Declarative Updates in Deductive Databases
Mengchi Liu John Cleary

Department of Math & Computer Science Department of Computer Science

University of Prince Edward Island University of Calgary
Charlottetown, Prince Edward Island Calgary, Alberta
Canada C1A 4P3 Canada T2N 1N4
MLIU®@upei.ca cleary@cpsc.ucalgary.ca
Abstract

This paper proposes an update language called Datalog/UT which extends Datalog
by incorporating update rules with temporal information. Programs to update example
Databases are given. The semantics of Datalog/UT are described. Datalog/UT has a
declarative semantics using local stratification which is a natural and direct extension of
the traditional Datalog semantics and reduces to it in the special case. This is achieved by

using explicit temporal information to control the update operations implicitly.

1 Introduction

A deductive database not only contains a set of base relations to which rules can be ap-
plied to deduce intensional relations, but also undergoes updates to absorb new informa-
tion. The theory of deductive databases without updates has a well established basis in

logic programming. However, a database language without updates is incomplete. How

to incorporate updates in deductive databases is currently receiving considerable attention
[Abi88, Bry90, KM90, Man89, NK88].

A major difficulty is that to support updates normally requires some kind of explicit proce-
dural constructs, contrary to the declarative nature of deductive database languages. Several
languages, including DLP [Man89], LDL [NT89], sacrifice declarative semantics, to provide
explicit procedural update constructs and use dynamic logic to give a procedural semantics to
the languages.

This paper presents a different approach to handling update semantics. It proposes an
update language called Datalog/UT which extends Datalog by incorporating update rules
with temporal information. By using temporal information, the update language has a clear
declarative semantics which is a natural and direct extension of the Datalog semantics and
reduces to it in the special case.

This paper is organized as follows. Section 2 introduces the syntax of the language. Section
3 gives several motivating examples. Section 4 discuss the model theory and describes the

bottom-up computation. Section 5 provides the conclusions.

2 Syntax of Datalog/UT

We assume knowledge of the basic concepts related to logic programming, relational and de-
ductive databases [Llo87]. We recall some definitions relevant to our needs and present our
notation.

The alphabet of the update language Datalog/UT consists of a universe C of constants, an

ordered set T of times taken from C (for the sake of example we will take this set to be the

positive integers), a set V' of variables, a set Pred of predicate names including assign and
delete, and no function symbols.

A normal term is either a variable or a constant or a time. A temporal term is either
a variable or a time. If p is a predicate symbol with arity n, and each S;, for i = 1,...,n,
is a normal term, then p(Si,...,S,) is a normal atom. A ground normal atom is a normal
atom which contains only constants as arguments. If p(Sy, ..., S,) is a normal atom and T is a
temporal term, then p(Sy, ..., 5,)@T is a temporal atom. A ground temporal atom is defined
in a similar way.

A temporal literal is a temporal atom (positive temporal literal) or a negated temporal
atom (negative temporal literal).

A temporal rule is of the form A « Lq,...,L,, n > 0, where the temporal atom A is the
head of the rule, and the literals Ly, ..., L, form its body.

A Datalog/UT program P counsists of a set of temporal rules. The intended interpretation
of this is that a Datalog database is a subset of a Datalog/UT database at a particular instant
in time. Thus all the base facts in the Datalog database correspond to Datalog facts at a
particular time.

There is also a subset of the Datalog/UT program that corresponds to temporal rules of
the form: AQT « L,Q@T,..., L,QT, where the head and all goals in the body refer to the same
time. Such rules correspond to simple Datalog rules of the form: A + L, ..., L,. We will refer
to this set of facts and rules as the Datalog database embedded in the Datalog/UT program
at a particular time.

Similar to Datalog, the temporal Herbrand base H is the set of all positive ground temporal

atoms that can be formed using predicate symbols in Pred, constants in C, and times in 7.

3 Illustrative Examples of Programs

Before giving a formal semantics of Datalog/UT programs, we present several examples of
programs.

Assume that employee is a base relation giving the monthly salaries and departments of
employees. Consider the following update facts.

assign(employee, tom, shoe, 3000)Q@1.
assign(employee, tom, toy, 3300)Q4.
delete(employee, tom)Q6.

The intention is that the first fact inserts a new employee Tom at time 1. He is assigned to
the shoe department with a salary of $3000. The second fact causes Tom to be shifted from
the shoe department to the toy department with a new salary of $3300 at time 4. The third
fact causes Tom to be deleted from the base relation employee at time 6.

The meaning of assert and delete is described by the following temporal rule. Note that
these fundamental operations are not built into the language as primitives but can be expressed
directly in a temporal logic.

employee(Emp, Dept, Sal)QT, + T, > T,
assign(employee, Emp, Dept, Sal)QTy,
—(assign(employee, Emp,_, QT Ty > Ty, Ty > T1),
~(delete(employee, Emp)QT,, Ty > T, T, > T1).

This makes the employee relation no longer a base relation but derives it from assert and

delete. Informally the rule states that a particular employee (Emp) has values for department

and salary (resp. Dept and Sal) which derive from the most recent assignment. The goal

T, > Ty says that these values are present for times after the assignment occurs. The two
negations say that this particular entry is not present after the next assignment or deletion
of this employees information. (To be more precise, if T, is the time the next assignment or
deletion occurs then the employee tuple ceases being true at times greater than or equal to
T; (T2 > T;). The condition T, > T} is necessary to prevent an assignment from invalidating
itself!).

The next example is an update program which includes the base relation employee together
with its update rule above and a base relation manager which gives the managers of each
department. The update first gives all employees a 10% salary increase, and those in managerial
positions an extra $200. Following this all employees that earn more than their managers after
the salary adjustment are fired. The base relation update is used to specify the time at which
the update is done. That is, injection of this fact into the database at a particular time triggers
these rules and the consequent assignments and deletions.

assign(employee, E, D, S2)QT; + update@T;,
T2 s T1 + 1
employee(E, D, $1)QT}
manager(D, E)QTy,
Sy 18 51 % 1.1 4+ 200.

assign(employee, F, D, 52)@T, « updateQT,
Ty isTh+1
employee(E, D, $1)QT1,
—manager(D, E)QT;,
52 8 Sl x1.1.

delete(employee, E)QTy + T3 is T1 + 1,
update@Ty
employee(E, D, S;)QT;,
manager(D, B)QT;,
employee(B, D, S2)QT,
51 > SQ

Figure 1 shows the evolution of an example database after the injection of the fact update

at time 11.
manager(tog, johm) employee(1.nary, shoe, 3200)
10 manager(shoe, mary) employee(john, toy, 3000)
g 2 Y employee(fred, shoe, 3400)
11
assign(employee, mary, shoe, 3720)
assign(employee, john, toy, 3500)
assign(employee, fred, shoe,3740)
manager(toy, john) employee(mary, shoe, 3720)
manager(shoe, mary) employee(john,toy, 3500)
gers2oe, y employee(fred, shoe, 3740)
12 l delete(employee, fred) l
manager(toy, john) employee(mary, shoe, 3720)
manager(shoe, mary) employee(john, toy, 3500)

Figure 1: Evolution of a database following injection of update@11

4 Semantics of Datalog/UT

Both Datalog and Datalog/UT programs are normal programs and as such inherit the seman-
tics of normal programs [Llo87, Prz88]. What we are interested in is finding minimal models

of a program, that is, in finding minimal subsets of the (temporal) Herbrand universe which

are models. Because of the presence of negation in the programs it is possible for more than
one minimal model to exist. A preferred unique model can be selected by imposing a prior-
ity ordering or local stratification on the Herbrand universe [Prz88]. The difference between
Datalog and Datalog/UT is the choice of ordering.

Datalog is commonly stratified by ordering on the names of the predicates. Thus each
predicate inhabits a layer or stratum. A predicate may depend positively on other predicates
in the same or lower stratum. However, it may depend negatively only on predicates that are
in a strictly lower stratum.

In Datalog/UT the ordering is done on the basis of the ordering of the times. That is,
each time value determines a stratum. The result is a causality principle that a predicate may
depend only on values at the same or an earlier time.

To obtain a local stratification it is necessary to impose a partial ordering on the (temporal)
Herbrand universe and then show that rules in the program conform to the stratification. That
is that any term in the head of a ground instance of a clause is greater than or equal to all
terms in the body of the rule. (Note that we order in the conventional way where later times
are higher in the ordering, this is the opposite of the priority ordering used in [Prz88]). As well
there may be no cycles in the call graph including a negation which leads back to the same
term.

Let the partial order on the temporal Herbrand universe be <7 and the corresponding less
than or equal to relation be <7. The first requirement for local stratification is that for any
ground clause instance: AQT « B1@Th,..., B,QTy,, 7 Bpn11QT 041, ..., " B,@T,,, m > 0,m <

n. then B;QT; <7 AQT,1<i< n.

The second requirement is that there is no cycle of ground rule instances such as the

following where there is term that depends (possibly indirectly) on its own negation:
AQT ¢ , ..., ~CQT;.
CQaT «, ..., AQT.

Given a (standard) stratification on the Datalog portion of a Datalog/UT program which
induces an ordering <p (<p) on the (non-temporal) Herbrand universe then a temporal local
stratification can be defined as follows: AQT <7 BQU iff T < U or U =T and A <p B.
That is terms at the same time are ordered by the Datalog stratification otherwise the time
determines the ordering. The example program above is temporally stratified. Even though
there is a cycle of calls: employee calls -(assign) which in turn calls employee there is a time
advance in the rule that defines assign and delete (notice the constraint that T3 is 73 + 1 that
is Tz > Ty). So the employee relation is used at one time to compute the changes which are to

take place and the change takes place later.

5 Implementation

Given such a locally stratified program it is possible to compute the derived relations bottom
up. In this case it means first computing the relations at time 0, then at time 1 and so on.
Kaushik in [Kau91] presents a technique for optimizing this process drawing on techniques
of discrete event simulation and connection graph theorem proving. In particular he shows
how to avoid recomputing relations at time points where no changes occur. As well the
techniques used in bottom up computation of Datalog programs can still be used to good

effect. [Kau91, Cle90, CK91] discuss the application of temporal ordering to the bottom up

computation of general logic programs (including function symbols).

Clearly Datalog/UT is a powerful but low level language (there can be few other languages
which have assignment as a composite, not a primitive, operation) and there are some things
that might be done to ease its use. For example it is probably too great a burden for the user
to write an update rule for every base Datalog relation. However, so long as the primary key
for a relation is known an update rule as in the example can be automatically generated.

A second practical problem is what to do in the presence of conflicting assign operations.
For example assign(employee,tom,toy,3000)@11 and assign(employee, tom, shoe, 4000)@11
might both be present. Of course what should be done is dependent on what the user wants.
However, we will now show one possible approach to the problem. A rule is added which
detects such conflicts:

asstgn_errorQT +
assign(employee, Id, D1, 51)QT,
assign(employee, Id, D2, S2)QT,
(D1 # D2; 81 # S2).

This predicate is then used to prevent the update of the employee relation with a simple
modification of the update rule from the example above.

employee(Emp, Dept, Sal)@T; «
T2 2 Tlv
—(assign_error@Ty),
assign(employee, Emp, Dept, Sal)QT,

—(assign(employee, Emp,_,)QTy, To > Ty, T, > T1),
—(delete(employee, Emp)QT,, Ty > Ty, T > Th).

6 Conclusion

This paper has shown that by making the local stratification of programs explicit in time
stamps a pure logical theory of updates is possible. This brings updates which have always
been problematic and seemingly required a procedural and non-logical semantics firmly into the
mainstream of deductive databases. As yet no practical implementation of this approach has
been constructed. However, it is known how to avoid recomputing relations except when they
are updated and that many of the standard techniques of deductive database implementation
can still be used. So there is hope that an efficient implementation is possible. We look forward

to this challenge.

7 Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada

and by Jade Simulations International.

References

[ADbi88] Serge Abiteboul. Updates, a new database frontier. In Proc. Intl. Conf. on Data Base
Theory, pages 1-18. Springer-Verlag Lecture Notes in Computer Science 326, 1988.

[Bry90] F. Bry. Intensional updates: Abduction via deduction. In Proc. Intl. Conf. on Logic
Programming, 1990.

[CK91] J.G. Cleary and V.N. Kaushik. Updates in a Temporal Logic Programming Language.
Technical Report 91/427/11, Dept of Computer Science, University of Calgary, 1991.

[Cle90] J. G. Cleary. Colliding Pucks Solved Using a Temporal Logic . In Proc. Conf. on
Distributed Simulation, San Diego, Jan 1990.

[Kau91] V.N. Kaushik. Starlog: from Semantics to Interpretation. MSc. Thesis University of
Calgary, 1991.

10

