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ABSTRACT

This thesis deals with three distinct yet interrelated probléms involving partially
ordered sets, namely the counting of antichains, chains and linear extensions. The
antichain counting segmént of this thesis introauces Dedekind’s problem involving the
counting of antichains in power sets, relates the problem of counting antichains in posets to
that of counting independent sets in graphs and discusses what is known as a “central
element” in a poset. The largest portion of this thesis deals with linear extension counting.
Results known as correlation inequalities consider the probability that an arbitrary linear
extension of a poset possesses certain characteristics. A related problem, the 1/3 - 2/3
Conjecture, is dealt with in detail and some complete proofs are giver}. The final segment
of this thesis discusses chain counting and demonstrates some relationships between the
problems of counting chains and of counting linear extensions and also gives ideas on a

specific chain counting problem.
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CHAPTER ONE

INTRODUCTION

1.1 THE BASIC PROBLEM

In order to describe the basic problem being dealt with in this thesis, the four
specialized terms from the thesis title, namely chains, antichains, linear extensions and

partially ordered sets must first be defined.

Let X be a set. A partially ordered set P = (X,<) or poset consists of a set Xand a
- binary relation < such that for every x, y,z€X

a) x<x (reﬂexive),

b) x<yand y<ximpliesx=y (antisymmetric),

c) x<y end y £ z implies x < z (transitive). ‘
Often a partially ordered set P is ciescribed using a strict order relation “<“ so thatx <yin P
if and only if x < y and x # y. When conditions a) - c) above are stated in terms of “<* we
get that P must be irreflexive (x £ x), asymmetric (x <.y implies y # x)) and transitive. It
should be noted that unless otherwise stated, all posets in this thesis are assumed to be

finite, meaning that the poset has a finite base set X.

A totally ordered set is a partially ordered set P = (X, <) such that for every distinct
x, y € X either x < y or y < x (or both). A subposet Q = (X',<’) of P = (X, <) is a poset

such that X’ & X and <’ is equal to < restricted to X'.

Now the three main structures which are being counted in this thesis may be

defined. A chain in poset P is a totally ordered subposet of P. A subposet A = (X',<') of '
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P is an antichain if it is totally unordered, in other words for every pair of distinct elements
x,y€ X, x{%yandy £ x. Achainin Pis maxim-al if it is not a subposet of any other
chain in P. Similarly, an antichain in P is maximal if it is not a subposet of any other
antichain in P. A linear extension of P = (X, <), L = (X, <1), is a totally ordered set on X

such that x <y impliesx <j y.

Consider a given poset P= (X, <) and letx,y € X. yis saidtocoverxify>x
and there is no z € X such that y > z > x. Partially ordered sets are represented by Hasse
diagrams, which associate each element in X with a point on the plane. For every pair x
and y in X such that y covers x, y is placed above x in the plane and a line segment is
drawn connecting y with x. For instance, consider a poset Pon X = {q, b, ¢, d, e} with
a<b,a<c,&<d,b <e,c<e,d<eanda<e. Then the Hasse diagram of P will be as

shown in Figure 1.2.1.

a
Figure 1.2.1

This thesis deals with counting .chains, antichains and linear extensions in partially
ordered sets. Now some notation which will be used for this will be specified. Given a
poset P, A(P) will be the set of antichains of P and a(P) the number of antichains of P,
C(P) will be the set of chains of P and ¢(P) the number of chains of P, and E(P) will denote
the set of linear extensions of P and e(P) the number of such linear extensions. MC(P) will

- be the set of maximal chains of P with mc(P) the number of maximal chains of P and
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similarly MA(P) will be the set of maximal antichains of P with °ma(P) the number of

maximal antichains of P. .

The concept of counting these structures will be demonstrated using the poset in
Figure 1.2.1 as an example. A(P) = {{®}, {a}, {b}, {c}, {d}, {e}, {b,c}, {bd},
{c.d},{bcd}} so a(P) = 10. C(P) = {{#}, {a}, {B}, {c}, {d}, {e}, {a}, {ac},
{ad}, {b,e}, {c,e}, {d,e}, {ae}, {ab,e}, {ace}, {ade}} soc(P)=16. EP) = -
-{a<b<c<d<e, a<c<b<d<e, a<b<d<é<e, d<c<d<b<e, a<d<b<c<e, a<d<c;b<e} and thus
we have e(P) = 6. MA(P) = {{a}, {e}, {b,c,d}} so ma(P) = 3 and MC(P) = {{a,b,e},

{a,c.e}, {ad,e}} so we also have mc(P) =3,

The purpose of this thesis is to present current results available on the problems of
counting chains, antichains and linear extensions in partially ordered sets and to suggest
areas which are open to further work. The following section will describe some further

notation and definitions required in order to carry out this task.

1.2 NOTATION AND DEFINITIONS

Some further definitions and notation which will be used throughout this thesis will
now be given. Definitions for the majority of these terms can be found in [DP]. Consider .
a given poset P = (X ,<). If for x, y € X neither x < y nor y < x then we say that x and y
are unrelated or incomparable and symbolize this as x | y. Ifx € Xis unrelated to every
other element in X then x is said to be an isolated point. If forx € X ithere isnoz € X
such that z > x then x is a maximal element of P and if there is nozeX such that z < x
then x is a minimal element of P. A poset is said to be bounded if it has a unique minimal

element and a unique maximal element. The height or length of a poset is equal to one less
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than the number of elements in its longest chain. Similarly, a chain has length equal to one
less than its number of elements. The width of a poset is equal to the number of elements
in its largest antichain. P.is k-thin if every element in X is incomparable with at most k

other elements in X. Thus a k-thin poset will be of width k + 1 or less.

Two posets can be combined together in various ways to form a new poset. Let
P=(Xj,<1)and Q0= (Xz, <) be partially ordered sets where X3 N X2 = @. The disjoint
union of P and Q denoted P U Q is the poset (X, <) formed by taking X = X U X5 and
letting x <yin P U Q for x, y € X if and only if either “

' x,y€ Xjandx<y
or x,y € Xpand x < y.
The linear sum or ordinal sum of P and Q is denoted P © Q and is the poset (X, <) such
that X=X U X and for every x, y € X, x <y if and only if either |
x,y € X andxs_ly
or x,y€ Xpandx<py
or x€ Xjandy € Xo.
A poset is called irreducible if it is not the linear sum of two non-empty posets. th Py, P,
..., Py, be partially ordered sets. The cross product P; x P, x ... x P, has as its elements
{(p1, P2, s Pn) | piis in P; forevery i € {1, 2, ..., n}}. The ordering < for the cross
product is_deﬁned by (X1, X2, wer Xn) £ (¥1, ¥2, .-, Yn) if and 6nly if x; < y; in P; for

every i € {1, 2, ..., n}.

Now some terminology relating to a special class of partially ordered sets called
lattices will be discussed. Let P = (X, <) be a partially ordered set, and let x, y € X. The
meet of x and y is the unique maximal element z in X such that z < x and z < y, if such an
element exists. Similarly, the join of x and y is the unique minimal element z in X such that

z2xand z 2 y, if such an element exists. The meet of x and y is written x A y and the join
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is written xv y. Pisalattice if x V yand x A y exist for every x, y € X. A lattice L =
(X, <) is distributive if the distributive law holds for L, which states that for every a, b,
ceX an(bve)=(anb)V(aAnc). Note that the dual distributive law is not required
as in a lattice one distributive law holds if and only if the dual law holds (see page 130,
[DP]). For a given lattice L, a polynomial is an expression having elements of L as its

operands and Vv and A as its operators.

Now a-few definitions need to be made from the realm of graph theory. A graph G
consists of a set of vertices and a set of edges. The vertices are represented as points on the
- plane and the edges must have each of their two endpoints incident to a vertex. The degree
of a vertex is the number of endpoints of edges incident to it. A graph G is said to be
connected if the vertices of G cannot be partitioned into two non-empty classes such that
there are no edges from a member of one class to a member of the other. A cycleisa
connected graph in which every vertex has degree 2. A subgraph of graph G is a subset V
of the vertices of G, along with a subset of the edges of G having both endpoints in V.' A
tree is a connected graph which contains no cycle as a subgraph. A path is a tree which
either has exactly one vertex and no edges, or has two or more vertices exactly two of
which have degree one, while all remaining vertices have degree two. An induced
subgraph of G is a graph formed by removing some vertices of G and also removing all

edges connected to those vertices.

1.3 STRUCTURE OF THE THESIS

As is perhaps apparent from the title, this thesis has three distinct divisions to it.

Chapter Two contains the first main division which is the problem of counting antichains.
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Several topics relating to this problem will be presented. Firstly, some basic antichain
counting results for specific classes of posets will be given. Then the problem from graph
theory of counting independent sets in graphs will be given, and a connection between this
and the antichain counting problem will be demonstrated which in turn will produce some
new antichain céunting results. Next a classic problem known as Dedekind’s problem
which involves counting antichains in power sets will be addressed, and finally, a problem
of Colbourne and Rival, and of Rosenthal, which looks at the proportion of antichains

possessing a certain characteristic will be examined.

Chapters Three and Four both deal with the problem of counting linear extensions
in partially ordered sets. Chapter Three will look at some basic linear extension counting
problems and then introduce the topic of correlation inequalities, which are inequalities
involving probabilities that a given linear extension has certain properties. It will also) give
a full proof that the XYZ inequality is a consequence of another inequality. Chapter Four

'wiil deal in detail with another well-known problem, the 1/3-2/3 conjecture which also
" involves probabilities that a given linear extension possesses certain characteristics.
Though the 1/3-2/3 conjecture has not been verified to be true for all partially ordered sets,
partial results are available and nearly complete proofs will be given showing that the 1/3 —
2/3 coﬁjecture does in fact hold for semiorders and for all but finitely many height-1

partially ordered sets.

Chapter Five will deal with the problem of counting chains, the problem which has
been explored the least in current literature of the three problems presented in this thesis.
Not only will this chapter give some basic chain counting results, but it will also
demonstrate some results which relate the cilain counting problem to the linear extension
counting problem, thus demonstrating that the three main problems of this thesis are not

entifely independent of one another. Finally, this chapter will produce some original
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results relating to a new open question, “What width restrictions may be placed on a poset ,

such that for every integer n 21 there is a poset P in the restricted class with ¢(P) = n?”



CHAPTER TWO

COUNTING ANTICHAINS

2.1 INTRODUCTION

Much work has been done over the years on the problem of counting antichains in
partially ordered sets. This section will survey the antichain counting results available in

the current literature by breaking the results up into several categories.

Firstly, antilchain counts of various poset classes will be presented. Some of these

- are direct well-known results such as the number of antichains in a fence, while others
involve placing bounds on the maximum and minimum possible number of antichainson a

class of posets possessing a certain set of characteristics. Secondly, the problem of

counting independent sets in a graph will be examined, and it will be shown that there is a

relationship between this problem and the antichain counting problem which allows one to

derive further antichain counting results. Thirdly, the century old problem known as

Dedekind’s problem which involves counting the antichains of a power set will be

addressed. Finally a problem of Colbourne and Rival, and of Rosenthal, which considers

the proportion of antichains containing an element larger than or equal to a given elementx .

will be looked at.

Before proceeding with the antichain counting results, an interesting relationship
will be described. Consider a poset P = (X,<). An order ideal (or down-set or decreasing
set) of P is a subset Q of X such that whenever x € Q,y € Xand y<xtheny € Q.

Similérly an order filter (or up-set or increasing set) of P is a subset Q of X such that
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* whenever x € Q,y € Xandy > x then y € Q. There is a bijection from the order ideals
of P to the antichains of P. Consider the set S of maximal elements of any orderideal Q. §
will form an antichain in P. Also each antichain in P corresponds to the one order ideal
consisting of all elements less than or equal to the elements of that antichain. Similarly
there is a bijection from the order filters of P to the antichains of P. Thus any results

involving the number of antichains in a poset can have the term “antichain” replaced by

“order ideal” or “order filter”.

2.2 ANTICHAIN COUNTING RESULTS

There are a number of results in the current literature which give specific counts of
the number of antichains in a given poset. One such result is the number of antichains in an
n-fence, which is well-known and can be found for instance, in a paper by Beck [Be]. The
n-fence Py, is the poset on 7 vertices {1, ..., n} such that fori € {1, ..,n-1},i<i+ 1ifi

isoddandi> i+ 1ifiiseven. P,isshown in Figure 2.2.1.

2 ' -

1 3
Figure 2.2.1
It is known that a(Pp) = F,+1 where F, is the n’th Fibonacci number which is defined as
follows:
Fo=1,F1=1,
Fp=Fp1+Fp.
This relationship can be easily seen by viewing a(P,) as the sum of the number of

antichains in P, containing » and the number not containing #». The number of antichains
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not containing »n will simply be a(Py,—1). Any antichain containing vertex n cannot contain
vertex n—1 but can contain any of the other n—2 vertices. Thus to get the set of antichains

"containing n, simply adjoin n to each of the antichains in Py, giving a total of a(P,_2)
antichains. Thus a(Py) = a(Pp-1) + a(Pp-2). It is easy to see that a(Pp)= 1 and a(Py)= 2,

and thus the desired result follows.

This relationship between number of antichains (or ideals) in a fence and the
Fibonacci numbers has an interesting application. By relating the Fibonacci numbers to a
geometric object, new identities amongst the Fibonacci numbers can be found as in a paper

by Hopkins and Staton [HS] and another by Beck [Be].

A related problem was examined by Berman and Kohler [BK]. They considered
the poset Wy, », consisting of the cross product of an n-fence with'a chain on m vertices.

Such a poset is shown in Figure 2.2.2.

m2) - ()
(m,1) (m,3)
(1,2) h (1,n)
(1,1) (1,3)
Figure 222

Berman and Koéhler found the number of antichains in such a poset to be recursively
defineable as follows:
a(Wn0) = a(Wo,n) = 1
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a(W,n) = a(Wi—1,n) + Z a(Wm-1,1) - a(Wp)) .
) i+j=n—-1
ieven
This result is found by applying Theorem 2.2.1 which will be listed below after
giving a few preliminary definitions. Let P be a poset on a set X, and let S be a subset of
X. Then PAS will be the subposet of P with underlying set X\S. Let x be an element of X,

Then define cone(x).= {yeX | y=xory<xory>xj}. Thus cone(x) is the subset of

elements of X which are related to x. -

Theorem 2.2.1. Let x be an element of X, Then

a(P) = a(P\x) + a(P\cone(x)).

Proof. The proof is fairly obvious. The number of mﬁchains in P will equal the number
of antichains in P not containing x plus the number of antichains containing x. The former
is simply a(Plx). Any antichain containing x cannot contain any other element in cone(x),
so will only contain elements from Picone(x) along with x. There will be a(P\cone(x))

such antichains and the theorem follows. [

By applying Theorem 2.2.1 to any partially ordered set, the number of antichains
can be systematically found. Berman and Kdohler have impiemented this in a computer

program to count antichains in any given partially ordered set.

In the same paper, Berman and Kdohler [BK] find both recursive and implicit
formulas for the number of antichains in posets which are cross-products of other posets.
One such result is a recursive count of the number of antichains in the cross product of a

A poset P with a path on n vertices Py, which is derived using algebraic methods.

Lemma 2.2.2. Let P be a partially ordered set, P, be a path on n vertices, and S(P) be
the set of order ideals of P. Then
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a(Px Pp)= Y a(Jx Ppy).
JeS(P)

Berman and Kohler also generalize this result to Lemma 2.2.3 which follows.

Lemma 2.2.3. Let P be a poset, Z be a poset with a unique minimal element and let Py

be the one element poset. Then
alpx(Pro2)= ¥ aux2).
JeSP)

" By substituting P,—1 for Z we get Lemma 2.2.2.

In a paper by Stanley [Sy1] the number of antichains in the cross-product of three

chains is considered. He derives the following result.

Lemma 2.2.4. Let Pj denote a path on j elements, where j is an integer. Then
‘ k-1 (n+m+j)
a(kamePn)=H—ni—.-
n m
S (md)
Berman and Kohler also consider the cross-product of several chains [BK]. They
generate a table of specific values for a(Py x Py x Py, x Pp) where m ranges from 3 to 5

and n ranges from 1 to 10. They also produce values for a(Py x Py x P, x P, x P,) where

n ranges from 1 to 10.

Unlike the number of antichains in the cross product of two posets, the number of
antichains in the linear sum and disjoint sum of two posets can easily be found. These

results are given in the following lemma.

Lemma 2.2.5. Let P; and P, be partially ordered sets. Then
2) a(Py ® Py)=a(Py) + a(Py) - 1; |
b) a(P1 U Pp) = a(Py)-a(Py).
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Faigle, Lovész, Schrader and Turén [FLST] produce recursive equatioris for the
number of antichains in certain classes of posets. Firstly, series-parallel pdsets will be

examined.

Definition 2.2.6. A series parallel poset is defined recursively as follows:
1) A single vertex is series parallel.
2) Let P; = (X1,<1) and Pj = (X2,<7) be series parallel posets with XjNXs = @. Then

Py ® Py and Py U P; are series parallel posets.

Using the definition above, Lemma 2.2.5 can be implemented as a computer program to

count antichains in series-parallel posets.

Faigle et al. [FLST] also produce a recursive relation on the antichains of a certain

class of posets as expressed in the following lemma.

Lemma 2.2.7. Let P be a poset and let min P be the set of minimal elements of P.
Suppose there exists ¢ € min P such that forevery y € P\ min P,a<y. Let P’ = P\ {a}.
Then

a(P) = a(P’) + 2imin P| - 1,
This follows directly from Lemma 2.2.1.

Another problem related to that of counting antichains is the idea of counting .
maximal antichains in a partially ordered set. Ziegler [Z] considered the problems of
counting antichains and of counting maximal antichains in a partially ordered set of width w
on n elements, and was able to place an upper bound on bbth of these quantities. His

results are stated in the following lemma.

Lemma 2.2.8. Let P be a poset on # elements of width w. We then have:
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a) P contains at most a(n,w) antichains where
w

a(n,w) = c1+.I.I.1§i'(w=n H (ci+ 1).

c i 21 =]
P achieves this maximum if and only if it is the disjoint union of w chains of lengths ¢y,
..» Cw, Where the ¢;’s are those maximizing the above equation.

b) P contains at most ma(n,w) maximal antichains where
. w

ma(n,w) = 6'1'+n.1-§§w=n H Ci.

C; 21 =1
P achieves this maximum if (but not only if) it is the disjoint union of w chains of lengths

C1, ..., Cw, Where the ¢;’s are those maximizing the above equation.

This lemma can easily be seen by considering a poset P of width w. Since P has width w,:
it can be covered by w chains. If any two chains have an element in common , the total
number of antichains can be increased by removing enough edges to eliminate that element
from one of the chains. Thus any poset maximizing the number of antichains will be the
disjoint union of w chains. The number of antichains in such a poset will be
(c1 + ez + 1) ... (¢j + 1) and part a) follows. A similar argument produces the
constructiqn in part b). To show that the “but not only if “ clause holds in part b), consider
the following simple example.” Let n = 3 and w = 2. Then ma(n, w) = 2. Let P be the

poset on three elements a, b and cwitha <banda < c. ma(P)=2,but Pis not of the |

form described in b).

This concludes this section of general antichain counting methods. The problem of
counting antichains in a power set on n elements will be dealt with in a separate section as
much work has Been done on it since the problem was first suggested nearly one hundred
years ago. As well, further antichain counting results will be derived using a technique

relating antichains to independent sets in a graph.
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2.3 ANTICHAINS IN POWER SETS

A well-known antichain counting problem is that of counting the number of
antichains in the power set on n elements, P(n). P(n) is the poset having as its element set
all subsets of the set {1, ..., n} and as its order relation, set inclusion. As an example

P(1), P(2) and P(3) are shown in Figure 2.3.1.

C{1,2,3}
{1,2} {2,3}
{1,2}
W > XX
{1}0{2} {1} {3}
? | ?® ?
P(1) P(2) P(3)
Figure 2.3.1

The problem of évaluationg a(P(n)) was first suggested by R. Dedekind in 1897
and hence has become known as “Dedekind’s problem”, while the value of a(P(n.)) is called
the n’th Dedekind number. Papers discussing this problem are too numerous to mention,
however an extensive listing of these can be found in a paper by Kisielewicz [Ki]. Many
of thesé attempt to place bounds on the Dedekind numbers, estimate the Dedekind numbers
asymptotically and produce algorithms to find the Dedekind numbers. Currently, only

~ exact values for the first 0 to 8’th Dedekind numbers are known and they are as follows:

a(P(0)) =2

a(P(1))=3
a(P(2))=6
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a(P(3)) =20

a(P(4)) = 168

a(P(5)) = 7,581

a(P(6)) = 7,828,354

a(P(7)) = 2,414,682,040,998

a(P(8)) = 56,130,437,228,687,557,907,788.

The 0 to 4’th Dedekind numbefs can easily be calculated by hand, as Dedekind
himself did. T;he fifth was done by Church [C1], who developed an algorithm for
calculating these by hand. M. Ward [Wa] found the sixth in 1946 , and Church [C2] found
the seventh in 1965 using a computer . The eighth was recently found by Wiedemann
[Wd]. He developed a new method for calculating the Dedekind numbers, which required

200 hours of computer time in order to produce a(P(8)).

Recently, an algebraic solution was found to Dedekind’s problem by Andrzej
Kisielewicz using a new approach [Ki]. Let [x] represent the integer portion of x.

Kisielewicz’s theorem is as follows:

Theorem 2.3.1. For any n 2 1,

22" onq -1 [1ogai] o
apey=Y T TI\1-2Ff TI (1-bh+ bk o))
k=1 m=0

= i=1  i=1
where b,k = [L‘—] -2 {—-k——] .
| 2t 2i+1
Kisielewicz proves this by constructing an isomorphic copy of P(r) with a different
labelling from which the above equation can be derived. Thus the Dedekind numbers can

finally be expressed as a single equation. Unfortunately this does not help in finding
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further Dedekind numbers as it is no more efficient than the other algorithms which exist

for counting antichains in power sets.

Kurepa considered the related problem of coﬁnting the number of rﬁaximal
antichains in a power set [Ku]. In his paper, the number of maximal antichains in a power
set on n elements is called the right overturned factorial or the dual factorial of n,
written ni. Kurepa was able to obtain the values of #i for n from 0 to 5 by directly

counting the maximal antichains in the specific power sets. They are as follows:

Oi=1 3i=7
li=2 4i=29
2i=3 5i=146.

So far, no algebraic formula has been found to describe the behaviour of #i .

A paper by Popadic in 1970 focusses on finding formulas to represent the number
of k-element antichains in a power set [P]. Let ax(P(n)) represent the number of k—elemeﬁt
antichains in the power set on # elements. Popadic was able to find the following explicit

formulas for ap(P(n)) and az(P(n)).
Lemma 2.3.2. ay(P(n)) = 22771 + 2n-1 _3n,

Lemma 2.3.3. Let Inrpq =20 4+ 27 4 QBT 4 ) _Qrip L Qrq _Qn-r-p _n-1-q4  Then
n2 nr-l BTP

aPm=¢ Y Y ¥ QU e
r=0 p=1 g=1
Lemma 2.3.2 follows easily from a simple combinatorial argument. Lemma 2.3.3
requires a little more work and the bésic argument is as follows. Consider two
incomparable members of P(n), Band C. Letr=|B N C, p=|B-Cland g=|C~- Bl

. Then0<r<n-2,1<p<n-r-1landl<qg=<n-r-p. The number of elements

simultaneously incomparable with B and C is equivalent to the number of 3-element
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antichains containing B and C which can be shown to equal the equation given by I}zprq.
The value of Inprq is calculated using basic enumeration techniques. It is then found that the
number of incomparable pairs having given p, r and ¢ values is (’;) (';’) (n—g—p) . By
summing over all possible values of p, r and ¢ and recognizing that ea;ch éntichain gets

counted six times (once for each permutation of the elements of each antichain), Lemma

2.3.3 follows.

Though much work has been doné on the problem of counting antichains in power
sets, much remains unknown in this area. Values of ax(P(n)) have yet to be found for

k\ > 3 and the Dedekind numbers beyond the eighth are unknown.

2.4 ANTICHAINS AND INDEPENDENT SETS

The problem of counting antichains in partially ordered sets is related to that of
counting independent sets in graphs. How these two problems relate will be described

after some initial terminology is given.

An independent set in a graph is any induced subgraph of that graph which contains
no edges. For example, in a complete graph, the only independent sets will be each of the
vertices 6f that graph and the empty set of vertices. Let i{(G) represent the number of -

independent sets in a given graph, G.

A bipartite graph is any graph whose vertices can be partitioned into two sets such

that there are no edges between any two members of the same set.

Let G(P) be the comparability graph of P = (X,<) which is the graph on set X such

" that for every x and y in X, there is an edge between x and y if and only if either x<y in P
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or y<x in P. Whenever P is a poset of height one or less, its comparability graph will be
the bipartite graph which looks identical to P. The following lemma describing the

relationship between the antichains of P and the independent sets of G(P) can easily be seen
to hold.

Lemma 2.4.1 Let P = (X,<) be a partially ordered set and let S be a subset of X. S is

an antichain in P if and only if it is an independent set in G(P).

While there are few specific results known about antichain totals for various classes
of posets, much more work has been done on the problem of counting independent sets in
graphs. Since not every graph is the comparability graph of some poset, it becomes
important to be able to distinguish between those graphg which are comparability graphs
and those which are not. Then it can be determined whether or not a given independent set
counting result can be transformed into an antichain counting result. The following result
[GH] due to Gilmore and Hoffman and also to Ghouila-Houri gives a characterization of

comparability graphs.

Theorem 2.4.2. A graph G is a comparability graph if it contains no sequences of
vertices V1, ¥2,..., Vn, With 7 odd and n 2 3 such that for every i, v; and v;+1 are joined by

an edge and v; and v;+2 are not joined by an edge (where addition is modulo n).

This theorem gives a simple means of testing whether or not a given graph is a

comparability graph.

The remai_nder of this section will survey specific classes of .graphs for which
independent sets have been coﬁnted, and then will describe the corresponding classes of
posets having these graphs as their comparabilitty graphs. Values for a(P) can then be
attached to these derived posets by Lemma 2.4.1.
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Firstly, recall the n-fence dealt with in Section 2.2. It has a path of length vn as its
comparability graph. Rather than directly:computing the number of antichains in the
n-fence as was previously done, the problem can be thought of as calculating the number of
independent sets in the n-path, which of course will be the same as the nuniber of
antichains in the n-fence. A related problem is that of counting the number of independent
sets of size k in a path on n elements. Kaplansky [Ka] found the value of this to be (n-];: 1)

This corresponds to the number of antichains of size k in an n-fence.

Now consider a 2n-crown as in Figure 2.4.1b. This has as its comparability graph,

the cyclé on 2n vertices, as is shown in Figure 2.4.1a.

2n )
1 2 ... n
- DN
3 1 3
@ |

(b)
Figure 2.4.1
. Prodinger and Tichy [PT] have shown that the number of indepeﬁdent sets in a cycle
contag’niﬁg m vertices, C(m), is the m’th Lucas number L,,, for m 2 2. The m’th Lucas
number is defined as follows:

Lo=2;

Ly = L1 + L.
To see this relationship, label the vertices of the cycle 1, ..., m. The number of
independent sets in this cycle will be the number of independent sets in a path of length m

minus the number of independent sets in that path containing both vertices 1 and m. The
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former quantity is the m+1’st Fibonacci number (from Section 2.2) and the latter quantity is
the number of independent sets in a path of length m-4 which is the m—3’rd Fibonacci
number. Using these ideas, the following is derived:

i(C(m)) = Fi+1 — F3
=Fp+ Fp1~Fps4—Fps
= i(C(m-1)) + i(C(m-2)).
By verifying that i(C(m)) = Ly, for m =2, 3 and 4.the relationship follows. Thus it can be
concluded that the number of antichains in the 2n-crown is equal to the 2n’th Lucas

‘ number.

Another graph considered by Prodinger and Tichy [PT] is that shown in Figure
2.4.2a which will be called R,. This graph is the comparability graph of poset R’; shown

in Figure 2.4.2b.
n+1 n+2 n+3 cie 2n n+1 2 n+3 oo 2n
1 2 3 n 1 n+2 3 n
(@ Ry (b) R,

Figure 2.4.2

The number of independent sets i(R,) can be found recursively by adding two new
- vertices to graph Rj, to produce R,.1, and then summing the number of independent sets
containing the new vertices and the number not containing the new vertices. Using this
method i(Ry) is found to be defined by the following recursion:
i(Ry) =3;
iRo)=8;
i(Rn+1) = 2i(Rp) + 2i(Rp-1)-
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Solving the recursion gives

AR = iR =323 (1 4+ 37+ 2220 (1,

Adding some additional edges to graph R, produces graph Q, which is the
comparability graph of Q’, as shown in Figure 2.4.3. |

n+1 n+2 n+3 -0’ 2n n+l 2 n3 . 2n
1 2 3 . n 1 n+2 3 e n
@ Q, (b) O
Figure 2.4.3 '

. Using similar methods to those above, Prodinger and Tichy [PT] define i(Q,) recursively’

and then solve that recursion to obtain the following result:

i) = L1 + 2yt + (1 -v2y1]
As béfore, i(Qy) will equal the number of antichains in Q’y,.

A more difficult problem is that of calculating the number of independent sets in )
what is known as an m x n lattiée, L, n, not to be confused with thé lattices defined in
Section 1.2. Ly p is the planar graph resulting from neighbouring points joining to form a
rectangular grid. As an example, L3 4 is shown in Figure 2.4.4a, and it should be noted
that graph Qy, from Figure 2.4.3 is also the 2 x n lattice. As with the graphs dealt with
previously in this section, Ly, », is the comparability graph of a specific class of partially
ordered sets. The partially ordered set L'mn has vertex set {(a,b) | 1<a<m, 1<b<n}

. and order_ relation < defined as follows:

(a, b) < (a, b+1) ifa+beven

Va,bsuchthat1<a<mand 1<b< n-1 (a b) > (g b+1) ifa+bodd
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Va, bsuchthatl <a<m-land1<h<n | (&) <@+l b) ifarbeven
a, bsuchthat1 <a<m-1an "\ (4, b)> (a+1,b) ifa+bodd

L'3 4 is shown in Figure 2.4.4b.

@ \ 4 \ 4 \ 4
GDT G2 G3A] 3,4 (1,2) (1,4 20 23 (G2 G4

VRY, GNv) GEVX) SR

(L (1,3) 22 @CH Gl (G3)

@ 3 (LA

(@ L3y : : (b) L'3 4
& Figure 2.4.4

Both Weber [We] and Engel [E] have attempted to determine the number of
independent sets in Ly, », and so far the exact solution has not been found. Weber was

able to place the following bounds on the value of i(Ly, ), which of course eciuals

a(L'm,n)-

Theorem 2.4.3. For mn > 1, 1.45™ < i(Ly,,) < 1.74™",

Weber also showed the following:

Lemma 2.4.4. 1.45< lim [i(L, ,)]/"* < 1.554, and this limit exists.
n—oo ‘ .

Engel strengthened Weber’s lemma to produce the following improved bounds.

Lemma 2.4.5. 1.503 < lim [i(L, »)]""* < 1.514.
n—+oo

Engel also conjectured that lim [i(L,»)]/"* = 1.50304808... .
n—>00

Work has also been done on finding the number of independent sets in specific

classes of trees. Note that any connected cycle-free height-1 poset will have a tree as its
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comparability graph. Define a completez-ary tree of height n—1 as a tree in which exactly
one vertex has degree ¢, every other vertex has degree 1 61' t+1, and all paths connecting the
degree 1 vertices to the degree ¢ vertex contain eiactly n vqrtices. Such a tree will be
denoted Tnkt). As an example, 73(3), thé complete 3-ary tree of height 2 is shown in
Figure 2.4.5.

®
Figure 2.4.5

Let the poset having Tn(f) as its comparability graph be called Py(2).
Kirschenhofer, Prodinger and Tichy [KPT] produced results involving the number of
independent sets in Ty(#). These results will be given with the understanding that i(7T(7))

can be replaced by a(Py(?)) to give the number of antichains in Pp(2).

Kirschenhofer et al. first consider the case where ¢ = 1. This tree is simply a path,
and thus is the comparability graph of a fence, which has previously been considered. If ¢

equals 2, 3, or 4, the following result is produced for i(Tu(D):

Lemma 2.4.6’ When ¢ =2, 3 or 4 then
i(Ta(t)) ~ D(2) K@) as n—os,
where D(¢) and K(?) are constants depending on # such that
. 2VA) < D) < 1 < K@) < 21/6-D).

For ¢ 2 5, Kirschenhofer et al. found the following result for i(Ty(2)):

Lemma 2.4.7 When ¢ 2 5 then
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i(Tom(®)) ~ Bty K(@)"" as m—oo

and i(Toms1(9) ~ Q) K@) as m—oo.

where B(¢) > C(¢) and B(¢) and C(¢) are constants depending on ¢ with
lim B(f)= lim () =1.

{=—>00 t—00

Finally Kirschenhofer et al. considered binary trees on n vertices. Note that the
poset having such a graph as its comparability graph will be a non-cyclical height-1 poset
with one vertex of degree 2 and the remaining vertices having degree 3 or 1. Let Sy
represent the average value for the number of independent sets in a binary tree on n

vertices. Kirschenhofer et al. have shown the following:

Lemma 2.4.8 S, ~(1.12928...)(1.63742...)" as n—°,

Fiiredi [Fu] considered the problem of counting the number of maximal -
_independent sets in a connected graph on » vertices. If G is a graph, let mi(G) represent
the number of maximal independent sets of G. By calling an independent set S maximal
we mean that no vertices can be added to S to produce another independent set. Now let
m(n) be the maximum number of maximal independent sets possible in a connected graph

on 7 vertices. Fiiredi discovered the following:

Lemma 2.4.9. If n > 50 then
2-31 421 forn=13¢
m(n)={ 3t +2¢1 for n = 3¢+1;
4- 31 + 3. 212 for p = 3p+2.

It should be noted that any poset on n vertices which is connected will have a connected
graph on n vertices as its comparability graph. Also note that any set of vertices forms a

maximal independent set in a comparability graph if and only if it forms a maximal



26
antichain in the poset having that graph as its comparability graph. Thus it can be
concluded that for any connected poset P on n vertices with n > 50, the maximum possible
number of maximal antichains 1n P will be less than or equal to m(n). As well, there are

posefs which achieve this maximum, and their comparability graphs can be found in [Fu].

Griggs, Grinstead and Guichard were able to show that the preceding result holds
for all n > 6 [GGG]. They also added that if n < 6, then m(n) = n.

Wilf [WI1] considered the same i)roblem restricted to a tree T, on n vertices and was

able to reduce the upper bound on the number of maximal antichains as follows:

Lemma 2.4.10. Let m(Ty) be the maximum number of maximal independent sets that
can occur in a connected tree on » vertices. Then

2M2-1 4+ 1  ifneven;
m(Ty) =
.| 212 if n odd.

This result gives the maximum number of maximal antichains possible in.a poset on n

elements having a tree as its comparability graph.

One further independent set counting problem was examined by V. Linek [Lk]. He

was able to demonstrate the following:

Theorem 2.4.11. For every integer n > 1 there exists a bipartite graph with exactly n

independent sets.

Using Lemma 2.4.1 we get that for every integer n > 1 there exists a partial order of length
at most one with exactly » antichains. This result will be discussed further in the final

chapter where a related problem will be addressed.
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This completes a survey of results involving the counting of independent sets in
graphs. By applying Lemma 2.4.1 to these results, new information about the number of

antichains is added to that of the previous section.

2.5 CENTRAL ELEMENTS IN POSETS

One interesting question relating to the idea of counting antichains in pariially
ordered sets is the following. Let a(P, 2x) represent the number of antichains of poset P
which contain an element > x, let a(P, x) be the number of antichains in P which contain X,
and let a(P) denote the total number of antichains of P as usual. Is there a real number

0 <A £ 1/2 such that every poset P has an element x satisfying

a(P, 2x)
S22 <1-A?

"~ a(P) (2.5.1)
An element satisfying (2.5.1) is known as a central element of poset P. Equivalent
versions of this question were raised independently by Colbourn and Rival and by

Rosenthal. Sands considered this problem [Sa] and was able to prove the following.

Theorem 2.5.1. For every integer / > 1, there exists a number 0 < A < 1 such that for

every finite poset P of length /-1 or less, there is an element x such that
< 4P, x)
T oaP)

Note that Theorem 2.5.1 deals with the number of antichains containing an element
x, in a poset of length /, while equation 2.5.1 deals with the number of order ideals

containing x, in any poset. These two problems are equivalent when / = 1 but not when

1> 1.
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Linial and Saks however, proved the following theorem which conclusively affirms

the existence of a A satisfying (2.5.1) for some x in every poset P [LS].

Theorem 2.5.2. In any finite partially ordered set P, there is an element x in P such that

3dogp5 _a(P,2x) _; 310825 . ¢q

0.17=
4 a(P) 4

_Shearér (see [LS]) has shown that there are posets for which (2.5.2) fails when A is taken

to be 0.197. Thus 0.17 must be close to the true bound.

Faigle, Lovasz, Schradér and Turan [FLST] were able to improve upon Linial and
Saks’ value of 0.17 for A when restricting the posets in equation (2.5.1) to series-parallel
posets, interval orders and trees . Series parallel posets were defined in Section 2.2. An
interval order is a partially ordered set (X,<) such that for every @, b, ¢, d € X, a < b and
¢ <d implies that either a < d or ¢ < b (or both). In the context of a partially ordered set, a
tree is any poset (X, <) such that for every x € X, Y= {y € X | x £ y} forms a ¢hain in

(X, ). Now their theorems can be stated.

Theorem 2.5.3. Let P = (X,<) be a series parallel poset or an interval order. Then there

exists an element x in X such that
1ol 2x) .3
4= a(P) 4

Theorem 2.5.4. Let P = (X,<) be a tree. Then there exists an element x in X such that
1oaP2%) 2
3 a(P) 3

Faigle et al. have also shown that the bounds in the above two theorems are the best

possible. Thus it is not only known that there is a real number A such that equation (2.5.1)
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is true for some element x in every poset P, but it is also known that A can be made larger

when we are restricted to certain classes of partially ordered sets.

This section concludes a survey of results involving the counting of antichains in
partially ordered sets. Though much work has been done in this area, it can be seen that

there remain open questions to be answered and classes of posets to be examined.
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CHAPTER THREE

COUNTING LINEAR EXTENSIONS

3.1 INTRODUCTION

In general, the problem of counting linear extensions is considerably n{ore difficult
than that of counting antichains or that of counting chains. Consequently there are few
linear extension countlng results. The linear extension counting problem has actually had
more attention in the realm of Computer Science than in Mathemat1cs Brightwell and
Winkler [BrWi] have assessed the difficulty of this problem and determined it to be
#P-complete, the exact meaning of which can be found in [J]. It suffices to say that

counting linear extensions is generally considered difficult.

Work has been done on finding efficient algorithms to count linear extensions in
various classes of posets. Such algorithms exist for counting the number of linear

extensions of a poset of width 2 [AC]}, a tree [A] and a poset of width k [Sr].

There are a few results which involve the direct counting of linear extensions in
partially ordered sets. Such results will be handled in the following two sections, the first
of which will cover posets of width 2 and the second of which will cover any remaining
posets. Section 3.4 will give a full proof based on the FKG inequality of an important
result known as the XYZ inequality, a theorem which involves considering the probability
that a given relation holds in an arbitrary linear extension of a specific poset. The XYZ
inequality is just one result in a group of theorems known as correlation inequalities which

will be dealt with in the final section of this chapter.
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3.2 POSETS OF WIDTH TWO

Many results have been produced on the problem of counting the number of linear

extensions of partially ordered sets of width 2. Some of these posets are shown in the

following diagram.
b b, “
. " n bm i
am am 2m am bm
by
ap bz

@y b, 42 b, as b,
a; by ay by % a; by

(@) (b) - (© @

Figure 3.2.1

Consider a poset which consists of two chains, one of length m and the other of
length n, as shown in Figure 3.2.1a. Label the elements of the first chain ay, ..., am and
the elements of the second chain bi, ..., by. 1t is well known that the number of linear
extensions of such a poset will simply be (’%”) since there are a total of m+n positions to
fill, and m of these positions must be selected to indicate where the elements of fhe chain of
length m will be placed. As a sorting problem, this poset represents the merging of two

sorted sets.

Now consider a poset P that is like the one above, but which has a single constraint
of the form ap < bg added, where 1 < p <m and 1< g < n, as is shown in Figure 3.2.1b.
The following results involving the number of linear extensions of P can be found in Knuth
[Kn]. In any linear extension of P, it is obvious that elements @p+1, ..., & must lie above

ap and ay, ..., @p-1 must lie below ap.. Also elements by, ..., by must lie above ap.
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However elements by, ..., bg-1 could lie either above or below ap. Let k be any integer

such that 0 < k < gq. Consider the set of linear extensions in which b1, ..., by lie below a,

and bg+1, ..., bg-1 lie above ap. -The number of such linear extensions e(P;k) is as follows:
ey
17

When the sum over all possible values of k of the above quantity is taken, the total number

m-p+n-k

e dy=| "I

of linear extensions of Pis

- g [ )

Now, the situation in which many constraints of the the form ap < bg and bj < aj are
added to a poset consisting of two chains will be considered. It is assumed that the added
constraints are consistent with one another, meaning that the properties of transitivity and -
irreflexivity are not violated, and that the transitive closure of the resulting poset is
considered. Atkinson and Chang [AC] as wéll as Mohanty [M] have produced algorithms
to count the number of linear extensions in such a poset. As well, there are éertain specific
examples of this sort of poset for which the total number of linear gxtensions‘can,be found.”
Consider the partially ordered set 6f this type for which both chains are of the same length
(m = n) and which has added constraints a; < bi for all 1 <i<m. This partially ordered set
is shown in Figure 3.2.10. It is known that the number of linear extensions of this poset is

the m’th Catalan number Gy, which is defined as follows:

-1 _(m)

This result can be found in a paper by Atkinson and Chang [AC] and it also follows from
the equivalence of this problem to a lattice path counting problem. Consider an m x m
" lattice as defined in Section 2.4. It is well-known (see for instance [M]) that the number of

paths of 2m steps_from (0,0) to (m,m) which don’t cross below a diagonal line joining
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(0,0) to (m,m), is also the Catalan number, C,,. The bijection from the linear extensions of
the poset in 3.2.1c to the above described paths is as follows. Given a linear extension
x1 ¥x2 < ... <xp of the poset, start at (0,0) on the lattice. Given that the first i~1 steps
have been taken, let the i’th step be “north” if x; € {ay, ..., am} and “east” if x; € {by, ...,

bm}. Itis easy to check that this produces a bijection.

Finally consider the poset shown in Figure 3.2.1d. As a matter of interest, the
-complement of the comparability graph of this particular poset is the “zig-zag” graph or
2m-fence as described in Section 2.2. The number of linear extensions of such a poset on
2m elements is the 2m’th Fibonacci number where the n’th Fibonacci number Fy, is defined

in Section 2.2. This result was found by Atkinson and Chang [AC].

Now that results involving the number of linear extensions of some types of width-
2 posets have been discussed, the problem of counting linear extensions of other posets

will be discussed in the following section.

3.3 OTHER POSETS

Posets of width 2 are not the only posets for which attempts have been made to
count linear extensions. In this section, results for counting linear extensions of bipartite .
graphs and power sets will be examined, as well as a number of results involving the

general linear extension counting problem.

Stachowiak [Sk1] dealt with the problem of counting linear extensions of bipartite
graphs. A bipartite graph can be thought of as a partially ordered set by attaching directions

to the edges of the graphs, providing the edges are directed so as not to produce a cycle.
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Such an assignment of directions is known as an orientation of the graph. A natural
orientation of a bipartiter graph is an orientatioﬁ such that the vertices can be partitioned into
two sets X1 and X» so that X1 and X are antichains and such that if x € X1, y € X2 and x
and y are reiaﬁed then x <y. It is easy to see that every bipartite graph must ha§e at least

two natural orientations. Stachowiak provides the following theorem:

Theorem 3.3.1. The number of linear extensions of an orientation of a bipartite graph is

less than or equal to the number of linear extensions of a natural orientation of that graph.

This theorem is proved using induction on the number of vertices in the graph. Let
G and G’ be graphs on the same set of vertices. Then we say G < G’ if the set of edges of

G is a subset of the set of edges of G'. The following corbllary arises from Theorem

3.3.1.

Corollary 3.3.2. Let P be a height-1 poset. Then P is a natural orientation of G(P), its
comparability graph, which will be bipartite. Let Q be a poset on the same set of elements
asP. Then a) G(P) S G(Q) = e(P) 2 e(Q) |

b) G(P) =G(Q) = e(P) =e(Q).

It may be noted that the = direction of b) follows immediately from part a). In

another paper, Stachowiak[Sk2] extends this result to posets of arbitrary height.

Theorem 3.3.3. If P and Q are posets on the same set of elements then
a) G(P) < G(Q) = e(P) 2e(Q)
b) G(P) =G(Q) = e(P) = e(Q).

In order to prove this theorem, the following lemma is required:

Lemma 3.3.4. Let Abe an antichain of P. Then
’ Y, e(P-a)<e(P).

acA
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The lemma follows from an argument using induction on the number of élements in P.
Proof of Theorem 3.3.3. The proof of a) is by induction on the number of elements in
P. Assﬁme G(P) S G(Q). If P has one element the theorem is obvious. Let 721 and
assume that the theorem holds for all n—1 element posets. Then G(P-x) & G(Q-x) for
every x in P, so e(P-x) 2 e(Q—Jf) for every x in P. Let I be the set of minimal elements of

poset Q. Summing over all x’s in I gives

Y eP-x)2 Y e(Q-x). (3.3.1)

xel x€el

Then it is easy to see the following:

Y e(Q-x)=e0. . (3.3.2)

x€l

I forms an antichain in P so we can apply Lemma 3.3.4 to I to produce the following:

eP)2 Y e(P-x) (3.3.3)

xel

Combining equations (3.3.1), (3.3.2) and (3.3.3). gives the desired result. As in Corollary
3.3.3, part b) follows directly from parta). 0O

Edelman, Hibi and Stanley [EHS] produce a recurrence for the number of linear
extensions of a poset. Before their result can be stated, a few preliminary definitions are
required. A chain c of a poset P is saturated if there is no z € P—c such that x <z <y for
some x, y € ¢ and cU{z} is a chain. Thus in a finite poset, ¢ = (xb < X1 < ..< Xp) is
saturated if and only if x; covers x;.; for each i € {1, ..., k}. Now let ¢ =
(X0 < X1 <..<Xp) be a saturated chain with m > 0. Let P, be poset P with the
elements of ¢ replaced by xg 1, X1,2, ..., Xm—1,m such that all the following relations as well
as those implied by transitivity hold: |

a) Xx0,1 <X1,2 < < Xm-1,m
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b) y<xi;+1 ify € Pcandy <xj+1in P
c) y>xij+ ify € P-candy>x;in P.

In addition, when m =0, let P, = P — xg.

Theorem 3.3.5. Let P be a finite poset and let C be a set of saturated chains of P such
that every maximal chain of P contains exactly one element of C as a subposet. Then
e(P)=Y e(P.).
ceC
This is proved by constructing a bijection from the linear extensions of P to the union of the

linear extensions of the P.’s. The following corollary arises from this theorem:

Corollary 3.3.6. Let P be a finite poset and let A be an antichain of P intersecting every
maximal chain (i.e. A is a cutset of P). Then
e(P)= Y e(P-x).
X€A
Notice that this corollary gives the case when Lemma 3.3.4 holds with equality. Also note

that Corollary 3.3.6 is a generalization of equation (3.3.2).

Sha and Kleitman [SK] considered the problem of finding the number of linear
extensions of the poWer set on n elements, P(n). It is well known ‘that the number of linear
extensions of P(n) is equal to the number of maximal chains in the free distributive lattice
on n generators. Though a rigorous definition of the free distributive lattice on 7 generators
L, = (X, <) will not be given, intuitively it is the lattice whose element set X consists of all
polynomials arising from the n generators, where no element is less than another unless it

is forced to be by the laws of distributive lattices. As an example, the free distributive

lattice on 3 generators is shown in Figure 3.3.1.
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Figure 3.3.1

Sha and Keitman found the following upper bound for the number of linear

extensions of P(n).

Theorem 3.3.7.

e(P(n)) < f[ (,’j)(l'c’)

k=1

Another class of posets for which the total number of linear extensions is known is
the class of posets that can be associated with what is called a Young diagram. The ideas
stated here can all be found in [Sg]. For a given positive integer n, consider a decreasing
sequence of r positive integers A1 2 A2 2 ... 2 Ar> 0 such that the sum of the A;’s ié n.
Such a sequence describes a Young diagram, which consists of r rows of cells aligned in a
. grid, such that row i contains A; cells for 1 < i < r and the first column contains the first

cell of each row. The Young diagram with r =4, A1 =3, A2 =2, A3 =2 and A4 =1 is shown
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in Figure 3.3.2a. Now associate a poset with a given Young diagram. Let X be the set of
ordered pairs of the form (p, g) where 1 < p <r, 1< g <A, Now define the order < on P
as follows. Let (p, g) < (p', ¢') if and only if p < p’ and g < ¢’. Figure 3.3.2b gives the

poset associated with the diagram in Figure 3.3.2a.

Figure 3.3.2

From a given Young diégram with n cells we can produce what are called standard
Young tableaus by filling the cells with the integers '1, 2, ..., n in such a way that the
number in a given cell is less than the number in the cell to its immediate right and the
number in the cell below it. Figure 3.3.3 shows several possible Young tableaus resulting

from the Young diagram shown in Figure 3.3.2.

11213 115 8 11 21] 4
415 216 315

61 7 317 6| 7

8 4 8

Figure 3.3.3
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It is well known that the number of linear extensions of P(D) is equal to the number

of standard tableaus arising from diagram D. Thus we are interested in counting the
number of standard tableaus resulting from a given diagram. There are numerous results
involving counting standard tableaus. One such result, the hook lenéth formula, wﬂl be

given here.

The hook number of a cell in a diagram is the number of boxes which are either
below the cell or to the right of the cell, including the cell itself. Figure 3.3.4 gives the

hook lengths of each cell in the Young diagram we have been using as an example.

6} 4 1
4 1

3 1

1

Figure 3.3.4

Let st(D) be the number of standard tableaus which can be produced from a given
Young diagram D with n cells, and let dy, d», ..., d, be the hook lengths associated with
D. The hook length formula due to Frame, Robinson and Thrall [FRT] is as follows:

Theorem 3.3.8.
—__n!
D)= 55,

Because of the relationship described previously, this formula also gives the number of

linear extensions in the poset associated with D.
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Another well known related problem (found for instance in [Sg]), involves'
counting the number of linear extensions of rooted trees, where a rooted tree is a poset
whose Hasse diagram is a tree containing a single minimal vertex. To each element in such
a tree, T= (X, <.), can be assigned what is known as an interval mimber. Fora given x €
X, let the interval number in (x) be defined as foliows:

in(x) = [{y € Xly 2 x}|.
It is known that the number of linear extensions of such a poset on n elements is

nt
H in(x)

xeXr

Thus some linear extension counting results have been-sux"veyed. In the following

two sections, some related problems will be examined.

3.4 THE XYZ INEQUALITY

Related to the problem of counting linear extensions in partially ordered sets is the
theorem now known as the XYZ Inequality. This theorem was first conjectured by Ivan
Rival and Bill Sands and was eventually proved by L. A. Shepp [Sh2]. Before the
p1:ob1em can be stated, a few preliminary definitions must be given. Let E and F be sets of
relations of the form x; < x;. We will say a permutation satisfies a relation x; < x; if x;
comes before x; in the permutation. Then define p(E) to be the number of permutations of
X1, ..., Xp satisfying all the relations of Ehdivided by the total number of permutations of
X1y ooes Xn. Also lét D(E, F) be thé number of permutations of xi, ..., X, satisfying all the
relations of both E and F divided by the total number of permutations of x1, ...,wx,,. Now
define p(EIF) as the number of permutations of xy, ..., X, satisfying all the relations of both

E and F divided by the total number of permutations of xj, ..., X, satisfying all the



41
relations of F. Note that since any partially ordered set is a set of relations of the form x; <
xj, the above definitions apply when E and F are partially ordered sets on the same set of

elements. Now the statement of the XYZ Inequality can be made.

Theorem 3.4.1. Let P = (X,<) be a partially ordered sét where x, y and z are afbitrary
elements of X with x|z. Then

<yl P <p<ylr<zP),
where p(x <y | x < z, P) is the proportion of permutations of X satisfying x < z and P

which also satisfy x < y.

It should be noted that the preceding equation is equivalent to the following:
px <y, P) p(x <z P) < p(P) p(x <y, x <z, P).

The proof of this theorem invokes the FKG Inequality of Fortuin, Kastelyn and
Ginibre [FKG], which first requires a definition. Given a poset P on a set X, we say a
real-valued function fon X is increasing if whenever x < y then fix) < fy). The FKG

Inequality is as follows.

Theorem 3.4.2. Let L = (X,<) be a distributive lattice, let fand g be increasing real-
valued functions on X and let u be a real-valued function of X such that for all-x and y in

X, p(x) 2 0 and p()u() < p(xAy)u(xvy). Then

Y fngoue Y no) 2 Y, Ao Y, s0mo).
xeX yex x€X yeX
We do not prove the FKG inequality, but apply it to derive the XYZ inequality.
Before proving Theorem 3.4.1, some preliminary definitions are needed as well as several
lemmas. Let $ be the set of n-tuples a = (a, ..., an) where each a; € {1, 2, ..., N} and N
is some integer which will later be allowed to tend to infinity. Define the relation < on S by

the following:
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- x<yforx,y € Sifand only if x1 2 y1, x; —x1 < yi~y1 fori € {2, ..., n}.
It is easy to verify that (S, <) forms a partially ordered set. For instance, if N =2 and

n=3, (§, <) will be the poset shown in Figure 3.4.1.

(1.2,2)
(1,1,2) (1.2,1)
a1y
2.2.2)
2,1,2) @.2,1)
2,1,1)

Figure 3.4.1

We refer to the i’th component of a. € S by a;

Lemma 3.4.3. Foreverya,b € S,anbanda vV b exist in S, and in fact
a) (a A b); =min(a; — a1, b; — b1) + max(ay, b1) and

b) (a Vv b); = max(a; — a1, b; — b1) + min(a, by).

Proof. Consider o x= min(a; — a1, b; — b1) + max(ay, b1) and
yi = max(a; — ay, b — by) + min(ay, by).

Let x = (x1, X2, .., Xp) and y = (¥1, ¥2, ..., ¥n). To verify Lemma 3.4.3, we need to
demonstrate the following: i) x € S; '

i) x<a,x<b;

iii) if z € Sandz<a,z< bthenz< x;
_ and also the following: ) yeS;
i) y2a,y2b;



43

ii) ifz € Sandz>q,z2bthenz2y.

Only the proof of i) - iii) for x will be shown as the proof for y is similar.

i) To verify x € §, it must be checked that x; € {1, ..., N} foralli € {2, ..., n}.
There are four cases which are as follows: |
a) min(a; - a1, b; - b1) = aj — a1, max(ay, b1) =ay;
b) miﬁ(ai ~a1,bi-by) = ai—al; max(ay, b1) = by;
c) min(a; - a1, b - b1) = b;— b1, max(ay, by) =by;
d) min(a; - a1, b; - b1) =b; — b1, max(ay, b1) =ay.
Now it can be shown that x; € {1, ..., N} foralli € {2, ..., n}.
a) xi=aj—-ai + ai. Then xi=a;i € {1, ..., N}.
b) xi=a;j—a1 + by. Buta;j=ai—a1 +a;<Lai—ay + by <b;j-by + by =b;. Since
ai, b; € {1, ..., N} then x; € {1, ..., N}.
¢) xi=b;j—by +by. Thenx;=b; € {1, .., N}.
d) xi=b‘i—b1 +a1. Butbj=b;~by +b1<b;-by +ay1<a;—a1 +a)=a;. Since
ai, bj € {1, ..., N} then x; € {1, ..., N}.
Thus x € S.

ii) By definition of < the following must be shown:
1) x1 2 a1,x1 2 by;
2) xi—x1%aj—ay fori€ {2,.,n}, x;—x1<bj—by forie {2, ...,‘ n}.
1) x1 =min(ay - ay, by — by) + max(ay, b1) = max(ai, b1). Thusxy 2 a; and x1 2 by.
2) Each of the four cases a) — d) from the proof of i) must be considered foreach i €
{2, ..., n}.
a) xi—xy=aj—-x12ai—ay <b;j-by.
b) xi-x1=ai—a; +by—-x1La;j-a1 +b1-b1=a;—a; £ bj-b;.

C) xi—-x1=bj—-x1<bj—b1La;—ai.
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d) xi—-x1=bj—b1+a1-x1<bi—by +ai—a1=bj-b1<a;—ay.

Thus 2) is satisfied for all i.

iii) Let z € S be such that z< g and z < . We show that z < x. SincezSaandz
.S b then z1 2 a1 and z1 2 b1 by the definition of < on S. Thus z; > max(ay, b1) =x1. Let
i€{2,.,n}. z<aand z<b also imply that z; — z1 < a; —‘al and z; — z1 < b; — b1.
Thus
zi — z1 < min(a; — a1, b; — b1) = x; — max(ay, by) =x; — x1.

Since z; 2 xj and z; — z1 <x;—x1 forall i € {2, ..., n}, thenz<x. O
Lemma 3.4.4. (S, <) is a distributive lattice.

Proof. (S, <) is a lattice by Lemma 3.4.3. To show (S, <) is distributive, the distributive
lawaAn(bvc)=(anb)Vv(anc)
must be verified. To demonstrate this the following preliminary results are required:
min(j, max(k, [)) = max(min(j, k), min(j, [)) (3.4.1)
max(j, min(k, [)) = min(maxv(/', k), max(j, 1)) (3.4.2)
for any numbers j, k, and I. These equations simply say that every chain forms a
distributive lattice. Now the distributive law will be verified for (S, <).
(an(vVvc); =min(a;j—ay,(dV)—(® v o)1) + max(ay, (b Vo)1)
= minfa; — a1, max(d; - b1, ¢; — 1) + min(by, c1) — min(by, c1)] +
.max[al, min(b1, c1)]

= min[a; — a1, max(b; - b1, ¢; - c1)] + max{ay, min(b1, c1)]
Applying (3.4.1) and (3.4.2) to this we obtain the following:

(a A (b V ¢)); = max[min(g; - a1, b; — b1), min(a; - a1, ¢c;—c1)] +

min[max (a1, b1), maX(al,VCI)]
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= max[min(a; - a1, b; — b1) + max(ai, by) - max(ay, b1),

min(a; —a1, ¢; —¢1) + max(ay, ¢1) — max(ay, c1)]

+ min{max(ai, b1), max(a, c1)}
=max[(aAb)i—(anb),(@rc)i—-(a A c)1;] + minf(a A b)1,

@nol

=(@rB)v@r. 0

Now fix poset P = (X, <), and fix the elements of X as x4, ..., X, so that x{ and x3
are not related. Note that x1, X2, ..., X, need not be a linear extension of P. Next define

functions fand g on S as follows:

. 1 if a1 < an
fa) —{ 0 otherwise

_|1 if a1<a3
&) _{ 0 otherwise

Lemma 3.4.5. fand g are increasing functions.

Proof. Proving fis an increasing function is equivalent to proving that for any a, b € §,
if fa) =1 and a < b then fib) = 1. Since a < b, by definition a1 2 by and a3 — a1 <
by - by. Since fla) = 1, by definition of £, a1 £ ap. Thus a3 — a1 2 0 so we will have by —
b1 2 0 which in turn implies that b2 > by and thus f{b) = 1. A similar proof shows that g is

increasing. [

We say that a € § satisfies the inequalities of poset P if for every i,j € {1, ..., n}

such that x; < x;jin P then g; < aj. Now define function p :§ — {0, 1} as follows:

[1 if asatisfies the inequalities of P;

w@ 10 otherwise.

Lemma 3.4.6. p(a)u(d) < uavbuanb) foralla, b € S.
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Proof. Since u(a) can only equal O or 1, it is enough to show that if (@) = u(d) = 1 then
u(a v b)=u(a Ab)=1. If u(a) = u(d) = 1 then a and b satisfy the inequalities of P. Thus

for every i, j such that x; < x; is an inequality of P we must have a; < @ and b; < b;. Thus

(a A b)i = min(a; — a1, b; — b1) + max(ay, b1)
< min(a; - a1, bj— b1) + max(ai, by) =(a A b);.
Since (a A b); < (a A b)j it is clear that (@ A b) satisfies the inequalities of P. Thus

u(a A b) = 1. Similarly it can be shown that uy(av b)=1. 0

Proof of Theorem 3.4.1. By Lemmas 3.4.4, 3.4.5 and 3.4.6, f; g and p satisfy the
initial conditions of the FKG inequality (Theorem 3.4.2). Thus applying this inequality we
get
Y fogau@y @2 Y fiau@y gbu®).
a€s beS acs beS
Dividing both sides by |S||S| gives
Y fagap@\( Y @)\ (¥ fou@)[Y gbn®

a€s ’ beES a€s beS
> . 3.4.3
i S ST S (3:4.3)

Now consider the first bracketed quantity in (3.4.3). We show that as N — 2, .

Y, Adga@u(@)

acs

S| — p(xy <x9, X1 <x3, P).

LetS'={a € S|ai*aqjVije€ {l,..,n} withi#j}. ThusS is the set of all elements in
S containing no repetitions of its coordinates. First note that |S| = N” and [’} = N! / (V-

n)!. Thus

ST m -
I—s—f— (N_n)! N7 1 asN 0,
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Intuit{vely, as N becomes infinitely large, the proportion of elements of § containing -
repetitions amongst their coordinates becomes insignificant. The same thing happens when
we consider the elements of § for which x; < xp, x1 < x3 and the inequalities of P are
satisfied. If we further restrict ourselves to S, the elements without repetitions, and allow

N to go to infinity we have

Y Adgau@)

acs’

— 1.
Y Aag@u@
a€s
Y fagau@ Y fogau@
a€sS a€s’
Then as N — 0, - S p

Every b = {by, by, ..., by} € 8 corresponds to a permutation of {1, ..., n}, a =
{a1, ay, ..., an} such that b; < bj = a; < a;. It can be shown that a fixed number m of
elements of $’ will correspond to a given permutation of {1, ..., n}. Also note that
Eaes' Aa)g(a)u(a) counts the elements of S’ for which x1 < x3, X1 < x3 and the
inequalities of P are satisfied. Hence if we further restrict a to P’ where P is the set of
elements of § which are permutations of {1, ..., n}, we get

Y, f@e@n@ = ePxy <x3 21 <x3),
acpP

where e(P | x1 < x2, X1 < x3) counts the number of linear extensions of P such that x; <xp

and x; < x3. Thus

Y Aagau@)

acs' _m- e(P|xy <xp, Xy <X3)
15} m- |P’|

= p(x1 < X3, X1 <Xx3, P).
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Similarly the other three quantities in equation 3.4.3 approach the probabilities in the
following equation as N approaches infinity. We get
p(x1 <x2, x1 < x3, P) p(P) 2 p(x1 <x2, P) p(x1 < x3, P), (3.4.4)

which is the desired result. 0O

This completes Shepp’s proof of the XYZ Inequality. Fishburn [Fi] has done
further work on this problem and was able to demonstrate that whenever x1, xp and x3 are

pairwise unrelated, then 2 can be replaced with > in equation 3.4.4.

3.5 CORRELATION INEQUALITIES

The XYZ Inequality is a relationship which is part of a broader class of theorems,
known as correlation inequalities. In order to define correlation in terms of linear

extensions of partially ordered sets, a few ideas from probability theory will be given.

Let O and R be two events. Then we say that Q and R are positively correlated if
P(Q) <p(@ 1 R), Q and R are negatively correlated if p(Q) > p(@ | R) and Q and R are

independent or uncorrelated if p(Q) = p(Q | R).

Before proceeding, some definitions of the meaning of probability in terms of linear .
extensions of partially ordered sets must be given. These definitions can be found in a
paper by Brightwell [Br2]. Let Q and R be asymmetric subsets o;f X x X where X is some
set with |X] = n. As in the previous section, the probability p(Q) of subset Q is the
proportion of permutations of the n elements of X which satisfy all relations of Q. Now
define the conditional probability p(Q | R) = p(Q U R) / p(R) as the probability that a

permutation satisfying all relations in R also satisfies all relations in Q. The above
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definitions can be applied to posets, since a pbset P is an asymmetric set of pairs (x, Y)
with (x, y) € P if and only if x <y in P. Thus if Q and R are posets, p(Q | R) is the

probability that an arbitrary linéar extension of R is also a linear extension of 0.

Now the idea of correlation in the context of partially ordered sets will be
considered. Let Q and R be posets on a set X and let P be a poset on a set containing X
such that P U R is asymmetric. Q and R are said to be positively correlated with respect to
P (in symbols QT pR using a notation of Brightwell [Br2]) if p(Q | P) < p(Q | P U R).
Similariy, Q and R are said to be negatively correlated with respect to P(Q!pR)if p(Q| P)
2 p(Q| P U R). Note that assuming P U Q is also asymmetric, we get that Q1 pR if and
only if RTpQ and Q! pR if and only if RlpQ. To extend these definitions, say that there is
a pair of posets O, Ron set X suéh that for every poset P on a set containing X with P U R
asymmetric, then QT pR. We say that such a pair is universally positively correlated and
write Q1R. Similarly, if there is a pair of posets Q, R on a set X such that for every poset
P on a set containing X with P U R asymmetric, then Ql pR, we say that Q and R are

universally negatively correlated and write Q! R.

The XYZ Inequality treated in the previous section is an example of a correlation
inequality. In this case let Q and R be the posets on X = {x1, x2, x3} with strict order
relations such that Q = {(x1, x2)} and R = {(x1, x3)}, and let P be a poset on a set
containing X with x3 £ x1, Then we can say not only that Q and R are positively correlated
with respect to P, but also that Q and R are univers;ally positively correlated (QTR).

The following well known correlation inequality was proved by Graham, Yao and
Yao [GYY].

Theorem 3.5.1. Let A and B be disjoint totally ordered sets. Let P=A U B and let Q

and R be sets of relations of the form a,, < b, where a,, € A and b, € B. Then
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p(Q|P) < p(@| PUR).

Thus this theorem states that Q1 pR. An example often used to illustrate this theorem is as
follows. Consider a temﬁs tournament between two teams A and B for which each team
has a complete ranking of its players. It must be assumed that tﬁe tennis players play
éonsistently so that if player x is ranked above player y, then player x will always beat
" player y. Theorem 3.5.1 says that if some players on team A have already lost to some
players on team B, then there is an increased likelihood that a given player on team A will

lose to a given player on team B.

Shepp [Sh1] was able to expand upon this result and show that Theorem 3.5.1 also
holds when A and B are just disjoint partially ordered sets. Brightwell [Br5] added that if
there are x, y, z, w € X such that (x, y) € Q and (z, w) € R and either x and zor y and w
are in the same connected component of G(P), the comparability graph of P, then Shepp’s
result holds strictly. Another extension of Theorem 3.5.1 was found by Graham, Yao and

Yao [GYY] and is the following:

Theorem 3.5.2. Let A and B be disjoint totally ordered sets. Let P=A U B and let C,

Q and R be sets of relations of the form a,, < b, where a,, € A and b, € B. Then

P(Q1PUC) S p(Q| PUCUR).

Alternate proofs of this were found by Kleitman and Shearer [KS] and also by Shepp
[Sh1]. Once again Shepp considered the corresponding problem with A and B disjoint
partially ordered sets and found that the theorem does not hold in this case. The simplest
counter-example to this is due to the referee of [Sh1]. Let A be the two-element antichain
consisting of elements a; and a2 and let B be the two-element antichain consiéting of
elements by and by. Let C = {as < b1}, R = {ap < b} and Q = {og < b1}. Then
p(Q|PUC)=2/3>5/8=p(Q| PUCUR).
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Brightwell wrote two papers [Br2] and [Br5] dealing with the idea of correlation
with respect to another poset. In the first, h'e was able to classify all posets P = (X, <)
such that {(x, y)} and {(z, w)} are correlated with respect to § for every poset S which is
an extension of Pand has w £ z in §, where x, y, z, w € X. In the second, he classified
all posets P = (X, <) such that {(x, y)} and {(z, wj} are correlated with respect to § for

every poset S on X which is a subposet of Pand has w # z in S, where x, y,z, w € X,

Winkler th] and Brightwell [Brl] considered the problem of finding conditions
for universal correlations amongst posets. Winkler produced a necessary and sufficient
condition for posets Q and R on a set X to be universally positively correlated. Brightwell
produced another such condition equivalent to Q1R and was also able;, to give a condition

when Q and R are universally negatively correlated.

It can be seen that much work has been done in the area of correlation. The above
is only a summary of results that have been found thus far. To complete this survey of
results dealing with the problem of counting linear extensions of posets, the following
section will deal in detail with a specific linear extension counting problem, the 1/3 - 2/3
conjecture. Like correlation inequalities, the 1/3 — 2/3 conjecture involves the ‘probability

that a given relation will occur in a linear extension of a given poset.
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CHAPTER FOUR

THE 1/3 - 2/3 CONJECTURE

41 INTRODUCTION

The idea of counting linear extensions gives rise to a well-known unsolved
problem, the 1/3 - 2/3 conjecture. Consider a partially ordered set (X,<). The 1/3 -2/3
conjecture claims that in every poset (X,<) that is not a chain there will be a pairx, y € X
such that x is below y in somewhere between 1/3 and 2/3 of the linear extensions of (X,<).

This conjecture is attributed to Fredman in 1976 [Fr].

The motivation behind the 1/3 — 2/3 conjecture is the following question. For every
poset, is there a pair (x,y) such that x lies below y in approximately half the linear
extensions? The 1/3 — 2/3 conjecture hypothesizes that the answer to this question is yes,
when “approximately half” is interpreted as “between 1/3 and 2/3”. Formally the '

conjecture is stated as follows.

Conjecture 4.1.1 Let P = (X,<) be a finite partially ordered set that is not a chain.

Then there exist distinct elements x and y in X such that 1/3 < p(x<y|P) < 213,

It is known that when all posets are considered, there is no A with 1/3 < A < 1/2 such that
Conjecture 4.4.1 with A and 1-A replacing 1/3 and 2/3 can be proved. To see this,
consider the poset consisting of a 2-element chain plus an isolated point. When
considering any pair of unrelated points x and y in this poset, either p(x<y|P) = 1/3 or

" p(x<y|P) =2/3. Thus the values of 1/3 and 2/3 are the “best” possible.
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At this point, one comment on notation will be made. When the poset, P, is fixed,

then we will write p(x<y) instead of p(x<y|P).

The reason that there has been so much interest in the 1/3 — 2/3 conjecture is that it
has direct applications to the problem of finding time efficient sorting algorithms for
computer programs. Consider a set of partially sorted data which is to be completely
sorted. This forms a poset P of data items. VThe sorting is done by making comparisons
.between unrelated items in the poset to determine their ordering. Let n be the number of
comparisons that must be made to sort such a poset, aﬁd find the relationship between the
number of comparisons needed and the number of linear extensions of P. Consider the
worst case situation. This occurs if whenever a comparison is made and it is found that
say, x<y, then x is below y in more than half of the linear extensions. In this situation, the
best that can héppen is that for every comparison between 2 elements x and y, p(x<y) =
p(y<x) = 1/2. Thus we will have V

2% _ o(P).
In general, the worst case says
2" > e(P)
= n 2 logye(P).

The lower bound on 7 is known as the information theoretic bound. It should be

noted that if the 1/3 - 2/3 conjecture can be proved, then we will have
(g)” < e(P)
= n<logspe(P) = 1.7 logre(P).

To date, though much progress has been made on the 1/3 — 2/3 conjecture, it still
remains an open problem. Kahn and Saks [KS] succeeded in showing that if the rvalues'
1/3 and 2/3 in Conjecture 4.1.1 are replaced with 3/11 and 8/11, the conjecture can be
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proved for all finite posets. Using this 3/11 — 8/11 result, the best upper limit that can be

-placed on the number of comparisons of elements required to sort P is as follows.

(%)” < e(P)

= n<logiy/ge(P) = 2.2 logae(P).

Other researchers have had success at considering specific classes of finite posets and
proving the 1/3 — 2/3 conjecture for those classes (see [L1], [BrW], [St], [GHP}, [Brd] and
[TGF]). With some classes of posets, a result much closer to 1/2 can be achieved. As
well, Brightwell [Br4] has extended the deﬁniﬁon of p(x<y) to include a certai_n class of
infinite posets and has been able to show that inrthe infinite case, there are counter-
examples to the 1/3 — 2/3 conjecture. These ic}gas will be examined in more detail in the

following sections.

42 THE 3/11 - 8/11 THEOREM

One of the first major breakthroughs in the efforts to prove the 1/3 — 2/3 conjecture
is the following result shown by Kahn and Saks in 1984 [KS].

Theorem 4.2.1. Every finite partially orderéd set (X,<) which is not totally ordered
contains a pair x, y € X such that 3/11 < p(x<y) < 8/11.

The key to Kahn’s and Saks’ proof of this theorem is in considering the “average
heightf’ of an element over all linear extensions of the poset. In order to define the average
height of an element x in X, two other definitions must first be made. Let P=(X, <)bea
partially ordered set, and as before let E(P) be the set of linear extensions of P and let e(P)
= | E(P) |. Fora given L € E(P) define a function f from X to the natural numbers by f{x)
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= k if x is at height k in L, that is, if there are éxactly k — 1 elements of X below x in L.
Now let p(fx) = k) represent the proportion of linear extensions of P in which)é is at

height k. Mathematically, this can be stated as'

_p (P fx)=k)
p(fx)=k) = ——=+—= P

Finally, the average height A(x) of an element x in a poset P of size n is defined as follows:

h(x) =Y kp(fx)=k).
k=1

This definition allows the critical theorem in Kahn’s and Saks’ proof to be stated.

Theorem 4.2.2. Any pair of elements x and y in X satisfying |h(y)-h(x)| < 1 also
 satisfies 3/11 < p(x<y) < 8/11,

A complete proof of Theorem 4.2.2 will not be given here, though the main ideas
Kahn and Saks used to prm}e this theorem will be briefly outlined. First they let ex(x<y)
“be'the‘number of linear extensions in which fix)-f(y)=k. Then they proved a series of
lemmas which describes various relationships amongst the e;é(x<y)’s and leads to the

following lemma.

Lemma 4.2.3. Let {a;} and {b;} where i>1 be sequences of non-negative real numbers
which satisfy the following: '

()  a1=by;

2) a;i=0=a;+1=0, bj=0=b;j+1=0,ifi > 1;

@ Y a-Y bi=1

i1 i21
4  a+br<a+by;
5)  aifai*aig;

6 ai2ai1 a1
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(7) E iai+2 ibj< 1.

iz1 iz1

Then Z bi > 3/11-
i21
Kahn and Saks then let x, y be a pair of incomparable elements satisfying

{h(y) =h(x)| < 1 and let az and b be defined by the following equations:

ap =EKEY) o>,
e(P

by _E&X<Y) for k>1."
e(P
It can be shown that {ax} and {by} satisfyr (1) = (7). Now p(x<y) = Lg»1 b; > 3/11 by
Lemma 4.2.2. Similarly it can be shown that p(y < x) > 3/11 so we get
3/11 < p(x<y) < 8/11.

Then it remains to show that every partially ordered set that is not a chain contains a
pair (x, y) such that |r(x) — h(y)| <1, since this in turn will imply 3/11 < p(x<y) < 8/11.
Let {1,2, ..., n} represent the elements of X where |X] = n. Then 1 < h(j) < n where
j€{1, ..., n}. In the worst case these elements will be evenly spaced one unit apart across
the interval [1, n], in whi(;h case (X,<) must be a chain. Otherwise there must be two

elements i and j that are closer together than one unit. Then |h(i) — A(j)| < 1 as required.

Thus it has been shown that for every finite poset (X,<) that is not a chain, there are

distinct elements x and y in X such that 3/11 < p(x<y) < 8/11.
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4.3 CASES WHERE THE 1/3 - 2/3 CONJECTURE HAS BEEN PROVED

Since thus far no proof has been found to improve upon the 3/11 — 8/11 bound for
all finite posets, efforts have been concentrated on trying to prove the 1/3 —2/3 conjecture
for special classes of partially ordered sets. A number of such results have emerged, thus
strengthening the b§1ief that the 1/3 — 2/3 conjecture holds for all finite posets. These

results will be examined in this section.

The earliest special case for which the 1/3 — 2/3 conjecture was shown to be valid
;Nas for tixe case of a partial order which can be covered by two chains (or equivalently, a
_ partial order of width two) [L1]. Let P=(X,<) be a poset consisting of two chains
A=(a1>ay > .. > ap) and B = (b1 > by > ... > by) along with some relations between
the elements of A and B. We sketch the proof of Linial to show that there exist distinct

elements x and y in X such that 1/3 < p(x<y) < 2/3.

Before the main theorem can be proved, a few definitions, assumptions and a
lemma must be introduced. Assume that the 1/3 — 2/3 conjecture fails for P. Without loss
of generality it can be assumed that a1 and b1 are unrelated since otherwise one of these
would be a maximal element and would occur in the top position in each linear extension
and thus could be disregarded. Also without loss of generality it can be assumed that
plai>b1) £ 1/3. Now define a sequence {q1, ..., gn} as follows. |

q1 = p(a1> by),
q; = p(bi-1> a3 > b;) Visuch that2 <ign,

An+1 = p(bn > ay).

Lemma 4.3.1. The set {q1, ..., gn+1} satisfies the following:
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n+l

a Y gi=1,

i=1

b) 132912 ..2qp+1 20.

Proof. a) Clearly every linear extension of P is accounted for in exactly one of the g;’s,
so the sum of all these probabilities; must be 1. '

b) It needs to be shown that g; > ¢;+1 for every i€ {1, ..., n}. Consider‘a linear
extension satisfying b; > aj > b;+1, an event which occurs with probability gi+1. Since a3
is the maximal element in A, there can be no elements between b; and ap in this linear
extension, and @1 and b; must be unrelated. Thus a; and b; can be interchanged to produce
another linear extension of P. This linear extension will satisfy b;_1 > ai > b;, an event
occurring with probability g;. The interchange of a1 and b; forms an injection from the
linear extensions satisfying the event having probability g;+1 to those satisfying the event

having probability ¢;. Therefore ¢; > g;+1. O

Theorem 4.3.2. If P is a partially ordered set which can be covered by two chains, then

there exist elements x and y in X such that 1/3 < p(x<y) < 2/3.

Proof. Let r be an integer such that:

r-1 r
Y ¢<3<Y 4
i= i=1
Then
) r-1 {
= - < A
p(a>br-1) l_zi qis 7k

This implies that p(a1<b,-1) < 1/3 by the initial assumption, which in turn implies that
p(a1>by_1) > 2/3. Similarly, |
- ,
: 1
= 2' > L
p(a1>br) ql = 2'

i=1
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Again by the initial assumption, p(a1<b,) > 2/3. Thus we get that p(by<ai<b,_1) > 1/3.
Thus g > 1/3 which contradicts the assumption that 1/3 > gy, so the 1/3 — 2/3 conjecture
musthold for P. 0O

Thi.s simple proof for posets of width two was followed up quite recently with a
much more complex proof by Brightwell and Wright that the 1/3 — 2/3 conjecture holds for
all k—thin posets with £ < 5. [BrW]. By assuming that (X,<) is a 5-thin poset for which
the 1/3 - 2/3 conjecture fails, they were able to ilimit themselves without loss of generality
to 5-thin posets poésessiné some additional specific characteristics. They then showed that
if a finite list of posets can be found such thaf every 5-thin poset that need be considered
bears a certain relation to one of the posets on the finite list, then every 5-thin poset must
satisfy the 1/3 — 2/3 conjecture. By using a computer, Brightwell and Wright were able to
produce a finite list of posets possessing the desired characteristics, and thus prove the

1/3 — 2/3 conjecture for 5-thin posets.

Series parallel posets are another group of partial orders for which the 1/3 - 2/3
conjecture has been verified. Recall that series parallel posets were defined in Section 2.5.
Steiner [Sr] is responsible for the proof of the 1/3 — 2/3 conjecture fér these posets, the idea
of which is as follows. If one goes back early enough in the building pfocess of a series
parallel poset P, a subposet P; consisting only of two chains can be found. This will occur -
Jjust after the first parallel composition is performed. According to the previous proof for
posets that can be covered by two chains, Py has a pair x,y such that 1/3 < p(x<y) < 2/3.
After performing a series composition with some P, to form a poset P, it is found that
p(x<y) in Py is equal to p(x<y) in P’. Similarly, a parallel composition of Py with some P,
will preserve p(x<y). Thus every such poset P will have a pair‘ (x, y) satisfying the 1/3 -

' 2/3 conjecture, unless there are no parallel compositions performed in the formation of P,

in which case P must be a chain.
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One further case for which the 1/3 — 2/3 conjecture has been proved is the class of
posets having a non—triyial automoxphism [GHP]. Let P=(X,<) bea poset having a non-
trivial automorphism o and assume that the 1/3 —2/3 conjecture fails for P. Let P’ be the
poset produced when a is applied to P. Thus Pand P’ differ only in their labellings. Since
a is an automorphism, p(x<y) = p(a(x)<a(y)) for every x, y € X. Let x<qgy if and only if
D(x<y)>2/3. It can be shown than <g is a total order on X, and thus is a linear extension of
P. Then <o must also be a linear extension of P, and P’ and P must be ideﬁtical since
otherwise there will exist x, y € X such that x<gy but a(y) <¢ a(x). This contradicts the
assumption that « is a non-trivial automorphism, so no poset P exists such that P contains
a non-trivial automorphism and the 1/3 - 2/3 conjecture fails. This particular class of

posets will be examined again in Section 4.6.

Recently it has also been shown that the 1/3 - 2/3 conjecﬁue holds for semiorders
[Br4], and for height—l posefs [TGF]. These two proofs will be given in detail in the next
two sections. The existence‘of all these classes of posets for which the 1/3 — 2/3 conjecture
is satisfied further strengthens the belief that the 1/3 — 2)3 conjecture must hold for all finite

posets.

44 THE 1/3 - 2/3 CONJECTURE FOR SEMIORDERS

Brightwell addressed the problem of proving the 1/3 — 2/3 conjecture for
semiorders in both the finite and infinite cases. He was able to shoyil that the 1/3 - 2/3
conjecture holds for all finite semiorders and certain classes of infinite semiorders [Br4].
He also produced a list of infinite semiorders for which the 1/3 — 2/3 conjecture fails, and

conjectured that all such semiorders are linear sums of those on his list. In this section, the
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proof for the finite case will be given, while the infinite case will be dealt with in section

4.7.

A semiorder is defined to be a poset (X,<) such that for every @, b, ¢, d €X,
a) if a<band c<d then either a<d orc<b (or both);
b) if a<b and b<c then either a<d or d<c (or both).
Requirement a) implies that (X,<) doesn’t contain the poset in Figure 4.4.1a as a subpoéet,

and b) implies that (X,<) doesn’t contain the poset in Figure 4.4.1b as a subposét.

c

b d
I I b od
a c
a
a) b)
Figure 4.4.1

Let (X,<) be a finite poset and let x, y be incomparable elements in X. It is said
that z€ X is good for x<y if either: a) x<z | y or b)x | z<y. In other words, an element z
is good for a pair x<y if it tends to encourage x to lie below y in a linear extension of the

partially ordered set.

Lemma 4.4.1. A finite partial order is a semiorder if and only if for every x, y € X there

are never z, w € X such that z is good for x<y and w is good for y<x.

Prohf. To prove the forward direction, assume that (X,<) is a semiorder and that there is
an element z good for x<y and an element w good for y<x. Since there are two possible
situations when an element is good for a pair, we end up with four possible cases. When
x<z| y and y<w|x or when x| z<y and yl w<x; x, ¥, z and w form a subposet consisting

of two 2-element chains, as in Figure 4.4.1a. Similarly, when x<z |y and y| w<x or when
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xl z<y and y<w|x; x, ¥, zand w form a subposet consisting of a three element chain plus
an isolated point as in Figure 4.4.1b. Thus each case produces a contradiction to the
assumption that we are dealing with a semiorder. In the opposite direction, if (X, <) is not
a semiérde; then it contains a subposet which consists of either two 2-element chains or a
3-element chain plus an isolated point. Each of these posets contains a set of elements x, y, |

zand w such that w is good for y<x and z is good for x<y. O

From this pc;int on, it will be assumed that (X,<) is a finite poset and that (X,<)
does not satisfy the 1/3 — 2/3 conjecture. An order < is defined on X by letting x<gy if
p(x<y)>1/2. Tt is claimed that <q defines a total order on (X,<). This order can be easily
seen to be irreflexive and total. To see that <q is transitive, recall that the 1/3 - 2/3
" conjecture is assumed to fail for (X,<). If x, y, z € X such that p(x<y)>1/2 and
p(y<z)>1/2 th.en‘ it must be true that p(x<y)>2/3 and p(y<z)>2/3. This implies that
P(x<y<z)>1/3 which in turn implies that p(x<z)>1/3 and thus p(x<z)>1/2, as required for

transitivity.
Given this definition for < the following theorem will be proved.

Theorem 4.4.2. Let (X,<) be a finite poset which does not satisfy the 1/3 — 2/3
conjecture. Then for every x, y € X such that x<qgy and x | yin (X,<), either:
a) There are at least two elements of X good for x<y, or

b) There is an element z of X good for x<y such that x<gz<qy.

Proof. Fix x,y € X such that x <o y and x|y. Let A be the set of all linear extensions of
(X,<). Given a linear extension A € A, let <; represent the ordering of A. Now partition
the elements of A into the following classes:

Ar={reAly<iud;

Az = {A€ Alx<,y and A with x and y interchanged is also in A}; _
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As={reAl x<;y and A with x and y interchanged is not in A}.
It can be easily seen that A3 can be rewritten as follows:

Az = {r€ Alx<;y and there exists z€ X such that x<;z<,y and either x<z

or z<y}.

Note that any z which satisfies the requirement in A3 will also be good for x<y. Now let
P(A;) represent the probability that a given linear extension is an element of A;. Then p(Ay)
< p(Ay) since every element in Ay corresponds to a unique element in A1. However, p(A1)
= p(y<x) <1/3 so p(A2) must also be less than 1/3. Since the sum of p(Ay), p(A2), and
p(A3;is 1, then p(A3)>1/3 which in turn implies that A3 is non-empty and thus that there is
at least one z€ X that is good for x<y. Now there are two possibilities: either there is ‘
exactly one element z of X good for x<y or there are at least two elements of X good for
x<y. The latter case gives situation a). The former case implies that for every A€ A3 then
x<3z<3y. This implies that p(x<z<y) > 1/3, so p(x<z) and p(z<y§ must be both greater
than 1/3 which in turn implies they are both greéter than 1/2 by the assumption that the 1/3

— 2/3 conjecture fails. Thus x<gz<(y as in situation b). O

The following lemma is proved by showing that when the poset in Theorem 4.4.2

is restricted to a finite semiorder, only situation a) can hold.

Lemma 4.4.3. If (X,<) is a finite semiorder that does not satisfy the 1/3 — 2/3

conjecture, then for every x, y € X such that x<gy and x | y in (X,<), there are at least two

elements of X good for x<y.

Proof. Assume that situation b) in Theorem 4.4.2 holds. In other words, assume that
there are elements x, y and z of X such that x | ¥, z is good for x<y, and x<oé<oy. Then
either x<z| yorx | z<y. In the former case, x is good for y<z. However, Theorem 4.4.2

along with the assumption that z<gy implies that there is a w € X good for z<y which
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contradicts Lemma 4.4.1. Similarly in the latter case, y is good for z<x but x<¢z implies
that there exists a w good for x<z. Again there is a contradiction to Lemma 4.4.1. Thus

situation b) cannot hold for a finite semiorder, and the lemma follows directly. O

Now a few generalizations need to be made and an additional two lemmas shown
before proving that every finite non-chain semiorder (X,<) satisfies the 1/3 - 2/3

conjecture.

Let (X,<) be a finite semiorder that is not a chain. Without loss of generality
several assumptions can be made about the structure of (X,<). Firstly, it may be assumed
that (X,<) is irreducible, since if the 1/3 — 2/3 conjecture fails for a poset then it fails for
each of that posét’s irreducible parts. To see this, consider a poset P for which the
1/3 - 2/3 conjecture fails and which is the linear sum of two posets, P and P”. Then .
every unrelated pair of elements x and y in P (and thus every pair in P’) has either
px<y) < 1/3 or p(x<y) > 2/3 in P. Since P is the linear sum of P’ and P, any linear
extension of P is simply a linear extension of P’ with a linear extension of P’ adjoined.
Thus for every unrelated pair x, y € P/, p(x<y) in P is equal to p(x<y) in P, so the 1/3 -
2/3 conjecture must also fail for 7. It can be concluded that only irreducible semiorders

need be considered.

Secondly, it may be assumed that X has at least 2 elements since (X,<)‘ is not a

~ chain.

Thirdly the assumption can be made that (X,<) has at least two minimal and two
maximal elements. If (X,<) has only one maximal element z, then it is the linear sum of z
and (X, <) \ z, and thus is not irreducible, contradicting our first generalization. Similarly,

(X, <) must have more than one minimal element.
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Now the elements can be ordered as {x1, ..., X} where x;<¢xj whenever i<j. The

following lemma is needed in order to prove the main theorem.

Lemma 4.4.4. An element of X can only be good for at most two pairs of the form

Xi<xj+1 where 1 <i < n-1.

Proof. Let x; € X where k € {1, .., n}. We first show by contradiction that x can
only be good for at most one pair x;<x;+| where i<k. Assume that xx is good for xj<x;j+1
and xj<xj+1 where i<j<k. Then xi<xk| Xi+1 and xj<xg | Xj+1 since <p is a linear ex'tensiqn
of (X,<). It must be true that x; |xi+1 because xj<x;+1 implies that j<if1 which contradicts
i<j, and x;+1<xj implies that xj+]<xx which contradicts x;+1 |xk. Since xj<xk| Xi+1 and
Xj |x,'+1, then xg is good for xj<x;+1. However, x;+1<ox; since i<j which implies there is
an element of X good for ii+1<xj by Theorem 4.4.2, which contradicts Lemma 4.4.1.
Therefore, x; can be good for at most one pair x;<x;+1 where i<k. Similarly, it can be
shown that xx is only good for at most one pair x;<x;+; with i >k. Thus x can bnly be

good for at most two pairs of form x;<x;+3. O

Note also that if xzin Lemma 4.4.4 is a maximﬂ element then it can’t be good for a
pair x;<xj+1 with i>k. To see this, assume that xj is maximal and good for some Xi<Xi+1
with i>k. Then either x; |xk<x,~+1 which implies xz is not maximal or xi<xk|xi+1 which
implies i<k. | Since both of these implications are contradictions, it must be true that xx
can’t be good for a pair x;<x;+; where i>k. Similarly it can be shown that if x¢ is a

minimal element, then it can’t be good for a pair x;<x;+1 with i<k.
Lemma 4.4.5. If i<j where x; |xj, then there is no element good for xj<x;.

Proof. Let i <j. Then x;<¢xj. Since x; !xj, by Lemma 4.4.3 there is an element z of X

good for x;<x; so by Lemma 4.4.1 there is no element w of X good for xj<x;. 0O
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Lemma 4.4.6. x; and x4+ are incomparable for every i€ {1, ..., n—1}.

Proof. It is not possible that x;.+1<x; because thét would imply x;+1<0x; , contradicting
the choice of the sequence {x;}. Assume now that x;<x;+1. We show that this implies that
(X,<) is not irreducible. Let A be the set of maximal elements of {xi+1:, vy Xn} With
respect to the order relation <, and let set B be the set of minimal elements of

{Xi+1, ..., Xn}, also with respect to <. Let x;€ A and x3€ B, and note that a<i and i+1<b.

It will be shown that Xq<xp by considering four cases.

Casei) Assume that a=i and b#i+1. Then xp | Xi+1 since both are minimal elements
of {Xi+1, «., Xn}. Next we show that xj<xp. If xp<x; then xp<x;<xj+1 which contradicts
xblx,'+1. If xp |xi, then x; is good for xp< x;+1. However, i+1<b so Lemma 4.4.5 is

contradicted. Thus it must be true that x;<xp. Since i=q, then x;<xp.

Case ii) Assume that a#i and b=i+1. The argument is similar to that for case i) so

will not be repeated here. .

Case iii) Assume that a=i and b=i+1. By the assumption that x;<x;+1, we have

Xg<Xp.

Case iv) Assume that a#i and b#i+1. We will show that x,<xp. Note that x, | X;
and xp |xi+1. Xp<x, cannot occur since a<b implies x,<oxp and <g is a ﬁnea{r extension of
<. Now assume that xalxb. By case ii) x;<x;+1, SO x; must be good for xp<xj+i.
However i+1<b, so Lemma 4.4.5 is again contradicted. Thus x, and x must be related.

Therefore x,<xp.

The above four cases show that x;<x;, is always true. Thus every maximal element

in {x1, ..., x;} is less than every minimal element in {X;j+1, ..., X,}, which implies that
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(X,<) is the linear sum of {x1, ..., x;} and {Xi+1, ..., X4} and produces a contradiction to

the assumption that (X,<) is irreducible. 0O
Finally the main theorem can be stated and proved.

Theorem 4.4.7. Let (X,<) be a semiorder that is not a chain. Then there exist

incomparable elements x and y in X such that 1/3 < p(x<y) < 2/3.

Proof. The proof of this theorem is by a simple combinatorial argument. There are n-1
pairs of the form (x;, xj+1) in the set {xi, ..., x,,_}. Since each pair is unrelated by the
previous Jemma, there must be at least 2 elements good for each sugh pair (xi, xj+1) by
Lemma 4.4.3. Thus there must be at least 2n—-2 instances in which an element is good for a
* pair. By Lemma 4.4.4 each element in X can be good in at most 2 instances, with the
exceptioﬁ of maximal and minimal elements which are at most good in one less instance
than the nonmaximal nonminimal elements. Since there are at least 2 maximal and 2
minimal elements in X, the n elements of X are good in at most 2n—4 instances. Evidently
such a poset cannot exist, so one can conclude that there is no finite non-chain semiorder
for which the 1/3 - 2/3 conjecture fails. 0O

It should be noted that Brightwell proved Theorem 4.4.2 and Lemma 4.4.3 for the
larger class of finitely generated, thin (possibley infinite) posets. As we are concerned with

the finite case, the proofs presented are simplifications of his approach.

4.5 THE 1/3 - 2/3 CONJECTURE FOR HEIGHT-1 POSETS

Trotter, Gehrlein, and Fishburn [TGF] proved that the 1/3 - 2/3 conjecture holds

for all partially ordered sets of height one. The proof breaks into several parts since the
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height-1 posets must be partitioned into four different classes which each must be handled
separately. In this section, the proof for only one of the classes will be given. However,
this particular case deals with all but finitely. many of the height-1 posets, so is the case of
most interest. A brief description of the idea behind the other three cases will be given at

the end of this section.

Firstly, a few basic definitions need to be made. A height-1 poset is a partially '
ordered set whose longest chain has length 1. The vertices 6f a height-1 poset (X,<) can
be partitioned into three sets. Let Xo be the set of all nonmaximal minimal points in X, and
let X; be the set of all nonminimal maximal points in X. The remaining points are the

isolated points, and these fall into the third set. Let no = |Xol, n1 = |Xi| and n = |X].

At this point the main theorem will be stated, and then certain restrictions can be

made without loss of genérality on the properties of (X,<).

Theorem 4.5.1. Let (X,<) be a height-1 partially ordered set that is not a chain. Then

there are elements x and y in X such that 1/3 < p(x<y) < 2/3.

Now assume that (X,<) is a partially ordered set for which the 1/3 — 2/3 conjecture
fails. Without loss of generality, three things can be said about (X,<). Firstly, it can be
assumed that (X <) has no isolated points. Assume fqr a contradiction that P = (X,<) has
some isolated point z. Then for every pair x, y in X and hence for every x, y in X—z either
p(x<y|P) < 1/3 or p(x<y|P) > 2/3. Since z is an isolated point, it occurs in each position
equally often in the set of linear extensions of (X,<) and so p(}c<y|P) = p(x<y|P-z). Thus
for every pair x, y in X—z, either P(x<y|P-z) < 1/3 or P(x<y|P-z) > 2/3 and so the
1/3 - 2/3 conjecture fails for P~z also. Thus only posets containing no isolated points

need be considered. Note that this implies that n =ngp + nj.
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It can also be assumed that #>3. The only posets with fewer than three vertices are
the one and two element chains and the poset consisting of two isolated points which by the
previous paragraph need not be considered. Since chains are excluded from Theorem

4.5.1, one can assume without loss of generality that #n>3.

Thirdly, assume that n12ng. If (X,<) is a poset for which the 1/3 - 2/3 conjecture
fails, then the dual of (X,<) ((X,<) turned upside down), will not satisfy the 1/3 — 2/3
conjecture either since p(x<y) in P will equal p(x>y) in the dual of P.

Now several further definitions can be made. Let Prepresent the set of all height-1
posets such that n23, n = ng+ny and n12np. Given a poset P€ P and a linear extension
L€ E(P), consider the function fon Xj which gives the “height” of x € X7 in L as defined
in Section 4.2. Then let #x = p(f{x) = n), which is the probability that x is in the maximal .‘
position of a given linear extension. Note that p(fix) = 1) = 0 since x€ X} implies x is
above at least one element in P, and thus can never occur in the minimal position in a linear
extension of P. This implies that the “average height” of x as defined in Section 4.2 can be

rewritten as follows:
n

h(x)=Y kp(fix)=k).
k=2

h(x) represents the average height of x taken over all the linear extensions of P. Finally, let
N be the following set of pairs:

N ={(8.,9), (7,7), .., 2,2)} U {(7,6), (6,5), ..., (2,1)}.
The following theorem will be proved in this section:

Theorem 4.5.2. Let P€ P such that (n3, ng) ¢ N. Then there exist distinct elements x

and y in X such that 1/3 < p(x<y) < 2/3.
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The desired result will be reached by verifying a series of relationshipé which will be:

grouped together as a sequence of lemmas and theorems.

Lemma 4.5.3. a) # = p(fix)=n) > p(Ax)=n-1) > ... 2 p(fx) = 2);

b) p(Rx)=n) + p(fx)=n-1) + ... + p(fin)=2) = 1;
C) Ix > ;[,——-T;

d) hx)2 % +1;
<p+l. 1
e) hx)<n 275
Proof. a) To show this relationship it needs to be shown that p(f{x) = k) 2 p(Ax) = k~1)
for every k € {3, ..., n}. Let L be a linear extension of P in which x is at height k1. Let
Y be the element directly above x in L. Elements x and y can be interchanged to produce
another linear extension of P (if not, then it must be true that y>x which contradicts the fact
that x€ X1), which will have x at height k. This produces an injective mapping from the
elements with flx) = k1 to the elements with f{x) = k which implies that E(P | f{x)=k) >
E(P | fix) = k1) and finally that p(f{x)=k) > p(ﬂi)=k—1).

b) The left side of this equation sums the probabilities that a given x€ X is at each

of the possible heights, and must equal 1 since x is at some height in each linear extension.

¢) Using a) and b) the following is obtained:
(n-1)tx = (n-1)p(fx)=n)
=p(fx)=n) + p(fx)=n) + ... + p(fx)=n)
2 p(lx)=n) + p(fix)=n-1) + ... + p(Ax)=2)
=1.
Thus c) holds as required.
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n

Y. kp(fx)=k)
k=2 .
Zk&%}

k=2

d Ak

‘v

This last inequality is true since given the constraints imposed by a) and b) on the
p(fix)=k)’s, h(x) will be minimized when the p(fx)=k)’s are all equal to one another.
Since there are n—1 of them and they have a sum of 1, this will happen when p(f{x)=k) =

1/(n-1) forall k € {2, ..., n}. Performing the summation, the following is arrived at:

ey 2 (M7= 1))
1

n .
o+ L

e) Let g=|1/t,]. and let a be ?he remainder when 1 is divided by #x. Then
gty + a=1 where 0 £ a <1,. In this section the aim is to find an upper bound on h(x).
As before, h(x) = ZZ=2 kp(fix)=k). To maximize s(x) subject to a) and b), it is necessary
to distribute as much of the probability as possible to the p(fAx)=k)’s with k large and as
little as possible to those with k small. Since p(fix)=n) = tx, maximization of h(x) will
occur when p(fix)=n-1) = t, p(ix)=n-2) = t, ..., until g z,’s have been distributed. The
next p(fix)=k) will equal the remainder a, and the remaining p(f{x)=k)’s will equal 0. Thus
the following is produced:

h(x) = np(fx)=n) + (n-Dp(fx)=n-1) + ... + 2p(x)=2)
< iy + (n=Ditx + ..+ (n~(g-1))tx + (n—q)a

= [n+ (n-1) + (n-2) + ... + (n~(g-1))Jtx + (n-q)(1~qtx)
=n+ q(g_;:‘l wlx_ 1) '

()’2
1
lLij Q_)
ser Tyl
11
= Bt
T2 2ty

Thus the desired inequality in e) is arrived at. [
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Several more definitions must be made before proceeding. Let x and y be distinct
elements of X1. Let B = p(x<y). Let b 7= p(f(y)—fix)=1). Note that b = p(Ax)-Ay)=1)
also since there is a bijection from the linear extensions in whi‘ch y is immediately above x
to the linear extensions in which y is immediately below x. Let ax = p(fix)-f(y)=k) and let

br = p(Ry)-Ax)=k) for all k21. Note that the four following relations follow almost

directly from these definitions:
' n-1
B = p(x<y) = Z br; - (4.5.1)
k=1
n—-1
1 - B=p(y<x) = Z ar; ' (4.5.2)
k=l '
b=a1=0by, (4.5.3)
n-1 )
h(x) —h) =Y k(ax - by). (4.5.4)
k=1

Given the above set of definitions, another series of relationships can be proved, which

will again be grouped together as a lemma.

Lemma 4.5.4.

a) b=ar2ax2..2au1;
k k b -1
b) Y 52y b‘1~1—3—) Vke{l, .., nl}

i=1 i=1

9 E ib(l ; %)i-l =372;

i=1

O he)-ho)> 12BE

Proof. a) In order to prove this inequality, it needs to be shown that p(fix)-f(y)=k) 2
P(Rx)-Ay)=k+1) for every k€ {l, ..., n—2}. Consider a linear extension in which

fx)-Ay)=k+1. Interchanging y with the element immediately above it, say z, produces
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another linear extension 7 of (X,<) (if not, then z>y which contradicts y€X;) with
Jx)-fy)=k. Thus there is an injection from the linear extensions with fx)—-f(y)=k+1 to the
linear extensions with fix)—-Ay)=k, and so p(Ax)-Ay)=k) 2 p(f{x)-Ay)=k+1) as required.

b) The proof of this inequality comes from a paper by Kahn and Saks [KS]. It
relies upon the following relation which will not be verified here but which is derived using
a method of Stanley’s [Sy3]:

bf 2 bis1hit fori> 2.
As an aside, any sequence {b,} of positive real numbers satisfying the above inequality is

called log concave. This inequality will be used in the following form:

bi S bix1 g5 4.5.5
biii  b; (4.5.5)

Now for simplicity, let #'; = b(1-b/B)i-1. Verifying inequality b) then-amounts to showing
that ,

k k

Y 5:2Y by Vke(l,..,n-l}. (4.5.6)

i=1 i=1
(4.5.6) says that the sequence {b;} majorizes sequence b';. By using the formula for the
infinite sum of a géometric series, the following can be verified:
Z b';i =B.
i=1 ‘
Now let h be the least integer such that by<b'p. Note that #>1 since by = b'1=b.
Then by_1 2 b'j—1 and the following sequence is derived:
b Bh b (4.5.7)
bh-1 by B
Combining (4.5.5) and (4.5.7) we obtain

bi < 1-b foraniizh,
 bi B
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Ifj<h,thenb;j2 b’ Ifj2h,
bj = bh-(b}z+1)' (bh+2). e (__éf_) )
by | \bp+1 bj-1
< by (1-2)- (1-2) .- (1-2)

B/\""B B
<b'y (1 - %)’_h
A
= b, '

Now to show (4.5.6), consider the foliowing two cases.
“Case i) Let k<h. Then it follows directly that
by +by+ .. +bp2b'y +b'y + ... + b’} as required.
Caseii) Let k2h.
bi+by+..+by =B-(bg+s1 *+ ...+ by-y)
2 B (Wt + Dz + e * Bac)
2B-(0'ps1 + by + .. b’,?_l +...)
=b1+by+ ..+ DL

Thus (4.5.6) has been verified, so b) holds as required.

¢) It is well known that

Y ik= T%;
k=0
Taking the derivative of both sides gives
E k=1
k=1 (1-xp? (4.5.8)

Letting x = 1-b/B, substituting into (4.5.8) and simplifying produces identity c) as

' required..
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¢

d) From (4.5.4) we get

n—1

hx)—h(y) =Y, kag - kbr.
k=1

This implies
n-1 n-1
h(x) —h(y) 2 min| Y ka |- max| ) kbg,
k=1 k=1
where the minimum is taken over all sequences of n-1 real numbers {a;} having a sum of
1-B with b=ay > a3 > ... > ap_; 2 0, and the maximum is taken over all sequences of #7—1

real numbers {b;} having a sum of B and satisfying

k k i-1
LD b(1—g-) VEke{l,.. nl}

i=l i=1
Now it needs to be determined for which values of ax the first sum is minimized, and for
which values of by the second sum is maximized. Note that

n—-1

Z kar=ay +2ay + ... + (n-1)a,_4. (4.5.9)
k=1

Given the restrictions on the a;’s, it can be seen that the above sum is minimized when aj is
made as large as possible, then ay as large as possible, etc., until 1-B is exhausted. It is
known that ay = b, so the largest that @y can be is b, and the largest a3 can be is b, until 1-B
is used up. Let r=|(1-B)/b), the integer portion of the quotient when 1-B s divided by b.
Then let z be the remainder when 1-B is divided by b. Thus br + z=1 — B. Note that
from this, the following are obtained:

r>l‘};ﬁ— 1; (4.5.10)
br < -1;—3. (4.5.11)

In conclusion, sum (4.5.9) will be minimized when the first ay, ..., ar are equal to b, ar+1 =

z, and all other a;’s equal 0.

Now consider the second sum
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n—-1
Y kb =b1+2b+ ... +(n-1)bp-y.
k=1

The b;’s have the fixed sum B, so this sum is maximized when b,—1 is made as large as
possible, then b,3 is as large as possible, etc., until B is exhausted. This is equivalent to
minimizing bj, then by, etc., whigh is the szime as minimizing the partial sums by, b1 + by,
by +by+b3,..., by + by + ... + by—3. However, from b) it is known that the partial sums

are minimized when b; = b( l-b/B)i‘l, and thus this will also maximize Zz;i kbg.

Comﬁining these ideas gives :
r n—1
- > — _b¥1
W) -h0) 2 Y Kb+ (r+Dz- Y kH1-8
k=1 k=1
2
> @:;J #erDA-B-m)-B-  (using (458))

R

=pr .
b
>(1_B_1)- ‘1_B_Q_(1_“_§))+ 1_3_13_2
b -2 2 b

(from (4.5.10) and (4.5.11)).

26 2 b
,(1-Bf p2

2b b
_1-2B-B?
T2

Thus the required identity has been verified, and so the finial part of Lemma 4.5.4 is

complete. 0O

Lemma 4.5.5. Letx, y €X1. If h(x) 2 h(y) and b[h(x) — h(y)] £ 1/9, then 1/3 < p(x<y)
< 2/3.

Proof. The proof of this lemma is divided into two sectioﬁs. First it will be shown that if

h(x) 2 h(y), then p(x<y) < 2/3.
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Asgume h(y) 2 h(x). This implies that h(x) — h(y) £ 0, so by Lemma 4.5.4d, we
have
1-2B-B2
—_—_——<
2b
"= B2+2B-1>0 ,
=[B+(Z+ 1} [B-(2-1)]>0
=B>y2-1

0

= px<y) >V2 - L.

Thus A(y) 2 h(x) impiies that p(x<y) > ¥2 — 1. Interchanging x and y gives:
h(x) 2 h(y) = p(y<x) >{2 -1
~1-B>yZ-1 -
= B<2-{2< %

= plr<y) <2.

This completes the first part of the lemma. Now for the second part, it will be

shown that if b[h(x) — A(y)] £ 1/9 then p(x<y) > 1/3. Assume b[h(x) — A(y)] £ 1/9.
Multiplying both sides of Lemma 4.5.4d by b gives

: 1-2B— B2
blh(x) = h(y)] > —5——.
Combining the two equations gives:
1.,1-2B-B?
9 2

—B*+2B- >0 .

- o+ Bo-y-0

= B> %

= plr<y) > L.
Thus the second part of the lemma has been verified, and combining the two portions gives
the desired result. 0 | |
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A few further definitions must be made. Let m ='n1, for convenience. Also let X

= {1, 2, ..., m} and recalling Lemma 4.5.3c suppose without loss of generality

1 <
LSt1£<L...Lth.
n—1 1 2 m

Let k be a fixed element in {2, 3, ..., m}.

Lemma 4.5.6. For any k there exist distinct integers i, j < k such that A(i) 2 h(j) and

N (m=Dtg—1
M=) D)

Proof. First it will be shown that:
n 1_1
w(1), B(2), ..., h(k) € [2 # el
The lower bound on the A(i)’s follows directly from Lemma 4.5.3d. The upper bound

follows from Lemma 4.5.3e and the fact that #; < 7 for all i such that 1 <i<k.

The A(1), ..., h(k) are all in the above interval, so the question becomes, how close
together must at least two of the A(i)’s be? In the worst case, the A(i)’s will be spaced
~ evenly across the interval, so the distance between any two adjoining h(i)’s will be the

length of the interval divided by the number of subintervals, which is:

el

k-1

Then in any case, there must be some adjacent pair A(i), 2(j) with h(i) > h(j) such that

v n+L__1__Q+1
h(z')-h(;)s( 2 th)l «(2 )
-V -1
T2k -1)

O

This lemma can now be strengthened to produce the following result.

Lemma 4.5.7. There exist distinct elements x and y in X such that A(x) 2 A(y) and
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n-m-1
m(m-1)

Blh(x) - h(y)] <

Proof. First it will be shown that for the values of i and j from Lemma 4.5.6, and for any
kwith 1 < k < m, b <ty. By the initial definition, b = p(f{i)~f(j) = 1). It will be shown
that p(R))—f(j) = 1) < p(fi)=n). Consider a linear extension in which fi)-f(j) = 1. Note
that i is immediately above j in this extension. It can be easily seen that another linear
extension will be formed if i is moved to the top position, and this new linear extension will
have f{i) = n. In this manner an injection is formed from the extensions with f{i)-(j) =1 to

the extensions with f{i) = n. Thus b < ¢; as required and ¢; < zx implies that b < #.

Now consider the value of £ which minimizes the quantity ((n- 1)#gx- 1)
[ 2tx(k-1)). By Lemma 4.5.6 there exist integers i, j <k such that (i) — h(j) is less than or
equal to this quantity and such that h(z") 2 h(j). In general it can be said that there exist x, y |
€ X1 such that A(x) > h(y) and '

h(x) — h(y) ﬁ i

(n— 1)ty ~ 1)
2pk—1) |

Using the fact that b<f, the previous inequality implies

. [n—-Dtr—-1
Hhts) - ho) < iy (D)

Let

_ (n—Deg - 1)
2<k<m i

2Ak~1)

Now the aim is to find the maximum possible value of Z 6ver all combinations of the #;’s.
Since the tg’s have a fixed sum of 1, Z must be a maximum when ((r — 1)#—1)/(2(k-1)) is
the same for all values of k. If there were a k for which the corresponding quantity was
‘smaller than the others, then increasing #x and decreasing the other #;’s would conseduently

.increase Z. Thus for Z to be a maximum
7= (n-Dtr-1

V k€(2,3, ..., m).
Moo " KE 3 m)



80
This can be rewritten as
2Ak-1)Z=n~Dtx~1 Vke(2,3,..., m}
Summing over all values of & gives “

m m
Y 2k-1)z=Y ((n—-Dg-1)
k=2 k=2

= Zm-Dm=n -1 -t)-(m-1)

_ oy _(=D-t)-(m-1)
m-1Dm

(n_1)(1_—1—)-(m-1)

n-1
(m-1)m

<

=n—m-—l
m(m-1)

Thus it can be concluded that there exists an x and y in X3 such that A(x) 2 A(y) and

n-m-1
B hx) - h(y)] < m—(m——l_)— o

Proof of Theorem 4.5.2. Finally the main theorem can be demonstrated. Combining
Lemmas 4.5.5 and 4.5.7 we get that if

n—-m-1

TS5 “5.12)

then there exist x, y€ Xj such that 1/3 < p(x<y) < 2/3. All that is needed to show is that
for every pair (n1, ng) ¢ N (4.5.12) holds, where m = ny and n.= ng + ny.

A brief proof will show that (4.5.12) holds whenever m 2 9. Let m 2 9. Recall
that m > ng and m + ng=n. Thus n < 2m. Thén as desired,

n—-m-1 <2m-—m—1
mm-1)" m@m-1)

~lcl
m-9

The cases remaining are those for which m <9 and (m, ng) is not in N. There are

finitely many of these and (4.5.12) can be verified individually for each one. 0O
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Thus Theorem 4.5.2, which covers all but finitely many of the posets included in

Theorem 4.5.1, has been proved. At this point a brief idea of how the remaining cases can

be proved will be given.

The second part of the proof covers the cases where (n1, ng) = { (8, 8), (7, 7),
(7, 6), (6, 5)}. By going through part 1 more carefully, an upper bound that is smaller
than

can be found on b[A(x) — h(y)] in Lemma 4.5.7. It then remains to verify that this bound is

less than or equal to 1/9 for the desired (ng, 1) pairs.

The third paxf of this proof covers the cases where (ny, ng) = {(4, 4), (3, 3), (2, 2),
(5, 4), (4, 3), (3, 2), (2, 1)}. First let V;, be the poset on 2m vertices with m minimal
points {l1, ..., i}, and m maximal points {uy, ..., U}, such that /;<u; if and only if i < j.
Let V;;* be Vi, plus one isolated point. Define 3(P) as follows:
3(P)= max min {px<y), py<x)}.
Showing that the 1/3 — 2/3 conjecture holds for a poset then, is equivalent to showing that
O(P) 2 1/3. Now define d, and d(m) as follows: |
Oy, = min {d(P): Pis an n-point height-1 poset},
d(m) = min {d(P): width of P=m and P has height 1}.

Conjecture 4.5.8. d(m+1) = d2; = dom+1 = ¥(Vim) = 3(ViH).

Trotter, Gehrlein and Fishburn have verified that this conjecture holds for the cases where

m =2, 3 and 4. They have also verified that Vo, V3, and V4 all have 8(P) > 1/3. These
two facts confirm that the 1/3 — 2/3 conjecture holds for the desired subset of N.
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The fourth part of the proof covers the two remaining cases, (6,6) and (5,5), and is

based on the following lemma.

Lemma 4.5.9. Let PEZ.

a) If x, ye X; and p(x<y) < 1/3, then x must cover at least two points in X that y
doesn’t cover.

b) If x, y€ Xp and p(x<y) < 1/3, then y must be covered by at least two points in

Xj that x isn’t covered by.

The proof of this lemma employs methods similar to many of the proofs in Section
4.4 on semiorders. Note that conditions a) and b) each imply that there are at least two

" elements good for y<x, where “good” is as defined in Section 4.4.

To prove cases (6,6) and (5,5) one begins to build a height one poset subject to the
restrictions imposed by Lemma 4.5.9. 1t is found that in order to have four vertices in X,
at least 6 vertices are required in Xp, in order to satisfy Lemma 4.5.9. This automatically
demonstrates that no such poset with (n1, no) = (5, 5) can exist. By continuing the
building process, it is found that there are exactly five possibilities for a (6, 6) poset
satisfying Lemma 4.5.9. It can be shown that for each of these five posets, we can élter
Lemma 4.5.3d to be A(x) 2 (n + 2.8)/2. Recall that in its original form, Lemma 4.5.3d
was h(x) 2 (n + 2)/2. Going through part 6ne again with this tighter lower bound on A(x),
reduces the upper bound of b[h(x)—-h(y)] sufficiently to admit the case when (n1, ng) =
(6, 6).
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4.6 CASES PRODUCING BETTER THAN THE 1/3 - 2/3 CONJECTURE

There are special classes of posets for which it has been shown that the 1/3 — 2/3
conjecture can be improved upoﬁ. One such case is that of a finite cycle-free ordered set
containing a non-trivial automorphism of P. Note that a cycle-free poset is any poset not
haveing the poaset {a<b, b<c, a<d, d<c,.a<c} as a subposet. As was shown in Section
4.3, any poset containing a non-trivial automorphism satisfies the 1/3 — 213 conjecture, and
in fact, Ganter, Hifner and Poguntke conjecture that this bound can be improved upon
[GHP]. When this class of posets is further restricted to those which contain no cycles, it
is found that tl}ere is a pair x, y € X such that p(x<y)=1/2. The formal statement of the

theorem is as follows:

Theorem 4.6.1. If P=(X,<) is a finite cycle-free ordered set-and « is a non-trivial

automorphism of P, then p(x<a(x))=1/2 for any x€ X with a(x)#x.

Proof. Only a general description of this proof will be given. Consider the covering
graph of P, CP. CP is the undirected graph on X with an edge between y and zin Xif and ’
only if y is a lower or upper cover of z in P. Now partition X into equivalence classes so
~ that y is related to z if and only if y=z or there is a path in CP between y and z containing
no fixed points of a. Let [x] represent the equivalence class containing x€X. Now one
can show there is a bijection between E(P | x<a(x)) and E(P | a(x)<x), the set of linear
extensions having x below a(x), and the set of linear extensions having o(x) below x. For
AEE(P | x<a(x)), let A(x) be the “height “ of x in A as in Section 4.27 and define ®(}) as

follows:
(@) ify€[x];
PMO= Al  ifyela@)];
AO) otherwise.
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It is then demonstrated that ® is a bijection which implies E(P | x<o(x)) = E(P | o(x)<x)

and thus p(x<a(x))=1/2 as desired. 0O

This proof in fact demonstrates the following statement which is stronger than

Theorem 4.6.1:

Theorem 4.6.2. If P=(X,<) is a finite partially ordered set with a non-trivial
automorphism «, and if x€ X with a(x)#x is such that there is a fixed point of a on every

path connecting x and a(x) in CP, then p(x<a(x))=1/2.

The relationship between Theorems 4.6.1 and 4.6.2 can be easily seen. If Pis a
finite cycle-free partially ordered set, then every x€X such that x*a(x) will have a fixed

point of o on the path (if it exists) connecting x and a(x).

Another case where the 1/3-2/3 conjecture can be strengthened is the case of a poset
containing a large antichain. Kahn and Saks [KS] conjectured that if a poset (X,<)
contains a large antichain, then there will be elements x and y in X such that p(x<y) is close
to 1/2. Komlos has proved that this conjecture is true whenever (X,<) is a poset containing
a large numi)er of minimal elements, which includes all large bipartite graphs [Ko].

Formally, Komlos’ result can be stated as follows.

Theorem 4.6.3. For every € > 0 there is a function M(r) such that if (X,<) is any n

element height-1 poset with width at least M(n) minimal elements, then there are minimal

elements x, yin X such that 1/2 —€ < p(x<y) < 1/2 + €.

Using the definition of 3(P) from Section 4.5, Theorem 4.6.3 can be rephrased as

s

lim min{d(P) | P has height one and width m} =
m—>eo

N
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Komlos’ proof of this theorem uses‘Ramsey theory to prove that two elements x and y can
always be selected from a large collection of random variables such that p(x<y) is

approximately 1/2. When this idea is applied to the poset problem, Theorem 4.6.3 follows
directly.

There is at least one further situation in which the 1/3 — 2/3 conjecture can be
strengthened. Recall from Section 4.5, the definition of Vj,, a certain class of height-1

posets. Trotter, Gehrlein and Fishburn conjecture the following [TGF]:

lim Vm=%.

m—oo

The authors have only thus far been able to find the values of V3, V3 and V4 and verify that

Vo < V3 < V4 < 1/2, so this conjecture remains an open problem.

4.7 THE 1/3 - 2/3 CONJECTURE FOR INFINITE POSETS

In two separate pépers [Br3] and [Br4], Brightwell has considered the 1/3 — 2/3
conjecture for a certain class of infinite posets. Since an inﬁnite poset can have an infinite
number of linear extensions, p(x<y) cannot be determined using its previous definition, so

a new definition is needed.

Consider a poset P=(X,<). Define Y a subset of X to be convex if whenever x,

y€Y, z€X and x<z<y then z€Y. Suppose (X ,,)T is an increasing sequence of finite

convex subsets of X whose union is X, and which each contain both x and y. Then
pGe<ylP) = Tim p(x<y|(Plx,)

if that limit exists for every choice of (X,), and all such limits agree.
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Brightwell shows that when P is a thin poset (each element in P is incomparable
with at most k elements for some finite k), then this limit exists and is independent of the

choice of (X;,). He then proves the following theorem:

Theorem 4.7.1. For every infinite thin poset (X,<) that is not a chain, there are

elements x, y of X such that 3/11 < p(x<y) < 8/11.

It should be noted that in the infinite case the proof does not produce)strict
inequalities whereas with the finite case the inequalities can be shown to be strict. Counter-
examples of infinite posets for which the 1/3 — 2/3 conjecture does not hold have been
found. Interéstingly, these posets are all semiorders which can be derived using a theorem -
of Brightwell. Firstly define a semiorder (X,<) to be 2-separated if for every x, y € X
with x| y‘there are either two elements good for x < y or two elements good for y < x,

where “good” is as defined in Section 4.4. Brightwell’s theorem follows.

Theorem 4.7.2. Every irreducible 2-separated semiorder of width k is isomorphic to a
poset (X,<) with X={x1, X2, x3, ...}, and x;<x; if and only if j2i+r;, where each r; is
either k or k-1, with at least one 7=k, and ri=r;+-1 for all i. As well, every poset of the

previous form is an irreducible 2-separated semiorder of width .

Three of these posets are shown in Figure 4.7.1. A locally finite poset is a poset
(X, <) such that for every x, y € X, there are finitely many z € X such thatx <z < y.
Brightwell conjectures that all locally finite, thin posets for which the 1/3 — 2/3 conjecture

fails are linear sums of these three posets along with the one-element poset.
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X3
(b)

Figure 4.7.1

Figure 4.7.1 (a) has k=2 and {r;} = {.., 2,2, 2, ...}, (b) has k=3 and {r;} = {.., 3,2, 3,
2,3,2,..}and (c) has k=3 and {r;i} ={ .., 3, 3, 3, ...}. All of these posets satisfy
3/11 < 3(P) < 1/3 and specifically, a) has 3(P) ~ 0.2764 and b) has 5(P) ~ 0.3106.

The question which now arises is, what is the bound on p(x<y) for the most central
pair of an infinite thin poset? As of yet, it is not known whether the 3/11 — 8/11 bound can

be improved upon.
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There are many open questions surrounding the 1/3 — 2/3 conjecture. In the finite.
case it has yet to be proved whether or not the conjecture holds for all posets. In the
infinite case, the 1/3 — 2/3 conjecture is known to fail, yet the greatest A with 0 <A < 1/3

such that A, 1-A can replace 1/3, 2/3 in the conjecture has not been found.
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CHAPTER FIVE

COUNTING CHAINS

5.1 INTRODUCTION

Of the three basic counting problems being addreésed in this thesis, that of counting
chains seems to have received the least amount of attention. Results are not abundant in the
current literature, Perhaps the most ;;vork has been done on the problem of counting chains
in power sets, an obvious extension of Dedekind’s problem on counting antich;«lins in
power sets. ThlS problem will be dealt with in Section 5.3. Other specific chain counting
results will be dealt with in Sectio;l 5.2, and the Section 5.3 will examine some
relationships between the problem of counting chains and th?lt of counting linear

extensions. The final section will give some results on a new chain counting problem.

5.2 CHAIN COUNTING RESULTS

Some work has been done on directly counting chains in certain classes of posets,

“and these results will be dealt with in this section.

Vv

One simple result is the number of chains in a poset P that is itself a chain on n
elements. It can easily be seen that P contains 2" chains, since every subset of the n

elements of P is itself a chain.
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- Kurepa [Ku] counts the number of maximal chains in a special class of trees.
Define T, to be the tree formed from @ (the empty sequence) and all sequences of the form
a=(ay, a2, ..,a) where 1 <j<nand0<g;<i-1foralli, 1 <i<} andwherea<bif:
and only if sequence a is an initial part of sequence b. T3 is shown as an example in Figure

5.2.1.

000 001 002 010 011 012

@
Figure 5.2.1

It can easily be seen that T}, will have n! maximal chains.

Ziegler [Z] considered the problem of placing an upper bound on the number of
chains and maximal chains in a length / - 1 poset on z elements. Recall that in Section 2.2
results produced by Ziegler are given for the same problem applied to antichains. The

following lemma bears a strong resemblance to Lemma 2.2.8.

Lemma 5.2.2. Let P be a poset on n elements with length / - 1.

a) Then P contains at most ¢(n,/) chains where
l

cmh=, max _ II @+ D.

Ci 21 =1
P achieves this maximum if and only if it is the ordinal sum of ] antichains on Cly ooes CI
elements, where the ¢;’s are those which maximize the above equation.

b) P contains at most mc(n,l) maximal chains where
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l

me(n,l) = cr+etcy=n H G
C; 21 =1

P achieves this maximum if (but not only if) it is the ordinal sum of [ antichains on.

c1, -., ¢ elements, where the ¢;’s are those which maximize the above equation.

This lemma can be seen intuitively by considering a poset which is the ordinal sum
of ] antichains. Remove an edge between any two elements, say @ and b. In the original
poset a and b form a chain, but in the new poset a and » do not form a chain. Since the
removal of an edge cannot create any new chains, it is apparent that the new poset will have
fewer chains than the original poset. Add to this the observation that all posets can be
created by starting with some poset that is the ordinal sum of antichains and removing
edges, then part a) follows easily. Part b) is not as obvious since removing an edge
between two related elements does not necessarily decrease the number of maximal chéins,

so Ziegler uses an inductive proof to demonstrate this.

Ziegler also evaluates the maximum value of mc(n,l) for a given n over all / and

produces the following result:

3n/3 for n =0 mod 3;
max men, ) ={ 4 3093 forn=1mod3; (5.2.1)
<
g 2. 3203 for n =2 mod 3.

To show this, start with the equation given for mc(n, /) in Lemma 5.2.2b. Note that for a
maximum we can’t have any ¢; 2 4, since 2 (¢; — 2) 2 4 whenever ¢; > 4. Similarly, we
won’t have ¢; = 1, since ¢j+1 > ¢j-1. Thus all ¢;’s must equal either 2 or 3. However, we
won’t have three or more 2’s since 2 + 2 + 2 =3 + 3 but 23 < 32, Thus equation (5.2.1)

follows.
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A paper of Greene’s [Gn] deals with the problem of counting chains in a poset of
shuffles. Let x and y be words of length m and n from some alphabet A where all m + »
letters are distinct. Write u < v if u is a subword of v, write I(x) for thé set of letters found
in word u, and let vlu denote the subword found by restricting v to the letters inu. The
vertices of a pbset of shuffles consist of all words w such that I(w) € I(x) U I(y), wix <x
and w|y<y. In other words, w can only contain letters from x and y, and the letters from x
- and y must appear in the same order as they do in x and y. Now define the relation <g
setting u <o v if and only if ulx 2 vlx, uly < vy and ulv = vju. Thus u <g v if and only if v
can be obtained from u by deleting some (or no) letters from x and inserting some (or no)
letters from y. As an example let x be the 2-letter word “AB” and y be the 1-letter word

“c”. The poset of shuffles on x and y is shown in Figure 5.2.2.
c

N
X

It is easy to see that whenever x is a 2-letter word and y is a 1-letter word the above poset
will be formed. Let mc(m,n) be the number of maximal chains in a poset of shuffles on an

m-letter word and an n-letter word. Greene finds the following:

)= 1y (mynyL)J, (5.2.2)
mc(m,n) (m+n)'j§0 (JXJXZ)



93

Greene proves this and other properties of posets of shuffles using Jacobi polynomials.

5.3 COUNTING CHAINS IN POWER SETS

In a recent article, Nelsen and Schmidt [NS] deal with the problem of counting
chains in a power set on n elements, P(n). Firstly they consider the number of chains of
given length k in P(r), which will be denoted cx(P(n)), and develop the following

recursion formula:

GPOD)) =k (P() + (k42 PC).  (5.3.0)

Let X, = {1, 2, ..., n}.This result is found by intersecting every element of each
chain C of length k in P(n+1) with the set X, to produce a chain C' in P(n). Any such C’
will either contain k different vertices, or will have 2 identical vertices and thus will have
k-1 different vertices. A chain C producing the former type of C’' will be called non-
degenerate, while a chain producing the latter type will be called degenerate. Thus the
number of chains of length £ in P(n+1) will equal the sum of the number of non-degenerate
chains and degenerate chains of length k in P(n+1). Now let D: 'No CN1 & ..< Nybea
chain of length k in P(n). k+2 non-degenerate chains of length k in P(n+1) can be formed
from this by counting the chain D itself and the kjl-l chains of the form No©E N1 & ... ©
Niii €N U {n+1} © ... © Ny U {n+1}, where i € {0, 1, ..., k}. It can be shown that
every non-degenerate chain in P(n+1) will be produced exactly once in this manner. Now
let D: Ng© N1 © ... © Np.1be achain of length k-1 in P(n). k degenerate chains of
length k in P(n+1) are formed from this by cc;nsidering chains of the form Ng & N1 ©
CN;CN; U‘{n+1} C..C Np1 U {n+1}, where i € {0,1,...,k-1}. As before, it
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can be shown that every degenerate chain in P(n+1) will be produced exactly once, and

(5.3.1) follows.

Nelsen and Schmidt also produce the following non-recursive equation for the

number of chains of length k in a power set:

k
aPe) = Y, 1V (k) k2" (5.3.2)
J=0

Nelsen and Scﬁmidt describe two different ways of :deﬁving this from equation (5.3.1).

One menthd uses a formal power series, and the other uses Stirling Numbers.

Finally by taking the sum of (5.3.2) over all possible values of k, and then
simplifying using a relationship involving Stirling numbers, Nelsen and Schmidt develop
the following equation for the number of chains in P(n):

oo

c(P(m)=2Y j"™7, nxl. (5.3.3)
j=2

Although at first glance, this formula seems to:produce the most direct method of
calculating ¢(P(n)), in fact using the recursion given in (5.3.1) and then summing over all
possible values of k gives the fastest way of calculating c(P(r)). Using this method,
Nelsen and Schmidt create a table of vmalues listing the number of chains in a power set on 0

to 10 elements.

The problem of counting maximal chains in a power set on # elements is much
simpler than that of counting all chains. The number of maximal chains in P(n) is just n!,
as mentioned in a paper by Kurepa [Ku]. This result follows easily by recognizing that

| there is a bijection from the permutations of » elements to the maximal chains in a power set

on n elements. For instance, the permutation 1, 3, 2 of the numbers 1, 2 and 3,
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corresponds to the chain {#} < {1} < {1,3} < {1,3,2} in P(3). It is well-known that the

number of permutations of an n element $et is »!, and the result follows.

Griggs, Stahl and Trotter [GST] produced a paper in which they discuss the
problem of counting the number of pairwise unrelated chains in a power set. Given two
chains C1 and (5, Cj and C) are pairwise unrelated if and only if fdr everyx € Crandy
€ (, then neither x <y nor y < x. The notation ucy(P(n)) will be used to denote the
‘maximum possible number of pairwise unrelated chains of length &k in a power set on »

elements. The result of Griggs et al. is as follows:

uck(P(n)) = (L (n’j;c’g " J). (534

The construction used to produce a set of ucy(P(n)) unreiated chains is also
described by Griggs et al. The chains are designated by D(i, 0) < D(i, 1) < ... ©
D(i, k), where the D(i, j)’s represent the elements in the chain. The set D(i, 0) is a subset
of size|(n—k)12] of {k+1, k+2, ..., n}. Then the set D(i, j) = D(i, 0) U {1, 2, ..., j}. Itis

apparent there will be [(nrsdl;lz J) possible D(i, 0)’s and thus the same number of chains, and

it can be verified that chains formed in this manner will be unrelated to one another.

The preceding construction demonstrates that the value of ucg(P(n)) must be greater

than or equal to ([( n,SdI;IZ J) Using a known inequality, Griggs et al. show that uc(P(n))

must be less that or equal to nk and thus equation (5.3.4) follows.
[(n-R)2] .

From these results it can be seen that the problem of counting chains in power sets
is much more straight-forward than that of counting antichains in power sets. Both
recursive and closed formulas exist which describe the number of chains in a power set on

n elements.



96
5.4 RELATING CHAINS AND LINEAR EXTENSIONS

There are a number of recent results which relate the number of chains to the
~ number of linear extensions of a partially ordered set. The first such result involves a
certain class of linear extensions known as greedy linear extensions. Let
[=x1 <Xxp<..<Xxp be a linear extension of a poset P on 7 elements. [ is called
greedy if whenever there is a minimal element x in P-{x, x2, ..., X;} satisfying x > x;,
then xj+1 > 3ci. Construct a linear extension by successively picking elements of P to
represent Xi, ..., X, [ is greedy if for each i, x;+1 is a minimal element of P\{x1, .., X; }
that is greater in P than x;. Now let g(P) represent the number of greedy linear extensions.
As usual, mc(P) will denote the number of maximal chains in P, and e(P) will be the

number of linear extensions of P.
Simion [Si] produces the following result relating e(P), g(P) and mc(P).
Lemma 5.4.1. For any poset P, mc(P) < g(P) < e(P).

The second inequality is obvious, and to see the first, let x; < xp < ... < x¢ be a maximal
chain in P. Let F(x;) be the order filter with x; as its only minimal element. Forma gr.eedy
linear extension of P by concatenating greedy linear extensions of (P-F(xi),
F(x1)-F(x2), ..., F(x¢-1)—-F(xx), F(xz)). It can be shown that distinct maximal chains map

to distinct greedy linear extensions and thus the first inequality is verified.

The cases when equality holds in Lemma 5.4.1 are described in the following

lemma:

Lemma 5.4.2. Let P be any poset. Then .
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a) g(P) =e(P) if and only if P = w; ® wy © ... ® wy, where the w;’s are 7
antichains. |
b) mc(P) = e(P) if and only if P = w; © wp @ ... @ w;, where the w;’s are
antichains on either 1 or 2 elements. |
¢) let Po be poset P with a minimum element adjoined. mc(P) = g(P) ifand onlS/ if
Py has the property that for a and b in PQ,a covers b implies F(b) — F(a) is a chain.

Proof. a) If all extensions of poset P of height /-1 are greedy, then for 1 < k </ we must
have every element at height £ covering every element at height k—1. This produces the
class of posets given in a). To see the reverse direction, recognize that every linear
extension of such a poset must be greedy.
" b) Since mc(P) = e(P), by Lemma 5.4.1, g(P) = e(P). Thus we may only have posets of
the form described in a). Note that in such a poset A
l l
mc(Py=[] wi and e(P)=]] wil.
i=] i=1
Since mc(P) = e(P) we must have w; = w;! for i=1 to L. Thus w; eqpals one or two for
eachi € {1,2, .., 1}. ‘In the reverse direction, since each w; equals either 1 or 2 and since
11 =1 and 2! =2, mc(P) and e(P) are equal. ,
c) Consider the mapping from maximal chains in P to grredy exiensions of P described in
Lemina 5.4.1. If there is a pair a, b in Py such that a covers b but F(b) — F(a) is not a
* chain, then each maximal chain containing both q and b will map to more than one linear
extension. Thus we will have mc(P) < g(P) which is a contradiction. To see the reverse
direction, note that when Pg has the property that for a and b in Py, a covers b implies

F(b) — F(a) is a chain, then the mappping given in Lemma 5.4.1 will be a bijection. 0O
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Finally using an inductive argument, Simion proves the following theorem about

the relationship between e(P) and mc(P).

Theorem 5.4.3. Let P be a finite poset such that e(P) > mc(P). Then
e(P)imc(P) > 3/2.

Ivan Rival [R] has done work on rélating the number of antichains to the number of
linear extensions. Before his results can be described, a few preliminary definitions are

needed.

Definition 5.4.4. An element x in a lattice L = (X,<) is join-irreducible if
a) x is not the minimum element in L ;

b) x=avbimpliesx=aorx=>bforalla, b €X.

It should be noted that in a finite lattice L, an element is join-irreducible if and only if it
covers exactly one element in X. The partially ordered set of all join-irreducible elements

of L will be denoted J(L). Now Rival’s theorem can be stated.

Theorem 5.4.4. Let L be a finite lattice. Then mc(L) £ e(J(L)) with equality if and only

if L is distributive.

To prove the inequality, Rival sets up a mapping from the linear extensions of J(L) to the
maximal chains in L. Assume that L has n join-irreducible elements. Consider a given
linear extension of J(L), I = (x1, x2, ..., Xxn) where x; < xj in L implies i < j. Now let
co = “0”, the unique minimal element of L, let ¢; = x; and let ¢; = xp, Vv Ci- where
m=min{j | Xj V i covers ¢i—1}. {co <cp <.} will form a maximal chain in L. Rival
shows that this mapping is onto which meaﬁs that every maximal chain is produced by

some linear extension, and then verifies that no extension can produce two different
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maximal chains. Stanley [Sy2] had previously demonstrafed that if a finite lattice L is
distributive then mc(L) = e(J(L)) and Rivai adds that finite distributive lattices are the only

lattices for which equality holds.

One special case of this result was previously discussed in Chapter 3. It is the idea
that the number of linear extensions of a power set on n elements is equal to the nurﬁbef of
maximal chains in the free distributive lattice on n generators. Since the poset of join
irreducibles of the free distributive lattice on 7 elements is simply the power set on 7

elements, this re§1i1t follows from Theorem 5.4 4.

This completes the summary of existing results dealing with the problem of
counting chains in partially ordered sets. The following section will deal with a related

chain counting problem, for which some new results can be found.

5.5 A CHAIN COUNTING PROBLEM

This section explores some results relating to a specific chain counting préblem. In
Section 2.4, Theorem 2.4.12 (due to Linék [Lk])u states that for every positive integer there
is a partially ordered set of at most height one cdntaiﬂing exactly » antichains. The truth of
this statement leads the author of this thesis to make the following conjecture, which stems

from a question of Bill Sands.

Conjecture 5.5.1. For every integer n > 1 there exists a partially ordered set of width at -

most two containing exactly n chains.
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This conjecture arises from the question, “What restrictions may be placed on a family of
~ posets such that for every integer n 2 1, there is a partially ordered set in that family with
exactly »n chains?” Note that it is natural to restrict the width since if width is left
unrestricted, we find that the poset which is an antichain on n-1 elements has exactly n

chains.

It is interesting to note that Linek’s theorem follows immediately from Conjecture
‘5.5.1. To demonstrate this, a few definitions must first be made. Let P = (X,<) be a
partially ordered set. Let A be a collection of linear orderings of X. We say that P is
realized by A (and A realizes P) if for every x,y € X,

a)x <yin Pifand only if x < y in every A€A

and b)xlyin Pifand only if x <yin some Aj€ Aand y <xin some A2 €A.
An alternate way of defining this is to consider the poset P and the elements of A as sets of
ordered pairs, so that (x, y) € Pif and only if x <y in P for x, y € X. Then it can be said
that P is realized by A if P= NA. The dimension of P is defined asﬂ the smallest number m
for which there is a set of m linear orderings of X which realize P. P is reversible if there
exists a poset Q on X such that for all distinct x, y € X, x<yin Porx>yin Pif and only

if x| yin Q. Such a poset Q is called a conjugate partial order of P.
Now two lemmas are needed, the first of which is due to Dushnik and Miller [DM].

Lemma 5.5.2. A poset P is reversible if and only if the dimension of P is less than or

equal to two.

Note that the reverse direction of this implication follows easily. If P has dimension 2, let

A1 and A be a pair of linear extensions realizing P. Then reverse A1 to form Ay, and the
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poset realized by A1’ and Ay will be a conjugate partial order to P. If a poset P on n

elements only has dimension 1, its conjugate will be the antichain on » elements.
The following lemma is due to Hiraguchi [H].
Lemma 5.5.3. The dimension of a poset is less than or equal to its width.

. Combining Lemmas 5.5.2 and 5.5.3 gives that every width 2 poset is reversible. Now the

following result can be demonstrated.

Lemma 5.54. Let P = (X, <) be a partially ordered set of width 2, and let Q be a
conjugate partial order of P. Then c(P) = a(Q). :

Proof. Let C be a chain in P. Then forx,y € C either x < yory <xin P which implies
x| yin Q. Thus C must be an antichain in Q. Conversely, let A be an antichain in Q. Then
forx,y € A,)'cly in Q, so either x <y ory <xin P. Thus A is a chain in P. Since every
chain in P forms an antichain in'Q and every antichain in Q forms a chain in P, ¢(P) = a(Q).

O

Note that if Q is a conjugate of P, then P will be a conjugate of Q. Since the largest
antichain in P will contain two elements, the longest chain in Q will contain two elements,
and thus the conjugate poset Q must have height 1. Thus if for a given integer n 2> 1 we
can find a width two poset P such that c(P) = n, then a(Q) = n where Q is a conjugate of P
of height 1. Then if Conjecturé 5.5.1 is true, we get that Theorem 2.4.12 must be true
also.

If Conjecture 5.5.1 can be proved true, it will also provide an affirmative answer to
the following open question of Linek [Lk]: “Does there exist m > 1 such that forany n> 1

there is a partial order of length 1 with »n antichains and dimension at most m?” This
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follows by noting that a conjugate Q of a poset P of dimension two ‘or less will also have
dimension two or less. Thus; if for an integer n, we can find a width two poset with
¢(P) = n, then taking a conjugate Q of P will give a height one poset with a(Q) = n that
also has dimension two or less. This implies that Linek’s question can be answered

affirmatively with m = 2.
The first thing to note in attempting to prove Conjecture 5.5.1 is the following:

Lemma 5.5.5. If for every prime integer p 2 1 there exists a poset P of width two or
less such that c(P) = p, then for every integer n 2 1, there exists a poset P of width two or

less sucﬁ that c(P) = n.

" Proof. It is easy to see that the linear sum of two posets P ‘and Q has
c(P® Q) =c(P)c(Q). Assume for every prime number p there is a poset containing
exactly p chains. Then consider a composite number ». This can be written as a product of
primes pi, ..., Dk, SO @ poset can be constructed i)y lineérly summing those posets of width

at most two having pj, ..., px chains. Such a poset will also have width at most two. [

A weaker version of this lemma is useful in further discussions. We can say that if
for every odd integer g > 1 and for g = 2 there exists a poset P such that c(P) = g, then for
every integer n 2 1, there exists a poset P such that c(P) = n. Note that the single element

poset has two chains, so we only need find posets for each odd integer g > 1. .

Rather than dealing immediately with Conjecture 5.5.1, one answer will be given to
the original question which asks, “what restrictions can be placed on a family of posets in

such a way that all possible values of 7 occur?”
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Let n be an integer and let f{n) be the number of clusters of ones in # when it is
expressed in binary form. By a “cluster of ones” we mean a maximal sequence of digits
which are all ones. Define function g as follows.

) _| fin) + 1 if the first two digits of » in binary form are 11;
| Ain) if the first two digits of 7 in binary form are 10.

As an example, let » = 105. Then in binary form, » will equal 1101001, so f{n) = 3 and

thus g(n) = 4. Now the following result can be stated.

Lemma 5.5.6. For a given integer 7, there is a poset P of width g(n) containing exactly

n chains.

Proof. This proof is by construction. Consider a given # in binary form. The position of
a digit d in n, p(d), will refer to the number of digits to the right of d. Letd be the leftmost
digit of n and construct a chain on p(d) vertices. Now consider the remaining p(d) digits in
n. Each cluster of ones in the remaining digits will produce a construction. Given a cluster
of ones, let dq and d» be the leftmost and rightmost digits of the cluster. If p(d2) > O then
construct a chain by adding d1—da+1 elements below the p(dp)’th vertex from the top in the
original chain. If p(d2) = O then form an isolated chain containing di-d2+1 elements.
Repeat‘ this for all clusters of ones. It is straightforward to check that the resulting partially
ordered set will contain exactly n chains. Figure 5.5.1 gives exémples of the

construction. O
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L b

n=230=11100110, n=215=11010111, n=280= 101101002
gn) =3 gn) =4 gn) =3
Figure 5.5.1

A weaker, but perhaps more intuitive idea which results from the previous lemma is the

following.

Lemma 5.5.7. For a given integer n, there is a poset P containing exactly » chains such

that

width(P) 5[19%% o1,

Proof. In the construction used for the proof of Lemma 5.5.6, a chain is first created
giving a poset of width 1. Then for each cluster of ones in the binary form of » with its
first digit removed, another minimal element is‘ added to the original chain thereby
increasing the width of the poset by 1. In the worst case, the binary form of » with its first
digit removed will have [(logan) /2] clusters of ones. Thus in the worst case, we get the

width of Ptobe [(logon) 2] +1. O

From this point on, only posets of width two will be considered. The following

lemma is a bounded version of the original conjecture.

. Lemma 5.5.8. For every integer n with1<n< 10,000 there exists a partially ordered

set of width at most two containing exactly 7 chains.
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Proof. Because of Lemma 5.5.5 and the comment which follows it, it is sufficient to only
find the posets with an odd number of chains. Generalized diagrams of the constructions
which produce these posets are shown in Figure 5.5.2. In this figure, each of variables

a - g represents the number of elements including endpoints in the subchain indicated by

the corresponding bracket.

L ®-~ -9 ® - ~
. i a- . b

a i ) b F -4
s < . 4

a b c- d - =
e f
e f gl T

- @ @ - @ o — »

Q 0 2)
Figure 5.5.2

Note that Q1 has constraints a, b, e, f> 1 and ¢, d 2 2, and O has constraints a, b, g,
h21 andc, d, e, f 2 2. Enumerating the chains in each of these posets produces the
following results. |
| o(Qo)=24+2b-1 |
c(Qy) = Ratcte-2 4 Qb+d+f2 _ 1 + (22 - 1)(2f_ 1+ (2b -1)e-1)
c(Qy) = 20+cterg-3 4 2b+d+frh-3 _ 1 + (22 - 1)(2f+h—1 -+ (2ate-1 - 1)(jh -1)
—(a-1)(2k-1) + (26 - 1)(2¢*8-1 — 1) + (2b+d-1 _1)(28 - 1)
~(2b-1)(28-1) +(22-1)(28 - 1) + (26— 1)(2% - 1).
By creating a computer program to generate the chain counts of these types of posets, it is
found that for » an odd number, posets of the form Qo produce 1 < 7 < 11, posets of the
form @y produce 13 < n < 469 and posets of the form Oy produce 471 < n < 9999, with
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the exception of n = 541 and n = 9073. 541 is produced by a poset of the form Q1, and
9073 = 43-211 so by Lemma 5.5.5 a poset with 9073 chains can be found by taking the

linear sum of the posets having 23 and 211 chains. Thus all cases have been covered. 0O

Note that most values of n are given by more than one of the above types. For
instance, all odd integers 7 with 195 < n < 469 are produced by both posets of the form Qy
and Q».

Given the previous results it is reasonable to strengthen Conjecture 5.5.1 to the

following:

Conjecture 5.5.9. For every integer n > 1 there exists a partially ordered set of the form
Om for some integer m 2 0, containing exactly # chains, where Qy, is the poset containing

m stacked crosses as in Figure 5.5.3.

O
Figure 5.5.3
The previous lemma shows that the conjecture holds for all “small” values of z.

Now it will be shown that the conjecture holds for some larger values of n.

Lemma 5.5.10. For every odd positive integer 7 containing 4 or fewer ones in its binary

form, there is a partially ordered set of width at most 2 containing exactly # chains.
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Proof. This is demonstrated by constructing the partially ordered sets shown in Figure
5.5.4.

~
| J ® — ~

ay- ° ay I }2 ay- a, ay

Figure 5.5.4

Enumerating the chains in each of these posets produces the following.
c(Ro) =241 + 29;
c(R1) =241 +21 +20;
c(Ry) = 2% +2%1 + 20 foray, a; > 0;
c(R3) =29 +2% + 291 + 20 foras>2, ay>a;>0.
Note that the poset containing 20 chains is the empty poset, so we get a poset of width two

or less for all odd values of n containing 4 or fewer ones in binary form. [0

Attempts were made to find a general construction for posets which could produce
the sum of any number of powers of two. Such a poset was found, however constraints
on the combination of powers of 2 allowed, prevent it from covering all values of #. This

construction is given in the following lemma.

Lemma 5.5.11. For an odd integer n > 1 there is a poset of width two containing
exactly n chains if 7 can be written in one of the following forms:
a) n=2bm+2bm1 4+ +2b142¢ 42010 420

where by, ..., by, ¢ and m are non-negative integers subject to the constraints
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1) bm> by > ..:.>b12m—1> 1,
if) b1 2 c+2.
b) n=20m + 26m-1 + __ +2b1 4 Qprml Loptm2 4 yom-ly9cyge-ly 490
where by, ..., bm, m, ¢ and p are non-negative integers subject to the constraints
1) bm-1>bm22by3z2.. 2b1>ptm-1,
i) bp2c+m,

i) m > c+2.

Proof. Consider poset P shown in Figure 5.5.5.

—k—2
—
G

a0 | - ay

s
pRe ]

" Nle 0}7 el

Figure 5.5.5
A systematic enumeration of the chains in P gives
C(P)=2% +2%-1+  +20 +20+1 k=220, (5.5.1)

Thus we get that for every positive integer # for which there exist integers ag, ax-1, ..., a1,
c,andkwithag1 > app2ar32..2a12k~-2,¢c +k—-1<ag k23 and ¢ 2 0 such that
n can be written in the form of equation 5.5.1, then we can find a poset with exactly »
chains. It will be shown that the set of #’s satisfying equation 5.5.1 is the same set of s

satisfying the forms in Lemma 5.5.11.
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To derive equation a), consider the situation when k-2 = ay. Substituting into

eciuation (5.5.1) we get
| o(P) = 2% + 2%~1 + ., + 202+ 2¢ + 261+ "4+ 20,

Letting m = k-1 and b; = aj+1 for 1 < i < m produces equation a). The constraint
Q-1 > Q-2 2 ap-3 2... 2 a1 2 k — 2 along with constraint £ 2 3 and initial condition &2 =
aj produces bmfl >bpo22bp3z2..2bj2m-121. vThe constraint ¢ + k— 1 L ag
becomgs ¢ + m £ by, The first constraint can be strengthened to by, > bp-1 > bp—2 >
bm3 > ..> b1 2m—121 and then the second constraint strengthened to b1 2 c+1, since
examination of the equations shows that the new constraints won’t exclude values included

in the original constraints. »

For equation 5), consider the situation when aj > k-2 > ¢+1. Equation (5.5.1) can -
then be rewritten as follows: . | |
O(P) = 20k + 201 + ... + 202 + 20171 £ 2812 4 4 2k 24 20 4 2014 420,
As before, iet m = k-1 and b; = aj+1 for 1 £i < m and also let p=ay - k + 1 to produce
equation b). The first constraint combined with initial condition ay > k&2 bécomes by >
bmo2bm32..2by>p+m—1>m-— 1, which can be rewritten as bpy-1 > b2 2
bm32..2by>p+m—1andp20. The initial condition k-2 > c¢+1 becomes m > c+ 2
and constraint a 2 ¢ + k— 1 becomes b, 2 ¢ + m. Constraint k > 3 becomes m 2 2 which
is implied by m 2 ¢ + 2 and ¢ 2 0 and so can be omitted. Thus the desired constraints have

been found. [

Note that in the previous proof, only the cases where ai=k-2and a; > k2> c+l
were considered. It is then natural to ask whether there are values of » which fit neither
_equation a) nor b) of Lemma 5.5.11 yet which can be produced by equation 5.5.1. By

considering the remaining case which is a; > k-2, ¢+ 1 2 k-2, it is found that all values
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of n fitting this case will also fit either equation a) or b) in Lemma 5.5.11. Thus all
_possible values for ¢(P) achievable by a poset P of the form shown in Figure 5.5.5 are
described by Lemma 5.5.11. As a matter of interest, the smallest n containing more than

four powers of two which is not satisfied by equations a) or b) is 7 = 245 = 27 + 26 + 25 +

24 +22 + 20,

Lemma 5.5.6 provides a width restriction on the set of all posets which still allows
‘all values of # to occur as the number of chains in P for some poset P in that family. The
work described in this section strengthens the idea that Conjecture 5.5.1 must be true.

Perhaps further work in this area will yield a conclusive result.

This problem marks the completion of this surhmary of results dealing with the
counting of chains, antichains and linear extensions of partially ordered sets. Though such
results abound, there remain many open problems in need of solutions and conjectures in
need of validation. Further work in this area may eventually close some of the gaps in our

knowledge of this topic.
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