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Abstract

In this paper, we explore physical layer cooperative communication in order to design network

layer routing algorithms that are energy efficient. We assume each node in the network is equipped with

a single omnidirectional antenna and that multiple nodes are able to coordinate their transmissions in

order to take advantage of spatial diversity to save energy. Specifically, we consider cooperative MIMO

at physical layer and multi-hop routing at network layer, and formulate minimum energy routing as a

joint optimization of the transmission power at the physical layer and the link selection at the network

layer. Using dynamic programming, we compute the energy consumption of the optimal cooperative

routing in different network scenarios, which shows energy savings of up to 55%, compared with

the optimal non-cooperative routing. As the network becomes larger, however, finding optimal routes

becomes computationally intractable as the complexity of the dynamic programming approach increases

as O(22n), where n is the number of nodes in the network. As such, we develop two greedy routing

algorithms that have complexity of O(n2), and yet achieve significant energy savings. Simulation results

indicate that the proposed greedy algorithms perform almost as good as the optimal algorithm and

achieve energy savings of more than 50% in the simulated scenarios.

Index Terms

Minimum energy routing, cooperative communication, cooperative MIMO, wireless networks.
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Energy Efficient Cooperative Routing

in Wireless Networks

I. INTRODUCTION

Energy efficiency is a challenging problem in wireless networks, especially in ad hoc and

sensor networks, where network nodes are typically battery powered. It is not therefore surprising

that energy efficient communication in wireless networks has received significant attention in the

past several years [1]–[5]. Most of the work in this area has specifically focused on designing

energy efficient network and physical layer mechanisms. At the network layer, the goal is to find

energy efficient routes that minimize transmission power in an end-to-end setting [3]–[5]. At the

physical layer, the goal is to design energy efficient communication schemes for the wireless

medium. One such scheme is the so-called cooperative communication [6], [7].

Most routing protocols for ad hoc networks consider a network as a graph of point-to-point

links, and multiple links are used to transmit data from a source node to a destination node in a

multi-hop fashion. Although the notion of a link has been a useful abstraction for wired networks,

for wireless networks, the notion of a link is vague [7]. Wireless networks, however, are often

constrained by the same notion of link that is inherited from wired networks, namely, concurrent

transmissions of multiple nearby transmitters result in interference producing a collision. Cooper-

ative communication is a radically different paradigm in which the conventional notion of a link is

abandoned. Specifically, some of the constraints imposed by the conventional definition of a link

are violated, e.g., a link can originate from multiple transmitters, and concurrent transmissions,

when coordinated, do not result in collision. In cooperative communication, nodes equipped

with a single antenna can achieve diversity and coding gains similar to those of multi-antenna

systems by cooperatively coding and transmitting data (interested readers are referred to [7] for

an excellent overview of cooperative communication and its impact on higher layer network

protocols). To this end, we note that multi-hop communication in wireless networks is a special

case of cooperative communication.

Although there has been considerable research on energy efficient routing [3]–[5], and coop-

erative communication [8]–[12] in isolation, only recently a few works have addressed network
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layer routing and physical layer cooperation problems jointly. This is surprising as cooperative

communication is inherently a network solution; hence, it is essential to investigate routing and

cooperation jointly. This is the problem we address in this paper for cooperative Multiple-Input

Multiple-Output (MIMO) networks.

Khandani et al. [13] present one of the early works in this area, where they formulate

the energy consumption in a static cooperative wireless network. They quantify the energy

savings achieved through cooperation, and design heuristic algorithms to find energy efficient

routes from a single source to a single destination. In their work, Khandani et al. consider

cooperative Multiple-Input Single-Output (MISO) technique for data transmission at physical

layer, and show that considerable energy savings can be achieved using cooperative routing

techniques. Zhang et al. [14] extend Khandani’s work to a multi-source multi-destination network,

where multiple flows traverse the network simultaneously. Similarly, they also consider the

MISO cooperative technique only. Since the simple cooperative routing strategies (such as those

proposed by Khandani et al.) do not work efficiently without considering link contention among

different flows, Zhang et al. suggest a joint routing and scheduling algorithm to find energy

efficient routes. Their work is rather orthogonal to our work as we mainly focus on joint routing

and cooperation regardless of the number of flows in the network.

It is well known that Multiple-Input Multiple-Output (MIMO) transmission (i.e., the use of

multiple antennas at both the transmitter and receiver) improves the network performance in

terms of data throughput and transmission range without using additional bandwidth or transmit

power. Through cooperation, spatially separated nodes in a wireless network can form cooperative

MIMO links that can achieve diversity and coding gains similar to those of multi-antenna

MIMO systems [6]–[8], [10]. In this paper, we study the problem of minimum energy routing

with cooperative MIMO communication in a static wireless network (such as a wireless ad hoc

network).

We apply cooperative MIMO in a restrictive form, in which there is no communication

among the receivers, i.e., no coding gain from MIMO. The reason is that distributed decoding

significantly increases the complexity of the physical layer communication, and incurs substantial

signalling overhead. Instead, in this paper, we focus on power gain of cooperative MIMO in

a setting resembling multiple concurrent MISO transmissions. Our intuition is that the optimal

routing algorithm is multi-hop in nature, where at each hop a decision has to be made about the
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set of transmitting and receiving nodes that form a cooperative link. This means that the receiving

set is not necessarily a single node as in MISO techniques considered by Khandani et al. [13] and

Zhang et al. [14], rather multiple nodes can be appropriately chosen by the routing algorithm. It

is obvious that the cooperative MIMO we consider in this paper includes cooperative MISO as

a special case, where the receiving set consists of only a single node. Hence, the algorithms we

develop in this work are superior to those proposed in [13], as we will show using simulations.

Our contributions can be summarized as follows:

1) We consider cooperative MIMO in a wireless network, and formulate the cooperative link

cost (in terms of transmission power) between a set of transmitting and receiving nodes

as an optimization problem, which we solve using quadratic programming. The optimal

solution does not have a simple form; hence, we derive a sub-optimal solution for the

power allocation problem.

2) We formulate energy optimal routing as an optimization problem, and show the optimal

route can be found using dynamic programming. However, the optimal solution has expo-

nential complexity; hence, we develop two heuristic algorithms of polynomial complexity,

namely, Greedy Limited Cooperative (GLC) and Greedy Progressive Cooperative (GPC),

to find energy efficient routes.

3) We provide simulation results to evaluate the performance of our routing algorithms, and

compare them against those proposed by Khnadani et al. [13]. In particular, we show

that: (a) energy savings of up to 50% can be achieved with our heuristic algorithms,

(b) optimal routing based on cooperative MIMO outperforms optimal routing based on

cooperative MISO (by more than 10% in terms of energy savings in our simulations), and,

(c) our heuristic algorithms result in energy savings of 20% more than heuristic algorithms

proposed in [13].

The rest of this paper is organized as follows. In Section II, we describe the system model

considered in this paper, and formulate the MIMO link cost in terms of transmission power.

Our proposed optimal and heuristic cooperative routing algorithms are presented in Section III.

Simulation results are presented in Section IV, where we compare energy savings achieved by

different cooperative techniques as well as performance of different heuristic algorithms. Finally,

our conclusions as well as future research directions are discussed in Section V.
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II. SYSTEM MODEL

We consider a wireless network consisting of a set of nodes distributed randomly in an area,

where each node has a single omnidirectional antenna. We assume that each node can adjust

its transmission power in order to control its transmission radius. We also assume that multiple

nodes can coordinate their transmissions at the physical layer to form a cooperative MIMO link.

It is well known that cooperative MIMO results in improved network reliability, coverage, and

energy consumption [8], [10]. We model a MIMO transmission between a set of transmitting

and receiving nodes as multiple MISO transmissions (similar to [15], [16]), and use concepts

from MISO systems to formulate energy consumption in a cooperative MIMO transmission.

A. Channel Model

We consider a time-slotted wireless channel between each pair of transmitting and receiving

nodes, and assume that the channel is fully characterized by the channel gain h. The channel gain

captures the mixed effects of symbol asynchronism, multipath fading, shadowing and path-loss

between the two nodes. In our model, we assume that channel gain is inversely proportional to

the distance between the communicating nodes.

The model for the discrete-time received signal at each non-transmitting node j is as follows

yj[t] =
N∑
i=1

hij xi[t] + ηj[t] (1)

where, yj[t] is the received signal at node j in time-slot t, N is the number of transmitters, hij

is the channel gain between the transmitting node i and the receiving node j, xi[t] is the signal

transmitted by node i, and ηj[t] models the noise and other interferences received at node j. If

transmitter i uses transmission power Pti during this time-slot, the received power level at node

j is given by Prj = h2
ijPti . However, every node has a limit on its maximum transmit power

denoted by Pmax. The channel gain is assumed to be fixed over time. For notational simplicity,

we omit the time-slot index t in the following discussion.

We assume that the transmitted data can be decoded without error if the received Signal-to-

Noise Ratio (SNR) is above a minimum threshold SNRmin, and that no data is received otherwise.

Without loss of generality, we also assume that the information is encoded in a signal that has

unit power and that we can adjust magnitude of the signal by multiplying a scaling factor wi,
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so that the transmitted power by node i would be w2
i . The noise at receiver j is assumed to be

additive and the noise power is denoted by Pηj
.

B. Link Cost Formulation

In this subsection, our objective is to find the optimal power allocation required for a successful

transmission from a set of m transmitting nodes T = {t1, t2, . . . , tm} to a set of n receiving

nodes R = {r1, r2, . . . , rn}1. We define the link cost (LC) as the summation of the transmission

power over all nodes in the transmitting set T , that is

LC =
∑
ti∈T

w2
i . (2)

We build vector hj as the vector of channel gains between transmitting nodes in T and a

receiver rj ∈ R, and vector w as the power scaling factor for nodes in T , as follows (recall that

hij is the channel gain between a transmitter ti and a receiver rj):

hj =


h1j

h2j

...

hmj

 ,
and,

w =


w1

w2

...

wm

 .

Considering the two vectors hj and w, the received signal at receiver rj can be written as

yj = hj
Tw + ηj . (3)

In order to have a successful transmission, the received SNR should be greater than SNRmin

for all the nodes in R. Consequently, the following inequality should be satisfied:

hj
Tw ≥

√
SNRminPηj

, for all rj ∈ R , (4)

1When there is no ambiguity, we use node index j (or i) to refer to node rj ∈ R (or ti ∈ T )
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where, Pηj
is the noise power at receiver rj . There is also a constraint on the maximum power

transmitted by each node, which can be written as:

wi ≤
√

Pmax, for all ti ∈ T . (5)

We are interested in minimizing the transmission power for a successful transmission from T

to R, where the total transmitted power is expressed as:

‖w‖2 =
∑
ti∈T

w2
i . (6)

The power allocation problem is now an optimization problem with (m + n) constraints given

by (4) and (5).

Equivalently, this problem can be written in a matrix form as follows:

y = HTw + n, (7)

where,

y =


y1

y2

...

yn

 , n =


η1

η2

...

ηn

 ,
and,

H = [h1,h2, . . . ,hn] .

Recall that yj and ηj are the received signal and the additive noise at receiver rj , respectively.

Next, we define our transmit power minimization problem as the following optimization

problem (we note that this formulation is a quadratic program):

min
w

f(w) =
1

2
wTQw, (8)

subject to the constraints on the received signal powers at the receivers, and the maximum power

limit on every transmitter:

HTw ≥ b, (9)

and,

w ≤ p, (10)
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where,

Q =

 2 0

0 2

 ,

b =


√

SNRminPη1√
SNRminPη2

...√
SNRminPηn

 ,
and,

p =


√

Pmax
√

Pmax

...
√

Pmax

 .

Different techniques such as the simplex method, active set method or lagrangian multipliers

can be used to solve the optimization problem defined in (8). The optimal solution, however,

may not exist as there may not be any feasible solution to the power allocation problem.

C. Approximate Link Cost Formulation

Although, the optimization problem (8) can be numerically solved to find the optimal solution,

it is useful to derive a solution which can be written in a closed form. Such a closed-form solution

provides some insight into the power allocation problem, as we will see later in Section III, where

we use it to prove a property of MIMO links (namely, as the transmitting set becomes larger

the link cost becomes smaller).

To derive a closed-form approximation, we consider the set of receiving nodes as a super

node. Hence, the problem of allocating power to transmitting nodes in our MIMO transmission

scenario will be reduced to the problem of power allocation in a single MISO transmission

scenario. In our MIMO formulation in the previous subsection, each receiving node was able to

decode as long as it received sufficient power collectively from all the transmitting nodes.

In order to solve the power allocation problem for MISO, we need to compute the channel

gains between the transmitters and the super node. To compute channel gains, consider a typical

transmitter ti ∈ T . Node ti has to transmit at sufficiently high power so that the total power
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from ti and other transmitters received at any node rj ∈ R is above the minimum SNR level.

Intuitively, a receiver with larger channel gain requires less transmit power in order to decode

the received signal successfully. We, however, approximate this by assuming that the transmitter

ti sees all receivers rj ∈ R as equally bad in terms of transmit power requirement. In other

words, node ti assumes that all nodes rj ∈ R have the same channel gain that is equal to the

smallest channel gain among all hij’s for all rj ∈ R. Let rj∗ denote the node with the smallest

channel gain. That is

j∗ = arg min
j: rj∈R

hij .

Transmitter ti uses hij∗ as its channel gain to the super node when computing its transmit power.

Let h∗ denote the channel gain vector between transmitters and the super node, where the super

node consists of nodes R = {r1, r2, . . . , rn}. Based on the above discussion, the i-th entry of

the channel gain vector is given by

h∗i = hij∗ = min
rj∈R

hij,

and the resulting vector h∗ is expressed as:

h∗ =



min
rj∈R

h1j

min
rj∈R

h2j

...

min
rj∈R

hmj


. (11)

Next, we rewrite the optimization problem (8) using channel gain vector h∗. The new opti-

mization problem is expressed as:

min
∑
ti∈T

w2
i

w.r.t. wTh∗ ≥
√

SNRminP ′η,

and, wi ≤
√

Pmax, for all ti ∈ T ,

(12)

where, P ′η denotes the largest noise component of the super node. P ′η is defined in a way that

the node with the highest noise level will also be able to decode the received signal with no

errors:

P ′η = max
rj∈R

Pηj
.
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Optimization problem (12) can be solved to find the approximate power allocation. Using

Lagrangian multipliers technique, the solution to this optimization problem is expressed as:

wi =
h∗i
‖h∗‖2

√
SNRminP ′η, (13)

where, h∗i is the i-th entry of the channel gain vector h∗. The link cost, as defined in (2), is then

given by:

LC =
∑
ti∈T

w2
i =

SNRminP
′
η∑

ti∈T (h∗i )
2 . (14)

Clearly, all of the above equations can be equally applied to Single-Input Single-Output (SISO),

Single-Input Multiple-Output (SIMO), and Multiple-Input Single-Output (MISO) communication

schemes. It means that we can use a single approach (as described in this section) to compute

the transmission cost between any transmitting set T and any receiving set R, with m (m ≥ 1),

and n (n ≥ 1) nodes, respectively.

III. COOPERATIVE ROUTE SELECTION

In Section II, we formulated the transmission cost for cooperative communication between

two sets of nodes. In this section, we develop optimal and heuristic algorithms to find the least

cost route in an arbitrary wireless network.

A. Optimal Route Selection

In this subsection, we consider finding the optimal cooperative route from a source node s

to a destination node d in an arbitrary network. The optimal routing algorithm is multi-hop in

nature and selects a cooperative link in every time-slot (recall that our system is slotted). The

transmitting and receiving sets, in every time-slot k, are denoted by Tk and Rk, respectively.

Starting from the source node, the initial transmitting set, T0, is simply {s}, and a route is found

as soon as the receiving set at some time-slot k contains the destination node d. Considering

the transmitting and receiving sets in previous time-slots, the transmitting set in time slot k + 1

can be defined in three different ways:

1) Progressive Cooperative: All nodes that have the data from previous transmissions coop-

erate in the next transmission. In this case, the transmitting set in time-slot k+ 1 is given

by

Tk+1 = Tk ∪Rk, k = 0, 1, . . . .
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2) Selective Cooperative: Only a non-empty subset of all nodes that already have the data

participate in the transmission. In this case, the transmitting set in time-slot k + 1 is

expressed as

Tk+1 ⊆ T0 ∪R0 ∪R1 ∪ . . . ∪Rk, Tk+1 6= ∅ .

3) Limited Cooperative: Only the receiving nodes in previous time-slot cooperate in the

next transmission. In this case, the transmitting set in time-slot k + 1 is given by

Tk+1 = Rk, k = 0, 1, . . . .

We now use the link cost LC(Tk, Rk) (between a transmitting set Tk and a receiving set

Rk) defined in Section II to formulate the total cost of a cooperative route. A cooperative

route is essentially a sequence T = 〈(T0, R0), (T1, R1), . . . , (Tl, Rl)〉 of pairs of corresponding

transmitting and receiving sets, where T0 = {s} and d ∈ Rl. Our goal is to find a route T that

minimizes the total transmission power PT given by

PT =
l∑

k=0

LC(Tk, Rk) . (15)

The solution to this problem specifies an optimal transmission policy at every time slot, and

determines the least cost route in the network. We use dynamic programming to find the optimal

cooperative route in our simulations.

We next discuss some properties of the optimal algorithm with respect to its algorithmic

complexity.

1) Algorithmic Complexity of Cooperative Routing: A cooperation graph [13] can be used to

show the state space of the optimal routing problem, where a state is defined as the set of nodes

that have so far received the data. Fig. 1 shows a network and its corresponding cooperation

graph with progressive cooperative as the transmission scheme. Arches between the nodes in the

cooperation graph represent possible transitions between the states (each transition represents a

potential transmission). The cost for an arch is the link cost defined in Section II, and the cost

for the dashed arches is zero (they all go to the Terminating State). The optimal cooperative

route is the shortest path between node {s} and the Terminating State in the cooperation graph.

Fig. 2 shows a network with 4×4 grid topology. For this network, we have specified the least

cost routes taken by non-cooperative and limited cooperative algorithms. For non-cooperative

routing, the sequence of nodes traversed from source s to destination d is 〈s, 1, 5, 6, 10, 11, d〉.
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(b) Cooperative graph with 8 states.

Fig. 1. Cooperative graph of progressive cooperative routing algorithm. The graph in (b) is the cooperation graph corresponding

to sample network in (a).

For limited cooperative routing algorithm, starting from {s} as T0, the sequence of Rk’s is

〈{1, 4}, {5, 8, 9}, {10, 13, 14}, {d}〉.

�
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Fig. 2. A regular grid topology with 16 nodes. A least cost non-cooperative route from s to d is the sequence

〈s, 1, 5, 6, 10, 11, d〉. The least cost route with limited cooperative algorithm from s to d, on the other hand, is the sequence

〈{s}, {1, 4}, {5, 8, 9}, {10, 13, 14}, {d}〉.

In a network with n+1 nodes, there are O(2n) nodes in the cooperation graph. Since there are

O(22n) edges in a graph with 2n nodes, a standard shortest path algorithm (such as the Dijkstra’s

algorithm) will have complexity of O(22n). Unfortunately, this indicates that finding the optimal

cooperative route in an arbitrary network has exponential computational complexity in the number

of nodes, which becomes computationally intractable for large networks. In the next subsection,

we will develop suboptimal cooperative routing algorithms that have polynomial complexity and

perform reasonably efficient compared with the optimal cooperative routing algorithm discussed

here.

2) Progressive versus Selective Cooperative Routing: Earlier, we described three mechanisms

for selecting the set of transmitting nodes in a cooperative routing algorithm. It can be shown

that both selective cooperative approach and progressive cooperative find exactly the same route.
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We first prove a property of MIMO links.

Property 1. The cost of a MIMO link decreases by increasing the number of transmitting nodes.

Proof: In Section II, we derived the transmission cost of a MIMO link based on the channel

gain vector h∗, where each element h∗i is the minimum channel gain between transmitter ti and all

the nodes in the receiving set (see (11)). Consider a cooperative MIMO link with n transmitting

nodes. As shown in (14), the MIMO link cost is given by

LC =
SNRminP

′
η∑n

i=1 (h∗i )
2 .

Clearly, increasing the number of transmitting nodes only adds more positive numbers to the

denominator, decreasing the link cost.

Now, consider path Ps chosen by the selective cooperative algorithm, which is a sequence:

Ps = 〈(T0, R0), (T1, R1), . . . , (Tl, Rl)〉,

where, Tk and Rk (k = 0, . . . , l) represent the transmitting and receiving sets in time-slot k,

respectively. We can now construct a progressive path Pp based on Ps, as the sequence

Pp = 〈(T0, R0), (T
′
1, R1), . . . , (T

′
l , Rl)〉,

where,

T ′k = T0 ∪R0 ∪R1 ∪ . . . ∪Rk−1, for k ≥ 1 .

Hence, in every time-slot k, we have2 Tk ⊆ T ′k, and consequently, |Tk| ≤ |T ′k|. Using Property 1,

it is obtained that

LC(T ′k, Rk) ≤ LC(Tk, Rk).

By summing link costs over l time-slots, we obtain that
l∑

k=0

(T ′k, Rk) ≤
l∑

k=0

LC(Tk, Rk),

which, indicates the end-to-end cost of the progressive route Pp is smaller than or equal to

the end-to-end cost of the selective route Ps. Hence, an optimal selective cooperative algorithm

will necessarily choose the same route as the progressive cooperative algorithm. In summary,

2This follows from the definition of the selective cooperative routing algorithm.
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selective cooperative behaves the same as progressive cooperative algorithm, but with higher

computational complexity. Therefore, we will not consider selective cooperative in the rest of

this paper.

B. Suboptimal Route Selection

As mentioned in the previous subsection, the complexity of finding the optimal cooperative

route is exponential in the number of nodes. Thus, finding the optimal route in an arbitrary

network becomes computationally intractable even for networks with relatively small sizes.

In this subsection, we develop heuristic algorithms for the problem of finding an efficient route

between a source and a destination in a cooperative network. In optimal cooperative routing

described in the previous subsection, we were looking for a sequence of Rk’s that minimize the

total transmission power. To develop heuristic routing algorithms, we consider the largest set of

nodes that the transmitting set Tk can reach (in an error-free transmission) to be the receiving

set Rk, at time-slot k. In other words, a transmitting cluster is considered as a super node

trying to broadcast data as far as possible. We call this approach the greedy approach because

the transmitting set greedily selects receiving nodes in order to construct the largest feasible

receiving set. In every time-slot k, the largest receiving set Rk is selected for a transmitting set

Tk so that the power constraints described in Section II for a successful cooperative transmission

are satisfied. That is, we choose Rk for a set Tk so that the following constraints are satisfied:

wi ≤
√

Pmax, for all ti ∈ Tk,

and, ∑
ti∈Tk

wihij ≥
√

SNRminPηj
, for all rj ∈ Rk .

In the previous subsection, two cooperative routing algorithms were developed: Limited Coop-

erative algorithm and Progressive Cooperative algorithm. The proposed greedy approach can

be applied to both of these algorithms resulting in Greedy Limited Cooperative and Greedy

Progressive Cooperative algorithms. We will evaluate the performance of these greedy algorithms

through simulations in Section IV. The simulation results indicate that the greedy algorithms

perform relatively efficient compared to the optimal algorithms albeit with significantly lower

complexity. For the network shown in Fig. 2, we have computed the least cost route taken
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by the greedy limited cooperative algorithm. Starting from {s} as T0, the sequence of Rk’s is

〈{1, 4}, {2, 5, 6, 8, 9}, {3, 7, 10, 11, 13, 14, d}〉.

Probing all potential nodes for inclusion in the receiving set Rk, in time-slot k, takes O(n)

time. Since the maximum length of a route is3 O(n), the complexity of finding a route with

the greedy algorithms is O(n2). Thus, greedy routing algorithms are significantly faster than the

optimal ones, which have complexity of O(22n) for a network with n nodes.

Besides significantly reducing the complexity of cooperative route selection, while performing

almost the same as the optimal route selection algorithms, the greedy algorithms are actually more

suitable for wireless ad hoc networks. The reason is that the greedy schemes are more amenable

to a distributed implementation, which is desired in ad hoc networks. Designing distributed

cooperative routing algorithms is beyond the scope of this paper, and is the topic of a future

work.

IV. PERFORMANCE EVALUATION

We have simulated the routing algorithms discussed in previous sections to evaluate their

performance numerically in some sample networks. In the following subsections, we present

our simulation results and compare the performance of different algorithms in terms of energy

consumption. We first present simulation results when there is only a single flow in the network.

This scenario serves as a basis for comparison and is useful in isolating the effect of cooperation

from other factors that arise in a multi-flow scenario. Next, we present simulation results for

the case of having multiple flows in the network to study the impact of cooperation on network

throughput, which is an important performance measure in multi-flow networks.

A. Simulation Parameters

For the simulations, we consider a wireless network with n2 nodes placed on an n× n grid.

We chose two nodes s and d located at the lower left and the upper right corners of the grid,

respectively, and find cooperative and non-cooperative routes from s to d. We then compute the

total amount of energy consumed on each route using different routing algorithms. A regular

4× 4 grid topology with the optimal non-cooperative route from s to d is depicted in Fig. 2.

3If the network nodes are distributed over a two-dimensional area then the average path length will be O(
√

n). Here, we

consider the worst case scenario when path length is O(n) to avoid making any specific assumptions about the network coverage.
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We assume that the channel gain hij between transmitter i and receiver j is inversely pro-

portional to the geometric distance between nodes i and j. Without loss of generality, we

assume that the maximum transmission power at every node is 1, i.e., Pmax = 1. We consider a

homogeneous network, where all nodes experience the same level of noise denoted by Pη. We

also set channel gains hij so that for every two nodes i and j that are directly connected on

the grid hij =
√

SNRminPη. With these assumptions, the transmission power consumed over a

non-cooperative Single-Input Single-Output (SISO) link is 1.

B. Single-Flow Energy Efficiency

Our goal is to design energy efficient routing algorithms. Hence, the performance measure of

interest in comparing different routing algorithms is the total energy consumed to transmit data

from a source to a destination. We choose the optimal non-cooperative (ONC) routing algorithm,

i.e., Dijkstra’s algorithm, as the baseline for comparing cooperative algorithms. We define the

energy savings of a cooperative routing algorithm π as follows:

Energy Savings(π) =
EnergyNon-cooperative − Energyπ

EnergyNon-cooperative
× 100, (16)

where Energyπ denotes the total transmission energy consumed by cooperative algorithm π.

We compare the efficiency of the optimal MIMO algorithms described in Subsection III-A

with the MISO algorithm proposed in [13]. We also compare the performance of our suboptimal

algorithms described in Subsection III-B with the optimal as well as the suboptimal algorithms

proposed in [13]. Specifically, we compare our proposed algorithms against the following algo-

rithms proposed in [13]:

• MISO Cooperation Along Non-cooperative Path (CAN): This is a MISO cooperative

routing algorithm, where in every time-slot, the next node along the optimal non-cooperative

route toward the destination is selected as the MISO receiver. The transmitting set contains

all the nodes that have already received data.

• CAN-3: CAN-l is a suboptimal algorithm and is similar to CAN except that the transmitting

set only consists of the last l nodes on the non-cooperative route from the source to the

destination. We implement CAN-3 because it was shown in [13] that l = 3 nodes are

sufficient to realize most of the benefits of CAN-l.
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Fig. 3. Energy cost of optimal MIMO cooperative routing algorithms.

• PC-3: PC-l is another suboptimal algorithm. In this algorithm, all transmitting nodes are

combined into a super node and then the optimal non-cooperative route is computed between

the super node and the destination node. The super node includes all last l nodes along the

current best route toward the destination. It was shown in [13] that most of the benefits of

this algorithm are achieved using l = 3, thus we implement PC-3 for simulation purposes.

Table I summarizes different algorithms that are implemented in our simulations. For clarity

purposes, the table also shows the abbreviations used on the figures.

1) Optimal Routing: Fig. 3 shows the total energy cost for the two optimal cooperative MIMO

algorithms OLC and OPC (refer to Table I for details), and the optimal non-cooperative routing

ONC (which is just a shortest path algorithm). The total energy cost is the end-to-end link cost

for a routing algorithm as defined in (15). As shown in the figure, the total energy cost is reduced

by using the MIMO schemes. Specifically, it shows that the larger the network is, the higher the

reduction in energy cost. As expected, OPC consumes less energy than OLC due to the growing

number of transmitters in the progressive algorithm, i.e., OPC, as the data progresses over the

path to the destination.

Fig. 4 shows the energy savings of different cooperative routing algorithms for different

network sizes. We observe that OPC (a MIMO technique) significantly outperforms CAN (a

MISO technique), and achieves energy savings of close to 55% for a network with 36 nodes (a
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TABLE I

SIMULATED ALGORITHMS.

AlgorithmDescription and key features

ONC Optimal Non-Cooperative Routing.

OLC Optimal MIMO Limited Cooperative Routing:

The set of receivers in the previous time-slot

becomes the transmitting set in the current time-

slot. This algorithm is based on the limited coop-

erative technique described in Subsection III-A.

OPC Optimal MIMO Progressive Cooperative Rout-

ing: Transmitting set contains all the nodes that

have received data in previous time-slots. This

algorithm is based on the progressive cooperative

technique described in Subsection III-A.

GLC Greedy MIMO Limited Cooperative Routing:

This algorithm is the heuristic version of OLC,

where the receiving set contains all possible

receivers as described in Subsection III-B.

GPC Greedy MIMO Progressive Cooperative Routing:

This algorithm is the heuristic version of OPC,

where the receiving set contains all possible

receivers as described in Subsection III-B.

CAN MISO Cooperation Along Non-cooperative Path:

The algorithm progresses along the shortest non-

cooperative path. The transmitting set is deter-

mined using dynamic programming.

CAN-3 The transmitting set in CAN consists of only the

last 3 nodes on the non-cooperative path.

PC-3 Last 3 nodes along the current best route are

combined into a super node. The optimal non-

cooperative route is found between the super

node and the destination.
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Fig. 4. Energy savings of optimal cooperative routing algorithms.

relatively small network). Interestingly, OLC performs almost the same as CAN although one

might expect a better performance. The reason is that CAN is inherently a progressive routing

algorithm, which achieves low energy consumption by employing a large transmitting set in

every step of routing toward the destination.

2) Suboptimal Routing: In Section III-B, we developed two greedy algorithms for finding

an energy efficient route between a source and a destination node. We showed that the greedy

algorithms have significant advantages in terms of their computational complexity. In this sub-

section, we conduct simulations to compute energy savings achieved by these algorithms, and

compare them with that of optimal routing algorithms.

In Fig. 5, the energy cost of greedy algorithms is compared with the energy cost of the optimal

algorithms as well as the energy cost of the optimal non-cooperative algorithm. We observe that

the proposed greedy schemes, namely, GLC and GPC, achieve significant energy savings, close

to optimal algorithms. Furthermore, GPC (Greedy Progressive Cooperative) algorithm performs

slightly better than OLC and MISO CAN algorithms.

Next, we compare the efficiency of GLC and GPC with two suboptimal algorithms CAN-3

and PC-3 (see Table I). In Fig. 6, energy savings of different suboptimal routing algorithms are

compared. It is observed that GPC significantly outperforms the other three methods (GLC, CAN-

3, PC-3). Interestingly, even the simpler algorithm GLC performs better than MISO schemes as
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Fig. 5. Energy cost of cooperative routing algorithms.
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Fig. 6. Energy savings of suboptimal cooperative routing algorithms.

the network becomes larger.

Finally, Table II summarizes our results for the complexity and energy efficiency of different

algorithms discussed in this paper.
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TABLE II

COMPLEXITY AND EFFICIENCY OF ROUTING ALGORITHMS.

Algorithm Complexity Energy Savings Network Size

MIMO Progressive Cooperative (OPC) O(22n) 55% 36

MISO Progressive Cooperative (CAN) O(n2) 43% 36

MIMO Limited Cooperative (OLC) O(22n) 42% 36

Greedy Progressive Cooperative (GPC) O(n2) 55% 100

Greedy Limited Cooperative (GLC) O(n2) 42% 100

CAN-3 O(n2) 38% 100

PC-3 O(n3) 31% 100

C. Multi-Flow Throughput

So far, we have shown that cooperative routing techniques achieve significant energy savings

compared to traditional non-cooperative algorithms. However, we only considered transmission

energy and ignored network throughput in the preceding discussions. Clearly, when several nodes

cooperatively transmit, network throughput may adversely be affected as cooperation increases

the interference when multiple flows exist in the network. The impact on throughput is expected

to be even worse when using progressive cooperative algorithms (such as CAN and OPC),

where the number of transmitting nodes grows as the routing progresses. In this subsection,

using simulations, we investigate the effect of cooperative routing on network throughput, and

contrast energy savings of cooperative routing with the loss in network throughput.

We simulate a network consisting of 100 nodes arranged on a 10 × 10 grid, and consider

multiple concurrent flows in the network. For each flow, the source and destination nodes are

chosen randomly. Unfortunately, finding the optimal cooperative routes even for this network

(which has only 100 nodes) is prohibitively time consuming. Therefore, we instead implement a

greedy cooperative routing algorithm, namely, GPC, in our simulations. Similar to the previous

subsection, optimal non-cooperative routing (ONC), is used as the basis for performance compar-

isons. We compute the mean energy cost as the average transmission power consumed over all

routes for all the flows. Moreover, we use the mean number of scheduled links for transmission at

each time-slot as the measure of throughput. We note that a link here refers to either a cooperative
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or a non-cooperative link. Since we assume a fixed SNR at every receiver (SNRmin), the rate

at which nodes receive data is fixed in the network. Therefore, the network throughput in a

time-slot is directly proportional to the number of scheduled links in that time-slot.

We run simulations with number of flows changing from 1 to 10. For each flow count, we

repeat the simulations 30 times, each time choosing source destinations randomly. Results are

presented in Figs. 7 and 8. Each data point in the figures is computed as the average over 30

simulation runs. We have also plotted the 95% confidence intervals for every data point. We

compute each data point as follows:

• To compute the mean number of scheduled links, in every simulation run, we compute the

average number of scheduled links per time-slot (by counting the number of scheduled links

in every time-slot and dividing by the number of time-slots to find the routes). We then use

this average (computed over one run) to compute the mean number of scheduled links over

30 simulation runs.

• To compute the mean energy cost, we compute total energy cost for each flow, and use it

to compute the mean energy cost over all the flows in the network.

In the following subsections, we discuss our multi-flow simulation results.

1) Energy Efficiency: Fig. 7 shows the mean energy cost for cooperative algorithms GPC and

CAN, and non-cooperative algorithm ONC, for different number of flows. Although, in previous

subsection, we reported energy savings of up to 55% for single flow networks, with multiple

flows, energy savings are only around 30%. It should be noted that large savings in energy are

achieved over long routes, however in this simulation we could have routes consisting of a single

hop, where no savings are achieved. Therefore, the observed energy savings here are smaller

than the savings reported in Subsection IV-B.

2) Network Throughput: Mean number of scheduled links is shown in Fig. 8. We observe

that the mean number of scheduled links, and consequently the network throughput sharply

decreases as the number of flows increases in the network. For instance, when there are 10 flows

in the network, about 40% savings in mean energy cost is achieved, while more than 50% of

the network throughput is lost. A similar behavior can be seen in CAN, where more than 40%

of the network throughput is lost to achieve 35% savings in energy, when there are 10 flows in

the network.

Reduction in the number of scheduled links in each time-slot is due to the interference caused
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Fig. 7. Mean energy cost over different routes in a 10× 10 network.
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Fig. 8. Mean number of scheduled links per time-slot in a 10× 10 network.

by the large transmitting sets formed by these progressive algorithms (both GPC and CAN

are progressive cooperative algorithms). Based on this observation, we conclude that there is a

trade-off between energy savings and throughput achieved by cooperative routing algorithms. In

general, it might be possible to apply interference cancelation techniques [17], [18] in order to

reduce the interference between concurrent cooperative links, and hence increase the network

throughput.



CPSC TECHNICAL REPORT 2009-930-09 23

V. CONCLUSION

In this paper, we studied the problem of finding the minimum energy cooperative route in an

arbitrary wireless network. We considered a cooperative MIMO technique for transmission at

physical layer, and formulated the cost of a cooperative link between a set of transmitters and a set

of receivers as the minimum transmission power required for successful decoding at every node

in the receiving set. This is a general formulation of a cooperative link, which subsumes single-

input-single-output, single-input-multiple-output, and multiple-input-single-output transmission

techniques considered by other researchers [13], [14]. We showed that the minimum energy

cooperative route (with general link cost formulation) can be found using dynamic programming,

and that such a cooperative routing achieves significant energy savings (up to 55% in our

simulations) compared to the minimum energy non-cooperative routing.

Unfortunately, finding the optimal cooperative route is computationally intensive, requiring

O(22n) time for a network that has n nodes. To avoid the exponential complexity of the optimal

algorithm, we developed two greedy algorithms that find energy efficient cooperative routes in

O(n2) time. Our simulation results indicate that the proposed greedy algorithms perform almost

as efficient as the optimal algorithm, and achieve close to 50% energy savings compared to the

optimal non-cooperative routing.

Although significant savings in energy can be achieved by employing cooperative MIMO at

physical layer, our simulation results showed that the network throughput drastically decreases

when there are multiple flows in the network. A future work is to study the trade-off between

energy and throughout in cooperative networks with multiple flows. Zhang et al. [14] considered

multi-flow routing and scheduling in a MISO cooperative network. However, we are not aware

of any work in MIMO cooperative networks beyond the asymptotic capacity results [19], [20].

Interference cancelation techniques [17], [18] can also be used to reduce the interference between

concurrent cooperative links, and hence increase the network throughput. We hope to study multi-

flow MIMO cooperative networks in the future.
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