graph usually has fewer vertices and edges than its line graph, it is
generally easier to directly find results concerning the graph, rather than the line
graph. It would therefore be advantageous if we could describe a few associated
multigraphs that arise naturally, and then attempt to find CDCs whose transition
multigraphs are compatible. The following lemma describes associated multigraphs

arising from cliques.

Lemma 9 (i) The complete graph, Kom, m > 1, has a perfect path double cover

whose associated multigraph consists of m digons.
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(i) The complete graph, Kjm+1, m > 1, has a perfect path double cover whose

associated multigraph consists of one triangle and m — 1 digons.

Proof: Let m > 1 and let V = {vg,v1,-..,v2m—1} be the set of vertices of Kj.

(1) For 0 < 7 < 2m — 1, define the path P; as P; = v;v;41i_1Vit2Viegz . - « Vipm+1Vitm
(subscripts modulo 2m). Each path P; is a Hamilton path of Kj.,, and each edge
VjVjtk, 0 < j,k < 2m — 1, is in exactly one path P;, 0 < ¢ < m — 1, and one path
P,m<1<2m —1. Let P={P;,:0 <i < 2m — 1}. Because P; = P, for
0<:<m-—1,PisaPPDC of K. consisting of two copies of a decomposition into
m Hamilton paths. Therefore, the associated multigraph, Mp (K>, ), consists of m
digons.

(ii) To the graph K5m, add a new vertex, v3,,, and edges connecting this vertex to all
vertices of Kz, to form the graph Kjm4;. In order to construct a PPDC, Q, of this
new graph, the paths P;, 1 <7 < 2m —1 as described in part (i) can be modified by
replacing the edges v;vi;1 by the edges v;vo,, and vonvi4;. Note that the endpoints of
these paths remain the same. Path Py, described in part (i), is changed by adding the
edge vam v to the beginning of the path. Finally, a new path P. = 05,010 . . Vam—_10
is created, and consists of edge v,mv;, which is only covered by P,, and also, those
edges lost when paths P;, 1 < ¢ < 2m —1, were modified. For 1 < < m—1 and for
m+1 <12 < 2m—1, the paths P; contribute a total of m — 1 digons to the associated
multigraph, Mg(K>m41). Path P, has endpoints vz, and vy, path P. has endpoints
v2m and vo, and path P,, has endpoints v,, and vo. Therefore, these paths contribute

the triangle v2mUmvov2m to the associated multigraph, Mo (Kzm41)-



Chapter 4
Preliminary Results

In Lemma 8 in Chapter 3, we saw that if a graph has a CDC, C, which is com-
patible with a PDC of its line graph, then the line graph has an SCDC, C, where
|C| < [Cl + ¢h(C) = v(C). Lemma 9 describes two typical associated multigraphs of
the vertex cliques of the line graph, one occurring when the number of vertices in
the clique is even, the other occurring when the number is odd. These associated
multigraphs are composed of a collection of digons, and a triangle and a collection of
digons, respectively. In Lemma 8, 2lsc in Chapter 3
graph and a PDC of its line graph are compatible if and only if, for each vertex, the
associated multigraph and transition multigraph are isomorphic. In order to prove
that a line graph has an SCDC, all that remains to be shown is that its graph has an
appropriate CDC. This chapter and the one that follows are devoted to proving the
result that line graphs of all complete multipartite graphs except K; ; have SCDCs.
This result is obtained by showing that, for a complete multipartite graph, G (G is
not K;2), G has a CDC, Cg, such that:

1. For each vertex of G, the transition multigraph defined by Cg consists of a
collection of digons or of a triangle and a collection of digons, and

2. 7(Cg) = [Cq| + ch(Cs) < |E(G)|, where |E(G)| is the number of vertices in
L(G).

23
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4.1 Graph Decomposition

In order to prove that a complete multipartite graph, G, has a CDC, Cg, with
appropriate properties, we will often analyze parts of the graph separately. The
following lemma shows the validity of this method, and also shows how the value of

v(Cg) is obtained.

Lemma 10 Let G be a graph with subgraphs Hy,..., H, that partition the edge set
E(G). For each i, 1 < i < n, suppose H; has a cycle double cover, Cg,. Then
Ce = U~ Cx; is a cycle double cover of G. Furthermore, if ¥v(Cx;) < |E(H;)| for all

t, 1 <t < n, with strict inequality for at least one i, then v(Cg) < |E(G)|.
Proof: Since the subgraphs Hy,..., H, partition E(G),

E@G)| = 3 |E(H)|.

=0

Also, because these same subgraphs partition E(G), and because Cg; is the CDC of
H;, 1 < i< n, it follows that Cg, N Cx; = 0 for all ¢ # j. Therefore, Ce = UL, Cr,
is a CDC of G, and [Cg| = X%, |CH|.

We claim that ch(Cg) = %, ch(Cx;). Let c be a cycle in Cy;, and let e be a
chord of ¢. The cycle ¢ is also a cycle in Cg, and still has chord e. Conversely,
suppose that a cycle, ¢, of Cg, through vertices « and v of G, has a chord uv. There
is a unique ¢, 1 < z < n, such that ¢ € Cy;, and so u and v must be vertices in the
subgraph H;. Therefore, uv is a chord in G[V(H;)], the subgraph induced by the
vertices of H;, and so by the definition of the ch function, uv is counted as a chord

in ch(H;). Thus

v(Cs) = ICG|+ch(CG)

———
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= Y (Cal + 3o ch(Car)

=1 =1

= SCal + ch(Ca)]

=1

= i 7(CHi)

=1

S IE(H)| = [E@))-

=1
Therefore, v(Cg) < |E(G)|, and if 4(Cx;) < |E(H;)| for at least one 7, 1 <z < n,
then v(Ce) < |E(G)I.

IN

4.2 Cycle Decomposition

As previously discussed, two copies of a cycle decomposition of a graph form a cycle
double cover of that same graph. The following lemma confirms this property, and

describes the resulting transition multigraphs.

Lemma 11 Let G be an eulerian graph and let C = {c1,¢z,---,¢n} be a cycle de-
composition of G. Then G has a cycle double cover, C’, that consists of two copies
of C. Furthermore, the transition multigraph Mr(v) of each vertez v in the vertez

set V(G) consists of digons.

Proof: Since C is a cycle decomposition, every edge in G is covered exactly once by
acycle ¢, 1 <t < n,inC. Therefore, two copies of C, denoted C’, cover the edges of
G twice, so C' is a CDC of G.

Suppose a cycle ¢ € C passes through the vertex v. Then, ¢ induces a transition

{av,vb}, and so ab is an edge in the transition multigraph, M7(v). Since C’ has two
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copies of c, the transition multigraph, Mr(v), has a second copy of ab, and thus,
Mr(v) has a digon on the vertices a and 4. This fact holds for all cycles in C passing

through v, and thus M7(v) consists of digons.

4.3 CDCGCs of Some Classes of Graphs

The remainder of this chapter is devoted to showing that complete bipartite and
complete 3-partite graphs, as well as certain complete 4-partite graphs have CDCs
with suitable numbers of cycles and chords and appropriate transition multigraphs.
In showing this, not only do we prove that their line graphs have SCDCs, but also
in conjunction with Lemma 10, we can use these graphs in the following chapter
to prove that the line graph of any complete multipartite graph except Kj 2 has an
SCDC.

4.3.1 Bipartite graphs

We start by finding CDCs of complete bipartite graphs with at least two vertices in
each part. Three separate treatments are required and are determined by the parity

of the parts.

Lemma 12 If G is a complete bipartite graph with parts X and Y, where both | X|
and |Y'| are even, then G has a decomposition, Cg, consisting of chordless cycles of

length four. Furthermore, v(Cg) = |E(G)|/4.
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Proof: Let X = {zo,z1,...,Zm-1} and let Y = {yo,y1,---,Yn-1}- For 0 < i <

(m—-2)/2and 0< 57 < (n—2)/2, let
Cij = Z2i¥2i%2i41Y2i+1%2i-
We claim that
C={C;|0<:<(m—2)/2,0 <j < (n—2)/2}
is a cycle decomposition of G.

Let z,y5 € E(G). Then for some integers ¢ and j, where a = 2: or a = 2+ 1, and
b = 2j or b =25 + 1, the edge, z,ys, is in the cycle Z2iY2;T2i+1Y2j+1%2:- Lherefore,
every edge z,y¥; is in at least one cycle. The number of cycles in Cg is ((m — 2)/2 +
1)((n —2)/2 + 1) = mn/4, and thus the number of edges covered by the 4-cycles is
4(mn/4) = mn = |E(G)|. Therefore, as each edge of G is in at least one cycle, and
as the number of edges in the graph is equal to the number of edges in the 4-cycles,
each edge is in exactly one 4-cycle.

The vertices in each 4-cycle of C¢ alternate between the two parts of G. Therefore,
non-consecutive vertices in these cycles are in the same part, and so are non-adjacent
in G. Thus, the 4-cycles in Cg are cﬁordless. Consequently, v(Ce) = [Ce| = |E(G)|/4.

Notice that in the construction just described, the vertices in each part can easily
be paired, with X having pairs {zo, z1}, {z2,3},.--,{Zm-2,Zm-1} and Y having
pairs {yo,¥1},{¥2:¥3},--+ s {¥n-2,¥n-1}. These pairs now define the cycles of the
cycle decomposition: cycle C;; has, as its vertex set, the :** pair of X and the j**

pair of Y. This pairing will be relevant in later applications of this lemma.
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By applying Lemma 11 to this result, we immediately get:

Corollary 13 If G is a complete bipartite graph with parts X and Y, where both
[X]| and Y| are even, then G has a cycle double cover, Cg, composed of chordless
4-cycles, such that v(Ce) < |E(G)|. Furthermore, for each v € V(QG), the transition
multigraph Mt (v) consists of d(v)/2 digons.

Now, by applying Lemmas 6, 8, and 9, we get:

Corollary 14 If G is a complete bipartite graph with parts X and Y, where both

| X| and |Y| are even, then the line graph, L(G), has a small cycle double cover.

The following lemma uses a construction similar to that of Lemma 12, but with

a slight modification necessary to compensate for the part of odd size.

Lemma 15 If G is a complete bipartite graph with partitions X and Y, where [X]|
is odd and at least three, and |Y| is even, then G has a cycle double cover, Cg,
consisting of chordless cycles of length four, with v(Cg) < |E(G)|. Furthermore, for
each z € X, Mr(z) consists of [Y'|/2 digons, and for each y € Y, Mr(y) consists of

one triangle and (| X| — 3)/2 digons.

Proof: Let X = {zo,Z1,..-,ZTm-1}, let X' = X\{zm-1,Zm-2,Zm-3}, and let Y =

{¥0,¥15---+Yn—1}- Let Cs consist of the following cycles.
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Cycle Type Cycles Number of Cycles
C1 Y2;Tm—-1Y2i+1Tm-2Y2;, 0 < .7 < ‘n—;—z 12"
C1 Y2;Tm—-2Y2i+1Tm-3Y25, 0 S .7 S 2:2:2 %
C1l Y2iTm—-3Y2;+1Tm-1Y27, 0<s< % %
S 0<igmes
C2 (2 copies) T2iY2;T2i+1Y25+1T 255 2("‘7—3)(%)
0<j<22

We see that for each j, 0 < j < (n — 2)/2, the edges Tm_1¥2; and Tm_1Y2;41 lie
in exactly two of the C1 cycles. Similarly, for each j, 0 < j < (n — 2)/2, the edges
Tm—2Y2j, Tm-2Y2j+1, Tm—-3Y2j, ald Tm-3Y2;4+1 each lie in exactly two of the C1 cycles.
Therefore, all edges incident with zp—1, Tm—2, and z,,_3 are covered twice. The C2
cycles form a cycle decomposition of the complete bipartite graph with parts X’ and
Y (see Lemma 12), and thus all edges incident with vertices of X’ are covered twice
by the copies of the C2 cycles. Because G is a bipartite graph, every edge of G is
incident with some vertex in X, and so, Cg covers all edges of G twice.

The CDC Cg consists only of 4-cycles; since G is bipartite, these 4-cycles must
be chordless. Therefore,

v(Cs) = 2(mn/4) < mn = |E(G)|.

The transition multigraph for each vertex in X consists of two copies of edges

Y2iY2i+1, 0 < 7 £ (n — 2)/2, and thus consists of n/2 = [Y|/2 digons. The tran-
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sition multigraph of each vertex in the set Y has edges z,,—1Tm—2, Zm—2Tm—3, and
Zm-3Tm-1, resulting from the C1 cycles, and two of each edge z2;72;41,0 <t < (m—
5)/2, resulting from the two copies of the C2 cycles. These transition multigraphs,
therefore, consist of the triangle zm—1Zm—2Zm—-3Zm-1 and (m — 3)/2 = (|X| — 3)/2

digons.

The next corollary follows immediately from the previous lemma and Lemmas 6,

8, and 9.

Corollary 16 If G is a complete bipartite graph with parts X and Y, where | X| is
odd and at least three, and Y| is even, then the line graph L(G) has a small cycle

= LOULIY = k4

double cover.

As part of Theorem 10 in MacGillivray and Seyffarth [24], the following is proved.

Lemma 17 If G is a complete bipartite graph with parts X and Y, where both | X|
and |Y| are odd and at least three, then G has a cycle double cover, Cg, consisting
of one cycle of length siz and (mn — 3)/2 cycles of length four, with Ce < |E(G)|.
Furthermore, for each vertez v € V(G), the transition multigraph Mr(v) consists of

one triangle and (d(v) — 3)/2 digons.

Proof: Let X = {z¢,z1,...,Zm~-1}, X' = {Zm-3,Zm-2,Zm-1}, and X" = X\ X".
Similarly, let Y = {yo,¥1,---,Yn-1}, Y’ = {¥n-3,¥n-2,¥n-1}, and Y = Y\Y". We
will define four subgraphs, H, J;, J2, and L, as follows. Let H be the subgraph

induced by the vertices of X’ and Y”, let J; be the subgraph induced by the vertices
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in X’ and Y”, let J; be the subgraph induced by the vertices in X” and Y, and let
L be the subgraph induced by the vertices in X” and Y”. The subgraphs are all
complete bipartite graphs, and together, they partition the edge set of G.

The subgraph H is simply K33. Let Cx be composed of the following cycles.

Cycle Type Cycles
C1l Tm-3Yn-3Tm—2Yn—2Tm-3
C1 Trm—2Yn—2Tm—-1Yn—-1Tm-2
C1 Trm~1Yn—-1Tm—-3Yn—-3Tm-1
C2 $m_3yn—2zm—1y‘n._—3zm—2yn—1 Tm-3

Each edge zm—iyn—i, ¢ = 1,2,3, is in two of the Cl cycles, while each edge
Tm-iYn—j, t,J = 1,2,3, 2 # 7, is in one C1 cycle and the C2 cycle. Therefore, Cx is
a CDC of H.

There are a total of four cycles in Cy. None of the 4-cycles have chords, and the
6-cycle has three chords, so

v(Cr) = |Cul + ch(Cr) =4+ 3 =T < 9 = |[E(H)|.

For each vertex in the sets X’ and Y’, Cy contributes a triangle to the transition
multigraph. If |X| = 3 and |Y| = 3, then Cg is the CDC of G and we are done.
Henceforth, we can assume |X| > 3 or [Y] > 3.

The two subgraphs, J; and J;, are complete bipartite graphs with one part of

even size, and one part of odd size. Therefore, by Lemma 15, we know that they
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bhave CDCs, Cj;, and Cy,, where ¥(C;;) < |E(J;)| , ¢ = 1,2. These CDCs contribute
[Y”]/2 and [X"]/2 digons, respectively, to the transition multigraph of each vertex
in the sets X’ and Y, and a triangle to the transition multigraph of each vertex in
the sets X” and Y.

The subgraph L is a complete bipartite graph with two parts of even size, and so
by Corollary 13, we know L has a CDC, Cr, with 4(Cr) < |E(L)|, that contributes
{Y”|/2 and |X"|/2 digons, respectively, to the transition multigraph of each vertex
in X” and Y.

Because the subgraphs H, Ji, J2, and L partition the edge set of G, and because
7(Cr) < |E(H)|, 7(Cx.) < |E(J)|,i=1,2, and 7(Cz) < |E(L)|, then by Lemma 10,

G has 2 CDC, Cg, with v(Cg) < |E(G)]. The CDC of H contriby

-
1ToC 2
— Pt Bt 3 ~“\- /i PRI

riangle to the
transition multigraph of each vertexin X’ and Y’. The CDCs of J; and J; contribute
a triangle to the transition multigraph of each vertexin X" and Y”, and |Y”|/2 and
|X"|/2 digons, respectively, to the transition multigraph of each vertex in X’ and
Y’. Finally, the CDC of L contributes |Y”|/2 and [ X”|/2 digons, respectively, to
the transition multigraph of each vertex in X” and Y”. Therefore, the transition
multigraph of each vertex z € X consists of a triangle and [Y"|/2 = (d(z) — 3)/2
digons, and the transition multigraph of each vertexy € Y- consists of a triangle and

1X"|/2 = (d(y) — 3)/2 digons.

By applying the results of the previous lemma and Lemmas 6, 8, and 9, we obtain

the following:
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Corollary 18 If G is a complete bipartite graph with parts X and Y, where both
|X| and Y| are odd and at least three, then the line graph L(G) has a small cycle

double cover.

4.3.2 Complete Graphs

In Theorem 9 of MacGillivray and Seyffarth [24], it is shown that for all n > 2,
L(K,) has a small cycle double cover. The proof uses the following, which we state

without proof.

Lemma 19 For all integers n > 3, K, has a cycle decomposition into triangles if

and only ifn =1,3 (mod 6).

The truth of this result can be verified as follows. In the graph K, every pair
of vertices is joined by an edge. Therefore, in order to decompose the graph into
triangles, we want each pair of vertices to appear together once, in a grouping of
three vertices. The required groupings of vertices can be thought of as blocks in a
Steiner Triple System, which exists if and only if the number of varieties (in this
case, vertices) is n = 1,3 (mod 6) (see [19]).

As an immediate consequence of this Lemma 19 and of Lemma 11, we have

Corollary 20 For all integers n > 3, n = 1,3 (mod 6), K, has a cycle double
cover such that for each v € V(G), the transition multigraph Mr(v) consists of
d(v)/2 digons.
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4.3.3 3-partite Graphs

In the following theorem, we use results obtained in Corollary 13, Lemma 15, and
Lemma 17 (the results concerning complete bipartite graphs) to find CDCs with

appropriate properties of all complete 3-partite graphs.

Theorem 21 If G is a complete 3-partite graph, then G has a CDC, Cg, with
7(Cc) < |E(G)|. Ezcept for the graph with parts of size one, two, and two, this
inequality is strict. Furthermore, depending on the parity of the parts, the transition
multigraph of each vertez in G._consists of either a collection of digons or a triangle

and a collection of digons.

Proof: Let G be a complete 3-partite graph, with parts X = {zo,Z1,...,Zm-1},
Y = {yo,¥1,---,Yn-1}, and Z = {z0,21,...,2p1}.

In developing a technique for the construction of CDCs of complete 3-partite
graphs, the method used to cover the edges of a complete bipartite graph with two
parts of even size (see Lemma 12) is used as a model. Variations in the descriptions

of the CDCs occur because some 3-partite graphs contain parts of odd size.

Case 1. m, n, and p even.

Since the three parts each have an even number of vertices, the subgraphs induced
by the vertices in X and Y, the vertices in X and Z, and the vertices in Y and Z,
are each complete bipartite graphs with parts of even size. Therefore, Lemma 12 can
be applie-d to each subgraph, in turn, and thus G has a decomposition into chordless
4-cycles. Two copies of this decomposition form a CDC, Cg, of G, and consequently,

the transition multigraph of each vertex v € V(G) consists of d(v)/2 digons. Every
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4-cycle in Cg contains vertices from two parts, the vertices from each part appearing
alternately along the cycle. Therefore, all 4-cycles in Cg are chordless. Since

|E(G)| = mn + mp + np,
we get

7(C¢) = 2(mn/4 + mp/4 + np[4) = (mn + mp + np)/2 < |E(G)|.
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Case 2. m and n even, p odd.

Let X' = X\{Zm-1,Zm—2}, Y’ = Y\{¥n-1,Yn-2}, and Z’ = Z\{z,—1}. Let Cs consist

of the following cycles.
Cycle Type Cycles Number of Cycles
C1 Y2i2p-1Y25+1Tm-1Y275, 0 < J < n—;2 12"'
C1 Y2iZp-1Y2i41Tm—2Y25, 07 < P‘;_z 3
C1 T2iZp-1ZT2i4+1Yn-1%2;, 01 < ‘"L:.’:g Bl
C1 zziip-1$2i+1yn—2$2i, 0<:< mT—z 3
C2 Tm-1Y2iTm—-2Y254+1Tm~1, 0<5,< ";4 n_;2
C2 Yn-1Z2i¥n—2T2i41¥n-1, 0S¢ < B2 m=2
) 0<ig<m ) .
C3 (2 copies)  ZayzjZait1¥2is1T2is e 207572550
0<j< st
. - 2
r 3
| 05ism? .
C4 (2 copies) T2iZ2T2i+1221+1T 2%, 1 ’ 2(3)(55°)
0<igez
\ - = 2 J
( ) 3
. 0<j<23 1
C5 (2 copies)  yojzayrj+12ai41¥2i, Y 2(3)(537)
0<1<
\ /
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For each j, 0 < 5 < (n —2)/2, the edges z,—1y2; and zp_1y2j41 lie in two of the
C1 cycles. Similarly, for each 7, 0 < i < (m — 2)/2, the edges zp—12; and z,_172;4;
lie in two of the C1 cycles. As 2z, lies in no other cycles of Cg, every edge incident
with this vertex is covered twice.

The C4 cycles form a cycle decomposition of the complete bipartite graph with
parts Z’ and X, and the C5 cycles form a cycle decomposition of the complete
bipartite graph with parts Z’ and Y. Vertices of Z’ do not lie in any other cycles
of Cg, and thus because two copies of the C4 cycles and the C5 cycles are used, all
edges incident with vertices of Z’ are covered twice.

For each j, 0 < j < (n —2)/2, the edges Tm-1¥2j, Tm-1Y2j+1, Tm—2Y2;, and
Tm_2Y2;+1 are each covered exactly twice, once by the C1 cycles and once by the C2
cycles. Similarly, for each z, 0 < ¢ < (m —2)/2, the edges yn—1Z2:, Yn—1Z2i41, Yn—2T2i,
and yn_»T2i4; are each covered exactly twice, once by the Cl cycles and once by
the C2 cycles. Thus all edges incident with vertices zm—1, Tm—-2, Yn—1, and y,_, are
covered twice.

Finally, the C3 cycles form a cycle decomposition of the complete bipartite graph
with parts X’ and Y’. Edges between vertices in these two parts do not lie in any
other cycles of Cg, and so because two copies of the C3 cycles are used, all edges
incident with vertices in X' and Y’ are covered twice. Combining these results, we
see that all edges in G are covered exactly twice.

Because the CDC of G consists only of 4-cycles, [Cq| = 2|E(G)|/4, and thus,

1C) = 2|E(G)|/4 + ch(Cq)
= |E(G)|/2 + ch(Cq).
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No 4-cycle in Cg has vertices from more than three different parts, and so no 4-cycle
in Cg has more than one chord. Recalling that B, denotes the number of chordless
cycles in Cg, ch{Cg) = |Cg| — Bo- Therefore,

7(Ce) = [E(G)I/2+ (IE(G)I/2 — o)
= |E(G)| - Fo
< |E(G)]

if there is at least one cycle with no chord.
By examining the CDC, we can see that the C2 cycles, the C3 cycles, the C4

cycles, and the C5 cycles are all chordless. The C2 cycles and the C3 cycles exist if

-

]

m>2zandn>2 theCdcyclescexist f m>2an

fl

> 7 > 1, and the C5 cycles exist if
n > 2 and p > 1. Therefore, unless m = 2, n = 2, and p = 1, there is at least one
4-cycle with no chords in Cg.

The transition multigraph of vertex z,_; consists of two copies of edges y2;¥2j41,
0 <j < (n—2)/2, and £2:Z2:i41, 0 < i < (m —2)/2, resulting from the C1 cycles, and
thus Mr(z,-1) consists of n/2 + m /2 digons. The transition multigraphs of vertices
in Z' each have two copies of edges y2;y2541, 0 < j < (n — 2)/2, and two copies of
edges £2;Z2i41, 0 <7 < (m —2)/2, resulting from the C4 and C5 cycles, respectively,
and so, as with the transition multigraph of vertex z,_;, each consists of n/2 4+ m/2
digons.

The transition multigraphs of vertices z,,—; and z,,—2 have one copy each of edges
Zp-1Yn—-1, Zp-1Yn—2, a0d Y2;¥2j41, 0 < 7 < (n—2)/2, resulting from the C1 cycles. As
well, Mr(zm—1) and Mz (zm—2) each have edges y2;y25+1, 0 < 7 < (n—4)/2, resulting

from the C2 cycle in which the vertices both appear. Both have two copies of edges
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zuzas1, 0 <1 < (p— 3)/2, resulting from the C4 cycles. Thus both Mr(zpm—;) and
Mr(zm—2) consist of the triangle z,_1yn—2yn—12p-1 and (n —2)/2 4+ (p — 1)/2 digons.
The transition multigraph of each vertex in X’ has edges z,—1y.—1 and zp_;yn—2,
resulting from the C1 cycles, edge yn—_1Yn—2, from the C2 cycles, two copies of edges
Y2iY2i+1, 0 < j < (n — 4)/2, from the C3 cycles and two copies of edges zo1zo141,
0 <1< (p—3)/2, from the C5 cycles. Thus the transition multigraph of each vertex
in X’ consists of the triangle z,_1yn—2¥n—12p—1 and (n — 2)/2 + (p — 1)/2 digons.
Because of the symmetry of X and Y in the description of the cycles, the tran-
sition multigraph of each vertex in ¥ also consists of a triangle and a collection of
digons. In this case, zp—1Zm—2Zm—12p—1 is the triangle, and the number of digons is

(m —2)/2 + (p — 1)/2.



Case 3. m, n, and p odd.
Let X' = X\{zm-1}, Y' = Y\{yn-1}, and Z' = Z\{z,1}. Let Cg consist of two

copies of the following cycle decomposition.

Cycle Type

Triangle
C1
C1
C1

Q)
¥

C2

C2

Cycles
Zm-1Yn—12p-1Tm-1
Y2;Z2p-1Y2;41Tm-1Y25,
T2:i2p—1T2i41Yn~1Z2i,

22T m—-1221+1Yn—-1221,

T2:Y2;T2i+1Y274+1 T2,

T2 21T 2i4122[+1T 24,

Y25221Y254+1220+1Y 25,
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Number of Cycles
1

(n-1)/2
(m—1)/2

(rp—1)/2

((m —1)/2)((r - 1)/2)

((n —1)/2)((p - 1)/2)

Edges zm-1Yn~1 and Zm-12,—;1 are covered exactly once by the triangle, while

edges Tpm_1¥2; and Tm_1Y2j41, 0 < 7 < (n —3)/2, and edges zp—122 and zp—1z2041,

0 <1< (p— 3)/2, are covered exactly once by the C1 cycles.

For the remaining edges incident with the vertices of X, notice that for any z, 0 <

t < (m—~3)/2, the edges Z2:y2j, T2i¥2j+1, T2i41Y25, a0d T2i41Y2541, 0 < j < (n—3)/2,
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and also the edges Z3iza1,Z2:22141, T2i41221, and Taipazary, 0 < 1 < (p — 3)/2, are
covered exactly once, in this case by the C2 cycles. Thus all edges incident with
vertices of X are covered exactly once.

Because of the symmetry of X, Y, and Z in the cycles described in this case, all
edges incident with vertices of Y and Z are also covered exactly once.

The cycle decomposition consists of one triangle and (|E(G)| — 3)/4 cycles of

length four. As two copies of this decomposition are used for the CDC, Cg,

¥(Cs) = I[Cql+ ch(Cs)
RN LC I B
= (|E(G)|+1)/2 + ch(Cs).

A triangle has no chords since it is the complete graph on three vertices. As
in Case 2, no 4-cycle in Cg has vertices from more than three parts, and so no 4-
cycle has more than one chord. Since Cg has ([E(G)| — 3)/2 cycles of length four,
ch(Cs) < (|E(G)| — 3)/2. Therefore,

1(Ce) = (IE(G)| +1)/2 + ch(Cs)
< (E@G)+1)/2+(IE(G)-3)/2

= [E(G)| -1 < |E(G)I
Because two copies of a cycle decomposition of G are used for the CDC, the

transition multigraph of each vertex v € V(G) consists of d(v)/2 digons.

Case 4. m and n odd, p even.
Let X' = X\{zm-1}, Y’ = Y\{yn-1}, and Z’ = Z\{2z,—1,2,—2}. Let Cq consist of

the following cycles.



Cycle Type

Triangle
Triangle
C1

C2
C2
C2
C2
C3 (2 copies)

C4
C4

C5 (2 copies)

C6 (2 copies)

C7 (2 copies)

Cycles

zm—lzp—lyn—lzm—l

Tm—-12p—2Yn—-1Tm-1

Im—-12p—1Yn—-12p—2Tm—-1

Y2;2p-1Y2;+1Tm-1Y25,
Y252p—2Y2i4+1Tm—1Y25,
T2i2p—1T2i4+1Yn—-1T2i,
T2:Zp—aToiL1lUn—1T2;;
22ATm—122[4+1Yn-1221,
Z2:2p—1T2{+12p—2T 2%,

Y252p—1Y25+12p-2Y2j5,

T2Y2;T2i41Y 2541221,

T2i291T2{4+1221+1T24,

Y25221Y 254122141 Y25,
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Number of Cycles

1

1

1
(n—1)/2
(n—1)/2
(m—1)/2
(m —1)/2
2(p —2)/2
(m—1)/2
(n—1)/2

e 2((m —1)/2)((» —1)/2)

2((m —1)/2)((» — 2)/2)

2((n = 1)/2)((2 - 2)/2)
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Edges z,~1Zm-1, Zp—1Yn—1, Zp—2Lm—1, and 2p_2yn_; are each covered exactly twice,
once by a triangle and once by the C1 cycle. For each 7, 0 < j < (n — 3)/2, edges
Zp-1Y2jy Zp—1Y2j+1, Zp—2Y2j, and Zp_2y2;4+1 e in both the C2 cycles and the C4 cycles.
Similarly, for each i, 0 < 7 < (m — 3)/2, edges 2,172, zp—1T2i41, Zp—2T2i, and
Zp—2T2i41 also lie in both the C2 cycles and the C4 cycles. Thus, all edges incident
with the vertices z,-; and z,_, are covered twice.

Foreachl,0 <1< (p—4)/2, edges zaTm—1, Z2141Zm-1, Z21Yy—1, and 2Zo141Yn—1 are
each covered twice, by two copies of a C3 cycle. The C6 cycles and the C7 cycles
form cycle decompositions of the complete bipartite graphs with parts Z’ and X7,
and with parts Z’ and Y’. Thus edges incident with vertices in Z’ are all covered
twice.

Edge Zm-1yn—1 is covered twice, once by each triangle. For each j, 0 < ;7 <
(n — 3)/2, edges Tm-1y2; and Zpm-1y2i+1 lie in two C2 cycles, and so are covered
twice. Similarly, for eachz, 0 < < (m—3)/2, edges y,_1Z2; and yn_1Z2:41 also liein
two C2 cycles, and so are covered twice. Finally, because the C5 cycles form a cycle
decomposition of the complete bipartite graph with parts X’ and Y”, edges incident
with vertices in both X’ and Y’ are covered twice.

The CDC, Cg, of G consists of two triangles and (2|E(G)| — 6)/4 cycles of length

four. Therefore,

QE%)I—_G + ch(Cg)

= (|E(G)|+1)/2 + ch(Cg).

7Cc) = 2+
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Triangles have no chords, and as in Cases 2 and 3, no 4-cycle in Cg has vertices from
more than three parts, so no 4-cycle has more than one chord. Thus, since Cg has
(2[E(G)| - 6)/4 = (IE(G)| — 3)/2 cycles of length four, ck(Cs) < (|E(G)| - 3)/2.

Therefore,

1(Ce) = (IE(G)+1)/2 + ch(Cs)
< (E@1+1)/2+ (E(G)| —3)/2
= [E(G)| -1

< [E(G)I-

The transition multigraph of vertex z,_; has two copies of edge Zm—1yn—1, One
resuiting from a triangle, and one from the Ci cycle. It has iwo copies of edges
Y2¥2i+1, 0 < 7 < (n — 3)/2, and two copies of edges z2:Z2i41, 0 < ¢ < (m — 3)/2,
resulting from the C2 cycles, and thus it consists of 1 +(n —1)/24 (m —1)/2 digons.
The transition multigraph of vertex z,_, is the same as that of vertex z,_,, because
of the symmetry of X and Y in the description of Cg. The transition multigraph of
each vertex in Z’ has two copies of edges z.,—1yn—1, resulting from the two copies
of the C3 cycle, and two copies of edges y2;y25+1, 0 < 7 < (n — 1)/2, and z2:z2i41,
0 <2< (m—1)/2, resulting from the C6 cycles and the C7 cycles. These transition
multigraphs, therefore, also consist of 1+ (n ~1)/2 + (m — 1)/2 digons.

The transition multigraph of vertex z,,.; has edges zp—1Yn—1, Zp—2yn-1, and
Zp—12p-2, resulting from the triangles and the C1 cycle. It has two copies of edges
Y2iY2i+1, 0 £ 7 £ (n — 3)/2, from the C2 cycles, and two copies of edges z2;z2141,
0 <1< (p—4)/2, one from each C3 cycle. As z,,,_; appears in no other cycles, we can

see that Mr(z.;,—1) consists of the triangle, z,_1yn—12p—2%p—1, and (n—1)/2+(p—2)/2



45

digons. The transition multigraph of each vertex in X’ has one copy of edges z,—1yn—1
and zp_syn—1, resulting from the C2 cycles, and one copy of edge z,_;12,-> from the
C4 cycles. Each also has two copies of edges y3y2j41, 0 < 7 < (n — 3)/2, and
z21Z2141, 0 < 1 < (p —4)/2, from the C5 cycles and the C6 cycles. Therefore, as with
Mz (z;m-1), the transition multigraph of each vertex in X’ conmsists of the triangle,
Zp—1Yn—1Zp—22p-1, and (n —1)/2 + (p — 2) /2 digons.

Because of the symmetry of X and Y in the desc1tiption of the cycles, it is easy
to see that the transition multigraph of vertex y,-; and vertices in Y’ will consist of

triangle zp_1Zm 12,2251, and (m —1)/2 + (p — 2)/2 digons.

In summary, we have found that G has a CDC, Cg, where v(Cg) < |E(G)|,
equality occurring only when m = 2, n = 2, and p = 1. We have also found that
the CDCs contribute either a collection of digons, or a triangle and a collection of

digons, to the transition multigraph of each vertex in G.

Corollary 22 If G is a complete 3-partite graph, then the line graph L(G) has a

small cycle double cover.

Proof: Unless GG is the complete 3-partite graph K72, the result follows directly
from Theorem 21 and Lemmas 6, 8, and 9. '

For G = K, 32, let the parts of G be X = {z¢,2:1}, Y = {yo, 11}, and Z = {2}-
It follows that the vertices of L(G) will be

V(L(G)) = {33020, I120, Yo=0, Y120, ToYo, ToY1, 1Yo, -‘Elyl}-
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ZoYo
To Yo
$oy1 131!/0
20
1 z 1Y
K22 L(Ki22)

Figure 4.1: K1'2'2 and L(Kl,z,g).

As consistent with the notation previously used, an edge in L(G) will be identified
by the vertices at its endpoints, and a cycle in L(G) will be described by the vertices
through which it passes. However, for ease of reading, parentheses will be used in
the description of an edge or cycle to separate the vertex names. For example, an

edge between vertices zoyo and zoy1 of L(G) is written (zoyo)(zoy1)-
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Let Cg consist of the following cycles:

Cycle Type Cydles
C1 (Zoyo )(zoy1)(z131)(y120)(120)(Y020) (Z020 ) (ZoYo)
C1 (Zoy0)(Zoy1)(zo20)(2120)(y120)(Y070) (z1Y0)(ZoY0)
C1 (2131)(Z190)(2120) (Y0 20) (Z020) (y170) (Zoy1 ) (Z191)
C1 (z191)(Z190)(Zoy0)(y020) (y120)(z020) (z120) (Z191)
C2 (z131)(2120)(z1Y0)(¥020)(z0y0) (Z020) (Zoy1) (¥120) (Z191)-

The preceding cycles form a CDC, Cg of G. Each of the ten edges (zoyo)(zoy1),

(Zoyo)(z1%0), (z191)(z1%0), (2191)(Zoy1), (Zo20)(2120), (¥020)(¥120), (ZoZo)(¥oz0),
(z020)(y120), (Zz120)(¥020), and (z120)(y120) is in exactly two Cl cycles, while each
edge of the form (z:2z0)(z:y;) or (v:izo)(z;¥:), 0 < ¢,7 < 1, is in one C1 cycle and
in the C2 cycle. Because |[Cg| = 5 and the number of vertices in L(G) is eight,
ICel < [V(L(G))|, and the CDC, Cg, is, in fact, an SCDC.

4.3.4 4-partite Graphs

Before we can prove the general result that the line graph of any complete multipar-
tite graph has an SCDC, we need one final result: that the 4-partite graph with all

odd parts has a CDC with the properties required to use Lemma 8.

Lemma 23 If G is a complete 4-partite graph with parts X, Y, Z, and W, where

each part has an odd number of vertices, then G has a cycle double cover, Cg, with
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v(Ce) < |E(G)|. Furthermore, the transition multigraph of each vertez in G consists

of one triangle and (d(v) — 3)/2 digons.
Proof: Let

X = {z0,Z1,.--+Zm-2,Tm-1},
Y = {yo,¥1,---sYn—2,Yn-1},
Z = {z0,21,--.,2p—2,%p-1},

W = {wo,w1,...,we_2,we1},

X' = X\{zm-},

Y = Y\{gna}

Z' = Z\{z-1},

W' = W\{wg-1}.

Let 71 = G[X U Y U Z], the subgraph induced by the verticesof X UY U Z, T3 =
GIXUYUW], Ts =GXUZUW], and Ty = G[Y UZ U W]. Each of these
subgraphs is a complete 3-partite graph with three odd parts. Therefore, by Case 3
of Theorem 21, each of these subgraphs has a cycle decomposition into one triangle
and a collection of 4-cycles. Every edge of G lies in two of Ty, T3, T3, and Ty: edges
incident with vel-:tices in X and Y lie in 77 and T3, edges incident with vertices in
X and Z lie in Ty and T3, and edges incident with vertices in X and W lie in T
and T3. Similarly, edges incident with vertices in Y and Z lie in 77 and Ty, edges
incident with Y" and W lie in T3 and Ty, and edges incident with vertices in Z and
W lie in T3 and Ty4. Therefore, the union of these cycle decompositions is a CDC,

Cg, consisting of four triangles and a collection of 4-cycles. The triangles in Cg have
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no chords, and like the 4-cycles in the CDC described in Case 3 of Theorem 21, no

4-cycle has more than one chord. The number of 4-cycles in Cg is
CIE(G)| -12)/4 = |E(G)I/2 -3
and so, ch(Cq) < |E(G)|/2 — 3. It now follows that

1Ce) = ICql+ch(Ce)
< (@+IEG)/2-3)+ (IE(G)/2-3)

= 4+|E(G)| -6
= [E(G)| -2
< |E@)

Vertex ,,—; is a vertex in subgraphs 73, T,, and T3, and hence, edges in its
transition multigraph are contributed by these three subgraphs. Edges yn—12p-1,
Yn—1We—1, and z,_ w,_; are contributed to Mr(zx,-1) by the triangles of these three
subgraphs. Two copies of edges y2jy2j+1, 0 < 7 < (n — 3)/2, one from the de-
composition of subgraph 7Tj, and one from the decomposition of T, are also con-
tributed to Mr(zm-1)- Similarly, M7(zm-1) contains two copies of edges zaz2141,
0 <1< (p—3)/2, and edges warwa41, 0 <t < (¢ — 3)/2, from the decomposition of
the 77 and 735 subgraphs, and the 7, and T35 subgraphs, respectively. Therefore, the
transition multigraph of vertex z,—; consists of the triangle y,—1zp—1Wg—1Yn-1, and
[(n—1)+(p—1) + (¢ —1)]/2 = (d(zm-1) — 3)/2 digons.

Vertices in X' are also included in the T3, T3, and T3 subgraphs. The decom-
positions of these subgraphs contribute edges yn—12p-1, Yyn—1wg—1, and zp_jwe_; to

the transition multigraphs of each vertex of X’, while they also contribute a total of
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two copies of the edges ¥y2jy2j41, 0 < j < (n — 3)/2, zuza4a, 0 < 1 < (p — 3)/2,
and wawzey1, 0 < ¢ < (¢ — 3)/2. Therefore, like the transition multigraph of
vertex Tm_y, the transition multigraph of each vertex in X’ consists of the trian-
gle Yn—12p-1We—1yn—1 and [(r — 1) + (p — 1) + (¢ — 1)I/2 = (d(z:) — 3)/2 digons,
0<:<m-2.

Because of the symmetry in the description of the cycles in Cg, the transition
multigraph of each vertexin Y, Z, and W also consists of one triangle and a collection

of digons.

As an immediate consequence of this result and of Lemmas 6, 8, and 9, we get

Corollary 24 If G is a complete 4-partite graph, with four parts of odd size, then

the line graph, L(Q), has a small cycle double cover.



Chapter 5
Complete Multipartite Graphs

In Chapter 3, we saw that in order to prove that the line graph, L(G), of a graph,
G, has an SCDC, it suffices to show that G has a CDC, Cg, with v(Cg) < |E(G)|.
Furthermore, Cg must have the property that it contributes a collection of digons, or
a triangle and a collection of digons, to the transition multigraph of each vertex in
G. In Chapter 4, we saw that complete bipartite graphs with at least two vertices in
each part, complete 3-partite graphs, and complete 4-partite graphs with four odd
parts all have CDCs with the properties mentioned above, and thus their linc graphs
have SCDCs. In Chapter 4, we also found that if G has subgraphs that partition its
edge set, and if for each such subgraph H, we have v(Cyx) < |E(H)|, then G has a
CDC, Cg, with v(Cg) < |E(G)|.

In this chapter, by using the results of the previous two chapters, we prove that

line graphs of all complete multipartite graphs (except K; ;) have SCDCs.

Theorem 25 If G is a complete multipartite graph other than K., then the line

graph, L(G), has a small cycle double cover.

The proof of this theorem is divided into cases, depending on the parity and
size of the parts of the graph. In most cases, the results of Lemma 10 are used,
and a CDC of the graph, G, is found by combining the CDCs of subgraphs which
partition the edge set of G. In order to obtain subgraphs with parts of size and

parity with which we can work, the vertices in the original parts of the graph are
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often rearranged. A part in the original graph may be considered as two smaller sets
or a part in the original graph may be enlarged, by grouping with it, vertices from

other parts.

Proof of Theorem 25: Let G be a complete multipartite graph.

In each of the following cases, we will find a CDC, Cg, ensuring that v(Cg) <
|E(G)|, and ensuring that the transition multigraph of each vertex consists of digons
or a triangle and a collection of digons. Once these facts have been established, the
results of [24], restated as Lemmas 6, 8, and 9, can be applied to show that the CDC,
Cg, results in an SCDC of the line graph, L(G). The cases in this proof are grouped

as follows.



Case

Case

Case

Case

2a
2b

4a
4b
4c
4d

4f

Sa
5b
¢
5d
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G consists of k > 2 parts, each of even size

G consists of k£ > 2 parts, each of odd size greater than one
k is even

k is odd

G consists of k > 2 parts, each of size one

G consists of r > 1 parts of size one

and n > 1 parts, each of odd size greater than one

r=1,n even

r=1,n odd

r =2, n even

r=2,nodd

r=1,3,5 (mod 6),r > 3, n even

r=0,2,4 (mod 6),r > 4, n odd

r=1,3,5 (mod 6), r > 3, n odd

r=0,2,4 (mod 6), r >4, n even

G consists of s > 1 parts of odd size and ¢ > 1 parts of even size

s=1,1%even

s=1,%odd
s=2
s>3



Case 1. G has k > 2 parts, each of even size.
The graph, G, is the union of the bipartite subgraphs induced by all possible pairs
of parts ((’;) subgraphs, in total). Because different pairs of parts are used in each
subgraph, the edge sets of the induced subgraphs are all disjoint, and so the edge
set of GG is partitioned by these subgraphs. As each subgraph is a complete bipartite
graph with two even parts, we know from Lemma 12 that each subgraph can be
decomposed into chordless 4-cycles. Hence, by Corollary 13, each subgraph has a
CDC whose cycles number half the number of edges of the subgraph. Each of the
subgraphs of G thus meets the requirements of Lemma 10, and so G has a CDC, Cg,
with 7(Ca) < |E(G)|.

The CDC of any of the subgraphs of (7 is formed from two copies of a cycle
decomposition, and therefore the CDC of G is also composed of two copies of a cycle

decomposition. In applying Lemma 11, we find that the transition multigraph of

each vertex of G consists only of digons.

Case 2. G consists of k£ > 2 parts Xj,. .., Xk, each of odd size greater than one.
2a. k even.
If £ = 2, G is a bipartite graph with two odd parts, and thus by Lemma 17, has
a CDC, Cg, with 7(C¢) < |E(G)|, which contributes a triangle and a collection of
digons to the transition multigraph of each vertex in G. Also, its line graph, L(G)
has an SCDC, as shown in Corollary 18.

If k£ > 4, let H; be the subgraph G[Xz;—1 U X%, 1 <7 < k/2, and let H be the
subgraph of G, with H = Ufg H;. Note that the vertex sets of H and G are the

same. Each subgraph H;, 1 <z < k/2, is a complete bipartite graph with parts of



Hx‘:LHz - Hepe
X1 Xp: P X Xi: ! Xno1 Xa:
L Yi b o] 2. Lo Yo

Figure 5.1: Case 2a.

odd size at least three, and so we can apply Lemma 17 to each H; to find a CDC,
Cr:, with ¥(Cx;) < |[E(H;)|. Because the subgraphs H;, 1 < i < k/2, partition the
edge set of the subgraph H, we can apply Lemma 10 to show that H has a CDC,
Ch, with 4(Cyx) < |E(H)|. Each CDC Cy, contributes a triangle and a collection
of digons to the transition multigraph of each vertex in its respective subgraph H;.
Therefore, Cx contributes one triangle and a collection of digons to the transition
multigraph of each vertex in G.

We now have only to double cover the edges between all pairs Y; = Xp;_; U Xo;
and Y; = X3; 1 U X3, 1 <4,5 < k/2,7#j. Let J be the graph on V(G) consisting
of these edges. Because each of the parts X;, 1 < I < k, has an odd number of
vertices and has at least three vertices, each of the sets ¥;, 1 < ¢ < k/2, has an even
number of vertices (at least six), and so J is a complete multipartite graph with
even parts. From Case 1, we know that J has a CDC, C;, consisting of two copies

of a cycle decomposition into 4-cycles, which contributes digons to the transition
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multigraph of each vertex of V(G).

Any 4-cycle in C; passing through verticesin Y¥; and Y;, 1 < 7,7 < k/2, ¢ # j,
contains a pair of vertices from Y; and a pair of vertices from Y;. Therefore, the
4-cycles that double cover the edges between sets Y; and Y; could include vertices
from up to four parts (one vertex each from X3;_;, X:, X2;-1, and X5;). To ensure a
minimum number of chords in these 4-cycles, vertices within each set ¥;,1 <7 < /2,
are paired as follows. Let X3;_; = {z0,21,...,Zm-1} and Xo; = {vo,v1,..+,VUn-1},
and let {zo,z1},.-., {ZTm-3,Zm—2}, {vo,v1},.- ., {Vn-3,Vn—2}, {Tm—1,vn-1} be vertex
pairings. These pairs are to be used in defining the cycles in the cycle decomposition.
Except for vertices ,,—;1 and v,_;, every vertex in Y; is paired with another vertex
from the same part. Therefore, except for the pair {zm_1,v._1}, vertices in each
pair are non-adjacent in GG, and so contribute no chords to any cycle which passes
through them. The vertices z,-; and v,_; are adjacent in G, and consequently
contribute a chord to any cycle in which they appear as non-consecutive vertices.
With the vertices in the set Y; paired in an analogous fashion to those vertices in
set Y;, it turns out that for any pair ¥; and ¥}, there are two cycles passing through
the two pairs containing adjacent vertices ({Zm—-1,vn-1} in Y;, and its counterpart
in Y;), and thus, there are two cycles each with two chords. Because each part Xj,
0 <1 L k, has at least three vertices, we are guaranteed that at least one pair of
vertices in each part X, or at least two pairs in each set ¥;, 1 <z < k/2, is comprised
of non-adjacent vertices. Therefore, there are at least eight chordless cycles between

pairs of sets in ¥; and Y. Since there are k/2 sets, Y;, there are (kéz) pairs Y; and



57
Y;, i # j, and thus there are
b =2 1) = @ - 204

4-cycles with two chords, and

Bo > 8(k£2) = (k* — 2k)

chordless 4-cycles. Therefore,

v(Cr) = |Csl+ch(Cy)
ICsl + (ICsl — Bo + B2)
< 2(2|E(J)|/4) — (K® — 2E) + (K* —2k)/4

I

|E(J)] — 3(k* — 2k) /4

< |E(J)].

Since H and J partition the edge set of G, and have CDCs, Cg and C;, with
v(Cx) < |E(H)|, and ¥(Cs) < |E(J)|, then by Lemma 10, G has a CDC, Cg, with
v(Cs) < |E(G)|. The transition multigraph of each vertex in G consists of a triangle,
contributed by the cycles in Cg, and a collection of digons, resulting from the cycles

in Cy and Cj.

2b. k odd.
From Case 3 of Theorem 21, we know there is a cycle decomposition, and hence a

CDC, of the edges among any three odd sets. Therefore, the subgraphs

H{ = G[X]_ UXQ{UX2{+1],1 S ) S (k - 1)/2
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Figure 5.2: Case 2b.

each have a CDC, Cg,, with v(Cx,) < |E(H:)|. Let H = U%;Y/? H;. Applying

Lemma 10 shows that H has a CDC, Cg, with v(Cg) < |E(H)|. Because each Cpg, is
two copies of a cycle decomposition, Cyg is also two copies of a cycle decomposition,
and so contributes only digons to the transition multigraph. of each vertex in G.

If £ = 3, then all edges of G are covered twice by the cycles of Cg, and we
are done. However, if £ > 5, consider the (k — 1)/2 supersets Y; = Xp; U X5i41,
1 <2 < (k—1)/2. We have double covered all edges within each of these supersets,
and also double covered all edges incident to Xj, so all that remains to be double
covered are the edges between pairs of supersets. Let J be the subgraph of G
consisting of vertices V(G)\X;, and these uncovered edges. The subgraph J is a

complete multipartite graph with parts ¥;, 1 < ¢ < (k—1)/2. Because each of the
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original parts Xj, 2 < I < k, has an odd number of vertices greater than one, each
Y;, 1 << (k—1)/2, has an even number of vertices greater than four. From Case
1 of this proof, we know, therefore, that J has a CDC, C;, composed of two copies
of a decomposition into 4-cycles. As in Case 2a, the number of chords contributed
by the 4-cycles can be minimized by pairing the vertices within each superset Y;,
1 <z < (k—1)/2, so that in the collection of pairs of these vertices, only one pair of
vertices is adjacent in G. Therefore, the double covering between any two supersets
Y;and Y;,1 <i,7 <(k—1)/2, i # j has two 4-cycles with two chords, and at least
eight chordless 4-cycles. Since there are (k—1)/2 supersets, and hence (("_21)/ 2) edge
sets between pairs of supersets, there are

I /

_ /("7_1)/2\__ 2 __ k
132—2( 0 )—(k 4k +3)/4

4-cycles with two chords, and

(k—1)/2

ﬂ028< 9

):(k2—4k+3)

chordless 4-cycles contributed by CDC of J, C;y. Therefore,

ICJl -+ ch(c,])
= [Cs|+ (ICs| = Bo + 52)
< 2Q2|E(J)|/4) — (K* — 4k + 3) + (K* — 4k +3)/4

7(Cs)

= |E(J)] —3(k* -4k +3)/4
< |E(J)].

The CDC, Cg, of G is the union of the CDCs Cx and Cj of the subgraphs H
and J. As the subgraphs partition the edge set of G, and as v(Cy) < |E(H)| and
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¥(Cs) < |E(J)|, we know from Lemma 10 that 4(Cg) < |E(G)|. All edges in G
are covered by two copies of cycle decompositions, and so by applying the result of
Lemma 11, we know that the transition multigraph of each vertex in G consists of

digons.

Case 3. G consists of £ > 2 parts, each of size one.

A multipartite graph with £ > 2 parts of size one is a complete graph on k vertices.
In their paper [24], MacGillivray and Seyffarth prove that K has a CDC, C, such
that v(C) = |C| + ch(C) < |E(K%)| where, for all graphs but Ks, the cycles in
C contribute a collection of digons, or a triangle and a collection of digons to the
transition multigraph of each vertex in the graph. Furthermore, they prove that if
k > 3, and trivially if £ = 2, then the line graph L(K}%) has an SCDC.

Case 4. G consists of r > 1 parts of size one and n > 1 parts, each of odd size
greater than one.

We will first look at methods for finding an appropriate CDC of G when r = 1 or
r = 2. Various subgraphs which partition the edge set of G will be defined, and
CDCs of these subgraphs will be described. Lemma 10 will then be applied to show
that v(Cg) < |E(G)]-

4a. r =1, n even.

Let v be the vertex in the part of size one, and let X;,...,X,, be the remaining
parts of G, each containing at least three vertices. Let H; = G[{v} U X2:i—1 U X3},
1 £z < n/2. By Case 3 of Theorem 21, H; has a CDC, Cg,, consisting of two copies of
a cycle decomposition, with v(Cg.) < |E(H;)|. Let H = U2 H;, and Cy = U2 Cy..
By Lemma 10, y(Cq) < |E(H)|, and because each CDC, Cg,, 1 < i < n/2, is created
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by taking two copies of a cycle decomposition, the transition multigraph of each
vertex in G, attributed to the CDC Cpg, consists of digons.

Ifn =2, Cqis a CDC of G and we are done. If n > 4, we notice that the
CDC of the subgraph, H, double covers all edges incident to vertex v, and also, all
edges between vertices in the pairs X;—; and X3;, 1 <z < n/2. Therefore, the only
edges that remain to be double covered are those edges that connect any two pairs
of sets Vi = X5, UXpi, and Y = X5, UXp;, 1 < 2,7 < nf2,2#j. Let J be
the subgraph on vertices V(G)\{v}, with edges E(G)\E(H). This subgraph is a
complete multipartite graph with parts Yi,...,Y5/2, all even, and so by Case 1 of
this proof, J has a CDC, C;, consisting of two copies of a decomposition into 4-cycles
whose cycles contribute digons to the transition multigraph of each vertex in V(.J).

The number of chords associated with the 4-cycles of C; can be minimized. As
in Case 2a of this proof, it is possible to define cycles in Cy such that for each double
covering of edges between two sets ¥; and Y;, 1 < 4,7 < n/2, 7 # j, there are two
4-cycles with two chords and at least eight chordless cycles. Since there are n/2 sets
Y;, 1 £i< n/2, and hence ("42) edge sets between pairs ¥; and Y;, 1 < 7,7 < n/2,
1 # j, there are

br = 2("5) = (n? = 2n)/4

4-cycles with two chords, and

chordless 4-cycles. Therefore,

v(Cs) = |[Cs|l+ch(Cy)
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= [Csl+ (ICs] — Bo + B2)
< 20Q2E(J)|/4) — (n® —2n) + (n? — 2n)/4

= |E(J)] - 3(n® — 2n)/4

< |E(J)]-

By Lemma 10, we know that since the subgraphs H and J partition the edge
set of G, and have CDCs Cx and Cj, with v(Cx) < |E(H)| and 4(Cs) < |E(J)},
the union of the cycles of Cx and C; forms a CDC, Cg, of G with v(Cg) < |E(G)|-
Because the CDCs Cy and C; contribute only digons to the transition multigraphs of
each vertex in the graph G, we know that the transition multigraph of each vertex,

attributed to Cg, also consists only of digons.

4b. r =1, n odd.

If n = 1, then G is a ster (a graph with edges radiating out from one vertex to all
other vertices) and L(G) is a complete graph on at least three vertices. As discussed
in Chapter 2, all complete graphs except K; have SCDCs, and therefore, L(G) has
an SCDC.

Ifn > 3, let v be the vertex in the part of size one, and let X;,..., X, be the
remaining parts of G, each containing at least three vertices. Let H be the subgraph
G[{v}U Xp—2 UX,_1 UX,). The subgraph H is a complete 4-partite graph, with all
parts of odd size, and thus, by Lemma 23, has a CDC, Cpg, with v(Cx) < |E(H)|,
which contributes a triangle and a collection of digons to the transition multigraph
of each vertex of H. If n =3, Cy is a CDC of G, and we are done. Therefore, from
now on, we assume that n > 5.

Because n is odd, n — 3 is even, and so by Case 4a of this proof, we know that
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Figure 5.3: Case 4b.

the subgraph J = G[{v} U X; U ... U X,_3] has a CDC, Cy, with v(C;) < |E(G)|,
which contributes only digons to the transition multigraphs of the vertices of J.
All edges incident to vertex v have been covered twice, and in fact, the only
uncovered edges in G are those between vertices in A = V(H)\{v} and vertices in
B = V(J)\{v}. Let L be the graph on the vertices in the sets A and B containing
these yet uncovered edges. The subgraph L is a complete bipartite graph with
parts A and B. By definition of the subgraph H, we know that A = V(H)\{v} =
Xn-2 U X, 1 UX,;, and since each of these parts has odd size, |A| is odd. Because
B=V(J)\{v} = X1U...UX,-3, where n—3 is even, and each set X;,1 <i <n-—3,
has odd size, | B| is even. Therefore, the edges in L can be double covered by 4-cycles,
using the method of Lemma 15. Let Cr be the CDC of L. This CDC contributes a
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collection of digons to the transition multigraph of each vertex in A, and a triangle
and a collection of digons to the transition multigraph of each vertex in B.

The CDC Cr, consists of cycles between pairs of verticesin A = X, ,UX,_;UX,
and pairs of vertices in B = X; U...U X,_3. In order to minimize the number
of chords in these cycles, we must choose the pairs of vertices so that, as often as
possible, they are from the same part, X;, 1 < ¢ < n. We can pair all but one of
the vertices from each set X,,_,, X,_1, and X, with other vertices from the same
set and then use these pairs in the C2 cycles of Cr, as described in Lemma 15. Let
the unpaired vertices from the sets X,_2, Xn—1, and X, be z;_,, z%_;, and zI,
respectively, and let {x:_z,z;_l}, {z5_,,z%}, and {z;_;,z5} be the pairs obtained
from these vertices, and used in the C1 cycles. Each such cycle has a chord resulting
from these pairs of vertices. As in Case 2a of this proof, the vertices in the even-sized
set, B, can be paired so that all but one of the vertices from each set X;,..., X,_3
is paired with other vertices from the same set. Because n — 3 is even, the remaining
vertices can be paired, and each of these pairs contributes a chord to the cycles in
which they are included.

There are a total of B2 = 3(n — 3)/2 cycles of length four with two chords, and
because every set X;, 1 <: < n, has at least three vertices, there are 8 > 6(n — 3)

cycles of length four with no chords. Therefore,

¥(CL) = [Cr|+ch(CL)
= [CL|+ (ICL] — Bo + B2)
< 2(2|E(L)|/4) —6(n —3) +3(n — 3)/2

= |E(L)] -9(rn —3)/2
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< |E(D)|

The graph, G, has subgraphs H, J, and L, whose corresponding CDCs, Cg, Cy,
and Cp, satisfy v(Cx) < |E(H)|, v(Cs) < |E(J)}, and +(C;) < |E(L)|. Thus by
Lemma 10, we know that G has a CDC, Cg, with ¥(Cg) < |E(G)|. The transition
multigraph of each vertexin V(G) has a triangle and a collection of digons; for vertex
v and for vertices in the sets X,_2, Xn_1, and X, the triangle is contributed by the
CDC Cg, while for vertices in the sets Xj,...,Xnr_3, the triangle is contributed by

the CDC Cy.

4c. r = 2, n even.

Let u and v be the vertices in the two parts of size one, and let X;.....X, be
the remaining parts of G, each containing at least three vertices. The subgraph H,
induced by the vertices u and v and the vertices from the sets X,—; and X, is a
complete 4-partite graph with parts of odd size, and so, by Lemma 23, it has a CDC,
Cu, with ¥(Cx) < |E(H)]. The transition multigraph of each vertex in V(H) consists
of a triangle and a collection of digons. If n = 2, then Cy is a CDC of G and we are
done. Henceforth, we assume that n > 4.

Let J be the subgraph induced by the sets X;,...,X,_2. As each set has odd
size at least three, we can apply Case 2a of this proof, and consequently construct
a CDC, Cj, of J, with v(Cs) < |E(J)]. The CDC C; contributes a triangle and a
collection of digons to the transition multigraph of each vertex in the subgraph J.

The only edges of G not included in either H or J are those that connect vertices
in the subgraph H to vertices in the subgraph J. Let L be the graph on vertices

V(G) that consists of these edges. The subgraph L is a complete bipartite graph with
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parts V(H) and V(J). Because X,—; and X, each have an odd number of vertices,
the set V(H) = {u} U {v}UX,_;UX, has even size. Similarly, because n — 2 is even
and each set X;, 1 <i¢ < n —2, has an odd number of vertices, V(J) = U232 X; has
even size. Therefore, by Lemma 12 and Corollary 13, L has a CDC, Cy, consisting
of two copies of a 4-cycle decomposition. The CDC, Cr, contributes digons to the
transition multigraph of each vertex in L.

As in the preceding cases of this proof, the vertices in the sets V/(H) and V(J)
can be paired so as to minimize the number of chords in the 4-cycles of L. If vertices
z, 1 € X,-1 and z, € X,, and vertices u and v are paired, then all remaining vertices
in V(H) can be paired with vertices from the same part. Thus, only pairs {z5_,,z%}
and {u,v} contribute chords to the 4-cycles in which they appear. In the set V(J),
all but one vertex from each set X;i,...,X,_ can be paired with vertices from the

same part. These remaining vertices can be paired, and each of these (n — 2)/2 pairs
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contributes a chord to any 4-cycle in which it appears. Therefore, the number of
cycles in Cr with two chords is 8; = 2(2((n — 2)/2)) = 2(r — 2). Because each set
X:, 1 <17 < n, has at least three vertices, and hence, at least one non-adjacent pair

of vertices, there are fg > 2(2(n — 2)) = 4(n — 2) chordless cycles. Therefore,

1(C) = [Cil+ch(CL)
= [Cel+ (ICL] - Bo + B2)
< 2(21E(L)I/4) ~4(n —2) +2(n — 2)
= [E(D)]-2(r-2)
< [E(L)I].

Subgraphs H, J, and L partition E(G) and have CDCs Cg, Cy and Cr, respec-
tively, such that v(Cx) < |E(H)|, v(Cs) < |E(J)|, and v(Cr) < |E(L)|. Therefore,
by Lemma 10, G has a CDC, Cg, with v(Cg) < |E(G)|. The transition multigraph
of each vertex in G consists of a triangle and a collection of digons. For the vertices
u and v, and the vertices in the sets X,,—; and X, the triangle is contributed by Cg,

while for the vertices in the sets Xj,..., X,_,, the triangle is contributed by Cj.

4d. r =2, n odd.

Let u and v be the vertices in the two parts of size one, and let Xj,..., X, be
the remaining parts of G, each containing at least three vertices. The subgraph H,
induced by the vertices u and v and the vertices of X, is a complete 3-partite graph
with three odd parts. Therefore, by applying Case 3 of Theorem 21, H has a CDC,
Cr, composed of two copies of a cycle decomposition, with v(Cg) < |E(H)|. Because

the CDC is composed of two copies of a cycle decomposition, Cg contributes digons
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to the transition multigraph of each vertex in H. If n = 1, G is 3-partite, and thus
Cx is a CDC of G. Thus, we assume from now on that n > 3.

Let J be the subgraph induced by the vertex v and the vertices in the sets
Xi,...,Xn-1. Then J is a complete multipartite graph, with one part of size one
and the other parts of odd size at least three. Case 4a of this proof shows that
J has a CDC, C;, with v(Cs) < |E(J)|, which contributes digons to the transition
multigraph of each vertex in V(J).

The only edges of G not included in the subgraphs H and J are those between
the vertices in the set A = X, U {u} and the vertices in the set B = U’} X;. Let L
be the subgraph on the vertices in the set AU B containing these edges. Because the
set X, has odd size, the set A has even size; because each of the sets Xi,..., Xn—1

also has odd size, and because n—1 is even, the set B has an even number of vertices.
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Therefore, L is a complete bipartite graph with two even parts, and so by Lemma 12,
has a CDC, C, consisting of two copies of a 4-cycle decomposition. The CDC, Cr,
contributes only digons to the transition multigraphs of the vertices in L.

The vertices in A and B can be grouped so as to minimize the number of chords
in Cr. In considering the set A, we see that all but one vertex from X,, can be paired
With another vertex from this part; the unpaired vertex can be paired with vertex u,
and this pair contributes a chord to every 4-cycle in which it appears. Similarly, for
the set B, all but one vertex from each set Xj,...,X,—1 can be paired with another
vertex from the same part, while the remaining n — 1 vertices can be paired with
each other. These latter (n — 1)/2 pairs each contribute a chord to every 4-cycle
in which thev appear. Therefore, the number of 4-cvcles in Cr with two chords is
B2 =2(n—1)/2 = (n —1). Because each set X;,...,X, has at least three vertices,
and thus, at least one non-adjacent pair of vertices, the number of chordless 4-cycles

in Cr, is Bo = 2(n — 1). Therefore,

¥(CL) = |CL|+ch(CL)
= |C| + ([CL] — Bo + B2)
< 2QRIEDI/4) - 2Ar-1)+(n-1)
= |E(L)|-(n—1)
< |E(L)]-
Because the subgraphs H, J, and L partition the edge set of G, and because the
CDCs, Cu, Cs, and Cr satisfy v(Car) < |E(H)|, 7(Cs) < |E(J)], and 7(C) < |E(L)],

then by Lemma 10, the graph G has a CDC, Cg, with ¥(Cg) < |E(G)|. The CDCs of
the three subgraphs of G each contribute only digons to the transition multigraphs
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of their vertices. Therefore, the transition multigraph of each vertex of G consists

only of digons.

4e. r=1,3,5 (mod 6), r > 3 and n even; r =0,2,4 (mod 6), r >4 and n odd.
As in the previous cases, we proceed by partitioning the edges of G into three sub-
graphs, H, J, and L. The way these subgraphs are determined depends on the value

of r. We thus define two types of graphs, as follows.
Type 1 graph has r=1,3 (mod 6), r >3, n even, or

=0,4 (mod 6), r>4,nodd
Type 2 graph has r =35 (mod 6), r > 5, n even, or
r =2 (mod 6), r > 8, n odd.

Let Y be the set containing the r vertices from the parts of size one and let
X1,-..,Xn be the parts with at least three vertices. For Type 1 graphs, let X?%,
1 <z <n, be a subset of X; containing three vertices. For Type 2 graphs, let X?%¢,
1 <2< n—1, beasubset of X; containing three vertices and let X2% be a subset of
X, containing one vertex. For both types of graph, let X" = X;\X?%,1 <i <n,
and let X°dd = (& X944,

Subgraph H. Consider the subgraph H, induced by the vertices Y U X°99  Let
Y = {y1,92,---,9-}, and let X; ={z;;: 1 <j<|X:|},1 <i<n. Then V(H) =
{31,11 21,2y 21,3, 22,1, 2,2, £2,35 - - - 3 Tn,1, Tn,2yZTn,3; Y1:¥25- - -, yr} for Type 1 gl'aPhS, and

V(H) = {31,1’ Z1,2,71,3y22,1,T2,2, 233 + -+ yTn—1,1, Tn-1,2:Tn-1,3Tn,1, Y1, ¥2y-- - yr} for

Type 2 graphs. For both types of graphs, let |[V(H)| = |Y UX°49| = h. When
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Figure 5.6: Case 4e, Subgraph H.

r=1,3 (mod 6) and neven, |X°dd|=3n =0 (mod 6),

r=0,4 (mod 6) and nodd, [X°dd|=3n+3 =3 (mod6),

r =5 (mod 6) and neven, [X°dd|=3(n—-1)+1=4 (mod6), and
r =2 (mod 6) and nodd, [X°4|=3(rn—-1)+1=1 (mod 6).
Therefore, when

r=1,3 (mod 6) and neven, |[YUX®d|=h=1,3 (mod 6),

r=0,4 (mod 6) and nodd, [YUX°d|=hr=1,3 (mod6),

r =5 (mod 6) and neven, |[YUX°94d|=h =3 (mod 6), and

r=2(mod6) and nodd, [YUX°dd|=h =3 (mod6).

Because h = 1,3 (mod 6) no matter what the value of r, the complete graph,
K}, has a cycle decomposition into triangles (see Lemma 19). To find a cycle de-
composition of H, the cycle decomposition of K; can be modified by removing the

edges between the three vertices in each set X?¥, 1 < ¢ < n (Type 1), and X?%,
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1<:i<n-—1(Type?2).

Foreachi,1 <i<n (Typel), and 1 <i<n—1 (Type2), if there is a triangle
through the vertices z;1, zi2, and z;3, then its edges can be deleted. Otherwise,
edges z;1%;2, Ti1T:3, and z;27;3 lie in three distinct triangles, ¢; = z;17:2p1%:1,
C2 = Ti1TiaPeTi, and €3 = Ti2Ti3PaTiz, P F P2 # Ps, P1.P2Ps € V(H)\XPH, of
the cycle decomposition of K. In this latter case, the removal of the edges results
in the 6-cycle z;1p1z;2p32; '3p2.:z:,-,1 in H. Because the vertices z;;, z;2, and z;3 are
all from the same part, this 6-cycle has at most six chords.

With the deletion of edges of K to form H, the cycle decomposition of Kj
into triangles is also altered, and becomes a cycle decomposition of H composed of
le decomposition of H indicates that

. .
L 2 c] 2 d G‘C""]M pa&h 6"\:}”\:19 m the Y < VANSLL A AL A YAND VALENY

LO%-L ot DU AFE-R ~ aaa g e

three triangles which existed in the cycle decomposition of K}, are lost. Let g be the
number of 6-cycles in the cycle decomposition of H. Then the number of sets X?%,
whose three vertices were in a triangle in the cycle decomposition of K} is, for Type
1 graphs, n — g, a.nd for Type 2 graphs, (n — 1) — g. For each X?%¢ whose vertices
satisfy these conditions, only one triangle that existed in the cycle decomposition
of K is absent in the cycle decomposition of H. Overall, in removing the edges
between the vertices in each X;, we therefore lose, for Type 1 graphs, (n —g)+3g, or
n + 2g, triangles, and for Type 2 graphs, ((n — 1) — g) + 3g, or n — 1 + 2g, triangles.
In either case, we gain g cycles of length six, each with at most six chords. The
cycle decomposition of K can be constructed so that the vertices in at least one set,
X¢d4, form a triangle, and so, for Type 1 graphs, g < n — 1, and for Type 2 graphs,
g<n-—2.

Let Cg be the CDC of H consisting of two copies of this cycle decomposition into
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triangles and 6-cycles. Then Cx contributes digons to the transition multigraph of
each vertex in H.

For a Type 1 graph, the number of edges in H is

\E(H)| = (" '*'23") —3n (5.1)

while for a Type 2 graph, the number of edges is

|E(H)| = (r+3(n2_ 1)“) —3(n—1)= (r+32"’2) —-3(n—1). (5.2

For a Type 1 graph, the number of cycles in the cycle decomposition of H is

1i/r+3n 1}/r+3n
5[( 2 )"3"‘69]“—5[( 2 )‘3"]‘9’

and so the number of cycles in the CDC, Cq, is

Cal = 2 [( +n) - 3n] — 29 = 2B - 20.

For a Type 2 graph, the number of cycles in the cycle decomposition is

%[(r+32"_2) —3(n-1)—6.¢]] +g=§[(r+32"_2) -—3(n—1)] —g,

and so the number of cycles in the CDC, Cy, is

eal =2 |("% %) ~sa- 1] -20 = ZiEi - 2,

the same number obtained for that of Type 1 graphs. Because each 6-cycle has at

most six chords, and each cycle is used twice in the CDC, Cg, then for either type
of graph,
v(Cx) = [CH|+ ch(Ch)
< 2|E(H)|/3—29+12¢

= 2|E(H)|/3 + 10g.
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Recall that for Type 1 graphs, g < n —1, and so
7(Cx) < 2|E(H)|/3 +10(n — 1), (5.3)
while for Type 2 graphs, ¢ < n — 2, and so
7(Cr) < 2|E(H)|/3 +10(n — 2). (5-4)

For Type 1 graphs, because |E(H)| = (""23") ~3n and r > 3, we get

\E(H)| = (" *;_3") —3n
> (3 ; 3n) 3

= (3n+3)(3n+2)/2—3n

[(9n2 + 15n + 6) — 6n]/2

= (9n® +9n +6)/2.
Using this inequality and Equation 5.3, we get

7(Cx) < 2|E(H)|/3+10(r —1)
= |E(H)| - |E(H)|/3+10(r —1)
< |E(H)|—[(9n* +9n +6)/2]/3 + 10(n — 1)
= |E(H)| - (3n* +3n +2)/2 4+ 10n — 10
= |E(H)|— (3n® +3n +2 — 20n + 20)/2
= [E(H)| - (3n® —1Tn +22)/2
= |E(H)| - (3n—11)(n - 2)/2

< |E(H)]
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when n > 11/3. We must therefore consider the cases when n = 2 and n = 3
separately.
When n = 3, we can substitute this value into the calculation of the number of

edges in a Type 1 graph (Equation 5.1) to obtain

\E(H)| = ("‘;3”> ~3n

- (19

= (r+9)(r+8)/2—-9

[

[(r* +17r + 72) — 18]/2

(r® +17r + 54)/2.

[

Also, 10(n — 1) = 20, so Equation 5.3 becomes

v(Cx) < 2|E(H)|/3+10(n —1)
= |E(H)| - |E(H)|/3 +20
= |E(H)| - [(r* + 17r + 54)/2]/3 + 20
= |E(H)| - (r*+ 17r + 54 — 120)/6
= |E(H)| - (r*+17r —66)/6
< |E(H)]

when r > 4. However, n is odd, G is a Type 1 graph, and r = 0,4 (mod 6),sor > 4,
and the inequality holds.

When n = 2, substituting this value into Equation 5.1 gives

\E(H)| = (’ *‘23") —3n
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_ (r-;—G) _6
= (r+6)(r+5)/2—6

= [(r® +11r +30) — 12]/2

(r* +11r + 18)/2.

Also, 10(n — 1) = 10, so Equation 5.3 becomes

¥(Cx) < 2|E(H)|/3+10(rn —1)
= |E(H)| - |E(H)|/3+10
= |E(H)| -[(r*+11r 4+ 18)/2]/3 + 10
= [E(H)| - (r* +11r + 18 — 60)/6
= |E(H)|—(r*+11r —42)/6
= |E(H)| - (r +14)(r —3)/2.
< |E(H)|
when r > 3.

We have now seen that v(Cy) < [E(H)| for all Type 1 graphs, except when r = 3

and n = 2; this graph will be examined in detail at the end of this case.

We must now determine whether the inequality v(Cg) < |E(H)| holds for Type
2 graphs. Recall that for Type 2 graphs, Equation 5.2 gives

|E(H)| = (r+32" - 2) —3(n —1).

Sincer > 5,

) = ("5 %) -3
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(3n2+3) _3(n—1)

= (3n+3)(3n+2)/2—-3n+3
= [(9n® + 15n + 6) — 6n + 6]/2

= (9n® +9n + 12)/2.
Therefore, Equation 5.4 becomes

7(Cx) < 2|E(H)|/3+10(n —2)
= |E(H)| - |E(H)|/3+10(n —2)
< |E(H)|-[(9n® +9n + 12)/2]/3 + 10(n — 2)
= |E(H)| - (3n® +3n +4)/2 4+ 10n — 20
= |E(H)| - (3n? +3n + 4 — 20n + 40)/2
= |E(H)| - (3n® —17n +44)/2

< |E(H)|
for all values of n. Therefore, for Type 2 graphs, v(Cy) < |[E(H)]|-

Subgraph J. Let J;, 1 < i < n, be the bipartite subgraph of G' with parts X"
and V(H), and all edges incident to vertices in both parts, and let J = U, J;.

For each integer ¢z, 1 < ¢ < n, X; is an independent set, and so the vertices of
Xg'*" are adjacent to all vertices in V(H) except those in X?%. Consequently, we
can consider each subgraph J;, 1 < ¢ < n, to be a complete bipartite graph with
parts Xf"** and V(H)\X?%. For Type 1 graphs, |V(H)\X?%| = |V(H)|—-3 for all 7,
1 < i < n, while for Type 2 graphs |V(H)\X?%| = |[V(H)|—-3foralli,1 <i<n-—1,
and |V(H)\X?2%*| = |V(H)| — 1 for i = n. For both types of graphs, |[V(H)| = 1,3
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Figure 5.7: Case 4e, Edges of subgraph J;.

(mod 6), and so [V(H)\X?%| is even for all £, 1 <7 < n. As X" also has even
size, a CDC, Cy,, of each subgraph J;, 1 < ¢ < n, can be found using the method
described in Lemma 12 and Corollary 13 for complete bipartite graphs with two even
parts. Each CDC consists of two copies of a decomposition into 4-cycles, and hence
each CDC contributes a collection of digons to the transition multigraph of each
vertex in the set V(J;). Because X{¥*" is a subset of the part X;, 1 <z < n, of G,
its vertices are non-adjacent, and so none of the 4-cycles in Cj;, 1 < ¢z < n, has more

than one chord. Therefore, ch(Cy.) < |Cs.|, and hence

7Cr) = [Cul+ch(Cx)

< 2|chI

2(21E(J:)]/4)
= |E()-
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Figure 5.8: Case 4e, Subgraph L.

The subgraphs J;, 1 < ¢ < n, partition the edge set of J, and so, by Lemma 10,

7(Cr) S IEWJ)]-

Subgraph L. Finally, we must find a CDC for the edges between the vertices in
each pair of sets Xf***, 1 <7 < n. Let L be the subgraph induced by the vertices
U=y XU,

This subgraph consists of subsets, Xf"** 1 < i < n, of the parts Xj,..., X, of
the graph, G. Because each of these subsets has even size, the graph L is a complete
multipartite graph with all even parts. Using the construction in Case 1 of this proof,
we get a CDC, Cr, consisting of two copies of a decomposition into 4-cycles. All the
cycles are chordless, so v(Cr) < |E(L)|, and Cr contributes digons to the transition

multigraph of each vertex in V(L).

Except for the case r = 3 and n = 2, the subgraphs H, J, and L partition the edge
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set of the graph, G. Furthermore, the CDCs, Cg, C;, and Cr, satisfy v(Cx) < [E(H)|,
¥(Cr) < |E(J)|, and 4(Cr) < |E(L)|. By Lemma 10, the union of these CDCs is
a CDC, Cg, with 4(Cg) < |E(G)|- Because the CDCs Cg, Cs, and Cz are each
two copies of a cycle decomposition of the subgraphs H, J, and L, the transition

multigraph of each vertex in the graph G consists of digons.

What remains is to show that when r = 3 and n = 2, v(Cg) < |E(G)|-

Let G be a complete multipartite graph with r = 3 parts of size one, and n = 2
parts of odd size, each with at least three vertices. The graph G can be thought of
as the union of a triangle (subgraph T'), and a 3-partite graph (subgraph W) with
one part consisting of the three vertices of the triangle (vertices V(T')) and the other
two parts of odd size, each with at least three vertices. The subgraph T has a CDC,

Cr, consisting of two copies of the triangle, and thus,
7(Cr) = |Cr| =2 < 3 = |E(T)|-

Denote the parts of W by X = {zo,z1,22}, Y = {y0,---,¥n-1}, and Z =
{z0,...,2p-1}, where X = V(T).

By Case 3 of Theorem 21, W has a CDC, Cw, consisting of two copies of a
cycle decomposition. From the proof of this case, Cy consists of two triangles and
(IE(W)| —3)/2 cycles of length four. The only cycles of length four with two chords
are the two copies of the Cl cycles zozp—1T1Yn—-1%0, and so B2 = 2. Also, because
[Y] > 3 and |Z] > 3, at least one of the C2 cycles in the decomposition is chordless,

and so in the CDC, Sy > 2. Therefore,

¥(Cw) = [Cwl|+ ch(Cw)
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= 2+ ([E(W)| - 3)/2 + ch(Cw)

= (|[EW)[+1)/2+ ((IE(W)| —3)/2 — Bo + Bz2)
< |[EW)|-1-2+2

= [E(W)|-1

< |[EW).

Subgraphs T" and W partition E(G) and have CDCs Cr and Cy, respectively,
such that 7v(Cr) < |E(T)| and v(Cw) < |E(W)|. Therefore, by Lemma 10, G has
a CDC, Cg, with v(Cg) < |E(G)|- Because both Cr and Cw are each composed of
two copies of a cycle decomposition, Cg is also composed of two copies of a cycle
decomposition, and thus the transition multigraph of each vertex in G consists of a

collection of digons.

4f. r =1,3,5 (mod 6), r > 3, and n odd; r = 0,2,4 (mod 6), r > 4, and n even.
Let Y be the set containing the r vertices from the parts of size one, and let
Xi,..., X, be the parts of G containing at least three vertices.

Let H be the subgraph of G induced by YU X; U...U X,_;. The subgraph, H,
is therefore a complete multipartite graph with r = 1,3,5 (mod 6), r > 3, and n
even, or r = 0,2,4 (mod 6), r > 4, and n odd, and so, from the results of Case 4e,
we know that H has a CDC, Cy, with 4(Cx) < |E(H)|, that contributes only digons
to the transition multigraph of each vertex in V(H).

The only remaining edges in G to be covered are those that join the vertices in
V(H) to the vertices in X,.

Let J be the complete bipartite subgraph of G with parts A = ({J?? X;)UY and
Xn. For r =1,3,5 (mod 6), |Y] is odd, and so, since n — 2 is also odd, |A| is even.
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For r = 0,2,4 (mod 6), |Y] is even, and so, since n — 2 is also even, |A| is again
even. Therefore, as | X,| is odd, we can apply Lemma 15 to find a CDC, Cy, of J.
The CDC consists of 4-cycles, each containing a pair of non-adjacent vertices of X,.
Therefore, each cycle in C; has at most one chord, and it follows that ch(Cy) < |Cs].

Hence,

7(Cr) = [Csl+ch(Cs)
< 2iCy|

= 202[E(J)|/4)
= |E(J)|.

Because |A| is even and | X,| is odd, by Lemma 15 the transition multigraph of
each vertexin A consists of a triangle and a collection of digons, while the transition

multigraph of each vertex in X, consists only of digons.

Let L be the subgraph of G, whose edges are induced by the vertices in the sets
Xn-1 and X,. The subgraph is a complete bipartite graph with parts of odd size,
each at least three. Lemma 17 can be applied directly, and so L has a CDC, Cg,
with v(Cr) < |E(L)|. From Lemma 17, we find that the transition multigraph of
each vertex in V(L) consists of a triangle and a collection of digons.

Because the subgraphs H, J, and L partition the edge set of G, and because
each of these subgraphs has a CDC, Cy, Cy, and Cy, respectively, satisfying v(Cx) <
[E(H)|, v(Cs) < |E(J)|, and v(CL) < |E(L)|, then by Lemma 10, G has a CDC, Cg,
with 7(Ce) < |E(G)|. The transition multigraph of each vertex in G consists of a

triangle and a collection of digons; for the vertices in the sets Y, X, ..., Xn_2, the
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triangle results from the cycles of C;, while for the vertices in the sets X;,_; and X,

the triangle results from the cycles of Cr.

Case 5. GG consists of s parts of odd size, and ¢ parts of even size.

The proof of this case depends on the results of the previous cases of this theorem,
and also on the results presented in Chapter 4. Graphs that have only one or two
odd-sized parts, and in which each of these odd-sized parts has only one vertex,
must be considered separately from all other graphs. This special consideration is
necessary because it is either not possible to find a CDC of the subgraph consisting
of the edges connecting a single odd-sized part to the vertices in the even-sized parts
if there is only one vertex in the odd-sized part, or to form a CDC of the subgraph

induced by two odd-sized parts, when there is only one vertex in each odd-sized part.

da. s=1, t even.
Let S be the part of odd size and let X,..., X; be the parts of G which contain an
even number of vertices.

If t = 2, then G is a 3-partite graph with one part of odd size and two parts of
even size. We can therefore apply the results of Theorem 21 and Corollary 22 to find
that L(G) has an SCDC.

If ¢ > 4, the even-sized parts can be paired to form supersets Y; = Xy;_; U Xo;,
1 £: < t/2. The subgraph H;, induced by S and the vertices in the superset, Y;, is
a 3-partite graph, with one odd part and two even parts, and hence, as per Case 2 of
Theorem 21, has a CDC, Cg;, with 4(Cx;) < |E(H;)| (equality only when H; has one

part of size one and two parts of size two). Therefore, by Lemma 10, the subgraph



84

i3 H; of G has a CDC, Cy, with 4(Cx) < |E(H)|. As each of the CDCs Cy,,
1 <t < ¢/2, contributes digons to the transition multigraph of each vertexin S, and
a triangle and a collection of digons to the transition multigraph of each vertexin
the superset Y;, the CDC, Cy, also contributes digons to the transition multigraph of
each vertexin S and a triangle and a collection of digons to the transition multigraph
of each vertex in the parts X;,..., X;.

In order to complete the CDC of G, it is necessary to double cover all edges
between the pairs of supersets Y; and Y, 1 < 7,7 <1/2,¢ # j. Let J be the subgraph
on the vertices U:—1 ; containing these yet uncovered edges. The subgraph J is a
complete multipartite graph with ¢/2 even parts, and so from Case 1 of this proof,

] -t~ A 1 ml
7 ]’\ae a (‘Dv’ Pv’ hr\nsvst:ng of o vnpvoe Cf a dﬂaampcaztuvu intc C}-C‘_M The

CDC C; thus contributes digons to the transition multigraph of each of its vertices.
Because each of the parts X;, 1 < I < ¢, has an even number of vertices, the pairs
of vertices on which the cycles are defined can be chosen so that in any pair, the
vertices are from the same part X;, 1 < ! < ¢t. Each cycle in Cy is thus chordless.

Hence
7(Cr) = 2(|E(J)I/4)
< |E(J)].
Combining the results for the CDCs of the subgraphs H and J, and applying
Lemma 10, we find that G has a CDC, Cg, with v(Cg) < |E(G)|. The transition

multigraph of each vertex in S consists of digons, while the transition multigraph of

any vertex in an even part of G consists of a triangle and a collection of digons.

5b. s =1, t odd; G is not K ».
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The line graph L(K; ) is the complete graph K, which trivially has a bridge. There-
fore, as discussed in Chapter 2, L(K; ;) does not have a CDC or an SCDC, and thus,
K, ; must be excluded from this case.

If £ =1 and the odd part contains only one vertex, then as in Case 2b, G is a
star and L(G) is a complete graph. Therefore, as long as the part of even size has
more than two vertices (so G is not Kj;), L(G) has an SCDC.

If £ = 1 and the odd part contains at least three vertices, then G is a bipartite
graph with one part of odd size at least three, and one part of even size. Therefore,
we can apply Lemma 15 to find that G has a CDC, Cg, with v(Cg) < |E(G)|, that
contributes a triangle @d digons to the transition multigraph of each vertex in the
part of even size, and a collection of digons to the transition multigraph of each
vertex in the part of odd size.

It > 3, let S be the part of odd size, and let Xj,...,X; be the parts of G
containing even numbers of vertices.

Let H be the subgraph induced by the vertices in S and the vertices in the parts
X1,...,X¢;. Because t — 1 is even, we know from Case 5a that H has a CDC, Cg,
with v(Cg) < |E(H)|, which contributes digons to the transition multigraph of each
vertex in S, and a triangle and a collection of digons to the transition multigraph of
each vertex in the sets X;,..., Xi—;.

Let J be the subgraph on V(G) containing the yet uncovered edges in the graph
G. These edges are the edges between vertices in the subgraph, H, and vertices in
the set X;. Because the set V(H) consists of vertices from ¢ — 1 even-sized parts, as
well as the vertices in the odd-sized part, S, the number of vertices in V(H) is odd.

The set X;, however, has an even number of vertices. Therefore, the subgraph J is
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a complete bipartite graph with one even part and one odd part. By Lemma 15, J
has a CDC, Cj, consisting of 4-cycles, which contributes a triangle and a collection
of digons to the transition multigraph of each vertex in the set X;, and a collection
of digons to the transition multigraph of each vertex in the set V(H). Because the
set X, is an independent set in G, the pairs of its vertices used in the 4-cycles of Cs
are non-adjacent, and so contribute no chords to the cycles. Therefore, each 4-cycle

has at most one chord, so ck(C;) < |Cs|- Thus,

¥(Cs) = |Cs]+ch(Cy)
< 2/|Cy4|
= 2(2|E(N)I/49)

= |E(J)I-

Because the subgraphs H and J partition the edge set of G, and because each
of these subgraphs has a CDC, Cgx and Cs respectively, where v(Cy) < |E(H)|, and
v(Cs) < |E(J)|, then by Lemma 10, the graph G has a CDC, Cg, with v(Cg) <
|[E(G)|. Each vertex in S has a transition multigraph that consists of digons, while
each vertex in the sets Xi,...,X; has a transition multigraph that consists of a
triangle and a collection of digons; the CDC Cqg contributes the triangle to the
transition multigraph of each vertex in the sets Xj,...,X;_;, while the CDC C;

contributes the triangle to the transition multigraph of each vertex in the set X,.

5c. s = 2.
Let Y; and Y, be the parts that contain an odd number of vertices, and let X;,...,X;

be the parts of G that contain an even number of vertices.
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Let H be the subgraph induced by the vertices in the sets Y;, Y3, and X;. The
subgraph H is a complete 3-partite graph with two odd parts and one even part, and
hence has a CDC, Cg, as described in Case 4 of Theorem 21, with v(Cx) < |E(H)|.
From that case, we know that with respect to the CDC, Cz, each vertex in ¥; and Y;
has a transition multigraph consisting of a triangle and a collection of digons, while
each vertex in X; has a transition multigraph consisting only of digons.

If t = 1, then we are done. Otherwise, let theset A = YUY, U X;. As ¥}
and ¥, both have odd size and X; has even size, |A] is even. The edges in the
graph which remain to be covered are those edges between every pair of the sets
A, Xi,...,X¢1. Let J be the subgraph of G with vertices V(G) containing these
uncovered edges. The suhgraph J is a complete multipartite graph with 2!l even
parts, and so Case 1 of this proof implies that J has a CDC, Cz, which consists
of two copies of a decomposition into 4-cycles. The 4-cycles of C; connect pairs
of vertices from different sets, and so if one vertex, y; from Y3, is paired with one
vertex, y; from Yz, no other pair of vertices need include adjacent vertices. Thus, any

4-cycle including the pair of vertices {y},y3} has one chord, while all other 4-cycles
are chordless. Therefore, ch(C;) < |Cs|, and so

7(Cs) = [Csl+ ch(Cy)
< 2|Cy]

= 2Q2[E(J)I/4)
= [E(J)]

Because the CDC C; consists of two copies of a cycle decomposition, it contributes

only digons to the transition multigraph of each vertex in the subgraph, J.
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The subgraphs H and J partition the edge set of G, and since each has a CbC, Cm
and C; respectively, where v(Cy) < |E(H)|, and ¥(Cs) < |E(J)|, then by Lemma 10,
G has a CDC, Cg, with v(Cg) < |E(G)|. Each vertexin Y; and each vertexin Y> has
a transition multigraph that consists of a triangle and a collection of digons, while
each vertex in the sets Xj,..., X, has a transition multigraph that consists only of

digons.

5d. s > 3.

Let H be the subgraph of G induced by the parts of odd size. The subgraph is,
therefore, a complete multipartite graph with all odd parts, and so from Cases 2,
3, and 4 of this proof, we know that it has a CDC, Cy, with v(Cx) < |E(H)|.
Furthermore, unless H = Kg (G has six parts of odd size, each containing one
vertex), the transition multigraph of each vertex in H consists of a collection of
digons, or a triangle and a collection of digons.

Let J be the subgraph induced by the parts of even size. If ¢ = 1, then J has
no edges and so, v(C;) = 0 = |E(J)|- However, if ¢ > 2, then from Case 1 of this
proof, we know that the subgraph has a CDC, C;, with v(C;) < |E(J)|, and that
the transition multigraph of each vertex of J consists of digons.

Let L be the subgraph of G with vertices V(G), containing the edges which
connect the vertices of the subgraph H to the vertices of the subgraph J. This
subgraph is a complete bipartite graph with parts V(H) and V(J) where |V(H)|
is even or odd, and |V(J)| is even. By Lemma 12 or Lemma 15, depending on
the parity of |V(H)|, the subgraph L has a CDC, C;, consisting only of 4-cycles.

If the number of vertices in V(H) is even, then C; contributes only digons to the
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transition multigraph of each vertex in the subgraphs H and J, while if the number
of vertices in V(H) is odd, Cr, contributes digons to the transition multigraph of each
vertexin V(H), but contributes a triangle and a collection of digons to the transition
multigraph of each vertex in V(J). Because the set V(J) consists of even-sized parts,
vertices in this set can be paired so that the two vertices in each pair are in the same
part of G. Therefore, the pairs of vertices of the set V(J) contribute no chords to
the 4-cycles in Cr. Some pairs of vertices in V(H), however, contain vertices which
are adjacent in G, but the number of these pairs can be minimized by grouping,
whenever possible, two vertices from the same part. Each pair of adjacent vertices
in V(H) contributes one chord to each cycle in which it appears, and so each cycle

in Cr has at most one chord. Therefore, ch(Cy) < IC; |, with equality only when all

rl
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vertices in V(H) are adjacent (H is a complete graph). Hence,

¥(C) = |[CL|+ ch(CL)
< 2iC
= 2(2(E(L)|/4)

= |E(L)I.

Because the subgraphs H, J, and L partition the edge set of G, and because
each of these subgraphs has a CDC, Cq, Cy, and Cr, respectively, where v(Cy) <
|E(H)|, 7(C5) < |E(J)| (equality only when t = 1), and ¥(Cr) < |E(L)| (equality
only when H is complete), then by Lemma 10, G has a CDC, Cg, with v(Cg) <
| E(G)|. Depending on the structure of the odd-sized parts in the graph, the transition
multigraph of a vertex in G consists of a collection of digons, or of a triangle and a

collection of digons, except when G has exactly six parts of odd size, each containing
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one vertex.

We must now examine the graph, G, with exactly six parts of odd size, each
containing one vertex (the subgraph H, as described previously, is Kg). Let Y =
{yo;---,ys} be the set containing the six vertices from the parts of size one, and let
Xi,...,X: be the parts of even size. Let u and v be two vertices in the set X;.

We define Q as the subgraph G[Y U {u} U {v}], and define Q; as the subgraph
of @ induced by the vertex u and the vertices in the set Y, and @, as the subgraph
of @ induced by v and vertices in the set Y. The subgraph @, is a complete graph
on seven vertices and since 7 = 1 (mod 6), it has a cycle decomposition, Cg,, into
|E(Q1)|/3 = T triangles (see Lemma 19). Because of the symmetry of the vertices
in Y, we can label the vertices so that the triangles in Cg, containing vertex u are
the triangles uyoy1u, uy2ysu, and uysysu.

The subgraph @ is also a complete graph on seven vertices, and has a cycle
decomposition, Cq,, obtained by replacing the vertex u with the vertex v in the cycles
of Cg,. Therefore, Cq, also consists of seven triangles, including vyoy1v, vy2ysv, and
vy4ysv, the triangles which pass through vertex v.

In defining the 4-cycles

Cl = uyovyiu
C2 = uysvysu

C3

UY4VYsu,

we find that
Co =Co, UCq, U{C1, C2, C3}
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is a CDC of Q. Edges incident with two vertices in Y are covered twice, once by a
cycle in Cq,, and once by a cycle in Cg,. Edges incident with vertex u are covered
twice, once by a cycle in Cg,, and once by a 4-cycle. Similarly, edges incident with
vertex v are covered twice, once by a cycle in Cg,, and once by a 4-cycle.

Triangles have no chords, but the 4-cycles C1, C2, and C3 each contain one chord,

contributed by the pair of vertices from Y. Therefore, ch(Cq) = 3, and so

7€) = |[Cql+ ch(Cq)

= (T+7+3)+3
= 20
< 27=[E(Q)|

The transition multigraph of vertex yo contains edges uy;, vy; and uv, contributed
by the triangles uyoy1u and vyoy,v and the 4-cycle Cl. Because the cycles in Cq,
were constructed by replacing vertex u with vertex v in the cycles of Cq,, the CDC
Cq has two copies of each triangle that passes through three vertices in Y. Therefore,
these triangles contribute digons to the transition multigraph, Mz(yo), and so Mz (yo)
consists of the triangle uy;vu and (d(yo) —3)/2 = 2 digons. Because of the symmetry
in construction of the cycles in Cq, the transition multigraph of every other vertex
in Y also consists of a triangle and two digons.

The transition multigraph, M7 (u), consists of the edges yoy1, y2y3, and y4ys,
contributed by the triangles of Cq, that pass through u, and one other copy of the
edges yoy1, y2ys, and ysys, contributed by the 4-cycles C1, C2, and C3. Thus Mr(u)
consists of three digons. Because of the symmetry between u and v in the cycles of

Cq, M7(v) also consists of three digons.
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Let R be the subgraph of G on vertices Y and A = X\ {u, v}, consisting of edges
incident with vertices in both sets. The subgraph R is a complete bipartite graph
with two even parts, and so by applying the results of Lemma 12 and Corollary 13, R
has a CDC, Cr, consisting of two copies of a cycle decomposition of R into 4-cycles.
The CDC Cgr thus contributes digons to the transition multigraph of each vertex in
V(R).

Because A is a subset of the part X, vertices in A are non-adjacent in G. All
vertices of Y are adjacent in G, however, hence each 4-cycle in Cg has one chord.

Therefore, ch(Cr) = |Cr], and

¥(Cr) = |[Cr|+ ch(Cr)
= 2|Cg|
= 2Q2|E(R)|/4)

= |E(R)|.

Let W be the subgraph on V(G) containing the yet uncovered edges of G. Then
W is a complete multipartite graph, with parts Y U X, X}, ..., X;—1. Each part Xj,
1 <z < t has even size, and |Y| = 6, so the parts of W all have even size. Therefore,
by Case 1 of this proof, W has a CDC, Cw, consisting of two copies of a cycle
decomposition into 4-cycles, which contributes digons to the transition multigraph
of each vertex in G. Because each set X;, 1 <7 < ¢—1 is an independent set, pairs
of vertices from these sets contribute no chords to the cycles of Cw. Therefore, each

cycle has at most one chord, and so ch(Cw) < |Cw|. Thus

7(Cw) = ICw|+ch(Cw)
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< 2|Cw|

= 2(2lE(W)|/4)

= |E(W).

The subgraphs @, R, and W partition the edge set of GG, and since each has a
CDC, Cq, Cr, and Cw, respectively, where v(Cqg) < |E(Q)|, 7¥(Cr) = |E(R)|, and
v(Cw) < |E(W))|, then by Lemma 10, G has a CDC, Cg, with v(Cg) < |E(G)|. The
transition multigraph of each vertex in Y consists of a triangle, contributed by Cq,
and a collection of digons, while the transition multigraph of each vertex in the sets

Xi,...,X; consists of a collection of digons.

In each case of this proof, we have shown that either the line graph L(G) of
the graph G has an SCDC, or that G has a CDC, Cg, with ¥(Cg) < |E(G)|, which
contributes a collection of digons or a triangle and a collection of digons to the
transition multigraph of each vertex in G. In the latter case, by applying Lemmas 6,
8, and 9 to the stated result, we conclude that the line graph L(G) has an SCDC.



Chapter 6

Conclusion

The Small Cycle Double Cover Conjecture states that every simple, bridgeless graph
bas a small cycle double cover. No-one has yet found a counterexample to this con-
jecture, but the conjecture has been verified for various classes of graphs: even graphs
with maximum degree four, even planar graphs, 4-connected planar graphs, complete
graphs, complete bipartite graphs, squares of trees, trigraphs, simple triangulations,
and eulerian line graphs.

MacGillivray and Seyvffarth have proved that the SCDC Conjecture holds for
bridgeless line graphs of planar graphs, and for bridgeless line graphs of two specific
classes of complete multipartite graphs: those with one vertex in each part (complete
graphs), and those with only two parts (bipartite graphs). In this thesis, the results
of MacGillivray and Seyffarth are extended, and it is proved that bridgeless line
graphs of all complete multipartite graphs have SCDCs.

The technique developed by MacGillivray and Seyffarth for proving that the line
graph of some graph has an SCDC was used in this thesis. This technique depends
on the fact that the edge set of the line graph is partitioned by a collection of cliques
corresponding to the vertices of the original graph. Because each of these cliques
can be covered by a PPDC, their union forms a PDC of the line graph. The paths
in this PDC can be joined together in a certain pattern to form a CDC of the line
graph. The method for joining these paths is determined by the cycles of a CDC of

the original graph. By counting the number of cycles in the CDC of the line graph,
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as well as the number of their chords, an upper limit to the number of cycles in the
CDC of the line graph can be given, and thus it can easily be verified whether or not
the CDC of the line graph is actually an SCDC. Consequently, in using this method,
the problem of finding an SCDC of a line graph is reduced to finding a CDC, with
appropriate properties, of the original graph.

Since a graph usually has a less complex structure than its line graph, it makes
sense to continue to use the methodology developed by MacGillivray and Seyffarth
and used in this thesis for proving that line graphs of other classes of graphs have
SCDCs. The more structured a graph, the easier it is to find a CDC of that graph
with the appropriate properties. Therefore, if one were to use this technique to prove
that the line graphs of certain classes of graphs have SCDCs, it would he logical to
study other well-structured classes of graphs.

The method developed by MacGillivray and Seyffarth could perhaps be enhanced
if one were to find other PPDCs of vertex cliques with easily predictable associated
multigraphs, since then the number of appropriate CDCs would be greater.

In verifying that certain classes of graphs fulfill the SCDC Conjecture, the general
statement of the conjecture is not proved. However, the techniques developed for
proving that various classes of graphs have SCDCs may eventually lead to a proof

of the conjecture or to a counterexample to the conjecture.
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