Exploratory testing for unwanted behavior using
evolutionary learning techniques

Jorg Denzinger
Department of Computer Science
University of Calgary, Calgary, Canada
denzi nge@psc. ucal gary. ca
Technical Report 2007-868-20

June 8, 2007

Abstract

We present a method that allows to create tools that help human testers to
do exploratory testing for unwanted behavior of software systems and their
components. The general idea is to use evolutionary learning to find interac-
tion schemes with the tested system that result in the tested system showing
the unwanted behavior or coming near to it. We present two case studies that
instantiate our method and that resulted in detecting not previously known
unwanted behavior in both tested systems.

1 Introduction

Testing systems for unwanted emergent behavior, or emergent misbehavior (see
[Mo05]) is among the most difficult problems that software testing, in fact system
testing in general, faces. At the core of this difficulty is that the starting point
for testing for emergent misbehavior is just a vague idea what we do not want to
see to happen and then the task is to essentially guess a system configuration of
the system to test and interactions with this system that produce the result that the
tester hoped not to see.

There are many documented cases of emergent misbehavior in all kinds of
distributed systems. For example, [FJ93] reports that in a network with “many
apparently-independent periodic processes ... these processes can inadvertently be-
come synchronized” despite the efforts of routers that periodically exchange rout-
ing protocol messages. This synchronization effect is abrupt and therefore hard to
anticipate. [Mo05] presents several additional cases of emergent misbehavior in

and outside of Computer Science. It should be pointed out that currently there are
several initiatives in Computer Science that will lead to an increased potential for
emergent misbehavior, because their core ideas of self-modification and emergence
of system properties aim for achieving positive emergent behavior. Examples for
such initiatives are autonomic computing (see [KCO03]) and service-oriented com-
puting (see [SHOS5]) that will require testing methodologies that target the avoid-
ance of certain conditions in a system instead of just testing for compliance of
given interaction sequences with the system requirements.

The current “solution” for testing for unwanted system behavior in literature
and in industry is to use exploratory testing (see [KBPO1]). Exploratory testing has
as key idea “simultaneous learning, test design and test execution” (see [Bach])
by the tester. Naturally, with such a heavy reliance on the human tester, we have
several potential drawbacks of exploratory testing that center around the human
element. The ability of a human being to learn something is difficult to predict.
It is highly dependent on the area that the learning takes place in and also on the
situation of the individual (humans can have bad days that result in quite different
learning results compared to a “normal day”). If we additionally want to have hu-
man intuition to work for us, then predicting outcomes is even worse. There are
guidelines and case studies available that help a human tester in being more pre-
dictable when doing exploratory testing, but it is still treated more like an art than
as something that everyone with a certain qualification will do the same way (and
with the same results). Now, exploratory testing is not the first concept in software
engineering that has these problems and there is one way that -while not totally
solving the problem- allows for more predictability of results: the development
and use of tools that help with the whole process in question.

So far, tool support for exploratory testing has not gone beyond simple book-
keeping that collects the interactions a tester has with the tested system (see, for
example, [TeEx]). In this paper, we present a general concept for producing tool
support for exploratory testing that concentrates on helping the human tester with
finding unwanted behavior of the system under test. Our concept makes use of so-
called evolutionary algorithms (see, for example, [Go89]) that use principles from
biology to produce systems with the capability to learn that also exhibit behaviors
that have some similarities to what human intuition achieves.

More precisely, our approach starts by creating a set of randomly generated
interaction sequences with the system that is tested (similar as suggested in, for
example, [Ha96]) and then evaluates how near these sequences come to bringing
the system to show the particular unwanted behavior we are looking for. Then we
create out of the best sequences new sequences that replace the bad old ones, using
so-called genetic operators, evaluate them and continue this cycle until we either
find the unwanted behavior or run out of the resource limit for this test. Usually,

this results in behaviors that come closer and closer to forcing the tested system
into showing the unwanted behavior (if the system can show this behavior at all)
and even if our approach does not lead to getting the system fully where we want
it to go, observing the best sequences that the system comes up with allows the
tester to get a good idea what is possible and to come up with additional different
tests. While the use of evolutionary algorithms has been suggested for other kinds
of testing, our approach targets especially exploratory testing, see Section 5.

We have used our general concept in two case studies, namely testing a com-
mercial computer game in the FIFA series by Electronic Arts and testing multi-
agent systems produced by students as assignment in a basic multi-agent systems
class. For FIFA, our tool was able to detect many interactions with the game (by
a potential user) that resulted in “stupid” behavior of the game, more precisely un-
necessary fouls leading to penalty kicks. When testing the multi-agent systems of
students, our tool found behaviors for a group of agents interacting with the stu-
dents’ agents that made the students’ agents freeze in place, a behavior that we did
not observe in our usual tests for these systems. This shows that tools based on our
concept are able to produce some of the intended results of exploratory testing on
their own, thus greatly helping with testing of complex systems.

This paper is organized as follows: After this introduction, in Section 2 we
present our basic view of how a testing environment for unwanted behavior of a
system should look like and we introduce basic notations that are used to repre-
sent the behaviors of components of a complex system and their interactions. In
Section 3, we present our evolutionary learning method that we use to evolve in-
teractions with a tested system that force this system into showing an unwanted
behavior. Section 4 presents the two case studies and our results. After presenting
related work in Section 5, in Section 6 we conclude with a discussion of our results
and possible future work.

2 Our basic view of a testing environment for unwanted
behavior

As stated in the last section, we aim at providing automated support for a human
tester in finding some unwanted behavior of a system, a system component or a
group of system components. And naturally, the behavior of these system compo-
nents takes place in some kind of environment. Formally, this means that we look
at some system to be tested Sysiested = (Compiested, Env), where Enw is the envi-
ronment SysSyesteq 18 acting in and Compyested = {Ctested 15----Ctested,m } 18 the set
of system components that we want to show the unwanted behavior. The behavior
of a system or (set of) component(s) depends on the system (components) itself

tested,1 s e tested,m
¢ ¢ / ﬂg byst,1

ENnV .

]
t vt

Figure 1: General setting of our approach

and the interactions that the system has within the environment with other systems,
components or human users. In this paper, we will use the term agent to refer to
these three types of entities that interact with SyS¢ested-

While in theory a tester would like to play the role of all of the agents Sys;ested
is interacting with, in reality this might not always be feasible due to the complex-
ity of a particular agent and the available test budget. Therefore we distinguish
the agents a system Sysicsteq interacts with into a set Agsrack = {AGattack,1--->
Agamck’n} of agents that the tester can use to attack the system to show the un-
wanted behavior and a set Apy st = {Agbyst.1,--Agbyst i} of bystander agents that
interact with Sysesteq and Aggsqcr but that are not under control of the tester (and
are not part of SYSiested)-

The possible (inter)actions of an agent Agastack i in Agitack With the environ-
ment, the other agents and Syscgeq form the set Actyyzqck.5- Then a particular test
run for Sysiesteq can be abstractly described as a sequence of timed actions for
each of the the agents Agattack,i in Aatmck with Systested’ (t’i71’a’i,1)""’(ti,li’ai,li)

with a; ; € Actastacrs and t; ; a number of time units, that creates a sequence
€0,€1,...,6, (a trace) of what we call enhanced environment states. An enhanced
environment state is essentially a view on the state of the environment together
with a selection of information from the states of all Ciesteqi in Compiested. We
are allowing for only a view of the complete states of the components and the envi-
ronment, because this makes evaluating a sequence of enhanced environment states
quicker and can require less work in getting state information out of the compo-
nents. It also allows for adjusting a tool based on our method from Section 3 to
see what it can come up with if only certain information is available (for example,
if we treat the components as black boxes), which can be important for security
testing of a system.

Note that for systems that interact with agents in a synchronous manner (as will
be the case in our case studies), we can get rid of the ¢; ; if we introduce a no-op
action (the agents simply interact with SysS;csieq €very time step). We then also
have that all the sequences are of the same length, i.e. [; = [forall 4, j and x = [;.
We should also point out that doing two test runs using the same action sequences
for all agents in Agsq0¢ might not always result in the same traces. There can be
several reasons for this: there might be random steps in Sys;esteq OF the bystander
agents might be in different states at the start of the runs or there might be random
events happening in the environment.

3 Our evolutionary learning method

In order to partially automate what an exploratory tester would do when testing
SYSiested> We have to look a little bit closer at what it is that an exploratory tester
does. Obviously, the tester will start with a particular test goal and will have a cer-
tain budget for this particular goal. Then he or she will interact with Sys;esteq play-
ing the role of some or all agents in A, e and will look at the traces eg,eq,...,6.
that are generated. If no problems are detected, then the tester will use his/her
knowledge to analyze the traces and to see if there are things that hint at some
unwanted behavior and if there is something then (s)he will again use knowledge
or expertise to come up with other interactions with Sys;cseq that provide more
hints. And this is repeated until either the tester found an interaction sequence with
SYSiested Producing the unwanted behavior or the test budget is spent.
Evolutionary algorithms work very similar to what we just sketched in the last
paragraph. They are created to fulfill a particular goal, usually are given a certain
amount of computing time to fulfill the goal or come as near as possible, and they
start by creating some random solution candidates for the given goal. These solu-
tion candidates are evaluated with regard to the goal and those candidates that hint

at being nearer to solving the goal are used to create new solution candidates, us-
ing knowledge about the particular application (and some additional randomness).
And this evaluation/creation of new candidates is repeated until either a solution
is found or the time is over. Essentially, an evolutionary algorithm kind of tries to
learn what the solution is based on experiences and using something that resembles
human intuition. The general setting for our approach, using the basic view from
the last section, is depicted in Figure 1.

To be more precise, the first step in using our approach is for the human tester
to define a test goal that can be evaluated by looking at a trace eg,ey,...,e, as defined
in the last section. As a first stage, this goal should be a predicate, let’s call it G,
that is true if a trace meets the goal, i.e. shows the particular unwanted behavior
the tester wants to test for, and false otherwise. Evolutionary algorithms work on
potential solutions for the goal, which means that we have to define how such a
solution, which usually is called an individual, should look like. In order to evalu-
ate traces, we have to produce them, which means that a potential solution should
include the interactions of the attack agents with SySesteq. Additionally, we might
want to choose a particular initialization of SyS;csteq, if this system allows for such
initializations, which essentially means providing Sys¢csteq With values for all the
parameters that allow different initializations. So, in general, using our notation
from Section 2, an individual has the form

(ANIt(P1,..0)s((F1,1,01,1)5-05(E1,11501,01) (B, 150,15 ves (i 15O 1))
where init is the initialization action for Sys¢csteq and pi,...,p, are values for the
parameters of init.

As stated before, the first step of the evolutionary learner is to create several
random individuals, which is called the initial population or first generation. In
order to do this, an a; ; is randomly selected out of Actgstqck,; and a p; or a t; ; is
randomly created out of the possible parameter values for the particular parameter
or the set of reasonable time units which is pre-defined by the tester.

The next step of an evolutionary algorithm is to evaluate all the individuals in
the population using a so-called fitness function. Naturally, such a fitness function
is application dependent, but for our method we have a general idea how to create
a fitness function for a particular test goal (although we still have a test goal depen-
dent part in it). As already stated, our fitness function evaluates traces eg,e1,...,6,
created by an individual. In fact, due to the fact that the same individual can create
different traces each time it is run, we will do a certain number of trial runs and
sum up the fitness measure single_fit of each produced trace and use this sum as
our overall fitness for the individual.

The fitness of an individual should reflect how near a trace for this individual
comes to fulfilling our test predicate Gicsr and if Gey is fulfilled, then we want it
to be fulfilled as early in the trace as possible (to make it easier to see the results of

any changes to SYSesteq that will be made to fix the problem later). This leads to
the following general scheme for single_fit:

J, if gtest((e&n-aej)) = true and
single_fit((eg,....ez)) = Gtest((€g,...,e;)) = false for all ¢ < j
Y i1 near_goal((ey,....e;)), else.

In this scheme, near_goal is intended to measure how near its argument trace
comes to fulfilling G;.s; and the smaller its value is, the nearer the trace came to
the goal. We will provide two examples for near _goal functions for rather different
applications in Section 4.

The next step of an evolutionary algorithm is to create new individuals out
of the individuals of the last generation. To do this, we need so-called genetic
operators that build a new individual out of old ones (the parent individuals) and
we need to select parent individuals for each application of a genetic operator.
For both tasks, there are many different methods described in the evolutionary
algorithms literature and how well such a method works is usually dependent on
the particular application. In the following, we will describe the methods we used
in our case studies.

Given the general setting we work in, there are 3 levels on which genetic opera-
tors can work: the team level, the individual agent level and the parameter level. On
the team level, the idea of operators is to combine the action sequences of agents
from the parents or to add a totally new action sequence for an agent. A team level
crossover takes two individuals

(NIt(P1,...,pg)s((t1,1,01,1)5-0o(E1,11501,0))seees(F, 1,00, 1) s (i 11050 1,)
and

(init(p’l,...,pg),((t’u,a’Ll),...,(t’l’ll,a’l’ll)),...,((t;hl,aﬁhl),...,(t;Jn,a;hln)))
and creates an individual

(NIt(P” 1,07 (71,1507 1,1) 50057 1,11507 1,1) es (7 1,1,07 12,1505

(t”n,ln aa”n,ln)))e

where ((t7,1,0”7,1)s. (875,507 1.1,)) s €ither ((¢;,1,a,1),-.., (ti1,,a4,1,)) or (] 1,45 1),
""(t;,li’a;,li)) and (p”1,...,p” ¢) is either (py,...,pq) OF (p’l,...,pfl) and which one is de-
cided randomly. A team level mutation takes one individual

(Nit(p1,..aPg)s ((E1,1,01,1)5005(E1,01501 1)) seees (1,8, 1) e (E 15O 1,)))
and creates the new individual

(init(p1,...,pq),((tl,l,al,l), ...,(tl’ll,CL1711)),.,.,((tal,ag’l),...,(t;li,a;’li)),...,

((tn,l san,l)’---,(tn,lnaan,ln)))
where ((tg’l,ag’l),...,(t;li,ag’li)) is a randomly created action sequence for agent
Agattack,i-

On the agent level, we have two variants of crossover and mutation that differ
in how they select the place where the operation works. The idea of a crossover on

the agent level is to cut two individuals (resp. the action sequences for all agents
in the two individuals) at the same position and take the beginning of the sequence
from one individual and the end of the sequence from the other individual to create
the new individual. And for mutation, we select one element of the sequence and
change it to another element from the set of possible elements. More formally, this
means that standard crossover requires as parents two individuals
(Inlt(pl ""’pq)9((t1,1 ’al,l)v'-e(tl,ll »A1,1))"-'a((tn,l9an,1)"-"(tn7ln 9an,ln)))
and
(lnlt(p& "“’pg)’((t{[,l ,a{l’l),...,(t&’ll ,aih)),...,((t;hl,a;hl),...,(t%’ln ,a;L7ln))),
it selects a sequence position j randomly and then creates as new individual
(init(pl,...,pq),((tl’l,al’l),...,(tl’j,a17j),(tﬁ’j+1,a/,17j+1),...,(t3’l1 ,CL’Lll)),...,
/ / /
. ((tn,l9an,l)a'"’(tn,j’an,j)9(tn’j+19a%7j+1)9--',(thn’an’ln)))'
Standard mutation takes an individual
(Nit(p1,..,P)s ((E1,1,01,1) 50 (E 1115011,)5 ees((E 1500, 1) 15O 1))
selects a sequence position j randomly and creates the new individual

(NP1 sP)s (1,101,155 (E1 - 1,01 5—1)5(E] 5507 D51 4+1501 54155 (E115501,15)s
(b, 15001)seees (b, =15, =15, 5505, D)5 158m, 415t 50 1,)))s
where a; ; € Actattacki-

In [Ch+04], we introduced a variant of these standard operators that tries to not
use random positions in the sequences but to target positions at which the traces
produced by an individual show that Sys;eseq 1S getting away from fulfilling G-
The way we measure the fitness of an individual this means that we see a big
increase of the near_goal value of a trace after we take into account the state
produced by an action by one agent. More formally, we select the position from
the last paragraph by using the smallest position j in all traces of an individual such
that

near_goal((eg,...,e;)) > near_goal((eo,...,ej—1)) + too_much_lost,
where too_much_lost is a parameter chosen by the human tester. We call the
resulting operators targeted crossover and targeted mutation.

On the parameter level, we concern ourselves with the parameter list of the
init-action. Parameter crossover takes two individuals

(Nit(p1,..aPg)s (1,501,150 (E 101501115 eo(E, 1,8, 1) e s (B 150 1,)))
and

(init(p’l,...,pfl),((t’l’l,a’l’l),...,(t’l’ll,a’ul)),...,((t’ml,a’,m),...,(t;un,a;un))),
selects a parameter position j randomly and creates the new individual

(NP 15D 1 15D (11500150005 (113501135 150,15

(tn,ln aan,ln)))~

And, similar to the other mutation operators, parameter mutation takes one indi-
vidual

(Nit(P1,..,Pg)s ((E1,15,01,1) -5 (E1,11501 1,5 es((E 150,105 105G 1))

a random position j and creates
(NP1 5P~ 105D+ 150D) (1,101,105 1,11501 1)) oo (1,8, 1) 505
(tn,ln’ Qn 1,)))’
where p;- is a new value out of the possible values for the j-th parameter.

Many of the operators from above are not symmetrical, i.e. it matters which
individual is the first parent and which the second. The selection of parents has
to take this into account, which means that every time the first parent for an op-
erator application is selected, we need to make sure that the selection method we
use provides the preferences that we want it to have. A key point for this step in
evolutionary algorithms is to find the right balance between exploiting knowledge
we have about the application, which usually is represented by the fitness values
of individuals, and exploring possibilities by introducing randomness into the se-
lection. A selection scheme that leans a little bit more towards using fitness, but
provides sufficient randomness (at least for the applications we are interested in) is
the so-called roulette wheel selection. Essentially, this method selects a parent at
random, but the probability for selecting a particular individual is proportional to
its fitness (to visualize a way how this can be done, imagine a roulette wheel where
the numbers represent the individuals and the sections for the numbers are of dif-
ferent size proportional to how much better on individual is than another). Since
in our case a good individual has a small fitness value, we use for determining the
probability for its selection the inverse of the fitness value.

The fitness value of individuals also plays a key role in deciding how the next
generation, i.e. the starting point for the next iteration of the algorithm, looks like.
While all newly created individuals are part of this next generation, we also want
some individuals from the current generation to survive. And these parent individ-
uals are the individuals with the best (in our case this is the lowest) fitness values.

4 Casestudies

In order to evaluate our approach from the last section, we have performed two case
studies that look at rather different systems to test. Both case studies have in com-
mon that the interactions between the tested system and its user(s) are synchronous
(in the case of ARES obviously so, in the case of FIFA-99 due to the set-up of the
communication) which makes individuals a little bit less complex than the general
form from the last section. Both case studies show that our approach is able to
produce behaviors for the attack teams that reveal unwanted behavior in the tested
system.

4.1 Casestudy 1: FIFA-99

In this first case study, we use our method to test the commercial computer game
FIFA’99 by Electronic Arts, a soccer game, for unwanted behavior of the Al com-
ponent responsible for directing the defensive behavior of the computer player. To
do this, we evolve a single attack agent when initializing the game for a corner-
kick, having this agent playing the team in the offense (see also [De+05]). Both
the Al component and the game environment use some randomness, so that this
case study shows that our approach can deal with randomness.

411 FIFA-99

The FIFA series of games by Electronic Arts is a typical example for the genre of
team sports games that are produced by many companies and that have a rather
broad fan base. The FIFA series is about soccer and FIFA-99 was enhanced by
Electronic Arts with an Al programming interface allowing outside programs to
take over the role of human game players. This enhanced version was made avail-
able to several universities.

While soccer is about two teams of eleven soccer players that square off against
each other trying to kick a ball into the opponent team’s goal when on the offensive
and trying to avoid such a goal when on the defensive, in the computer game, a
single human player is responsible not just for one player but a whole team. This
is accomplished by having this human player controlling only one of the players at
any point in time while the rest of the players are following behaviors created by
the game developers. But among the possible actions a human player can perform
is taking over the control of another of the players on its team. The other actions
that the human player can have its controlled soccer player do are moving up,
down, left and right (given the view of the player of the field), turning the players
orientation up, down, left and right, passing the ball (to the next player given the
current orientation of the player), shooting the ball on goal and doing nothing (the
no-op operation mentioned earlier). And when on the defensive, a player can also
foul the player with the ball (if the player is near enough).

There are also special situations in the game in which special actions have to
be performed, like a cornerkick, a free kick, a penalty kick or a throw in. Essen-
tially, these situations follow interruptions of the game and therefore define a new
setting for a test. And the special action requires the human player to enter some
parameters or parameter combinations to create a situation after which only the
standard actions mentioned above can be used.

Testing of games like FIFA-99 relies heavily on using human testers with dif-
ferent gaming experience. While a lot of the tests follow interaction scripts that the

10

human gamer employs and where the expected game behavior is clearly described,
the testing for unwanted behavior is essentially having experienced gamers play
the game (without a particular script), which has to be considered a form of ex-
ploratory testing. Since there are very tight deadlines for commercial computer
games, there are also tight constraints on the amount of testing that can be done.
And one problem that can limit the success of a game (resp. the profit out of this
game) are so-called sweet spots of a game. A sweet spot is a way to win the game
that is easier than intended by the game designers and that the game designers
would call an unwanted behavior of the game. Knowing a sweet spot makes the
game less interesting for the human player and too many sweet spots will seriously
hamper sales of the game (since information about such sweet spots gets around
very quickly). While games have sweet spots that the users will not detect as sweet
spots (since the way a user wins the game seems to be difficult enough and within
the expectations of the user, so that only the designers know that this was not so
intended), the worst sweet spots are those that obviously hint at bad game design.
For a game like FIFA-99, sweet spots that are due to unrealistic game behavior
have to be considered such bad sweet spots. Our particular testing goal for FIFA-
99 was to find ways to consistently score against a team controlled by the game Al
out of a cornerkick situation, where we also counted being awarded a penalty kick
as scoring. Since FIFA-99 makes very frequent use of a random number generator
to determine the outcome of actions taken by the user (and the game Al), scoring
consistently with the same sequence of user actions is already rather unrealistic
(and obviously also something that does not happen in the real world, since humans
might make the same mistake twice but not 10 times). But additionally it is up to
the human tester (together with the game designers) to take the behaviors that our
tool found and to determine if the game should be changed or if the particular
action sequence should be considered from now on a wanted behavior (remember
that in computer games it is not the goal to make the game impossible to win).

4.1.2 Ingtantiating our method

Our tool to test for unrealistic goal scoring evolves an action sequence for a single
attack agent Agqstack,1. The component Cyegieq,1 We test is the so-called Al com-
ponent of the game that controls the defending team and the environment Enw is the
part of the game that represents the playing field and the simulation of the soccer
game (essentially, Env is the game without Ciegeq,1). The actions in Actgqcr 1
are the actions given in the last subsection. The init action of our approach for the
test goal we report on, namely unrealistic goal scoring after a cornerkick, has 3
parameters X, Z, and angle that define how a cornerkick is performed (X ranges
between 0 and the width of the field, Z between 0 and the length of the field and

11

angle is the angle to the field plane that the kick is aimed between 0 and 90 de-
grees). As already stated, Aggszqck,1 performs its actions in fixed time intervals, so
that we do not need the ¢; ;s in an individual.

Enhanced environment states consist of the positions of all players and the ball
in the playing field. For evaluating the fitness of an individual, we perform 10 runs
with it. The condition Gy is true for a trace eq,...,e;, if the ball is in the opponent’s
goal in state e;, 1 < ¢ < j or if the attacking team is awarded a penalty kick in one
of these states. The key decision for a human tester (or a group of testers) using
our approach is how to define the function near_goal. We have chosen to compute
near_goal the following way. We divided the playing field into four zones:

Zonel : from the opponent goal to the penalty box
Zone 2 : 1/3 of the field length from the opponent goal
Zone 3 : the half of the field with the opponent goal in it
Zone4 : the whole field

and associate with each zone a penalty value (pen; to peny, the smaller the zone,
the smaller the penalty). We then take the distance dist(e;) of the player with the
ball and multiply it with the zone penalty of the zone the player is in. This produces

dist(s;) X penalty,
if the own players had the ball in
near_goal((eq, ..., €;)) = €;_1 Or ¢;
max_penalty
else.

The parameter max_penalty is chosen to be greater than the maximal possible dis-
tance of a player with the ball from the opponent’s goal multiplied by the maximal
zone penalty, so that losing the ball to the opponent results in large near _goal-
values and a very bad fitness.

Obviously, there is no team level needed, so that we employed the two pairs
of operators of the agent level and the pair on the parameter level. In fact, since
a bad parameter combination leads immediately to a loss of the ball, we added
an operator that combined a successful init-parameter combination with all of the
agent action sequences of the current generation (see [De+05]). We also favored
targeted operators over the standard version 5 to 1. For the targeted operators,
we set too_much_lost to max_penalty, which results in targeting positions in the
action sequence that lead to loosing the ball.

12

10| ol

Fle oF5 Comeras Optiors Label Audo Tc Game ZEdE SetPlays Choreo ConMian Atrb Help Cameras Options L tPlays Choreo ConMan At Help
14

Stress: (1] 30688
il

Fie CF5 Caperas Opfions Label fudio Jook Debug Game ZEdt SefPlays Choren Conflan Aftr Help

Figure 2: An unwanted behavior in FIFA-99

4.1.3 Someresults

Scoring from a cornerkick was not the only test goal we evaluated (see [Ch+04] for
results for scoring starting with a kickoff), but it provides an example with an init-
action and created interesting and easy to describe unwanted behaviors. For each
individual, we performed 100 evaluation runs and each generation consisted of 200
individuals (with 20 different init-parameter settings among them). The length of
an action sequence was 20.

In our experiments, every run of our tool quickly produced one or several action
sequences that resulted in scoring goals in most of the evaluation runs (we decided
to report only on individuals that scored in 80 of the 100 evaluation runs). In
fact, we usually had at least one individual that indeed scored a goal and several
individuals that produced penalty kicks for the attacking team. While many of
these individuals have as the only problem that they are repeatable so often but do
not represent an un-soccer-like behavior, we also found quite a few individuals that

13

showed off a rather “dumb” Al component. Figure 2 represents some screenshots
of such a “dumb” behavior. The full individual used to create this behavior is

e init(-1954,-775,28.1), NOOP, DOWN, DOWN, RIGHT, SWITCH, MOVE-
UPLEFT, MOVE DOWNRIGHT, LEFT, LEFT, SWITCH

The picture in the upper left corner of Figure 2 shows the ball immediately after the
init-action is transmitted to FIFA-99. In the upper right corner we see the attacker
trying to get the ball under control. The attacker is struggling through several
actions to get control of the ball which leads to the situation in the picture in the
lower left corner of Figure 2. The struggle for control goes on until the attacker
nearly has left the penalty box, but this is the moment when the Al decides to foul
the attacker, as can be seen in the lower right picture. This then results in a penalty
shot and represents really a very stupid behavior of the game Al, especially since
it is repeatable.

If we look at the time requirements of our tool (see also [De+05]), then we
usually find the first scoring individuals after between 3 to 5 minutes. Since our
general scheme for fitness functions favors shorter traces showing the unwanted
behavior, it usually is a good idea to continue a run of the tool a little bit more, since
it often is then able to find shorter sequences that lead to the unwanted behavior.

4.2 Casestudy 2: Student teamsin ARES

In this second case study, we use our method to evaluate a multi-agent system that
acts within ARES, an abstract simulation of a city after being struck by an earth-
quake. The tested system was written by students of a basic multi-agent systems
class and the students’ agents have to locate and rescue survivors of the earthquake.
We evolve a team of attack agents that also act in ARES, together with the students’
team, and we want to test how well the students’ team can deal with a team that
tries to let them look bad (see also [DKO06]).

421 ARES

ARES and ARES II (Agent Rescue Emergency Simulator, see [DK05]) are testbeds
for evaluating multi-agent systems, with ARES II being the newest version of this
system. While these testbeds can also be used to evaluate new multi-agent con-
cepts, their main purpose is to provide an environment for students of a basic
multi-agent systems class to create multi-agent systems for —as the main assign-
ment of this class. The general setting of ARES is a city that has been struck by an
earthquake and now has survivors scattered over the area and buried under rubble.
The task for the students is to develop a team of control agents for (very primitive)

14

robots that will search the area and can dig out the survivors (often having to co-
operate to achieve this). The simulation within ARES is rather abstracted, seeing
the area as a grid where each grid field is essentially a stack of layers composed of
rubble pieces and survivors. Each rubble piece requires a certain number of agents
performing the action remove_rubble at the same time while standing on the par-
ticular grid field. The rescue agents can move around on the grid, communicate
with the members of their team, rescue survivors that are on the top layer of a grid
and then have different means to replenish their energy. Most actions of the agents
require energy and the survivors also spend their energy (without being able to re-
plenish it), so that there is a limited amount of time available for the rescue. The
simulation is organized in rounds and in each round each agent sends to ARES the
action(s) it wants to perform.

A core feature of ARES and ARES II are so-called world rules that can be
instantiated differently and thus change the requirements on the strategies that the
agents have to employ. Among others, there are world rules determining how many
agents might be maximally needed to remove a piece of rubble, how agents can
recharge, how costly communication is, how much information gleaned by observ-
ing the world is distorted and how scoring of rescued survivors is done in case that
several different agent teams are acting within a particular ARES scenario. This
allows to make the task for the students different in each new semester, essentially
eliminating the copying of systems from previous semesters.

By looking at the number of rescued survivors and doing this for different
scenarios it is easily possible to compare multi-agent systems written by different
student teams and this adds a competitive component to the assignment. In fact,
each semester there is a winning team that, in addition to an A, gets a prize and
therefore there is quite some pressure on the instructor and the TA to quickly evalu-
ate the different teams, starting with finding errors in the agent programs, but more
importantly trying to decide how robust the teams are and, with ARES II, trying
to see how the students are coping with the existence of other teams in a world
scenario.

While it is naturally possible to pit the teams written by the different student
teams against each other to evaluate the teams, this leads to inconsistent evaluations
between semesters, since a just acceptable team in one semester with a lot of good
student teams might look exceptional in another semester with only mediocre com-
petition. And since the world rule settings differ from semester to semester, it is not
possible to use the teams from previous semesters as measuring rod. The change
in world rule settings also makes it difficult for the instructor to come up with good
teams to test the students’ teams against and in general it has to be assumed that
no team would really evaluate well the weaknesses of all students’ teams, which
is where our evolutionary testing approach comes in. One obviously very interest-

15

ing test goal is to see the worst case behavior of a students’ team against a nearly
clairvoyant team, which is what the instantiation of our general method in the next
subsection tests.

4.2.2 Ingtantiating our method

Our tool for helping us to test the students’ teams acting in ARES has to evolve
action sequences for each of the rescue agents of the team that we pit against a
students’ team. If we included a third team into a scenario (for example, a second
students’ team that we do not test at the moment), this third team would be an ex-
ample for bystander agents. The tested components are the agents in the students’
team and the environment is ARES II. The actions used by our attack agents are
all the actions mentioned in the last subsection, except for the communication ac-
tion, since cooperation between the attack agents is achieved by the learner, so that
communication is not necessary. We do not use the init-action in this case study,
we have the human tester select the specifics of the scenario in which all the agents
will act. Due to having the simulation organized in rounds, we do not need the
t;,jS, again.

Enhanced environment states are just the ARES states (obviously we want to
avoid having to “look” into the agents of the students), which includes the positions
of the agents, the actual state of the world fields (and layers, including the energy
of the survivors and of the agents), and the scores of the teams. While all of this
information is of interest for different test goals (see [DK06]), for the goal of seeing
how bad it can get for a students’ team, we really needed only the score score(e;)
of the students’ team in the current environment state. Ideally, the success of the
students’ team should be a score of 0, which means that G;.,; is true for a trace
€0,---,€5, if score(e;) =0 forall 1 <4 < j. Then we get as function near_goal:

near_goal((eg,....ej)) = score(e;)

With regard to the operators, we used all the operators presented in Section 3
and they got equal share in creating the next generation. Given our rather simple
near_goal function, we wanted to target the positions in an individual that led to
any change in the score, so that we choose too_much_lost = 1.

4.2.3 Someresults

As in case of FIFA-99, we have evaluated our testing tool for students’ teams for
various settings, not only using different world scenarios of ARES but also other
test goals (that were aimed towards not only seeing the worst case behavior of the
students’ team but also what it can do if faced with an absolutely selfless team of

16

AR.E.S. World Viewer
File Wiew |

Round: 4

World Stats
size- 5x5 |
Agt =4
Agt Alive = 4 | 4

s

[|
Scale world Size

+ Srale

My Legend

Kernel Contro
GUITELALETS
W i it
e Exit

Messages: |

Figure 3: Round 4

A.RE.S. World Viewer
File Wit |
Round: 21

Warld Stats
See- 5xs -
Agt =4
Agt Alive =4 | /
iz

P

Scale World Size

+ Scale

Kernel Contral

CofiEl Aenls

N Sian Simuaten
Exit

messages: |

Figure 4: Round 21

AR.E.S. World Viewer

File Wiew

Round: 32

‘World Stats
Size= 5 x5 |=

[|
Scale world Size

+ Srale

My Legend

Kernel Control

W i it
e Exit

Messages: |

Figure 5: Round 32

17

attack agents that try to help the tested team to get as good a score as possible,
see [DKO06]). Again, due to lack of space, we will present here only one of the
experiments, one that revealed an error in the tested team. Since the evolutionary
learner uses random decisions, we repeated this experiment 10 times and each time
the learner was able to center in on the error, although the generation, in which an
individual showing it occurred, varied.

ARES allows each agent in a simulation a full second of CPU time to make its
decision what actions to perform in the current round. The scenario that we set the
students’ team in is a simplistic scenario where there are a total of nine survivors
in the world. Two of the survivors are out in the open and can be easily saved, six
more survivors are buried under one layer of rubble each that requires two agents
to remove it. Finally there is one survivor that is buried under one piece of rubble
that requires three agents to be removed. The simulation allows for 50 rounds, so
that one evaluation run for an individual takes 200 seconds. Since there are no
random effects in ARES or the students’ team, we do only one evaluation run per
individual, but due to the high time requirements a generation consists of only 8
individuals and we gave the system 10 generations.

The graphical interface of ARES that we use to observe runs is rather simple,
as indicated by Figures 3 to 5. In Figure 3 we see the situation in round 4 of the
run of the attack team found by our tool that reveals the problem in the students’
team. Agents are indicated by a circle with their number in the team in the upper
right corner of the grid field they are in. Different teams have different colors and
the lighter agents are the tested team, while the agents with darker color are the
attack team. The field in the lower left corner indicates the top layer of the stack of
the grid field. A light box indicates a survivor, a dark box with a number a piece
of rubble that needs the indicated number of agents to be removed. The box in the
lower right corner indicates the move cost of a grid in a color code (which is the
same for each field in this example).

As Figure 3 indicates, in round 4 no survivors have been rescued yet and no
rubble removed, but the students’ agents have started to move towards each other
(the start position has one agent of each team in the middle of the upper row of
fields and one of each in the middle of the bottom row). Figure 4 shows the sit-
uation in round 21. The students’ agents have rescued one of the survivors that
was not buried and two of the survivors that were buried and each of the agents is
now sitting on a different field with a buried survivor. In this round, the problem
in the students’ team surfaces, since in all of the following rounds the students’
agents will not move and stay at the positions that they now are in (Figure 5 shows
a snapshot for round 32). Clearly, this is not what the students intended, since one
of their agents just needs to move to the other and they could rescue another sur-
vivor (which, by the way, the students’ team is doing perfectly when alone in this

18

particular scenario: the team rescues all survivors that it can, leaving just the one
in the middle for which they do not have enough agents).

The students’ team did not show the problematical behavior when tested with
other students’ teams playing the role of the attack agents or with another incarna-
tion of this students’ team playing this role. We observed that these other teams
usually either helped rescuing one of the survivors on the grid fields the tested
agents are frozen on or they rescued one of these survivors on their own. This
resulted in the tested agents becoming “unfrozen” so that a quick observation of
such a run did not show any problems. But our learner was able to zoom in on this
weekness and exploit it. Our learner was also able, using the other goal and fitness
function reported in [DKO06], to evolve attack agents that enabled the tested agents
in this scenario to rescue all of the survivors.

5 Related work

As already stated, so far, tool support for exploratory testing focused on bookkeep-
ing tasks around the tests performed by the human tester (see, for example, Test-
Explorer [TeEx]). The use of evolutionary methods in software testing has been
suggested relatively early. In [SGD92], a genetic algorithm was used to combine
known error behaviors to create additional tests. Like [SGD92], the other known
approaches to using evolutionary methods in software testing, which often are also
called search-based methods in Software Engineering, are so-called model-based
methods, which means that they are using models of the software to test to pro-
duce test cases for the software. Our approach, while able to also be applied to
models, nevertheless is aimed at working directly on the software system to test, as
exploratory testing does. We also do not see testing as just a search, it is a learning
process (and there are rather different learning methods available to learn a behav-
ior and not all of them are using search). The additional knowledge provided by a
model can boost learning, since this knowledge does not have to be learned, but it
also provides a bias and there is also the gap between model and real system (and
the real system environment and the bystander agents) to consider.

[BLSO06] uses as model that the evolutionary algorithm uses to create fitness
measures a scheduling system and tries to evolve the start times for events that
a real-time system has to react to. The goal is to come up with start times for a
given group of events that fulfill certain constraints and additionally might have
a chance to stress the real-time system so that it might fail to complete a task on
time. All events need to be known beforehand and there is no possibility to con-
sider different initializations of the tested system. The model also does not include
different users of the system, all events are centrally initiated in the model. Like all

19

other known approaches using search-based methods for testing, the fitness func-
tion that guides the search is not accumulative over interactions, as our approach is
(we introduced accumulative fitness functions for learning of cooperative behavior
in [DF96]). Consequently, targeted genetic operators can not be defined for these
approaches.

[We03] uses as model flow charts of embedded systems and individuals con-
sist of input parameters for the system that try to push the system into particular
branches of the flow chart. The testing goal was to find input parameter settings
creating very short and very long execution times for the embedded system, so
that the fitness evaluation was done using the real tested system. Input sequences
are not considered at all. Finding input parameters that send a tested system into
a particular branch of its corresponding flow chart was also the goal of [JSE96],
but additionally these parameters should also be near in their value to values that
send the system into another path of the chart. [PHP99] also focused on creating
input parameters for systems that cover the branches of the tested programs. They
called their approach goal-oriented, but their goals are testing a particular branch
by getting the program into it which should not be confused with our goal that is
to produce a particular behavior or state of the tested system (without using flow
charts or other models). [PHP99] also provided an example for the fact that evolu-
tionary algorithms (with complex fitness functions) can be easily parallelized. This
is naturally also true for our approach.

6 Discussion and future work

We presented an approach that can be used by tools to support exploratory test-
ing. The general idea of the approach is to use evolutionary learning techniques to
mimic in part what a human tester is doing when performing exploratory testing
for unwanted behavior of a system or group of system components. By creating
interaction sequences with the tested system both based on sequences that come
nearer to getting the system to show the unwanted behavior than other sequences
and based on random decisions, tools based on our approach can present to the
human tester either interaction sequences that reveal that the tested system has an
unwanted behavior or sequences that come very near to such a behavior and there-
fore can serve to provide the human tester with a better understanding of what
is possible within the tested system. In our two case studies, tools based on our
approach were able to reveal behaviors of the tested systems that were indeed un-
wanted.

We would like to stress the point that while clearly providing better tool support
for exploratory testing and testing for unwanted behavior in general than what is the

20

state-of-the-art, our test tools are not able to replace human testers. They can speed
up the testing of a system (especially if we parallelize the evolutionary learning)
by providing the tester with good test traces and they can make expertise of one
tester available to other testers, but they still require the human testers to provide
expertise in form of fitness function and parameters of the tool. And, as with all
testing for unwanted behavior, there is no guarantee that a system is not able to
show an unwanted behavior, even if our tools, respectively the combination of tool
and human testers, do not find a way to produce this unwanted behavior. And
obviously our approach does not help with testing the expected behavior which
requires other kinds of testing and other tools.

By thinking of our method as learning of test cases, we establish a connec-
tion to Artificial Intelligence (AI) and the methods in this field. And, as stated
in the introduction, methods from Al find more and more their way into main-
stream Computer Science, especially methods for self-adaptation and cooperation
between systems with the goal of emergent behavior. Using ideas from Al for sys-
tems including Al components on the one hand side makes a lot of sense ("battle
fire with fire”), but on the other side has to ask the question ”What about errors in
the testing AI?”. While we naturally can give no guarantees regarding tools using
our approach with this regard, we would like to point out that our attack agents
are very primitive, they execute chains of instructions without conditions or loops,
and they are independent from the learner. If we find an unwanted behavior then
a tester can just run the individual that created it and can see for him/herself what
happens. Additionally, the learning task for our attack agents is usually easier than
the tasks that any tested agent has, since we want to learn/construct one particular
behavior (and our learner needs only to learn this behavior, the attack agents need
only to implement this behavior) while tested agents in most cases have to realize
many different behaviors realizing all requirements and tasks given to them.

Naturally, there are quite some possibilities for improvement of our general
approach towards usability for very big and complex systems. In fact, we consider
our results so far just a proof of concept. At the center of these improvements is
the idea of integrating more testing knowledge into the basic method. Having al-
ready certain action sequences that are known to stress a system and having them
represented as an action “macro” would allow for action sequences consisting of
thousands of actions which some test problems will require. These macros could
be extended to cover the actions of several attack agents, thus providing the evo-
lutionary learner with useful coordinated pieces to be used. The fitness function is
also an obvious place for integration of more knowledge. But the challenge will be
to keep the balance between exploiting this knowledge and the ability to explore
the possibilities. Using too much knowledge can result in an evolutionary tool not
being able to achieve sufficient exploration. Therefore future work will include

21

more evaluations of our approach to explore the advantages and the limitations of
our approach more.

References

[Bach] . Bach: Exploratory Testing Explained,
http://www.satisfice.com/articles/et-article.pdf, as seen on Aug 30,
2006.

[BLSO06] L. Briand, Y. Labiche, M. Shousha: Using Genetic Algorithms for Early
Schedulability Analysis and Stress Testing in Real-Time Systems, Ge-
netic Programming and Evolvable Machines 7(2), 2006, pp. 145-170.

[Ch+04] B. Chan, J. Denzinger, D. Gates, K. Loose, J. Buchanan: Evolutionary
behavior testing of commercial computer games, Proc. CEC 2004, Port-
land, 2004, pp. 125-132.

[De+05] J. Denzinger, K. Loose, D. Gates, J. Buchanan: Dealing with parame-
terized actions in behavior testing of commercial computer games, Proc.
CIG-05, Colchester, 2005, pp. 51-58.

[DF96] J. Denzinger, M. Fuchs: Experiments in Learning Prototypical Situations
for Variants of the Pursuit Game, Proc. ICMAS-96, Kyoto, 1996, pp. 48—
55.

[DKO05] J. Denzinger, J. Kidney: Teaching Multi-Agent Systems using the ARES
Simulator, Italics e-journal 4(3), 2005.

[DKO06] J. Denzinger, J. Kidney: Testing the limits of emergent behavior in MAS
using learning of cooperative behavior, Proc. ECAI-06, Riva del Garda,
2006, pp. 260-264.

[FJ93] S. Floyd, V. Jacobson: The synchronization of periodic routing mes-
sages, Proc. SIGCOMM’93, 1993, pp. 22-44.

[Go89] D.E. Goldberg: Genetic Algorithms in Search, Optimization and Ma-
chine Learning, Addison-Wesley, 1989.

[Ha96] R.G.Hamlet: Predicting dependability by testing, Proc. Intern. Symp. on
Software Testing and Analysis, 1996, pp. 84-91.

[JSE96] B.F. Jones, H.-H. Sthamer, D.E. Eyres: Automatic structural testing

using genetic algorithms, Software Engineering Journal 11(5), 1996,
pp- 299-306.

22

[KBPO1] C. Kaner, J. Back, B. Pettichord: Lessons Learned in Software Testing,
Wiley Computer Publishing, 2001.

[KCO03] J. Kephart, D. Chess: The Vision of Autonomic Computing, IEEE Com-
puter 36(1), 2003, pp. 41-50.

[Mo05] J.C. Mogul: Emergent (Mis)behavior vs. Complex Software Systems,
Internal Report HPL-2006-2, HP Laboratories Palo Alto, 2005.

[PHP99] R.P. Pargas, M.J. Harrold, R.R. Peck: Test-Data Generation Using Ge-
netic Algorithms, Journal of Software Testing, Verification and Reliabil-
ity 9(4), 1999, pp. 263-282.

[SGD92] A.C. Schultz, J.J. Grefenstette, K.A. De Jong: Adaptive Testing of Con-
trollers for Autonomous Vehicles, Proc. Symp. on Autonomous Under-
water Vehicle Technology, IEEE, 1992, pp. 158—164.

[SHO5] M.P.Singh, M.N. Huhns: Service-Oriented Computing - Semantics, Pro-
cesses, Agents, John Wiley & Sons, 2005.

[TeEx] TestExplorer and Exploratory Testing,
http://www.sirius-sqa.com/exploratory _testing.html, as seen on Aug 30,
2006.

[We03] J. Wegener: Evolutionary testing of embedded systems, In Evolutionary
Algorithms for Embedded Systems Design, Kluwer, 2003, pp. 1-34.

23

