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We report on two-dimensional simulations of liquid bridges’ dynamics inside microchannels of uniform
wettability and subject to an external oscillatory flow rate. The oscillatory flow results in a zero net flow rate
and its effects are compared to those of a stationary system. To handle the three phase contact lines motion,
Cahn-Hilliard diffuse-interface formulation was used and the flow equations were solved using the finite element
method with adaptively refined unstructured grids. The results indicate that the liquid bridge responds in three
different ways depending on the substrate wettability properties and the frequency of the oscillatory flow. In
particular below a critical frequency, the liquid bridge will rupture when the channel walls are philic or detach
from the surface when they are phobic. However, at high frequencies, the liquid bridge shows a perpetual periodic
oscillatory motion for both philic and phobic surfaces. Furthermore, an increase in the frequency of the flow
velocity results in stabilization effects and a behavior approaching that of the stationary system where no rupture
or detachment can be observed. This stable behavior is the direct result of less deformation of the liquid bridge
due to the fast flow direction change and motion of contact lines on the solid substrate. Moreover, it was found
that the flow velocity is out of phase with the footprint and throat lengths and that the latter two also show a
phase difference. These differences were explained in terms of the motion of the two contact lines on the solid
substrates and the deformation of the two fluid-fluid interfaces.
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I. INTRODUCTION

The behavior of liquid or capillary bridges has received
a lot of attention given their importance in a wide range of
natural and industrial applications. These include enhanced
oil recovery, water removal management in proton exchange
membrane fuel cells (PEMFC), coating of liquid films
on solids, pigments dispersion, particles agglomeration and
sedimentation, microgravity applications, multiphase flows,
and phase change such as evaporation and condensation in
porous media [1–7]. Since in most of these applications the
volume and dimensions of the liquid bridge are rather small,
gravitational and inertial forces do not play significant roles
in determining its shape, and surface forces are the dominant
factors [8,9].

Existing studies can be classified under two categories.
The first one deals with stationary systems in the absence of
external flow effects. For this category, stretching, squeezing,
slipping, spreading, spinning, and oscillation of liquid bridges
between parallel or tilted plates, spheres, or combinations
of spheres or particles and plates have been the subject of
numerous analytical, numerical, and experimental studies that
span many decades [3,4,10–14]. Up to the 1980s, most studies
have focused on the equilibrium shapes of the bridges and their
stability. These studies have addressed situations in which an
axisymmetric liquid bridge is held between two parallel and
axially aligned circular disks of equal radii in the absence as
well as in the presence of gravity [15–17]. The main objectives
of most of these studies were to obtain the magnitude of
the forces acting on the bridge in stationary or equilibrium
states, or determine the durability of the liquid bridge under
stretching, squeezing, spinning, or axial and nonaxial vibration
between solid disks [16,18–22].

In particular, Xhang et al. [11] conducted experimental
and numerical studies to determine the nonlinear dynamics of

an axisymmetric liquid bridge between two coaxial, circular,
solid disks that are pulled apart at a constant velocity. It was
found that as the disks were continuously pulled apart, the
bridge deforms and ultimately breaks up, leaving two drops
on the two disks. They analyzed the effects of various physical
properties such as viscosity, and geometrical properties such
as the gap size on the liquid bridge deformation and rupturing.
In a later study, Meurisse and Querry [5] adopted a theoretical
analytical model to determine the normal forces on parallel
solid plates when squeezing a flat liquid bridge. Their model
took into account the hydrodynamic (viscous dissipation) and
the capillary effects as well as the evolution of the geometry
of the liquid bridge with time. Specifically in this category,
the response of the liquid bridge to high-frequency axial
vibrations of the disks has been investigated. The disk vibration
causes surface oscillations as well as mean flow because of
the generation of a mean vorticity in the viscous boundary
layer near the disks and surface wave propagation at the liquid
bridge free surfaces [23]. The effect of vibrations applied to
a captive liquid bridge in nonaxial directions (parallel to the
disks) also has been studied numerically and experimentally
[22,24]. Results indicated that the liquid bridge surface could
be more sensitive to transverse accelerations normal to the
liquid bridge surface. It should be noted that the authors did
not report the existence of any mean flow in nonaxial vibration,
at least in the range of parameters they adopted. More recently
in a 3D computational research, Ru-Quan and Kawaji reported
only the existence of the transversal vortices inside the liquid
bridge when a horizontal vibration was applied [25].

The second category of studies focused on the physics of
the system in the presence of an external flow. In particular,
the dynamics of liquid bridges under constant external flow
rates between parallel plates, tubes, and in a disordered
media such as a porous medium [9,26–28]. For example,
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Gunstensen and Rothman [26] analyzed immiscible two phase
flows in porous media using the lattice-Boltzmann technique.
The porous medium was initially occupied by one of the
phases, then through an increase in the flow rate of the
other phase, rupturing of liquid bridges and different types of
flow regimes were identified. In another numerical analysis,
Ahmadlouydarab et al. [29] studied the behavior of the liquid
bridge inside corrugated microchannels in the presence of
a steady external flow. They concluded that the competition
between the capillary forces and the external flow induced
forces and that liquid bridge volume and channel geometry
are the determinant factors to observe different responses from
liquid bridge including detachment and rupturing.

All existing studies have focused on either stationary liquid
bridges captive between plates or particles or situations where
the bridge is displaced under steady flow rate inside channels
or between plates. We examine here the effects of oscillatory
external flows on the behavior and stability of liquid bridges,
without any constraint, inside confined pathways where liquid
bridge can easily move, fluctuate, deform, rupture, and/or
detach from the walls.

The lack of studies on liquid bridge’s behavior in confined
pathways motivated the present work which has two main
objectives. First, we will try to understand the dynamics of
a located liquid bridge inside a 2D straight microchannel
and subject to a pure oscillatory flow (zero net flow). As
such, the physics of the present system are different from
those of the axisymmetric liquid bridge, already found in
the literature. Second, we will explore whether the liquid
bridge response and external flow are in the same phase or
not and how to rationalize it if so. It will be assumed that
the microchannel walls have uniform and identical wettability
properties. Using a diffuse-interface model to handle the
motion of the contact lines and the finite element method
accompanied with adaptive unstructured grid, a systematic
analysis of the flow is conducted. The effects of the flow
rate frequency as well as the wall wettability on the liquid
bridge morphology are analyzed and the response of the
bridge to the flow is characterized by examining the variations
of the footprint and throat lengths. In addition to these
two quantitative parameters, development of the interfacial
morphology of the liquid bridge in time is used to understand
the physics in depth.

The results of this study are relevant to processes that
involve time-dependent flows encountered, for example, in
conventional applications such as enhanced oil recovery as
well as in modern ones such as microfluidics, and laboratory-
on chips devices.

II. PROBLEM SETUP AND METHODOLOGY

A. Computational domain characteristics

As we are interested in 2D calculations, a computational
domain consisting of a rectilinear channel with a liquid bridge
located at the center is considered. The top and bottom
walls are assumed to have uniform and identical wettability
properties, which allows one to limit the analysis to only half of
the physical domain. The 2D symmetric-planar geometry, with
a rectangular computational domain of length L and height H

FIG. 1. Schematic of the initial configuration for 2D symmetric-
planar computations at a time t = 0. The expression of the pure
oscillatory flow’s velocity with a zero average over a period is shown.

including the liquid bridge of width W , is shown in Fig. 1.
The liquid bridge is assumed to initially have a rectilinear
shape. Such a shape is not at equilibrium except for an initial
contact angle of π/2. Furthermore, it is assumed that both the
liquid bridge and the surrounding fluid are initially at rest.
As soon as the computation starts and the liquid bridge makes
contact with the substrate, it adjusts to the local contact angles,
deforms, and depending on the applied conditions, it may start
to move and fluctuate inside the microchannel. Physically this
can be considered to represent a cuboid liquid bridge of width
W , height 2H , and infinite depth, which is trapped inside a
microchannel of infinite depth. It is important to choose W in
a way that without imposing external flow, the liquid bridge
neither ruptures nor detaches as a result of the wall wettability.
For example, inside a microchannel with philic walls and based
on our derived equation (9), the throat thickness has to be larger
than zero.

B. Methodology and governing equations

In the system which consists of a microchannel and liquid
bridge of microsizes, gravitational and inertial forces are
negligible; hence such a system can be modeled using Stokes
equations. Furthermore, since the system involves the defor-
mation and movement of interfaces, three-phase contact lines,
and surface wettability, a diffuse-interface formulation with
the Cahn-Hilliard model is adopted to handle the generated
singularity as an alternative approach. Using Cahn-Hilliard
diffusion is a convenient way for capturing the interfacial
deformation and regularizing the interfacial jump as well as
the contact-line singularity [30–32].

A phase-field variable φ is introduced such that φ = 1 in one
fluid and φ = −1 in the other. The two-phase flow is described
by the modified stokes and Cahn-Hilliard equations:

∇ · u = 0, (1)

∇p = ∇ · [μ(∇u + ∇uT)] + Q∇φ, (2)

∂φ

∂t
+ u · ∇φ = m∇2Q, (3)

where m is the Cahn-Hilliard mobility, Q = λ[−∇2φ +
φ(φ2−1)

ε2 ] is the chemical potential, and Q∇φ is the diffuse-
interface representation of the interfacial tension. The two
parameters λ and ε are the interfacial energy density and the
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capillary width of the interface, respectively, and their ratio
σ = 2

√
2

3
λ
ε

gives the interfacial tension in the limit of sharp
interfaces [32]. The effective viscosity μ represents the average
of those of the two fluids weighted by their volume fractions,
(1 + φ)/2 and (1 − φ)/2. This viscosity varies sharply but
continuously across the interface between those of the liquid
bridge μ1 and surrounding fluid μ2. In this case, the gas-liquid
interface is no longer a boundary that requires boundary
conditions [32].

It is difficult to choose a velocity profile on the left and right
side of the domain when considering oscillatory multiphase
flows [33,34]. It is however expected that the effects of the
velocity profile on the results can be reduced by choosing
long channels. Existing literature suggests that in oscillatory
stokes flow of a single phase, the entrance length, Le, becomes
as large as in steady single phase flow [34,35]. On the other
hand, Chen [36] suggested Le/D = 0.315 for stokes flow in
2D channels or between parallel plates. This was similar to
what was given by Atkinson et al. [37]. Based on these, we
have located the liquid bridge center at 2.5W far from both
inlet and outlet. Given the height of the channel W , this results
in a ratio of 2.5 which is very large compared to 0.315. Also it
is assumed that the tangential component of the velocity is zero
at the left and right sides of the domain and a time-dependent
velocity profile is considered for the normal component as
follows:

u(y,t) = umax

[
1 −

(
y

H

)2]
cos(2πF t), (4)

where F is the frequency. Note that the net injection
flow over a period is zero (u = 0) and the discussion will
be centered around the effects of the characteristics of
this oscillatory profile and comparisons with the stationary
system u = 0.

On the solid substrate, the following boundary conditions
are used:

u = 0, (5)

n · ∇Q = 0, (6)

λn · ∇φ + f ′
w(φ) = 0, (7)

where n is the normal vector pointing into the wall and fw(φ) =
−σ cos θ

φ(3−φ2)
4 is a wall energy [38,39]. Equation (5)

imposes no slip on the substrate, and the contact line motion is
achieved via Cahn-Hilliard diffusion. Equation (6) implies no
penetration of the fluid components into the wall. Equation
(7) is a natural boundary condition that follows from the
variation of the wall energy, and specifies the local contact
angle θ [38]. Furthermore, since only half of the physical
domain is considered, symmetric conditions are applied at the
top boundary of the computational domain. Finally, periodic
boundary conditions are imposed at the left and right ends of
the domain.

C. Dimensionless groups

The dimensionless parameters of the problem include the
geometrical length ratios HW = H/W and LW = L/W , the

viscosity ratio of the liquid bridge to the surrounding fluid
M = μ1/μ2, the solid substrate contact angle θ , the maximum
capillary number Camax = μ1umax/σ , and the dimensionless
frequency f = Fμ1W/σ . The last two dimensionless param-
eters come from the oscillatory flow rate. The dimensionless
form of the velocity at the domain’s boundaries is C̃a =
Camax[1 − ( y

H
)2]cos(2πf t), where the dimensionless time is

defined as t = t∗σ/(μ1W ). The spatial average capillary

number on the boundaries is defined as Ca =
∫

C̃a dy

W
with

a zero average over a period Ca = 0. In the remainder
the star superscripts are dropped from all dimensionless
quantities. Furthermore, the Cahn-Hilliard model introduces
two mesoscopic dimensionless parameters: the Cahn number
Cn = ε/W and the diffusion parameter 	 = ld/W . The
former is the ratio between the interfacial thickness and
the macroscopic length, while the latter is between the
diffusion length ld = (μ1μ2)1/4m1/2 and W . There are several
interesting questions about the Cahn-Hilliard model on how
to choose related parameters. These questions have been
extensively examined in numerous studies [39–42]. However,
it is worth mentioning that these parameters must be chosen
judiciously, and in particular Cn should be small enough for the
sharp-interface limit to be approached [32,43]. Furthermore,
ld is the counterpart of the slip length, ls commonly used
in sharp-interface models [38,39,44], and 	 represents the
strength of Cahn-Hilliard diffusion in moving the contact line,
and is closely related to the contact line speed. Thus it should
in principle be determined by fitting an experimental datum
for the specific fluids and substrate material [39]. In this study
it was found that reducing Cn from large values to 10−2 and
choosing 	 = 10−2 allows one to reach the sharp interface
limit. Detailed comparison with literature and validation are
presented in the following section.

The model equations are solved using the Galerkin finite-
element method on a triangular grid, with an implicit time-
marching scheme and Newton iterations at each time step.
The grids near the fluid interface are adaptively refined and
coarsened as the interface moves. The theoretical model
and numerical algorithm have been described and validated
for a wide range of applications [29,32,42–44]. For this
problem of interest, depending on the applied conditions, the
computational time for each run varies between 30 and 70 h
and a parallel computer cluster.

III. RESULTS

The objective of this study is to understand the effects of
pure oscillatory flows (zero net flow rate) on the dynamics of
a liquid bridge inside microchannels. The discussion will start
by analyzing the simple case of a stationary bridge located
inside a microchannel. These results will be compared with
literature and used for validating some of the parameters of
the model. The complex physics of the nonstationary bridge
under oscillatory flows will be then analyzed. To do so, both
philic and phobic microchannels will be considered.

A. Stationary liquid bridge inside microchannels

A number of studies dealing with a captive stationary
liquid bridge between or among solid particles have recently
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FIG. 2. Comparison of the footprint and throat lengths deter-
mined from the analytical expressions (gray) with those from the
numerical simulations (black).

been carried out. In particular, Megias-Alguacil and Gauckler
[45] analyzed the capillary forces between two small solid
spheres bound by a convex liquid bridge. Assuming that
in the stationary status the liquid bridge has a circular
interface between two solid particles of the same size and
using mathematical principles, the authors presented two
simple expressions to determine the throat thickness and
the principal radii of the liquid bridge. Adapting these
expressions to the present system, dimensionless principal
radii R, throat length LT , and footprint length LF have been
obtained:

R = H

W cos(θ )
, (8)

LT = 1+H

W

(
1

cos2(θ )
[π − 2θ − sin(2θ )] − 2[1 − sin(θ )]

)
,

(9)

LF = LT + 2R[1 − sin(θ )]. (10)

In the above equations, θ is measured from inside the
liquid bridge. The previous equations are valid when the
solid substrate is philic to liquid bridge (θ < 90◦), while for
θ = 90◦, the footprint and throat lengths are equal to 1. For
phobic substrates, the equations are slightly different but can
be obtained similarly using expressions for circular segments
found in mathematical handbooks, e.g. [46].

The footprint and throat lengths of a liquid bridge inside
a microchannel at different contact angles were determined
using Eqs. (8)–(10) and the equivalent ones for phobic
substrates. The results were compared with those obtained
from our numerical model. Figure 2 depicts the results for
Cn = 10−2, 	 = 10−2, HW = 1.25, LW = 10.0, and Camax =
0.0. It is clear that there is an excellent agreement between the
numerical results and the analytical ones. This agreement was
obtained as a result of a judicious choice of the parameters Cn

and 	. It should be noted that the chosen values are also in the
range of those used in previous studies [9,44], which allow one
to capture correctly the physics of the system. These values
will be adopted in the remainder of the study.

The interfacial morphology developments of the liquid
bridges from initial shape to the final stable equilibrium state
in the absence of external flow (Ca = 0, f = 0) are illustrated
in Fig. 3. As the liquid bridge comes into contact with the solid
substrate, it starts to adjust and reaches the final equilibrium
state. For the philic case [Fig. 3(a)], as the liquid bridge starts
to deform, the footprint becomes larger due to larger adhesive
forces between the liquid and the solid. As a result of mass
conservation, the throat gets thinner and finally once all forces
are balanced the liquid bridge deformation stops. Opposite
trends are observed in the phobic case [Fig. 3(b)]. It should be
noted that in both cases there is no rupture or detachment of
the liquid bridge from the substrate.

In what follows, first the physics of capillary bridges
inside both philic and phobic microchannels subject to pure
oscillatory flows (zero net flow) are analyzed. To do so, in
addition to using two quantitative parameters, i.e., footprint
(LF ) and throat length (LT ), the interfacial morphology
development of the liquid bridge will be considered. Finally,

FIG. 3. Interfacial morphology development of the liquid bridges from initial shape to the final equilibrium stable state in the absence of
external flow. (a) Contact angle θ = 45◦. (b) Contact angle θ = 135◦.
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FIG. 4. Variations of the footprint length with time for different
frequencies of the oscillatory flow: Cn = 10−2, 	 = 10−2, HW =
1.25, LW = 10, θ = 45◦, and Camax = 0.5. Results of two constant
flow rate cases, Ca = 0.5 and Ca = 0.0, are also included.

we will explore whether the external flow velocity and liquid
bridge are in phase or not and how to rationalize it.

B. Liquid bridge dynamics inside philic microchannels

Let’s consider the case of a substrate that is philic to
the liquid bridge, with θ = 45◦. For the sake of brevity, the
following parameters for the baseline model were chosen:
HW = 1.25; LW = 10. Different fluid systems can be used
as a reference for comparisons, but for the range of values
examined in this study, a silicone fluid (e.g., 50 cSt silicone
oil) -water system at ambient condition can be adopted as a
possible benchmark. Note that in this system the surrounding
fluid is water, and for this grade of silicone fluid, the viscosity
ratio of silicone fluid to water M is approximately 50. It should
be mentioned that due to the great variations in the viscosity
of reservoir oil [47,48], silicone fluid-water systems are often
used to understand multiphase flow dynamics in oil reservoirs
[49–52].

Figures 4 and 5 show the variations of the footprint and
throat with time for the stationary case (Ca = 0, f = 0), oscil-
latory flows with six different frequencies (Camax = 0.5,Ca =

FIG. 5. Variations of the throat length with time for different
frequencies of the oscillatory. The parameters are the same as in
Fig. 4. Results of two constant flow rate cases, Ca = 0.5 and Ca =
0.0, are also included.

FIG. 6. Interfacial morphologies of the liquid bridge at different
times for a frequency f = 0.04. All other parameters are the same as
in Fig. 4.

0) and a nonstationary displacement (Ca = Ca = 0.5,f = 0).
The latter scenario will be used for the purpose of comparisons
between stationary (Ca = 0,f = 0) and nonstationary (Ca �=
0) systems.

Starting from the stationary case (Ca = 0, f = 0), once the
bridge comes into contact with the solid substrate, it starts
to adopt itself to the wettability conditions. Thus it deforms
symmetrically, and the footprint gets larger, while the throat
gets thinner [Fig. 3(a)]. Finally, as a result of the force balance,
the liquid bridge deformation stops and both the footprint and
throat lengths reach rapidly a steady state.

In the case of the nonstationary displacement (Ca =
0.5,f = 0), the bridge starts to deform and spreads on the
solid substrate. As the interfaces deform, the spreading of
the liquid increases due to larger liquid-solid adhesive forces
(Fig. 4). This enhances viscous dissipation and as a result
the bridge velocity on the surface decreases. Consequently,
the rate of deformation in the throat section gets larger and the
throat becomes thinner and ends up rupturing (Fig. 5).

Interesting trends are found once oscillatory flows with
zero net flow rate come into play. In particular, it is found

FIG. 7. Interfacial morphologies of liquid bridge at minimum,
maximum, and average footprint lengths when periodic pattern of the
liquid bridge motion is observed at f = 0.20. All other parameters
are the same as in Fig. 4.
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FIG. 8. Variations with time of (a) the footprint length and flow velocity Ca, and (b) the footprint and throat lengths for a frequency
f = 0.20. All other parameters are the same as in Fig. 4.

that there is actually a bridge rupturing at low frequencies
(f = 0.04–0.12); however, the rupture time and the footprint
length at the time of rupture vary with the frequency. On
the other hand, the bridge does not rupture at the high
frequencies.

The trends for the throat lengths depicted in Fig. 5
reveal that for the frequencies that ultimately lead to rupture,
the throat thickness goes through a series of oscillations
before rupturing. The amplitude of the oscillation decreases
with increasing f ; however, the rupture time does not vary
monotonically with the frequency. In particular, the rupture
time for f = 0.12 falls in between those for f = 0.04 and
f = 0.08. This special behavior may be explained by the
nature of the deformation that the liquid goes through. For
the lowest frequency f = 0.04, the length of the cycle of
the oscillation is the longest but, as a result of the large
amplitude of the deformation, the throat length cannot sustain
the constriction of the second cycle and ends up rupturing
(see movie Teta-45-F-004.avi in the Supplemental Material
[53]). A similar sequence is observed for f = 0.08 and due
to the large amplitude of the deformation, in this case too the
bridge ruptures at the start of the second cycle which occurs
earlier. The liquid bridge in the flow with f = 0.12 undergoes
the same cycle; however, the amplitude of the deformation is
not strong enough to lead to rupturing at the beginning of the
second cycle, and the liquid bridge is able to survive through
a full second cycle before breakup.

Further increase in the frequency results in oscillations
of shorter cycle and smaller amplitudes. As a result the
deformation and spreading of the liquid bridge is weakened to
the extent that no rupturing occurs. In these cases, the throat
and foot print lengths undergo perpetual motions that vary
periodically with time. At large frequencies, the stabilizing
effects get stronger and the bridge behavior approaches that
of the stationary case (Ca = 0, f = 0). It is worth mentioning
that the footprint length goes through trends similar to those
observed in the case of the throat length, with a decrease
in the amplitude and length of the cycle of oscillation with
f . However, the fluctuations diminish faster with increasing
frequency in the case of the footprint length. This is because
of the viscous dissipation in the liquid-solid interfacial
area.

Our numerical results indicate that flow oscillation affects
four important aspects of the system; the available time for
bridge deformation, the direction of the deformation, the
magnitude of the spreading on the solid substrate, and the
distance that the bridge slides on the substrate during each
cycle. At low frequencies, changes in the flow direction are
slow enough to allow the development of strong enough
deformations that ultimately lead to the breakup of the bridge.
The high frequencies, on the other hand, are not conducive
for the development of large deformations and prevent any
rupturing (see movie Teta-45-F-08.avi in the Supplemental
Material [53]). This interpretation is confirmed by noting that

FIG. 9. (a) Variations of the flow velocity Ca, and (b) the footprint LF , when positions of the left and right contact lines D on the solid
substrate change. The frequency f is 0.20, and other parameters are the same as in Fig. 4.
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FIG. 10. Interfacial morphology of the liquid bridge and the
positions of the contact lines at times when the absolute magnitude
of the velocity is maximum. The frequency f is 0.20, and other
parameters are the same as in Fig. 4.

the maximum footprint is larger and the rupturing occurs
earlier in the case of the constant nonstationary flow (Ca =
0.5,f = 0), where the flow does not experience any change
in direction. It is important to note that, in these inertialess
computations, at least in the range of the studied frequencies,
we did not observe mean flow. This is attributed to the
dominance of the viscous forces which dissipate the flow
energy.

To further understand the mechanisms behind the different
reported behaviors, interfacial morphological developments
are presented in Figs. 6 and 7 for a case resulting in rupture and
one where no breakup occurs. As it can be seen from Fig. 6 for
the rupturing case (f = 0.04), once the liquid bridge ruptures
from the middle point at t ≈ 80, it leaves a sessile drop on
each plate. Theses drops then adapt themselves to the flow
by retracting and starting to slide in an oscillatory motion on
the solid substrate. However, the fluctuation in the footprint
length is negligible and hence is not reflected in the variations
of the footprint length depicted in Fig. 6. These very small

FIG. 11. Variations of the footprint length with time for different
frequencies of the oscillatory flow rate when θ = 135◦. All other
parameters are the same as in Fig. 4. Results of two constant flow rate
cases, Ca = 0.5 and Ca = 0.0, are also included.

FIG. 12. Variations of the throat length with time for different
frequencies of the oscillatory flow rate when θ = 135◦. All other
parameters are the same as in Fig. 4. Results of two constant flow rate
cases, Ca = 0.5 and Ca = 0.0, are also included.

fluctuations are the direct result of the large reduction of the
imposed forces (shear, normal, and pressure force [44]) on
the created drops on the philic substrates which do not get
affected significantly by the oscillations in flow magnitude
and direction.

Interesting trends are found in the case of an oscillatory
nonrupturing liquid bridge at, e.g., f = 0.20. In Fig. 7, close
snapshots of the liquid bridge interfacial morphologies are
shown when the steady periodic regime is reached. Let’s
consider t ≈ 125, where the footprint length approaches its
minimum. At this minimum point, the liquid bridge throat
is located towards the right. In the subsequent stage where
the footprint length increases from its minimum value to the
maximum one, the position of the throat remains virtually
unchanged. Once the footprint length goes past its maximum
value and starts decreasing, the throat starts to move towards
the left and reaches its middle position when the footprint
length is at its average value. The throat finally approaches the
left side when the footprint reaches its minimum.

FIG. 13. Interfacial morphology of the liquid bridge at different
times for θ = 135◦ and f = 0.08. All other parameters are the same
as in Fig. 4.
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FIG. 14. Interfacial morphology of the liquid bridge at different
times for θ = 135◦ and f = 0.20. All other parameters are the same
as in Fig. 4.

This qualitative description indicates that the oscillatory
behaviors of the throat, footprint, and flow are not in phase.
This out-of-phase behavior is clear from Fig. 8 depicting the
variations with time of the footprint and throat lengths as well
as the injection velocity (Ca). As the trends show, not only is
the velocity out of phase with the footprint and throat lengths
but the footprint and throat also show a phase difference. These
phase differences can be attributed to the fact that the response
of the liquid bridge to the flow field is controlled by the motion
of the two (left and right) contact lines on the solid substrates
and the deformation of the two fluid-fluid interfaces.

To confirm the previous justification, the variations of the
dimensionless distances of the left (Dleft) and right (Dright)
contact lines on the solid substrate measured from the left side
of the computational domain are shown in Fig. 9 for 110 < t <

130. At t = 110, the left contact line moves towards the left
(Dleft is reduced); in the same time the right contact line also
moves in the same direction. However, when Dleft reaches its
minimum (t ≈ 117) and then starts to increase (left contact line
move towards the right), the right contact line still continues to
move towards the left. These differences in the contact lines’
movements are the result of competitions between viscous
dissipation on the solid substrate, external flow induced forces
on the liquid bridge, interfacial deformation, and the distance
between the two contact lines. Hence the contact lines do not
always move in the same direction.

For further analysis, interfacial morphology of the liquid
bridge and the positions of the contact lines D are presented in
Fig. 10. The trends are shown for times when the absolute
magnitude of the flow velocity reaches its maximum. As
Fig. 10 indicates and as discussed, the left and right contact
lines may move towards different directions at extrema points
of the velocity. Meanwhile, the fluid-fluid interfaces can also
have different shapes at different extrema of the flow velocity.
As it is clear from Fig. 10, the positions of the contact lines on
the solid substrate do not experience much changes compared
to the fluid-fluid interfaces in the throat region where the flow
velocity is the largest. This is because of the large viscous
dissipation in the liquid-solid interfacial area. Moreover, it
should be noted that even though the throat experiences more
deformation as a result of this viscous dissipation, the variation
in the footprint length LF is much larger than that in the throat
length LT .

C. Liquid bridge dynamics inside phobic microchannels

It is known that the wall wettability properties change
the solid-liquid interfacial area and affect the hydrodynamic
forces. This in turn affects not only the footprint and throat
lengths but also changes the distance that the liquid bridge
slides freely on the solid substrate. To explore the effects of
the wettability, a microchannel with phobic walls of contact
angle θ = 135◦ is considered.

Figures 11 and 12 depict the variations with time of the
footprint and throat lengths for the same parameters as those
in Fig. 4, except for the fact that the substrate is now phobic,
θ = 135◦.

In the case of the nonstationary flow (Ca = 0.5,f = 0.0),
as soon as the liquid bridge adapts itself to the phobic surface
the footprint gets smaller than the throat because of depletion
forces between the solid and liquid. In these conditions the
liquid bridge will detach from the surface as a response to the
forces imposed by higher external flow rate and small viscous
dissipation. Unlike the philic substrate, rupturing is replaced
with detachment from the phobic surface.

This detachment is also observed in the oscillatory cases at
low frequencies (see movie Teta-135-F-004.avi in the Supple-
mental Material [53]). In these cases, the bridge detaches from
the substrate as a result of the smaller viscous dissipation on
the solid and slow changes in the flow direction. However,
in contrast with the rupturing time in the philic case, the

FIG. 15. Variations with time of (a) the footprint length and flow velocity Ca, and (b) the footprint and throat lengths for a frequency
f = 0.20 and θ = 135◦. All other parameters are the same as in Fig. 4.
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FIG. 16. Variations of the footprint length and position of the left
and right contact lines on the solid substrate, for a frequency f = 0.20
and θ = 135◦. All other parameters are the same as in Fig. 4.

detachment time shows a monotonic increase with increasing
frequency.

Similar to the philic substrate, detachment is replaced with
a stabilized periodic pattern in the liquid bridge motion at
higher frequencies, and approaches the limit case of the resting
state (Ca = 0, f = 0) at very high frequencies (see movie
Teta-135-F-08.avi in the Supplemental Material [53]). It is,
however, worth noting that the throat length for a phobic
substrate actually oscillates around that of the resting case
and exhibits much smaller deviations from it in comparison
with the philic substrate. This is mainly due to the stronger
deformations of the liquid bridge and its spreading on the
surfaces between philic plates.

Morphological developments of the liquid bridge between
phobic parallel plates at two frequencies (f = 0.08 and f =
0.2) are shown in Figs. 13 and 14. In the case that results in
detachment, the bridge separates from the surface after one
cycle and forms a drop that starts to oscillate in response to the
oscillatory flow (Fig. 13). As mentioned earlier this is because
of lower viscous dissipation between solid-liquid and slow
change in flow direction, which provides enough time for the
liquid bridge to experience more deformation and detach from
the solid wall. On the other hand, for the high frequency, the
liquid bridge ends in a perpetual periodic motion between the
plates (Fig. 14) as a direct result of less deformation because of
time shortage. Like the case involving philic surfaces, the flow
velocity, footprint, and throat lengths variations in time are out
of phase (Fig. 15). However, between parallel phobic plates,
variation in footprint length LF is comparable with variation
in the throat length LT .

It is worth mentioning that the phobicity induces significant
effects that decrease this difference between the footprint and
the velocity field. Mutual effects of the contact lines on the
substrate on each other are stronger due to the shorter distance
that separates them. As a result, the contact lines tend to move
virtually in phase (same direction) as shown in Fig. 16.

Interfacial morphology of the liquid bridge and the po-
sitions of the contact lines at the times that the flow velocity
reaches its extrema are depicted in Fig. 17. Generally speaking,
the throat region does not experience large deformations. This
is in contrast to what was reported in the case of the philic
walls. The main reason for this is the fact that the footprint
length of the liquid bridge inside the philic microchannel is
larger compared to the phobic one, while the throat section is

FIG. 17. Interfacial morphology of the liquid bridge and the
positions of the contact lines at times when the absolute magnitude of
the velocity is maximum. Contact angle θ and frequency f are 135◦

and 0.20, respectively. All other parameters are the same as in Fig. 4.

thinner. On the other hand, between phobic plates, the contact
lines on the solid substrate move longer distances because of
lower viscous dissipation.

IV. CONCLUSION

A comprehensive investigation of the dynamics of liquid
bridges inside straight 2D microchannels in the presence of an
external oscillatory flow field has been carried out. The velocity
field was chosen such that the net flow rate is zero, and hence is
similar to a stationary case. The results indicate that, depending
on the substrate wettability properties and frequency level, the
bridge may rupture, detach, or show a perpetual time periodic
oscillatory motion between the plates.

For small enough frequencies of the flow velocity, the
liquid bridge ruptures in the case of a philic microchannel
wall and the rupturing time does not follow a monotonic trend
with the frequency. For phobic plates, rupturing is replaced
by detachment at small frequencies, except that in contrast
to the philic walls’ scenario, the detachment time increases
monotonically with increasing frequency.

On the other hand, regardless of the plates wettability
properties, increasing the frequency results in stabilization
effects and a behavior approaching that of the stationary
system where no rupture or detachment can be observed.
This stable behavior is the direct result of less deformation
of the liquid bridge due to the fast flow direction change and
motion of contact lines on the solid substrate. Furthermore,
it was found that the flow velocity is out of phase with the
footprint and throat lengths and that the latter two also show
a phase difference. These differences were attributed to the
motion of the two contact lines on the solid substrates and the
deformation of the two fluid-fluid interfaces.

These results are to be contrasted with the corresponding
stationary case where neither detachment nor rupture can be
observed, regardless of the wetting properties of the substrate.
They also reveal that, for the same zero net injection flow
rate (pure oscillatory flow), it is possible to control the
dynamics of the liquid bridge through the frequency of the
flow velocity. Rupturing or detachment can be induced with
frequencies lower than a critical value fc. Even though the
results are presented for fixed flow and geometry parameters, it
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is expected that fc will depend on the flow properties, viscosity
ratio, wettability property, and geometry characteristics.

It is expected that the results of this fundamental research
will contribute to advancing our understanding of the dynamics
of liquid bridges in confined pathways, and will help in the
future design and optimization of processes in conventional or
modern applications such as enhanced oil recovery, microflu-
idics, and lab-on chips devices.
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