The Problems of Large-Scale Refactoring:
Learning from Eclipse RCP

Elham Moazzen and Robert J. Walker
Laboratory for Software Modification Research
Department of Computer Science
University of Calgary
Calgary, Canada
Email: {emoazzen, walker} @ucalgary.ca

Technical Report 2015-1068-01

Abstract—Investing in planning big refactoring changes prior
to implementing them has been promoted as a positive practice
that guarantees a high quality code change process. However,
there is no empirical evidence of the potential risks that may
degrade the quality of such a change process, even if changes are
planned in advance. This paper identifies and categorizes poten-
tial risks based on a real-world case of large-scale refactoring:
that which produced the Eclipse Rich Client Platform (RCP).
This case is interesting because it is industrially relevant and
three publicly available data sources exist for it. We analyzed
these data sources in retrospect, and found that when expert
engineers were mapping out changes, (1) they were uncertain
about what the code does, (2) they were unclear about what it
affects if the code is changed, and (3) they misunderstood each
other when changes were described. If such lack of knowledge,
and miscommunication among the expert engineers were not
resolved via peer discussions prior to applying the changes,
we anticipate that such changes would result in a later wrong
decision or action. We also found that (4) many small changes are
enacted in the code for which the sequencing matters and that
were poorly-communicated while planning. Thus, these changes
cannot be reviewed by other engineers until after they are fully
implemented. We hypothesize that such lack of knowledge and
miscommunication would adversely affect the quality of a large-
scale refactoring task, especially when the complexity of the task
increases and the level of expertise decreases.

I. INTRODUCTION

Refactoring is now a standard practice for improving the
internal design of software [7]. While some attempts have
been made at scaling up support for refactoring, anecdotes
complain that these large-scale software refactoring tasks
remain problematic: “sometimes restructuring could be done
easily, but 90% of the time it is not a trivial task” [2];
“I think rescuing existing code from the brink of a rewrite
while still producing new features is the most challenging
thing I’ve ever had to do” [19]; “This is gonna [sic] be very
hard and not very successful, and this is largely because
you are facing a huge manual task [with] no faith in the
answer” [3]. Various authors argue that developers should
invest in planning changes before jumping into implementing
them [1, 10, 14, 17], but the anecdotes suggest that something
deeper than “ignorant surgery” [16] is occurring here. Are

there particular risks faced by developers engaged in large-
scale refactoring that do not occur at smaller scales (and why)?
Insight into such risks will better inform us as to the support
needed in large-scale refactoring tasks.

To this end, we conducted an in-depth, retrospective study of
a successful, real-world case: when the Eclipse Platform was
restructured to support building applications other than IDEs,
resulting in the Eclipse Rich Client Platform (RCP) [4, 5]. As
failed attempts at software restructuring will typically leave
no record of what went wrong, we are left with the need to
indirectly study the issues. This case was interesting to study,
not only because it achieved its goals, but because (a) Eclipse
is large, mature, and industrially relevant; (b) Eclipse is open
source, with previous versions and bug tracking data available;
and (c) the plan for restructuring it [8, 11] and the discussions
behind it [5, 6]—is available, concise, and fairly simple. Due to
the enormity of the full restructuring, we focused specifically
on the Help subsystem.

We manually analyzed the online discussion around this big
refactoring in Bugzilla [6] and reverse engineered the details
of what happened, reconstructing the mapping between the
planned, conceptual changes in the abstract level [11] and the
actual, detailed changes in the codebase. First, we note that
the five persons involved in the investigation and planning of
the restructuring of Help subsystem were all expert engineers
familiar with the Eclipse project; the two that implemented
the changes were a subset of these. Second, from our de-
tailed, temporal analysis we had certain observations that we
hypothesize would deter software engineers from doing large-
scale refactoring in more typical settings. We provide our
evidence in four categories, as follow. When mapping out
changes, expert engineers (1) were uncertain about what the
code does; (2) were unclear about where is affected if the code
changes; and (3) misunderstood each other when they com-
municated changes. When implementing changes, (4) many
small changes were coordinated in the code—i.e., for which
the sequencing matters—that were poorly-communicated in
the plan before implemented.

We observed that the first three categories of risks are

overcome, in this case, through discussion with peers in cor-
recting wrong knowledge or completing missing knowledge.
Furthermore, we did not encounter indications of a bug that
crept into the implementation of the large-scale refactoring
as a result of the fourth category: the complex coordination
of interdependent, detailed changes. However, this situation is
unusual: first, Eclipse was already well modularized (just not
in the manner desired); second, the Help subsystem was not
very large; third, all engineers involved were highly experi-
enced and particularly with the development of Eclipse itself;
fourth, they were all highly motivated to complete the change
well as opposed to simply doing so quickly; and, fifth, they
had the backing of an organization that boasts cutting edge
technology for modelling and development support. Since we
doubt that these factors are the norm, we suspect that problems
encountered and overcome here, would instead be encountered
and cause the task to fail in more typical situations.

The remainder of the paper is structured as follows. Sec-
tion II describes the Eclipse Help subsystem, the big refactor-
ing it underwent, and the methodology by which we arrived
at our evidence of risks. Section III overviews those evidence.
Additional points including threats to the validity in our study
are discussed in Section IV. Section V describes related work.

II. SUBJECT AND METHODOLOGY

In this section, we describe the restructuring of the Eclipse
Help subsystem and our methodology for studying it.

A. Study Subject

The Eclipse Platform underwent a major restructuring in
2003 [, 8]. The essential purpose of this restructuring was to
provide a minimal platform—called the Rich Client Platform
(RCP)—for clients that could leverage some functionality of
Eclipse but without depending upon the interactive work-
bench that is specific to the Eclipse integrated development
environment (IDE) [5, 8]. The restructuring changes were
implemented in the transition from release 2.1 to release 3.0
of the Eclipse Platform [8, 20]. The plan of changes for
this restructuring was documented prior to changes being
enacted on the codebase; it is available, concise, and fairly
simple [8, 11].

The complete restructuring of the Eclipse Platform involved
an enormous codebase and change repository—too enormous
for practical, in-depth manual analysis. Instead, we focused
on the Help subsystem, which was heavily affected by the
proposed restructuring plan [8, 11]. The Help subsystem
provides functionalities to search and browse online help
documentation and to access and view context-sensitive help
information about various features of the Eclipse IDE. It also
provides the capability for contributing to the existing Help
implementation via the plugin extension mechanism. After
the introduction of the Rich Client Platform, when an Eclipse
application does not require help support or its engineers prefer
to implement their own help user interface, the application no
longer need possess dependencies on plugins that include large
amounts of IDE-specific code that are unused there [6]. The

TABLE I
CONCEPTUAL CHANGES EXTRACTED FROM THE PLAN
DOCUMENTATION [11]

D Description

A The implementation of most of the Help subsystem backend
moves from the help plugin to the new help.base plugin.

B The luceneAnalyzer, webapp, and browser extension points
move from the help plugin to the help.base plugin

C IHelp is deprecated.

D IHelp display-related methods move to the
AbstractHelpUI class in the ui plugin.

new

E The new HelpSystem class implements IHelp methods for
obtaining the help content.

F The support extension point moves from the help to the ui
plugin and is renamed to helpSupport.

G AbstractHelpUl becomes the contract for the helpSupport
extension point. Arbitrary plugins that implement their own
help UI should contribute to the helpSupport extension point
by subclassing the AbstractHelpUI.

H The WorkbenchHelp class in ui.workbench should not have
access to subclasses of AbstractHelpUI; instead, it is to have
methods to delegate to these. Four additional methods, whose
signatures are given in the plan documentation, are to be added
to WorkbenchHelp.

I The implementation of Help for searches from the workbench
UI moves to the new help.ide plugin.

J The new help.ide plugin will also host synchronization code
for working sets.

restructuring of the Eclipse Help subsystem is a useful and
important case to study because Help is a coherent subsystem
within the Eclipse Platform and problems observable in this
subsystem would likely only get worse in scaling up to the
restructuring of the full Eclipse Platform.

In Table I, we summarize 10 “conceptual” changes that
the engineers planned to enact in the Help subsystem [11].
Given the plan of changes, we see the restructuring of
the Help subsystem as straightforward: Moving, Renaming,
Deprecating, and Adding things, assuming familiarity of the
developer with the codebase, e.g., knowing the meaning of
“the implementation of most of the Help subsystem back end.”

Figure 1 shows four pre-restructuring plugins. The
ui.workbench! plugin provides an API for working with the
core facets of the Eclipse IDE. This is exported through the
ui plugin, which acts as a facade for a variety of platform
APIs and declares several platform UI extension points. The
help plugin provides the non-UI parts of the Help API, which
are depended upon by the workbench. In particular, the IHelp
interface is provided by help and is called by ui.workbench
to obtain help information. The help.ui plugin provides a
concrete implementation of IHelp, contributing it via the
support extension point in help. In addition, help.ui contains
the standard implementation of Help UI that is specific to the
IDE, and thus it depends on ui [8].

IFor brevity, we elide the prefix “org.eclipse.” from the plugin names.

2]

org.eclipse.help N

N \

org.eclipse.ui.workbench

AN

8]

org.eclipse.ui

s/
7
/
1/

org.eclipse.help.ui

Fig. 1. Help plugins (help and help.ui) before RCP restructuring, represented
as a UML component diagram.

org.eclipse.help ™
AN

i

org.eclipse.ui.workbench

B

org.eclipse.help.base

B

A org.eclipse.ui

A

org.eclipse.help.ui

B

A org.eclipse.ui.ide

org.eclipse.help.ide

Fig. 2. Help plugins (help, help.base, help.ui, and help.ide) after RCP
restructuring.

Figure 2 shows seven post-restructuring plugins. The ui.
workbench and ui plugins maintain their roles, except that
IDE-specific elements of the Ul have been extracted and
modularized within a new plugin, ui.ide, that depends on ui.
For the Help plugins, help still contains the main part of
the API and extension points; the implementation has been
moved into the new help.base plugin. The Ul-specific parts
of Help are still contained in the help.ui plugin, contributing
to ui via the helpSupport extension point. The help.ide plugin
was separated to isolate IDE-specific facets of Help [8].

Given the corresponding modules in Eclipse’s CVS reposi-
tory, we see that the overall size has not changed much. The

Eclipse Help subsystem comprises 138 and 149 resources’

before and after the RCP restructuring respectively, consisting
of 19,210 and 19,555 lines of code (LOC) respectively. This
supports the notion that this was largely a design restructuring,
and not a restructuring combined with feature extension.

B. Study Method

To understand the engineers’ collaboration in planning the task
of restructuring the Eclipse Help subsystem, we studied their
online discussion around it in Eclipse’s Bugzilla repository [6].
This discussion involved five participants, skilled Eclipse
engineers (as shown by their online profiles) with apparent,
detailed knowledge of the codebase. Planning took place over
the course of eleven days. We printed out this discussion
and manually conducted a qualitative analysis of its content
by coding, categorizing, and writing analytic memos [18].
Section III-A presents the major categories we identified in
this analysis.

To understand what detailed changes were enacted on Help
resources and why, we manually reverse engineered changes
recorded in Eclipse’s CVS repository and reconstructed the
mapping between the plan and the ensuing detailed changes.
Our investigation method consists of two main phases: (1) col-
lection of the raw data; and (2) investigation and categorization
of the raw data. We elaborate on these phases below.

1) Collecting the raw data: Collecting the raw data con-
sisted of identifying the resources modified during the restruc-
turing, selecting the versions of these resources just prior to
and just after the restructuring, and identifying the commits to
the change repository involved in intermediate versions.

a) Selection of the versions: We searched the Eclipse
Platform UI project repository location to locate appropriate
versions of Help packages and closely related Eclipse platform
packages. Within Eclipse, a plugin is a unit of deployment
containing Java source-/class-files organized in packages, and
other resources; the package hierarchy can constrain modular-
ization within plugins. During our reverse engineering process,
it was easier to determine the packages in which files resided
rather than plugins, so henceforth we refer only to packages.

For the pre- and post-restructuring versions of these pack-
ages, the available restructuring documents [6, 11] provide
little information about the appropriate CVS tags (with the
exception of RCP_WORK_1 [6]). We discovered them while
exploring the repository, inferring correctness by the content of
their names, the timing of their commits, and their consistent
use. Where no specific tag was consistently appropriate, we
checked out the latest project version whose tag is reminiscent
of this process.

b) Finding RCP-related change commits: We determined
which resources were changed to enact the RCP restructuring
in the Help subsystem. Looking through the history of each

2The count of resources includes Java classes or interfaces, .properties
data files within the src directory of the project, .exsd XML files within the
schema directory of the project, and the plugin.xml file in the root directory
of the project. The counted resources belong to Help plugins and 4 resources
belong either to ui.workbench or ui. Size reported in terms of lines of code
includes comments and empty lines.

resource in Eclipse’s CVS History view, we found that relevant
commits are generally accompanied by the commit comment
“RCP work 1”. We also included commits accompanied by
two other comments that we see as related to the concep-
tual changes and occurring in the expected time period. For
convenience, we call change commits with any of these three
comments RCP-related change commits.

We reduced our study space to only include resources with
RCP-related change commits. Note that a given RCP-related
change commit often involves more than one resource.

2) Investigation and categorization: Our goal was to un-
derstand each RCP-related change commit sufficiently to state
confidently what happened within it and why. To express the
what, we iteratively developed a set of detailed design change
categories to describe how the resources were changed within
RCP-related change commits. To express the why, we sought
to map the RCP-related change commits to the conceptual
changes in the plan (i.e., Table I).

a) Strategies: Our investigation consisted of four chief
strategies: (1) examination of the detailed implementation of
a resource before and after a change commit; (2) use of
Eclipse’s compare editor to examine the changes across a given
change commit; (3) modelling the structure and behaviour of a
resource before and after a change commit as UML class and
sequence diagrams; and (4) origin analysis [9] on the resources
involved to determine to/from where code fragments or entire
resources had been moved that otherwise apparently appeared
or disappeared. Since the strategies involved different levels
of effort, more complex strategies were applied only where
simpler strategies did not yield acceptable results. In some
cases, understanding individual design changes (i.e., what hap-
pened) required consideration of multiple RCP-related change
commits.

b) Origin analysis: Some resources were added or
deleted in conducting the RCP restructuring; code fragments
within existing resources were added or deleted too. To
determine whether these resources and code fragments were
actually moved, we manually conducted origin analysis [9]
on the resources involved. We initially assumed that two
resources with different timestamps and identical names rep-
resent versions of the same resource across a modification; if
the evidence suggested that this assumption was incorrect in
a given case, it was revised, and a search for better matching
entities was pursued. In general, we attempted to compare all
affected resources to hypothesize the source and destination
of moved functionality, starting from resources with similar
names. In some situations, matching source and destination
required exhaustive comparison of a set of resources. In other
situations, we stumbled across the answer through luck.

c) Categorization, hypothesis testing, iteration: In each
case, once we had constructed a hypothesis about the nature
and cause of a change, we sought evidence for or against the
hypothesis in the details of the code and the comments made
therein. Falsified hypotheses led to iteration.

Supported hypotheses led to us assigning the observed
changes to one or more conceptual changes in the restructuring

plan (Table I) as well as categorizing their design-level nature.
We followed an iterative process of developing these design
change categories, as we observed similar kinds of detailed
implementation changes over the course of our investigation.

III. SYNOPSIS OF EVIDENCE

A. The Preparation

We observed that the large-scale refactorings were iteratively
and incrementally mapped out in the engineers’ discussion
in Bugzilla [6]. During these iterations, we observed that
some earlier decisions on changes are heavily revised later
on during the discussion when (a) engineers realize the need
for additional changes to the already investigated portions of
the code (any, from statements to packages), (b) they figure
out that they have overlooked consequences of some earlier
decisions, or (c) decisions about other portions of the code
force revisions to some earlier decisions.

We claim the following categories of risks based on the
described evidence.

Category 1: Expert engineers were uncertain about
what the code does. We observed in their discussion that
expert engineers sometimes guess about (parts of) the current
design of the code. For example, “Could you also list the
plugin dependencies if they differ from my guess in [an earlier
comment]” Later in the discussion it turned out that this guess
was incomplete. Also, we observed that they have doubts about
the current design of the code when discussing a change. For
example, “Do these extension points make assumptions about
the presentation?”

Category 2: Expert engineers were unclear about where
it affects if the code changes. We observed that consequences
of some changes are unclear when they are proposed; for ex-
ample, “What would remain in [package a] then? would it be
just search support [...], or would there be more remaining?”
or the consequences are totally overlooked; for example, in one
instance, we observed that having overlooked consequences of
some earlier decisions, one engineer discovers a fundamental
problem with the resulting design.

Category 3: Expert engineers misunderstood each other
when they communicated changes. We observed participants
in the discussion possessing conflicting mental models about
the changes decided till then. Consider an example involving
two engineers, P1 and P2: P1 wrote, “[P2], my impression
is that you view the role of the plugins differently than I”
and described more about what he actually meant. P2 then
critiqued P1’s proposed change, hinting at its consequences,
“But then there would be different ways of contributing help
content for different Uls. This is not what I was imagining”,
elaborating on his intended meaning. Here the point is not how
two developers discuss how to implement a change or what
type of changes are discussed or preferred over one another as
the existence of such communication is the norm; rather, the
point here is an instance of evidence that misunderstandings
occur when they communicate changes.

B. The Execution

Execution of a large-scale refactoring requires implementing a
group of detailed changes in the codebase. While we observed
each such detailed change to be a simple modification of
the code, we observed that coordination of these changes
could be complex. In this subsection, we illustrate instances of
such coordination complexity that we observed. We provide
our evidence via synthetic examples that are derived directly
from our observations during our analysis of Eclipse’s CVS
repository; we do not describe actual examples for the sake
of brevity and comprehensibility; referring to real classes and
the reasons why these changes were implemented would only
add unnecessary detail.

Category 4: Many small changes need to be coordinated
in the code that were poorly-communicated in the plan
before implemented. Figure 3 illustrates an example in which
deciding a detailed change on a structural unit in the code
requires reasoning based on the semantics of changes enacted
so far; these other changes might be in different files/packages
(i.e., non-localized changes). In Figure 3(a), classes C, D, and
E each calls A.m1() in their implementation. In Figure 3(b),
class B is added with structure and implementation similar
to class A. Then, classes A and B each undergoes different
modifications. As an effect of these modifications, the calls
to A.m1() remain in class C but are replaced with B.m1() in
classes D and E despite the fact that the previous A.m1() calls
in these two classes were still syntactically correct. Deciding
on modifications to calls to A.m1() in the implementation of
classes C, D, and E requires reasoning based on the semantics
of changes that were enacted in the implementation of classes
A and B.

Figures 4 and 5 illustrate two examples in which deciding
which structural unit to change next, requires reasoning about
the current structure of the codebase.

In Figure 4(a) the constant variable CONSTANT is used in
the implementation of class A. In Figure 4(b), the declaration
of this variable and methods in which it is used are copied-and-
pasted in class B. The resulting code looks fine and there is no
compiler error; however, for the sake of program correctness,
the literal value “I” has to change to the literal value “J” so
that it reflects the structural context of the reused code, as
shown in Figure 4(c). The initial change to class B does not
cause a compiler error that would force the second change.

In Figure 5(a) the constant variable CONSTANT is used in
the implementation of class A. In Figure 5(b) a piece of con-
figuration code, named C, is cut-and-pasted from Config1.xml
to Config2.xml. The code looks fine and there is no compiler
error; however, for the sake of program correctness, a sec-
ond piece of configuration, called D, should be modified in
Config3.xml and the literal value “I” in class A has to change to
“J”, all to reflect the new program configuration. The changes
to Config1.xml and Config2.xml do not cause compiler errors
that would force the the need for the follow-on changes.

Figure 6 illustrates an example in which deciding a change
on a structural unit requires consideration of the cascading

I e,
i
=17

Calls Am1() D\

\

‘ LS+ m1Q
—+ -
| |
| |

(a) before

]

A Calls B.m1()
[=P \Q
} +m2() : }
\ L
Calls A.m1() B AT /EI
2 - |
+ml() !
+m2() <____L___
(b) after

Fig. 3. The coordination complexity of detailed changes: first case.

effects from previously enacted changes in the codebase,
specifically those that impact the structural unit of interest.
Figure 6 shows that some changes have already been enacted
to the classes A and B, and the interface IN, as part of a big
refactoring task. Now, method next() in class A is next to be
modified for the intended refactoring change. However, due to
the dependencies of next() on the methods m1() and m2() and
on IN, the cascading effects of those previous changes must be
taken into account in deciding how next() changes; in addition,
next() must change due to the conceptual refactoring changes
that directly impact it.

These four examples show that in executing a large-scale
refactoring, the individual detailed changes may interact, in-
dicating that their ordering and semantics must be considered
in combination.

IV. DISCUSSION

In this study, we observed detailed evidence, overviewed in
Sections III-A and III-B, that suggest risks with planning and
investigation of complex change to an existing software before
implementing it. We do not claim anything bad happened
at some time during the studied big refactoring case due to
these identified categories, however these observations served
to us as a first step in our attempt to identify and classify big
refactoring challenges.

A. Threats to Validity

1) External validity: This is a case study of one subsystem
affected by a large-scale restructuring task. Eclipse is a large,
mature, open source, industrial system written largely in the

A
- CONSTANT ="I"
+mi) - F —| Uses CONSTANT 5
+m2()
B
(a) before
A A
- CONSTANT ="I" - CONSTANT ="I"
+ml() +ml()
+m2() +m2()
B B
- CONSTANT ="I" - CONSTANT ="J"
+mi() +ml()
(b) intermediate (c) after

Fig. 4. The coordination complexity of detailed changes: second case.

a b
Configl.xml Config3.xml
<config> <config>
configuration data C configuration data D
<\config> <\config>
Config2.xml A
- CONSTANT ="I"

(a) before
a b
Configl.xml Config3.xml
<config>
configuration data E
Config2.xml <\config>
<config> A
configuration data C
<\config> - CONSTANT ="J"

(b) after

Fig. 5. The coordination complexity of detailed changes: third case.

Java programming language; however, the Help subsystem
is a relatively small part of it, and thus, apparently more
representative of smaller systems. Both of these factors may
cause the results to not generalize to other cases. Whether
its restructuring was representative a representative case is
unlikely given that it was successful, but we cannot claim cer-

a

A

. > next(‘)/: S || Already modified AN

W
(| N b _ || [Aready aeterea I
|
I
: b
S IN
AN +i1() Already deprecated
s +i2() /"l ‘%
+i3()

B | _ | Already added N
+i3()

Fig. 6. The coordination complexity of detailed changes: fourth case.

tainty. Five skilled Eclipse engineers contributed in planning
changes which took place over a period of eleven days; two of
them performed the restructuring of the Help subsystem in five
days®; whether this is representative of a typical restructuring
context is currently unknown to us.

This case study was feasible only because of the existence
of publicly-available planning documentation for the RCP
restructuring, created prior to the changes being enacted. As
such, repeating the study on many other systems could prove
problematic because of the common lack of such available
documentation. In addition, for retrospective study of unsuc-
cessful restructuring cases, the implementation of changes
might also not be publicly-available as the associated branch
may no longer exist in their version control systems.

Regardless of these issues, this study was necessary to arrive
at initial hypotheses grounded in empirical evidence. Follow
on studies can test these hypotheses.

2) Internal validity: We chose the Eclipse RCP restructur-
ing because we were aware of its existence, though not of
its details. We started from the Help subsystem essentially
at random; while we had originally considered studying a
fuller swath of the RCP restructuring, the reverse engineering
process we employed and the volume of small details arising
from Help alone caused us to change our minds. We did not
sample the change commits related to this restructuring; only
by studying a complete, cohesive set of changes to a single
subsystem could we have reliably identified what and why
detailed changes were performed on Help resources.

Our study method depends on our interpretation of which
versions of resources existed immediately before and imme-
diately after the restructuring. This, in turn, depends on the
correctness of the timestamp information recorded in Eclipse’s
CVS repository, the correctness of our interpretation of the
meanings of commit log comments and tag names, and the

3All the RCP-related changes that were made in the first 4 days are
committed by one engineer, and all the changes made in the fifth day are
committed by the other engineer.

correctness of the engineers’ original association of those
comments and names with those resource versions. We have
outlined our steps to ensure that our interpretation was the
best possible; given the importance of the restructuring to the
reliability of Eclipse, it is unlikely that the cues on which we
depended were badly wrong.

3) Construct validity and repeatability: Our reverse en-
gineering process required us to subjectively determine the
mapping between change commits and the conceptual changes
obtained from the planning document. Furthermore, we itera-
tively constructed the design change categories from subjective
observations of the code changes, and mapped the change
commits to design change categories too. It is possible that
other researchers would perform these mappings differently.
However, it must be acknowledged that true mappings do
exist, as it makes no sense for arbitrary transformations to
have occurred for arbitrary purposes despite the evidence to
the contrary. Our cautious approach to hypothesis construction
and testing led us to data items that were surprising to us; we
rejected the most obvious mapping (e.g., that two like-named
resources were versions of the same resource), or selected no
mapping when the evidence did not justify it (e.g., for one
resource, we could not determine which conceptual changes
if any, the detailed changes to that resource realized).

While having multiple researchers repeat these steps would
have been ideal, the process was expensive. As this was a
case study, representing an initial exploration of an unknown
territory, we feel that such additional expense is not currently
warranted. Other data collection techniques will be used in
future studies, and these will lead to well-founded hypotheses
that merit rigorous testing. But this case study remains a
necessary first step.

In theory, we could also have validated our inferred map-
pings or our analytic memos with the engineers involved in
RCP restructuring, possibly asking only for a sampling of the
full set of them to reduce the time burden. Aside from the
likely difficulty of obtaining the time of these individuals, it
is unlikely that their memories of detailed changes performed
a decade ago would be clear enough to be useful here.

B. Future Work

This case study has suggested to us indications of potential dif-
ficulties with a real-world big refactoring task; we categorized
those risks in four groups and hypothesized they adversely
affect the quality of a large scale restructuring task, especially
when the complexity of the task increases and the level of
expertise decreases.

We wish to collect more evidence before we pursue our sup-
port ideas. We intend to interview a set of software engineers
that have performed software restructuring tasks in real-world
projects in order to understand how they go about preparation
and execution of these tasks, whether/what problems they have
encountered, and what gaps of pragmatic support exist com-
monly in their current processes. If we manage to speak with a
diverse group, we expect that differences of opinion will arise
about strengths and weaknesses of the state of the practice;

however, we also expect that enough commonalities will exist
that progress can be made towards improved support.

V. RELATED WORK

Being a large, popular, mature, open source application, the
Eclipse IDE has been the target of various empirical studies
in software evolution. Similar to our case study, researchers
have examined the Eclipse code repository over its public
releases from diverse perspectives on software evolution re-
search, though none inquiring about why undertaking software
restructuring tasks could be difficult. Wermelinger and Yu [20]
studied the evolution of Eclipse plugins and their dependen-
cies. They extended this research by studying the evolution
of Eclipse SDK source code to find any evidence for the
usage of established design principles that facilitate software
maintenance [21, 22]. Xing and Stroulia [23] compared major
releases of the Eclipse JDT source code, a subproject of the
whole Eclipse platform, with the focus on locating code refac-
torings. Based on the apparent evolution of Eclipse features
along its releases, Hou [12] studied how design of the Eclipse
Java editor has changed in terms of features that are added
to or are enhanced across releases 1.0 through 3.2. Mens
et al. [15] examined how the evolution of the Eclipse project
aligns with Lehman’s classic laws of software evolution [13].
Among these studies, Wermelinger and Yu [20] and Mens et al.
[15] used metrics to quantify Eclipse repository evolution at
different granularities. Our case study is unique regarding its
goals among past studies of the Eclipse code repository.

VI. CONCLUSION

We have studied part of a real-world, large-scale software
restructuring task, whose plan of changes to the existing
design and detailed source modification history were publicly
available.

The Help subsystem was well-structured. Despite the code-
base being relatively small, planning the restructuring task
required two weeks of discussion by five experienced experts,
two of whom then enacted the plan. Furthermore, the indi-
viduals involved worked for IBM, having at their disposal a
plethora of information, organizational support, and state-of-
the-art tool support. We found evidence that, notwithstand-
ing their expertise and available resources, inadequacy or
miscommunication existed in the engineers’ individual and
shared understanding of the subsystem, shared and iterative
mental modelling of the subsystem and the envisioned changes
thereon, shared and iterative impact analysis, and the coordi-
nation of interdependent and detailed changes. That program
understanding is difficult is well-known, but the literature
would have us believe that planning such a task should be
straightforward and that its enactment can easily be handed
off to more junior programmers to be enacted; such assertions
seem ill-founded here.

This case study was not typical. We believe that in more
general cases, the effects of these difficulties would increase,
often resulting in the failure of such tasks and certainly
rendering them costly, risky, and error-prone. We plan to seek

evidence from a broader range of domains and development
contexts to test our hypothesis, and to refine our model. In the
medium-term, we plan a variety of tool support for engineers
engaged in such tasks.

Evidence will provide a foundation for scientific progress.

ACKNOWLEDGMENTS

We thank Brad Cossette, Rylan Cottrell, Soha Makady, and
Mehrdad Nurolahzade for their feedback on earlier drafts of
this paper. This work was supported by NSERC.

REFERENCES

[1] P. Adamczyk, A. Zambrano, and F. Balaguer, ‘“Refac-
toring big balls of mud,” in Software Engineering -
Companion Volume, 2009. ICSE-Companion 2009. 31st
International Conference on, May 2009, pp. 50-60.

[2] R. Attapattu, “Restructuring code,” http://rajith.2rlabs.
com/2008/06/09/restructuring-code/, Jun. 2008.

[3] I. Baxter, “How to go about a large refactoring
project?” http://stackoverflow.com/questions/5522017/
how-to-go-about-a-large-refactoring-project, Apr. 2011.

[4] http://eclipse.org/rcp/generic_workbench_summary.html,
Dec. 2003.

[5] N. Edgar, “Bug 36967: Enable Eclipse to be used as a
rich client platform,” https://bugs.eclipse.org/bugs/show_
bug.cgi?id=36967, Apr. 2003.

[6] —, “Need a trimmed-down org.eclipse.help,’
https://bugs.eclipse.org/bugs/show_bug.cgi?id=40050,
Jul. 2003, eclipse Bug 40050.

[71 M. Fowler, Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999.

[8] http://eclipse.org/rcp/generic_workbench_structure.html,
Nov. 2003.

[9] M. W. Godfrey and L. Zou, “Using origin analysis to
detect merging and splitting of source code entities,”
IEEE Trans. Softw. Eng., vol. 31, no. 2, pp. 166-181,
Feb. 2005.

[10] E. Hadar and I. Hadar, “The composition refactoring
triangle (crt) practical toolkit: From spaghetti to lasagna,”
in Companion to the 21st ACM SIGPLAN Symposium
on Object-oriented Programming Systems, Languages,
and Applications, ser. OOPSLA 06. New York, NY,
USA: ACM, 2006, pp. 786-797. [Online]. Available:
http://doi.acm.org/10.1145/1176617.1176725

[11] http://eclipse.org/rcp/restructuring_help.html, Sep. 2003.

[12] D. Hou, “Studying the evolution of the Eclipse Java
editor,” in Proc. Eclipse Technol. eXchange, 2007, pp.
65-69.

[13] M. M. Lehman, “Programs, life cycles, and laws of
software evolution,” Proc. IEEE, vol. 68, no. 9, pp. 1060—
1076, Sep. 1980.

[14] M. Lippert and S. Roock, Refactorings in Large Software
Projects: How to Successfully Execute Complex Restruc-
turings. Wiley, 2006.

[15] T. Mens, J. Fernandez-Ramil, and S. Degrandsart, “The
evolution of Eclipse,” in Proc. IEEE Int. Conf. Softw.
Mainten., 2008, pp. 386-395.
D. L. Parnas, “Software aging,” in Proc. ACM/IEEE Int.
Conf. Softw. Eng., 1994, pp. 279-287.
S. Peter and S. Ehrke, “Refactoring large software
systems,” Methods & Tools, vol. 17, no. 4, pp.
2-17, Winter 2009. [Online]. Available: http://www.
methodsandtools.com/archive/archive.php?7id=98
[18] J. Saldana, The Coding Manual for Qualitative Re-
searchers. SAGE, 2009.
D. D. Salvucci, N. A. Taatgen, and J. P. Borst, “Toward
a unified theory of the multitasking continuum: From
concurrent performance to task switching, interruption,
and resumption,” in Proc. ACM SIGCHI Conf. Human
Factors Comput. Syst., 2009, pp. 1819-1828.
[20] M. Wermelinger and Y. Yu, “Analyzing the evolution
of Eclipse plugins,” in Proc. Int. Working Conf. Mining
Softw. Repos., 2008, pp. 133-136.
M. Wermelinger, Y. Yu, and A. Lozano, “Design prin-
ciples in architectural evolution: A case study,” in Proc.
IEEE Int. Conf. Softw. Mainten., 2008, pp. 395-405.
[22] M. Wermelinger, Y. Yu, A. Lozano, and A. Capiluppi,
“Assessing architectural evolution: A case study,” Empir.
Softw. Eng., vol. 16, no. 5, pp. 623-666, Oct. 2011.
[23] Z. Xing and E. Stroulia, “Refactoring practice: How it is
and how it should be supported—An Eclipse case study,”
in Proc. IEEE Int. Conf. Softw. Mainten., 2006, pp. 458—
468.

[16]

(17]

(19]

(21]

http://rajith.2rlabs.com/2008/06/09/restructuring-code/
http://rajith.2rlabs.com/2008/06/09/restructuring-code/
http://stackoverflow.com/questions/5522017/how-to-go-about-a-large-refactoring-project
http://stackoverflow.com/questions/5522017/how-to-go-about-a-large-refactoring-project
http://eclipse.org/rcp/generic_workbench_summary.html
https://bugs.eclipse.org/bugs/show_bug.cgi?id=36967
https://bugs.eclipse.org/bugs/show_bug.cgi?id=36967
https://bugs.eclipse.org/bugs/show_bug.cgi?id=40050
http://eclipse.org/rcp/generic_workbench_structure.html
http://doi.acm.org/10.1145/1176617.1176725
http://eclipse.org/rcp/restructuring_help.html
http://www.methodsandtools.com/archive/archive.php?id=98
http://www.methodsandtools.com/archive/archive.php?id=98

	Introduction
	Subject and Methodology
	Study Subject
	Study Method
	Collecting the raw data
	Investigation and categorization

	Synopsis of Evidence
	The Preparation
	The Execution

	Discussion
	Threats to Validity
	External validity
	Internal validity
	Construct validity and repeatability

	Future Work

	Related Work
	Conclusion

