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ABSTRACT

A theory of estimation of the regression parameter vector in
the linear model, suitable for asymmetric departures from a symmetric
error model distribution, is presented.

Let F be the class of distributions that have the density

1 2
2 exp( %*9 for y € [-d,d], where d is a specified number,

¢(y) = (2m)
and are arbitrary outside [-d,d]. This F reflects the type of departure

from normality that is common in error distributions. Our model is
X=00+ ¢,

where { = (Xl""’Xﬁ)T is the observation vector, C = ((cij)) is a given
matrix .of 7 rows and p columns, g = (61,...,6p)T is the unknown regression
parameter vector to be estimated and £ = (€1’°"’?p)T where the Ei are
independent identically diétributed random variables with distribution
G € F. Let Wc be the class of smooth skew-symmetric functions that vanish
outside [-c¢,c] where ¢ depends on d in a realistic fashion.
In the case where ¢ is known (say o = 1), we estimate g by solving

the system

n

izlcik w(Xi - jglcij ej) =0, k=1, ..., p where ¥ ¢ ¥
iteratively,using an appropriate initial value. We show that the resulting
estimator z% = g%(w) satisfies Zh _ﬁ; g and nl/2 gﬁ is asymptoticall§ multi-

variate normal with mean 6 and covariance matrix given by

iii
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o P® s 3

0 p , Wwhere CO = lim .
[, v ¢ @)’
£y

The problem of identifying robust members of the class {Tn(w):w € We}

is considered when ¢ € F and also when G has, in addition, small contami-

nation of its normal centre.

In the case of scale unknown, we proceed in two ways, both of which

ensure scale invariance of our estimators of 6.

a prior estimate g, of ¢ and solving iteraﬁively the system

p
x, - Z c.. 0,
7 7 i=1 g J
2 07:7( Y| N s k=l,...,p .
=1 Oh

The second involves the simultaneous estimation of 6 and ¢ by solving

iteratively the system of p + 1 equations

( | ‘i ”
“ Xi - L ci. e.

Z i=1 d aJ X
C.,. VP =0, =1, P
=1 tk o )
P ( b
] X, - § e.. 6, X. - z c.. 9, X, - § c.. 0,
" 7 21 Y9 7 21 W9 1 21 T
Z J= lp J= -p Jd= -a =
Li=l g | o ' o J n

where p(y) = fy v(a)dx

a, = -p)E[U(D) - o(D)]

and U has the standard normal distribution.

In both cases, we arrive at consistent and asymptotically normal

estimators and optimal estimators are proposed.

iv
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INTRODUCTION

A class of estimators of a location parameter was introduced by
Huber (1964). The asymptotic properties of these estimators were
studied and members of the class which are robust against symmetric
departures from a symmetric model distribution were identified.
Collins (1976) adapted Huber's theory to allow for asymmetric departures
from the model distribution. Several authors ha&e extended Huber's theory
to the estimation of the regression parameter vector in the linear model.
A serious inadequacy of the theory in the literature is either an assump-
tion that the distribution of the errors is symmetric or else an assump-
tion is made that is not much weaker than the assumption of symmetry.
The purpose of this work is to present a theory of estimation of the
regression parameter vector in the linear model that is suitable for
asymmetric departures from a symmetric error model distribution. We first
give somé essential background material.

In the location problem, Huber's M-estimators are defined as

solutions of equations of the form

(1.1) w(xi-e) =0

1

T

I~ S

where ¥ belongs to some suitable class of functions. If the distribution
of the independent identically distributed random variables is only

approximately known, Huber's minimax criterion is to choose that estimator



of the location parameter which minimizes the supremum of the asymptotic

variance over all distributions in a neighbourhood of a model distribution.
Collins (1976) consiaered the location problem when the distribu-

tion of Xi is an asymmetric departure from a model distribﬁtion. We give

some of the elements of Collins' work.
Let F be the class of distributions defined by

(L.2) G € F =
‘I’(y), Yy € ["'d’d]
G(y) =
arbitrary, otherwise,
where ® is the standard normal cumulative and

d = @—l(l - %D for some 'reasonably small' a.

Let Wc be the class of all mappings of R + ! such that

(1.3) v G'wc = P is smooth, skew-symmetric, vanishes outside
[-¢,e], is non-negative on [0,c] and not identically zero

on [0,c].

The choice of ¢ is determined judiciously - for example, the "influence"
exerted on (l.l) by tail observations is cut to zero.

When ¢ € Yc, (1.1) has multiple roots. Using a good starting
value in the iterative solution of (1.1), Collins derived estimators
T = I%(w) that are consistent and asymptotically normal. The asymptotic

7

variance turned out to be

]

{_c VA (y) e(dy

(1.4) V(wsG) = Wc - 2 .
(f_c v 'y dy




where ¢ is the standard normal density function, Note that (1.4) is
independent of G € F. 1Its infimum was shown by Collins to be attained by
x if le =e

(1.5 Y*(x) =

0 otherwise,

so that y* (or, equivalently, the estimator corresponding to Y*) is most
robust in the sense of Huber's minimax criterion, but only formally since
P* Mc.

Then Collins extended the class F in (1.2) to consider, in addition
to completely unknown tails, a small amount of symmetric contamination of
the normal centre and solved the minimax variance problem. Collins (1977)
gave mild necessary and sufficient conditions for the parameter to be
identifiable in this model. (By identifiability of a parameter 8 in
a mode; {G(x-06), G € H, H some class of distributions}, we mean that there
do not exist 6,, 6,, 6, # 0, and G,,G, € H such that

Gl(x—el) = Gz(x-ez) for all z.)

Qollins (1976) extended the results to the case where an unknown

scale parameter is present in the model.

Now consider the linear model

(1.6) X, = % G’LJ ej+ € » ‘I:=l,...,7’£r

where
- T | .
% = (Xl’*"’Xﬁ) is the observation vector (T denotes

T, .
transpose), 6 = (61,...,6p) is the unknown regression parameter

vector to be estimated, ¢ = ((cij)) is the design matrix and



T
g = (el,...,ep) is the error vector. The €; are assumed to be

independent identically distributed random variables.

In estimating g, there are, of course, several assumptions that
can be violated, e.g., the error distribution may have longer tails than
supposed (this can be caﬁsed by a few grossly erroneous observations, for
example), the model may not be quite linear, there may be deviations from
the assumption of independence of the errors, systematic inhomogeneity of
variance, etc.. In our work, we shall be concerned with distributional
robustness, i.e., in deriving estimators that behave well under small
changes of the distribution of the errors.

The classical solution to the problem of estimating g is to minimi ze

the sum of squares:
<

(1.7) (Xi -

1 J

NS
e~

ci. 9.)2 = min!
1 1 " d

or, equivalently, to solve the system

(1.8)

[

p
ey Xy - jgl e ej) =0, k=l,...,p .

=1

This classical approach is highly sensitive to heavy tails in the distri-
bution of the errors. The resulting estimator may not be consistent and
is not efficient. Note that, by the Gauss-Markov theorem, (robust)
alternative estimators must Be non-linear in the observations.

One method studied by Relles (1968), Huber (1973) and Yohai (1972)
is to re?lace the square function in (1.7) by some less rapidly increasing

function p. The resulting family of estimators (Huber M-estimators) are



then the solutions of .
”n rp
(1.9) } eX., - Y e,.8.) =min!

If p is convex and has a derivative ¥, (1.9) is equivalent to

solving the system

i ej) =0, k=1,...,p.

TSl
Q

"
(1.10) Loeg v, -
1

1= J=1

The assumption that the error distribution be symmetric or that

EW(ﬁi) = 0, where EF denotes the expectation operator, has been made.
(The consistency condition Ew(si) = 0 is not easy to satisfy as ¢ and
the error distribution G range over some classes unless we assume G is
symmetfic.)

Under a variety of additional regularity conditions, various authors
(Relles (1968), ﬁubcr (1973), Yohai and Maronna (1979)) have proved the
consistency and asymptotic normality of thé estimators derived from (1.10).
Huber's robustness results carry through due to the form of the asymptotic
covariance matrix. Bickel (1975) introduced one-step (¥) estimators in
the linear model.. (these are solutions of a linear approximation to the
system (1.10))and showed that their behaviour is much like the actual
roots of (1.10). Results corresponding to those above were obtained when
scale is also unknown. The case where p, the number of parameters, is
allowed to increase with »n, the number of observations, has also been
treated, but in our work we shall consider only fixed p.

We shall take as our starting point the model (1.6) and extend the

current theory of estimation of 6 to allow for error distributions that are



asymmetric departures from a symmetric model distribution. With ¢ € We’
where Wc is given in (1.3), we consider the system of equations (1.10)
(note that pi corresponding to our wﬁ are not convex). Now, the system
(1.10) has multiple roots when ¢ € Wc. One procedure open to us is to
solve (1.10) iteratively with some good startingrvalue. This is the
procedure we adopt, making a restriction on the design matrix C to give us
our initial value. We comnsider first the case where Var(ei) = g2 is known
(so that, without loss of generality, ¢ = 1), deferring the case of unknown
scale to Chapters 7 and 8. The distribution & of €; is first taken to be

a member of F, with F given by (1.2). We obtain estimators gn = gn(w)

of 6 that are consistent and we find that

c ~
| vwema

D -1 ‘-¢
(1.11) Z% — MVN g, Co ” 2|
U AL
CTC
where CO = lim = the limit being

7 o

shown to exist and be positive definite.

The efficiencies are independent of the design matrix and (see
(1.4)) the optimality results of Collins (1976) apply.
In the case of symmetric contamination of the normal centre,: the
minimax results of Collins in the location case apply to our linear model.
In the case of scale unknown and G € F we separate our treatment into

two sections. In Section 7, we propose an estimator an of o which satisfies



Sn —E+-Bc (following Collins (1976)) where the biasing factor B is unknown,

but close to 1. Solutions of

n
g -
(1.12) izl s ¥ 0, k=1,...,p

then yield scale invariant estimators of 8. We solve (1.12) iteratively,
with ¢ in some appropriate class, using the same starting value as in the

scale known case. We again derive a class of consistent and asymptotically

L .
normal estimators of 6. The asymptotic covariance matrix of n* zn is

given by
C
. f Y2 (y) ¢(By)dy
(1.13) ¢, = 5 .
eU v ) ¢'<Sy)dy] |
_c’

In Section 8, we ensure scale invariance by solving a certain system

of equations simultaneously for 6 and ¢. This system is

) p
X, - z c.. €
n Tl W
.z %ik v t =0, k=1, P
=1 )
(1.14) 3 p D p
X.- ) e..0. [xi- ) c..e.I X.- ) e, .0
n 1 L7157 L T1g g A R * A
J=1 g=1 - g=1 - =
l b P q, =0
| Z=1 o X, o J o

Y
where p(y) = f Y (x)de ,

a, = (n-p)E(UpU)-e (V)]

and where



U has the standard normal distribution, or, what turns out to be equiva-
lent as far as the value of an is concerned, U has ﬁhe standard normal
distribution in [-d,d] and arbitrary outside [-d,d]. We use the same
starting value for 6 as in Section 7 and the scale known case, and we
use the Sn of Section 7 as our starting value for ¢o. We contend that
for n finite the estimators of © derived from (1.14) are superior to

the corresponding estimators of 0 from (1.12) because, instead of using
a fixed estimator of o throughout the iteration process, as (1.12) does,
we, in (1.14), improve our initial estimator of 0 at each step of the

iteration process. Finally, optimal estimators in the scale unknown

case are proposed.



BASIC MATHEMATICAL CONCEPTS AND RESULTS

In this short section, we will review some basic concepts and
results from linear algebra and p-dimensional calculus, for we shall have
recourse to use them frequently in our work. (See e.g., Simmons (1963)

and Ortega and Rheinboldt (1970).)

We first recall that any two norms, [|*{ and [*]|' on a finite-
dimensional linear space N generate the same topology. This is equivaient

to saying that there exist comstants ¢, 2 ¢; > 0 such that

2.1 eyl = llxff" = e llell for all x € .

This usually permits us to use an arbitrary norm in our work and we will
do so, except where we specify otherwise.

Let LQRp)‘denote the (linear space) of all linear operators on.ﬁp,
where ®¥ is the set of all (ordered) p-tuples of real numbers. LQRP)

becomes a normed linear space under the operator norm:

(2.2) |2] = swp |Et]l , E € LGE)
Iell=1 -

and this equals

sup [[F5]l = sup [IEE]
lzlse ~ fel<r

= inf{K:X = 0 and ||Et|| = X||£|| for all £} .

In our work, context will indicate whether a letter denotes a linear operator
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or its matrix representation.

For E,F ¢ L@#ﬁ, the multiplicative property
(2.3) |zF)| = |E}IF]| holds .
If we equip,ﬁp with the 7,-norm:

|t” E , then, if eij denotes the (72,;,7')3-1:-l entry of the

matrix E, we let ”E”l denote the matrix norm and have the result
(2.4) |Ell, = mex § Ie
1sj=p <=1
Next, we have the perturbation lemma:
V . Ep P B . . ""1 . Ny
(2.5) if E,F € L@®) , E invertible with || || = ¢ and if jE-F| < B
where Ba < 1 , then F is invertible and ”F—l” E'I%Eg .

It follows from (2.5) that:

(2.6) if E P~ LQRp) is continuous at EO and E<E0) is invertible
then there exist 8,y > 0 such that E(f) is invertible and
I2CE) ™ = v for all & € 5(tg,v) -

Moreover, E(E)—l is continuous in E at fo:

Here, S(¢,8) = {t : [t-¢ ] =

For the remainder of this section, F will denote a mapping from

.D __C_/Rp into Ep We recall that

(2.7) F is Gateaux- (or G-) differentiable at an interior point
t of D if there exists a linear operator Z ¢ LORP) such that,

for any % Eﬁf,
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(2.8) 1lim (%9np<t+ah) - F(t) - aBhll = 0 .
a0 ~ e ~ ~

The linear operator £ is denoted by F'(¢), is unique and, by (2.1),
is independent of the particular norm on 7.
If F is G-differentiable at each ¢ € D0 C int D, then for each

t € Dys F’(fo) is a linear operator; that is, F' is a mapping from

~

Dy into LQRP). In particular, F' is continuous at % € Dy if
(2.9) ||F'(t+h) - F' ()|l > 0 as |j#]| ~ 0 .
We recall further that

(2.10) F is Frechet- (or F-) differentiable at ¢ € int(D)

if there is an E € L(&) such that
(2.11) lim (—i—) |F(t+h) - Ft - En|} = 0 .
740 Al ~ ~  Tn

This F is again denoted by F'(t).

T

If we write F = (fl,fz,...,f )~ (7 denotes transpose), then the

p

matrix representation of F'(t) is given by the Jacobian matrix:

EIVAYCOPIENN W ¢
(2.12)  F'(¢) =

£
dlfp(f)’ LI :apJp(-E) s
where Sjjé(t) is the jEE partial derivative of fi(t).

We note that:

(2.13) if F is F-differentiable at ¢, then F is G-differentiable at %.
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On the other hand,

(2.14) if F has a G-derivative at each point of an open neighbourhood
of ¢t and if F' is continuous at ¢, then F is F-differentiable

at €.

We observe also that:

(2.15) if F is F-differentiable at %, then F is continuous at ¢.
The last statement is false for G—differeﬁtiability.

We also note that:

(2.16) F' is continuous at ¢ <=>. all the partial derivatives

ijé are continuous at t.

The mean value theorem for mappings fEEp + R' does not have a direct

analogue for mappings FuRf > R’ (p > 1). An alternative that we shall

use on a few occasions is:

(2.17) F:D E_/r’rp > is G-differentiable on an open convex set Dy, ¢ D

and t,s € D, then Ft - Fs = B(s,t) (t-s) , where B(s,t) ¢ L@E®)

~ o~

is given by

8)f1(84ay (8))5 « .+« L8 F (s¥a (E-)) |
B(s,t) = | . .
51fp(§+ap(f—§)), .. ,prp(§+ap(f—§)) ,

for some a ...,ap € (0,1).

13

In general, the a will all be distinct and B(s,%) will not be the

G-derivative evaluated at an intermediate pcint.
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(2.18) (Corollary to Leray-Schauder theorem.)
Let € be an open bounded set in ﬁp and assume that F:E;E;Ep > 7
is continuous and satisfies (f—EO)IF(E) > 0 for some EO € ¢ and
all E € é, where C denotes the boundary of C. Then F(E) = 9 has
a solution in C.

(Note that the same result holds if (t—to)IF(t) = 0 is changed to

(-t F(2) = 0.)

(2.19) Assume that F:D E;Ep +'Ep is continuously differentiable on the
open convex set D and that for any p points ¢,,...,t € D, the

~

natrix

S 1B, e L8 F ()
is invertible.
NGO PR (2

Then F is one-to-one (see Ortega and Rheinboldt (1970), p. 140.)



MODEL AND CLASS OF ESTIMATORS

We fix a, 0 < a < .5 and set

(3.1) d=eta -9,
Y
where ®(y) = f o(t)dt and ¢(£) = (27)

exp(—E—' . A class of distri-

bution functions F is defined as follows:

(3.2) G ¢ # if and only if there exists y € (— ) such that

’2"2

G(y) = v + o(y) for all y € [-d,d].

We set
=Ll g

(3.3) k=49 (2 + 2)

and
(3.4) c = d-k
Our model is:
(3.5) X=200+¢,

where X = (Xl""’¥n>T is a vector of n observations, C = ((ci.))

is a given matrix of n rows and p columns (the design matrix),
6= (6 ,...,Gp) is the unknown regres31on parameter vector to be

estimated, and ¢ = (8 seees ) is the error vector.

We assume that the e, are 1ndependent, identically distributed random

variables with distribution function

14
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G(%) where G is known to be a member of F.

We shall assume ¢ to be known here (so that, without loss of generality,

o = 1,) deferring the case of scale unknown until chapters 7 and 8.

We will now make a restriction on the design matrix.

Let ql,...,qp be fixed positive weights and for each positive integer n,

let q](n),...,qp(n) be weights such that qi(n) -+ q; Since the theory

we present is asymptotic and since we can arrange qi(n) > q; through

a sequence of rationals, we may assume nqi(n) to be an integer.

Now assume that the first nql(n) rows of C are the same,

next nqz(n) rows of C are the same, and so on.

1y

€215
C = *

%
(Repeating

o= —

. e ’clp all’

217

. . ’GZp ayys

. 21>

a. ,

o e np ap ,
i . P

a
pp

,a
pp |

That is
} > nql(n) times

} - nqz(n) times

} - nqp(n) times

that the

rows of design matrices is not a serious restriction (see

Draper and Smith (1966), p. 28).

For our purposes it will help us in

gettiﬁg a good initial value for solving a certain system of equations

that has multiple roots.

The problem could be overcome by minimizing a

certain functional instead and there are other possibilities also.)

. ..th . .
We let A be the matrix whose (¢,J)— entry is ai., that is,

- 21 .
B=A" = ((bij)) exists.

A = ((aij)>’ and we assume that
pxp
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Now set
(3.6) Ml = Ml,n = median of {X ’.'.’thl} s
M, =M = median of {X veesX )
2 2.n nql+l’ ’ nq, i
M =M = ﬁedian of {X yeees X }
) DN nqp_l+l nqp
and set
(3.7) M=M = M y T
. 1 M RERELLS .
T

Next, let 6% = eg = (6*,...,6;) be the solution of the system
A6 = M, so that

( 3

(3.8) 6% = BM =

) bjMJ.
=1 P J

Strictly, we should write 6:(X) in place of 6%, Such notational brevity
is common in our work.

Now let

(3.9) m(G) be the median of the distribution G and set

( p )
) by
g=1 % m(GQ)
(3.10) %% = m(G) . » which equals B .
| .
Y ob_. m(G)
| j=1 P
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We note that whatever the distribution G may be,

(3.11) M= —Z (@) for all j=1,...,p.

Jan
[One way of seelng thlS is to recall that the variance of a sample

quantlle is of order n -1 for large n.(see Cramer (1946) p.369) and

then Chebychev s inequality gives the result. ]
Then using the Zl - norm or EP we have

p
) Zb [MJ-m(G)]

lo* ~ o*¥|
- ~ s J=1

2 Z b :|it; - m(&)| £, 0, by (3.11).
41 4=1 J

Thus, we could have defined 0% by:

(3.12) 0** = Plim 6%
where Plim denotes limit in probability.

We define a class We of mappings from R! to B! as follows:

(3.13) DEFINITION:

Y € Wc if and only if 1 <s smooth (continuously differen-
tiable), skew-symmetric, vanishes outside [-c,c] and satisfies ¢ = 0

on [O,cj but #,O on [0,e]

We propose to estimate 6 by solving the system

p p
(3.14) Z c’Lk l‘) (7/ .z 07;,7' ejJ =0 ) k = l""sp
J=

’L._.

for 8 , where ¢ ¢ Wc

Clearly, since ¥ vanishes outside [~c,c], (3.14) has multiple

roots, with probability one, even asymptotically. We shall first show



18

that any solution of (3.14) is location invariant, so that later, in'ana—
lysis of the behaviour of the estimator we shall propose for the true 8,

we will be able to assume without loss of generality that the true value of
6 is 9, for the purpose of simplifying notations and calculations.

~

We are to show that if el(X) is a solution of (3.14) then
(3.15) 8 (X + Ct) = 6,(X) +t where t €R .

To prove (3.15), we replace X by X + Ct in (3.14). Then (3.14) becomes

n p p
(3.16) igl e ¥ [X£ + jzl ¥ tj - jzl Cs4 ej] =0, k=1,...,p,
i.e,,
n h p
(3.17) izl ey ¥ (Xi - jzl e (ej—tj)] =0, k=1,...,p .

But (3.17) is of the same form as (3.14) with Sj becoming ej—tj.

Thus the th component of the solution of (3.17) minus tj is the
jEE component of the solution of (3.14)

i,e., solution of (3.17) minus solution of (3.14);

e <k
it

i.e., solution of (3.16) minus ¢ solution of (3.14);

i.e., 91(5 + Cf) - f 91(%)’ proving (3.15).

Thus,

(3.18) any solution of (3.14) is location invariant.
In vector form, the system (3.14) reads

[ £ )
igl cil ? (Ai - 'zl cij ej]

(3.19)
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We set

{télﬂ’p maxIZa

1 j=1 ‘7

1A
&
e

(3.20) D

[}

t erat € [kxIF},

and introduce the process {Fn(t):t € f} where

(3.21) Fn ('INJ) =

%E . (i"jgl%’tjh

Note that the set of solutions of Fn(t) = 0 coincides with that of (3.19),
trivially.

We further introduce the mapping F:D + /B defined by

g J]

(P p
4;21 43195 Bg ( _§
(3.22) F(%) = :

§ QE;"(X—E:ZJCZ.

)
\ =1 7’p J=1 g gl

P
where X - } a, 14 tj has distribution G and where EG' denotes the expectation
J=1

operator under the distribution G. We call F('f) the asymptotic deterministic
version of Fn (f).

In solving the system Fn<§) = 0, we would like to ensure that the
resulting estimator is a consistent estimator of the true 9 .

n

We require a "good" starting value for some iterative method of
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solution. Now, we will show in Section 5 that
—. P
(3.23) sup{||F, (¢) - F(&)[|:t € D} — 0 .

For the moment, we interpret this loosely by saying that the process
{Fn(t), t € D} resembles the function {F(t), t € D} asymptotically.

Further, in Chapter 4, we will show that:

(3.24) the solution of F(£) = 0

by Newton's method with starting value p**
y

is the true g .

Then (3.12), (3.23) and (3.24) lead one to suspect that if we
solve the system Fn(f) = 0 by Newton's method with starting value 9*, we may
arrive at a consistent egtimator of the true g. (?his turns out to be true,

as we show in Section 5.) Accordingly, for a fixed y € Wc, we define the

sequence {Z% = Zh(¢)’ n=1,2,...} of estimators of the true 6 as follows:

(3.25) DEFINITION:

0

Set t = 0% and form the sequence
KKk Ryl e Xy k=01, .
) ~ o~ n ~ n ~
Then set
im % | if this limit ewists
I
Nn

Y ]
8" , otherwise .

In Section 5 we will be required, of course, to examine if the iteration

process is well-defined - in the sense of establishing the invertibility
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of Eé(gk) and the boundedness of Hgé(gk)_l” , k=10,1,2,... . (see (5.6).)
We note that since convergence of the sequence {gk} can never be
. determined, (3.25) is not actually an algorithm. In the case of estima-
tion of a location parameter, Collins (1976), p. 71, gives an approximate
algorithm, which can be applied here. We remark also that the idea of
first solving F(E) = 9 (instead of immediately tackling the system F%(E) = 0)
is a mathematically very simplifying technique.
Finally we make the remark that we chose to use Newton's method of
solution for the elegance and simplicity of its form, in addition to its

. k+1
fast rate of convergence (e.g., quadratic convergence - |t

- ]

< Bka - EOHZ, B < +» provided the Ek are sufficiently close to a solution
EO - which holds under quite natural conditioms). In actual practise,
difficulties can arise in applications of this method. ‘In specific

cases, it should be possible to make suitable modifications.



NEWTON'S METHOD SOLUTION OF THE

ASYMPTOTIC DETERMINISTIC EQUATION

As outlined in Section 3, for a first step in showing that Z%,
defined in (3.25), is a consistent estimator of the true parameter vector
6 in the model (3.5), we intend to show here that the Newton iteration

method of solving the system F(£) = 0 with starting value 8%* is the true 8

(see (3.22), (3.10) and (3.11)). Because of (3.18) we will, without loss of

generality, assume from now on that the true value of § is Q.

We have (P p 3
' ) a-.q. E w(x- ) a..t.]
i=1 11 % TG F=1 g J
(4’1) F(E) = N . ’ t 6_5 Py
p
, . E - a,., t.
Li—zl “ip % e v ( jzl td JJ,

where D is given by (3.20). We note first that for each 2 = 1,...,p:

. P p
4.2 E X - ..t = j - ..t
(-2 ¢ ( jzl “ig J] f:,w( jzl “ig tJ}dG(x)
p
¢ + Z a. .
=1 vd J
[ p
= v (x - Z a.. t_.]dG(:c) .
p g=1 g g
-c + Z a,. t,
j=1 ]

since Y vanishes outside [-c,c] (see (3.13)).

From (4.2), (3.20), (3.4) and (3.2) we see that

22
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' p
(4.3) Z, w(x - Z i J]

Noting that (4.3) is independent of G € F (this was partly the motivation
for defining ¢ as we did), we may drop the subscript G in (4.3) from here on.

Observe next that for any 7,k where ¢, k=1, 2, ..., P ,

W&.4)

w( - a..h]=f bz + }&m
Gtk ge1 ¢ 9l =1 g
p
This follows from the continuity of w(x)¢(x + z a tJ] and the
oJ

(existence and) continuity of the partial derivatives of

p
w(x)¢(x + jzl aij tj] with respect to tk (kR=1,...,p).

We now check the continuity of-—g— Ey|X - Z a..t,] int €D :
6tk j=' 1y J

let » € D, Then for s in a neighbourhood of r, we write

p p
§ F PiX - .. T, § B X - .. T,
‘p( i a] ] "’( L % ]
_Ftk t=8 Stk : t=pr
Ty i
G¢Lx-+ a. . t.] 6¢(x‘+ , . t.}
_e | gop Y je1 b9 7
= v () | ~ daz
¢ 8% t=8 8ty t=p

and, since Y is bounded (in fact, it attains its sup and inf, being a
continuous function that vanishes outside a compact set), it suffices

to show that for € > 0, there exists § > 0 such that
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p p
§ + t. Stz + a t.
¢(x 21 ig J] d’[ Zl Z J]
(4.5) - - - < g
Gtk t=g Gtk t=r
whenever ||s-r|] < § .
We write
P p
<S¢(x+ ) a..t.] 6¢[x+ ) a..t]
PR 1 9
S t=s %% t=p

p
< laikl-{ 'x+JZlaer| l (aﬁ- Efw"q'] ( 121%3 J”

and the rest of the proof is elementary using continuity of the functions

p p
t+¢(x+2a t.]andt+2a..t..
ge1 8T ~ o ghy B

Next, we observe that each of the p components of our function F is

p
just a linear combination of the E w(X - z i j] s, T=l,...,p .

J

Accordingly, we have:

(4.6) TLEMMA:

The partial derivatives, with respect to tl,...,tp of the p

components of the function
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F(t) =

(exist and) are continuous on D .

We now prove

(4.7) THEOREM:

a) F is G-differentiable on D ;
b) F' 4is continuous on D ;
c) F is F-differentiable on D ;

d) F <18 continuous on D .

Proof:

Let ¢ € D and let M = M(%¢) be the matrix of partial derivatives

of F, i.e.,

i d
(4.8) M=

g J
To prove a), we will show (see (2.7)) that this ¥ satisfies

(4.9) lim (—) 17 (E+ah) - F(£) - amt]
a0

0, h e¢R .

Using, e.g., the Zl—norm: ”S”l = Ils,

D
7/I s 8 € , we have

=T agq; -] a £, s T a, g, B-) a, t
07‘: 17 E ) thi 11177/ 3 19

E%_'Z 595 EY(X~- Z Artl)yeens —%—-Z p; Ey(X-) @it
1l ¢ 7

-
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=1e]

(4.
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2 IFtran) - F() - @l

1 . L
=7 l % a4 Ew(X—g aij(tj+ahj)) - g a4, Ew(X—g aij”j)

¢ x
5
-alh, {E%‘ ) @54, BOC-) aijtj)} I
r r i J

i
a

Ew(X-Z a,;(t4ah)) - BY(X-) a, .t.)

g % ks 4 13" d

BV(X-) a. .t ,
v oyt |

r r

that, to prove (4.9), it suffices to show

10) -% Ew(X—Z a, (t +ah ) - EY(X- Z aigtg)
J
8
g » _7';— (X—Z athJ) — 0 (a ~0) ,
J .

for each 2 = 1,...,p .

Now, from (4.3) and (4.4), the expression in (4.10) equals

T

1] f¢ ¢
" f_cw(x)¢(x+§ aij(tj+ahj)) ~ f_cw<x)¢(x+z aijtj)

- a Z h fc v(x) 6# ¢(x%z cz7,t7 J ’
1 C
= l f_cw(x) [ ¢<x+z a; (t +ah y) - ¢(x+§ a%th)

~a ¢'(a+) a.,t) ) a, ] ,

7 17 J ” ir r

1
E'f_ [y ()| ' ¢(x+Z as;(Etah.)) - ¢ (at) a; %)

J
- a ¢! (x+z a.
J

id J) ; airhr
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Thus, to prove (4.10), it suffices to show:
.1 = . . (t +ah. - , Lt
(4.11) d(at) a; (btah)) - §o+] a; .t
J J
- 4 oL 0y
a ¢ (x+§ aijbj) X aij hj — Q0 (a—+0) ,

for each x € [-e,c]

When Z aijhj = 0, (4.11) is trivial.

dJd
For those values of % for which Z aijhj £ 0, set
J
h = ; aijhj , t=ua+ ; aijtj s, B = ah

and then proving (4.11) is equivalent to proving

lim-:é—' O(EHB) = ¢(t) - BO' (£)
B+0

0.

But this is the definition of ¢’(¢). Thus a) is proved.

Now b) follows from (4.6) and (2.16);
c) follows from a), b) and (2.14)
while d) is proved by c) and (2.15).

This completes the proof of (4.7). o

(4.12) REMARK

We are now in a position to state and prove the main result of
this section concerning the Newton's method solution of the system
F(t) = 0. A careful examination of the theorems in Sections 10.1 and

10.2 of Ortega and Rheinboldt (1970) (in particular 10.1.3, p. 300,
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10.2.1, p. 311 and 10.2.2, p. 312) show that, under certain conditions,
certain iteration processes, in particular Newton's iteration process,
will convexrge. The key point, however, is that while these theorems are
instructive they are most non-constructive. Their drawback lies in the
fact that while they guarantee convergence if we start in a sufficiently
small neighbourhood of the target value, they do not guarantee convergence
if our starting value is in a 'pre-chosen' neighbourhood (see Ortega and
Rheinboldt (1970), p. 302, p. 317 and p. 381).

We aim to show that the Newton's method solution of F(é) = 9 with
starting value 0%% (see (3.10)) converges to 9. Now, with D given by (3.20),
we shall see that 6%% € D = int D (o%* may be any point of D), but we should
have no reason to suppose that D is a small enough neighbourhood of 0 to
permit convergence of the Newton iterates to 9 if we start anywhere in D
(although, as we will soon show, D is sufficiently small), Originally, we
thought of using the Newton-Kantorovich Theorem (see Ortega and Rheinboldt
(1970) and Ortega (1972)) fo give us our neighbourhood. However, we decided
against this, in view of the fact that the conditions of that theorem are
usually very difficult to verify in practise. In any case, the importance
of that theorem perhaps lies more in giving us error estimates and in
ensuring that a given system does have a root, than in giving us a "starting
neighbourhood". Our choice of D was suggested by an examination of the

corresponding situation in the case of a location parameter (Collins (1976))

and the starting neighbourhood (-k,k) found there.

For notational convenience in future we shall often write:

Exp(X—JZ a;i6:) = By,
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and
dw(X—Z aijtj>
. E o = By]
d(X-Z aijta)
J

in cases where no confusion can arise.

We now have:

(4.13) THEOREM:

a) F(0) = 0
b) 6** €D ;
c) F'(t) is non-singular for all t €D ;

d) The Newton iterates

Kok p ey, k= 0,1,2,. ..,

with starting value t = 6** are well-defined, remain in D and

converge to 0 .

Proof:
We have
‘ v
L e, BOU-] a; it
7 . J
F(t) = '
a. g. Ey(X-) a..t.
g 53 BV JZ it
so that
L ag12; B4
1
F(O) =
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so, to prove a) we will show that EY(X) = 0. ‘But

(6
Ev(X) = f v(x) ¢(x)dx , by (4.3),
]

and the result follows by symmetry of ¢ and skew-symmetry of y.

We next prove b): it is easy to see from (3.2) and (3.3) that
m(G) € (~k,k). Then
[(m(&) )
9** = B : € D because
Lm‘“’) )
[ m(@) )

Aekk = | € (-k,k)P .

Lm(G))
To prove c¢), fix~ ¢ € D and write
f -y a.. 1] .G

; a;.9; By (X g atatj) ) a9, BV,

Fb) = , -

g %p91 E‘W"g %3t )| g %pd; By |

in a notation previously introduced.

We have, by (4.7), that F' (%) exists and its matrix representation

is given by (4.8):

§ §
Lag s ses B o v o0 Daga; 5 BY
7 1 p

FI(E) =

§
Zaipqi §g, Pl o s g%p% EE;E“G:J ,
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which equals

(-7, '
g %3193%0 5

.

!
T g Grpli%a BV 5 -

which factors to

-1

al_pql y & e . FY app p

and this further factors to

- 47 Diag((g;)) Diag(®4)) 4 ,

i
By, , a Ey!
11 l!)1 alp ‘pl
" *
E ’ . ’ 4
p1FY, pp” p

where Diag((qi)) is the matrix with q, in the A row and o2 column

and zeros elsewhere. Similarly for Diag((E\bi')) .

We thus have

(4.16)  F'(#) = - 47 Diag((g;)) Dlag((E¥))) 4 .

Hence, the determinant of F'(£) is

(4.15) det F’(?,) =

P
~TT (q.B0]) (det a7)(det 4)
=1 *

Now, qi#O, i=l,...,p and

detAT=detA750,

by assumption.
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Thus, to show F'(¢) is non-singular, it is sufficient to show

(4.16) By, # 0, d=l,...,p -
' ay(x- Z a;;t:) Gw(X—Z a; it
Now, - Ewi = - F = F
d(X—g aﬁgta) §( Z atatg)

Now also ¢ € D and so ¢ = z a..t. satisfies
J
(4.17) t € (-k,k) .
By (4.17) and Lemma 2.1 (iii) of Gollins (1976), we have

- Ew; < 0, establishing (4.16).

(Note that Collins (1976) uses the notation A(£) for EY(X-%).)

This proves c).

Finally, we prove d). Set
(4.18) H(t) = ¢ - F'(t)”lF(t) , t €D.

To show that this is weli-defined, we must show that F'(t)—l exists and
that [|[F' t)—lH is bounded (in %) om D.
By c), F’(t)—l exists V £ € D and we now sketch two different

proofs of the boundedness of ”F’(t)—l” on D.

Proof (i):
We use the Zl—norm for vectors in.Ep, so that, by (2.4), the

corresponding norm of a matrix F is

(4.19) Bl = max z lezg

J
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We have Elpé #0, i=1,...,p, forall¢ €D, by (4.16). In fact
we have Ewé # 0 for all t € D. Further, it is easy to check that Ewé
is continuous on D. These two facts imply that %/pwr is continuous

on D. Since D is compact, %/Ewl is bounded, that is, for each <,
Z

i=1,...,p, there exists M, such that

(4.20) ll/Ewél s, .
11
Then, Iz ()™,

= I1-1) 47 Diag((pm) Diag(C) UD My, by (4.14)
1 1

A

» by (2.3)

- 1 . 1 7.-1
la 1n1nniag<<giza>n1unlag<<5;o>u1u<4 M,

-1 r,~1 x ;1 ax 1
A T . =—) , by (4.19
™0 a0 (7% IE%{I)(‘“J qj) y (4.19)
-1 r.-1 ax nax 1
= |4 A MU ),
™ e ™y 57 1) (75 qj)
i.e, ”F’(t)-lH is bounded.

Proof (ii):

By extending the domain of definition of F from D to any open set
containing.E (oxr even.Ep) one can easily modify (4.7) to show that the
results there hold when D is replaced by 5'(after all, ¥ vanishes outside
[-c,el). 1In particular, F is F-differentiable on D and F' is continuous
on D. We remark that the statement that F is differentiable on a closed
‘set must be interpreted in the sense of F being differentiable on an open
set containing 5; for we do not discuss differentiability on boundary
points of the domain of definition of a function if this domain is closed.

Now also, F’(t)—l exists on D.
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Then, by (2.6), for any tl € D, we can find a ball S(tl,é)

and a number Y, such that
! —l <
N7 &) "l < vy, for all ¢ € S(t,8.).

The collection of balls {S(t,6 )} is an open covering of the

t €D

compact set D and hence a finite subcollection

LS(Zi’th)}lfifm covers D .

If Vs is the y corresponding to dt. » Wwe then have
~T

HF’(t)—lH = max vy, for all £ € D,
¥ 1=ism
4 -1 .
lIF'(t) || is bounded.
To show that the iterates remain in D, we first show

(4.21) Iz - F'(t)“lF(t)” < ||£]l for all ¢t € D

for some norm to be specified shortly.

We have, for ¢ € D,

{ Z a. lq Ew )
F(E) = J
L} ay9; BY;
7
f Ayp s+« + s apl 9, Ewl
’ - L] ’ E'
- Yp “op I W Y
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or,
Elpl
(4.22)  F@®) = 47 Diagl(q,))
Ewp

Now, from (4.14), we have

-1

.23 P = Diag((—E—j,—én Diag(() (™ .

2

From (4.22) and (4.23) we have

(4.24) F'(g)'lz«’(g)
By,

- 47" Diag () Diag(()) D ™ iag((g,))
7 7

By

byl &
<

$mt s o

i

G| Gy

< | <

~

S| g,
LE_'U-);J \—E"p' J

Now, for each fixed ¢ € D, we write
t = g a’LJtJ , S0 that

By, By (X-%)
(4.25) _ Ewé = EY (XD with ¢ € (-k,k) by definition of D .

In the notation of Collins (1976), (4.25) equals -)\—):% and

Collins showed that



36

(4.26) I_JMQZL < 2]¢] for all ¢ € (k,k) .

AT

Further, it was shown in Collins (1976) that

A(E)

(4.27) XT(E) is > 0 or < 0 according as ¢ > 0 or < 0, respectively,
e A(L) retains the same sign as ¢
) i g
A(E)
(At t 0, A,(t - 0')

In our notation, (4.26) and (4.27) read

By, By,
(4.28) Eﬁg- = 4§ﬁz < 2|t| and
(4.29) - Eaz has the same sign as t = ; aijtj
and  Fr = 0 if ¢ = ) a;;t; = 0.
z ‘ J
Ewi
(The function E@ﬁ-and many others are thoroughly examined in Chapter 8.)
7

In proving (4.21), the appropriate norm to use is

(4.30) £, = max l Z a

1slsp ! g=1 ZJ J ‘

{The invertibility of A4 is necessary for (4.30) to be a norm.)

We now have

It - 7' F@),



LN r.-Ed}l \
1 £ =
Y1
= - A—l . “A , from (4.24)
% Y
/ !
|y
( By |
¢ L P ( 5
1 % )
- o
= | -Ew , » where <(bij)> = A
)
p \ % Pk E“bk J
] Y b i } l by (4.30)
= |t -1, | == , ,
mix g aZJ RE; £ Jk [ E¢é } y

Byq . . -1
max Zazjz&j - [_ E‘-”_'z] , since (( i) = ((aij))

,» by (4.28) and (4.29)

< max | ) az.tj

el -
This proves (4.21) for the norm (4.30).

We are now in a position to prove that the iterates

(4.31) R ey, k= 0,12,

~

remain in D and converge to O.

By (4.21), there exists a < 1 such that
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(4.32) It - 71y E@)N, < altl], for all ¢ €D .
Now t® = %% ¢ D , by b) of this theorem.

Hence, the first iterate
£1= 20 - pre9lp0) satisfies

1 = (€0 _ mrea0y~Lp 0 0 (10
llf HA = llf ' FI (%) "F(t )HA = allf IIA < Ilf Il‘4

13" g 1 g

"i.e., max | J a, t} | <max | } a 20 by (4.30) .
l J l J ‘

But J a,,t) € (-k,k) , by the definition of D and the fact that
+ LG g v

J
t0 = o** ¢ p and so
max + Z aljtg | < k
o d
Thus ,
tl €D.

By induction, all iterates tJ , J=0,1,2,... Llie in D and satisf
A sfy

Ji < 0
I Ill4 =a ¢ lll4 .

Since a < 1, we have

lim ”tJHA = 0 which implies
S0 '
lin ¥ = 0 s Since any norm is a continuous function.

~

Y asd

This completes the proof of (4.13). o



CONSISTENCY AND ASYMPTOTIC NORMALITY

In this section, we will show that the system of equations

(5.1) F () =0,
where 7
¢, 7 p 5 . N
%l'izl %11 \"(Xi - J.__Z_l cijtj] P, 1B
(5.2) E () = . | = : , say,
1% £ .
(7 7;-_2-1 “ip w(Xi ) j—zl cijtj], \ In’P(E) )

solved by Newton's method with initial value 6% (see (3.8) and (3.25)),
yields, for each ¢ € Wc,a consistent and asymptotically normal estimator of
the true 6, which without loss of generality we have assumed to be 0.

We had

( ) ( 1

£L
1
(5.3) F@&) = : ' = : s say,

» .
. g, Bl X - ..t t
u;zl “ipe vw[ P J] )

.

T

I~

p
Zl %:19; E"’[X -
= )

I~ '3

and in Section 4, we showed that the Newton's method solution of

F(t) = 0 with initial value 6** (see 3.10) is 0.

39
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(5.4) REMARK:

We note that for each w in the underlying sample space of the

random variables X;, an identical version of (4.7) holds for the mapping

Fn Zd:D (or D or even 172 — RP given by
H

(1 7 p ) 1
w Lo 1"(’% @ - 1 e ]
(5.5) Fy () =
R £ |
Lgizl cip "b(Xi(w) - jzl cijtj ] J

Since the proof of this fact is so similar to, only easier than,

the proof of (4.7), we omit the details.

(5.6) REMARK:

We cannot discuss the iterates

(5.7) tk+l = tk - E%(tk)~an(tk) , kK =20,1,2,..., 1in (3.25)

‘unless we show that they are well-defined. We thus ask if E%(t)—l

o~

exists and if ”Eé(t)-ln is bounded in some appropriate neighbourhood of O.

In the proof of (4.13) we showed that

(5.8) for all ¢t €D , F'(t)_l exists and ”F’(t)_lH is bounded.

Now, in this section, we will soon show that

(5.9) supl[F! (&) - F'(&)]:¢ € B} o 0 .
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Let ¢ satisfy “F’(t)nlﬂ Sa for all ¢ 6'51 Choose any B such that

B < é—. Then, by (5.8),

(5.10) 1im P{w:sup{”Fn',w(f) - F' (@)t € D}<B}=1.
N0

By (5.10) and the perturbation lemma (2.5), we see that for any
§(0 < § < 1) we can find N(8) such that #n > ¥ implies Fé(f) is dinvertible
on D and Hgé(f)—lﬂ is bounded (by E%EE)’ with probability'> 1 - §.
Thus, in this sense, (5.7) is well-defined. Note that in showing F%(E)_l
is bounded in probability, we avoided explicitly calculating the matrix
Fé(f)—l. In all our future work we shall avoid doing this, simply because
1

Fé(t)_l does not have the kind of factorization we found for F' (%)

(see (4.23)).

(5.11) DEFINITION:

Let C(D) be the space of continuous functions from D into R' .
We equip C(D) with the wniform topology, t.e., the topology induced by

the metrfe d defined by
d(g,h) = sup{|g(t) - h(¢)|:t €D}, where g,h € C(D) .

Thus, a set £ C cD) is open (i.e., in the topology) if each point (function)

g € F is contained in a ball

Bg(é) = {h € C(E):d(h,g) < 8} contained in F,

ie., g €B () cF .
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It is elementary to show that (C(E),d)wis complete. It is also
separable: one countable dense subset consists of the polygonal functions
that are linear on each of the sets [al’bl] X [az,bz] X...X [ap,bp] where
ai’bi €DN @ and each function takes a rational value at each face
(hyper-rectangle) of each of the sets [al,bl] X [a2’b2] X...X [ap,bp].
Here X denotes Cartesian product and § the set of rational numbers.

We make one final remark before commencing the consistency proof. -

(5.12) REMARK: (In this remark, all references to theorems and pages

are to Billingsley (1968), as well as the notation we use.)

In the Arzela-Ascoli criterion for tightness in Theorem 8.2, p. 55,
there is nothing special about the point 0 in condition (i) of that theorem.
To see that we could just as well use tightness at any point to € [0,1],
we go to the proof of the Arzela-Ascoli theorem on p. 221 and note that the

uniform boundedness of 4 céuld be got from the inequality

ko .
a®)] s Jat] + ] |o@le-tylre)) - a8, 14e,) -
i=1

Now we note that for each < = 1,...,k , %{t—to] + to and 2%i[t--to] + £
lie in [0,1] when ¢ and t, do (e.g., both are convex combinations of %

and ty and so lie in the convex set [0,1]). Hence, if condition (9) on

p. 221 holds and condition (8) on p. 221 holds with 0 replaced by tg»

we get, from the inequality above, the bound (10) of p. 221 in exactly the
same way as it was derived there. The rest of the proof of the Arzela-—

Ascoli theorem is then identical with that given on p. 221.
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An obvious generalization of the above comment to our space
C(fb holds - but if our space was D[0,1] (see p. 109 - we are still
referring to Billingsley (1968)), or p-dimensional version of D[0,1],
then the condition (i) of Theorem 8.2, p. 55 must be replaced by a

stronger one.

We now start on a long chain of lemmas leading to our consistency

proof.

(5.13) LEMMA:

sup{l|F, (t) - F&)|:¢ € D} £ 0 .

Proof:

From (5.2) and (5.3) we have

£ 1) £
(5.14) E%(E) = . and F(E) = .
0D £,

We prove the lemma in several steps:

Step I: We show
— P .
(5.15) for each ¢ € D , fn,k(f) — i, @),

for each k = 1,...,p .

Note that £, ¢ sample space @ -~ C(D) is measurable, i.e., for
2

each w € @, jh %.p L8 a random element of ¢(D), because:
LA
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a) each projéction T defined by
ﬁl""’tr

Tt ,...,tPQﬁz,k) - (fh,k(fl)""’ n,k(fr)) is easily seen

~1
to be continuous by continuity of Y. a) says that all sample

paths are continuous,
"b) for each fixed ¢ € D, fh k(t)‘is a random variable
~n , ~
and c) 0(5) is separable (see (5.11) and Billingsley (1968), p. 57).

To avoid undue length in some of the future lemmas, we will often not

even state that a given function is random, because. it will be clear.

Proof of (5.15):

We have
L I
(5.16) T (t) = = Ie) w(X - c..t.} and
7K~ nosly ik 7 =1 iJ g
p p
5.17 t) = LG, BYlX - LT,
GAD H® = ] g q;( pEs J]

Note that the W.L.L.NS for i.i.d. random variables does not immediately

apply to the average in (5.16) since the coefficients Cn of ¢y are not all equal.

We write
it p
(5.18) fﬁ,k(f) - E.{Szlcsk w{Xs —jzlcsjtj}
nq1ma, P n p
+ S=n51+l i lb(XS-jz cSJtJJ+ + pgl ox 111( S-jzlcsgtg]}
s=n ) q +1
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1 nql . q an p
= {au y w( Za } @ 2 \p(xs-j azk'{;JJ +
s=1 s=nq J=1
n p
+ - ¢
“pk Ep_l w[ s jzfpa J]}
s= ) q +1
=1
;
n ) q,
B Z§ %k - rzl w[Xs— Z§ Pk ] ’
fo1 KT | ng, i-1 J=1 Jd
s=n Z qr+l
r=1
-1

where ) 9, is defined to be 0 when 7 = 1.

Now, the term in square brackets after the last equality of (5.18)
is the average of nq; independent and identically distributed random

variables with expectation
By(X - Z a,.t.)

g2 9

By the W.L.L.NS » this average converges in probability to

E’xp{X— I oa,.t.
go1 W

(Note that partitions like that in (5.18) are needed frequently in our
work before applying the W.L.L.N, However, we will not always mention

that this partitioning has been done.)
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Then, by an elementary result on convergence in probability, we see
that
p

p
P
£, @E — ) a..q. Ew(X - ) a..t,
n,K 121 1kii J=1 i d

i.e., fh,k(f) —Eg-fk(f) , completing Step I.

P
Note that the method above, of showing that fﬁ k(t) — fk(tl also
s ~ o~

shows that
(5.19) B £, (&) = £1,2)
and so,
(5.20) E Fn(t) = F(t) .
Step II: We show, for each t € D , that
P
(5.19) Fn(t) — F(t) .

Proof of (5.19):

This is actually trivial: e.g., using the Zl—norm, we have

p :
o “ o P c 4z
15, @) - F@)lly = T 1f, @) - £ @& =0, by (5.15).
k=1
This completes Step II.
Of course, component-wise convergence in probability of a sequence of

random vectors can be taken as the definition of convergence in

probability of the random vector (see Cramer (1946), p. 299).
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Step IIIL: (Convergence of the finite-dimensional distributions
of En to those of F.)

We show, for any El’~2""’fs €D,

D
(5.20) (B (&) see B (ED) > (F(E))snnuF(E)).

Here "D" denotes convergence in distribution.

Proof of (5.20):

By (4.24), for r = 1,2,...,8 ,

p
F,(t,) —> F(¢)

Equivalently, since F(tr) is a degenerate random vector,
(5.21) Pty 2re) .
n X ~?

From (5.21) we get

s s
D =
(5.22) le a, Fh(fr) — rzl a, :(fr) for any scalars a, (r=1,...,8)

By (5.22) and the Cramer-Wold Theorem, (5.20) holds.

This completes Step III.

Step IV: (Relative compactness of the sequence of distributions
corresponding to the Fh. Equivalently'(—Prohorov), tightness
of the sequence of distributions corresponding to the E%,
i.e., tightness of the sequence {Eh}.)
To establish this tightness, we use the p-dimensional analogue of Theorem 8.2 in

Billingsley (1968), As shown in (5.12) we can replace the point O in
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that theorem by an arbitrary point.

We split Step IV into two parts.

Step IV, part a): (Tightness at a single point to.)

We show, for each positive 7, there exists a such that

(5.23) P{IF, ¢l >at snvnz1.

Proof of (5.23):

Let ¢ > 0. By Step II, Fh(to) £, F(t.) and so, 3 no such that

(5.24) nzny=P{F (t) - FEI > el =m .
Now, for any w,

1%, e = FEN 2 IF, @Il - IFE)]

so that the event

”Eh(fo)ﬂ - HF(EO)H > ¢ implies the event HEn(éO) - F(EO)H > € .
Thus,
(5.25) PUE, GO - Pl > e} < PUE, () - PN > o} -

By (5.24) and (5.25), we have

IA

(5.26)  PAIE, I > o+ IFEIII =m0 zn

0"
Next, for © = l,...,no—l s, we chose e; SO that

(5.27) PUF; ¢l > g} =
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[(5.27) is clearly possible since a random variable is, by most
definitions, finite a.e. — of course here we could, if we prefer,
appeal to the fact that F is continuous on D, so that F is bounded
on D. But EFi(EO) = F(éo), by (5.20) with Z replacing n. Thus
2z, )l < = .

Thus IEf%k(fo)l <o, k=12,...,p where the f%k are the
components of F%.

Thus Efik(fO) < « and by e.g., Chung (1974), p. 41, we have
Elfik(fo)l < @, Thus E”fi(fo)ﬂ < ©» and this implies clearly that
”Fi(EO)H < ® a.e. so that (5.27) is possible.] |

Now choosing ¢ > max{e + “F(EO)” , él,...,sno_l} , we have

from (5.26) and (5.27),

P{HEn(tO)” >a}=nVn=1, proving (5.23).

This completes Step IV, part a).

Step IV, part b): (With arbitrarily high probability, the random functions

are each - for large n - uniformly equicontinuous.)

We show, for each ¢ > 0,

(5.28) lim lim sup P{sup{“Fn(s) -F &) :lls~t]l < &, t,5s €D} 2¢e} =0 .
6+0  neo ~ ¥ A v

Proof of (5.28):

For convenience here, we use the Zw—norm for vectors ianp s

i.e., if a = (al,az,...,a )T , then Jlal|l = max |a.|
~ p VT 1msp

Let e >0, n>0.
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— 1
Since ¥ is uniformly continuous as a mapping from D toR*, 3 6§ > 0

such that
(5.29) sup{|¥(@) - v®)|:lla-bll_ < 6} <—=
~ ~ ~ ga; lcékl
1=<p
1sk=p
Then, for [ls-t|_ < 6, 8,t €D,
L 3 L 1
l#7 (s)~F (7’:)”0° = max [= c. w{X.— c..s.] - = c. ¢(X.— c..t.][
n~ n'ws 1% n o2 ik 7 i=1 13 d no2y ik i i=1 13 J
L5 ol 1of- )
= max = c. w( .= c..s.] - ¢(X.— c..t.}l
1% no2y ik 7 i=1 i3 g 7 i=1 id d
1) 1 7% I
< - max = Ic. s by (5.29) ;
s ey 1oy ™ g1 oK
n n
= —2 LY nazle. | = —e 1 ) max|e., | = ¢
max Jegpln oy k0 K T man fegln il g0 K
and so,

Plsup{lF, (s) -~ F () :lls-tll, < & , s, ¢ D}=¢e}=0<mnforalln =1,

so certainly (5.28) holds.

This completes Step IV, part b) and so Step IV is completed.

Step V: The proof of the lemma now follows from Steps III and IV and
the p-dimensional generalization of Theorem 8.1 in Billingsley (1968).

This completes the proof of the lemma. 0o



(5.30) LEMMA:

(5.31)

Proof:

51

sup{[[F! 8) - F'(8)|:t € DY £> 0 .

Here we will use the maximum column sum norm for matrices, as

given in (2.4).

notation:

(5.32)

With this notation we have,

(5.33) F’(f) =

We also héve

(5.34) F}Q(f) =

For the remainder of this section, we adopt the

¢

\

A,
7

(¢
~

) in place of E¢(X -

(see (4.8),
§ailqi :ii(f) et Zi
=1 1 i=
Zg‘ai qi 227/(%) LI ) §
i=1 P 1 i=

)

sw(x.- c..*.]
1 31,‘ e, I
n i21 71 Stl

. P

$ - ..,
. % ¢[XL jzlchtJ]
= c.
n o2t th

a,.t,
td dJ
INCON
8t
P
5Ai(f)
St
p 7/
p \
agp(x.- Ze..t.]
n L7411 8¢
=1
. p
61,[:(){.- c..t.]
1 %e, v =1
n .Z P st
=1 P J

We now proceed with the proof of (5.30) in a manner similar to the proof

of (5.13).
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Step I We show, for each t €D s
p
" 6¢( t—.zlctjtj] 5 P 8, (£
(5.35) L ey 55— [ ad; 52—
=1 " k =1 k

for all L,k = 1,...,p .

Proof of (5.35):

We have
)
) (X.- e..t }
n o2y il Gtk
i
p
n}q 3
Z§ . rgl r Gw(XS jzlaijtj]
= a..q, |7 : (see (5.18))
S TR B
s=n Z g +1
r=1
D
SYl|X- ) a..t
p v jzl i J .
“*+ Ya..q. E , by W.L.L.N= applied to each of the
ic1 1% Gtk
terms in squared brackets above
Z§ GA,I: (t)
= a..q. =——— , proving (5.35).
221 AL Gtk

This completes Step I.

Step II: We show

- P
(5.36) for each ¢ €D , E;(t) — P! (%)
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Proof of (5.36):

We have
, ) % aw(ijilcijtj] 6h, (£)
|F(E) - F' ()], = max % = c. - % e
71~ 0L 1sksp 7-1 n i1 11 Gtk . 151 11 Gtk

from (2.4), (5.33) and (5.34) ;

N max § 0, by (5.35) ;
1sksp 7=1

=0, proving (5.36).

Again, Step IL is a bit superfluous, since we could have defined

convergence of random matrices by element convergence. This completes

Step II.

Step III: We show, for any tl,tz,...,ts €D s

(5.37) FICE) e FL (L)) —Lr (F(E1) e aF(5))
) noel’?t N s wl?? T N s

Proof of (5.37):

P
By (5.36), for »=1,...,8 , Fé(gr) = F'(t,) .

Equivalently, since F'(tr) is a degenerate random matrix,

J D '
(5.38) F;L('fr) Y F (fz»)

From this we get

, S D 8
! r
(5.39) rzl a, Fn(ér) —_— rzl ar F (Er) for any scalars a, (r=1,...,s).

By (5.39) and the Cramer-Wold theorem, (5.37) holds. This completes Step III.
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Step (IV): Relative compactness of the sequence of distributions
corresponding to the EZ‘. As with Step IV of Lemma 4.1, we split

Step IV here into two parts:

Step IV, part a): We show, for each positiven , 3 « such that

(5.40) P{HF};(ﬁO)Il >a} <m for all n=1.

Here t_ is any point of our choosing for which we can get (5.40)

0
to hold, but since (5.40) actually holds for each ¢ € D, the to in (5.40)

above is arbitrary (but fixed).

Proof of (5.40):

Let ¢ > 0 . By Step II, Fé(to) £, F’(to) and so, there exists

no such that

(5.41) nzag = PiIF, () = /(DI > e} =7 .

Exactly as in the calculations leading from (5.24) to (5.26), we have

from (5.41),
(5.42) P{”Fé(to)“ > ¢ + ”F'(tO)H} =mn for alln > ng -
Next, for 4 = 1,...,n0—l, wechooseei so that

(5.43) PPN > e} =m .

(5.43) is justified in exactly the same way as (5.27) (see the bracketed

comments following (5.27)).
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Now choose any a such that

a = max{e + HF’(tO)” s € 56

seeest o}
1 no 1

and then we have, from (5.42) and (5.43),
P{”Fé(to)ﬂ >a} =7 for alln = 1 proving (5.40).

This completes Step IV, part a).

Step IV, part b): We show, for each € > 0 ,
(5.44) lim lim sup {sup{”Fé(s) - F & :s-tl <8, t,s € D} = &}
§+0  moe ~ ~ v T

Proof of (5.44):

Let ¢ > 0, n >0 . Since ¢’ is uniformly continuous on 5',

p
(Slp(X?:— ) e..t }

7 g=1 1J J
so 1is ékw X{— ci.t. = SE s
g=1%0 d k
since § w(X.— § c..t.] = - a, w’(X.— § c..t.}
kT\"1 j=1 13" d ik Z i=1 i3 d

Thus 3 6§ > 0 such that V <,k = 1,2,...,p

sup{

67¢(X.— % c..a.] -6 w(X.— % c..b;] ta-b| < 6}
k\1 5=1 i d kT\"Z i=1 id g ~

(5.45)

14
<'mrc—r°
pr ir

T,7

0.



56

Then for |ls-t|l < 8§ , we have

Iz () - F (&)l

n n
1 1
= max % |— ) e Glp(X.-ﬁc..s}——- e (Sn,b(X.-Zic..t.]
1sk=p =1 no;Zqy tr k"\71 i=1 1374 nog2q LT 7 i=1 13 d
by (2.4) and (5.34) ;
n
1
= = . 8§ - .8, -8, v|X.- .t
< mzx r,?__l 7 7/21 |C7/r,l kw[ 7 _5:,107’:783] kw( i Jélc'I’J J}l

n
< (max § L Y e l] £ » by (5.45)
k Mg=1 M) P mEXiCy,

=1
r 1,7
1 i £
= ( Z z ICT/I’I] maxie ]
r=1 = 1=1
M
n €
S( - Z max |c. l} }
. r max|c
r=1 1=1 7 ip r
3
€
=[ nax |o |] ]
r maxi|e
r=1 1 ip
! ’
£
= (p max czrl] max|e ]
1,0 i p 7
b
=E .
Thus,

P{sup{ll£, () - F (D)ll,:lls—tll < 6, 6,6 €Dy 2 e} =0<m, ¥n 21,

and so certainly (5.44) holds.

This completes Step IV, part b) and so Step IV is completed.
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Step V: The proof of the lemma now follows from Steps III and IV and
a generalization of Theorem 8.1 in Billingsley (1968).

This completes the proof of the lemma. 0O

(5.46) LEMMA:

F is continuous on D ond satisfies tTF(t) S0 forall ¢ €D

where D denotes the bowndary of D.

Proof:

Continuity of F was shown earlier (see (4.7) and the second proof
of the boundedness of HF'(t)_l” in (4.13d))). Now, for the second

assertion, we have

f %a. q. EID(X— § a..t.] \
i21 1% i=1 1d J
Ft) = . .
5 ey e
L Lt B (X"jﬂaia'ta}
so that
ETF(E) = L t zil a4 Ew(ijilaijtj]
» 4ol Te]] [feand)
1=1 Jg=1 k=1
Now

12}
§ a..t. >0 = Ew[X-Xa..t.] <0
G217 o1 7

while % a..t. <0 = Ew(X— % a..t.] >0
421 I J s 24 vd J
Jg=1 Jg=1

This is clear from (8.29) further out with ¢ = 1. (Note that in (8.29)

A denotes any of the X - a..t., and t is written for any of the aijbj

g=1 *J i=1

A

3
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2=l, ..., p .) It also follows from the work of Collins (1973). Thus each
term in curly brackets in the expression above for tTF(t) is negative and

the lemma follows. Note that we actually have

#TP(t) <0 for all ¢ €D , not just t €D
and we have strict inequality except when % aijt' =0 for all Z = 1,...,p,
J=1

i.e. except when ¢ = 0 (since A is invertible). o

(5.47) LEMMA:

Let the event El " be defined by
b

(5.48) E = Wt F (t,w) =0 for all ¢ €D

and Fn(fl,w) = Eh(EZ’w) implies

By =%, s, €D}
Then
(5.49) P(E’l,n) +1 as n =+,

(5.50) REMARK:

We observe that the event
T L]
{t Fn(t) =0 for all ¢t ¢ D}

implies, by (2.18) with ¢, = 0,that the equation

(5.51) Fh(t) = 0 has a solution in D .
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Further, the event {Fn(fl) = En(fz) =3 El = 22, EL’EZ € D}
(one-oneness) implies
(5.52) Fh(t) = 0 has at most one root in D .
Thus the event El , can be stated as saying that
2
(5.53) the system F%(t) = 0 has exactly one root in D .
When F obtains ,
1l,n
(5.54) we denote the unique zero of E%(t) = 0 by Zn .

We define %n to be 0 otherwise.

We remark also that there are many other events that imply the existence
and uniqueness of a root of En(t) = 0, but since our consistency proof is

already laboriously long, we shall omit a discussion of them.

Proof of (5.47): By (5.13),
(5.55) swlliz (2) -~ P&t € ) Lo 0.
Since
€7 @) - £E@) = |5 @ @) - Fe))|

= ”fT” ”Fn(f) -_F(f)” (Schwarz)

< quHfT“ sugﬂfk(t) - F()l
ton e mT
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=M quHF%(t) - F@)|| , say,
EGD - ~

we have, for a given e > 0 ,
P{suP_|_'l:TFn(t) - tTF(t)I > e}
teD ¥ ¥
&
= Plsup|lr, () - F(®)| > 3}
t€D ~ "~
—> 0 (n > ») by (5.55).

That dis, for all ¢ > 0

(5.56) Pisup|t’F (£) - tTF()] > e} — 0 (n > =)
tp~ P -

From (5.56) and (5.46) it is elementary to show that

(5.57) P{sup{tTFn(t):t €D} <0} — 1 (n + ) .
In particular,
(5.58) Pv{sup{z‘;TFn(t):t €D} S0} = 1 (n + )

Next we show that the event

=t,_, t.,t, €D}

(5.59) {F,(¢) =F () = t, =%, , t.t,

has probability tending to 1 as n -+ «,

Here is just one method of proceeding:

let tl,...,tp € D and let fl""’fb’ as usual, denote the
components of F. The matrix (where as usual 6i denotes iEE partial

derivative),
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- 1 A sl 1, 7
8P s B (s« o e SO ()

S Es 85D 0, f D

5.7 (P), 6 Py, .. s (E ,
lJp b ) zfp(N ) pfp("' ) B

can be written as

N = - AT Diag((qi)) Diag((Ewé(X— % aijt;]}]A
. =1

(see the analogous expression for F'(¢) in (4.14))

and the invertibility of N follows from (4.16) and the invertibility of 4.

From this and (2.19) we have that F is one-one on D (note that D is
convex). Now replace D by an open convex set C D D such that (4.16) holds
for £ € €. (An examination of (3.3) and e.g. (8.72) shows that such a set
C exists.) Then by the argument just used in showing the one-oneness of F

b

on D, we see that F is one-one on C and hence on D. From this and (5.55),
we get (5.59). Combining (5.58) and (5.59), we arrive at (5.48). This

completes the proof of the lemma. o

(5.60) LEMMA:

(5.61) sup{llE, ()" - P'(5) Mt € By B o

and
(5.62) sup{[I1£, )M - 7' ) T |2 €Dy £ 0
Proof:

By (5.30),

(5.69) sudlE, () - F'(®)li € Ty o

"
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(5.64) | i - e o |
slg®e™ -re™,

(by, e.g., Simmons (1963), p. 212) ;

”F%(E)_l[F'(f) - F%(f)}F'(f)—l” , clearly ;

1A

-1 t ! ' -1
I, &)™ ET @) = EL@I I @)

Let Ml < ® be such that

(5.65) 177 )Y sm, forall ¢ ¢D .

1

Dvl exists by our work following (4.23).]

Next, by our work in (5.6), there exists M2 < o« such that
=1 —
(5.66) P{sup{||F; (£) "||:t € D} s My} — 1 G + =)

Now, let ¢ -~ 0. Then

Piswp | IEL® T - @7 | > e

teD

-1 -1
= P{sup IIF;(t) -F'(£) 7| > e}, by (5.64) ;
tep T ~

-1 -1
= p{sup ||F7;(75) | sup |IF' () - Fé(t)ll sup [|7'(¢) 7| > e} »
+ €D ~ t €D ~ ~ teD ~
by (5.64) again ;

< ' -1
= plsup [F](2) 7

| sup ||F'(¢) - F'(¢)|y > e} , by (5.65)
t€D £€D no~

~
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it

€D 1

~ ~ ~

~1 € -1
Pisup||F!(£) “||sup||F' (£)~-F' (£)|| > = N sup||F'(¢) | =u }
ted * RO My v 7~ 2

+ PlewplE] (5 HlswlF (-F Il > £ 0 sullzl )7 > )
teD ~ ~ ~ 1 €D ~

t€D
=< P{M2 sup“F’(t)-Fr’l(t)” > 1{;—} + P{supllf’i,’t(t)-l“ > My}, clearly ;
teD ~ ~ 1 t€D ~
)
— 0+ 0, by (5.63) and (5.66)
We have shown that, for each ¢ > 0 ,
? —l ] "'l
Plsup | |IF, (&) Il - IF' &) 7| | > &}
t€D ~ -
4 -1 ! -1
= P{sup“Fﬁ(t) - F'(t) 7| > ¢}
t€D ¥ ~
— 0 (n ~ ®) , Thus (5.16) and (5.62) are proved.

This completes the proof of the.lemma. 0o

[Note that in the above proof we again (see (5.6)) avoided explicitly

computing the matrix Eé(t)_l.]

(5.67) LEMMA:

(5.68) sup{||7 (g)‘lpn (&) - F'(L:)'lF(f)llzg ¢3y 0.

Proof:

We have
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! -1 -1
17, () °F, (¢) -~ F'(¢) "F(E)]

1A

¢ -1 -1 e~k eyt
I (&) F, (&) =~ EJ@)TE@)| + |EL (@) TF®) - FI(@E)TFE@)|
(5.69)

Iz ) @) - FO + MEL @™ - BT T IE®)|

IA

L=l L =1 R |
177 7, @) - PN+ E @™ - @ @

The last inequality follows from the fact that if E:H +~ G is a linear

mapping between normed linear spaces H and G, then
(5.70) for all ¢ € H:|Et] < |E] II£] .

(5.70) is easily seen to be valid upon looking at the last equality in
(2.2).

[Note that when E is continuous, [[Z|| in (5.70) is a finite number - this
follows from the fract that continuity and boundedness are equivalent for
linear mappings lz;etween normed vector spaces - e.g., Simmons (1963),

p. 220, Theorem A.]

Now, let & be given, sray 0<e<1l., Let Ml ¢ R! be such that

(5.71) IFE =u; V¢ €D .

1

[Ml exists by continuity of F on the compact set _D_.]

€R' and N, €N so that

Next, find M 1

2

-1 3
: : ! v = .
(5.72) for all »n = lVl. P{E%IIFn(t) | > 2 2} <3

[This is possible by, e.g., (5.66).]
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Next, find N2 € N so that

(5.73) % n =N, P{sup|F! @™ - P >t <t
tED ¥ 1 ,
[This is possible by (5.61).]
Finally, choose N3 € N so that,
~ £
(5.74) ~ n 3 P{sup||F E - F(¢ )” 2M o < 3
£ & 2

[This is possible by (5.13).]

Now let N €4V be such that NV = maX{N 2,u7 }. Then, for alln =N :

P{sup|F, &)~ F ()~ ON (t)ll > e}

~

’L‘)GD
< P{suEJ|F (75) |suR||Fn @E)-FE)|| + suE”F (" F’(t) ||su2_“F(‘l;)|| > ¢},
£ €D £ Tt Y |

by (5.69) ;

= {supll, () Hsupll, (OF O > § U supllF) )78 () suplP )] >§ }
teD ~ teD ~ ~ €D ~

teD
N N -1
= P{sup|lF) (&) " [lsupllF, (1) -F &) > £} + PisupllP) (&) F" ()~ YsuplFe) | >
€D tep v . teD £ €D
< P{sup|lF} (¢)" Hsup_HF ) -F @) > %} +% , by (5.73) ;
t €D €D
= P{supllF) (t)~ nsup_llF @ F @) >0 supllEl &7 = w4,
tép t €D €D
+ P{suplF; ()" ”SUP_IIFn @FEN > £ 0 suplF) @7 > My} + 5
€D tep v t €D
= P{, supllF, B)-F@®)|| > 5 + P{suP_HF )" Y > My} + =
2 teD - 7

% + _g. + % by (5.74) and (5.72)
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We have shown that

PlsupllE! (&) TE (@) -F () F@)| > el < e VnzH .
£€D VT .

This proves (5.68) and the lemma. o

(5.75) LEMMA:

Let F be the event

Vil
0% < [l + (k - [lo%%])/4
Then
.76 ©)
(5.76) P{EZn} — 1 (n + ®)
Proof:

This is immediate from (3.12).

(5.76) LEMMA: )

Let ¢ be fixed, O< ¢ < k. Then
(5.77) P{lz || = e} 1.
Proof:
Let {t ¢ £ : max l § a, . | <e¢}. Then C cC 5', since
1sk=p j=1 Jd

e =k. See diagram below.

Let El,n;E be the event
T .
i~ Eh(t) =0 VtecC

and En is one-one on C .
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The event El n.C implies the existence and uniqueness of a root
> 3

Z 4in C (see 5.50). Further

Wl

(5.78) P(E —~ 1 @ > x)

1,n ,E)

The proof of (5.78) is exactly the same as the proof of (5.49) - all we
have done here is replaced D by C. The key point is that C contains the
point 9 and 555 [the former because, in fact, if C does not contain 9
then there does not exist to € C such that ('[:-'Z:O)TFt =0 V¢t el , SO

that we could not apply (2.18) to ensure the existence of a zero in C;

and the latter, i.e., C C E so that (5.49) applies with D replaced by C].

. _ T -
Since %n = (ZlJz’ZZn""’an) € C, we have
,”gn”/l = max | Zi kg J?’L €

1k=sp j=1

by definition of C.

From this and (5.78), we obtain (5.77).

This completes the proof of the lemma. o

Diagram showing D and E (defined in (5.76)) for p = 2.

D =

{tRr?: max | } a,.
~ 1sk=2 k=1
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(5.79) LEMMA:

97’:7‘:”
Let 0<g, £——msr7m—, e, > 0. Then,

1~ 4
(5.80) P{sup{‘ﬂ%—”-”Fé(f+§n)—an(f+§n)” - @ T r@

o] + &

0 < ¢l = ——

} < e, n ”gn“ < al}-ﬁzifl+ 1.

Proof:

Set
lo*= + k
2

IH

TeiF &) el o< gl =

~

El
rt) =

1 s otherwise

and
o™ Il + &

1
I 2

[ TEiFn e, ozl o<t s

~

and B, _ obtains, wﬁere E
— 1,n

R, (8) = 3

is defined in (5.48)

)

{ ’ R otherwise.

By (5.47) and (5.76), we will have proved (5.80) if we prove that,

for each ¢ > 0 ,

6 k 1o
(5.81) P{sup{lhn(f) - ﬁ(é)l:”f” S =} < el —_— 1.

We now follow the proof of Lemma 2.6 of Collins (1973) as closely as

possible. We use the same letters e, ', 1, 61, etc., as used there,
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with the same use.

Curly brackets around the number of an equation or statement
will mean that we are referring to or calling to mind thé equation or etc.
with that number in Lemma 2.6 of Collins (1973).

The main complication that arises in our proof is that the
expressions {2.57} and {2.59} for the A (%) and hn(t) of Collins (1973)
do not have quite as simple an analogue for our h(t) andrhn(t). This is
.because the mean value theorem for (differentiable) mappings g:R! + Rl
does not hold for (G-differentiable) mappings G:RP ~ RP (p > 1), as
stated in Chapter 1. However, we may write (see (2.17)), for our F and Eh,
(5.82)  F(t) - F(8) = B(s,t) (£-5)

(5.83)  E (&) - F,(8) = B, (s,8) (-¢)

for all e,t ¢ /P s where.

Falfl(iml(f-f)), L ,<spfl(§+al<§-§)) i
e = |

_Glfp(§+c'tp(zf-§)), RN ,spfp(gﬁ;p(g—f))J ,

F;Glfnl(‘?v-*-sj;(?,_‘f))’ s 288 (a¥By (£-8)) ]
B (s,t) = |

~%&¢yé@§»,...,%@¢yéqg»_

and where
the fi (i=1,...,p) are given in (5.2),

the fﬁi (Z=1l,...,p) are given in (5.3),
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the a. and Bi (Z=1,...,p) satisfy 0 < a:, B; < 1

and Gi (Z=1,...,p) denotes éEE partial derivative.
ritin . d d ..
(We are now writing fﬁt instead of fﬁ,t )

In particular and using F(0) = 0 (see (4.13a)) and En(%n) = 0 (see (5.54)),

we may write, from (5.82) and (5.83), expressions such as
(5.84) F(t) = B(0,%)t

and, e.g.,

(5.85) éh(f+§n) = Bncgn’f+§njf

where (5.84) is from (5.82) with s = 0 and (5.85) from (5.83) with %

replaced by E+§n and 8 replaced by gn'

Using (5.84) and (5.85), we may now write

1 Fr -1 0 0 ”g**“ + k
Tl t B(OE)E| , tll =
TellF" ) TEQ@DEN 0 < It >
(5.86) h(t) =
1 \ , otherwise
and
[P -1 Rl I
TeMiEn B+2,) 7B, (2 t+2 ) el 0 < it = ———
(5.87) hn(f)=4 | r
N 1 s otherwise . J

To apply weak convergence theory, we show that
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(5.88) {n(t):¢ ¢ D} € ¢(D) and
(5.89) : {hn(f>‘f €Dy} €CD))

where C(D)is defined in (5.11) and

_ lows + & flo*4| + %
(5.90) Dl = {t € BP: max % ak.t. € [ - —= 5 , —— 3 ]}.
" 1sksp g=1"7 Y

Proof of (5.88):

(5.88) is easy for ¢ GIEI{O} s, by continuity of F and F' and
the fact that “F'(t)—l“ is bounded on D (proved earlier).
Note that "”F’(t)_l” bounded" is the analogue of the statement "A! is

non-zero'" on p. 36 of Collins (1973).

We must now check continuity of # at 0 . We give three proofs

of this fact.

lst proof of continuity of A at Q :

In a neighbourhood of £ = 0, write :

~

._.l ~
l IF' &) “F&)| _1 l (note that h(0) = 1, by definition)

Izl
Iz &7 Fol e @ e @l
- ! T Bl ’ clearly ;
e ) - e
- ] . since |llall - [BlI] < la-b|| for
’ a,b € I

IFe) - Fr ()t

1
-

< sup||lF' ()
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ﬂ%ﬁ IF(ore) - F(O) - FI(£)t] , since F(O) = O ;
here i is a bound for ||F'(¢) Y|

E

t>0 on, say, D

by definition of F'(0) (see (2.11)) .

2nd proof of continuity of & at 0 :

A

1A

o HF'(O)_lF'(O) - I|l , since from the definition of B with s

~ o~

e re)l Y
20

17! &) B0, £)¢

- 1 s, b 5.82)

-1 o
I7" &) B0, 3¢l T2l _
Tzl Tl » where I is the pxp identity matrix

17" &) B9, 8)¢ - It

el

I#' )7 B(0,8) - Il , by (2.2) with = F'(#)"BO,) - I

' it is trivial that B(0,%) =5~ B(0,0)

~

0

F'(0);

of course continuity of all‘partial derivatives

is used.

3rd proof of continuity of % at Q :

(5.91)

Set

Gt = F'(8)F @) .

We claim that
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(5.92) G is differentiable at 0 and G'(0) =T .

The proof of (5.92) is simplified by the fact that F(g) = 9 (see (5.13a))
and does not require that the second derivative of F exist at 9; We omit
the proof of (5.92) since it is entirely similar to the proof of (2) in
(10.2.1) p. 311 of Ortega and Rheinboldt (1970).

From (5.92), our third proof of continuity of % at 0 follows

easily as follows:

77 &)™) |
I

-1

IF' @) P ) - P O]
- el -1 |

since F(0) = 0 ;

-1 -1
177 (&) F @) - FT(Q) TR - 17t
T - s, clearly ;

7 @) E ) - P E () - Tl
Izl

7557 0 » by (5.92)
This completes the proof of (5.88). o

To establish (5.89), we merely check continuity at 0 (and give

just one proof of this): if El " obtains, then by (5.54) there exists
s .

Z such that F (Z ) =0 .
7 n -

LY

Then for ¢ in a neighbourhood of 0; we get from (5.87)
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(5.93) 'hn@ - 1|

= _i, =t ‘_l S oar _

= | ey 1F, @480 "B, (2,042 )t - 1 |

= | L 15’ -1 R

= | TEll ”Fn(f'*'gn) Bn(%n’ffgn)f” TEl ”If” |
< 2o |IF! (542 ) 2B (2. 642 )¢ - It

TEl Yl e nwm’s i ~

R

1A

-1
14 -
”Fn (f-*'gn) Bn (gn ’E+§n) I

Now it is almost trivial from the expression for Bn’ that

(6171 B¥B1E)s - 28T (B D)
Bn (gn’f+gn) - ‘ ‘
L(Slf;'zp(gn-*-epf)’ vt ’prnp(§n+8pf)
T AR SR
—;(—f L : - = F1(2).
\ dlfnp(gn)’ A ’dpfnp(%n)

From this and (5.93) we see that
-1
Ihn(f) - 1] < 3;113”["7;(%72) Eé(%n) -Il =0,

proving continuity at 0 of hn .

v

We remark that the type of proof used as our first proof of
continuity of F at O could have been used here and would have been easier.
We now give the analogues of some of the equations etc. in Lemma 2.6

of Collins (1973) that we need in proving tightness of the sequence
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{h (8):t € 51 (751 is defined in 5.90)}

(Note that convergence of the finite dimensional distributions of the
hn to those of 2 is proved in exactly the same way as [a], p. 38 of
Collins (1973), using (5.13), (5.30) and (5.76) of the present work to arrive

at the analogues of the expressions om pages 38 and 39 of Collins (1973).)

(Note also that some of the analogues below are stronger statements than
the corresponding ones in Collins (1973) . This is because we need
stronger statements to combat the complications arising from the non-
existence of a direct amalogue of the mean value theorem for mappings

Fi#R'" -+ /R' to mappings F:/]ip —>[Hp > 1).)

(5.94) {2.74} +~ P{sup{lhn(t)-hn(s)]:”t—s“r< 8§} < 2e} > 1 - bm ;
-1 s ran=1 P
(5.95) {2.75} < sup||IF) (42 ) F, (42 )||-IF" &) TF @] < 0 ;
R I R I P
(5.96) {2.85} <~ sup”ﬂn(s) Bn(O,t)—F (¢) B (0,t) — 0,
.o ~ il ~ e

for all a = (al,...,ap) such that
0 < a, < 1 (E=1,...,p)

where Bn and B are defined below (5.83). We put the superscriptrg on
the Bn and B in (5.96) to indicate that we insist the same vector of
constants appears in the expression for Bn and B in (5.96).
Note that (5.96) is a stronger statement than
(5.9 swlr ) E 0)-F ) e ) || L 0

t,8

because (5.97) follows from (5.96) by continuity - let a - 1
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(where 1 = (l,...,l)T).

px1
Of course, (5.97) can be established independently of 15.96).
We will indicate the proof of (5.96) in a moment,

The key inequality we are getting at is the analogue of {2.89}:

(5.98) {2.89} <> sup{lhn(f)—hn <§)I=H7§II,II§II < 61}7
- Ly 0,602 Tl y15" (0,0)s]
= sup ”'/,'“” n(N) n(N,N)N - ” ” f " sf 8
=2 sup “t”“F ('b) B (0 t)t“ ”'b””F (t) B (0 t)t”‘
(¢
+ sup [prlle’ ) 7B 0, )¢] - H%W”F'(f) 15" 0,)e]

" We extend this inequality further to

: 1 -1, % -1 %
(5.99) <2 sup {HH%(E) B (0,£)6-F' (£) "B (0,)t]}

g
1 -1~
+ sup WHF " 5" OOt - foliF &) "B (0,6)s]
and still further to
a
(5.100) = 2 sup|lF! (£) B (0,£)~F' (8)” 15 0,
& 1 18
+ sup “t””F (t) B (0 t) “ “s””F’(f) B (Qaf)f“
The first term after the inequality sign can be made less than, say, 2-%
by (5.96) and the second less than %-by uniform continuity of the function
1Y
TR A CRIT]

This establishes the analogue of {2.90}:
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(5.101)  {2.90} «~ {sup{lhn(é)—hn(f)l:“f”,“iﬂ =8,}<el>1-2.

The rest of the proof of the lemma is identical with that of Lemma 2.6

in Collins (1973). For example, the analogue of {2.96} is
{2.96} = |n (£)-n, ()]

N | 1, -1
- ‘HtH“Fn(E+gn) Fh(£+§n)“ Hs”“Fn(f+%n) Eh(§+§n)"

This inequality and the analogues of {2.94} and {2.95} lead to the

analogue of {2.97}:

(5.102) {2.97} ++-P{sup{|@1<§)-hn(§)|:”Eu,ufn > 61,”f-§” <8} <e}l>1-2
and, exactly as on p. 46 of Collins (1973), we‘get from (5.101) and (5.102)
(5.103) {2.101} < P{sup{lhn(é)-hn(f)l:”E—iﬂ <8} <2} >1~1tm,

establishing (5.94) .

To complete our discussion of this lemma we sketch a proof of (5.96).

We have, from (5.61),
R R | — P
(5.104) sup{|F) () = - F'(¢) "||:t € D} = 0 .
T ,
We also have, for any a = (al,...,ap) » 0 < a, < 1 (Z=1,...,p)

g a P
(5.105) sup{||B, (0,£) - B (0,£)|| — 0 .
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The proof of (5.105) is exactly the same as that of (5.30). For example,

the analogue of (5.45) is

p p
sup{IGRW(Xi— kalcijaj> - ka(Xi—aijlcijbj)l:”g—é” < §}

<*8l—_l'o
p naxic;,
1,1 :
From (5.104) and (5.105), we arrive at (5.96) by an argument similar to
that used on pages 41 and 42 of Collins (1973).

This completes the proof of the lemma. o

(5.106) Given the vector x = (xl,...,xp)T, we shall denote the Jt&

component of the vector Ax by [Ax], . Thus

p
[A4z], = ) a;.x,s I=1,...,p .
~ o g2y W

(5.107) LEMMA:

Lep
& . R _ . "'l ' .
(5.108) EY, = fw:l4 (¢ Zniw))]Z[AF,;@,w) Fn(t,uﬂz
20 forall ¢ €D, I=1,...,p}
Then
(5.109) P(E'i"n) — 1 (>,

We note that
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-1 '
[A(t-2 )1, [AF) (¢) FE ()], 20, I=1,...,p

says that each component of the vector AF?'; (t)_an (t) lies on the same

side of the origin as the corresponding component of A(£-Z ).

~ e

Proof of (5.107):

We must show that

P{inf[4 (t-7

0, '=1,...,p}
£€D ~

1

v

[ -1
)1, MAF ) (£) Fn(f)]z Ty

or, equivalently, we must show that

(5.110) P{supla(z -8)1,LE! () 'F, ()1, 1,...,p}) )

teD

1A
(@]

/

>

since inf x, = - sup (-xn)

and, by linearity of 4, A(-x) = -A(z) .

Now, for all 2, 1 =7 =p ,
supl4(Z, -£) 1, [4F! (&) 'F (#)1,
-1 ryon—L
= sup{[A(-gnz[AF,;(g) F (8)-AF' () F() ],
+ A1 AP @) TF@)] + [A<§n>]Z[AF7;<g)‘1Fn(§>]Z}
= S“P{'W“’f”zl ’[AF,,; (g)"‘an (t)-4F) (f)-l”f”zl

P UL OO, + lue)y| |une e},

and now, taking the sup inside and recalling from the definition of

”‘”‘4 ) ”:L‘IIA = max I[A (x)]zl s .we get that the last expression above is
~ 1=i=p ~
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(5.111) = supliell, supllr) (&) 'E, (£)-F' ) T F@)),
+ sup[4(=6) 1, LAF" &) TR @) ]y
+ Nz ll, sule! @) ™E @I, -

The first term in (5.111) approaches zero in probability, since
sup“t“A < ® on D and sup“Fé (t)‘lpn (t)fF’(t)—lF(t)ll .0

(with respect to any norm, of course) by (5.68).
Now also the third term in (5.111) converges to zero in probability
because
P
Iz, =0, by (5.76)
and  swpll7) () 'E, @) = swpllE! &)™ supllE, )]
N~ 7w - 7w N~

and the last two terms are bounded in probability by previous work.
Finally, the middle term in (5.111) is

sup[4(-t)]

-1
[AFt () "F(@)]
2D Al Al 271

|
I

inf[4(2) ], (4P )" (%) I
nEla £) F(¢

~

~1f By
inf[ § a .t.JIAA (— —77J‘ (see the note preceding (5.13)
£ \G=1 b7 By |

~

-EI,U
. A
it ( élazjtj ( E‘Pz’] ]

)

J=1

and see also (4.24))

inf
t

Ey
_Z
aZJtJ'HEwi' ,  (by (4.29))

IA
o
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Thus we have that

sup[A(%z—t)] [AFé(t)—an(t)]z_£+ non-positive quantity.

This proves (5.110) and the lemma. O

(5.112) REMARK:

We will be omitting ¢ = O from our domain in the following final
lemma and so we note from our proof above that we have strict inequality

(> 0) appearing in the event E*  (see (5.108)) if D is replaced by

— EY
DI{O}, because § a, .t. :r%- = 0 if and only if % a,.t. =0 (see (4.29))
~ i=1 1j d||Bvg =1 g

-1
- 1 - . .
so that [A(f %n)]Z[AF%(E) E%(f)]l 0 for all 7 if and only if
.ﬁ aljtj =0 for all 7, i.e., if and only if AE = 9, i.e., if and only
Jg=1 ,

if £ = 0, since 4 is invertible.

In the following lemma, the norm (4.30), without the subscript 4,

is understood.

(5.113) LEMMA:

The events

Eln (defined in (5.47)) ,

E]*n (defined in (5.107)) ,

EZn (defined in (5.75)) ,

- lle**|

) . ~ 2 - Y ok
(5.114) E3n'”§n” < mln[% 7 » ”9 I ]

where 1 <y < 2
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and
1 1 k o+ fle*
. ! . [ —
G.15) B, sew{ I8y 5, g hpplel € o, ——] < v
jointly imply
(5.116) gn = %n s, where gn is given in (3.25).

Note that it makes sense to discuss Zn above, by the comments in (5.53).

Note also that
P(Eln) ~ 1 by (5.47)
P(Ei”n) — 1 by (5.107)

P(E — 1 by (5.75)

Zn)

P(E, ) — 1 by (5.76)

Bn)
and P(E4n) — 1 as a consequence of (5.79) and the fact that
4 '.l L Y
7 R < 20gl . ¢ €D .

(Note that this last inequality follows trivially (triangle inequality)

from (4.21).)

Thus (5.113) may be re-stated as

(5.117) P{£~Z’n = gn} — 1 (now).

Proof of (5.113):

oo uls

7|l a%k*
If . Izl < lo**|| + 5Lﬂ%~—ﬂ then, since

ko= lo*|
1z, < ———, by (5-114),7
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we have

o = gy o k=l F) kIR
1k z, I = It + Hgnu < [le==| + 5 = 5

Thus (5.115) implies

- sk
(5.218) I, @) < vle-z, 0, 2l < e + 22

BT ’
and ”%—%n” # 0.
We now claim that

-1
— — ”, -
(5.119) Iz-2, - 7, "F @) < lt-2 |,

K+ llg*)
ez, € [0, —5—

Using the notation introduced in (5.106) and recalling that our
norm is the norm (5.30), we have that (5.118) reads

max [AF (t) F (t)] <y max [A(¢-Z )],

1=i=p 1=i=

which, since y < 2, implies

(5.120) max [AF (t) F (t)] < 2 max [A(t Z )]
1=l=p 1 1=isp

Then (note the analogy between the following lines and the few lines
following (4.30))

-1
7 - !
”f gn an(f) Fn(f)”

= max |[A(t Z )]Z - [AF’(E) F (t)] | ,» (by definition of our
1<iz

norm in (5.30) and linearity of 4) ;
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< max [A(®-2)];, , (by (5.120) and Ei )
1stsp ~ 7

= “E—%n” , proving (5.119)

We write (5.119) as

. o )

(5.121) Ilt-2, - £, @) "F &) = allt-2 |

ko o
4

for |It)f < [o%*] + , some o< 1,

so that the first iterate

= - ! N | * . .
f =0 Fn(gn) Fn(gn) (see (3.25)) satisfies

s
~
~1

1 x
Itt-2 |l < allo®-z, || ,

since

ko= [l

0 * satisfies ”9;” < Jle**|| +“‘_—jf_"__

t” =70
~ ~H
by definition of &

2.1

To show that this and the remaining iterates remain in

N L
{t:t]l < [lo*¥| +———41———} , observe that, by (5.118),

Iz ) 7F, @)1 < vlit-2, |

k- llgel 2 -y
7 o)

...l ! 1
so that |F)(¢) "F @) < Y(IIQ**H + 3 + f| o]
(by definition of E2 " and (5.114))
5

vi- vless
= pllowH] + ——— " + 2fl6*¥| - yllo*|
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vk - [e%x|)
T = ®%
2{lg) + ———]
ko~ |lex*|
< 2@]9**” + -———7r———J (since vy < 2) , i.e.,
-1 k -~ |lex*|
dek -—
6122 5@ 78, 0] < 2o + ——]
From (5.122) and the fact that
0 . : k - ”g**ll
t~ = 6% satisfies ||6%| < ||6**|| + 7

one sees by the same argument as used in deriving (5.119) from (5.120)
that

k- lg**|
4

l | 0 0 "‘l O Joots
le7l = ilt° = FL @& @& < ||6%*] +
~ ~ N~ n o~ ~

so that the first iterate remains in the set

K - flow|
{£:1el < s + ———]

By induction, all iterates remain in this set and satisfy
j+l - J+1,,.0 .
77 =z =@ 2 |, 4= 0,1,2,... .
Then,

Zn = lim ¢J = Z% and this completes the proof of the lemma. o
g T "

(5.123) THEOREM: (Consistency of I%)

Consider the model (3.5) and let {Q%} be given by (3.25).

Then

(5.124) T 2.0
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Proof:
Let € > 0 and write
PUIT Il = &)
=P{Z, = 0x1 0 [T || =el}+P{r, =210Ilg | =l
=2 P{IT, =210 [, Il =el}
=P{IL, = 2,10 [lz,]l <el}

—— (n—)-oo)

by (5.113) (see (5.117)) and (5.76).

This completes the proof. o

(5.124) THEOREM: (Asymptotic Normality of T)

For the model (3.5) we have

D

2dg
1 - Y
(5.125) ntr Loy o, ¢t

Nn

O (lyrae2

CT

where the sequence {Z%} is given by (3.25) and where CO = lim-jz- .
~ Yo

(Note that, by this result, the efficiencies (of the components of Z%)
are clearly independent of the design matrix and, further, the limiting

covariance matrix is independent of ¢ € F, since, clearly,

(<]
(5.126) vds _ J_cwz(y)t@(y)dy
. ( w'dG)?— (J{C () 6! (x)d;z:)z .

-C
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Before proving (5.124), we give the following lemma:

(5.127) LEMMA:

CO = lim —Eg exists and is positive definite
N>

and, further,

.|

. 1
lim max ———%~ = 0 .
nse 1,5 nt

Proof of (5.127):

We have (see the conditions given after (3.5))

ey i v v -ne | [agys o o vhar ]
11 “12 1p all .. alp }__m (n) times
‘ 1 c ot 9y 1
c C s . . ,C a s ,a
.. 21 “22 | a-?l azl’ }——»n (n) times
. 21° >“2p 72
a [ | |
1’ ? .
L . i a? C e app } — g (n) times.
i n]_ nz, . . s T’Lp— L pl, . . . 3 pp—J p
Then
[ % 2 § T
n G1.87,45 o+ o o 3H g4, -a
) k*k1 xZ1 kK"k1"kp

]

e

.

B
__nkilaklakp’ N .—.)1 qkakp

- _ T _.
= [G?kilqkakjaki]] =n 4 Dlag((qi))A .
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Put
(5.128) ¢, = 4" Diag((g,))A
so that

llm-gfg =

n-ro 0

and note that CO is positive definite since

= (iag((@2)0)7 (D1ag((@D)A)

and the matrix Diag((q?))A is non-singular, by assumption. (Recall
that if F is any matrix, then ETE 1s always positive semi-definite and
is positive definite if and only if F is non—sinéular.)
The last assertion of (5.127) is trivial since
le. .| L
lim max-—45}— = max lakll limn 2 =0 .

. . 5
nye 4,5 nl k,l Moo

This completes the proof of (5.127). 0o

Proof of (5.124):

Write
[ % 1 )
Z y % zg g B l(f)
(5.129) Hﬁ(f) = ngﬂ(f) = : = : s say ,
t
tZlc,bpw[ ﬁlcw J] By @)

and note that Hn(t) is the sum of the n independent but not identically

T
distributed random vectors (cilw(xinjilcthJ] ""cipw(xi J?lczgt ]] .
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We may write (see (2.17))
(5.130) H () =H,(0) +B (,F)T

where Bn(o’Tn) denotes the matrix

- -
Glhnl(slg%)’ v ’6phnl(8 gn)
(5.131) Bn<9’g%) = . . s
| 617 (B)s e 8 (BT

for some Bi s 0 < Bi <1 (7=1,...,p)

We write (5.129) in the form

B S | -1 -k i
(5.132) n'l, =~ GB,(0,1)) "lnH () ~-n

1
-5,

n<€n)] :

Note that the proof of the invertibility of %-Bn(g’g%) (in the sense
that it converges weakly to.aﬁ invertible matrix, namely F'(g) is entirely
similar to the proof of the invertibility of Fé(f), so we onmit it (see the
work following (5.6)).

Now
- p
(5.133) n .Hﬁ(gh) —_— 9

since, for any ¢ > 0 ,

PO, @)1 < €3 2 2T, = 2

1
_ -3
[because T, =2, =n ”Hn(gﬁ)“ < e

owing to Hn(zn) = fk(gn) = 0 (see (5.54))

and P{g% = gn} —+ 1 (m~+ ) by (5.113) (see (5.117)1]
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-1 '
Next, we consider the term n ﬁ%ﬁ(O) in (5.132).

For each r,k where r,k = 1,...,p, the covariance of

n n
Zlcir ¥(x;) and .zlcik ¥(x,)  is

Il M3

n n n
L e w(@] L ax VO >} - [E»;Efif‘ w(@] [Eizleik w<xi>]

Cin V104 )} ~ 0, since E¢(X) = 0 (see the

IIM§

n
.z Cir w(Xi)](
= Z

proof of (5.13a))

z czr’ ik sz + Z%Z S gk<0) , again using Ey(X) =
i=1 1

(5.134) Thus the covariance matrix of
H(0) is. Femy?
We now claim:

(5.135) Lindeberg's condition applies to each of the p components

1
e

X c;q W) of m %H (0)
’L:

Proof:

Let n > 0 and let o be a bound for ¢., Then, by (5.126), as soon

as n 'is large enough we will have
n lcik w(X£)| =n |cik|a =7

~1s sz —
so that, with gikn =0 zcik w(Xi)’ we have j ¥ E.k @) =
ikn

lgikl ="
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where G denotes the distribution of gikn , from which

Eikn

Lindeberg's condition is immediate (see Chung (1974), p. 205).

From (5.134), (5.135) and (5.125) we conclude

-1z
(5.136) 7 Zzn-—2+ M7 (0,C,, Ev2)

Finally (see (5.129) and (5.131),

-GB(mTﬁ4= '
non e~ -1
1 1 alhnl(slgn)’ ot ’aphnl(slgn)
B —n— : *
L Glhnp(spzn) s e e e ,Gphnp(Bpfgn)
n : n
r—1 Z -1 71-1
= ) ec..8 w(x.-s % e..T .],..., = Y e,.6 w{x.-s e..T .J
n o221 11717\ lj=l 1 ng | nos21 1 p"{7. lj=l g ng
1% ' -1 R '
_ﬁ z ci Glxp[Xi~8 % ci 'Tn .],..., Py Z ci § w(Xi_S ci 'Tn ] .
L i=1-*P pj=1 Jd nJ i=1 PP pj=l d nJ) |

(where we have written Tnj for the ji:-ll cémponent of T;,L) 3

1 %Lc e q;'(}\’ R %c T ] L 'ch ev w'(X B %c T J__l
* 3 O S o @ - ’Cl ., _‘ » . .= * @ *
) 71721 7 lj=1 1J ng nos2y 11l7ip 1 lj=l g ng

1 : 1 7
= c. C. w’(X.‘-B %c...’]’ ] ey = e. e ’(X.—B % .7 ]
L7 izl tpelt 4 Pj=y v 7J T m 7;21 o @Pw v Py=1 W
P ey 7t
— | {1lim TEI,U' using uniform continuity of Y’ on compact sets,
e Araced

(5.123) and a partitioning similar to that in 7(5.18);
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that is,

1
(5.137) - (—-Bn(g,gn) —r == C

Ep' 70

-1 P 1 -1
n

From (5.137), (5.136), (5:133), (5.132) and Slutsky's theorem,

we obtain

2
1 —
n/z%LWN(O,CO 1@__5] ,

~ Ep")

completing the proof of the theorem. o



ROBUST ESTIMATORS AND MODEL EXTENSIONS

For the model (3.5):
6.1) X% = ‘i ei.eu + € 5 d=l,...s7

with €yseees, being i.i.d. random variables with distribution function

G € F (where F is the class of all distribution having normal centres

and arbitrary tails) and C = ((cij)) having the form given in (3.5), we

a) defined a class of estimators {Tn = Ih(w): P € Yc}

~

of 0 = (el,...,ep)T (see (3.13) and (3.25))
and b) investigated their asymptotic properties.

" We found that for each y € Wc :

(6.2) T =T () —E> 0 (see (5.123))

and
( e )
) [ V()o@ dy
~1 ~c
(6»3) Z'n = Z’n(\b) —— MWV 93 CO Y3 2
u np<y)¢'<y)cny
c

\ J

(see (5.124))

where Co 1im 'fzg-, and without loss of generality, the true

Yima'd

‘value of 6 is 0 (gee (3.18)).

93
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In this section, we comnsider the problem of finding the optimal

estimator Tn = Tn(w) (optimal according to some criterion we shall specify.)

We will then extend our class of distributions F to comsider, in addition,
a small amount of symmetric contamination of the normal centre and will
give the optimal estimator in this case. Again, the case of scale unknown
is deferred to sections 7 and 8.

Consider the case of estimation of a location parameter first. Huber
(1964) proposed judging the "goodness' of an estimator (or "robustness",
meaning, roughly, good performance when reasonably small deviations, from
the assumptions made in the model, occur) by it's asymptotic variance.
Huber (1964) says:

"Since ill effects from contamination are mainly felt for large
sample sizes, it seems that-one should primarily optimize large sample
robustness propertieé. Therefore a convenient measure of robustness for
asymptotically normal estimators seems to be the supremum of the asymptotic
variance () when (¢ ranges over some suitable set of underlying
distributions ..." and goes on to give reasons why, even for moderate
sample sizes, the asymptotic variance is a better measure of performance
than the actual variance. We shall adopt Huber's criterion in our work
(of course our "asymptotic variance" is a covariance matrix.)

The model (6.1) with p=1 and cil=l’ i=1,...,n was studied by Collins

(1976). It is clear that any optimality results of Collins carry over
to our model because of the form of our asymptotic covariance matrix.

For example,order matrices by positive definiteness, so that ¥ < N means



95

£ @Myt 2 0 for all £ ¢ K and

(6.4)

fT(N-M)t 0 if and only if ¢ = 0 .

Then, noting that we may use the phrases '"optimal estimator"
synonomously with "optimal y~function' we suppose that wo is optimal
for the model (6.3) with p=1, cil=l’ i=1,...,n, meaning that, accérding

to our criterion above,

(6.5) Y minimizes sup V(¢,F) where
© GeF
¢ 5
V@)W dy
<]
6.6)  V(,6) = =% S
U V(y)e (y)dyJ
e

Note that, of course, (6.6) is independent of G € F so in this
case, the supremum in (6.5) is redundant.

It follows immediately that

Cal V(wO,G) = 061 V($,G) in the sense of (6.4) so that the

optimal ¢ in the model (6.1) coincides with the optimal ¢y in the same

model with p=1 and cil=l’ =1, ..,7.

It thus suffices to give the results of Collins (1976) and we will do
this briefly:

The infimum of V(¢,¢) for ¢ £ Wc is

1

e
I 22§ (x)dx
e
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*
This infimum is attained by ¢ where

" x, z € (-e,a)
p (x) =

0, otherwise .
*
v £ Wc, clearly, but any dominated sequence {wj} in Wc satisfying
* %
wj(x) — ¥ (x) a.e. as j»o will satisfy V(wj,¢) — V(Y ,9).

Next, define a class of’distributionsf% as follows: fix

€s 0 < €< 1 and say that
(6.7) G € PE_if the density g of G satisfies
g(®) = (L-e) ¢(x) + e¢h(z) for all = € [-d,d]

where % is symmetric and smooth.
Collins showed that, according to our criterion above, any
- *
discontinuous y (in particular ¥ ) cannot be robust, for we have

sup{V(P,9): G ¢ Pe} = o if Y is discontinuous.
Collins next defined a class
(6.8) Wé by replacing, in the definition of WO, the condition

that ¢ be smooth by the condition that ¥ has a plecewise

continuous derivative and showed that if

1%:-< 2¢ $(0) - 28(e) + 1, then

(6.9) Y € Wé minimizes sup{V(w,g): G € Pa} if and omnly if

Y is a nonzero multiple of
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8
£l
IA

X
o

wo(x) =3 % tanh [% xl(c—|x|)] sign(x), z < |x| <e

o
8
v

c

where xo and z, are uniquely determined by

1
T, o=z tanh [é xl(c—xo)}

e
and [ [go(x) - (1-€)¢(x)Jdx = € and
e

where
[ Q-e)ox), =] ==

g,@® =4
(1-e) ()

- 2.1'. - < <
o2k o o cosh [2 x, (e lxI)J, @ = |z| = e.
| 2 1Y %o

Collins (1976') validated this minimax result in the sense that under
certain conditions, V(wo,g) is the asymptotic variance of a consistent

estimator for all G.

The problem of estimating 6 in the linear model with ¢ € Wé and
G € Ps has not been undertaken but we have no reason to doubt that with

our conditions on € and the conditions of Theorem 2 of Collins (1976")

that consistent and asymptotically normal estimators of & can be found.
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In any case, a comparison of the matrices

sup
GeP

¢ 2
J ¥ W@y
[

c 2
‘ uc w1<y>g'<y>dyJ

i

and ¢ 1

sup
GeEP
€

[

¢ 2

¥, Wg(y)dy
4

C
U ¥, &g’ @) dy
1=c

Jz

is a natural way of comparing two estimators Zn(wl) and @n(wz) so that

the minimax results of Collins (1976) apply.




EXTENSION TO THE CASE OF SCALE UNKNOWN

As in section 3, we fix a, 0 < a < .5, we define d = é-l(l - %) and
G € Fif and only if there exists y € (- %3 %) such that G(y) = (@) + v

for all y € [-d,d]. Our model is

(7.1) Xi = § cijej + £ss i=1,...,7

J=1
where the Ei are i.i.d. random variables with

distribution function QUQy), where

Y.
(7.2) 6. =6, ¢eF,

and 6 = (el, cens Gp)T and o are unknown.

The design matrix C has the same restriction we imposed on it in

section 3., Our problem is to estimate e .

1}

In the case where ¢ was known (0 = 1 without loss of generality),

we proposed estimate ® by solving the system of equations

n
(7.3) Z c., Plx. - % c..0.) , k=1,...,p,
Lo ik 7 =1 %

for ¢ € Y, where ¥, was given by (3.13).

Unfortunately, the resulting estimators are not scale invariant;
(Recall that an estimator 91 of 6 is location invariant or equivariant
if §1(§'+ Cct) = Ql(g) +t, ¢ ¢’ and scale invariant if Ql(Xg) = xel(g)

99
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where A is any scalar. An estimator Gh of ¢ is location invariant if

SX + Ct) = 6(X) and scale invariant if S(\X) = Iklé(g).)

In fact, unless the function ¢ in (7.3) is of the form

P(x) = lx[s sign(x), solutions of (7.3) are not location

invariant and, clearly, such ¢ do not vanish outside a compact set,

To obtain acceptable procedures, we must estimate 0 so that the estimator is

scale as well as location invariant. There are two common procedures for
doing this. Oﬁe is to estimate o simultaneously with 6. This is the method
we shall use in section 8 and shall comment further on it there. The. other,
which is the method we employ here, is to first estimate ¢ from the

data and then to solve the system .

X{ - % ci.e.
j=l J J

Coq ¥ - =0, k=1,...,p for 9.
1 S,

R e I

7
Accordingly, following Collins (1976), we let G% be the empirical
distribution function of the sample and set

q;l (1-a) - G;l(a)

1(@)

(7.4) & = -
" el -a) - 8

where G 1(8) = inf{y: G ) =t}, 0<t<1,

Also put

~1

3 a

-1 ,3a
(l—‘z‘) - & (7)

s -0y - 1)

(7.5) b =
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Then it was shown in Collins (1976) that
(7.6) there is a number B € [1,») such that
Y
(7.7) 6‘n-——>-(30',
is given by
BY is given by

& (-aty) = & (aty)
® “(l-a) - ¢ “(a)

The upper limit on the biasing factor is small for reasonably

small a.
Now set

(7.9) e! = é%k_ and define

(7.10) Wc, to be the class ?c of (3.13) with ¢ replaced by c'.

We propose to estimate the true 6 by solving

n X, - § e..0.,
(7.11) ) e ¢L Y ogm W } =0
\ (=1

7 s k=1,...,p where § € Wc,.
1= &

n
The proof of location invariance of solutions of (7.11) follows in
exactly the same way as our proof of (3.15). We will check that any
solution of (7.11) is also scale invariant.

(Note that Gh is location and scale invariant.)

We must show that for any scalar X

(7.12) Ql(Kg) = xel(g) where el(g) is any solution of (7.11).

To prove (7.12), replace g by A in (7.11). (We may assume A\ # 0,
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since the result is trivial otherwise.)
Gh = Gh(X) becomes Gn(Xg) which, by scale invariance of
"N X a3 = A .
G, » equals [\ Oﬁ(g) lkloh

Then (7.11) becomes

5 *Xo;‘jﬂ cijejl
(7.13) .Z Cgp ¥ NE J =0, k=1,...,p
=1 7
l.€.
)
- "
n e 321 2569
7.14 = =0, k=1,...,
( ) izl Cir ¥ 1Al 5, P
i.e.
0
n - Xz - .Zil cza(il}]
J= - -
(7.15) ‘Z ey ¥ 5 J =0, k=1,...,p,
1=1 n

by skew-symmetry of ¥,

from which we see that the jth component of the solution of
(7.13) upon division by N\ is the jth component of the solution
of (7.11)

i.e.
Gl(kg)

—5—=8,(X), proving (7.12).

We may thus assume throughout this section that the true values

of 9 and o are

(7.16) 6=0, o= 1.
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For n > 0, set

( X - % a..t. (
; =K
L a;q19; Y fﬁl(é)
.1 F (t = : = i
(7.17) n(~)
X - § a..t
Y o, q.m|l—dt 7 £
=1 P " ) LA
( ) ( \
17 X?f El cth]
L J= "
n igl AN 7 ! f%nlci)
(7.18) E%n(t) = . = .
X.- % c. .t
1 ¢ tg=1 M .
.=l ) \ J

(7.19) DEFINITION:

For ¢ € Wc" the sequence of estimators {gnah} = {Tnah(w)}

of the true 6 is defined as follows:

C %
set t° = @ (see (3.8)) and then form the sequence

k+1 _ k k-1
£t g, DT R

~

in analogy with (3.25).

Then set
lim §k » 1f this limit exists
k—)-oo
I . =
~¥ o'n %
e otherwise.
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(7.20) THEOREM: (Consistency of Z’nf})
n

P
(7.21) Z’nah ~ 0.

Proof: By (7.16) and (7.7), there exists

B = BY € [1,b) such that

(7.22) & L,

Elementary properties of

X - % aijtj] X - Zf a;its
B p|—=OL and B o' |—9=L

B

can be derived,

'1fEX-§..t. dE §
as previously for w[ a%J JJ an UM ( zJ J]

J=1

in section 3 (see Collins (1976) section 4 and see also chapter 8

of this work.)

In particular

(7.23) < 2' §

The analogue of (5.15) in this case is

a..t.
i

for all ¢ ¢ D (see (3.20).)

(7.24) sup{ || ,\(t)—F(t) u.teD}—»o

B
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To check this, write

(7.25)  sw{ F5 (2) - Fg(®ll = t €D}
n

= F t) - F _(t

sup | ns () e O 4 17,68 - Fg@I
teD teD

The first term on the right hand side of the last inequality tends

to zero in probability by uniform continuity of F% (or just ¢, say)

P

‘ P
and the fact that 5, — B (we omit details since several proofs of

this sort have been done previously in this work.)
The last term in (7.25) tends to zero in probability by exactly the
same argument as used in (5.15), and so we arrive at (7.24).

The rest of the proof of consistency is the same as our previous
consistency proof so we omit further details.

This completes the proof of (7.20) ||

(7.26) THEOREM: (dsymptotic normality of ch )
n
We have for ¢ € ¥,rand g%& as given in (7.19):
n
c! )
2
[ Porens
1 D C—l < .
(7.27)  nP L, —> MW 0, 70 ' zZ|
n B[[ w(y)¢'(By)d@]
¢ . J
In the proof below
(7.28) the first p componentsof ?né will be denoted by
"

Tn'i (7:=l,.o.,p).
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Proof: We set, for anyn>0 |,

(£, )
1
t
(7.29) Hn = Hn .

m t
p
L)

Q r X—%G t
n A . 13 J
1oy v =
i=1 *! N
" Xi - % ci.t.l
z e. ¥ J=1 77

L?f—'—‘l wp n JJ

a mapping from

D X B —— I (here B = {n¢ R :m>o).
p+l dimensions

Following notation similar to that in (5.130),

write
r N 3 ( 3 N _n )
Tnl r 0 [ 0 [ Tnl ( Tnl 0
(7030) Hn . =Hn . +Bn . 3 . .
Tnp 0 0 Tnp I%p_o
8 & & -
. 7 L) RO &”JJL”B,
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Here,
([ { o) ( 1)
0 Tnl
(7.31) Bn . s
T
np
L UB | S, J J
equals
-
X, - § e,.a. T .
7 1 . 1d I'ng
L ep6q¥ p+gﬁ%& ) JRERE
=1 1¥n
X, - § ¢..q T .
n 1 L TLg T p T ng
z e le B+Z—%A _') s e
'=l p p Gn 6

some a, 0 < a, < 1, 2=1,...,p .

This may be written as

N . 3 Y r 3
(( 0 f “nl Z%l
(7.32) Bﬁ >
T
np np
5 & ~B J
L) L\ 7 Jj) L n

L e 8 w[

X.

7

)

J=1

cijalzhg

Bra. (8 -5)

'l
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r r N r N Y r r Y 'q NN
0 an 0 Tnl
Ln . . gj@, + Mn H [On—B]
T n T
0 np 0 np
o) ’ S
L LBJ ")) A LnJ J

=L (z,y) @nah + M (xy) (6, -B) , say,

where we have written

(7.33) (O,...,O,B)T as x

(7.34) (T T .5 )T-.’Z’ as
L] ’ y ,
nl’ np’ n ~nG,, 2
" X- § ; %1%n; " Xi- ? ;5% ns
Lend ! pe, ) e L et R e
i=1 1'%, =1 ¥+ P 1'%

(7.35) L (z,y) =

=1
. Zc’ipﬁpw( pra, @, 6)

X - % cijaanj]

-

and
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X, - § ec..a.” .T

7 1 Lo Teg g
Lo 8 ¥ p+i—%a )
=1 P 1% J

1=

px1

1
On re-arranging terms in (7.30) and multiplying through by »n?2

we get,using the last equality in (7.32),

-1 ~1s —;1/ -
@31 2. - -Eew| PR a@ e e @6 -0 ).
.Now,
(7.38) A E (@ =nTg ((o,...,o,e)T] (fFrom (7.33));
e Pl=—
g=1 ¢t 8
- 5 ) (From (7.29));
.Xg
ey, v
J
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—2 & ww (o, E 11)2(%] Lim %C—)
by C.L.T. [ aad

- 2 |X
= MVN [Q, UO E ¢ (g” .

Note that in arriving at this limiting distribution, we used the fact

that for r,k = 1,...,p ,

-3 7 A P X
covin ® L e bg s m .Zl%‘k“’ B

&5

n
21X 1
LGy ogp BV (E{] * "n‘g#g ®1p (O

to give us the expression for the variance - covariance matrix. The
condition (5.126) is used to ensure that Lindeberg's condition holds

(see (5.135).)

Next,
(]%l
-1
(7.39)  AEE @ =wrE | . |, from (7.34)

7
mp
5

L7
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{
" Xi -~ % Cz'jh'
, ey i nd
Loy &
i=1 n
= n-l/z
X, - ? c.. .
7 1 Lk T ng
Yoo, y|—=2k
=1 wp oh
\ J
P 9 ’
. #>o0
since P(Z’n6 = zero of Hn] — 1, by (7.20).

n
(Note that we have been writing

T . for the kth component of T
nk ~né,

instead of the more accurate

Tn& k
)

but we dropped the 8% for reasons of
notational brevity.)

Next, we examine the term

-4
(7.40) n M%

(©.y) (8, -B)
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(

J=1
B +a ©,-8)

’_zf

1

X.- § ¢..a, 7 .
7 1 1" ng
7

A 6p+l w{

X{— % c..a'T .
g=1 1d p ng
Bra, G, P

L ) ®ip Opr1 ¥ {

L

=1 _l
2 .
: as n times n

Splitting the = and recalling that

(7.41) 6p+l means partial derivative with respect to Gh ,
we get from (7.40) ,
= .
(7.42) n Mn(af,zi)(cn—ﬁ) =
[ 5 -5 )
X.- % e B/ L X.- % c..a T
7 7 i=1 zg 1"ng T WL Tig 1Ing
- l z G =1 wl J=1
n L B+a RN Bta, G -B)
P
n-(G, )
7 i % %1% ng o % %15” Z%J
- ._].'. z ,Ll J_ i lp! J l p
7k e, G, -1 ||V TFH, @B |

We see that each component of the vector in (7.42) approaches zero

in probability, using (7.21), (7.22), uniform continuity of ¥! on

G'

[-¢', e'] and the fact that E[Xw'(g)] = I xw’(§)¢(x)dx = 0 (see

G,



Collins (1973), p.1l01).
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(Of course, a partitioning such as that done in

(5.18) is done here before applying the W.L.L.NS).

1
Also, n? (Gn—B) £ 50 since B is the normalized difference of two

quantiles and 6ﬁ the normalized difference of the corresponding sample

quantiles.

Thus

(7.43) 7P (zy) 6,-8) 20 .
L -1
(7.44) - [;5 Ln(ag,a)J
i 4
( n £ —’il cijalTng
Loc oy Bra (6 B) |’

I
=

2
L b

1

n

[Xt —§ G..(IT .]
Z J=1 g png
c. 6. ¢ r— s
Syt 1 B+§p(cﬁ B8)

7

Finally,

I ~13
Q
<=

i 6 . N
1 ip p B+up(oh—ﬁ)
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¥i->co

-1 :
—_ (}im —%91 [lim [B+ap(3n—5)]J w'( e

X.—§ e, .a.l , X.- § e, .a T .)

1 ? eilail v $j=l 1 L ng 1 g Gilcip " 1 i=1 19 1'ng
- z A ~ 3 es ey - ~

n L |Bta G -B) pta; G -B) n Ly (Bra B -B) Pra; G, F) |

X.-ﬁ‘c..a T " e. o X{— % c;.a Z%.I

1 g cﬁpcil o 21 v P g 1 Z ip%ip " J=1 Jd P ng
P2y — A - £l ocu, A - ~ N

_n 21 B+ap (crn B) B+ap (crn B8) n o2 [3+ap (cn B) B-i-ap (cn B) J

1

lim [t (“—)ﬂ

From (7.38), (7.39), (7.43), (7.44) and (7.37) we have, using

Slutsky's theorem,

L D 2(x
n g’n-———»MWV [g, CoExp [B]{SC

-1 1

° B w'(%)”

and this is easily seen to be the same as

D

]
7 1% ~>  MVN

!

C 2 )
I ¥ (y) ¢ (By ) dy
l !

~C

0, c;

G’ 2 -]
B[I V()¢ (By)ayl-

C'

and this completes the proof of the theorem. O

--1




8
CONTINUATION OF THE CASE OF SCALE UNKNOWN -

SIMULTANEOUS ESTIMATION OF THE REGRESSION VECTOR AND SCALE PARAMETER

In this section, we retain the model of section 7 and consider the
problem of estimating 8 by estimating simultaneously with it the scale
parameter o. We shall defer comparison of this method and the method
of the previous section until after we have done the analysis. A

discussion of the ranges allowed by certain parameters will be given

in (8.120).

(8.1) Fix o, 0O< a= .05

and

let d, k, Q”, rg**, 8, B = SY and b have the same definitions as before
(see section 3 and section 7). We let ,Q,O denote the true wvalue of Q,
and gq denote the true value of o.

Let ¢ be any number satisfying

(8.2) ¢ s .90 .
We set
I = C
(8.3) e ]

and define the class

(8.4) ‘l’c, = {y:4! + %! such that ¥ is smooth,
Yy vanishes outside [—-c',c’] , is
non-negative on [0,¢] and is not
identically zero on [O,c].}

115
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Now define

(8.5) p(x) = Ja_;mlp(y)dy ’ Y € \ycr s

(8.6) a, = n-p)E{Up (U)o (V)]  where
U has the standard normal distributibn,
and put

= - p = 1
(8.7) A’I: X Jil a’l:jtj’ 7'1"-°>p 92€}? ’

where each Ai has distribution G € F (see (7.1) and (7.2)).

Sometimes, when the index 7 is unimportant in X - § a?ljtj’ we
J=1
will write

(8.8) A=X-t=x—§'a
Finally, set
(8.9) a = lim -~ .

We propose to estimate 9 and ¢ jointly in the model (7.1) by

solving the system

(8.10) Hn(c] = 0

where



;
5-3 e .t ~
17 T 4 Cii J
n ) Cpyp ¥
’I::l C )
(¢ L 'Tf Xi_ilcijtj
~Mo2 & , —g=
(8.11) Hn\ wo Lo, v
o i= o
; ; ;
X.—-) e..t. X.-) c..t, X.~) e, b,
L7 {7,(7.___17,,7 ;]] 7’j=l 1 ,7] T a,
Ll , |- |-
U Z=1}) | o o o )

It is clear that (8.10) has multiple roots so we make the following

definition:
*

t 8
(8.12) DEFINITION: Set ( 0] = {V ] (note that we dropped the subscript »
g On

from;g* — see (3.8))

and form the sequence

iﬁk+l {Eqk (t ky~1 }E}k |
(8.13) [ = | - |H { ] H , k=0,1,2,...
o) o) nig) ) iyl
Then set
frzﬁ/ k
lim } s, if this limit exists
7 ks ‘g
~o= Tn(w) = .
(p+1)x1 8"
l , otherwise .
\67’1,
1 -1

(8.14) REMARK: The existence of Hniga and boundedness of ”H;Egﬁ Ils

in the probability limit sense in some range will follow from
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the existence of H'Eg)—l

Hﬂﬁ) is defined below (see the argument in (5.6).)

Set
( A
20| ]
ﬁl %1% w{o]
t 8,
(8.15) Hio} = L aipqiEng%
Ag Ag (Ag
*iil nt[?r]P k;q P 7;J} T

It is easily checked that

3 £9
5.1 o, 7] - o]

and the fact that

£ -
and boundedness of HH'&ﬂ 1” where

t t
(8.17) sup HHn{V} - H[V}H £, 0, where the supremum is taken
o

o
t

over all ?ﬂ
()
(R

\o }, is proved by the same argument as in (5.13).
0

in some appropriate closed neighbourhood of

We shall call (8.15) the asymptotic deterministic version of (8.11).

(8.18) REMARK:

scale invariant. This can be checked as follows:

Replace X by X + Cg in (8.10), s € ﬁp. We get

We remark that any solution of (8.10)is location and



(8.19)

or

S|

N T

S~

7

119

i
lo

O
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so that any solution of (8.19) minus (sl,...sp,O)T equals the corres-
ponding solution of (8.10), proving location invariance of solutions of
(8.10).

Similarly, if in (8.10) we repiaceg by AX we get the system

AX —§ e. .
1" 17" ,7]
(8.20) |= Je. ¥ a
i=1 *P o
¥
AX.- ) c. .3 A~ ) e. .ty (}\X~§G t
L7 [ AP =ikl =K a,
- ) ] ] -p -
| =1l o o t G )
or
t.,
f X.— C. s |
1 7§ L [ 1745292
n 5741 [} o/ x|
t,
L [Xi-f i
8.21 = c. —
E2D LTl ¥ T emT
PN P
n 2 (A %) (L% [T L% a
15|, 2 =1 . RN I I = R Y |
n by ip| A| 2 o/] Al o/ ] A o/[A] "
i A

o

o
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so that any solution of (8.20) with tj replaced by tj/k and 0 replaced
by c/[k[ equals the corresponding solution of (8.10) proving scale
invariance of the solutions of (8.10).

We may thus assume in what follows that the true value of

0= 0

41

We shall show that the estimator of Q' resulting
from (8.12) is consistent and asymptotically normal.
As a first step in doing this, we will show (following the

technique we used in the scale known case) that the Newton's method

p™* 0
solution of H(ga = 0, with starting value va ), is Gﬂ‘
Note that
g**

(8.23) {7 ] €D X [l,b), where X here denotes Cartesian product,
B

(see (4.13b)) and (7.6)).

Now D X [;,b) is a closed set. We shall have to perform our
analysis in an open neighbourhood of C%:*), for, otherﬁise, the
attraction theorems we wish to use fail.

It is easy to check that F is continuously F-differentiable on

any neighbourhood of (%) that we wish to work in (see (4.7) for the

proof of smoothness on D of the function F there.)
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We will see later that H'[gﬂ is a symmetric matrix. Consequently,
by Theorem 4.1.6, p. 95 of Ortega and Rheinboldt (1970), H is a gradient
mapping. This fact is of considerable interest in the solution of non-
linear equations in general. It turns the problem of solving systems
of equations into minimization of non-linear functionals (although, in
fact, there is a way of doing this in general.) In all our work to
date, we have solved systems of equations rather than minimized func~-
tionals and will continue to do so in the present problem. For our
purposes, symmetry of H'Q?} will serve to simplify our analysis.

\

Now we shall need expressions for expectations of various func—~

tions. We summarize these in a lemma.

(8‘245 LEMMA: (In this lemma, U denotes a standard normal random

variable, so that

P(U<zx) = &(x).)

We have:

ol
(8.25) Ep(U)y =m - JO w(x)[é(x)—®(—xX]dx

where p(x) = m for all x such that [xz| > e’

el

(8.26) E{Uw()] = zJ(o p(2) w¢ () dae

cl

(8.27) Ep(§9 =m - Jo Y(x) [e(oatt) - o(-catt)]dx

!

. o . L
(8.28) EE%'w(gﬁ] = 20exp(-t2/2) IO W(x)wo(ox) (ot .
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!’

& ¢ Y
8. = = - -2 x -

‘ Py 2 2 e’ . 24 1 2 1
(8.30) Ep' () = 20%exp(~t?/2) , Y@ oa)on j-E—-O (oxt) ((zj): - GanD &
(8.31) E[mp'(%]] = 20%exp(-t2/2) times

Ic,w(x)¢(0x)omt T (oat) bk 4 L0 g
o " o CHr !

(8.32) E[Azw’(-ﬁ—}] = 203exp(~t2/2) times
!

(64
JO (2w ~p (2)] ¢ (o)

) (oxt) 2j{ (0z)2-1 _ (o) th}
g=0 (25): (2g+1) ¢

(8.33) = 202exp(~t2/2) times

cl (o] .
25 0%a2-2  (om) 222
L) () ¢ (om) o J,ZO (022) T ~ GHD T

(8.34) E[é—xp(é—)—p (—ﬁ—)] = 20exp(~t%/2) times
cl
{0 [0 (x) -0 (2)] ¢ (o) cosh (oxct) doe - m[e(~cc+t)+1-0 (cc’+t)]

(8.35) = (8.28) -~ (8.2%)

cl
8.36) E[p-p(] = jo (@) [o (oz+e)+o (om-t) -20(x)] dx -
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(8.37) REMARK: Perhaps the easiest way to prove some of these results

is to use integration by parts. For example, write

!

E[a2y7] = o3 j 2y (x) (o+t) da.

-c
Then set du = y'(x)dx, v = x%2¢(cx+t) to arrive rapidly at

the result (8.33).

Proof:

(8.38) Ep ()

J o () ¢(1) du

-0

j o (N du + m j o(U)Gu, since o(U) = m for
|v)=e! Ul>e!

(U] > ef

j o (o (W) du + m[e(~e")+1-2(c")] .

|v]=e’
Applying integration by parts to the last written integral in

(8.38), we get that (8.38) equals

[pw)@(w]fc',, - J YN (U)du + m{e(-c') + 1 - a(c")]
|Ul=e’
= me(e’) - mp(=c'") - | lj YNe(Uydu + m{o(-c') + 1 - ¢(e )]
Ul<e!’

0

n

e! (
m - [fo W () & (V) du +J (W) o) du]

-C

G'

( -
m - Jo () [e(w) -0 (~u)] du ,

It

proving (8.25)
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Next,

E[Up(0)] =f uh(u) ¢ (w) du

-&0

( :
= IJ wp (D) (D du + 0, since P(x) = 0 for |xz| > o
| Ulse!

c!
= 2 [0 xP(x) ¢ (x)dx, since zY(x) is even,
proving (8.26)

REMARK: It is easy to see from the calculations just done that
Ep(U) and E[UW(U)] have the same values as given above even
if U has distribution function G € F, where F is given at
the start of section 7, so that in defining a, in (8.6), we
could have put a, =.(njp)E[Uw(U)—p(lD] with U having distri-

bution function G for any G € F.

Next,
A ®on
Ep{gﬁ = J ptg}dG(x) (see (8.7))
- A{ o Bar + o Qdew
{x:]E-Ec’} {x:|€1>c'}
= N o (’é‘] ¢(x) de + A{ CZG(x) )
{x:|Z]=e'} {x:|Z]>e"}

since |§{ se'= x|l =4 ;
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e’ |
=0 J( p () ¢ (ot ) de + m[o (~oc'+£)+1~0 (¢ 'o+t)]
_.c'

(Put u = p (x), dv = ¢(oxwtt)dr = du = v(x)de, v = % 8 (0wt )

H

' c
[p (@)® (oz+t)] fc, - j P (x) @ (oxc+t)dx + m[@ (~oe'+t)+1-0 (oe '+5)]
_c’

c’
m - ( ¥ (x)o (ox+t)de
Jg!
e’ ‘
m - JO Ylx) [ (ox+t) - @ (-ox+t)]dx ,

proving (8.27) .
Next we prove (8.36):

Efo @) (]
e! ‘ c! ~
=m - )(0 Yx) [0(x)~0 (=x)]dx - I:m—-JO Y (x) [@ (ox+t) = (~ox+t )] dx]

(from (8.25) énd (8.27))

CI

- Jf ¥ [oom+t) -0 (-omkt) 0 @)+ ()] de

e !
= J(O Y(x) [2(oxtt) -{ 1~ (oz-t) }-0 () +{1-0 () }] dx

4

c
. J 9 (8 omrt) s omm) 28 (2] dm
proving (8.36) .

We now prove (8.29) and then (8.30). Note that these two expressions
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have been derived in Collins (1973) and (essentially in) Collins (1976)
but we enter the proofs here for completeness and also because our

notation differs a little bit.

We have
(oo
2@ = | 1@
_ A
= A[ tp(;}dw(x)dx +0
{x:]-(j—[sa’}
cl
=g f Vv (x) ¢ (cxtt)dx
_cf
G,
=g jo Y () [§ (oz+t) —¢ (ox~t)] da
c' )
= gexp(-t2/2) IO u;(x)cb(oac)[e-gm—egx%]dx
‘ e! o 2J+1
- (oxt)
= ~2gexp(~t2/2) Jo ¥ ()¢ (ox) jz—-o T
which is the same as (8.29).
Next,

- S o
< 5z Ev{3)
= o AJ {26 @
{x:]=]=e’



(8.39)
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o2 S J{ V() ¢ (catt) de

c !
o2 £ J V(@) [(omtt) ~p (oz-t)] do

'

e
~02 L) ¥ (x) [-(oxt+t) ¢ (ox+t) - (ox~t) § (cx~t) | dx

!

¢ s
o2exp(~£2/2) [0 ¥ (x) ¢ (o) [ox{e_cxtmcx"} + t{e—cxt—egxt}]dn

25+ 14

cI [*) 2j
) 2 (oxt) ™Y (oxt)
20%exp (-t</2) JO ¥ (x) ¢ (o) E’x jZO et JZO (24+1) ! de

c! 2
202exp (-£2/2) I ¥ (x) ¢(ox)ox 2 (c.x:") [(21.), - (ijl) ,]dx s
70 il !

which is (8.30).

REMARK: Since we are dealing with a y-function that vanishes

outside an interval, the interchange of integral and
partial derivatives above and in future calculations
is most easily justified by the existence and con-

tinuity of the integrands involved.

Next we prove (8.28):

1 - [ 28w

A A
{ .J 5 VP e dx
x.IUSG}
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c 4
o f rxy(x) p(oatt) de
_c' : .

C’
o jo xp(x) [$(oxtt) + ¢(ox—7‘:)]a7:c

!

c e
cexp(~£2/2) JO 2 () ¢ (o) [e—oxu_i_eoxﬁdm

cl
20exp(—£2/2) JO xp(x) ¢ (ox) cosh(oxt)dx ,
agreeing with (8.28).

Next,

B - o))

cl

= 20exp(-t%/2) f [z () —p ()] ¢ (o) cosh (oxt) dez

o B® - oGl |

{x:|6—|>c’}

(where the first term on the right of the equality sign is
derived from calculations exactly the same as those in the
derivation of (8.28))

o

= 20exp(-t2/2) JO [xlp(x)-p (:r:):J ¢(ox) cosh(oxt)dx -

A{‘ (—) dé(x) ,

{"Ig >c’}

since I%I >c' = w(%) = 03
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C’

= 20exp(-t2/2) IO [oc9 () p ()] ¢ (o) cosh(oxt)de ~ m[@(~oa'+E)+1

- ¢(ce'+t)] , proving (8.34) .

0f course, (8.35) is trivial from (8.28) and (8.27).

Next, we have

E[ap’ (5]

-2 S EY (ZA;} (clearly)

e 14

<2 E% [o [ Y (x) ¢ (cac+t) da]

!

e
-g2 E% ’IO oy (x) [ ¢ (ox+t) ¢ (oz-t)] dee

C,
~g2 [ . Y (x) {o qu‘ Co(oxtt) -9 (ca—t)] + [¢(oa+t) ¢ (cz~t)] -g%}dx

14

e
-g2 Jo ¥ () {o[—x(ox+t)¢(cao+t)+x(ox—t)¢( x=t)] + ¢(om+t)

- ¢(ox~t) Ydx

cl
o2 J[O P (x) {0[x(0x+t)¢(0x+t)—x(ox—t)¢(oac-f;)] + ¢ (oa-t)
~ ¢ (oatt) Ydx

a!
0 | $(aIomexp(~12/2) (oz) [(oatt) e —(oa-1) "% i

ce!

o 0 p(x) exp(~£2/2) ¢ (o) [eoxt_e—gxt] da
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cl
o* Jo V() exp (22 /2)¢ (oz)oz oz (e O %) + (e 4")] dn

cl
+ o2 jo () exp(-t?/2) ¢ (ox) (2) sinh(oat ) dx

ol . Zj © 2j+1"
o 2 (oxt) ™Y Lowt) @~
207 [ veren (-t /z>¢<ox>ox[%j§_;0 “Gor el SGamr] =
, {C’ , o (0x‘t)2j+1
+ 202 | y@exp(- /z>¢<ox>jzo TG &
ec' © . 2
o I 24 1 1-(ox) ?]
202exp(~t2/2) JO w(x)¢<0$)03«‘tjzo(°m) [(23')! HRCETSV s

proving (8.31).

(8.40) REMARK: We could have expressed E[ﬁw'[%}j in terms of p by

writing E[Aw'(gﬁj = g2 3%'{6 Gt Ep(éﬂ} and showing

==
that this equals

!

e
o2 [0 o () [¢(ox+t) {02 (oz+t) 2z~20 (cat+t) —o2 2}
+ ¢(ox-t){-02 (ox~t)2x + 20(ca~-t) + o2z} .

Of course, this last expression could be derived from
(8.31) also, by parts or otherwise, but the fact that
it is so messy leads one to suspect that we are better

off expressing everything in terms of .
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Note that as a check on the calculations that led to (8.31), we can
. — A $ A A .

also write L’,Al!)'('o_—) = ~g B?E[Aw(—&-}] - E'l,'}('a‘) and, proceeding as above,

this leads us to (8.31) again,

Finally, we derive the expressions (8.32) and (8.33) for E[Azw'e-):]:

B2y () = 0% o5 [5 D) - o ()]

!

C
= o3 [ Lo (2) —p ()] g—— [o¢ (catt)] doe

g

S A A A
- o3 A[ LR - eBa@
{w:|Z>e

o :
= -g3 J [y () ~p (2)] ;S%_ [o¢(oxtt)] dx + O,
. "'C’

" (since ¥ vanishes outside I:—c',c’] and p,
being constant outside [-¢’,cf] has zero

partial derivatives)

cl
= -3 Jo (2w () - ()] é% [o{o(oxtt) + ¢(ox-t)}]dx

!

e
= —g3 Jo Lew() —p ()] {o[~w(oate) ¢ (oatt) —x(oa~t) ¢(ox—£)]

+ ¢(oxtt) + ¢p(ox-t) }de

H

. ‘
= g3 JO [xw(x) -p (.’L’)] {ox(oxtt) ¢ (oxtt)ox(ox-t) ¢ (cx-t)

[$(oxtt) + ¢ (cx—t)] Ydzx
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e !
= g3 Jo [ () - ()] { [Com) 2-1] [$ (ot )+ (oxc~t) ]
- Oxt[¢(0x—t)—¢(0x+t)]jdx
e !

= o3exp(-t2/2) jo [aw () o ()] ¢ (o) { [ (o) 2 ~1] [ O 4+27%7]

- oxt [egxt—e —oxt:’ Y

G' o (Gmt)zj
= 203exp(~t2/2) J [ocw () ~p ()] ¢ (o) { [ (o) 2-1] ) ——-("2“ ¥
0 J=0 Jd) e
© 2j+1
(oxt)
- oxt jzo ~ZEEIIYT—} dux

(6x)2-1  (ox)?+?
2HY T D!

e! . © .
= 203exp(-£2/2) [0 [y @) -p (@] ¢ (0z) ] (owt) 21 Y,

Jg=0

proving (8.32)

(8.41) REMARK: The expression (8.32) just derived for E[Azw'fé}]

does not make clear at all the range of integration
(or portion thereof) for which the expression is
positive (or negative.) The expression (8.33) will
be more useful for this purpose. Later, we will be
interested in comparing E[AZIP'(%}J and E[‘é"l!) (%) -p (g—)] .
We can do this by comparing (8.32) and (8.34) or else

(8.33) and (8.35). The latter comparison seems to be
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the more fruitful.

To derive (8.33), we write

22y = 2oty & eG 5G]

(which is easily seen to be true by working out the

partial derivative)

9

cl
= 203 )[ xp(x) ¢ (cxt+t) de — ot r

-C

c t
; x2y (x) 6 (catt) dae

G’
= -2g3 5(0 2 (x) [¢(ox~i—t)+¢(ox-7‘:)] dx

C”
- ol EGE JO 22y (x) [¢(om+t)—¢(c:c~1:)]dx
cl
= -2g3 J 2P () [:¢(cr:c+t)+¢(ox-t)dx
cl
- ot JO 22 () [~ (oatt) ¢ (oatt) - (ox-t) ¢ (o2o-2) | de
cf
= gt JO 22 () ]:(o.'ni-t)¢(Gm§~t)+(ox~t)¢(ox-t)]cZac
(e’
~ 203 Jo xp(x) [¢ (oxtt)+¢ (oa~t) ] dx

G'
" fo a?P(z) [ox{¢(oxtt)+p (ox-2)} - ¢{¢(om~t) ~¢ (oatt)}] doc

G,
- 263 fo xy () [¢(0xf—7’;)+¢(cx—t)]d&:
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4

- .
o2 JO oz (x) [ (02x2-2) (¢ (oat+t) +6 (o~t) ) ~oxt (¢ (02~1) ~¢ (0ct+t) Y] dee

it

c! ' ‘
o2exp(-t2/2) (0 oxy () ¢ (o) { [o222-2] [e —cxt+eoxt] -ouxt ['_eoxt_e—oxt_-l } e

e’ % 24 24+1
= 942 2 2,2 57 (oxt) © (oxt)
20%exp(-t=/2) IO oz () ¢ (o) { [022? ~2] jzo )T Z G AT }dz
e 2'7 02.’22'(‘;2
= 202exp(-%2/2) [ oxp(x) ¢ (ox) z (oxt) [0(24 - D :]

g=0

proving (8.33) .

As a further check (see also (8.37)) on (8.33), we derive the same

expression for E[A%y’] as follows:

(A - - § - -
229" (D] = -2 L )] = 02 L Ee @)
s (¢
= ~g2 r- [ o2xy(x) ¢ (oat+t) de
. -l
I zy(x) {~o2x(oat+t) §(oxtt) + 204 (oxtt) }dx
e'.
= ~g2 J ap(x) {0322 ¢ (oactt) ~0 2t ¢ (ot ) +20¢ (oatt) Y dx

1y () {~0322 [ (omtt) +¢ (0x-t) ] ~02at [¢ (oatt) —¢ (ca-£) ]

+ 20[¢(owtt)+¢ (ox~t)] } de
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e
= g2 jo xw(x){[;o3x2+2ﬁ][¢(cx+t)+¢(ox—ti]—ozxt[¢(caﬁ¢)

C’

- (ox~t)] }dx

= —oZexp(-t2/2) fo w9 (@) { [-0322+20)e " 4077 522 [ 0T 9%F) } g

c’
= 203exp(~t2/2) jO 2 ()

This

ce!
= —203exp(~£2/2) J xw(x){[—02x2+ZJ 2 [(cx*)

o 24+1
(oxt)
it TRt jZO 2D !
o 2j-(ox)2-2 (0x)2t2

returning us to (8.33) again.

completes the proof of (8.24). o

Before proceeding, we equip ourselves with a table of parameter

values and some functions of interest.

All entries are rounded to four decimal places.

(8.42) TABLE:
(¢4
=" (1 - )

% S
k=e” (5 + )

b=[e" (1~ -
[b-1] /k

2b-1

-2b+3

cosh(.9k)/[l-k%]

1

T ED] /o 1w -e T W] 1.

0

1.

.001

.2905

.0012

0126

.5000

0252

.9748

.0000

.01

.5758 1

.0125

.0200 1.

.6000

.0400 1.

.9600

.0003 1

.05

.9600

.0627

0334

.5327

0668

.9332

.0055

]db
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(8.43) DEFINITION: Let D be the region in T gefined by (see (8.119)

for comments)

i
(8.44) D =4~ ¢ 1£+1:[s~1| +-2—£b—:1—2- max | § a. .t .|
K d
s I=i<p g=1 J

< 2 (b—l)} .

Note that this region is "well-defined" even when kX = 0. Clearly,

(,g,} € D implies (but not conversely)

8.45 L , =

(8.45) |j§law d<i, e
and

(8.46) le-1] < 2(»-1)

or, equivalently,
(8.47) : ’ -2b+3 < s < 2b-1 .

+1
Now define a norm on i’x’p as follows:

J

Throughout the remainder of this section, this norm is the one under-

(8.48) = |s| + 221

% max |§ a..z’:.| .

1sisp g=1 I 9

stood to be in use.
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(8.48) Diagram showing D (defined in (8.43)) and DX[1,b) (see (8.23)

and recall that {eé ] € D x [1,h)) for the case p = 1 and, for

convenience

Scale
axis
2h-1 L
/ L\'
11 ~ A4~ DH1,P]
::: g (rectangle)

~2b+3 , ,
} t Location axis

0 (&
(8.49) THEOREM: We have H{ ) =‘g. Also H’l ) is non-singular for
g o]
E’
all I } € D. Finally, the Newton iterates
o}
A L Y
o o} o} o}

ok 0

{ ~
with starting value th } all lie in'D and converge to [ ]. Note that
1

Kk

the starting value %g ) may not lie in D! (see the diagram in (8.49).)

B
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Proof of (8.49):

We have, from (8.15),

o i=1
]
§ _A7’ Ai g
L Bl v - e (] - o
=1
t
We first check the non-singularity of ﬁ’(;) .

o)
‘ﬁa a -%Ew'(—-”i, §a L Eyp' () §a
........ ) oa:a; s
i= 71721 ¢ o 4=1 PP O 07 ;21 %
a. A, o A
-~ ga. a.l‘—}—Ew’(-—’L), ....... ﬁcz; a. —}-Ew'(—j’-},}i
g2 tp il o o joy PP O o ,lep

02,

G’
i (74
S B v (]

p a, b a.
30l T G Sl S, § et S
. A
2 g -]




Oor

7
(8.53) H'{ ) =
(o

A
where, for brevity, we have written ‘1‘7; in place of ll)'("o_i) .

shall use the notation 1';7: for w(%)_. and s

140

Notice that H' (z) is symmetric.

as the product of three matrices:

(8.54)

where

(8.55)

and

-

10 Ypo

P1° “p2

Ay A5 oo

B q; q.
7 ! 7 4
ga A.. —EP.,00vennns ﬁa a. -——Egb.,ﬁa
i=1 7111 o 1 i=1 1171p o© 21
q q
(A ! 7 !
- Ea., A,. — EYP.yiinnnnes ?a. . ——Eq;,,§
S P T
q; q. . .
ail_}fEEAiwz’]’ ..... "§aip%E[Ai"b7,]’ -—%
=1 g 1=1 o 1=10

i
for p(

L B[n, 1]
o2 TRV

},7,1

It has the following factorization

We also
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(8.56) B = q

= B, ;
P a ( . .. E2[8.9]]

-5 |B[82e] - —-——3;1;J

i=1 O vr EY;

<
||.MG

and where 0 denotes a triangular block of zeros (so that B is diagonal.)

Consider now the invertibility of H’G?). We have
T
det A~ = det A = det 4,

clearly, and since det 4 # O by assumption in our model, we are left
with checking the invertibility of B. Now also a; # 0 by assumption

and we have, from (8.30),

7y! = 202 exp(~£2 /2) r'w(mm(ox)om ; G e — 2\
% P 0o TR T NahT T gy v

where we have written ¢ for any of the § a..t ..
g=1 "
Hence,

7

By, = [20%exp(-t2/2) IO ¥ ()¢ (ox)oxdz] [ 1-22)

Thus Ewé>>0 because § # 0 on [O,c’] (see (8.4)) and

2
1-22 = 1-( § aijtj)

v

.

X
)

(by 8.45))

> 0 (by ®.42))
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and furthermore o > 0 by (8.47) and (8.42). This leaves us with

checking if we can invert the last entry of B. Now E¢é > 0 by work

just done and since EzfAiwé] = 0, we have
2 !

E [Ai“’i]) N

- 2917 - — - L'
ﬁ_-l % (E [e5v;] By,

7

- fa2y!
iil qiELAiwi]

and it suffices to show ﬁE[Agwéj >0, i=l,...,p. Again writing ¢ for

§ a@gtg’ we have from (8.33),
J=1

-0 a2 2 e’ 27 0202 -2 2522 \
ELAi‘Pi’] = 20%exp(-t%/2) w(x)q)(cx)omdg (oxt) ((23)‘ (2j+l)£)dx

and so

c! .
,E[A§¢é] > 20%exp(-t2/2) { w(x)¢(cx)0xJE (Gxt)2g((;3)? de

and it will suffice to show that
(8.57) 26222 > 0  for all @ € [0,e'] and o € (~2b+3,2b-1) (see 8.47).

(8.57) is equivalent to o2x% < 2 and this is implied by
62(¢")2 < 2 which in turn is true if ((2b-1)e’)2 < 2 (since (-2p+3)3 <
(2p-1)2 —see (8.42)) or ¢® < 2 (see (8.3)) and this is true by (8.2).
(0Of course, ¢2 < 2 is true for e <‘21/2 but the restriction on ¢ in
(8.2) was chosen much sharper than needed here, for bounds computed
later on.)

We may now proceed and invert our matrix H'(ég.
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We have
(@) eennn alp,E[Alwl':l/(oEwl')_‘
S
...... E[apy 1/ (oBW'
%, :app’ [pwp]/(c wp>
0, vver O 1 g
" pxp px1l ]
4 E
= ' » Say
of 1
L. 1xp Ixl |
where ‘ : ‘ ,
. ‘ T
gla,vf] - E[a v
1V i)
(8.59) b= |, —J’—-,EJ—
S oy E
v, oFY,
so. that
7™t a7
(8.60) | AL - |
o 1
Then,
| uh™ g
(8.61) whHt = 7 HT =

i
o
2'\]
Lo~
-
3
~r
|
=
ll—'
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B
!,
1

and 50 8'(5) = (-ATBO! = A7 THAD ! becomes
(8.62) T -
1B,
0
i A—l, __A*lzg (AT)—I ,QJ]
n‘é‘ (¢}
! =
? U quwz;
o 1 1 BT
0
—12[A ‘,l}'
[EAZq; - ”‘]
| 1= 10 J
Now also

él %1955Y; | _]

H(E] = § a. q.BEvy. :

lg) i

(@, Gy - % o[ q,Ev, N
Fip Tap pp 0 W7
Lo 0 0 lJ-Zl‘qi( [ - Bo;) - a
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rqlel 7 )
PV,

Ay
il 9Bl vl -~ o) - a

\

From (8.63) and (8.62) we have

Bt
() o) -
g [s}
e O ]
q1E8¥1 |
A7) : SRVORE
! o b
- o a BEu i
J I ¢P 'I _
0 1 . 1 | | T D
| —
§ 2 nrmze) el
o L S By, JJ
([ q,Ev, - )
|
t E’.
% ¥
Z
h 2; @0 v] - Bey) - ]

v =1

© times
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[¢]
QIEw{' . 0 7 ( qlel : ' 7 )
. T
-1 Ev’
= - q By
A P'p 1 7 q_EV
a2y 1 1] - g
0 Lfpmey . 2 E R Y e
i E[A.w. , § 7
: i=10 v Ey! UL g Bl B ) -a
\ ‘ 7 . 7 J
(where I is the pxp unit matrix), that is,
-1
L (k
oo w(] 5ff -
o g/
(G ‘ )
EYy! .
NEY, 0 9N \
- Ey’! E
A W o %V
, 1 ) |
0 .0 E2[b,¥]] ‘E qiEwibz‘*'.li 4585050 5-a
b Xfepzey- —2]| L2 T
i=10 L " ¥ Ep. ]
| L

~where bi is the 7th component of p, i.e.

' —V t~ T o
E[D ¥ E[a v ,
= [—————[ 1] : —-} (see (8.59))

o wi yo ey 0‘?5

PaSy

T

(s 03B

(8.64) equals



(8.65)

We now check that

(8.66)

Since

147

By, )
o EJ{'
E
k)
Ewé
Ac
§ 4B G0 ,-4:b;]-a
=1
2 !
. E*(A. v,
E%[E(A%w,j) (2 7,“’4)]
[i=103L By, )
E\Pl 3
Ew{
Ey,
- Fy
E(ALY:) A,

7 7 7
élan [pi“”z OEY] o “’i}a
q. _ E?[p.y]]
§ —Q{E[A%w.j - ——”,—7’—]

£=10 (s Ewi J )

(compare with (4.24).)
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A
RRENC |
t
i - i
HU élaipq%m(c) ’
.‘Av A Az
10 [ vED - o (8] - o

we have

fj_;lai 1‘.771E ven , 1

9 Ii
HH = i=1aipqiEtp(X)

AT eEmw - o3 - o
=1

The first p co-ordinates of H{%) are thus zero by (4.13a)) and

it remains to show that

(8.67) . § qEv -0 (0] ~a=0 .
i=1

We have

| E GEXY(D-p(D] - a
1=1

= B[y -p ()] - a
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= E[X¢p(X)-p ()] - E[Dy ()0 ()]
° (see (8.6) and (8.9))

E[xy0)] - E[vp )] + Eo (V) - Ep(X)

!

e e!
2 IO xy(x)d(@)de - 2 jo 2y (x) ¢ (x)dx

C’
+ (0 ¥ () [0 () + (2) ~20 ()] dee,
(from (8.28), with ¢ = 1 and £t = 0,
(8.26) and (8.36))

=0 , proving (8.67).
This proves (8.66).

Before proving the last assertion of (8.49), namely that the
iterates lie in D'and converge to {g), we will need several lemmas.
For reasons of brevity a great deal of analysis of the functions in-
volved below will be omitted. It is unfortumate that some of the
lemmas reiy on numerical techniques for their "proofs' — where this
occurs it is almost an understatement to say that the functions in-
volved are e%tremely difficult to treat mathematically.

In these iemmas, t will denote any of the § aijtj’ so that,

‘ J=1
from (8.45) we have |t| < k. Also, the points ¢ = 0 and o = 1 will be
omitted since if ¢ = 0 and ¢ = 1, the inequalities appearing will

become trivial equalities. Finally, frequent appeal is made to (8.24)

for expressions needed.
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(8.68) LEMMA:

< .0055|¢]

Proof: We have

!

(oxt)?d

—t—r dx
0 (24+1) !

c ’ ©
~Ey = 20exp (~t2/2) IO v (x)¢ (ox)oat E
J=

Then, for £ > 0,

cl

(8.69) -BY > 202texp(~t2/2) (1) ){0 xy(x) ¢ (o) dx
and
cl

(8.70) By < 202texp(—1;2/2)cosh[2(b~l)c’t] {0 xp () (o) dx

using the facts that

© Zj
‘zo -%%:%_i—)—!- = cosh[cmct]
J:

and

¢ < 2b-1 (see (8.47).)

(8.70) is the same as
G,

(8.71) By < 20%texp(-t2/2) cosh[cz’:j J[O xp () ox)de  (see (8.3).)

Also,

!

1 £2

e o [
Ey' = 202exp(~t%/2) JO W(x) ¢ (ox) o f (o:m‘;)z‘?{

J=0

and so,

CHY T @)

E
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c'
(8.72) EY' > (1-t2)2g3exp(-#2/2) jO xp (x) ¢ (ox)dx
and
cl
(8.73) Ey' < (cosht-t2)203exp(~t2/2) 10 xp(x)d(ox)de .

From (8.69), (8.71), (8.72) and (8.73) we get:

£ > 0 implies

(8.74) EYo ¢ -
By’ cosht~t
and
(8.75) -Eyo < 2,:cosh(ct) .

Ewl 1 __bZ

Now cosht-#2 is decreasing in ¢ for ¢ less than (about) 2.1 because
its derivative sinh#-2¢ is negative for ¢ < (about) 2.1. (Note that
we have £ < k so that ¢ < .0627, from (8.42).) Thus cosht-#2 <

cosh0 - (C_))2 = 1 and (8.74) then gives

(8.76) %%‘v £
Also
cosh(zt) - cosh(zk) < cosh(é9k) (see (8.2))
1-t 1-k 1-k
< 1.0055 (see (8.42))

and so from (8.75) we have
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(8.77) I%‘”i,< (1.0055)¢ .

From (8.76), (8.77) and corresponding inequalities when ¢ < 0, we

get
(8.78) |2] < 1%3, < 1.0055|¢|

Since, clearly, EY’ > 0 and -Ey retains the same sign as t, we get

from (8.78)
£ - (—@c’—) < .0055|¢
proving (8.68). o

(8.79) LEMMA:

!
1.19 12 o .E’ﬁ‘”,' < 2¢1.0055) L2
o1 oy o]

Proof: We have

e'! _ 2
E[Aw'] = 202exp(~t2/2) J v(z) ¢ (ox)oxt E (oxt) ((2¥), + %zgiig,} dx
0 OE JH)

and, taking ¢ > 0 first, we get

!

e .
(8.80) E[Ay'] > (jo w(x)¢(cx)xdb}t(2)03exp(—t2/2)(2—02)

because
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S 24 1 1-(ox)?
L (oxt) [(2,7'): * A :}

J=0
_ 1-(ox)2 .
= cOSh(G:’L"b) + ——agrslnh(oxt)
inh(oxt
>1 + 1 - [2(p-1)07)2 Sinhiozt)
>1 + 1 - [2(b-1)e"]?
=2 - g2 (from (8.3).)

Further,
(8.81)  E[ay'] <
et _ .
(JO w(x)¢(0m)xdr]t(2)03exp(—t2/2)[cosh(ct) + cosh(ct)] s

since

inh (cxt
(1G] Sishlozd)

< [1-(ox)2] cosh(oxt)

< [1-¢%] cosh(oxt)

< cosh(oxt) since & = .9 (see (8.2).)
Then, for ¢t > 0, we get from (8.80) and (8.81),

t[2-c7] - E[Aw"] - 2tcosh(ct)
o(cosht—tz) oEyY' o(l—tz)

which implies
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7 r]
(8.82) (2-c2) §-< Elav] 2(1.0055) g- ,

using again cosht-t2 < 1 (in our range of t), and using (8.42) for the

upper bound.

From (8.82) and corresponding inequalities when t < 0, we have

oy Lt |E[avT] Ll
(2-¢?) “-< { BT | < 2(1.0055) =

which implies, since ¢ = .9,

1o Lel _ |E[2w ] 1l
1.19 =< , By | < 2(1.0055) =+ ,

proving (8.79).

(8.83) LEMMA:

, ,
20t2exp (-2 /2) [Jc ] ~EVE|AY !

0 < “ap(x) d(ox) dxl <
cosht-t2 0 oEp’

cl
< 4(1.0055)ot2exp(—t2/2)cosh(ct){JO x¢(x)¢(0x)db] .

A

Proof: Note that the first inequality above is trivial. Since, from

. the expressions for Ey, E[AY'] and Ey' in (8.24), it is clear that

~EYE[AY "]

OBy > 0 for all t # 0, and is symmetric in ¢, we may restrict

ourselves to .t > 0.

We have
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(8.84) EVE[AY ] | [—Ewo] (E[AM}
oEy! Ew'Jt o?
< 1.0055¢ (Eiégﬁli (from (8.77))
o
and
(8.85) -BE[ay] ¢t - HIVM (From 8.74).)
cEy ! cosht~-t o2

From (8.84), (8.85), (8.80) and (8.81) we have

, - ,
(——————t }t(Z)oexp(-tZ/Z) (2-c2) ” w(x)d,(gx)dx] o e
cosh--f;2 Uo OEY

e’ :
< 1.0055¢(t[2] oexp(~£2/2)'(2) cosh(ct)) Uo xp(x) ¢ (cx)dx]

and, using 2-¢2 > 1, this can be weakened to the result stated in the
lemma.

This completes the proof of (8.83). o

(8.86) LEMMA:

20 (exp(~t2/2)-1) < 20[exp(—tz/Z)cosh(Gxt)—i] < 20[¢xp(—t2/2)cosht-i] < 0 .

Proof: The first two inequalities follow from the fact that cosh is

an increasing function, so that 1 < cosh(oxt) < cosh(et) < cosht (see
again (8.2).) The last inequality, negativity of exp(-~#2/2)cosh¢ - 1,

is easily checked by elementary calculus.
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This completes the proof of (8.86). 0o

(8.87) LEMMA:

® (a+t)+9 (e-t) -20(c)
c'¢(e)

o (oxtt)+6 (g-t) -2 (o25)
<
x¢(oa97

< 20 (exp(—tz/Z)—l)> 0.

Proof: The last inequality is trivial. The others have been verified

by computer. o

(8.88) REMARK: We note that

2 —F) =~
2exp(- £9-1] = Lim [ e ] :

x>0

This is most easily seen by using L'HS6pital's rule:
set  f(x) = ¢(oxt+t)+d(ox~t)-20(ox)
and g(x) = ox ¢(ox) .

Then

m f(x) - lim f'(x)

1i
x+0 g(x) x+0 g'(x)

lim o¢ (oxtt)+0¢ (ox-t)=20¢ (ox)
20 o¢ (o) ~-0322¢ (ox)

= $()+$(~%)-2¢(0)
$(0)

2
2[exp (- 9)-1] .
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d (ox+t)+o (ox—t) ~28 (o)
ox¢ (ox)

We note that = h(ox), say, is not monotone in
ox for fixed ¢£. Further, for each fixed ¢, % has at least one zero
which depends on that %.

We remark finally that % has an inflexion point at ox = 0 (this
can be verified by computing the second derivative of % and applying

1'Hospital's Rule) but, as (8.87) says,s takes its maximum value at

x = 0 for the range under comsideration.

-

*(8.89) LEMMA:

¢ (ox) -0 {x)

¢ (z)
76 (o) + 0 - < 2lo-1] .

¢ (o)

Proof: This again is computer verification. o

o ()

D) using elementary

(8.90) REMARK: It is easy to get bounds on ¢ -

d(ox) =& (x)

calculus, but the . function -
z¢ (0x)

is not easily tackled.

o _jﬁﬁl increases in x while 9&221:2&£L

- : decreases in x. The sum of
¢ (o) 26 (ox)

the two functions changes sign at a point close to 1.4 (the critical
point varies with o, of course.) This was one reason why we ruled out

large values of x from our analysis. From numerical work, we state:

(8.91) LEMMA:

G(ox) -G (x) _ o)
x¢ (o) To ¢ (ox)

retains the same sign as o-1l. o
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(8.92) LEMMA:

¢ (ete)+e(e~t)=20(e)
e'¢(e)

20 (exp (-2 /2)-1) +

20t2exp(~t2/2)
cosht~t2

Proof: Again, this had to be verified by computer. o
((8.91) is not absolutely necessary, but does simplify our work later.)

(8.93) LEMMA:

% (—EEA%'] + M}

By’
~FTA2yT
> —QL%gy;l (t # 0, of course)

. G,
> 2(1.19)exp(~%t2/2) Io P (x) ¢ (o) dee

>0

Proof: We need only check the second inequality.

We have

!

- j?-E[hzwf] = 2exp(~-t2/2) j 2y () ¢ (ox) 2 (Oxt)zj
g 0 j=0

dx

[2—02:22 + o222 7]
(25): (25+1) 3]

e’ e f ) g2p2 :
> 2exp(~%2/2) JO xyp(x) ¢ (ox) z (oxt)ZJ %ngﬁ— (there is little loss of
20 !

J sharpness here)

cl
> 2exp(~t2/2) (2~c2) ]0 xp(x) ¢ (ox) cosh(oxt) de
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G'
2exp (%2 /2) (2-¢2) JO xp (x) ¢ (ox) de
C'

2(1.19)exp(-t2/2) IO xp ()¢ (o) de by (8.2)

and this completes the proof of (8.92). o

We now have all the equipment we need to finish our proof of

(8.49).

We write

E[A ! A
-1 7
—El})i'ﬂp. OElPé -5 _I -a

Ey,E[A )]

A,
= E[—%l’- ) (U):I*-E’[p(U)"D,L'_.] - O-Ewé

(from (8.6) and (8.9)) and, using (8.24), this equals (dropping the

subscript ¢ and writing, as usual, % = § a..t.)
PLITE

C’

. ot
20exp(-t2/2) [0 xp (@) ¢ (ox) cosh(oxt) - 2 JO xp () ¢ () dxe |

ot ] By E[a.u]
+ Jo ¥ () [0 (oactt ) +0 (o~ ) =20 (x)] de ~ “"g"Eq,i'

which in turn equals, upon adding and subtracting certain quaﬁtities,
C’
J mlp(m)«#(ox){Zo[exp(—tz/Z)cosh(cxz’;)—l]
0

42 (oxtt)+o(cx~t) =20 (o)
x¢ (ox)

¢(ox) -9 (x) _ o)t
+ 2[ 2¢(ox)’ to ¢(ox)]}dx
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= Cl + 52 » Say where

cl
(8.94) Ly = JO 'x¢(x)¢(ox){20[exp(—tz/Z)cosh(oxt)—ﬂ

@(om+t)+@(cx—t)—2@(ox)} doe

+ x¢ (o)

_ EWE[AY"]
oEY!
and
e’ ¢ (o) =% (x) ¢ ()
(8.95) Z, = 2 [0 xlb(x)da(ox)l:m)-——'i' g - s Gz) dx
By (8.89), we have
(8.96) Iczl < 4fo-1| [0 a2y (x) ¢ (ox)dx

By (8.86), (8.87) and (8.83),

=Y @’
g, > [éo(exp(—tz/z)—l) + ®(e+t)+§§gz;; 2®<ci] [0 ap () o (o) dae

2 —£2 e
+ 20t%exp( t2/2) fo x(x) ¢(ox) de
cosht-t

and hence
(8.97) Ly > 0, by (8.92) .

Then, since in (8.94) the term in curly brackets is negative (by

(8.86) and (8.87) again), we have



lel-

< —EQE[A¢'I

(8.98) 1z, =y

]
I
—

and so, by (8.83),

\
CI

(8.99) [z,| = ¢, < 4(1.0055)0¢%exp(~¢?/2) cosh(ct) [0 xp(x) ¢ (o) dac

From (8.93) and (8.96), we have that

lczl IEZI

L ey - E2favl] | 1 [_E[Azwr] +E3_M_]

Ey' g3 AT

. 2
< 4lo-1| < 2|01 22EI2)
2(1.19)exp (£2/2) . .

exp ((.0627)%/2)
1.19

1A

2|o-1|

(see (8.42))

1.0020

< 2[o-1] 575

< 2|o-1]

(8.100) eyl < 2]o-1]

E[b2y'] _Ei@ﬂﬂw

By’

3
o

Also, from (8.99) and (8.93) we obtain

lcll - 4(1.0055)0t2 cosh(ct) exp(~t2/2)
. 2 /
53 E[a2y7] - E—£%¥¥ll 2(1.19) exp(-#£2/2)
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- 2(1.0055)[2b-1] kcosh(.9%)
1.19

| £] (since ¢ < 2b-1 and t < k)

2(1.0055) [2(1.0334)-1] (.0627) cosh[.9(.0627)]
= 1.19

[£] (see 8.42))

< 1133 |z|

Thus

(8.101) |z

From (8.100), (8.101) and the triangle inequality, we have that, for

each 7, 2=1,...,p, (recall that we have been writing ¢ for any of the

?_at)

gi1 97

E’[A tp.'] ALy,
17 177 |
‘E["iJ"”i Y I

2[A w"l
2.,
Elaze;l - BV

< [2|o—l| + .1133 | § a; it []
J— o]

from which it follows that

1
Blagu]l  b5v; .
qz v, oExpé o a

1=

2 < 2|o—l|+.ll33 max | E a$Jt3|
4 ; =

ZZ’_ E[A q,] _ [Ai“’i]} l=isp g=1

10 3\ 1 E’xpé

(8.102) n =

I e~—13 l~

7

Returning now to (8.65) we write
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'—Ewl 1
e 4 O
tﬂpl
o R I
(8.103) H'H H[] = A T|-Ey
(0 (9) o
E !
wp
\ n 7/

and we now recall our norm (8.48):
i
s

If we write Eé]z to denote the absolute value of the Zth co-

2(b-1)

(8.104) max ' § a..t.|
k' sgep lgan H97

= |s| +

ordinate of a vector Z, then it is easy to see that (8.104) is

equivalent to:

(o o -
(2 = ] 28
. Ha 0
5% . ‘!‘ ~ .
(6:109) “LJ“ - 201 Ul
, k !LQT 1P
=~ \g
= lJ s Jp+1
12 (b | ; 1
2(2 = (t1
A 0 ‘i
+ max "1 .
e 2(pb-1) aE
1se=p K of 1 |%l]
L 1] ~ ‘8 _iz

Note now that
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(B, By, Elayvf]
By ° By ° By
— . p
4 0 .
(8.106) A"l -z = | eE © B[y
r Ny 2t |
E
0" 1 Yp Yo 1pp
[ n J k n /
(8.106) follows from
(=B,
Bp] °
g |
AL -EY
7 By’
g 1 ’p
L
r—E’lpl 3
; O

= | —Ew, ) (from (8.60))
of ajlof 1 || EY
{
L on
=
By’ °
, ?p
oy R
7 o
0" 1 1pp
Lo ]
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(B E[a ]
BT " TRV

= |-Ey E[A w'! (from 6.42).)

From (8.103), (8.105) and (8.106) we have

(8.107) |l [’3 - @ - H'E’] H['é] Il

B, - Elalh
= |o-1- 2(b-1) . I z
= |o=1-n]| + A max iil aijtj [-Ewé 6 -7 Ty J. .

1=i<p

Now, by (8.91), Lo, given in (8.95) has the same sign as o-1. Also,

> 0 (see (8.97)) and

g

E2[A '] :
-1 2 1’1
- [E[Ai \P;] - 'Elp“’—“‘"é ] >0 .

Now write .

(8.108)

(here, in an obvious notation, for each <7, =1,...,p, & is the El of

1z
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8.94 di to t = § a,.t.
( ) corresponding & i3 J)

and we have that

% lqv; 3%

Ez[Aiwé] has the same sign as o-1.

1=
q; (
- % o E[A%¢f] - ——
3 7
so1 © (A | Ewi

From this, (8.102) and (8.108), we have

1z

o-1 -

Qf Q

(8.109) |o-1-n]| =<

23
2 ! L -
3

E2

a; AT

7 291 LT AN §
“.? 53 (E[Av;“’i]" By ]
=1 7

2 !
(EL%‘%] T

. 4

(no absolute value sign is required on the last term)

< '|c—1| + .1133 max | Zi a,t.| .
1sisp j=1 %9 I

From (8.107) and (8.109) we have (using the triangle iﬁequality)
T - (0 ty=1 (t

G- G- )
o 1 o o

< |o-1] + .1133 max | 'T}D: a

Lt
1isp g=1 9 9
_ B .\ ElAv 1)y .
+£@7<_11{max %ai.t.-[—wq“—,Jc + |n| max |—X* }
1sisplg=1 " 7 i 1=isp! 9V
< |o-1} + .1133 max % ai.t.'
1=isplj=1* I
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E{A. 0]
2(b-1) 177
+ ——z——— {.0055 max —EEZZ__

1=

P

]f a. .t.,+[2lo-—l|+.ll33 max ;
J g=1 "9 Il

g=1" 1=isp

}

(using (8.68) and (8.102))

+ ZS%:ll {.0055 max § a; it
1sisplj=1 %7 ¢

§

J=1

< |o-1]+.1133 max
1si%p

iJ J'I

Zi dijtjl] (2) (1.0055) max | ) a,.t, %)}

+ [2]0-1|+.1133 max
 — y << s 7’t7 J
Jg=1 1=i=plg=1

1<i<p

(using (8.79))

§ a..'f;.'{.llBB + —2—(];—'-1-1 [.0055

J=1 g d
T a..s,|]2€2.0055)
%% o

J=1

|o-1|+ max
1%

+ (2]0-11 + .1133 max
1%

If aijtjl{'il33 + —2—(772—"1—) [.0055
j=1

A

[o-1]+ max
1si%

2(1.0055)
+ [2 [2(P-1)] + .1133 k]_(_:Z—E-TBT—]}

(using (8.45), (8.46), (8.47) and (8.42))

Zf “ijtjl{‘“” + -z—%lﬂ [ 0055
jo1

A

|0—1l+ max
lfiip

+ (4[-0334] + .1133 [.06271]_._2(%égggs>”

(using (8.42))'

B oo

J=1 13 dJ

A

lo-1] + I: 1133 + 31%11—) (.3033)] max
1=i=p

that is,
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1

0 ty-1 (T
(8.110) H(EJ—("]—H’("J [ ]” < Io l[+[ 1133 + 2(b- l)( 3033)] max I.
o 1 o] J=1 %g J

o 1<==p

We note now first that

.1133 + 31%211 (.3033) < 31%111

b-1 5 .1133
k 2(1-.3033)

if
and this is true if
éil > .0814

and this is easily true (see (8.42)).

Thus, €8.110) implies

t 0 -1 )
.11y 1[7J- [z [ 2 < ot + 2L e
or Ml o o 1={<p

or equivalently, (by (8.48)),

GG 050 (-

o

o1 9

that is,

G R s R

From (8.112), we get

(8.113) n[ﬁ i < I }0 [z]n .



169

£y 1
Now (8.113) does not imply that the first iterate (“] belongs

+ 0 e o
t g%
to D because the starting value (N] = ( ] only satisfies
g B
%%y 0 L EL
II(” ]—(”]II-= ll(~ ]ll = |g-1] + _2%-&1 max ?ai.ejf* (see (8.48))
8 1 B-1 1isp lg=1 %Y

A

b -1+ Zig:;l-k " (see (8.23))

= 3(b-1) s
that is
g%k 0 .
”[N ]—("]” < 3(b-1) and we cannot deduce from this and
B 1
ty 1
(8.113) that [”] €D (see (8.44) and (8.49)).
o

However, (8.110) does imply that the first and all remaining

iterates lie in U, for we have from (8.110):

% a;jef*
j: T

ty1 Oy -
(8.114) || [“] -(’“] | < |8-1] + [.’1133 + 2—(77%1—1-)— (3.033) | max
o 1 d1sip

<b -1+ [.1133 + 2—(—773“—1) (3.033)| k¥ (from (8.23))

< 2(b-1) so that (EJI €D (see (8.44)).
o

The last inequality here follows from

éil > .5327 (see (8.42))

so that, certainly, bil > 1_5%13333)
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or .1133 + 3(7’%@— (.3033) < b};l

or [.1133 + —2—%—"—1-)— (.3033):]k <bh-1.

From (8.112) and (8.114) we have

n {t] 2(:] < (t]l[:] | < 20-1) .

Thus the second iterate lies in D and a simple induction as used before

0
shows that all iterates lie in D and conmverge to (”] .
1

This, finally, completes the proof of (8.49). 0

t
We have shown that the Newton's method solution of H[”J = 0 with
. -
Bk 0
starting value (” ] is {"]. Using this we can show, among other things, that
B 1 ‘
T

[%riting Iﬁ (see (8.12)) as (Tﬁl""’Tnp’Tﬁ p+l) ,] (Tﬁl""’Tﬁp)

T

is a consistent and asymptotically normal estimator of the true 0,
which we have assumed to be 0. We shall not write out the proof, for
it is entirely similar to our proofs of (5.123) and (5.124). Indeed

consistency and asymptotic normality of (Tﬁ ..,Tﬁp)T should be obvious

1°
from (7.20) and (7.26). Accordingly, we shall merely state the results
(note that (8.49) plays the same role in their proof as (4.13) played

in the proofs of (5.123) and (5.124)).
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(8.115) THEOREM:

Let ¢ € Wc' (defined in (8.4)). Then

T P
(8.116) (Tﬁl""’Tﬁp) W) ~—+—9

where Tﬁi is the éEE co~ordinate of Th(w) (see (8.12)).

Furthermore Tﬁ p+l(w

).__'E__}. 1.

(8.117) THEOREM:

We have

G'
[ ¥2(y) ¢ (By)dy
1

~c!

e

(8.118) n (T

T —
1o T ) Lo mwlo, ¢

0 c!
BU 'w(y)q‘v’(By)dy]

L -C
1 ‘
Furthermore 72 Tﬁ p+l(¢) —Q+ N, E[sz']Var[Xw(X)~p(X)]) and the estimators
T
| , . .
(Tﬁl""’Tnp) () and Tﬁ,p+l(w) are asymptotically stochastically independent.

(8.119) .REMARK:

A few points concerning our choice of norm (8.48) and
neighbourhood (8.44) should be made. Recall first that in Section 4
our neighbourhood D (see (3.20)) was chosen there because it was the
natural p-dimensional analogue of the interval (-k,k) used by Collins
(1976) in the location case. In (4.13) we were able to show that the
starting value and all iterates belonged to D. In our work in
Section 4, we used the norm (4.30). This was definitely the most

appropriate norm since the p-dimensional ball of radius % for the
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norm (4.30) coincided with the region D. If, in Section 4, we had

1
used, for example, the elliptic norm [Z]| 7 = (t’lzzél’f,él?’:)/5 we would then
Ty ~ ~

have defined D to be a hyper-ellipse (otherwise one can run into
difficulty in showing that the iterates belong to D). But this choice

of D would not be as good as the hyper-parallelogram actually used,

p
for we would have no reason to allow the range of z a,.t. to be
J=1

different for any two values of ©. Now in Section 8, the situation is

much more complicated. It is impossible to show that the iterates lie

in D X (2-b,b). ((D X (2-b,b) is an open neighbourhood containing the

gx%
starting value (N ].] This is because of a flaw in the nature of

B
things -~ it just happens that the last co~ordinate of

~ ~ ~

£ ty~1 (T
( ]—[N]-H’( } H( ] has a component which does not go to zero as the
o} o} o

t
last component o of (N

] goes to zero (see (8.65) and notice that the
o

bound in (8.102) could not be chosen to involve ¢ only - unless, of

course, we put a numerical upper bound on  max

§ a..t.l ). Our
l=i=p

j=l 7’(7 :7

choice of Din (8.44) was to accommodate this fact. Note that in (8.49)
there is no need to extend down as far as —-2b+3. We could go to l-e
for any positive e just as well. The key point, however, is that wé
must go above b. TFinally, the choice of norm (8.48) is a natural one

for our choice of D.
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(8.120) COMPARISON OF THE METHODS OF SECTIONS 7 AND 8 IN ESTIMATING 6

In Section 7 the range of a waé taken to be 0 < a < .5 while in
Séction 8, a was not allowed to exceed .05. By refining our inequalities
in Section 8, we can get our results to hold for larger values of a and
by another method that we shéll outline below we can get our results to
hold for much larger values of a again although this method may involve
additional assumptions on the class of yY~functions used. Now also in
Section 8 we made the restriction ¢ = .9 (see (8.2)). This is a serious
restriction because when a is small, d is large,so that the errors are
normal except in small tails. Thus it is unreasonable to truncate the
Y-functions in Wc' (see (8.4)) as severely as the restriction ¢ = .9
forces. An examination of the analysis in Section 8 shows why we made
this restriction on ¢. It Qas necessary to put a lower bound on -E[AZy']
(see (8.93)), for it occﬁrs in the_deﬁominator of n (see (8.103)).

Now,

P A2y ] = o3 . e ® 24 (0eg202 525,242
e S0 20 ot [Cenrseon | o it g
and it is clearly impossible to tell even the sign of this function of
t and o when ox is "large". When o2x? exceeds 2 we can, by ruling out
certain Y-functions, ensure that (8.121) is positive. "We chose, in our
analysis, not to make any additional assumptions about the Y~functions

than we made in (8.4). On the other hand, it is clear that we can get

an adequately large positive lower bound for (8.121) for large values
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of ¢’ by making (not very restrictive) assumptions on the ¢§. This allows

us, in addition, to increase the values allowed by the parameters k and b.

For example, we could have defined our class of Y~functions so that each

Y in our class satisfies, in addition to our usual conditionms,

cl
~E[A%p'] > A(203exp(—t2/2)Jf z Y(x)¢p(ox) dx in- some range of values of £ and o
0

and some range of the parameter e' (all depénding on a), for some
appropriate positive A. We chose not to do this since this is not a
condition that can be easily verified without knowledge of the functional
form of Y. However, the following is a most interesting idea. First

recall the analytic result:
(8.122) 1let f,g,h be real functions defined for x in some set 5.

Suppose f,g are integrable and % measurable and bounded on S. Put
A(y) = {x:h(x) 2y} , B(y) =4 - A(y) = {z:h(x) <y} .

If Flx)de = f g(x)dx for all y € [0,)

Ll () Aly)

and if f flx)de = f g(&)dx for all y € (-=,0) ,
- ‘B(y) B(y)
then f g(x)h(x)dx = J Flx)h(x)dz (see Mitrinovi® (1970), p. 307)
S S

Consider the problem of applying this result with a view to getting
a suitable bound for n (see (8.102)) without making serious restrictions
~on ¢',k and b. We note that it is sufficient to get a suitable bound

for
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E[A9]] ALY,
117 17
_E]:piﬂbi oEY] - c] - a
Ez[Aiwé]
ey

(8.123)

for each 7 = 1,...,p ,
1
- F[B[Aﬁw;] +
and, as usual, we shall drop the subscript < and write ¢ for § aijtj .
J=1

Now,

22| sy’ (5)

>0 if
By (8)

—E[Azw' (—é—)} +

o A A .

-E [Azw’[g)] > 0 (recall that Ey'({5) > 0 if ¢2 < 1)
and this is true if

C'
(8.124) f xw(x)¢(ox)(2—02x2)cosh(cmt) >0 (see (8.33)) .

0

Note that even for "large" values of ¢, this condition will be

satisfied for a large class of y-functions of the type Wc' in view of
the rapid rate of decrease of ¢.

Now an examination of the proof of (8.24) shows that we may

write

AP {=
-E[o(ﬁ-) - — ] -a-= E[ "] - E[p(0)] ~Eo () + Eo (1)

in the form

!

f ay (%) ¢ (oot )dx ~ j
_c' L

ec! e! !

’x¢(x)¢(x)dx + f ’¢(x)®(ox+t)db - f 'w(x)Q(x)dx s

-C -C -C

that is,

(8.125) y; = ._E[p ® - Aw(%)}_a _ fc

o
-C

!

Y (x) {xlod (oxtt) -9 (x) ]+ (oott) -0 () }dx
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Now also it is easily seen that

1 ;A
hp = = o3 BB ()]

can be written as (using integration by parts or otherwise)

!’

e
f V(x) x[-02x2+2-0xt1¢ (caxt+t) dx .
~c’

(8.126)°

ll

L)

1A

!
Now ];—{ A for some "suitably small" A which
2

depends on ¢ and ©

if (assuming (8.124))

- <
(8.127) Ay, = By = Auz .

We shall give a condition under which the right hand inequality

in (8.127) is satisfied. Applying (8.122) with

Flx) = x[-0202+2-0xt ]é (cott)
g@) = x[o¢(oxtt)-¢(x) +0 (catt) -2 (x)
and h(x) = Px) ,

we see from (8.125) and (8.126) that

My < Auz if

f {x[a¢ (oxtt)~¢ () 1+8 (oot ) -0 () }dx
AY)
(8.128)

= f 2[-02224+2-0xt )¢ (oxtt)dx
Aly)

and
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f {xlo¢ (oxtt) -¢ (x) 1+& (crtt) ~0 (x) }dx
B(y)

(8.129)

> A f x[—02x2+2-axt]¢(ox+t)dx .
B(y)

We shall deal with the simplification of (8.128) only, since
the simplification of (8.129) is similar. Write 4(y) = [ay),.b¥)].

Then the condition (8.128) reads

) b (y) :
f [@ (oxt+t) =2 (x) 1dx

b
(8.130) f x{o¢p(oxtt)-¢ (x) Jdx +
a(y) .

a(y)

b (y)
=2 f z[-02x?+2-0dt 1 (catt)dx
aly)

by) .
Noting that f [®(oxt+t) -0 (x) |dx
a(y)

= x[G(oxtt)-G(x) ]

b () b (y)
- f zlo¢(oxtt)-¢ () Jdw

ay) a(y)
and thét

b))

o

x[~0222+2~0xt 1§ (cat+t)de = x2d (cat+t)

ay) ’

fb(y)
a(y)

(8.130) reads

by)
(8.131) 2[G (64t ) -G () ] < A x2¢(oxtt)
ay)

b )
ay)

In a suitable range of parameter values, this condition seems to be not

difficult to check. Note that (8.131) in no way says that
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Az? ¢ (oxtt) = x[G(oxtt)-G(x)] is an increasing function.

P (x)

\/0 a @) )

Conditions similar to (8.131) can be given to ensure the boundedness of

Elay' (2)]
oz’ (3)

25 B2y (3]

29 ()

o)

Consequently, relatively easy conditions can be given under which (8.123)
(and hence n) is bounded by an appropriate function of ¢ and o (to aid in
ensuring that the iterates (é.SO) converge) without assuming ¢’ is small
and without knowing the functional form of .

As a final remark in our comparison of the methods of Sections 7
and 8, we make the point that we feel the estimator of & found in Section 8
is‘superior to that in Section 7. We make our contention on the basis that
the method of Section 8 improved the initial estimator Gn (which was fixed
in Section 7) of o0 at each step of the iteration process., Note also that
the method of Section 8 supplies us with a consistent and asymptotically
normal estimator of o.

In conclusion, let Wé, be the class W; of (6.9) with ¢ replaced by e'.
Then when G ¢ Pa (see (6.8)) and the errors have distribution G(%ﬁ, we recommend
statistics of the form <tnl"'°’Tﬁp)T(w>’ for y-functions given by (6.10), as

estimators of @.

~
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