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1 Introduction

Hidden Markov Models (HMMs) are a powerful mathematical tool and have important

applications in diverse fields, including information engineering, bio-informatics, bio-

engineering, speech hearing, economics, finance, actuarial science, and many others. The

monograph by Elliott et al. [3] provided a comprehensive discussion on HMMs, their

stochastic calculus, filtering and control as well as some applications of HMMs. In Elliott

et al. [3], a powerful technique based on a reference probability was adopted to discuss the

filtering and control of HMMs. The central tenet of the reference probability approach

is the use of the Bayes’ rule for a measure change. It starts with a reference probability

under which the model dynamics have simple forms. Then the real-world probability, un-

der which the model dynamics have their original forms, is constructed from the reference

probability via the measure change.

A typical HMM is that a hidden Markov chain is partially observed under Gaussian

noise in discrete-time. In this model, the state process is the hidden Markov chain and

the observation process is a Gaussian process with drift modulated by the chain. In a

recent paper, Elliott and Deng [4] generalized this HMM to the case when the observation

process is a fractional Gaussian process so that it incorporates long-term memory in the

observation process. Indeed, long-term memory is an important feature of time series.

Benoit Mandelbrot described the long-term memory as the “Joseph effect” and charac-

terized this effect using fractal dimensions, (see Mandelbrot [8]). There are other models

of long-term memory including fractional differentiation in a continuous-time setting and

fractional differencing in discrete-time. Mandelbrot and Van Ness [7] proposed the use of

fractional Brownian motion and fractional noise to model long-range dependence. Elliott

and Deng [4] characterized long-term memory using fractional differencing and derived

filters of the hidden Markov chain and related quantities. They also derived estimates

of the model parameters using EM algorithm. Discrete-time stochastic optimal control

problems are treated, for example, in Kumar and Varaiya [6] and Cairnes [1]. Elliott et

al. [3] discussed the discrete-time, partially observed control problem using the reference

probability approach. However, it seems that the discrete-time, partially observed con-

trol problem with long-term memory observations has, so far, not yet been treated in the

existing literature.
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In this paper, we discuss a discrete-time control problem for a finite-state hidden

Markov chain partially observed in a fractional Gaussian process using filtering. The

objective is to minimize a cost functional associated with the whole path of the hidden

Markov chain. The case when the transition probability matrix of the chain depends on

a control parameter is considered. We construct explicitly the reference probability and

use the unnormalized conditional probabilities of the whole path of the hidden Markov

chain, given the observations about the fractional Gaussian process, as information state

variables. The control problem is then recast as a fully observed optimal control prob-

lem, where the unnormalized conditional probabilities play the role of information state

variables. We give a dynamic programming result and a minimum principle.

This paper is organized as follows. The next section presents the model dynamics. In

Section 3, we construct explicitly the reference probability. Section 4 derives a recursion

for the unnormalized conditional probabilities of the whole path of the hidden Markov

chain. In Section 5, we first present the control problem and its separated problem. We

then discuss the separated problem using the dynamic programming and the minimum

principles.

2 The Dynamics

We first introduce the concept of fractional differencing and then describe a Markov chain

partially observed in a fractional Gaussian process.

2.1 Fractional Differencing

Let Z+ be the set of non-negative integers {0, 1, 2, · · · }. Write L for the space of real-

valued functions f : Z+ → <. (We suppose that if i < 0, f(i) = 0.) Consequently, the

function space L is isomorphic to the space of infinite sequences, say f(0) = f0, f(1) = f1,

· · · , f(i) = fi, · · · .

Definition 2.1. For any f, g ∈ L, the convolution product of f and g, denoted by f ? g,

3



is defined by:

(f ∗ g)(n) :=
∞∑
i=0

fign−i =
n∑

i=0

fign−i .

Consider a function I := (1, 0, 0, · · · ) ∈ L. Then for any function f ∈ L,

(I ∗ f)(n) = (f ∗ I)(n) = fn .

This is the identity operator for convolution multiplication.

Let u∗k := u ∗ u ∗ · · · u, the kth convolution power of u, for each k = 0, 1, · · · . By

convention, u∗0 := (1, 0, · · · , 0) = I. The following lemma gives an expression for u∗k. It

follows directly from induction.

Lemma 2.1. For each k = 1, 2, · · · ,

u∗k :=

(
1,

k

1!
,
k(k + 1)

2!
,
k(k + 1)(k + 2)

3!
, · · ·

)
.

Indeed, Elliott and Miao [5] generalized this by defining u∗k for any k ∈ <. The

following theorem is due to Elliott and Deng [4]. We state the result here without giving

the proof.

Theorem 2.1. For any r, s ∈ <,

(ur ∗ us) = u∗(r+s) .

Corollary 2.1. For any r ∈ <,

ur ∗ u−r = I .

This result follows directly from Theorem 2.1 and the convention that u∗0 = I.

2.2 HMM Partially Observed in Fractional Gaussian Noise

Consider a discrete-time, N -state, hidden Markov chain X := {Xt|t ∈ Z+} defined on

a complete probability space (Ω,F , P ) with state space S := {s1, s2, · · · , sN} ⊂ <N .
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Following the convention in Elliott et al. [3], without loss of generality, we identify the

state space of the chain X to be a set of standard unit vectors E := {e1, e2, · · · , eN} ∈ <N ,

where the jth component of ei is the Kronecker delta δij.

To specify the probability law of the chain X, we must define the transition probability

matrix of the chain. Here we suppose that the transition probability matrix A(·) of the

Markov chain X depends on a control parameter θ taking values in some measurable space

Θ. Let Y := {Yt|t ∈ Z+} be our observation process to be defined in the later part of

this subsection. Write, for each t ∈ Z+, FY
t for P -completed σ-field generated by the

values of the observation process Y up to and including time t. We suppose that for each

t ∈ Z+, the control θt at time t is FY
t -measurable. Write, for each t ∈ Z+, Θ(t) for the

space of such controls, and

Θ(k, k + l) := Θ(k) ∪Θ(k + 1) ∪ · · · ∪Θ(k + l) .

Let T be a finite horizon. Then for each θ := (θ0, θ1, · · · , θT−1) ∈ Θ(0, T − 1) with

θt ∈ U(t), Xθ denotes the corresponding controlled Markov chain having the transition

probability matrix A(θt) at time t. Note that, for each t = 0, 1, · · · , T − 1, A(θt) :=

[aji(θt)]i,j=1,2,··· ,N , where aji(θt) is the probability that the chain X transits from state ei

at time t to state ej at time t + 1, and this probability depends on the control parameter

θt at time t. To simplify the notation, we suppress the superscript θ and write X for Xθ

unless otherwise stated.

For each t ∈ Z+, let FX
t := σ{X0,X1, · · · ,Xt}∨N , the minimal σ-algebra generated

by information about the values of the chain X up to and including time t and the

collection N of P -null sets. Then with the canonical state space E of the chain X, Elliott

et al. [3] gave the following dynamics of the chain X:

Xt+1 = A(θt)Xt + Mt+1 . (2.1)

Here M := {Mt|t ∈ Z+\{0}} is an <N -valued, martingale difference process.

We suppose that the chain X is not observed directly; rather, we observe a non-zero

drift, fractional Gaussian, process Y to be defined in the sequel.

Consider a sequence of random variables w := {wt|t ∈ Z+} such that
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1. {wt|t ∈ Z+} is a sequence of independent and identically distributed, (i.i.d.), ran-

dom variables such that wt ∼ N(0, 1) and w0 = 0, P -a.s;

2. w and X are stochastically independent under P .

Following Elliott and Deng [4], we define a fractional Gaussian noise wr := {wr
t |t ∈ Z+}

as:

wr
t := (ur ∗ w)(t) =

∞∑

k=0

ur
kwt−k =

t∑

k=0

ur
kwt−k ,

where wr
0 = 0, P -a.s.

Consequently, wr is a sequence of Gaussian random variables which have long-memory and

are correlated. We suppose that the observation process Y follows a fractional Gaussian

process.

Yt = 〈h,Xt〉+ wr
t , t ∈ Z+ .

Here h := (h1, h2, · · · , hN)′ ∈ <N with hi ∈ < for each i = 1, 2, · · · , N .

Using the fractional differencing and convolution product discussed in Section 2.1, we

now define a Gaussian process Z := {Zt|t ∈ T } associated with the observation process

Y . The Gaussian process Z will be used in later parts of the paper.

Suppose, for each t ∈ Z+,

Zt := (u−r ∗ Y )(t) .

Note that

u−r :=

(
1,
−r

1!
,
−r(−r + 1)

2!
,
−r(−r + 1)(−r + 2)

3!
, · · ·

)
,

〈h,X〉 := (〈h,X0〉 , 〈h,X1〉 , 〈h,X2〉 , · · · ) .

Then by Theorem 2.1, it is not difficult to see that for each t ∈ Z+,

Zt = (u−r ∗ 〈h,X〉)(t) + wt .
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Write, for each t ∈ Z+,

γt(X0,X1, · · · ,Xt) := (u−r ∗ 〈h,X〉)(t) .

Consequently,

Zt = γt(X0,X1, · · · ,Xt) + wt . (2.2)

3 A Measure Change

We start with a reference probability measure P̄ on (Ω,F) under which both the obser-

vation process Y and the Markov chain X have simple dynamics. That is, under P̄ ,

1. {Zt|t ∈ Z+} is a sequence of i.i.d. random variables with common distribution

N(0, 1) and

2. {Xt|t ∈ Z+} is a sequence of i.i.d. random variables uniformly distributed over the

set of unit standard vectors {e1, e2, · · · , eN}.

In what follows, we construct the probability measure P γ,A from P̄ such that under P γ,A,

the processes Z and X are governed by the dynamics (2.2) and (2.1), respectively.

Firstly, we specify the structure of information flow. Define FZ := {FZ
t |t ∈ Z+} and

G := {Gt|t ∈ Z+} by:

FZ
t := σ{Z0, Z1, · · · , Zt} ∨ N ,

Gt := σ{Z0, Z1, · · · , Zt,X0,X1, · · · ,Xt} ∨ N ,

and FZ
0 := σ{∅, Ω} ∨ N and G0 := σ{X0} ∨ N .

Note that the filtration generated by the process Z is equivalent to that generated

by the observation process Y .

Let φ(z) is the density function of N(0, 1). That is,

φ(z) :=
1√
2π

e−
z2

2 .
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Write, for each t = 1, 2, · · · , T − 1,

at+1(θt) := A(θt)Xt ,

and, for each i = 1, 2, · · · , N ,

ai
t+1(θt) := 〈at+1(θt), ei〉 = 〈A(θt)Xt, ei〉 ,

so that

N∑
i=1

ai
t+1(θt) = 1 .

Define two G-adapted processes λγ := {λγ
t |t = 1, 2, · · · , T} and λA := {λA

t |t =

1, 2, · · · , T} by:

λγ
t :=

φ(Zt − γt(X0,X1, · · · ,Xt))

φ(Zt)
,

λA
t :=

N∏
i=1

(Nai
t(θt−1))

〈Xt,ei〉 .

Set

λγ,A
t := λγ

t · λA
t , t = 1, 2, · · · , T .

Consider another G-adapted process Λγ,A := {Λγ,A
t |t = 0, 1, · · · , T} defined by:

Λγ,A
t :=

t∏

k=1

λγ,A
k , t = 1, 2, · · · , T ,

Λγ,A
0 := 1 .

Then we have the following lemma.

Lemma 3.1. Λγ,A is a (G, P̄ )-martingale.
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Proof. Write Ē for expectation under P̄ . For each t = 0, 1, · · · , T − 1,

Ē

[
Λγ,A

t+1

Λγ,A
t

|Gt

]

= Ē[λγ,A
t+1 |Gt]

= Ē

{ N∏
i=1

(Nai
t+1(θt))

〈Xt+1,ei〉Ē
[
φ(Zt+1 − γt+1(X0,X1, · · · ,Xt+1))

φ(Zt+1)
|Gt ∨ σ{Xt+1}

]
|Gt

}

= Ē

{ N∏
i=1

(Nai
t+1(θt))

〈Xt+1,ei〉
∫

<

φ(z − γt(X0,X1, · · · ,Xt+1))

φ(z)
φ(z)dz|Gt

}

= Ē

{ N∏
i=1

(Nai
t+1(θt))

〈Xt+1,ei〉|Gt

}

=
N∑

i=1

Nai
t+1(θt)P̄ (Xt+1 = ei)

=
N∑

i=1

Nai
t+1(θt)

1

N
= 1 , P̄ -a.s.

Hence the result follows.

We now define P γ,A by putting:

dP γ,A

dP̄

∣∣∣∣
Gt

:= Λγ,A
t .

Then the following theorem gives the probability laws of the observation process Z and

the chain X under P γ,A.

Theorem 3.1. Under P γ,A,

wt := Zt − γt(X0,X1, · · · ,Xt) , t = 1, 2, · · · , T ,

is a sequence of N(0, 1), i.i.d., random variables. Further, for each t = 0, 1, · · · , T − 1,

Eγ,A[Xt+1|Gt] = A(θt)Xt .

Here Eγ,A is expectation under P γ,A.
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Proof. Let f : < → < be a measurable test function. Then by a version of the Bayes’

rule,

Eγ,A[f(wt+1)|Gt]

=
Ē[Λγ,A

t+1f(wt+1)|Gt]

Ē[Λγ,A
t+1 |Gt]

=
Ē[λγ,A

t+1f(wt+1)|Gt]

Ē[λγ,A
t+1 |Gt]

= Ē[λγ,A
t+1f(wt+1)|Gt]

= Ē

{ N∏
i=1

(Nai
t+1(θt))

〈Xt+1,ei〉Ē
[
f(wt+1)

φ(wt+1)

φ(Zt+1)
|Gt ∨ σ{Xt+1}

]
|Gt

}

= Ē

[ N∏
i=1

(Nai
t+1(θt))

〈Xt+1,ei〉
∫

<
f(w)φ(w)dw|Gt

]

=

( ∫

<
f(w)φ(w)dw

)
× Ē

[ N∏
i=1

(Nai
t+1(θt))

〈Xt+1,ei〉|Gt

]

=

∫

<
f(w)φ(w)dw .

Since f is an arbitrary measurable function, the first statement of the theorem follows.

Similarly, we prove the second statement of the theorem. Again by a version of the

Bayes’ rule,

Eγ,A[Xt+1|Gt] = Ē[λγ,A
t+1Xt+1|Gt]

= Ē

{
Xt+1

N∏
i=1

(Nai
t+1(θt))

〈Xt+1,ei〉Ē
[
φ(wt+1)

φ(Zt+1)
|Gt ∨ σ{Xt+1}

]
|Gt

}

= Ē

[
Xt+1

N∏
i=1

(Nai
t+1(θt))

〈Xt+1,ei〉|Gt

]

=
N∑

i=1

ai
t+1(θt)ei

=
N∑

i=1

〈A(θt)Xt, ei〉 ei = A(θt)Xt .
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Consequently, from Theorem 3.1, under P γ,A,

Zt = γt(X0,X1, · · · ,Xt) + wt ,

Xt+1 = A(θt)Xt + Mt+1 .

They are the real-world dynamics of the Z process and the chain X in Section 2.

4 Unnormalized Conditional Probabilities

In this section, we derive a recursive formula for the unnormalized conditional probabilities

of the whole path of the hidden Markov chain X. Firstly, by a version of the Bayes’s rule,

P γ,A(X0 = ei0 ,X1 = ei1 , · · · ,Xt = eit|FZ
t )

= Eγ,A[〈X0, ei0〉 〈X1, ei1〉 · · · 〈Xt, eit〉 |FZ
t ]

=
Ē[Λγ,A

t 〈X0, ei0〉 〈X1, ei1〉 · · · 〈Xt, eit〉 |FZ
t ]

Ē[Λγ,A
t |FZ

t ]

Define, for each t = 0, 1, · · · , T and any admissible control process θ,

qθ
t (ei0 , ei1 , · · · , eit) := Ē[Λγ,A

t 〈X0, ei0〉 〈X1, ei1〉 · · · 〈Xt, eit〉 |FZ
t ] ,

so qθ
t (ei0 , ei1 , · · · , eit) is the unnormalized conditional probability that X0 = ei0 , X1 = ei1 ,

· · · , Xt = eit given FZ
t associated with the control process θ. Indeed, qθ

t is a positive, not

necessarily normalized, measure on the product space E⊗(t+1), the (t + 1)-fold product of

the canonical state space E := {e1, e2, · · · , eN} of the chain X. The following theorem

gives a recursion for qθ
t .

Theorem 4.1. For each t = 1, 2, · · · , T ,

qθ
t (ei0 , ei1 , · · · , eit)

=
φ(Zt − γt(ei0 , ei1 , · · · , eit))a

it
t (θt−1)

φ(Zt)
qθ
t−1(ei0 , ei1 , · · · , eit−1) .
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Proof.

qθ
t (ei0 , ei1 , · · · , eit)

= Ē[Λγ,A
t 〈X0, ei0〉 〈X1, ei1〉 · · · 〈Xt, eit〉 |FZ

t ]

= Ē

[
Λγ,A

t−1

φ(Zt − γt(X0,X1, · · · ,Xt))

φ(Zt)

N∏
i=1

(Nai(θt−1))
〈Xt,ei〉

×〈X0, ei0〉 〈X1, ei1〉 · · · 〈Xt, eit〉 |FZ
t

]

= Ē

[
Λγ,A

t−1 〈X0, ei0〉 〈X1, ei1〉 · · · 〈Xt, eit〉 |FZ
t

]
φ(Zt − γt(ei0 , ei1 , · · · , eit))

φ(Zt)

×Nait(θt−1)

= Ē

{
Λγ,A

t−1 〈X0, ei0〉 〈X1, ei1〉 · · ·
〈
Xt−1, eit−1

〉
Ē

[
〈Xt, eit〉 |FZ

t ∨ FX
t−1

]
|FZ

t

}

×φ(Zt − γt(ei0 , ei1 , · · · , eit))

φ(Zt)
Nait(θt−1)

= Ē

[
Λγ,A

t−1 〈X0, ei0〉 〈X1, ei1〉 · · ·
〈
Xt−1, eit−1

〉 (
1

N

)
|FZ

t

]

×φ(Zt − γt(ei0 , ei1 , · · · , eit))

φ(Zt)
Nait(θt−1)

=
φ(Zt − γt(ei0 , ei1 , · · · , eit))a

it
t (θt−1)

φ(Zt)
qθ
t−1(ei0 , ei1 , · · · , eit−1) .

Note that the future value qθ
t+1 only depends on the current value qθ

t , but not the

past values of qθ. Consequently, we shall use qθ as the information state variables in the

separated form to be defined in the next section.
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5 The Control Problem

Consider, for each t = 0, 1, 2, · · · , T , measurable, bounded functions Lt := Lt(Xt, θt). For

any admissible control θ, we consider the following expected cost functional of θ:

J(θ) := Eγ,A

[ T∑
t=0

Lt

]

For any two functions f : E⊗(t+1) → <+ and q : E⊗(t+1) → <+, write

(f(X0,X1, · · · ,Xt)¯ g(X0,X1, · · · ,Xt))

:=
N∑

i0=1

N∑
i1=1

· · ·
N∑

it=1

f(ei0 , ei1 , · · · , eit)q(ei0 , ei1 , · · · , eit) .

Then,

J(θ) := Eγ,A

[ T∑
t=0

Lt

]

= Ē

[
Λγ,A

T

T∑
t=0

Lt

]

= Ē

[ T∑
t=0

Λγ,A
t Lt

]

=
T∑

t=0

Ē{Ē[Λγ,A
t Lt|FZ

t ]}
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Note that

Ē[Λγ,A
t Lt|FZ

t ]

=
N∑

i0=1

N∑
i1=1

· · ·
N∑

it=1

Ē[Λγ,A
t Lt 〈X0, ei0〉 〈X1, ei1〉 · · · 〈Xt, eit〉 |FZ

t ]

=
N∑

i0=1

N∑
i1=1

· · ·
N∑

it=1

Ē[Λγ,A
t 〈X0, ei0〉 〈X1, ei1〉 · · · 〈Xt, eit〉 |FZ

t ]Lt(eit , θt)

=
N∑

i0=1

N∑
i1=1

· · ·
N∑

it=1

qθ
t (ei0 , ei1 , · · · , eit)Lt(eit , θt)

=
N∑

i0=1

N∑
i1=1

· · ·
N∑

it=1

qθ
t (ei0 , ei1 , · · · , eit)Lt(eit , θt)

= (qθ
t (X0,X1, · · · ,Xt)¯ Lt(Xt, θt)) .

Consequently,

J(θ) =
T∑

t=0

Ē[(qθ
t (X0,X1, · · · ,Xt)¯ Lt(Xt, θt))]

From Theorem 4.1,

qθ
t (ei0 , ei1 , · · · , eit)

=
φ(Zt − γt(ei0 , ei1 , · · · , eit))a

it
t (θt−1)

φ(Zt)
qθ
t−1(ei0 , ei1 , · · · , eit−1) . (5.1)

This is taken as the new information state variable with dynamics given by (5.1) so that

the control problem is now represented in a separated form.

In what follows, we give a dynamic programming result and a minimum principle for

the control problem.

The value function for the control problem is as follows:

V (t, q) :=
∧

θ∈Θ(t,T−1)

Ē

[ T∑

k=t

(qθ
k(X0,X1, · · · ,Xk)¯ Lk(Xk, θk))|qθ

t = q

]

:=
∧

θ∈Θ(t,T−1)

V (t, q, θ) ,
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so the value function is defined as the essential infimum under P̄ . We set

V (T, q) := Ē[(q ¯ LT (XT , θT ))] .

The following theorem gives the dynamic programming principle for the control problem.

Theorem 5.1. For each t = 1, 2, · · · , T , let

αt :=
φ(Zt − γt(ei0 , ei1 , · · · , eit))a

it
t (θt−1)

φ(Zt)
.

Then the value functions V (t, q), t = 0, 1, · · · , T −1, satisfy the following backward recur-

sion:

V (t, q) =
∧

θ∈Θ(t,t)

Ē[(qθ
t (X0,X1, · · · ,Xt)¯ Lt(Xt, θt))

+V (t + 1, qθ
t+1(X0,X1, · · · ,Xt+1))|qθ

t = q]

=
∧

θ∈Θ(t,t)

Ē[(q ¯ Lt(Xt, θt)) + V (t + 1, qαt+1)|qθ
t = q] , (5.2)

with terminal condition:

V (T, q) := Ē[(q ¯ LT (XT , θT ))] .

15



Proof.

V (t, q) :=
∧

θ∈Θ(t,T−1)

V (t, q, θ)

=
∧

θ∈Θ(t,t)

∧

θ∈Θ(t+1,T−1)

V (t, q, θ)

=
∧

θ∈Θ(t,t)

∧

θ∈Θ(t+1,T−1)

Ē

[ T∑

k=t

(qθ
k(X0,X1, · · · ,Xk)¯ Lk(Xk, θk))|qθ

t = q

]

=
∧

θ∈Θ(t,t)

∧

θ∈Θ(t+1,T−1)

Ē

{
Ē

[
(qθ

t (X0,X1, · · · ,Xt)¯ Lt(Xt, θt))

+
T∑

k=t+1

(qθ
k(X0,X1, · · · ,Xk)¯ Lk(Xk, θk))|FZ

t+1

]
|qθ

t = q

}

=
∧

θ∈Θ(t,t)

{
Ē

[
(qθ

t (X0,X1, · · · ,Xt)¯ Lt(Xt, θt))|qθ
t = q

]

+
∧

θ∈Θ(t+1,T−1)

Ē

{
Ē

[ T∑

k=t+1

(qθ
k(X0,X1, · · · ,Xk)¯ Lk(Xk, θk))|FZ

t+1

]
|qθ

t = q

}

By the lattice property for the controls, (see, for example, Elliott et al. [2], Lemma 16.14

therein), the inner minimization and first expectation can be interchanged, so this is

=
∧

θ∈Θ(t,t)

{
Ē

[
(qθ

t (X0,X1, · · · ,Xt)¯ Lt(Xt, θt))|qθ
t = q

]

+Ē

{ ∧

θ∈Θ(t+1,T−1)

Ē

[ T∑

k=t+1

(qθ
k(X0,X1, · · · ,Xk)¯ Lk(Xk, θk))|FZ

t+1

]
|qθ

t = q

}

=
∧

θ∈Θ(t,t)

{
Ē

[
(qθ

t (X0,X1, · · · ,Xt)¯ Lt(Xt, θt))|qθ
t = q

]

+Ē

[
V (t + 1, qθ

t+1)|qθ
t = q

]}

By Theorem 4.1,

qθ
t+1 = αt+1q

θ
t .

16



Consequently,

V (t, q)

=
∧

θ∈Θ(t,t)

{
Ē

[
(qθ

t (X0,X1, · · · ,Xt)¯ Lt(Xt, θt))|qθ
t = q

]

+Ē

[
V (t + 1, αt+1q

θ
t )|qθ

t = q

]}

=
∧

θ∈Θ(t,t)

Ē[(q ¯ Lt(Xt, θt)) + V (t + 1, qαt+1)|qθ
t = q] .

A control process θ ∈ Θ(0, T−1) is said to be separated if θt depends on (Z0, Z1, · · · , Zt)

only through the information state qθ
t . Write Θs(0, T − 1) for the space of separated con-

trols. Then we have the following theorem.

Lemma 5.1. For each t = 0, 1, · · · , T − 1,

V (t, q) =
∧

θ∈Θs(0,T−1)

V (t, q, θ) .

Proof. We prove the result by backward induction in t. Firstly, it is clear that

V (T, q) =
∧

θ∈Θ(T,T )

V (T, q, θ)

=
∧

θ∈Θ(T,T )

Ē[(q ¯ LT (XT , θ))]

=
∧

θ∈Θs(T,T )

Ē[(q ¯ LT (XT , θ))] ,

so the result holds for t = T .

Then by Formula (5.2),

V (t, q) =
∧

θ∈Θ(t,t)

Ē[(q ¯ Lt(Xt, θt)) + V (t + 1, qαt+1)|qθ
t = q]

17



Clearly, a minimizing θk, (or a sequence of minimizing θk’s), depends only on the infor-

mation qθ
t = q. Consequently,

V (t, q) =
∧

θ∈Θs(t,t)

Ē

[
(q ¯ Lt(Xt, θt)) +

∧

θ∈Θs(t+1,T−1)

V (t + 1, qαt+1)|qθ
t = q

]

=
∧

θ∈Θs(t,T−1)

V (t, q, θ) .

Then we have a minimum principle of the form presented in the following theorem.

Theorem 5.2. Suppose θ∗ is a control such that, for each measure qθ
t (X0,X1, · · · ,Xt),

θ∗ achieves the minimum in (5.2). Then,

V (t, q, θ∗) = V (t, q) ,

and θ∗ is an optimal control.

Proof. Again we use backward induction in t. It is clear that

V (T, q, θ∗) = Ē[〈q, LT (XT , θ∗)〉] = V (T, q) .

Suppose the statement is true for k = t + 1, t + 2, · · · , T . We wish to prove that it is also

true for k = t. Then

V (t, q, θ∗t ) = Ē[(q, Lt(Xt, θ
∗
t )) + V (t + 1, qθ∗

t+1, θ
∗)|qθ

t = q]

= Ē[(q, Lt(Xt, θ
∗
t )) + V (t + 1, qθ∗

t+1)|qθ
t = q]

= V (t, q) .

Now for any other θ ∈ Θ(0, T ),

V (t, q, θ∗) = V (t, q) ≤ V (t, q, θ) .

In particular, this holds true when t = 0. Consequently,

V (0, q, θ∗) ≤ V (0, q, θ) ,

so the statement is true.
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