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ABSTRACT 

This thesis deals with three distinct yet interrelated problems involving partially 

ordered sets, namely the counting of antichains, chains and linear extensions. The 

antichain counting segment of this thesis introduces Dedekind's problem involving the 

counting of antichains in power sets, relates the problem of counting antichains in posets to 

that of counting independent sets in graphs and discusses what is known as a "central 

element" in a poset. The largest portion of this thesis deals with linear extension counting. 

Results known as correlation inequalities consider the probability that an arbitrary linear 

extension of a poset possesses certain characteristics. A related problem, the 1/3 - 2/3 

Conjecture, is dealt with in detail and some complete proofs are given. The final segment 

of this thesis discusses chain counting and demonstrates some relationships between the 

problems of counting chains and of counting linear extensions and also gives ideas on a 

specific chain counting problem. 
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1 
CHAPTER ONE 

INTRODUCTION 

1.1 THE BASIC PROBLEM 

In order to describe the basic problem being dealt with in this thesis, the four 
specialized terms from the thesis title, namely chains, antichains, linear extensions and 

partially ordered sets must first be defined. 

Let X be a set. A partially ordered set P = (X,≤) or poset consists of a set X and a 

binary relation ≤ such that for every x, y, z E X 

a) x ≤ x (reflexive), 

b) x ≤ y and y ≤ x implies  = y (antisymmetric), 

c) x:5 y and y ≤ z implies x ≤ z (transitive). 

Often a partially ordered set P is described using a strict order relation "<" so that  <yin P 

if and only if x ≤ y and  0 y. When conditions a) - c) above are stated in terms of "<" we 

get that P must be irreflexive (x x), asymmetric (x <y implies y 1 x)) and transitive. It 

should be noted that unless otherwise stated, all posets in this thesis are assumed to be 

finite, meaning that the poset has a finite base set X. 

A totally ordered set is a partially ordered set P = (X, :5) such that for every distinct 

x, yE X either x ≤ y or y ≤x (or both). A subposet Q=(X',≤') of P=(X, ≤) is aposet 

such that X 9 Xand ≤' is equal to ≤ restricted to X. 

Now the three main structures which are being counted in this thesis may be 

defined. A chain in poset P is a totally ordered subposet of P. A subposet A = (X',≤') of 
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P is an antichain if it is totally unordered, in other words for every pair of distinct elements 

x, y E Y , x ≤' y and y ' x. A chain in P is maximal if it is not a subposet of any other 

chain in P. Similarly, an antichain in P is maximal if it is not a subposet of any other 

antichain in P. A linear extension of P = (X, ≤), L = (X, ≤i), is a totally ordered set on X 

such that x ≤ y impliesx ≤1 y. 

Consider a given poset P = (X, ≤) and let x,y € X. yis said to cover xify >x 

and there is no z € X such that y > z > x. Partially ordered sets are represented by Hasse 

diagrams, which associate each element in X with a point on the plane. For every pair x 

and y in X such that y covers x, y is placed above x in the plane and a line segment is 

drawn connecting y with x For instance, consider a poset P on X = {a, b, c, d, e} with 

a<b,a<c,a<d,b<e,c<e,d<eanda<e. Then theHasse diagramof Pwillbeas 

shown in Figure 1.2.1. 

a 

Figure 1.2.1 

This thesis deals with counting chains, antichains and linear extensions in partially 

ordered sets. Now some notation which will be used for this will be specified. Given a 

poset P, A(P) will be the set of antichains of P and a(P) the number of antichains of F, 

C(P) will be the set of chains of P and c(P) the number of chains of P, and E(P) will denote 

the set of linear extensions of P and e(P) the number of such linear extensions. MC(P) will 

be the set of maximal chains of P with mc(P) the number of maximal chains of P and 



similarly MA(P) will be the set of maximal antichains of P with ma(P) the number of 

maximal antichains of P. 

The concept of counting these structures will be demonstrated using the poset in 

Figure 1.2.1 as an example. A(P) = {{ 0 }, {a}, {b}, {c}, {d}, {e}, {b,c}, {b,d}, 

{c,d},{b,c,d}} so a(P) = 10. C(P) = {{O}, {a}, {b}, {c}, {d}, {e}, {a,b}, {a,c}, 

{a,d}, {b,e}, {c,e}, {d,e}, {a,e}, {a,b,e}, {a,c,e}, {a,d,e}} so c(P) = 16. E(P) = 

{a<b<c<d<e, a<c<b<d<e, a<b<d<c<e, a<c<d<b<e, a<d<b<c<e, a<d<c<b<e} and thus 

we have e(P) = 6. MA(P) = {{a}, {e}, {b,c,d}} so ma(P) = 3 an6MC(P) = {{a,b,e}, 

{a,c,e}, {a,d,e}} so we also have mc(P) = 3. 

The purpose of this thesis is to present current results available on the problems of 

counting chains, antichains and linear extensions in partially ordered sets and to suggest 

areas which are open to further work. The following section will describe some further 

notation and definitions required in order to carry out this task. 

1.2 NOTATION AND DEFINITIONS 

Some further definitions and notation which will be used throughout this thesis will 

now be given. Definitions for the majority of these terms can be found in [DP]. Consider 

a given poset P = (X,≤). If for x,y € X neither x≤y nor y≤x then we say that x and y 

are unrelated or incomparable and symbolize this as x I y. If x € Xis unrelated to every 

other element in X then x is said to be an isolated point. If for x € X there is no z € X 

such that z> x then x is a maximal element of P and if there is no z € X such that z <x 

then x is a minimal element of P. A poset is said to be bounded if it has a unique minimal 

element and a unique maximal element. The height or length of a poset is equal to one less 
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than the number of elements in its longest chain. Similarly, a chain has length equal to one 

less than its number of elements. The width of a poset is equal to the number of elements 

in its largest antichain. Pis k-thin if every element in X is incomparable with at most k 

other elements in X. Thus a k7-thin poset will be of width k + 1 or less. 

Two posets can be combined together in various ways to form a new poset. Let 

P = (X1, ≤i) and Q = (X2, ≤2) be partially ordered sets where X1 fl X2 = 0. The disjoint 

union of P and Q denoted P U Q is the poset (X, ≤) formed by taking X = Xi U X2 and 

letting x≤ y in P U Q for x,y € Xif and only if either 

x,y€Xjandx≤iy 

or x,y€X2 and x≤2y. 

The linear sum or ordinal sum of P and Q is denoted P ® Q and is the poset (X, ≤) such 

that X=Xi U X2 and for every x, y € X,x≤yif and only ifeither 

x, y € X1 and x:51 y 

or x,y € X2 and x≤2y 

or x € X1 and y € X2. 

A poset is called irreducible if it is not the linear sum of two non-empty posets. Let Pi, P2, 

..., P) be partially ordered sets. The cross product P1 x P2 x .:. X P, has as its elements 

{(pi, p2, ..., p,) I pi is in P1 for every i € {1, 2, ..., n}}. The ordering ≤ for the cross 

product is defined by (xl, x2, ..., X,) ≤ (yi, Y2, ..., y,) if and only if Xj ≤ yi in P1 for 

every i€ {1,2,...,n}. 

Now some terminology relating to a special class of partially ordered sets called 

lattices will be discussed. Let P = (X, ≤) be a partially ordered set, and let x, y € X. The 

meet of x and  is the unique maximal element z in X such that z ≤ x and z ≤ y, if such an 

element exists. Similarly, the join of x and  is the unique minimal element z in X such that 

z≥x and z≥y, if such an element exists. The meet of x and y is written  A y and the join 
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is written x vy. P is a lattice if x vy and x Ay exist for every x,y E X. A lattice L= 

(X, ≤) is distributive if the distributive law holds for L, which states that for every a, b, 

c € X, a A (b V c) = (a A b) v (a A c). Note that the dual distributive law is not required 

as in a lattice one distributive law holds if and only if the dual law holds (see page 130, 

[DP]). For a given lattice L, a polynomial is an expression having elements of L as its 

operands and v and A as its operators. 

Now a.few definitions need to be made from the realm of graph theory. A graph G 

consists of a set of vertices and a set of edges. The vertices are represented as points on the 

plane and the edges must have each of their two endpoints incident to a vertex. The degree 

of a vertex is the number of endpoints of edges incident to it. A graph G is said to be 

connected if the vertices of G cannot be partitioned into two non-empty classes such that 

there are no edges from a member of one class to a member of the other. A cycle is a 

connected graph in which every vertex has degree 2. A subgraph of graph G is a subset V 

of the vertices of G, along with a subset of the edges of G having both endpoints in V. A 

tree is a connected graph which contains no cycle as a subgraph. A path is a tree which 

either has exactly one vertex and no edges, or has two or more vertices exactly two of 

which have degree one, while all remaining vertices have degree two. An induced 

subgraph of G is a graph formed by removing some vertices of G and also removing all 

edges connected to those vertices. 

1.3 STRUCTURE OF THE THESIS 

As is perhaps apparent from the title, this thesis has three distinct divisions to it. 

Chapter Two contains the first main division which is the problem of counting antichains. 
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Several topics relating to this problem will be presented. Firstly, some basic antichain 

counting results for specific classes of posets will be given. Then the problem from graph 

theory of counting independent sets in graphs will be given, and a connection between this 

and the antichain counting problem will be demonstrated which in turn will produce some 

new antichain counting results. Next a classic problem known as Dedekind' s problem 

which involves counting antichains in power sets will be addressed, and finally, a problem 

of Colbourne and Rival, and of Rosenthal, which looks at the proportion of antichains 

possessing a certain characteristic will be examined. 

Chapters Three and Four both deal with the problem of counting linear extensions 

in partially ordered sets. Chapter Three will look at some basic linear extension counting 

problems and then introduce the topic of correlation inequalities, which are inequalities 

involving probabilities that a given linear extension has certain properties. It will also give 

a full proof that the XYZ inequality is a consequence of another inequality. Chapter Four 

will deal in detail with another well-known problem, the 1/3-2/3 conjecture which also 

involves probabilities that a given linear extension possesses certain characteristics. 

Though the 1/3-213 conjecture has not been verified to be true for all partially ordered sets, 

partial results are avaiThble and nearly complete proofs will be given showing that the 1/3 - 

2/3 conjecture does in fact hold for semiorders and for all but finitely many height-1 

partially ordered sets. 

Chapter Five will deal with the problem of counting chains, the problem which has 

been explored the least in current literature of the three problems presented in this thesis. 

Not only will this chapter give some basic chain counting results, but it will also 

demonstrate some results which relate the chain counting problem to the linear extension 

counting problem, thus demonstrating that the three main problems of this thesis are not 

entirely independent of one another. Finally, this chapter will produce some original 
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results relating to a new open question, "What width restrictions may be placed on a poset, 

such that for every integer n ≥l there is aposet P in the restricted class with c(P) = 
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CHAPTER TWO 

COUNTING ANTICHAINS 

2.1 INTRODUCTION 

Much work has been done over the years on the problem of counting antichains in 

partially ordered sets. This section will survey the antichain counting results available in 

the current literature by breaking the results up into several categories. 

Firstly, antichain counts of various poset classes will be presented. Some of these 

are direct well-known results such as the number of antichains in a fence, while others 

involve placing bounds on the maximum and minimum possible number of antichains on a 

class of posets possessing a certain set of characteristics. Secondly, the problem of 

counting independent sets in a graph will be examined, and it will be shown that there is a 

relationship between this problem and the antichain counting problem which allows one to 

derive further antichain counting results. Thirdly, the century old problem known as 

Dedekind's problem which involves counting the antichains of a power set will be 

addressed. Finally a problem of Colbourne and Rival, and of Rosenthal, which considers 

the proportion of antichains containing an element larger than or equal to a given element x 

will be looked at. 

Before proceeding with the antichain counting results, an interesting relationship 

will be described. Consider a poset P = (X,<). An order ideal (or down-set or decreasing 

set) ofPis a subset Q ofXsuch that whenever  € Q, y € X and y <xthen y € Q. 

Similarly an order filter (or up-set or increasing set) of P is a subset Q of X such that 
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whenever x € Q, y € X and y > x then y € Q. There is a bijection from the order ideals 

of P to the antichains of P. Consider the set S of maximal elements of any order ideal Q. S 

will form an antichain in P. Also each antichain in P corresponds to the one order ideal 

consisting of all elements less than or equal to the elements of that antichain. Similarly 

there is a bijection from the order filters of P to the antichains of P. Thus any results 

involving the number of antichains in a poset can have the term "antichain" replaced by 

"order ideal" or "order filter". 

2.2 ANTICHAIN COUNTING RESULTS 

There are a number of results in the current literature which give specific counts of 

the number of antichains in a given poset. One such result is the number of antichains in an 

n-fence, which is well-known and can be found for instance, in a paper by Beck [Be]. The 

n-fence Pn is the poset on n vertices {1, ..., n} such that for i E {1, ..., n-1}, i <1 + 1 if i 

is odd and 1> 1 + 1 if i is even. P, is shown in Figure 2.2.1. 

3 

Figure 2.2.1 

It is known that a(P) = F+i where Fn is the n'th Fibonacci number which is defined as 

follows: 

F0 = 1, F1 = 1, 

Fn = Fn-1 + Fn-2. 

This relationship can be easily seen by viewing a(P) as the sum of the number of 

antichains in P, containing n and the number not containing n. The number of antichains 
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not containing n will simply be a(P_i). Any antichain containing vertex n cannot contain 

vertex n-i but can contain any of the other n-2 vertices. Thus to get the set of antichains 

containing n, simply adjoin n to each of the antichains in Pn-2, giving a total of a(P2) 

antichains. Thus a(P) = a(P-i) + a(P_2). It is easy to see that a(Po)= 1 and a(Pi)= 2, 

and thus the desired result follows. 

This relationship between number of antichains (or ideals) in a fence and the 

Fibonacci numbers has an interesting application. By relating the Fibonacci numbers to a 

geometric object, new identities amongst the Fibonacci numbers can be found as in a paper 

by Hopkins and Staton [HS] and another by Beck [Be]. 

A related problem was examined by Berman and KOhler [BK]. They considered 

the poset Wm,n, consisting of the cross product of an n-fence with'a chain on m vertices. 

Such a poset is shown in Figure 2.2.2. 

(m,2) 

(in, 1)4 h. (m,3) 

(m,n) 

(1,2)"r (i,n) 

(1,3) 

Figure 2.2.2 

Berman and Köhler found the number of antichains in such a poset to be recursively 

defineable as follows: 

a(Wm ,o) = a(Wo,) = 1 
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a(Wm,n) = a(Wm_i,n) + :; a(Wm_i,j) a(Wm,j). 
i+j=n-1 
i even 

This result is found by applying Theorem 2.2.1 which will be listed below after 

giving a few preliminary definitions. Let P be a poset on a set X, and let S be a subset of 

X. Then AS will be the subposet of P with underlying set MS. Let x be an element of X. 

Then define cone(x) = {y € X I y = x or y <x or y > x}. Thus cone(x) is the subset of 

elements of X which are related to x. 

Theorem 2.2.1. Let x be an element of X. Then 

a(P) = a(ft) + a(Plcone(x)). 

Proof. The proof is fairly obvious. The number of antichains in P will equal the number 

of antichains in P not containing x plus the number of antichains containing x. The foEmer 

is simply a(Px). Any antichain containing x cannot contain any other element in cone(x), 

so will only contain elements from Plcone(x) along with x. There will be a(Pcone(x)) 

such antichains and the theorem follows. 0 

By applying Theorem 2.2.1 to any partially ordered set, the number of antichains 

can be systematically found. Berman and Köhler have implemented this in a computer 

program to count antichains in any given partially ordered set. 

In the same paper, Berman and Köhler [BK] find both recursive and implicit 

formulas for the number of antichains in posets which are cross-products of other posets. 

One such result is a recursive count of the number of antichains in the cross product of a 

poset P with a path on n vertices P,, which is derived using algebraic methods. 

Lemma 2.2.2. Let P be a partially ordered set, P, be a path on n vertices, and S(P) be 

the set of order ideals of P. Then 
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a(P x P) = a(Jx P_1). 
JE S(P) 

Berman and KOhler also generalize this result to Lemma 2.2.3 which follows. 

Lemma 2.2.3. Let P be a poset, Z be a poset with a unique minimal element and let P1 

be the one element poset. Then 

a(JxZ). 
J€ S(P) 

By substituting for Z we get Lemma 2.2.2. 

In a paper by Stanley [Sy I] the number of antichains in the cross-product of three 

chains is considered. He derives the following result. 

Lemma 2.2.4. Let Pj denote a path on j elements, where j is an integer. Then 

k-i (n+m+j) 
a(PkxPmxPfl)=fl  m  

(in+i) 

Berman and Köhler also consider the cross-product of several chains [BK]. They 

generate a table of specific values for a(P2 x P2 x Pm x P) where m ranges from 3 to 5 

and n ranges from 1 to 10. They also produce values for a(P2 x p2 x p2 x P 2 x P) where 

n ranges from 1 to 10. 

Unlike the number of antichains in the cross product of two posets, the number of 

antichains in the linear sum and disjoint sum of two posets can easily be found. These 

results are given in the following lemma. 

Lemma 2.2.5. Let Pi and P2 be partially ordered sets. Then 

a) a(P1®P2)=a(P1)+a(P2)-1; 

b) a(Pi U P2) = a(Pi)a(P2). 
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Faigle, Lovász, Schrader and Turán [FLST] produce recursive equations for the 

number of antichains in certain classes of posets. Firstly, series-parallel posets will be 

examined. 

Definition 2.2.6. A series parallel poset is defined recursively as follows: 

1) A single vertex is series parallel. 

2) Let P1 = (X1,<1) and P2 = (X2,<2) be series parallel posets with X1 flX2 = 0. Then 

P1 P2 and Pj U P2 are series parallel posets. 

Using the definition above, Lemma 2.2.5 can be implemented as a computer program to 

count antichains in series-parallel posets. 

Faigle et al. [FLST] also produce a recursive relation on the antichains of a certain 

class of posets as expressed in the following lemma. 

Lemma 2.2.7. Let P be a poset and let min P be the set of minimal elements of P. 

Suppose there exists a € min P such that for every y € P I min P, a <y. Let P = P I {a}. 

Then 

a(P) = a(P) + 2!1th1PH 1 

This follows directly from Lemma 2.2.1. 

Another problem related to that of counting antichains is the idea of counting 

maximal antichains in a partially ordered set. Ziegler [Z] consideredthe problems of 

counting antichains and of counting maximal antichains in a partially ordered set of width w 

on n elements, and was able to place an upper bound on both of these quantities. His 

results are stated in the following lemma. 

Lemma 2.2.8. Let P be a poset on n elements of width w. We then have: 
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a) P contains at most a(n,w) antichains where 

a(n,w) = max 
Cl+...+CWfl 

i—i 

P achieves this maximum if and .only if it is the disjoint union of w chains of lengths cj, 

C, where the ci's are those maximizing the above equation. 

b) P contains at most ina(n,w) maximal antichains where 

ma(n,w)= max fi ci. 
c1-+...+c w =n 

i—I 

P achieves this maximum if (but not only it) it is the disjoint union of w chains of lengths 

C, where the Cj'S are those maximizing the above equation. 

This lemma can easily be seen by considering a poset P of width w. Since P has width w, 

it can be covered by w chains. If any two chains have an element in common , the total 

number of antichains can be increased by removing enough edges to eliminate that element 

from one of the chains. Thus any poset maximizing the number of antichains will be the 

disjoint union of w chains. The number of antichains in such a poset will be 

(Cl + 1)(C2 + 1) ... (c + 1) and part a) follows. A similar argument produces the 

construction in part b). To show that the "but not only if" clause holds in part b), consider 

the following simple example. Let n = 3 and w = 2. Then ma(n, w) = 2. Let P be the 

poset on three elements a, b and cwith a <b and  <c. ma(P) = 2, but Pis not of the 

form described in b). 

This concludes this section of general antichain counting methods. The problem of 

counting antichains in a power set on n elements will be dealt with in a separate section as 

much work has been done on it since the problem was first suggested nearly one hundred 

years ago. As well, further antichain counting results will be derived using a technique 

relating antichains to independent sets in a graph. 
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2.3 ANTICHAINS IN POWER SETS 

A well-known antichain counting problem is that of counting the number of 

antichains in the power set on n elements, P(n). P(n) is the poset having as its element set 

all subsets of the set {1, ..., n} and as its order relation, set inclusion. As an example 

P(1), P(2) and P(3) are shown in Figure 2.3.1. 

{1} 

P(1) 

{1,2} 

P(2) 

{2} 

P(3) 

Figure 2.3.1 

The problem of evaluationg a(P(n)) was first suggested by R. Dedekind in 1897 

and hence has become known as "Dedekind's problem", while the value of a(P(n)) is called 

the n'th Dedekind number. Papers discussing this problem are too numerous to mention, 

however an extensive listing of these can be found in a paper by Kisielewicz [Ku. Many 

of these attempt to place bounds on the Dedekind numbers, estimate the Dedekind numbers 

asymptotically and produce algorithms to find the Dedekind numbers. Currently, only 

exact values for the first 0 to 8'th Dedekind numbers are known and they are as follows: 

a(P(0)) =2 

a(P(1))=3 

a(P(2)) =6 
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a(P(3)) = 20 

a(P(4)) = 168 

a(P(5)) = 7,581 

a(P(6)) = 7,828,354 

a(P(7)) = 2,414,682,040,998 

a(P(8)) = 56,130,437,228,687,557,907,788. 

The 0 to 4'th Dedekind numbers can easily be calculated by hand, as Dedekind 

himself did. The fifth was done by Church [Cl], who developed an algorithm for 

calculating these by hand. M. Ward [Wa] found the sixth in 1946 , and Church [C2] found 

the seventh in 1965 using a computer. The eighth was recently found by Wiedemann 

[Wd]. He developed a new method for calculating the Dedekind numbers, which required 

200 hours of computer time in order to produce a(P(8)). 

Recently, an algebraic solution was found to Dedekind's problem by Andrzej 

Kisielewicz using a new approach [Ki]. Let [x] represent the integer portion of x. 

Kisielewicz's theorem is as follows: 

Theorem 2.3.1. For any n ≥ 1, 

gn 

An)) = 
k=1 

[10g2i] 

fl [J i -ifif jj (1-bi+b/W,,) 
j=1 i=1 

where b• dk 
2i+1 

Kisielewicz proves this by constructing an isomorphic copy of P(n) with a different 

labelling from which the above equation can be derived. Thus the Dedekind numbers can 

finally be expressed as a single equation. Unfortunately this does not help in finding 
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further Dedekind numbers as it is no more efficient than the other algorithms which exist 

for counting antichains in power sets. 

Kurepa considered the related problem of counting the number of maximal 

antichains in a power set [Ku],. In his paper, the number of maximal antichains in a power 

set on n elements is called the right overturned factorial or the dual factorial of n, 

written ni. Kurepa was able to obtain the values of ni for n from 0 to 5 by directly 

counting the maximal antichains in the specific power sets. They are as follows: 

01=1 

11=2 

21=3 

31 =7 

41=29 

51= 146. 

So far, no algebraic formula has been found to describe the behaviour of ni. 

A paper by Popadic in 1970 focusses on finding formulas to represent the number 

of k-element antichains in a power set [P]. Let ak(P(n)) represent the number of k-element 

antichains in the power set on n elements. Popadic was able to find the following explicit 

formulas for a2(P(n)) and a3(P(n)). 

Lemma 2.3.2. a2(P(n)) = 221 + 211 - 3fl 

Lemma 2.3.3. Let 'nrpq = 2 + 2' + 2n-r-P-1 + 2- 2r+P - r+q - 2'P 
n-2 n-r-1 n-r-p 

n-r a(n-r-p)3(P(n)) = (') ( p j q 'rpq. 

r=O p=1 q=1 

- 2--q. Then 

Lemma 2.3.2 follows easily from a simple combinatorial argument. Lemma 2.3.3 

requires a little more work and the basic argument is as follows. Consider two 

incomparable members of P(n), B and C. Let r = lB ii C], p = lB - C] and q = IC - BI. 

Then 0 ≤ r ≤ n -2, 1 ≤ p ≤ n - r - land 1 ≤ q ≤ n - r - p. The number of elements 

simultaneously incomparable with B and C is equivalent to the number of 3-element 
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antichains containing B and C which can be shown to equal the equation given by Inprq. 

The value of Inprq is calculated using basic enumeration techniques. It is then found that the 

(n'(n- j (n-r-p)number of incomparable pairs having given p, r and q values is 'r' p q  By 

summing over all possible values of p, r and q and recognizing that each antichain gets 

counted six times (once for each permutation of the elements of each antichain), Lemma 

2.3.3 follows. 

Though much work has been done on the problem of counting antichains in power 

sets, much remains unknown in this area. Values of aj<(P(n)) have yet to be found for 

kl > 3 and the Dedekind numbers beyond the eighth are unknown. 

2.4 ANTICHAINS AND INDEPENDENT SETS 

The problem of counting antichains in partially ordered sets is related to that of 

counting independent sets in graphs. How these two problems relate will be described 

after some initial terminology is given. 

An independent set in a graph is any induced subgraph of that graph which contains 

no edges. For example, in a complete graph, the only independent sets will be each of the 

vertices of that graph and the empty set of vertices. Let i(G) represent the number of 

independent sets in a given graph, G. 

A bipartite graph is any graph whose vertices can be partitioned into two sets such 

that there are no edges between any two members of the same set. 

Let G(P) be the comparability graph of P = (X,<) which is the graph on set X such 

that for every x and y in X, there is an edge between x and y if and only if either x<y in P 
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or y<x in P. Whenever P is a poset of height one or less, its comparability graph will be 

the bipartite graph which looks identical to P. The following lemma describing the 

relationship between the antichains of P and the independent sets of G(P) can easily be seen 

to hold. 

Lemma 2.4.1 Let P = (X,<z) be a partially ordered set and let S be a subset of X. S is 

an antichain in P if and only if it is an independent set in G(P). 

While there are few specific results known about antichain totals for various classes 

of posets, much more work has been done on the problem of counting independent sets in 

graphs. Since not every graph is the comparability graph of some poset, it becomes 

important to be able to distinguish between those graphs which are comparability graphs 

and those which are not. Then it can be determined whether or not a given independent set 

counting result can be transformed into an antichain counting result. The following result 

[OH] due to Gilmore and Hoffman and also to Ghouila-Houri gives a characterization of 

comparability graphs. 

Theorem 2.4.2. A graph G is a comparability graph if it contains no sequences of 

vertices v, i,..., V, with n odd and n ≥ 3 such that for every j, Vj and Vj+1 are joined by 

an edge and vi and Vj+2 are not joined by an edge (where addition is modulo n). 

This theorem gives a simple means of testing whether or not a given graph is a 

comparability graph. 

The remainder of this section will survey specific classes of graphs for which 

independent sets have been counted, and then will describe the corresponding classes of 

posets having these graphs as their comparability graphs. Values for a(P) can then be 

attached to these derived posets by Lemma 2.4.1. 
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Firstly, recall the n-fence dealt with in Section 2.2. It has a path of length n as its 

comparability graph. Rather than directly computing the number of antichains in the 

n-fence as was previously done, the problem can be thought of as calculating the number of 

independent sets in the n-path, which of course will be the same as the number of 

antichains in the n-fence. A related problem is that of counting the number of independent 

(n-k+ 1 
sets of size k in a path-on n elements. Kaplansky [Ka] found the value of this to be k k 

This corresponds to the number of antichains of size k in an n-fence. 

Now consider a 2n-crown as in Figure 2.4. lb. This has as its comparability graph, 

the cycle on 2n vertices, as is shown in Figure 2.4. la. 

2n 

2 

2 

3 

(b) 

Figure 2.4.1 

2n 

Prodinger and Tichy [PT] have shown that the number of independent sets in a cycle 

containing m vertices, C(m), is the m'th Lucas number Lm, for m ≥ 2. The m'th Lucas 

number is defined as follows: 

Lo=2; 

L1 = 1; 

Lm = Lm-1 + Lm-2-

To see this relationship, label the vertices of the cycle 1, ..., m. The number of 

independent sets in this cycle will be the number of independent sets in a path of length m 

minus the number of independent sets in that path containing both vertices 1 and m. The 
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former quantity is the m+ 1' st Fibonacci number (from Section 2.2) and the latter quantity is 

the number of independent sets in a path of length m-4 which is the m-3 'rd Fibonacci 

number. Using these ideas, the following is derived: 

i(C(m)) = Fm +i - Fm-3 

= Fm + Fm-1 - Fm-4 - Fm-5 

i(C(m-1)) + i(C(m-2)). 

By verifying that i(C(m)) = Lm for m =2, 3 and 4.the relationship follows. Thus it can be 

concluded that the number of antichains in the 2n-crown is equal to the 2n'th Lucas 

number. 

Another graph considered by Prodinger and Tichy [PT] is that shown in Figure 

2.4.2a which will be called R. This graph is the comparability graph of poset R', shown 

in Figure 2.4.2b. 

n+1 n+2 n+3 2n n+1 2 n+3 ... 2n 

I I I  
(b) R' 

Figure 2.4.2 

The number of independent sets i(R) can be found recursively by adding two new 

• vertices to graph Rn to produce R+i, and then summing the number of independent sets 

containing the new vertices and the number not containing the new vertices. Using this 

method i(R) is found to be defined by the following recursion: 

i(R1) = 3; 

i(R2) = 8; 

i(R +1) = 2i(R) + 2i(R_1). 
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Solving the recursion gives 

a(R')= i(R,1)= 3  + J3)fl +  13i)h2. 

Adding some additional edges to graph Rn produces graph Q, which is the 

comparability graph of Q', as shown in Figure 2.4.3. 

n+1 n-I-2 n+3 .. 2n n+1 2 n+3 2n 

  >KXxX 
1 2 3 

(a)Q 

n 

Figure 2.4.3 

n+2 3 

(b) Q 
n 

Using similar methods to those above, Prodinger and Tichy [PT] define i(Q) iecursively 

and then solve that recursion to obtain the following result: 

= + + (1 —2)n+']. 

As before, i(Q) will equal the number of antichains in Q',. 

A more difficult problem is that of calculating the number of independent sets in 

what is known as an m x n lattice, Lm,n, not to be confused with the lattices defined in 

Section 1.2. Lm,n is the planar graph resulting from neighbouring points joining to form a 

rectangular grid. As an example, L3,4 is shown in Figure 2.4.4a, and it should be noted 

that graph Q, from Figure 2.4.3 is also the 2 x n lattice. As with the graphs dealt with 

previously in this section, Lm,n is the comparability graph of a specific class of partially 

ordered sets. The partially ordered set L'm,n has vertex set {(a,b) I 1 ≤ a ≤ m, 1≤ b ≤ n} 

and order relation <defined as follows: 

V a, b such that 1 ≤ a ≤ m and 1 ≤ b ≤ n—i b) <(a b+1) if a+b even 
(a b)>(a, b+1) ifa+bodd 
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V a, b such that 1 ≤ a ≤ rn-i and 1 ≤ I, ≤ b) <(a+1, b) if a+b even 
(a, b)> (a+ 1, b) if a+b odd 

L'3,4 is shown in Figure 2.4.4b. 

(3,1) 

(2,1) 

(3,2) (3,37 (3,4) 

(2,2) (2,3) (2,4)1 

(a) L3,4 

(1,2) (1,4) (2,1) (2,3) (3,2) (3,4) 

(1,1) (1,3) (1 2) (1,4) (34) (,3) 

Figure 2.4.4 

(b) L3,4 

Both Weber [We] and Engel [E] have attempted to determine the number of 

independent sets in Lm,n, and so far the exact solution has not been found. Weber was 

able to place the following bounds on the value of 1(Lm,,z), which of course equals 

a(L'm,n). 

Theorem 2.4.3. For mn> 1 145mn <i(4,) < 1.74mn. 

Weber also showed the following: 

Lemma 2.4.4. 1.45 ≤ urn [i(L,)]112 ≤ 1.554, and this limit exists. 
n-0-00 

Engel strengthened Weber's lemma to produce the following improved bounds. 

Lemma 2.4.5. 1.503 :5 urn [i(L,)]h/122 ≤ 1.514. 
n_+oo 

'1/n Engel also conjectured that urn [i(Ln,n)j 2 - 1.50304808... 
fl._SoO 

Work has also been done on finding the number of independent sets in specific 

classes of trees. Note that any connected cycle-free height-1 poset will have a tree as its 
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comparability graph. Define a completet-ary tree of height n—i as a tree in which exactly 

one vertex has degree t, every other vertex has degree 1 or t+ 1, and all paths connecting the 

degree 1 vertices to the degree t vertex contain exactly n vertices. Such a tree will be 

denoted T(t). As an example, T3(3), the complete 3-ary tree of height 2 is shown in 

Figure 2.4.5. 

Figure 2.4.5 

Let the poset having T(t) as its comparability graph be called P(t). 

Kirschenhofer, Prodinger and Tichy [KPT] produced results involving the number of 

independent sets in T,(t). These results will be given with the understanding that i(T(t)) 

can be replaced by a(P(t)) to give the number of antichains in P(t). 

Kirschenhofer et al. first consider the case where t = 1. This tree is simply a path, 

and thus is the comparability graph of a fence, which has previously been considered. If t 

equals 2, 3, or 4, the following result is produced for i(T(t)): 

Lemma 2.4.6 When t= 2, 3 or 4 then 

i(T(t)) - D(t) K(t)t" 

where D(t) and K(t) are constants depending on t such that 

211(14) < D(t) < 1 <K(t) < 211(t1). 

Fort ≥ 5, Kirschenhofer et al. found the following result for i(T(t)): 

Lemma 2.4.7 When t ≥ 5 then 
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i(T(t))-B(t).K(t)t2m asm—°° 

and l(T2m+ 1(t)) - C(t). K()t2m+l as m-+oo. 

where B(t) > C(t) and B(t) and C(t) are constants depending on t with 

lim B(t) = Jim C(t) = 1. 
t—*oo t—+oo 

Finally Kirschenhofer et al. considered binary trees on n vertices. Note that the 

poset having such a, graph as its comparability graph will be a non-cyclical height-i poset 

with one vertex of degree 2 and the remaining vertices having degree 3 or 1. Let S, 

represent the average value for the number of independent sets in a binary tree on n 

vertices. Kirschenhofer et al. have shown the following: 

Lemma 2.4.8 S, - (1. 12928 ... )(1.63742 ... )11 as n—'°°. 

Füredi [Fu] considered the problem of counting the number of maximal 

independent sets in a connected graph on n vertices. If G is a graph, let mi(G) represent 

the number of maximal independent sets of G. By calling an independent set S maximal 

we mean that no vertices can be added to S to produce another independent set. Now let 

m(n) be the maximum number of maximal independent sets possible in a connected graph 

on n vertices. Füredi discovered the following: 

Lemma 2.4.9. If n> 50 then 

m(n) = 

2 3t1 + 2t-1 

+ 

for n = 3t; 

for n=3t+l; 

4. 3t4 + 3. 2t2 for n = 3t+2. 

It should be noted that any poset on n vertices which is connected will have a connected 

graph on ii vertices as its comparability graph. Also note that any set of vertices forms a 

maximal independent set in a comparability graph if and only if it forms a maximal 
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antichain in the poset having that graph as its comparability graph. Thus it can be 

concluded that for any connected poset P on n vertices with n> 50, the maximum possible 

number of maximal anfichains in P will be less than or equal to m(n). As well, there are 

posets which achieve this maximum, and their comparability graphs can be found in [Fu]. 

Griggs, Grinstead and Guichard were able to show that the preceding result holds 

for all n ≥ 6 [GGG]. They also added that if n < 6, then m(n) = n. 

Wilf [WI] considered the same problem restricted to a tree T on n vertices and was 

able to reduce the upper bound on the number of maximal antichains as follows: 

Lemma 2.4.10. Let m(T) be the maximum number of maximal independent sets that 

can occur in a connected tree on n vertices. Then 

m(T) - { + 1 
2( 11)12 

if  even; 

if n odd. 

This result gives the maximum number of maximal antichains possible in. a poset on n 

elements having a tree as its comparability graph. 

One further independent set counting problem was examined by V. Linek [Lk]. He 

was able to demonstrate the following: 

Theorem 2.4.11. For every integer n ≥ 1 there exists a bipartite graph with exactly n 

independent sets. 

Using Lemma 2.4.1 we get that for every integer n ≥ 1 there exists a partial order of length 

at most one with exactly n antichains. This result will be discussed further in the final 

chapter where a related problem will be addressed. 
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This completes a survey of results involving the counting of independent sets in 

graphs. By applying Lemma 2.4.1 to these results, new information about the number of 

antichains is added to that of the previoqs section. 

2.5 CENTRAL ELEMENTS IN POSETS 

One interesting question relating to the idea of counting antichains in partially 

ordered sets is the following. Let a(P, ≥x) represent the number of antichains of poset P 

which contain an element ≥ x, let a(P, x) be the number of antichains in P which contain x, 

and let a(P) denote the total number of antichains of P as usual. Is there a real number 

o <A ≤ 1/2 such that every poset P has an element x satisfying 

A ≤ a(P, ≥x) ≤ 1— A? 
• a(P) 

An element satisfying (2.5.1) is known as a central element of poset P. Equivalent 

versions of this question were raised independently by Colbourn and Rival and by 

Rosenthal. Sands considered this problem [Sal and was able to prove the following. 

(2.5.1) 

Theorem 2.5.1. For every integer 1> 1, there exists a number 0 <A < 1 such that for 

every finite poset P of length i—i or less, there is an element x such that 

A ≤ a(P, x)  
a(P) 

Note that Theorem 2.5.1 deals with the number of antichains containing an element 

x, in a poset of length 1, while equation 2.5.1 deals with the number of order ideals 

containing x, in any poset. These two problems are equivalent when 1= 1 but not when 

1> 1. 
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Linial and Saks however, proved the following theorem which conclusively affirms 

the existence of a X satisfying (2.5. 1) for some  in every poset P [LS]. 

Theorem 2.5.2. In any finite partially ordered set P, there is an element x in P such that 

0.17 3-log 25 < a(P, ≥x) <1 - 3- 109 25- 0.83. 
4 a(P) 4 

Shearer (see [LS]) has shown that there are posets for which (2.5.2) fails when X is taken 

to be 0.197. Thus 0.17 must be close to the true bound. 

Faigle, Lovász, Schrader and Turán [FLST] were able to improve upon Linial and 

Saks' value of 0.17 for X when restricting the posets in equation (2.5. 1) to series-parallel 

posets, interval orders and trees. Series parallel posets were defined in Section 2.2. An 

interval order is a partially ordered set (X,<) such that for every a, b, c, d € X, a <b and 

c <d implies that either a <d or c < b (or both). In the context of a partially ordered set, a 

tree is any poset (X, ≤) such that for every x € X, Y= {y € X  x ≤ y} forms a chain in 

(X, ≤). Now their theorems can be stated. 

Theorem 2.5.3. Let P = (X,<) be a series parallel poset or an interval order. Then there 

exists an element x in X such that 
1<a(P,≥x) < 
4 a(P) 4 • 

Theorem 2.5.4. Let P = (X,<) be a tree. Then there exists an element x in X such that 

< a(P,≥x) < 2 
3 a(P) 3 

Faigle et al. have also shown that the bounds in the above two theorems are the best 

possible. Thus it is not only known that there is a real number X such that equation (2.5. 1) 
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is true for some element x in every poset P, but it is also known that X can be made larger 

when we are restricted to certain classes of partially ordered sets. 

This section concludes a survey of results involving the counting of antichains in 

partially ordered sets. Though much work has been done in this area, it can be seen that 

there remain open questions to be answered and classes of posets to be examined. 
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CHAPTER THREE 

COUNTING LINEAR EXTENSIONS 

3.1 INTRODUCTION 

In general, the problem of counting linear extensions is considerably more difficult 

than that of counting antichains or that of counting chains. Consequently there are few 

linear extension counting results. The linear extension counting problem has actually had 

more attention in the realm of Computer Science than in Mathematics. Brightwell and 

Winkler [BrWi] have assessed the difficulty of this problem and determined it to be 

#P-complete, the exact meaning of which can be found in [J]. It suffices to say that 

counting linear extensions is generally considered difficult. 

Work has been done on finding efficient algorithms to count linear extensions in 

various classes of posets. Such algorithms exist for counting the number of linear 

extensions of a poset of width 2 [AC], a tree [A] and a poset of width k [Sr]. 

There are a few results which involve the direct counting of linear extensions in 

partially ordered sets. Such results will be handled in the following two sections, the first 

of which will cover posets of width 2 and the second of which will cover any remaining 

posets. Section 3.4 will give a full proof based on the FKG inequality of an important 

result known as the XYZ inequality, a theorem which involves considering the probability 

that a given relation holds in an arbitrary linear extension of a specific poset. The XYZ 

inequality is just one result in a group of theorems known as correlation ineqiilities which 

will be dealt with in the final section of this chapter. 
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3.2 POSETS OF WIDTH TWO 

Many results have been produced on the problem of counting the number of linear 

extensions of partially ordered sets of width 2. Some of these posets are shown in the 

following diagram. 

am 

a2 

all 

(a) 

b2 

am 

bq 

ai a2 

a1• a1 

(b) 

Figure 3.2.1 

(c) 

2 

(d) 

Consider a poset which consists of two chains, one of length m and the other of 

length n, as shown in Figure 3.2. la. Label the elements of the first chain al, ..., a,, and 

the elements of the second chain b1, ..., b,. It is well known that the number of linear 

\ 
extensions of such a poset will simply be'. (MM +n) since there are a total of m+n positions to 

fill, and m of these positions must be selected to indicate where the elements of the chain of 

length m will be placed. As a sorting problem, this poset represents the merging of two 

sorted sets. 

Now consider a poset P that is like the one above, but which has a single constraint 

of the form ap <bq added, where 1 ≤ p ≤ m and 1 ≤ q ≤ n, as is shown in Figure 3.2. lb. 

The following results involving the number of linear extensions of P can be found in Knuth 

[Kn]. In any linear extension of F, it is obvious that elements ap+1, ..., am must he above 

ap and al, ..., ap-1 must lie below ap. Also elements bq, ..., b, must lie above ap. 
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However elements b1, ..., bq_i could lie either above or below ap. Let k be any integer 

such that 0 ≤ k < q. Consider the set of linear extensions in which bi, ..., bj lie below ap 
and bk+1, ..., bq_i lie above ap. -The number of such linear extensions e(Pk) is as follows: 

e(P,k)= rn-p+n-k p-i+k 
rn-p p-i 

When the sum over all possible values of k of the above quantity is taken, the total number 

of linear extensions of P is 

e(P) = (rn_P+n_k\(P_l+k 

O≤k<q rn-p ) p- )• 
Now, the situation in which many constraints of the the form ap < bq and b < iii are 

added to a poset consisting of two chains will be considered. It is assumed that the added 

constraints are consistent with one another, meaning that the properties of transitivity and 

irreflexivity are not violated, and that the transitive closure of the resulting. poset is 

considered. Atkinson and Chang [AC] as well as Mohanty [MI have produced algorithms 

to count the number of linear extensions in such a poset. As well, there are certain specific 

examples of this sort of poset for which the total number of linear extensions can. be found. ' 

Consider the partially ordered set of this type for which both chains are of the same length 

(rn = n) and which has added constraints a' < bi for all 1 ≤ 1:5 rn. This partially ordered set 

is shown in Figure 3.2. ic. It is known that the number of linear extensions of this poset is 

the rn'th Catalan number Cm which is defined as follows: 

r_l(2m 
'm+1'm 

This result can be found in a paper by Atkinson and Chang [AC] and it also follows from 

the equivaleice of this problem to a lattice path counting problem. Consider an m x rn 

lattice as defined in Section 2.4. It is well-known (see for instance [M]) that the number of 

paths of 2m steps from (0,0) to (m,rn) which don't cross below a diagonal line joining 
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(0,0) to (m,m), is also the Catalan number, Cm. The bijection from the linear extensions of 

the poset in 3.2. lc to the above described paths is as follows. Given a linear extension 

Xl <X2 < ... <X2n of the poset, start at (0,0) on the lattice. Given that the first i—i steps 

have been taken, let the i'th step be "north" if xi € {al, ..., a} and "east" if Xj € {b1, 

bm }. It is easy to check that this produces a bijection. 

Finally consider the poset shown in Figure 3.2.1d. As a matter of interest, the 

complement of the comparability graph of this particular poset is the "zig-zag" graph or 

2m-fence as described in Section 2.2. The number of linear extensions of such a poset on 

2m elements is the 2m'th Fibonacci number where the n'th Fibonacci number Fn is defined 

in Section 2.2. This result was found by Atkinson and Chang [AC]. 

Now that results involving the number of linear extensions of some types of width-

2 posets have been discussed, the problem of counting linear extensions of other posets 

will be discussed in the following section. 

3.3 OTHER POSETS 

Posets of width 2 are not the only posets for which attempts have been made to 

count linear extensions. In this section, results for counting linear extensions of bipartite 

graphs and power sets will be examined, as well as a number of results involving the 

general linear extension counting problem. 

Stachowiak [Ski] dealt with the problem of counting linear extensions of bipartite 

graphs. A bipartite graph can be thought of as a partially ordered set by attaching directions 

to the edges of the graphs, providing the edges are directed so as not to produce a cycle. 
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Such an assignment of directions is known as an orientation of the graph. A natural 

orientation of a bipartite graph is an orientation such that the vertices can be partitioned into 

two sets X1 and X2 so that X1 and X2 are antichains and such that if x € Xi, y € X2 and x 

and y are related then x <y. It is easy to see that every bipartite graph must have at least 

two natural orientations. Stachowiak provides the following theorem: 

Theorem 3.3.1. The number of linear extensions of an orientation of a bipartite graph is 

less than or equal to the number of linear extensions of a natural orientation of that graph. 

This theorem is proved using induction on the number of vertices in the graph. Let 

G and G be graphs on the same set of vertices. Then we say G (1 if the set of edges of 

G is a subset of the set of edges of G. The following corollary arises from Theorem 

3.3.1. 

Corollary 3.3.2. Let P be a height-i poset. Then P is a natural orientation of (3(P), its 

comparability graph, which will be bipartite. Let Q be a poset on the same set of elements 

as P. Then a) (3(P) G(Q) e(P) ≥ e(Q) 

b) (3(P) = G(Q) e(P) = e(Q). 

It may be noted that the - direction of b) follows immediately from part a). In 

another paper, Stachowiak[Sk2] extends this result to posets of arbitrary height. 

Theorem 3.3.3. If P and Q are posets on the same set of elements then 

a) G(P)cG(Q)=e(P)≥e(Q) 

b) (3(P) = (3(Q) e(P) = e(Q). 

In order to prove this theorem, the following lemma is required: 

Lemma 3.3.4. Let Abe an antichain of P. Then 

e(P—a)≤e(P). 

aEA 
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The lemma follows from an argument using induction on the number of elements in P. 

Proof of Theorem 3.3.3. The proof of a) is by induction on the number of elements in 

P. Assume G(P) G(Q). If P has one element the theorem is obvious. Let n≥1 and 

assume that the theorem holds for all n—i element posets. Then G(P—x) 9 G(Q—x) for 

every x in P, so e(P—x) ≥ e(Q—x) for every x in P. Let I be the set of minimal elements of 

poset Q. Summing over all x's in I gives 

e(P—x) ≥ e(Q—x). (3.3.1) 
xEI xEl 

Then it is easy to see the following: 

e(Q—x)=e(. 

xEl 

(3.3.2) 

I forms an antichain in P so we can apply Lemma 3.3.4 to Ito produce the following: 

e(P) ≥ E e(P—x) (3.3.3) 

xEI 

Combining equations (3.3.1), (3.3.2) and (3.3.3) gives the desired result. As in Corollary 

3.3.3, part b) follows directly from part a). U 

Edelman, Hibi and Stanley [EHS] produce a recurrence for the number of linear 

extensions of a poset. Before their result can be stated, a few preliminary definitions are 

required. A chain c of a poset P is saturated if there is no z € P—c such that x < z < y for 

some x,y € cand cU{z} is a chain. Thus in a finite poset, c= (xo <xl < ... <Xm) is 

saturated if and only if Xj covers Xj_j for each I € { 1, ..., Q. Now let c = 

(Xo <X I <...<x,) be a saturated chain with m > 0. Let Pc be poset P with the 

elements of c replaced by XO,l, X, ..., Xm_l,m such that all the following relations as well 

as those implied by transitivity hold: 

a) XOJ <Xl,2 < ... <Xm_l,m 
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b) Y<Xi,i+1 if  € P—c and y<x1+iinP 

C) y > Xij+1 if y € P—c and y > Xj in P. 

In addition, when m =0, let P4, = P - xo. 

Theorem 3.3.5. Let P be a finite poset and let C be a set of saturated chains of P such 

that every maximal chain of P contains exactly one element of C as a subposet. Then 

e(P) = E e(P). 

eEC 

This is proved by constructing a bijection from the linear extensions of P to the union of the 

linear extensions of the Pa's. The following corollary arises from this theorem: 

Corollary 3.3.6. Let P be a finite poset and let A be an antichain of P intersecting every 

maximal chain (i.e. A is a cutset of P). Then 

e(P—x). 

xEA 

Notice that this corollary gives the case when Lemma 3.3.4 holds with equality. Also note 

that Corollary 3.3.6 is a generalization of equation (3.3.2). 

Sha and Kleitman [SK] considered the problem of finding the number of linear 

extensions of the power set on n elements, P(n). It is well known that the number of linear 

extensions of P(n) is equal to thenumber of maximal chains in the free distributive lattice 

on n generators. Though a rigorous definition of the free distributive lattice on n generators 

Ln = (X, <) will not be given, intuitively it is the lattice whose element set Xconsists of all 

polynomials arising from the n generators, where no element is less than another unless it 

is forced to be by the laws of distributive lattices. As an example, the free distributive 

lattice on 3 generators is shown in Figure 3.3.1. 
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avbvc 

(avb) 

(a vb)A(avc) 

(a Ab)V(a Ac) 

(aAb) 

€ZAbAC 

Figure 3.3.1 

(bvc) 

(bvc)A(a vc) 

,(a AC) 

(bAc)v(a Ac) 

(bAc) 

Sha and Keitman found the following upper bound for the number of linear 

extensions of P(n). 

Theorem 3.3.7. 

e(P(n)) L'1 

Another class of posets for which the total number of linear extensions is known is 

the class of posets that can be associated with what is called a Young diagram. The ideas 

stated here can all be found in [Sg]. For a given positive integer n, consider a decreasing 

sequence of r positive integers Xi ≥ X2 ≥ ... ≥ X,.> 0 such that the sum of the Xe's is n. 

Such a sequence describes a Young diagram, which consists of r rows of cells aligned in a 

grid, such that row i contains X1 cells for 1 ≤ i ≤ r and the first column contains the first 

cell of each row. The Young diagram with r =4, Xi =3, X2 =2, X3 =2 and X4 =1 is shown 
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in Figure 3.3.2a. Now associate a poset with a given Young diagram. Let Xbe the set of 

ordered pairs of the form (p, q) where 1 ≤ p ≤ r, 1 ≤ q ≤ X1,. Now define the order ≤ on P 

as follows. Let (p, q) <(p', q') if and only if p ≤ p' and q ≤ q'. Figure 3.3.2b gives the 

poset associated with the diagram in Figure 3.3.2a. 

a) 

Figure 3.3.2 

(32) 

(3,1) 

(4,1) 

From a given Young diagram with n cells we can produce what are called standard 

Young tableaus by filling the cells with the integers 1, 2, ..., n in such a way that the 

number in a given cell is less than the number in the cell to its immediate right and the 

number in the cell below it. Figure 3.3.3 shows several possible Young tableaus resulting 

from the Young diagram shown in Figure 3.3.2. 

1 2 3 

4 5 

6 7 

8 

1 5 8 

2 6 

3 7 

4 

Figure 3.3.3 

1 2 4 

3 5 

6 7 

8 
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It is well known that the number of linear extensions of P(D) is equal to the number 

of stanthrd tableaus arising from diagram D. Thus we are interested in counting the 

number of standard tableaus resulting from a given diagram. There are numerous results 

involving counting standard tableaus. One such result, the hook length formula, will be 

given here. 

The hook number of a cell in a diagram is the number of boxes which are either 

below the cell or to the right of the cell, including the cell itself. Figure 3.3.4 gives the 

hook lengths of each cell in the Young diagram we have been using as an example. 

6 4 1 

4 1 

3 1 

1 

Figure 3.3.4 

Let st(D) be the number of standard tableaus which can be produced from a given 

Young diagram D with n cells, and let d1, d2, ..., 4, be the hook lengths associated with 

D. The hook length formula due to Frame, Robinson and Thrall F1(T] is as follows: 

Theorem 3.3.8. 

st(D)—  n!  
d1d2 ... d 

Because of the relationship described previously, this formula also gives the number of 

linear extensions in the poset associated with D. 
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Another well known related problem (found for instance in [Sg]), involves 

counting the number of linear extensions of rooted trees, where a rooted tree is a poset 

whose Hasse diagram is a tree containing a single minimal vertex. To each element in such 

a tree, T= (X, <), can be assigned what is known as an interval number. For a given x € 

X, let the interval number in (x) be defined as follows: 

in(x) = J{y € My ≥ X} 1. 

It is known that the number of linear extensions of such a poset on n elements is 
n! 

fl in(x) 
xEX 

Thus some linear extension counting results have been surveyed. In the following 

two sections, some related problems will be examined. 

3.4 THE XYZ INEQUALITY 

Related to the problem of counting linear extensions in partially ordered sets is the 

theorem now known as the XYZ Inequality. This theorem was first conjectured by Ivan 

Rival and Bill Sands and was eventually proved by L. A. Shepp [Sh2]. Before the 

problem can be stated, a few preliminary definitions must be given. Let E and F be sets of 

relations of the form x1 <Xj. We will say a permutation satisfies a relation Xj <Xj if Xj 

comes before x3 in the permutation. Then define p(E) to be the number of permutations of 

Xn satisfying all the relations of E divided by the total number of permutations of 

X. Also let p(E, F) be the number of permutations of xi, ..., x, satisfying all the 

relations of both E and F divided by the total number of permutations of xi, ..., x,. Now 

define p(EIF) as the number of permutations of xi, ..., x, satisfying all the relations of both 

E and F divided by the total number of permutations of xi, ..., x, satisfying all the 
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relations of F. Note that since any partially ordered set is a set of relations of the form X1 < 

x1, the above definitions apply when E and F are partially ordered sets on the same set of 

elements. Now the statement of the XYZ Inequality can be made. 

Theorem 3.4.1. Let P = (X,<) be a partially ordered set where x, y and z are arbitrary 

elements of X with x I z. Then 

p(x<yIP)≤p(x<ylx<z,P), 

where p(x <y I x <z, P) is the proportion of permutations of X satisfying x <z and P 

which also satisfy x <y. 

It should be noted that the preceding equation is equivalent to the following: 

p(x<y,P)p(x<z, P)≤p(P) p(x<y,x<z, P). 

The proof of this theorem invokes the FKG Inequality of Fortuin, Kastelyn and 

Ginibre [FKG], which first requires a definition. Given a poset P on a set X, we say a 

real-valued function  on X is increasing if whenever x <y then fix) ≤ fly). The FKG 

Inequality is as follows. 

Theorem 3.4.2. Let L = (X,<) be a distributive lattice, let  and g be increasing real-

valued functions on X and let i be a real-valued function of X such that for allx and y in 

X, p(x) ≥ 0 and .t(x)i(y) ≤ i(xAy).t(xvy). Then 

flx)g(x)ji(x) E A(Y) ≥ E f(X)A(X) 
xEX yEX xEX yEX 

We do not prove the FKG inequality, but apply it to derive the XYZ inequality. 

Before proving Theorem 3.4.1, some preliminary definitions are needed as well as several 

lemmas. Let S be the set of n-tuples a = (aj, ..., a,) where each aj € {1, 2, ..., N} and N 

is some integer which will later be allowed to tend to infinity. Define the relation ≤ on S by 

the following: 
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x≤-y for x,yESif and only ifxi≥y,x1—xi≤y_y1 for i€{2,...,n}. 

It is easy to verify that (S, ≤) forms a partially ordered set. For instance, if N = 2 and 

n =3, (S, ≤) will be the poset shown in Figure 3.4.1. 

(1,2,2) 

(1,2,1) 

(2,2,1) 

(2,1,1) 

Figure 3.4.1 

We refer to the i'th component of a. E S by a 

Lemma 3.4.3. For every a, b € S, a A b and a V b exist in S, and in fact 

a) (aAb)=min(a— al, b—bi) -'-max(ai,bi)and 

b) (a V b)i = max(a1 - al, b1— b1) + miñ(al, b1). 

Proof. Consider xi = min(a - al, b - bi) + max(al, b1) and 

yj = max(a - al, b - b1) + min(al, b1). 

Let x = (xl, x2, ..., x) and y = (yr, Y2 ..., y,). To verify Lemma 3.4.3, we need to 

demonstrate the following: i) x € S; 

ii) x≤a,x≤b; 

iii) ifzESandz≤a,z≤b then z≤x; 

and also the following: i) y € S; 

ii) y≥a,y≥b; 
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iii) ifz€ S and z≥a,zb then z≥y. 

Only the proof of 1) - iii) for x will be shown as the proof for y is similar. 

i) To verify x € S,it must be checked that x1 € {1,...,N} for all i € {2, ...,n}. 

There are four cases which are as follows: 

a) min(aj— al, b--bi)=a—al, max(ai,bi)=at; 

b) min(a - al, b - bi) =ai - al, max(al, bi) = b1; 

c) min(aj - al, b1 - bi) = - b1, max(al, bj) = bj; 

d) min(a - al, b - b1) = b1 - bi, max(al, bi) = al. 

Now it can be shown that xx € {1, ..., N} for all I € {2, ..., n}. 

a) xj=aj—aj+al. Then x=a€ {1,...,NJ. 

b) x=a—al+bi. Since 

aj, bi € {1, ..., N} then Xj € {1, ..., N}. 

c) x=b1—bi+bi. Then x=bE {1,...,N}. 

d) xz=bx—bi+ai. Since 

aj, bi € {1, ..., N} then Xj € {1, ..., N}. 

Thus x € S. 

ii) By definition of ≤ the following must be shown: 

1) xj≥ al, x≥b; 

2) x - xl ≤ a - al for i € {2, ..., x - xj ≤ b - b1 for i € {2, ..., n}. 

1) xl = min(ai - al, b1 - b1) + max(al, b1) = max(al, b1). Thus xl ≥ al and xj ≥ b1. 

2) Each of the four cases a) - d) from the proof of i) must be considered for each i € 

{2, ..., n}. 

a) x—xj=a—xi≤a—aj.≤b—bi. 

b) 

c) x—xj=b—x1≤b—b1≤a—al. 
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d) xj —xi =bj—bi+ai—xj≤b—bi+ al— ai —_b—bi≤a—al. 

Thus 2) is satisfied for all i. 

iii) Let zE S be such that z≤ a and z≤ b. We show that z≤x. Since z≤a and z 

≤ b then zi ≥ al and zi ≥ b1 by the definition of ≤ on S. Thus zi ≥ max(ai, b1) xi. Let 

i€ {2,...,n}. z≤a and z≤b also imply that z—zi≤a—ai and z—zi≤b—bi. 

Thus 

Zj — Zi ≤min(aj— al, bi—bi)=xj—max(ai,bi)=x—xi. 

Since zi≥xj and zj—zj≤x—xi for all i€{2,...,n},thenz≤x. 0 

Lemma 3.4.4. (S, ≤) is a distributive lattice. 

Proof. (5, ≤) is a lattice by Lemma 3.4.3. To show (S, ≤) is distributive, the distributive 

law a A (b V c) = (a A b) V (a A C) 

must be verified. To demonstrate this the following preliminary results are required: 

min(j, max(k, 1)) = max(min(j, k), min(j, 1)) (3.4.1) 

max(j, min(k, 1)) = min(max(j, k), max(/, 1)) (3.4.2) 

for any numbers j, k, and 1. These equations simply say that every chain forms a 

distributive lattice. Now the distributive law will be verified for (S, ≤). 

(aA(bvc)) =min(a-.ai,(bvc)—(bvc)i)+max(ai,(bvc)i) 

= min[ai — al, max(b - b1, Cj - Cl) + min(bi, Cl) — min(bi, Cl)] + 

max[ai, min(bi, ci)] 

= min[a - a!, max(b - b1, Cj - Cl)] + max[ai, min(bi, Cl)] 

Applying (3.4. 1) and (3.4.2) to this we obtain the following: • 

(a A(b v c))=rnax[min(a— al, b1—b1), min(a— al, c—ci)] + 

min[max(ai, b1), max(al, cj)] 
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= max[min(aj—al, b—b1) + max(al, b1) - max(al, b1), 

min(a1 —al, C1 —Cl) + max(al, Cl) - max(al, ci)] 
+ min[max(ai, b1), max(al, cl)] 

max[(a A b)1— (a A b)1, (a A C)j —(a A c)i,} + min[(a A b)1, 

(aAc)i] 

= ((a A b) v (a A c))1. 0 

Now fix poset P = (X, <), and fix the elements of X as X4, ..., x,, so that xi and x3 

are not related. Note that xj, x2, ..., xn need not be a linear extension of P. Next define 

functionsf and g on S as follows: 

if a1≤a 
I 0 otherwise 

1 if a1≤a3 
0 otherwise 

Lemma 3.4.5. f and g are increasing functions. 

Proof. Proving f is an increasing function is equivalent to proving that for any a, b € S, 

if f(a) = 1 and a ≤ b then fb) = 1. Since a ≤ b, by definition al ≥ bi and a2 - al ≤ 

- b1. Sincef(a) = 1, by definition off, al ≤ a. Thus a - al ≥ 0 so we will have b2 - 
b1 ≥ 0 which in turn implies that b2 ≥ b1 and thusJ(b) = 1. A similar proof shows that g is 

increasing. 0 

We say that a € S satisfies the inequalities of poset P if for every i, j € { 1 ..., n} 

such that xi <x3 in P then a1 ≤ af. Now define function t :S - (0, lj as follows: 

1 if a satisfies the inequalities of P; 
g(a/ .10 otherwise. 

Lemma 3.4.6. t(a).t(b) ≤ t(a V b)i(a A b) for all a, b € S. 
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Proof. Since j2(a) can only equal 0 or 1, it is enough to show that if i(a) = = 1 then 

ji(a v b) = ii(a A b) = 1. If p(a) = !1(b) = 1 then a and b satisfy the inequalities of P. Thus 

for every i, j such that Xj <x3 is an inequality of P we must have a, ≤ a1 and bi ≤ b. Thus 

(a A b) = min(a - at, b - bi) + max(al, bi) 

≤ min(a- al, b - b1) + rnax(al, b1) = (a A b). 

Since (a A b), ≤ (a A b)j it is clear that (a A b) satisfies the inequalities of P. Thus 

t(a A b) = 1. Similarly it can be shown that l.t(a v b) = 1. 0 

Proof of Theorem 3.4.1. By Lemmas 3.4.4, 3.4.5 and 3.4.6, f g and t satisfy the 

initial conditions of the FKG inequality (Theorem 3.4.2). Thus applying this inequality we 

get 

fla)g(a).t(a) .t(b) ≥ fa)ji(a) g(b)t(b). 
aES bES aES bES 

Dividing both sides by ISIlSI gives 

f(a)g(a)p(a)' ji(b) fla)t(a) 
aES  bES  aES  

ISI J 151 M SI 

g(b)g(b) 
bES  

IsI (3.4.3) 

Now consider the first bracketed quantity in (3.4.3). We show that as N -+ 00, 

fla)g(a)j.t(a) 
aES  

ISI 
-+p(x1 <x2,x1 <x3, P)-

Let S'  = {a c S  aj aj V i,j € {1, ..., n} with frj}. Thus S' is the set of all elements in 

S containing no repetitions of its coordinates. First note that ISI = J/ and IS'I = M. I (N-

n)!. Thus 

F','D" L.  N! asN -*oo. 
si (N-n)! N'1 
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Intuitively, as N becomes infinitely large, the proportion of elements of S containing 

repetitions amongst their coordinates becomes insignificant. The same thing happens when 

we consider the elements of S for which xi <x2, xj <X3 and the inequalities of P are 

satisfied. If we further restrict ourselves to 5, the elements without repetitions, and allow 

N to go to infinity we have 

Then as N -+ 00 

fla)g(a)p(a) 
aES' 

aES I 

—p1. 

fla)g(a)t(a) f(a)g(a)t(a) 
aES aES' 

(S 

Every b = {bi, b2, ..., b} € 5' corresponds to a permutation of {1, ..., a = 

{al, 'a2, ..., an} such that bi < ai <aj. It can be shown that a fixed number m of 

elements of S' will correspond to a given permutation of { 1, ..., n}. Also note that 

EaES' fla)g(a).t(a) counts the elements of 5' for which xi <x2, X1 <X3 and the 

inequalities of P are satisfied. Hence if we further restrict a to F' where P is the set of 

elements of S which are permutations of {1, ..., n}, we get 

J(a)g(a)t(a) = e(P x1 <x2, x1 <x3), 

aEP 

where e(P I xi <x2, xi <x3) counts the number of linear extensions of P such that xi <x2 

and xi <X3. Thus 

fta)a)(a)  aES' = m e(P I x1 <x2, xi <x3) —p(x1 <x2, x1 <x3, P). 

'Si m 
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Similarly the other three quantities in equation 3.4.3 approach the probabilities in the 

following equation as N approaches infinity. We get 

p(xi <X2, Xl <X3, P) p(P) ≥ p(xj <x2, P) p(xi <X3, F), (3.4.4) 

which is the desired result. 0 

This completes Shepp's proof of the XYZ Inequality. Fishburn [Fi] has done 

further work on this problem and was able to demonstrate that whenever xi, x2 and x3 are 

pairwise unrelated, then ≥ can be replaced with > in equation 3.4.4. 

3.5 CORRELATION INEQUALITIES 

The XYZ Inequality is a relationship which is part of a broader class of theorems, 

known as correlation inequalities. In order to define correlation in terms of linear 

extensions of partially ordered sets, a few ideas from probability theory will be given. 

Let Q and R be two events. Then we say that Q and R are positively correlated if 

p(Q) <p(Q I R), Q and R are negatively correlated if p(Q) > p(Q I R) and Q and R are 

independent or uncorrelated if p(Q) = p(Q I R). 

Before proceeding, some definitions of the meaning of probability in terms of linear 

extensions of partially ordered sets must be given. These definitions can be found in a 

paper by Brightwell [Br2]. Let Q and R be,asymmetric subsets of X x Xwhere Xis some 

set with IX = n. As in the previous section, the probability p(Q) of subset Q is the 

proportion of permutations of the n elements of X which satisfy all relations of Q. Now 

define the conditional probability p(Q I R) = p(Q U R) I p(R) as the probability that a 

permutation satisfying all relations in R also satisfies all relations in Q. The above 



49 

definitions can be applied to posets, since a poset P is an asymmetric set of pairs (x, y) 

with (x, y) € Pif and only if  <yin P. Thus if  and R are posets, p(Q IR) is the 

probability that an arbitrary linear extension of R is also a linear extension of Q. 

Now the idea of correlation in the context of partially ordered sets will be 

considered. Let Q and R be posets on a set X and let P be a poset on a set containing X 

such that P U R is asymnetric. Q and R are said to be positively correlated with respect to 

P (in symbols QtpR using a notation of Brightwell [Br2]) if p(Q I P) ≤ p(Q I P U R). 

Similarly, Q and Rare said to be negatively correlated with respect to P(QpR) if p(Q I P) 

≥ p(Q j P U R). Note that assuming P U Q is also asymmetric, we get that QtpR if and 

only if RtpQ and QI.pR if and only if RJpQ. To extend these definitions, say that there is 

a pair of posets Q, R on set X such that for every poset P on a set containing X with P U R 

asymmetric, then QtpR. We say that such a pair is universally positively correlated and 

write QTR. Similarly, if there is a pair of posets Q, Rona set Xsuch that for every poset 

P on a set containing X with P U R asymmetric, then Q.pR, we say that Q and R are 

univercafly negatively correlated and write QR. 

The XYZ Inequality treated in the previous section is an example of a correlation 

inequality. In this case let Q and R be the posets on X = {xi, x2, x3} with strict order 

relations such that Q = {(xi, x2)} and R = {(xi, x3)}, and let P be a poset on a set 

containing X with X3 it xi. Then we can say not only that Q and R are positively correlated 

with respect to P, but also that Q and Rare universally positively correlated (QtR). 

The following well known correlation inequality was proved by Graham, Yao and 

Yao [GYYJ. 

Theorem 3.5.1. Let A and B be disjoint totally ordered sets. Let P = A U B and let Q 

and R be sets of relations of the form am < bn where am € A and bn € B. Then 
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p(QJP)≤p(QIPUR). 

Thus this theorem states that QtpR. An example often used to illustrate this theorem is as 

follows. Consider a tennis tournament between two teams A and B for which each team 

has a complete ranking of its players. It must be assumed that the tennis players play 

consistently so that if player x is ranked above player y, then player x will always beat 

player y. Theorem 3.5.1 says that if some players on team A have already lost to some 

players on team B, then there is an increased likelihood that a given player on team A will 

lose to a given player on team B. 

Shepp [Shi] was able to expand upon this result and show that Theorem 3.5.1 also 

holds when A and B are just disjoint partially ordered sets. Brightwell [Br5] added that if 

there are x,y,z,w € X such that (x, y) € Q and (z,w) € Rand either x and z or y and w 

are in the same connected component of G(P), the comparability graph of P, then Shepp's 

result holds strictly. Another extension of Theorem 3.5.1 was found by Graham, Yao and 

Yao [GYY] and is the following: 

Theorem 3.5.2. Let A and B be disjoint totally ordered sets. Let P = A U B and let C, 

Q and R be sets of relations of the form am < bn where am € A and bn € B. Then 

p(QIPUC)≤p(QIPUCUR). 

Alternate proofs of this were found by Kleitman and Shearer [KS] and also by Shepp 

[Shi]. Once again Shepp considered the corresponding problem with A and B disjoint 

partially ordered sets and found that the theorem does not hold in this case. The simplest 

counter-example to this is due to the referee of [Sh1]. Let A be the two-element antichain 

consisting of elements at and a2 and let B be the two-element antichain consisting of 

elements b1 and b2. Let C = {a2 < b1}, R = {a2 <b2} and Q = {al <b1}. Then 

p(QIPUC) =2/3> 518=p(QIPUCUR). 
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Brightwell wrote two papers [Br2] and [Br5] dealing with the idea of correlation 

with respect to another poset. In the first, he was able to classify all posets P = (X, ≤) 

such that {(x, y)} and {(z, w)} are correlated with respect to S for every poset S which is 

an extension of P and has w z in S, where x, y, z, w € X. In the second, he classified 

all posets P = (X, <) such that {(x, y)} and {(z, w)} are correlated with respect to S for 

every poset Son Xwhich is a subposet ofPand has w it z in S. where x, y, z, w € X. 

Winkler [Wn] and Brightwell [Bri] considered the problem of finding conditions 

for universal correlations amongst posets. Winkler produced a necessary and sufficient 

condition for posets Q and R on a set X to be universally positively correlated. Brightweil 

produced another such condition equivalent to QtR and was also able to give a condition 

when Q and R are universally negatively correlated. 

It can be seen that much work has been done in the area of correlation. The above 

is only a summary of results that have been found thus far. To complete this survey of 

results dealing with the problem of counting linear extensions of posets, the following 

section will deal in detail with a specific linear extension counting problem, the 1/3 - 2/3 

conjecture. Like correlation inequalities, the 113 - 2/3 conjecture involves the probability 

that a given relation will occur in a linear extension of a given poset. 
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CHAPTER FOUR 

THE 1/3 - 2/3 CONJECTURE 

4.1 INTRODUCTION 

The idea of counting linear extensions gives rise to a well-known unsolved 

problem, the 1/3 - 2/3 conjecture. Consider a partially ordered set (X,<). The 1/3 - 2/3 

conjecture claims that in every poset (X,<) that is not a chain there will be a pair x, y € X 

such that x is below y in somewhere between 1/3 and 2/3 of the linear extensions of (X,<). 

This conjecture is attributed to Fredman in 1976 [Fr]. 

The motivation behind the 1/3 - 2/3 conjecture is the following question. For every 

poset, is there a pair (x,y) such that x lies below y in approximately half the linear 

extensions? The 1/3 - 2/3 conjecture hy,othesizes that the answer to this question is yes, 

when "approximately half" is interpreted as "between 1/3 and 213". Formally the 

conjecture is stated as follows. 

Conjecture 4.1.1 Let P = (X,<z) be a finite partially ordered set that is not a chain. 

Then there exist distinct elements x and y in X such that 1/3:5 p(x<yIP) ≤ 2/3. 

It is known that when all posets are considered, there is no X with 1/3 <X ≤ 1/2 such that 

Conjecture 4.4.1 with X and 1—X replacing 1/3 and 2/3 can be proved. To see this, 

consider the poset consisting of a 2-element chain plus an isolated point. When 

considering any pair of unrelated points x and y in this poset, either p(x<yP) = 1/3 or 

p(x<ylP) = 2/3. Thus the values of 1/3 and 2/3 are the "best" possible. 
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At this point, one comment on notation will be made. When the poset, P, is fixed, 

then we will write p(x<y) instead of p(x<y!P). 

The reason that there has been so much interest in the 1/3 - 2/3 conjecture is that it 

has direct applications to the problem of finding time efficient sorting algorithms for 

computer programs. Consider a set of partially sorted data which is to be completely 

sorted. This forms a poset P of data items. The sorting is done by making comparisons 

between unrelated items in the poset to determine their ordering. Let n be the number of 

comparisons that must be made to sort such a poset, and find the relationship between the 

number of comparisons needed and the number of linear extensions of P. Consider the 

worst case situation. This occurs if whenever a comparison is made and it is found that 

say, x<y, then x is below y in more than half of the linear extensions. In this situation, the 

best that can happen is that for every comparison between 2 elements x and y, p(x<y) = 

p(y<x) = 1/2. Thus we will have 

2e(p). 

In general, the worst case says 

2 ≥e(P) 

n≥loge(P). 

The lower bound on n is known as the information theoretic bound. It should be 

noted that if the 1/3 - 2/3 conjecture can be proved, then we will have 

(-)'2≤e(P) 

n ≤ 10g312e(P) 1.7 10g2e(P). 

To date, though much progress has been made on the 1/3 - 2/3 conjecture, it still 

remains an open problem. Kahn and Saks [KS] succeeded in showing that if the values 

1/3 and 2/3 in Conjecture 4.1.1 are replaced with 3/11 and 8/11, the conjecture can be 
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proved for all finite posets. Using this 3/11 - 8/11 result, the best upper limit that can be 

placed on the number of comparisons of elements required to sort P is as follows. 

(•1t)n ≤ e(P) 

n ≤ 10g1118e(P) 2.2 10g2e(P). 

Other researchers have had success at considering specific classes of finite posets and 

proving the 1/3 - 2/3 conjecture for those classes (see [Ll], [BrW], [Sr], [GHP], [Br4] and 

[TGF]). With some classes of posets, a result much closer to 1/2 can be achieved. As 

well, Brightwell [Br4] has extended the definition of p(x<y) to include a certain class of 

infinite posets and has been able to show that in the infinite case, there are counter-

examples to the 1/3 - 2/3 conjecture. These ideas will be examined in more detail in the 

following sections. 

4.2 THE 3111 - 8!11 THEOREM 

One of the first major breakthroughs in the efforts to prove the 1/3 - 2/3 conjecture 

is the following result shown by Kahn and Saks in 1984 [KS]. 

Theorem 4.2.1. Every finite partially ordered set (X,<) which is not totally ordered 

contains a pair x,y € Xsuch that 3/11 <p(x<y) <8/11. 

The key to Kahn's and Saks' proof of this theorem is in considering the "average 

height" of an element over all linear extensions of the poset. In order to define the average 

height of an element x in X, two other definitions must first be made. Let P = (X, <)be a 

partially ordered set, and as before let E(P) be the set of linear extensions of P and let e(P) 

= I E(P) I. For a given L € E(P) define a functionf from X to the natural numbers by 1(x) 
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= k if x is at height k in L, that is, if there are exactly k - 1 elements of Xbelow x in L. 

Now let p(ft) = k) represent the proportion of linear extensions of P in which x is at 

height k Mathematically, this can be stated as 

e(P Lf(x)=k)  
p(J(  

e(P) 

Finally, the average height h(x) of an element x in a poset P of size n is defined as follows: 

j 
h(x) = kp(fl:x)=k). k=1 

This definition allows the critical theorem in Kahn's and Saks' proof to be stated. 

Theorem 4.2.2. Any pair of elements x and y in X satisfying Ih(y)—h(x)I < 1 also 

satisfies 3/11 <p(x<y) <8/11. 

A complete proof of Theorem 4.2.2 will not be given here, though the main ideas 

Kahn and Saks used to prove this theorem will be briefly outlined. First they let elc(x<y) 

be the number of linear extensions in which Ax)—J(y)=k. Then they proved a series of 

lemmas which describes various relationships amongst the ek(x<y)'s and leads to the 

following lemma. 

Lemma 4.2.3. Let {aj} and {b} where i≥1 be sequences of non—negative real numbers 

which satisfy the following: 

(1) ai=bi; 

(2) aj = 0 aj+1 = 0, b = 0 b+j = 0, if i> 1; 

(3) ai—I b=1; 
i≥1 i≥1 

(4) a2+b2≤al+bl; 

(5) aj≤aj+1+aj...1; 

(6) aj≥aj+laj_1; 
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(7) ia+ib<l. 
i≥1 i≥1 

Then I b>3/l1. 
i≥1 

Kahn and Saks then let x, y be a pair of incomparable elements satisfying 

h(y) —h(x) I < 1 and let ak and bk be defined by the following equations: 

ek(x<y)  aj—  fork≥1, 
e(P) 

bk _e(x<y) for k≥1.' 
e(P) 

It can be shown that {ak} and {bk} satisfy (1) - (7). Now p(x<y) = Ek≥1 b,> 3/11 by 

Lemma 4.2.2. Similarly it can be shown that p(y < x) > 3/11 so we get 

3/11 <p(xzy) <8/11. 

Then it remains to show that every partially ordered set that is not a chain contains a 

pair (x, y) such that Ih(x) - h(y)I <1, since this in turn will imply 3/11 <p(x<y) <8/11. 

Let {1, 2, ..., n} represent the elements of X where IXi = n. Then 1 ≤ h(j) ≤ n where 

jE { 1, ..., n}. In the worst case these elements will be evenly spaced one unit apart across 

the interval [1, n}, in which case (X,<) must be a chain. Otherwise there must be two 

elements i and  that are closer together than one unit. Then Ih(i) - h(7)1 < 1 as required. 

Thus it has been shown that for every finite poset (X,<) that is not a chain, there are 

distinct elements x and  in X such that 3/11 <p(x<y) <8/11. 
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4.3 CASES WHERE THE 113 - 213 CONJECTURE HAS BEEN PROVED 

Since thus far no proof has been found to improve upon the 3/11 - 8/11 bound for 

all finite posets, efforts have been concentrated on trying to prove the 1/3 - 2/3 conjecture 

for special classes of partially ordered sets. A number of such results have emerged, thus 

strengthening the belief that the 1/3 - 2/3 conjecture holds for all finite posets. These 

results will be examined in this section. 

The earliest special case for which the 1/3 - 2/3 conjecture was shown to be valid 

was for the case of a partial order which can be covered by two chains (or equivalently, a 

partial order of width two) [Li]. Let P--(X,<) be a poset consisting of two chains 

A = (al > a2> ... > am) and B = (bi > b2> ... > b1) along with some relations between 

the elements of A and B. We sketch the proof of Linial to show that there exist distinct 

elements x andy in X such that 1/3 ≤ p(x<y) ≤ 2/3. 

Before the main theorem can be proved, a few definitions, assumptions and a 

lemma must be introduced. Assume that the 1/3 - 2/3 conjecture fails for P. Without loss 

of generality it can be assumed that at and bi are unrelated since otherwise one of these 

would be a maximal element and would occur in the top position in each linear extension 

and thus could be disregarded. Also without loss of generality it can be assumed that 

p(ai>bi) ≤ 1/3. Now define a sequence {qi, ..., qj} as follows. 

q1 =p(al> b1), 

q1=p(b...1>ai>b) Vi such that 2≤i≤n, 

q+i =p(b,> at). 

Lemma 4.3.1. The set {q, ..., q+i} satisfies the following: 
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n+1 

a) 
1=1 

b) lI3≥q≥ ... ≥q +i≥O. 

Proof. a) Clearly every linear extension of P is accounted for in exactly one of the qi's, 

so the sum of all these probabilities must be 1. 

b) It needs to be shown that qj ≥ qj+i for every iE {1, ..., n}. Consider a linear 

extension satisfying b1> al > b+1, an event which occurs with probability q1+i. Since al 

is the maximal element in A, there can be no elements between b1 and at in this linear 

extension, and al and bi must be unrelated. Thus al and bi can-be interchanged to produce 

another linear extension of P. This linear extension will satisfy b1_1 > at> b1, an event 

occurring with probability q1. The interchange of al and bi forms an injection from the 

linear extensions satisfying the event having probability qj+1 to those satisfying the event 

having probability q1. Therefore qj ≥ q+i. 0 

Theorem 4.3.2. If P is h, partially ordered set which can be covered by two chains, then 

there exist elements x and y in X such that 1/3 ≤ p(x<y) ≤ 2/3. 

Proof. Let r be an integer such that: 

Then 

p(a1>br_i) = qj ≤ 

This implies that p(ai<br_i) < 1/3 by the initial assumption, which in turn implies that 

p(ai>br_i) > 2/3. Similarly, 

p(a1>br)= qj 
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Again by the initial assumption, p(ai<br) > 2/3. Thus we get that p(br<ai<br_i) > 1/3. 

Thus q,.> 1/3 which contradicts the assumption that 1/3 ≥ q, so the 1/3 - 2/3 conjecture 

must hold for P. 0 

This simple proof for posets of width two was followed up quite recently with a 

much more complex proof by Brightwell and Wright that the 1/3 - 2/3 conjecture holds for 

all k—thin posets with k ≤ 5. [BrW]. By assuming that (X,<) is a 5-thin poset for which 

the 1/3 - 2/3 conjecture fails, they were able to limit themselves without loss of generality 

to 5-thin posets possessing some additional specific characteristics. They then showed that 

if a finite list of posets can be found such that every 5-thin poset that need be considered 

bears a certain relation to one of the posets on the finite list, then every 5-thin poset must 

satisfy the 1/3 - 2/3 cànjecture. By using a computer, Brightwell and Wright were able to 

produce a finite list of posets possessing the desired characteristics, and thus prove the 

1/3 - 2/3 conjecture for 5-thin posets. 

Series parallel posets are another group of partial orders for which the 1/3 - 2/3 

conjecture has been verified. Recall that series parallel posets were defined in Section 2.5. 

Steiner [Sr] is responsible for the proof of the 1/3 - 2/3 conjecture for these posets, the idea 

of which is as follows. If one goes back early enough in the building process of a series 

parallel poset P, a subposet P1 consisting only of two chains can be found. This will occur 

just after the first parallel composition is performed. According to the previous proof for 

posets that can be covered by two chains, P1 has a pair x,y such that 1/3 ≤ p(x<y) ≤ 2/3. 

After performing a series composition with some P2 to form a poset P, it is found that 

p(x<y) in P1 is equal to p(x<y) in P. Similarly, a parallel composition of P1 with some P2 

will preserve p(x<y). Thus every such poset P will have a pair (x, y) satisfying the 1/3 - 

2/3 conjecture, unless there are no parallel compositions performed in the formation of F, 

in which case P must be a chain. 
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One further case for which the 1/3 - 2/3 conjecture has been proved is the class of 

posets having a non-trivial automorphism [GHP]. Let P=(X,<) be a poset having a non-

trivial automorphism a and assume that the 1/3 - 2/3 conjecture fails for P. Let P be the 

poset produced when a is applied to P. Thus P and P differ only in their labéllings. Since 

a is an automorphism, p(x<y) = p(a(x)<(x(y)) for every x, y E X. Let x<oy if and only if 

p(x<y)>2/3. It can be shown than <o is a total order on X, and thus is a linear extension of 

P. Then <o must also be a linear extension of P, and P and P must be identical since 

otherwise there will exist x, y € X such that x<oy but a(y) <o a(x). This contradicts the 

assumption that a is a non-trivial automorphism, so no poset P exists such that P contains 

a non-trivial automorphism and the 1/3 - 2/3 conjecture fails. This particular class of 

posets will be examined again in Section 4.6. 

Recently it has also been shown that the 1/3 - 2/3' conjecture holds for semiorders 

[Br4], and for height-1 posets [TGF]. These two proofs will be given in detail in the next 

two sections. The existence of all these classes of posets for which the 1/3 - 2/3 conjecture 

is satisfied further strengthens the belief that the 1/3 - 2/3 conjecture must hold for all finite 

posets. 

4.4 THE 1/3 - 2/3 CONJECTURE FOR SEMIORDERS 

Brightwell addressed the problem of proving the 1/3 - 2/3 conjecture for 

semiorders in both the finite and infinite cases. He was able to show that the 1/3 - 2/3 

conjecture holds for all finite semiorders and certain classes of infinite semiorders [Br4]. 

He also produced a list of infinite semiorders for which the 1/3 - 2/3 conjecture fails, and 

conjectured that 0 such semiorders are linear sums of those on his list. In this section, the 
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proof for the finite case will be given, while the infinite case will be dealt with in section 

4.7. 

A semiorder is defined to be a poset (X,<) such that for every a, b, c, d €X, 

a) if a<b and c<d then either a<d orc<b (or both); 

b) if a<b and b<c then either a<d or d<c (or both). 

Requirement a) implies that (X,<) doesn't contain the poset in Figure 4.4. la as a subposet, 

and b) implies that (X,<) doesn't contain the poset in Figure 4.4. lb as a subposet. 

b Id 

a c 

C41 

b 

a 

a) b) 

Figure 4.4.1 

Let (X,<) be a finite poset and let x, y be incomparable elements in X. It is said 

that zE Xis good for x<y if either: a) x <z I y or b) x I z<y. In other words, an element z 

is good for a pair x<y if it tends to encourage x to lie below y in a linear extension of the 

partially ordered set. 

Lemma 4.4.1. A finite partial order is a semiorder if and only if for every x, y € X there 

are never z, w € X such that z is good for x<y and w is good for y<x. 

Proof. To prove the forward direction, assume that (X,<) is a semiorder and that there is 

an element z good for x<y and an element w good for y<x. Since there are two possible 

situations when an element is good for a pair, we end up with four possible cases. When 

x<z I y and y<w Ix or when x I z<y and y I w<x; x, y, z and w form a subposet consisting 

of two 2-element chains, as in Figure 4.4. la. Similarly, when x<z I y and y I w<x or when 
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X I z<y and y<w I x; x, y, z and w form a subposet consisting of a three element chain plus 

an isolated point as in Figure 4.4.lb. Thus each case produces a contradiction to the 

assumption that we are dealing with a semiorder. In the opposite direction, if (X, <)is not 

a semiorder then it contains a subposet which consists of either two 2-element chains or a 

3-element chain plus an isolated point. Each of these posets contains a set of elements x, y, 

z and w such that w is good for y<x and z is good for x<y. 0 

From this point on, it will be assumed that (X,<) is a finite poset and that (X,<) 

does not satisfy the 1/3 - 2/3 conjecture. An order <o is defined on X by letting x<oy if 

p(x<y)>1J2. It is claimed that <o defines a total order on (X,<). This order can be easily 

seen to be irreflexive and total. To see that <o is transitive, recall that the 1/3 - 2/3 

conjecture is assumed to fail for (X,<). If x, y, z € X such that p(x<y)>1/2 and 

p(y<z)>1/2 then it must be true that p(x<y)>2/3 and p(y<z)>2/3. This implies that 

p(x<y<z)>113 which in turn implies that p(x<z)>1/3 and thus p(x<z)>1/2, as required for 

transitivity. 

Given this definition for <o the following theorem will be proved. 

Theorem 4.4.2. Let (X,<) be a finite poset which does not satisfy the 1/3 - 2/3 

conjecture. Then for every x, y E X such that x<y and x  y in (X,<z), either: 

a) There are at least two elements of X good for x<y, or 

b) There is an element z of X good for x<y such that x<oz<oy. 

Proof. Fix x, y € X such that x <0 y and x I y. Let A be the set of all linear extensions of 

(X,<). Given a linear extension A E: A, let <X represent the ordering of A. Now partition 

the elements of A into the following classes: 

Al = {AEAIy<x}; 

A2 = {AEAIxczy and A with x and y interchanged is also in A}; 
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A3 = {,NE Al x<xy and X with x and  interchanged is not in A}. 

It can be easily seen that A3 can be rewritten as follows: 

A3 = {XE A I x<y and there exists zEX such that x<xz<y and either x<z 

orz<zy}. 

Note that any z which satisfies the requirement in A3 will also be good for x<y. Now let 

p(A) represent the probability that a given linear extension is an element of A. Then p(A2) 

≤ p(Ai) since every element in A2 corresponds to a unique element in Aj. However, p(A1) 

= p(yczx) <1/3 so p(A2) must also be less than 1/3. Since the sum of p(A), p(A2), and 

p(A3) is 1, then p(A3)>1/3 which in turn implies that A3 is non-empty and thus that there is 

at least one zEX that is good for x<y. Now there are two possibilities: either there is 

exactly one element z of X good for x<y or there are at least two elements of X good for 

x<y. The latter case gives situation a). The former case implies that for every N  A3 then 

x<z<y. This implies that p(x<z<y) > 1/3, so p(xczz) and p(z<y) must be both greater 

than 1/3 which in turn implies they are both greater than 1/2 by the assumption that the 1/3 

- 2/3 conjecture fails. Thus x<oz<oy as in situation b). 0 

The following lemma is proved by showing that when the poset in Theorem 4.4.2 

is restricted to a finite semiorder, only situation a) can hold. 

Lemma 4.4.3. If (X,<) is a finite semiorder that does not satisfy the 1/3 - 2/3 

conjecture, then for every x, y E X such that x<oy and x I y in (X,<), there are at least two 

elements of X good for x<y. 

Proof. Assume that situation b) in Theorem 4.4.2 holds. In other words, assume that 

there are elements x, y and z of X such that x I y, z is good for x<y, and x<oz<oy. Then 

either x<z I y or x I z<y. In the former case, x is good for y<z. However, Theorem 4.4.2 

along with the assumption that z<oy implies that there is a w € X good for z<y which 
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contradicts Lemma 4.4.1. Similarly in the latter case, y is good for z<x but x<oz implies 

that there exists a w good for x<z. Again there is a contradiction to Lemma 4.4.1. Thus 

situation b) cannot hold for a finite semiorder, and the lemma follows directly. 0 

Now a few generalizations need to be made and an additional two lemmas shown 

before proving that every finite non-chain semiorder (X,<) satisfies the 1/3 - 2/3 

conjecture. 

Let (X,<) be a finite semiorder that is not a chain. Without loss of generality 

several assumptions can be made about the structure of (X,<). Firstly, it may be assumed 

that (X,<) is irreducible, since if the 1/3 - 2/3 conjecture fails for a poset then it fails for 

each of that poset's irreducible parts. To see this, consider a poset P for which the 

1/3 - 2/3 conjecture fails and which is the linear sum of two posets, P and P". Then 

every unrelated pair of elements x and y in P (and thus every pair in F') has either 

p(x<y) <1/3 or p(x<y) > 2/3 in P. Since P is the linear sum of F' and F", any linear 

extension of P is simply a linear extension of F' with a linear extension of F" adjoined. 

Thus for every unrelated pair x, y € P, p(x<y) in P is equal to p(x<y) in F', so the 1/3 - 

2/3 conjecture must also fail for P. It can be concluded that only irreducible semkirders 

need be considered. 

Secondly, it may be assumed that X has at least 2 elements since (X,<) is not a 

chain. 

Thirdly the assumption can be made that (X,<z) has at least two minimal and two 

maximal elements. If (X,<) has only one maximal element z, then it is the linear sum of z 

and (X, <)\z, and thus is not irreducible, contradicting our first generalization. Similarly, 

(X, <) must have more than one minimal element. 
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Now the elements can be ordered as {xl, ..., X,} where xi<oxj whenever i<j. The 

following lemma is needed in order to prove the main theorem. 

Lemma 4.4.4. An element of X can only be good for at most two pairs of the form 

Xj<Xj+1 where 1 ≤ i ≤ n—i. 

Proof. Let xk € X where k € { 1, ..., n}. We first show by contradiction that xk can 

only be good for at most one pair Xj<Xj+1 where i<k. Assume that xk is good for Xj<Xj+1 

and xj<xj+1 where i<j<k. Then Xi<Xk I Xi+1 and Xj <Xk I xi+i since <o is a linear extension 

of (X,<). It must be true that Xj ix+i because Xj<Xi+1 implies thatj<i+i which contradicts 

i<j, and Xi+1<Xj implies that Xi+1<Xk which contradicts Xj+1 Ixk. Since Xj<XkIXi+1 and 

x1Ix+i, then xk is good for Xj<Xi+1. However, Xi+1<oj since i<j which implies there is 

an element of X good for Xi+1<Xj by Theorem 4.4.2, which contradicts Lemma 4.4.1. 

Therefore, xk can be good for at most one pair Xi<Xj+1 where izk. Similarly, it can be 

shown that xk is only good for at most one pair Xj<Xj+1 with i >k. Thus x can only be 

good for at most two pairs of form Xj<Xj+1. 0 

Note also that if xk in Lemma 4.4.4 is a maximal element then it can't be good for a 

pair Xj<Xj+1 with i>k. To see this, assume that xk is maximal and good for some Xj<Xj+1 

with i>k. Then either xi I Xk<Xj+1 which implies xk is not maximal or Xi<Xk I Xi+1 which 

implies i<k. Since both of these implications are contradictions, it must be true that xk 

can't be good for a pair XjXj+1 where i>k. Similarly it can be shown that if xk is a 

minimal element, then it can't be good for a pair Xj<Xj+1 with i<k. 

Lemma 4.4.5. If i<j where xi I x1, then there is no element good for Xj<Xj. 

Proof. Let i <j. Then x1<oxj. Since xi ! xj, by Lemma 4.4.3 there is an element z of X 

good for Xj<Xj so by Lemma 4.4.1 there is no element w of X good for Xj<Xj. 0 
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Lemma 4.4.6. Xj and Xj+1 are incomparable for every iE {1, ..., n-1}. 

Proof. It is not possible that Xj+1<Xj because that would imply Xj+1 <OXj , contradicting 

the choice of the sequence {Xj}. Assume now that xj<xj+l. We show that this implies that 

(X,<) is not irreducible. Let A be the set of maximal elements of {Xj+1, ..., X,} with 

respect to the order relation <, and let set B be the set of minimal elements of 

{Xj+1, ...,X}, also with respect to <. Let xaEA and xbEB, and note that a≤i and i+1≤b. 

It will be shown that Xa<Xb by considering four cases. 

Case i) Assume that a=i and bfti+ 1. Then xj, I Xj+1 since both are minimal elements 

of {Xj+j, ..., }. Next we show that Xc'cb. If Xb<Xi then Xb<Xe<Xj+l which contradicts 

Xl, I Xj+ . If Xl, 1.i , then Xj is good for xl,< x1+ 1. However, i+ 1 <b so Lemma 4.4.5 is 

contradicted. Thus it must be true that Xi<Xb. Since i=a, then Xa<Xb. 

Case ii) Assume that a'i and b=i+1. The argument is similar to that for case i) so 

will not be repeated here. 

Case iii) Assume that a—i and b=i+1. By the assumption that Xj<Xj+1, we have 

Xa<Xb. 

Case iv) Assume that a:?1i and b:?1i+1. We will show that Xa<Xb. Note that Xa I Xi 

and Xb I Xj+1. Xb<Xa cannot occur since a<b implies Xa<fJXb and <o is a linear extension of 

<. Now assume that Xa Ixj,. By case ii) xa<Xj+1, so Xa must be good for Xb<Xj+1. 

However i+ 1 <b, so Lemma 4.4.5 is again contradicted. Thus Xa and Xb must be related. 

Therefore Xa<Xb. 

The above four cases show that Xa<Xb is always true. Thus every maximal element 

in {xi, ..., x} is less than every minimal element in {Xj+1, ..., x,,}, which implies that 
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(X,<) is the linear sum of {xl, ..., xi} and {Xj+1, ..., x,} and produces a contradiction to 

the assumption that (X,<) is irreducible. 0 

Finally the main theorem can be stated and proved. 

Theorem 4.4.7. Let (X,<) be a semiorder that is not a chain. Then there exist 

incomparable elements x and y in X such that 1/3 ≤ p(x<y) ≤ 2/3. 

Proof. The proof of this theorem is by a simple combinatorial argument. There are n—i 

pairs of the form (xi, Xj+j) in the set {xl, ..., X}. Since each pair is unrelated by the 

previous .lemma, there must be at least 2 elements good for each such pair (xi, Xj+j) by 

Lemma 4.4.3. Thus there must be at least 2n-2 instances in which an element is good for a 

pair. By Lemma 4.4.4 each element in X can be good in at most 2 instances, with the 

exception of maximal and minimal elements which are at most good in one less instance 

than the nonmaximal nonmithmal elements. Since there are at least 2 maximal and 2 

minimal elements in X, then elements of  are good in at most 2n-4 instances. Evidently 

such a poset cannot exist, so one can conclude that there is no finite non-chain semiorder 

for which the 1/3 - 2/3 conjecture fails. U 

It should be noted that Brightwell proved Theorem 4.4.2 and Lemma 4.4.3 for the 

larger class of finitely generated, thin (possibley infinite) posets. As we are concerned with 

the finite case, the proofs presented are simplifications of his approach. 

4.5 THE 113 - 2!3 CONJECTURE FOR HEIGHT-1 POSETS 

Trotter, Gehrlein, and Fishburn [TGF] proved that the 1/3 - 2/3 conjecture holds 

for all partially ordered sets of height one. The proof breaks into several parts since the 
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height-1 posets must be partitioned into four different classes which each must be handled 

separately. In this section, the proof for only one of the classes will be given. However, 

this particular case deals with all but finitely. many of the height-1 posets, so is the case of 

most interest. A brief description of the idea behind the other three cases will be given at 

the end of this section. 

Firstly, a few basic definitions need to be made. A height-1 poset is a partially 

ordered set whose longest chain has length 1. The vertices of a height-1 poset (X,<) can 

be partitioned into three sets. Let X0 be the set of all nonmaximal minimal points in X, and 

let X1 be the set of all nonminimal maximal points in X. The remaining points are the 

isolated points, and these fall into the third set. Let no = IXoI, ni = IXil and n = IX]. 

At this point the main theorem will be stated, and then certain restrictions can be 

made without loss of generality on the properties of (X,<). 

Theorem 4.5.1. Let (X,<) be a height-1 partially ordered set that is not a chain. Then 

there are elements x and  in X such that 1/3 ≤ p(x<y) ≤ 2/3. 

Now assume that (X,<) is a partially ordered set for which the 1/3 - 2/3 conjecture 

fails. Without loss of generality, three things can be said about (X,<). Firstly; it can be 

assumed that (X,<) has no isolated points. Assume for a contradiction that P = (X,<z) has 

some isolated point z. Then for every pair x, y in X and hence for every x, y in X—z either 

p(x<yIP) < 1/3 or p(x<yIP) > 2/3. Since z is an isolated point, it occurs in each position 

equally often in the set of linear extensions of (X,<) and so p(x<yIP) = p(x<yIP—z). Thus 

for every pair x, y in X—z, either P(x<yIP—z) < 1/3 or P(x<yIP—z) > 2/3 and so the 

1/3 - 2/3 conjecture fails for P—z also. Thus only posets containing no isolated points 

need be considered. Note that this implies that n = no + ni. 
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It can also be assumed that n≥3. The only posets with fewer than three vertices are 

the one and two element chains and the poset consisting of two isolated points which by the 

previous paragraph need not be considered. Since chains are excluded from Theorem 

4.5.1, one can assume without loss of generality that n≥3. 

Thirdly, assume that nl≥no. If (X,<) is a poset for which the 1/3 - 2/3 conjecture 

fails, then the dual of (X,<) ((X,<) turned upside down), will not satisfy the 1/3 - 2/3 

conjecture either since p(x<zy) in P will equal p(x>y) in the dual of P. 

Now several further definitions can be made. Let fL'represent the set of all height-i 

posets such that n≥3, n = no+ni and nl≥no. Given a poset PET and a linear extension 

LEE(P), consider the function fon Xi which gives the "height" of x E X1 in L as defined 

in Section 4.2. Then let t = p(l(x) = n), which is the probability that x is in the maximal 

position of a given linear extension. Note that p(Ax) = 1) = 0 since xEX1 implies x is 

above at least one element in F, and thus can never occur in the minimal position in a linear 

extension of P. This implies that the "average height" of x as defined in Section 4.2 can be 

rewritten as follows: 

h(x) = kp(tx)=k). 

h(x) represents the average height of x taken over all the linear extensions of P. Finally, let 

Nbe the following set of pairs: 

N = {(8,8), (7,7), ..., (2,2)} U {(7,6), (6,5), ..., (2,1)}. 

The following theorem will be proved in this section: 

Theorem 4.5.2. Let FE fPsuch that (n 1, nØ) N. Then there exist distinct elements x 

and y in X1 such that 1/3 ≤ p(x<y) ≤ 2/3. 
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The desired result will be reached by 'verifying a series of relationships which will be 

grouped together as a sequence of lemmas and theorems. 

Lemma 4.5.3. a) t = p(gx)=n) ≥ p(Ax)=n-1) ≥ ... ≥ p(x) = 2); 

b) p(Ax)=n) -1-p((x)=n1) + ... +p(f(x)2) = 1; 
C) t≥-11-; 

d) 

e) 

Proof, a) To show this relationship it needs to be shown that p(Ax) = k) ≥ p(AX) = k—i) 

for every k E {3, ..., n}. Let L be a linear extension of P in which x is at height k—l. Let 

y' be the element directly above x in L. Elements x and y can be interchanged to produce 

another linear extension of P (if not, then it must be true that y>x which contradicts the fact 

that xEXi), which will have x at height k. This produces an injective mapping from the 

elements with fix) = k—i to the elements with Ax) = k which implies that E(P IJ(x)=k) ≥ 

E(P I fix) = k— 1) and finally that p(Ax)=k) ≥ p(Ax)=k-1). 

b) The left side of this equation sums the probabilities that a given xEX1 is at each 

of the possible heights, and must equal 1 since x is at some height in each linear extension. 

c) Using a) and b) the following is obtained: 

(n-1)t = (n—i)p(fix)=n) 

= p(f(x)=n) + p(Ax)=n) + ... + p(gx)=n) 

≥ p(f(x)=n) + p(Ax)=n-1) + ... + p(/(x)=2) 

=1. 

Thus c) holds as required. 
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d) h(x) 

= k=2 

k=2 k(-1T). 

This last inequality is true since given the constraints imposed by a) and b) on the 

p(Ax)=k) 's, h(x) will be minimized when the p(Ax)=k) 's are all equal to one another. 

Since there are n—i of them and they have a sum of 1, this will happen when p(j(x)—k) = 

lI(n-1) for all k € {2, ..., n}. Performing the summation, the following is arrived at: 

h(x) ≥ (n(n;1)  
= 1 
2 

e) Let q = [11t7J. and let a be the remainder when 1 is divided by t. Then 

qtx + a = 1 where 0 ≤ a <ti. In this section the aim is to find an upper bound on h(x). 

As before, h(x) = yn kp(f(x)=k). To maximize h(x) subject to a) and b), it is necessary 

to distribute as much of the probability as possible to the p(Ax)=k)'s with k large and as 

little as possible to those with k small. Since p(ft)=n) = t, maximization of h(x) will 

occur when p(f(x)=n-1) = t, p(Ax)=n-2) = t, ..., until q ti's have been distributed. The 

next p(Ax)=k) will equal the remainder a, and the remaining p(l(x)—k) 's will equal 0. Thus 

the following is produced: 

h(x) = np(Ax)=n) + (n-1)p(Ax)=n-1) + ... + 2p(Ax)=2) 

≤ nt + (n-1)t + ... + (n—(q-1))t + (n—q)a 

= [n + (n—i) + (n-2) + ... + (n—(q-1))]t + (n—q)(1—qt) 

= 

= 

2 2t 

Thus the desired inequality in e) is arrived at. 0 

< 
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Several more definitions must be made before proceeding. Let x and y be distinct 

elements of X1. Let B = p(x<y). Let b = p(9y)—J(x)=1). Note that b = p(/(x)—fiy)=1) 

also since there is a bijection from the linear extensions in which y is immediately above x 

to the linear extensions in which y is immediately below x. Let ak = p(Ax)—f(y)=k) and let 

bk = p((y)—f(x)=k) for all k≥1. Note that the four following relations follow almost 

directly from these definitions: 
u-i 

B=p(x<y)bk; 
k=l 
n-i 

1—B=p(y<x)= E ak; 

k=1 

n-i 

h(x) - h(y) = I k(aj - bk). 

(4.5.1) 

(4.5.2) 

(4.5.3) 

(4.5.4) 
k=1 

Given the above set of definitions, another series of relationships can be proved, which 

will again be grouped together as a lemma. 

Lemma 4.5.4. 

a) 

b) k b ≥ k b)i-1 V k E {1, ..., n-1}; 

00 
c) j+ b)i-I B 

d) h(x) - h(y)> 1-2B2• 

Proof. a) In order to prove this inequality, it needs to be shown that p(Ax)—J(y)=k) ≥ 

p(Ax)—J(y)=k+1) for every kE {1, ..., n-2}. Consider a linear extension in which 

Ax)-J(y)=k+1. Interchanging y with the element immediately above it, say z, produces 
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another linear extension of (X,<) (if not, then z>y which contradicts yEXi) with 

Ax)-J(y)=k. Thus there is an injection from the linear extensions withfi:x)-fly)=k+l to the 

linear extensions with Ax)-f(y)=k, and so p(J(x)-J(y)=k) ≥ p(f(x)-J(y)=k+l) as required. 

b) The proof of this inequality comes from a paper by Kahn and Saks [KS]. It 

relies upon the following relation which will not be verified here but which is derived using 

a method of Stanley's [Sy3]: 

for i≥2. 

As an aside, any sequence {b} of positive real numbers satisfying the above inequality is 

called log concave. This inequality will be used in the following form: 

_?i_≥i±i for i≥2. 
b_1 b 

(4.5.5) 

Now for simplicity, let Yi = b(l-b/B) -l. Verifying inequality b) thenamounts to showing 

that 
k k 

b≥b1' VkE(1,...,n-1}. 
i=l i=l 

(4.5.6) 

(4.5.6) says that the sequence {b} inajorizes sequence M. By using the formula for the 

infinite sum of a geometric series, the following can be verified: 
00 

Yi = B. 
i=1 

Now let h be the least integer such that bh<b'h. Note that h>1 since b1 = b'1= b. 

Then bh_1 ≥ b'h.l and the following sequence is derived: 

  b'h  

bh_1 b'h_1 B 

Combining (4.5.5) and (4.5.7) we obtain 

-AL ≤ l._ k for all i≥h. 
bj.j B 

(4.5.7) 
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Ifj<h, then b≥b'j. Ifj≥h, 

b = bh.(1'hz+l). (b;z+2). bj 

bh b,+i 

≤bh 1-k.(1_k. 
B\ B ibi) 

<b'h 1—-
B 

= b- (1 - 1 
B) B! 

Now to show (4.5.6), consider the following two cases. 

Case i) Let k<h. Then it follows directly that 

bl+b2+ ... +bk≥b'l +b'2+ ... +b'asrequired. 

Case ii) Let k≥h. 

b1+b2+... bk B(bk+1+ ... +bn_1) 

≥ B - (b'k+l + b'k+2 + ... + b'_i) 

≥ B - (b'k+1 + b'k+2 + ... + b',_j. + 

=b'1+b'2+ --- +b'k. 

Thus (4.5.6) has been verified, so b) holds as required. 

c) It is well known that 
00 

Taking the derivative of both sides gives 
00 

k-1.. 1  

k=1 (1—x (4.5.8) 

Letting x = 1—b/B, substituting into (4.5.8) and simplifying produces identity c) as 

required. 
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d) From (4.5.4) we get 
n-i 

h(x)-h(y)= kaj - kbj. 
k=l 

This implies 
n-i n-i 

h(x)-h(y)≥min kak -max  kk), 

k=1 k=i 

where the minimum is taken over all sequences of n-i real numbers {a} having a sum of 

i-B with b = al ≥ a2 ≥ ... ≥ an-1 ≥ 0, and the maximum is taken over all sequences of n-i 

real numbers {b} having a sum of B and satisfying 

b≥ 
i=1 i=l 

Vk€{1,...,n-1}. 

Now it needs to be determined for which values of ak the first sum is minimized, and for 

which values of bk the second sum is maximized. Note that 

n-i 

kak = a1 + 2a2 + ... + (n-1)a_i. 
k=l 

(4.5.9) 

Given the restrictions on the aj's, it can be seen that the above sum is minimized when al is 

made as large as possible, then a2 as large as possible, etc., until 1-B is exhausted. It is 

known that at = b, so the largest that a2 can be is b, and the largest a3 can be is b, until 1-B 

is used up. Let r= [(1-B)/bj, the integer porti6n of the quotient when 1-B is divided by b. 

Then let z be the remainder when 1-B is divided by b. Thus br + z = 1 - B. Note that 

from this, the following are obtained: 

(4.5.10) 

(4.5.11) 

In conclusion, sum (4.5.9) will be minimized when the first al, ..., ar are equal to b, ar+1 = 

z, and all other aj's equal 0. 

Now consider the second sum 
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n-i 

kbk=bl+2b2+... +(ñ—l)bn_i. 
k=1 

The be's have the fixed sum B, so this sum is maximized when bn1 is made as large as 

possible, then bn2 is as large as possible, etc.,. until B is exhausted. This is equivalent to 

minimizing b1, then b2, etc., which is the same as minimizing the partial sums b1, bi + 

bi + b2 + b3 , ..., b + 1,2 + ... + ba_i. However, from b) it is known that the partial sums 

are minimized when bi = b(1_bIB)1—1, and thus this will also maximize Yk=ll kbi. 

Combining these ideas gives 

h(x) - h(y) ≥ kb + (r + 1)z - k+ -  

> br(r+ 1)  + (r + 1)(1 - B - rb) - (using (4.5.8)) 

=r(1_B_th 2 ._k- 2) \+ 1—B—s 
h 

>( 1—B l).(l_B__(l_8il+ 
22)J 1, 

(from (4.5. 10) and (4.5.11)). 

(1_B)2 bB2 

2h 2 h 
>(1B)2 B2 

2h h 
1-211—B2 

2h 

Thus the required identity has been verified, and so the fnYal part of Lemma 4.5.4 is 

complete. 0 

Lemma 4.5.5. Let x, y EXi. If h(x) ≥ h(y) and b[h(x) - h(y)] ≤ 1/9, then 1/3 <p(x<y) 

<2/3. 

Proof. The proof of this lemma is divided into two sections. First it will be shown that if 

h(x) ≥ h(y), then p(x<y) <2/3. 
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Assume h(y) ≥ h(x). This implies that h(x) - h(y) ≤ 0, so by Lemma 4.5.4d, we 

have 

1-2B—B2  
<0 

2b 

=B2+2B-1>O 

=[B+('2+ 1)]•[B — (/2-1)]>o 

=*p(x<y)>V2_l. 

Thus h(y) ≥ h(x) implies that p(x<y) > /2T - 1. Interchanging x and  gives: 

h(x)≥hy)=*p(y<x)> 12_l 

- 

This completes the first part of the lemma. Now for the second part, it will be 

shown that if b[h(x) - h(y)] ≤ 1/9 then p(x<y) > 1/3. Assume b[h(x) - h(y)] ≤ 1/9. 

Multiplying both sides of Lemma 4.5.4d by b gives 

1-2B —B2 
b[h(x) 2 

Combining the two equations gives: 

j > 1-2B—B  
9 2 

=B 2+2B—->0 

(B + i 3) (B — 13) > 0 

Thus the second part of the lemma has been verified, and combining the two portions gives 

the desired result. 0 
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A few further definitions must be made. Let m = ni, for convenience. Also let X1 

= { 1, 2, ..., m} and recalling Lemma 4.5.3c suppose without loss of generality 

1  ≤tl≤t2≤... ≤tm . 
n—i 

Let k be a fixed element in {2, 3, ..., m}. 

Lemma 4.5.6. For any k there exist distinct integers i, j ≤ k such that h(i) ≥ h(j) and 
h(i)_h(j)≤(hi_l)t1c_l 

2tk(k—i) 

Proof. First it will be shown that: 

h(l), h(2), ..., h(k) € + i, n + 2 2 ••t—kl' 

The lower bound on the h(i)'s follows directly from Lemma 4.5.3d. The upper bound 

follows from Lemma 4.5.3e and the fact that ti ≤ tk for all i such that 1 ≤ i ≤ k. 

The h(i), ..., h(k) are all in the above interval, so the question becomes, how close 

together must at least two of the h(i)'s be? In the worst case, the h(i)'s will be spaced 

evenly across the interval, so the distance between any two adjoining h(i)'s will be the 

length of the interval divided by the number of subintervals, which is: 

n+ _L\  
2tkl k2  
k — i 

Then in any case, there must be some adjacent pair h(i), h(j) with h(i) ≥ h(j) such that 

h(i) - h(j) ≤ 2 2tk '2  
k—i 

- (n -  i)tk - 1 
- 2tk(k-1) 0 

This lemma can now be strengthened to produce the following result. 

Lemma 4.5.7. There exist distinct elements x and y in X1 such that h(x) ≥ h(y) and 



79 

b[h(x) - h(y)] ≤ n - m - 1  
m(m — l) 

Proof. First it will be shown that for the values of i and  from Lemma 4.5.6, and for any 

k with 1 ≤ k ≤ m, b ≤tk. By the initial definition, b = p((i)—J(7) = 1). It will be shown 

that p(/(i)—fij') = 1) ≤ p(Ai)=n). Consider a linear extension in which Ai)-J(j) = 1. Note 

that i is immediately above j in this extension. It can be easily seen that another linear 

extension will be formed if i is moved to the top position, and this new linear extension will 

havej(i) = n. In this manner an injection is formed from the extensions with f(i)-J(j) = 1 to 

the extensions withf(i) = n. Thus b ≤ ti as required and t ≤ tk implies that b ≤ tk. 

Now consider the value of k which minimizes the quantity ((n - l)tk - 1) 

I (2tk(k-1)). By Lemma 4.5.6 there exist integers i,j ≤k such that h(i) - h(J) is less than or 

equal to this quantity and such that h(i) ≥ h(j). In general it can be said that there' exist x, y 

€ X1 such that h(x) ≥ h(y) and 

h(x) - h(y) ≤ min •(n - l)tk - 1  
2≤k≤m 2tk(k— 1) 

Using the fact that b≤tk, the previous inequality implies 

•(n b[h(x)—h(y)]≤ mm —l)tk-1  
2-<k-<m 2(k —1) 

Let 
Z= min I(n - l)tk - 1  

2≤k≤m 2(k —1) ) 
Now the aim is to find the maximum possible value of Z over all combinations of the ti's. 

Since the ti's have a fixed sum of 1, Z must be a maximum when ((n - l)t,-1)/(2(k-1)) is 

the same for all values of k. If there were a k for which the corresponding quantity was 

smaller than the others, then increasing tk and decreasing the other ti's would consequently 

increase Z. Thus for Z to be a maximum 

1 v k€(2, 3, ..., m). 
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This can be rewritten as 

2(k— i)z= (n— l)tk— 1 V k€(2, 3,..., in) 

Summing over all values of k gives 

2(k— 1)Z= ii ((- l)tk— 1) 
k=2  

=*Z(rn_i)m(n_i)(1_t)-(rn-1) 

_(n —1)(1—ti)—(tn-1)  
(M-1)m 

(n_i1_ u i) (rn—i) 
< 

(rn-1)m 

n-rn-1 

Thus it can be concluded that there exists an x and y in XI such that h(x) ≥ h(y) and 

b{h(x)-h(y)]≤ n-  tn- I 
in (rn - i) 

Proof of Theorem 4.5.2. Finally the main theorem can be demonst±ated. Combining 

Lemmas 4.5.5 and 4.5.7 we get that if 

n-rn-1  <1 
m(m-1) 9 (4.5.12) 

then there exist x, y E XI such that 1/3 <p(xczy) <2/3. All that is needed to show is that 

for every pair (ni, no) N(4.5.12) holds, where rn = ni and n = no + 

A brief proof will show that (4.5:12) holds whenever rn ≥ 9. Let m ≥ 9. Recall 

that m ≥ no and m + no = n. Thus n ≤ 2rn. Then as desired, 

n-rn-i  < 2m-m - i 1< 1 
rn(rn - i) m(rn-1) rn9 

The cases remaining are those for which in <9 and (m, no) is not in N. There are 

finitely many of these and (4.5. i2) can be verified individually for each one. 0 
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Thus Theorem 4.5.2, which covers all but finitely many of the posets included in 

Theorem 4.5.1, has been proved. At this point a brief idea of how the remaining cases can 

be proved will be given. 

The second part of the proof covers the cases where (n I, no) = { (8, 8), (7, 7), 

(7, 6), (6, 5)}. By going through part 1 more carefully, an upper bound that is smaller 

than 
n—rn—i  
rn(m-1) 

can be fund on b[h(x) - h(y)] in Lemma 4.5.7. It then remains to verify that this bound is 

less than or equal to 1/9 for the desired (no, ni) pairs. 

The third part of this proof covers the cases where (ni, no) = {(4, 4), (3, 3), (2, 2), 

(5, 4), (4, 3), (3, 2), (2, 1)}. First let Vm be the poset on 2m vertices with rn minimal 

points {li ..., lm}, and in maximal points {ui, ..., um}, such. that lj<Uj if and only if 1 ≤ j. 

Let Vm be V1 plus one isolated point. Define (P) as follows: 

o(P) = max mm {p(x<y), p(y<x)}. 

Showing that the 1/3 - 2/3 conjecture holds for a poset then, is equivalent to showing that 

0(P) ≥ 1/3. Now define 0, and 0(m) as follows: 

bn = mm {0(P): Pis an n-point height-i poset}; 

0(m) = mm {O(P): width of P= m and Phas height 1}. 

Conjecture 4.5.8. 0(m+1) O(V,n) = 0(Vm ). 

Trotter, Gehrlein and Fishburn haveS verified that this conjecture holds for the cases where 

m = 2, 3 and 4. They have also verified that V2, V3, and V4 all have 0(P) ≥ 1/3. These 

two facts confirm that the 1/3 - 2/3 conjecture holds for the desired subset of N. 
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The fourth part of the proof covers the two remaining cases, (6,6) and (5,5), and is 

based on the following lemma. 

Lemma 4.5.9. Let PE £ 

a) If x, yEXi and p(x<y) ≤ 1/3, then x must cover at least two points in X0 that y 

doesn't cover. 

b) If x, yEXo and p(xczy) ≤ 1/3, then y must be covered by at least two points in 

X1 that x isn't covered by. 

The proof of this lemma employs methods similar to many of the proofs in Section 

4.4 on semiorders. Note that conditions a) and b) each imply that there are at least two 

elements good for y<x, where "good" is as defined in Section 4.4. 

To prove cases (6,6) and (5,5) one begins to build a height one poset subject to the 

restrictions imposed by Lemma 4.5.9. It is found that in order to have four vertices in X1, 

at least 6 vertices are required in X0, in order to satisfy Lemma 4.5.9. This automatically 

demonstrates that no such poset with (ni, no) = (5, 5) can exist. By continuing the 

building process, it is found that there are exactly five possibilities for a (6, 6) poset 

satisfying Lemma 4.5.9. It can be shown that for each of these five posets, we can alter 

Lemma 4.5.3d to be h(x) ≥ (n + 2.8)12. Recall that in its original form, Lemma 4.5.3d 

was h(x) ≥ (n + 2)12. Going through part one again with this tighter lower bound on 

reduces the upper bound of b[h(x)—h(y)] sufficiently to admit the case when (ni, no) = 

(6, 6). 
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4.6 CASES PRODUCING BETTER THAN THE 113 - 213 CONJECTURE 

There are special classes of posets for which it has been shown that the f/3 - 2/3 

conjecture can be improved upon. One such case is that of a finite cycle-free ordered set 

containing a non-trivial automorphism of P. Note that a cycle-free poset is any poset not 

haveing the poaset {a<b, b<c, a<d, d<c, .a<c} as a subposet. As was shown in Section 

4.3, any poset containing a non-trivial automorphism satisfies the 1/3 - 2/3 conjecture, and 

in fact, Ganter, Häfner and Poguntke conjecture that this bound can be improved upon 

[GHP]. When this class of posets is further restricted to those which contain no cycles, it 

is found that there is a pair x, y € X such that p(x<y)=1/2. The formal statement of the 

theorem is as follows: 

Theorem 4.6.1. If P--(X,<) is a finite cycle-free ordered set. and a is a non-trivial 

automorphism of P, then p(x<a(x))=1/2 for any xEX with a(x)ox. 

Proof. Only a general description of this proof will be given. Consider the covering 

graph of P, CF. CP is the undirected graph on X with an edge between y and z in X if and 

only if y is a lower or upper cover of z in P. Now partition X into equivalence classes so 

that y is related to z if and only if y—z or there is a path in CF between y and z containing 

no fixed points of a. Let [x] represent the equivalence class containing xEX. Now one 

can show there is a bijection between E(P I x<a(x)) and E(P I a(x)<x), the set of linear 

extensions having x below a(x), and the set of linear extensions having a(x) below x. For 

x<a(x)), letfi(x) be the "height" of x in X as in Section 4.2 and define t(X) as 

follows: 

J((X(Y)) ifyE[x]; 

J((X1(y)) if y  [a(x)]; 

otherwise. 
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It is then demonstrated that I is a bijection which implies E(P I x<(X(x)) = E(P I (x(x)<x) 

and thus p(x<(x(x))=1/2 as desired. 0 

This proof in fact demonstrates the following statement which is stronger than 

Theorem 4.6.1: 

Theorem 4.6.2. If P=(X,<) is a finite partially ordered set with a non-trivial 

automorphism a, and ifxEXwith a(x)ox is such that there is a fixed point of a on every 

path connecting x and a(x) in CP, then p(x<(x(x))=1/2. 

The relationship between Theorems 4.6.1 and 4.6.2 can be easily seen. If P is a 

finite cycle-free partially ordered set, then every xEX such that xa(x) will have a fixed 

point of a on the path (if it exists) connecting x and a(x). 

Another case where the 1/3-2/3 conjecture can be strengthened is the case of a poset 

containing a large antichain. Kahn and Saks [KS] conjectured that if a poset (X,<) 

contains a large antichain, then there will be elements x and  in X such that p(x<y) is close 

to 1/2. Komlos has proved that this conjecture is true whenever (X,<) is a poset containing 

a large number of minimal elements, which includes all large bipartite graphs [Ko]. 

Formally, Komlos' result can be stated as follows. 

Theorem 4.6.3. For every €> 0 there is a function M(n) such that if (X,<) is any n 

element height-i poset with width at least M(n) minimal elements, then there are minimal 

elements x, y in X such that 1/2 - c <p(x<y) < 1/2 + e . 

Using the definition of ô(P) from Section 4.5, Theorem 4.6.3 can be rephrased as 

urn min{ö(P) I P has height one and width m} = 1. 
m-°° 2 
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Komlos' proof of this theorem uses Ramsey theory to prove that two elements x and y can 

always be selected from a large collection of random variables such that p(x<y) is 

approximately 1/2. When this idea is applied to the poset problem, Theorem 4.6.3 follows 

directly. 

There is at least one further situation in which the 1/3 - 2/3 conjecture can be 

strengthened. Recall from Section 4.5, the definition of Vm, a certain class of height-1 

posets. Trotter, Gehrlein and Fishburn conjecture the following [TGF]: 

urn Vm = 
2 

The authors have only thus far been able to find the values of V2, V3 and V4 and verify that 

V2 < V3 < V4 < 1/2, so this conjecture remains an open problem. 

4.7 THE 113 - 2/3 CONJECTURE FOR INFINITE POSETS 

in two separate papers [Br3] and [Br4], Brightwell has considered the 1/3 - 2/3 

conjecture for a certain class of infinite posets. Since an infinite poset can have an infinite 

number of linear extensions, p(x<zy) cannot be determined using its previous definition, so 

a new definition is needed. 

Consider a poset P=(X,<). Define Y a subset of X to be convex if whenever x, 

yE Y, zEX and x<z<y then ZE Y. Suppose (X) ° is an increasing sequence of finite 

convex subsets of X whose union is X, and which each contain both x and y. Then 

p(x<yIP) = Jim p(x<yl(Pl)) 
n 

if that limit exists for every choice of (X), and all such limits agree. 
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Brightwell shows that when P is a thin poset (each element in P is incomparable 

with at most k elements for some finite k), then this limit exists and is independent of the 

choice of (X). He then proves the following theorem: 

Theorem 4.7.1. For every infinite thin poset (X,<) that is not a chain, there are 

elements x, y of X such that 3/11:5 p(x<y) ≤ 8/11. 

It should be noted that in the infinite case the proof does not produce strict 

inequalities whereas with the finite case the inequalities can be shown to be strict. Counter-

examples of infinite posets for which the 1/3 - 2/3 conjecture does not hold have been 

found. Interestingly, these posets are all semiorders which can be derived using a theorem 

of Brightwell. Firstly define a semiorder (X,<) to be 2-separated if for every x, y E X 

with x I y there are either two elements good for x <y or two elements good for y <x, 

where "good" is as defined in Section 4.4. Brightwell's theorem follows. 

Theorem 4.7.2. Every irreducible 2-separated semiorder of width k is isomorphic to a 

poset (X,<) with X={xi, x2, x3, ...}, and Xj<Xj if and only if J≥i+rj, where each rj is 

either k or k—i, with at least one r1—k, and rjrj+k_1 for all i. As well, every poset of the 

previous form is an irreducible 2-separated semiorder of width k. 

Three of these posets are shown in Figure 4.7.1. A locally finite poset is a poset 

(X, <) such that for every x, y € X, there are finitely many z € X such that x < z <y. 

Brightwell conjectures that all locally finite, thin posets for which the 1/3 - 2/3 conjecture 

fails are linear sums of these three posets along with the one-element poset. 
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X4 

Figure 4.7.1 

(c) 

x9 

6 

X3 

Figure 4.7.1 (a) has k=2 and {rj} = {.., 2, 2, 2, ...}, (b) has k=3 and {Ti} = {.., 3, 2, 3, 

2, 3, 2, ...} and (c) has k=3 and {rj} = { .., 3, 3, 3, ...}. All of these posets satisfy 

3/11 ≤ 5(P) ≤ 1/3 and specifically, a) has 5(P) = 0.2764 and b) has 5(P) z 0.3106. 

The question which now arises is, what is the bound on p(x<y) for the most central 

pair of an infinite thin poset? As of yet, it is not known whether the 3/11 7 8/11 bound can 

be improved upon. 
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There are many open questions surrounding the 1/3 - 2/3 conjecture. In the finite, 

case it has yet to be proved whether or not the conjecture holds for all posets. In the 

infinite case, the 1/3 - 2/3 conjecture is known to fail, yet the greatest A with 0 <A < 1/3 

such that A, 1—A can replace 1/3,2/3 in the conjecture has not been found. 
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CHAPTER FIVE 

COUNTING CHAINS 

5.1 INTRODUCTION 

Of the three basic counting problems being addressed in this thesis, that of counting 

chains seems to have received the least amount of attention. Results are not abundant in the 

current literature. Perhaps the most work has been done on the problem of counting chains 

in power sets, an obvious extension of Dedekind' s problem on counting antichains in 

power sets. This problem will be dealt with in Section 5.3. Other specific chain counting 

results will be dealt with in Section 5.2, and the Section 5.3 will examine some 

relationships between the problem of counting chains and that of counting linear 

extensions. The final section will give some results on a new chain counting problem. 

5.2 CHAIN COUNTING RESULTS 

Some work has been done on directly counting chains in certain classes of posets, 

and these results will be dealt with in this section. 

One simple result is the number of chains in a poset P that is itself a chain on n 

elements. It can easily be seen that P contains 2n chains, since every subset of the n 

elements of P is itself a chain. 
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Kurepa [Ku] counts the number of maximal chains in a special class of trees. 

Define T to be the tree formed from 0 (the empty sequence) and all sequences of the form 

a=(al,a2,...,aJ) where l≤j≤n and O≤aj≤i—1 for all i,1≤i≤j, and where a<bif 

and only if sequence a is an initial part of sequence b. T3 is shown as an example in Figure 

5.2.1. 

000 001 002 010 011 012 
a a 

0 

Figure 5.2.1 

01 

It can easily be seen that T will have n! maximal chains. 

Ziegler [Z] considered the problem of placing an upper bound on the number of 

chains and maximal chains in a length 1— 1 poset on n elements. Recall that in Section 2.2 

results produced by Ziegler are given for the same problem applied to antichains. The 

following lemma bears a strong resemblance to Lemma 2.2.8. 

Lemma 5.2.2. Let P be a poset on ,n elements with length 1— 1. 

a) Then P contains at most c(n,l) chains where 

c(n,1) = max [J (Cj + 1). 
c1+...+c1=n 
c ≥1 i=1 

P achieves this maximum if and only if it is the ordinal sum of 1 antichains on Ci, ..., cl 

elements, where the Cj'S are those which maximize the above equation. 

b) P contains at most mc(n,1) maximal chains where 
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1 

mc(n, 1) = max TT C1 
hl 
1=1 

P achieves this maximum if (but not only if) it is the ordinal sum of 1 antichains on. 

c, .., ci elements, where the cfs are those which maximize the above equation. 

This lemma can be seen intuitively by considering a poset which is the ordinal sum 

of 1 antichains. Remove an edge between any two elements, say a and b. In the original 

poset a and b form a chain, but in the new poset a and b do not form a chain. Since the 

removal of an edge cannot create any new chains, it is apparent that the new poset will have 

fewer chains than the original poset. Add to this the observation that all posets can be 

created by starting with some poset that is the ordinal sum of antichains and removing 

edges, then part a) follows easily. Part b) is not as obvious since removing an edge 

between two related elements does not necessarily decrease the number of maximal chains, 

so Ziegler uses an inductive proof to demonstrate this. 

Ziegler also evaluates the maximum value of mc(n,l) for a given n over all 1 and 

produces the following result: 

I 3fl13 

max mc(n, = t 4. 3(fl-4)/3 
O<l≤n k 2 3(n-2)/3 

for n = 0 mod 3; 

for  = 1 mod 3; 

for n 2 mod 3. 

(5.2.1) 

To show this, start with the equation given for mc(n, 1) in Lemma 5.2.2b. Note that for a 

maximum we can't have any ci ≥ 4, since 2 (c —2) ≥ 4 whenever ci ≥ 4. Similarly, we 

won't have c1 = 1, since cj+1 > c3 1. Thus all Cj'S must equal either 2 or 3. However, we 

won't have three or more 2's since 2 + 2 + 2 = 3 + 3 but 23 <32 Thus equation (5.2.1) 

follows. 
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A paper of Greene's [Gn] deals with the problem of counting chains in a poset of 

shuffles. Let x and y be words of length m and n from some alphabet A where all m + ii 

letters are distinct. Write u ≤ v if u is a subword of v, write 1(u) for the set of letters found 

in word u, and let vlu denote the subword found by restricting v to the letters in u. The 

vertices of a poset of shuffles consist of all words w such that 1(w) 1(x) U 1(y), wk ≤x 

and wjy≤y. In other words, w can only contain letters from x and y, and the letters from x 

and y must appear in the same order as they do in x and Y. Now define the relation ≤o 

setting u ≤o v if and only if utx ≥ vix, ujy ≤ vly and ulv = vlu. Thus u ≤o v if and only if v 

can be obtained from u by deleting some (or no) letters from x and inserting some (or no) 

letters from y. As an example let x be the 2-letter word "AB" and y be the 1-letter word 

"c". The poset of shuffles on x and y is shown in Figure 5.2.2. 

C 

AB 

Figure 5.2.2 

It is easy to see that whenever x is a 2-letter word and y is a 1-letter word the above poset 

will be formed. Let mc(m,n) be the number of maximal chains in a poset of shuffles on an 

rn-letter word and an n-letter word. Greene finds the following: 

(rnVnV1'ti 
rnc(rn,n)=(m+n)! iAiA) 

j≥O 

(5.2.2) 
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Greene proves this and other properties of posets of shuffles using Jacobi polynomials. 

5.3 COUNTING CHAINS IN POWER SETS 

In a recent article, Nelsen and Schmidt [NS] deal with the problem of counting 

chains in a power set on n elements, P(n). Firstly they consider the number of chains of 

given length k in P(n), which will be denoted ck(P(n)), and develop the following 

recursion formula: 

Ck(P(fl+l)) = k- Ck1(P(fl)) + (k+2)- ck(P(n)). (5.3.1) 

Let X = { 1, 2, ..., n}.This result is found by intersecting every element of each 

chain C of length k in P(n+ 1) with the set X, to produce a chain C in P(n). Any such C 

will either contain k different vertices, or will have 2 identical vertices and thus will have 

k-i different vertices. A chain C producing the former type of C will be called non-

degenerate, while a chain producing the latter type will be called degenerate. Thus the 

number of chains of length kin P(n+ 1) will equal the sum of the number of non-degenerate 

chains and degenerate chains of length k in P(n+ 1). Now let D: No C Ni C ... C Nk be a 

chain of length k in P(n). k+2 non-degenerate chains of length k in P(n+ 1) can be formed 

from this by counting the chain D itself and the k+ 1 chains of the form No C N1 C C 

N_1 C  N U {n-'-l} C ... C Nk U {n+1}, where i € {O, 1, ..., k}. It can be shown that 

every non-degenerate chain in P(n+ 1) will be produced exactly once in this manner. Now 

let D: No C  N1 C ... C Nk-1 be a chain of length k-i in P(n). k degenerate chains of 

length kin P(n+ 1) are formed from this by considering chains of the form No C  N1 C 

C Ni C  N U {n+1} 'C ... C Nk-1 U {n+1}, where 1 € {O, 1, ..., k-1}. As before, it 
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can be shown that every degenerate chain in P(n+1) will be produced exactly once, and 

(5.3. 1) follows. 

Nelsen and Schmidt also produce the following non-recursive equation for the 

number of chains of length kin a power set: 

k 

Ck(P(fl)) = (-1)1 (k+2—j)'1. 

j=o 
(5.3.2) 

Nelsen and Schmidt describe two different ways of deriving this from equation (5.3.1). 

One menthd uses a formal power series, and the other uses Stirling Numbers. 

Finally by taking the sum of (5.3.2) over all possible values of k, and then 

simplifying using a rehtionship involving Stirling numbers, Nelsen and Schmidt develop 

the following equation for, the number of chains in P(n): 

00 

n≥l. (5.3.3) 
j=2 

Although at first glance, this formula seems to produce the most direct method of 

calculating c(P(n)), in fact using the recursion given in (5.3. 1) and then summing over all 

possible values of k gives the fastest way of calculating c(P(n)). Using this method, 

Nelsen and Schmidt create a table of values listing the number of chains in a power set on 0 

to 10 elements. 

The problem of counting maximal chains in a power set on n elements is much 

simpler than that of counting all chains. The number of maximal chains in P(n) is just n!, 

as mentioned in a paper by Kurepa [Ku]. This result follows easily by recognizing that 

there is a bijection from the permutations of n elements to the maximal chains in a power set 

on n elements. For instance, the permutation 1, 3, 2 of the numbers 1, 2 and 3, 
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corresponds to the chain { 0 } C { l} C  {l,3} C  {1,3,2} in P(3). It is well-known that the 

number of permutations of an n element set is ii!, and the result follows. 

Griggs, Stahl and Trotter [GST] produced a paper in which they discuss the 

problem of counting the number of pairwise unrelated chains in a power set. Given two 

chains C1 and C2, Ci and C2 are pairwise unrelated if and only if for every x E C1 and y 

€ C2, then neither x <y nor y <x. The notation uck(P(n)) will be used to denote the 

maximum possible number of pairwise unrelated chains of length k in a power set on n 

elements. The result of Griggs et al. is as follows: 

uck(P(n)) = ((n—k)12j)- 
n-k  

(5.3.4) 

The construction used to produce a set of uck(P(n)) unrelated chains is also 

described by Griggs et al. The chains are designated by D(i, 0) C  D(i, 1) C ... C 

D(i, k), where the D(i,j)'s represent the elements in the chain. The set D(i, 0) is a subset 

of size [(n—k)/2i of {k+1, k+2, ..., n}. Then the set D(i, j) = D(i, 0) U {1, 2, ..., f}. It is 

n—k 
apparent there will be [(n—Id)12j possible D(i, 0)'s and thus the same number of chains, and 

it can be verified that chains formed in this manner will be unrelated to one another. 

The preceding construction demonstrates that the value of uck(P(n)) must be greater 

. 

than or equal to n—k ((n—k)l2j Usmg a known inequality, Griggs et al. show that uck(P(n)) 

n—k 
must be less that or equal to L(n—Jd)/21 and thus equation (5.3.4) follows. 

From these results it can be seen that the problem of counting chains in power sets 

is much more straight-forward than that of counting antichains in power sets. Both 

recursive and closed formulas exist which describe the number of chains in a 'power set on 

n elements. 
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5.4 RELATING CHAINS AND LINEAR EXTENSIONS 

There are a number of recent results which relate the number of chains to the 

number of linear extensions of a partially ordered set. The first such result involves a 

certain class of linear extensions known as greedy linear" extensions. Let 

1= xj <x2 <... <X be a linear extension of a posei P on n elements. 1 is called 

greedy if whenever there is a minimal element x in P—{xi, x2, ..., X1} satisfying x > xi, 

then Xj+1 > x1. Construct a linear extension by successively picking elements of P to 

represent xi, ..., X,. I is greedy if for each j, xi+l is a minimal element of P1{xi, .., Xj } 

that is greater in P than x1. Now let g(P) represent the number of greedy linear extensions. 

As usual, mc(P) will denote the number of maximal chains in P, and e(P) will be the 

number of linear extensions of P. 

Simion [Si] produces the following result relating e(P), g(P) and mc(P). 

Lemma 5.4.1. For any poset P, inc(P) ≤ g(P) ≤ e(P). 

The second inequality is obvious, and to see the first, let xi <x2 < ... <xk be a maximal 

chain in P. Let F(x) be the order filter with xi as its only minimal element. Form a greedy 

linear extension of P by concatenating greedy linear extensions of (P—F(xi), 

F(x1)-F(x2), ..., F(xk....l)—F(xk), F(xk)). It can be shown that distinct maximal chains map 

to distinct greedy linear extensions and thus the first inequality is verified. 

The cases when equality holds in Lemma 5.4.1 are described in the following 

lemma: 

Lemma 5.4.2. Let P be any poset. Then 
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a) g(P) = e(P) if and only if P = wj w2 ® ... w, where the we's are 

antichains. 

b) mc(P) e(P) if and only if P= w ... w, where the wj's are 

antichains on either 1 or 2 elements. 

c) let Po be poset P with a minimum element adjoined. mc(P) = g(P) if and only if 

P0 has the property that for a and b in Fj,a covers b implies F(b) - F(a) is a chain. 

Proof. a) If all extensions of poset P of height i—i are greedy, then for 1 ≤ k ≤ 1 we must 

have every element at height k covering every element at height k—l. This produces the 

class of .posets given in a). To see the reverse direction, recognize that every linear 

extension of such a poset must be greedy. 

b) Since mc(P) = e(P), by Lemma 5.4.1, g(P) = e(P). Thus we may only have posets of 

the form described in a). Note that in such a poset 

1 1 

mc(P) = H Wj and e(P) = fl Wj!. 

Since mc(P) = e(P) we must have Wj = Wj! for i=1 to 1. Thus Wj equals one or two for 

each i € { 1, 2, ..., l}. In the reverse direction, since each wi equals either 1 or 2 and since 

1! = 1 and 2! =2, mc(P) and e(P) are equal. 

c) Consider the mapping from maximal chains in P to grredy extensions of P described in 

Lemma 5.4.1. If there is a pair a, b in Po such that a covers b but F(b) - F(a) is not a 

chain, then each maximal chain containing both a and b will map to more than one linear 

extension. Thus we will have mc(P) <g(P) which is a contradiction. To see the reverse 

direction, note that when Po has the property that for a and b in Po, a covers b implies 

F(b) - F(a) is a chain, then the mappping given in Lemma 5.4.1 will be a bijection. 0 
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Finally using an inductive argument, Simion proves the following theorem about 

the relationship between e(P) and mc(P). 

Theorem 5.4.3. Let P be a finite poset such that e(P) > inc(P). Then 

e(P)Imc(P) ≥ 3/2. 

Ivan Rival [R] has done work on relating the number of antichains to the number of 

linear extensions. Before his results can be described, a few preliminary definitions are 

needed. 

Definition 5.4.4. An element x in a lattice L = (X,<) is join-irreducible if 

a) x is not the minimum element in L 

b) x=avbimpliesx=aorx=bforalla,b EX. 

It should be noted that in a finite lattice L, an element is join-irreducible if and only if it 

covers exactly one element in X. The partially ordered set of all join-irreducible elements 

of L will be denoted J(L). Now Rival's theorem can be stated. 

Theorem 5.4.4. Let L be a finite lattice. Then mc(L) ≤ e(J(L)) with equality if and only 

if L is distributive. 

To prove the inequality, Rival sets up a mapping from the linear extensions of J(L) to the 

maximal chains in L. Assume that L has n join-irreducible elements. Consider a given 

linear extension of J(L), 1 = (xl, x2, ..., x,) where X1 <Xj in L implies i <f. Now let 

c = "0", the unique minimal element of L, let cl = x1 and let ci =Xm V C.l where 

m = min{J I xj V Cj_l covers Ci_1}. {co <Cl <...} will form a maximal chain in L. Rival 

shows that this mapping is onto which means that every maximal chain is produced by 

some linear extension, and then verifies that no extension can produce two different 
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maximal chains. Stanley [Sy2] had previously demonstrated that if a finite lattice .,L is 

distributive then mc(L) = e(J(L)) and Rival adds that finite distributive lattices are the only 

lattices for which equality holds. 

One special case of this result was previously discussed in Chapter 3. It is the idea 

that the number of linear extensions of a power set on n elements is equal to the number of 

maximal chains in the free distributive lattice on n generators. Since the poset of join 

irreducibles of the free distributive lattice on n elements is simply the power set on n 

elements, this result follows from Theorem 5.4.4. 

This completes the summary of existing results dealing with the problem of 

counting chains in partially ordered sets. The following section will deal with a related 

chain counting problem, for which some new results can be found. 

5.5 A CHAIN COUNTING PROBLEM 

This section explores some results relating to a specific chain counting problem. In 

Section 2.4, Theorem 2.4.12 (due to Linek [Lk]) states that for every positive integer there 

is a partially ordered set of at most height one containing exactly n antichains. The truth of 

this statement leads the author of this thesis to make the following conjecture, which stems 

from a question of Bill Sands. 

Conjecture 5.5.1. For every integer n ≥ 1 there exists a partially ordered set of width at. 

most two containing exactly n chains. 
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This conjecture arises from the question, "What restrictions may be placed on a family of 

posets such that for every integer n ≥ 1, there is a partially ordered set in that family with 

exactly n chains?" Note that it is natural to restrict the width since if width is left 

unrestricted, we find that the poset which is an antichain on n—i elements has exactly n 

chains. 

It is interesting to note that Linek's theorem follows immediately from Conjecture 

5.5.1. To demonstrate this, a few definitions must first be made. Let P = (X,<) be a 

partially ordered set. Let A be a collection of linear orderings of X. We say that P is 

realized by A (and A realizes F) if for every x, y 

a) x <y in Pif and only if  < y in every NE  

and b)xlyin Pif and only if  <'y in some X1EA and  <xin some 7,2E A. 

An alternate way of defining this is to consider the poset P and the elements of A as sets of 

ordered pairs, so that (x, y) € P if and only if  <yin P for x, y € X. Then it can be said 

that P is realized by A if P = fl A. The dimension of P is defined as the smallest number m 

for which there is a set of m linear orderings of X which realize P. P is reversible if there 

exists a poset Q on X such that for all distinct x, y € X,x<yinPorx>yinPif and only 

if x I y in Q. Such a poset Q is called a conjugate partial order of P. 

Now two lemmas are needed, the first of which is due to Dushnik and Miller [DM]. 

Lemma 5.52. A poset P is reversible if and only if the dimension of P is less than or 

equal to two. 

Note that the reverse direction of this implication follows easily. If P has dimension 2, let 

X1 and X2 be a pair of linear extensions realizing P. Then reverse A1 to form A11, and the 
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poset realized by X1' and X2 will be a conjugate partial order to P. If a poset P on n 

elements only has dimension 1, its conjugate will be the antichain on n elements. 

The following lemma is due to Hiraguchi [El]. 

Lemma 5.5.3. The dimension of a poset is less than or equal to its width. 

Combining Lemmas 5.5.2 and 5.5.3 gives that every width 2 poset is reversible. Now the 

following result can be demonstrated. 

Lemma 5.5.4. Let P = (X, <) be a partially ordered set of width 2, and let Q be a 

conjugate partial order of P. Then c(P) = a(Q). 

Proof. Let Cbeachain in P. Then for x,y € C either x <yory <xinPwhich implies 

x I Y in Q. Thus C must be an antichain in Q. Conversely, let A be an antichain in Q. Then 
for x,y € A,xlyin Q, so either x < y or y < x in P. Thus A is a chain in P. Since every 

chain in P forms an antichain in Q and every antichain in Q forms a chain in P, c(P) = a(Q). 

U 

Note that if Q is a conjugate of F, then P will be a conjugate of Q. Since the largest 

antichain in P will contain two elements, the longest chain in Q will contain two elements, 

and thus the conjugate poset Q must have height 1. Thus if for a given integer n ≥ 1 we 

can find a width two poset P such that c(P) = n, then a(Q) = n where Q is a conjugate of P 

of height 1. Then if Conjecture 5.5.1 is true, we get that Theorem 2.4.12 must be true 

also. 

If Conjecture 5.5.1 can be proved true, it will also provide an affirmative answer to 

the following open question of Linek [Lk]: "Does there exist m> 1 such that for any n ≥ 1 

there is a partial order of length 1 with n antichains and dimension at most m?" This 
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follows by noting that a conjugate Q of a poset P of dimension two or less will also have 

dimension two or less. Thus if for an integer n, we can find a width two poset with 

c(P) = n, then taking a conjugate Q of P will give a height one poset with a(Q) = n that 

also has dimension two or less. This implies that Linek's question can be answered 

affirmatively with m =2. 

The first thing to note in attempting to prove Conjecture 5.5.1 is the following: 

Lemma 5.5.5. If for every prime integer p ≥ 1 there exists a poset P of width two or 

less such that c(P) = p, then for every integer n ≥ 1, there exists a poset P of width two or 

less such that c(P) = n. 

Proof. It is easy to see that the linear sum of two posets P and Q has 

c(P ® Q) = c(P)•c(Q). Assume for every prime number p there is 'a poset containing 

exactly p chains. Then consider a composite number n. This can be written as a product of 

primes pi, ..., Pk, so a poset can be constructed by linearly summing those posets of width 

at most two having pi, ..., Pk chains. Such a poset will also have width at most two. 0 

A weaker version of this lemma is useful in further discussions. We can say that if 

for every odd integer q ≥ 1 and for q = 2 there exists a poset P such that c(P) = q, then for 

every integer n ≥ 1, there exists a poset P such that c(P) = n. Note that the single element 

poset has two chains, so we only need find posets for each odd integer q ≥ 1. 

Rather than dealing immediately with Conjecture 5.5.1, one answer will be given to 

the original question which asks, "what restrictions can be placed on a family of posets in 

such a way that all possible values of n occur?" 
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Let n be an integer and let fin) be the number of clusters of ones in n when it is 

expressed in binary form. By a "cluster of ones" we mean a maximal sequence of digits 

which are all ones. Define function g as follows. 

,g() Jfifl) + 1 if the first two digits ofnin binary form are 11; 
( fin) if the first two digits of n in binary form are 10. 

As an example, let n = 105. Then in binary form, n will equal 1101001, soj(n) = 3 and 

thus g(n) =4. Now the following result can be stated. 

Lemma 5.5.6. For a given integer n, there is a poset P of width g(n) containing exactly 

n chains. 

Proof. This proof is by construction. Consider a given n in binary form. The position of 

a digit d in n, p(d), will refer to the number of digits to the right of d. Let d be the leftmost 

digit of n and construct a chain on p(d) veriices.. Now consider the remaining p(d) digits in 

n. Each cluster of ones in the remaining digits will produce a construction. Given a cluster 

of ones, let d1 and d2 be the leftmost and rightmost digits of the cluster. If p(d) >0 then 

construct a chain by adding d1-d2+1 elements below the p(d2)'th vertex from the top in the 

original chain. If p(d2) = 0 then form an isolated chain containing d1-d2+ 1 elements. 

Repeat this for all clusters of ones. It is straightforward to check that the resulting partially 

ordered set will contain exactly n chains. Figure 5.5.1 gives examples of the 

construction. 0 
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N 

N . 

n=230=111001102 n=215=110101112 n=280=101101002 

g(n) =3 g(n)=4 

Figure 5.5.1 

A weaker, but perhaps more intuitive idea which results from the previous lemma is the 

following. 

Lemma 5.5.7. For a given integer n, there is a poset P containing exactly n chains such 

that 

width(P) ≤ 11092n + 1. 

Proof. In the construction used for the proof of Lemma 5.5.6, a chain is first created 

giving a poset of width 1. Then for each cluster of ones in the binary form of n with its 

first digit removed, another minimal element is added to the original chain thereby 

increasing the width of the poset by 1. In the worst case, the binary form of n with its first 

digit removed will have [(10g2n) /21 clusters of ones. Thus in the worst case, we get the 

width of P to be [(10g2n) t21 + 1. 0 

From this point on, only posets of width two will be considered. The following 

lemma is a bounded version of the original conjecture. 

Lemma 5.5.8. For every integer n with 1 ≤ n ≤ 10,000 there exists a partially ordered 

set of width at most two containing exactly n chains. 
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Proof. Because of Lemma 5.5.5 and the comment which follows it, it is sufficient to only 

find the posets with an odd number of chains. Generalized diagrams of the constructions 

which produce these posets are shown in Figure 5.5.2. In this figure, each of variables 

a - g represents the number of elements including endpoints in the subchain indicated by 

the corresponding bracket. 

a 

L. • •-) 

Qo 

b 

Q1 

Figure 5.5.2 

Q2 

Note that Qi has constraints a, b, e, f ≥ 1 and c, d ≥ 2, and Q2 has constraints a, b, g, 

h ≥ 1 and c, d, e, f ≥ 2. Enumerating the chains in each of these posets produces the 

following results. 

c(Qo)=2a+2b._l 

c(Q1) =2a+c+e-2 + 2b+dtf-2_ 1 + (2a.. l)(21- 1) + (2b_ 1)(2e_ 1) 

c(Q2) = a+c+e+g-3 + 2b+d+f+h-3 - 1 + (2 - l)(21+h-1 - 1) + (2a+c-1 l)(2h 1) 

- (2 - 1)(2h - 1) + (2b - l)(2e+g_1 - 1) + (2b+d 1 - l)(2 - 1) 

_(2b_ l)(2&- 1) '+ (2a - l)(2_ 1) + (2b_ l)(2h_ 1). 

By creating a computer program to generate the chain counts of these types of posets, it is 

found that for n an odd number, posets of the form Q0 produce 1 ≤ n ≤ 11, posets of the 

form Qi produce 13 ≤ n ≤ 469 and posets of the form Q2 produce 471 ≤ n ≤ 9999, with 
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the exception of n = 541 and n = 9073. 541 is produced by a poset of the form Qi, and 

9073 = 43-211 so by Lemma 5.5.5 a poset with 9073 chains can be found by taking the 

linear sum of the posets having 23 and 211 chains. Thus all cases have been covered. 0 

Note that most values of n are given by more than one of the above types. For 

instance, all odd integers n with 195 ≤ n ≤ 469 are produced by both posets of the form Qi 

and Q2. 

Given the previous results it is reasonable to strengthen Conjecture 5.5.1 to the 

following: 

Conjecture 5.5.9. For every integer n ≥ 1 there exists a partially ordered set of the form: 

Qm for some integer m ≥ 0, containing exactly n chains, where Qm is the poset containing 

m stacked crosses as in Figure 5.5.3. 

QM 

Figure 5.5.3 

The previous lemma shows that the conjecture holds for all "small" values of n. 

Now it will be shown that the conjecture holds for some larger values of n. 

Lemma 5.5.10. For every odd positive integer n containing 4 or fewer ones in its binary 

form, there is a partially ordered set of width at most 2 containing exactly n chains. 
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Proof. This is demonstrated by constructing the partially ordered sets shown in Figure 

5.5.4. 

a1 I • a1-

R0 

j fl2 

R1 

a1 a2. a2 

R3 

Figure 5.5.4 

Enumerating the chains in each of these posets produces the following. 

c(Ro) = 2a1 + 20; 

c(RI) 2a1 + 21 + 20; 

c(R2)= 2a2 .. 2a1 + 20 for a2, a1> 0; 

c(R3)=2a3 2a2 2aj2O for a3 >2, a2>a1>0. 

Note that the poset containing 20 chains is the empty poset, so we get a poset of width two 

or less for all odd values of n containing 4 or fewer ones in binary form. 0 

Attempts were made to find a general construction for posets which could produce 

the sum of any number of powers of two. Such a poset was found, however constraints 

on the combination of powers of 2 allowed, prevent it from covering all values of n. This 

construction is given in the following lemma. 

 20 
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i) bm>bm_i> .... >bi≥m-1>1, 

ii) b1 ≥ c+2. 

b)n=21'm+21'in-1+... +2b1 +2p+m-1+2p+m-2+ ... +2m-1+2c+2c—i+ +20 

where b1, ..., bm, m, c and p are non-negative integers subject to the constraints 

i) bm_i > bm_2 ≥ bm_ ≥ .... ≥ b1 > p1-rn—i, 

ii) bm ≥c 1-rn, 

iii) rn > c+2. 

Proof. Consider poset P shown in Figure 5.5.5. 

Figure 5.5.5 

A systematic enumeration of the chains in P gives 

c(P)=2'c+24-i + 1-2aj 1-2c+i_2k-220 (5.5.1) 

Thus we get that for every positive integer n for which there exist integers a, aj_, ... 

c, and k with ak_1>ak_2≥ak_3≥...≥al≥k-2,c +k-1≤ak,k≥3 and c≥O such that 

n can be written in the form of equation 5.5.1, then we can find a poset with exactly n 

chains. It will be shown that the set of n's satisfying equation 5.5.1 is the same set of n's 

satisfying the forms in Lemma 5.5.11. 
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To derive equation a), consider the situation when k 2 = at. Substituting into 

equation (5.5. 1) we get 

c(p)=2ak+2ak_1+... + 2a2 + 2c + 2c-1 + +20. 

Letting m = k-i and bi = aj+1 for 1 ≤ I ≤ m produces equation a). The constraint 

> aj_ ≥ aj_ ≥... ≥ at ≥ k -2 along with constraint k ≥ 3 and initial condition k-2 = 

at produces bm-1 > bm-2 ≥ bm-3 ≥ ... ≥ bl ≥ m - 1 ≥ 1. The constraint c + k - 1 ≤ a 

becomes c + m ≤ bm. The first constraint can be strengthened to bm > bm-1 > bm_2> 

bm..3> ... > bj ≥ m - 1 ≥ 1 and then the second constraint strengthened to bi ≥ c+1, since 

examination of the equations shows that the new constraints won't exclude values included 

in the original constraints. 

For equation b), consider the situation when at > k-2 > c+1. Equation (5.5.1) can 

then be rewritten as follows: 

c(P) = 2ak + 2ak_1 + +2a2+ 2a1-1 + + + 2k-2.. 2c + 2c-1 + ... + 20. 

As before, let m = k-i and bi = aj+1 for 1 ≤ I ≤ m and also let p = al - k + 1 to produce 

equation b). The first constraint combined with initial condition at > k-2 becomes bm_i> 

bm_2≥bm_3≥ ... ≥bl>p+7ñ1>m-1, which can be rewritten aSbm_1>bm_2≥ 

bm 3≥...≥bj>p+m-i and p≥0. The initial condition k-2>c+i becomes m>c+2 

and constraint ak ≥ c + k - 1 becomes bm ≥ c + m. Constraint k ≥ 3 becomes m ≥ 2 which 

is implied by m ≥ c +2 and c ≥ 0 and so can be omitted. Thus the desired constraints have 

been found. 0 

Note that in the previous proof, only the cases where al = k -2 and al > k-2 > c+ 1 

were considered. It is then natural to ask whether there are values of n which fit neither 

equation a) nor b) of Lemma 5.5.11 yet which can be produced by equation 5.5.1. By 

considering the remaining case which is at > k -2, c+ 1 ≥ k -2, it is found that all values 
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of n fitting this case will also fit either equation a) or b) in Lemma 5.5.11. Thus all 

possible values for c(P) achievable by a poset P of the form shown in Figure 5.5.5 are 

described by Lemma 5.5.11. As a matter of interest, the smallest n containing more than 

four powers of two which is not satisfied by equations a) or b) is n = 245 = 2 + 26 + 2 + 

24 + 22 + 20. 

Lemma 5.5.6 provides a width restriction on the set of all posets which still allows 

all values of n to occur as the number of chains in P for some poset P in that family. The 

work described in this section strengthens the idea that Conjecture 5.5.1 must be true. 

Perhaps further work in this area will yield a conclusive result. 

This problem marks the completion of this summary of results dealing with the 

counting of chains, antichains and linear extensions of partially ordered sets. Though such 

results abound, there remain many open problems in need of solutions and conjectures in 

need of validation. Further work in this area may eventually close some of the gaps in our 

knowledge of this topic. 
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