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Abstract. There are two fundamentally different approaches to ma-
chine analysis of human motion: model-based, that use a high-level kine-
matic model, and model-free, that use low-level representations of the
motion. Although each approach has its advantages, there is currently
a perceptual gap between the two. This paper describes a new type
of kinematic model that enables us to bridge the perceptual gap. The
model is the perceptual equivalent of passive mechanical models that
walk without any control mechanism. Thus the model not only describes
the linkages in a kinematic chain, it also has an innate resonance that
is a gait. If we introduce control to force the model to synchronize with
low-level oscillations perceived in a video sequence, the result is a gait
model that resonates with an observed gait. We describe a system that
demonstrates this new model and the connection between the model-free
and model-based representations.

1 Introduction

There are two fundamentally different approaches to machine analysis of human
motion: model-based and model-free. In a model-based approach, a system fits
observed data to a kinematic model of a human. In contrast, model-free ap-
proaches interpret the data without a human kinematic model. Computer vision
literature contains successful examples of both approaches, but it is clear that
neither method is complete, i.e., neither method can perform all the tasks that
may be required in visual analysis of human motion. Model-free methods are sim-
pler, faster, and require little or no camera calibration. Model-based methods
are usually slow, often require camera calibration, and assume that the correct
kinematic model is known a priori, but they can address problems that require
knowledge of the kinematic structure.

We focus on two requirements for gait perception [1]. The first is frequency
entrainment, i.e., the component motions of the gait must oscillate at the same
frequency, or integer multiples of each other, and therefore, the perception of
the gait must oscillate at an entrained frequency. The second requirement is
phase locking, i.e., the component motions of the gait must maintain relative
timing, or phase throughout the gait cycle, and therefore perception of the gait



depends on the relative phase of the perceived motion. These requirements span
all approaches to gait analysis, both model-based and model free.

Although each approach has its advantages, there is a perceptual gap be-
tween the two. In this paper, we propose a novel kinematic model that bridges
this gap by allowing frequency and phase information to move from model-free
to model-based representations. The new model is the perceptual equivalent of
passive dynamic walking models described by McGeer [2,3], Coleman and Ru-
ina [4], Garcia et al. [5], and Collins et al. [6]. These mechanical systems walk
in the absence of any control system because they naturally resonate in a gait.
The model dimensions and mass determine the natural gait. The resonance of
these models implies that each person has their own innate gait determined by
their body size and mass. Given that there is psychological and physiological
evidence that suggests a relationship between the perception of an activity and
the synthesis of the same activity [1, 7], one can hypothesize that people use their
innate gait to perceive the gaits of others. This idea provides the inspiration for
a machine vision system that has a walking model with an innate gait that the
system uses to perceive human motion.

We describe a system that demonstrates the innate-gait walking model and
the connection between model-free and model-based representations of gaits. The
system employs video phase-locked loops (VPLLs), described by Boyd [8], as a
model-free source of frequency and phase data from a gait. A VPLL synchronizes
an array of internal oscillators to the oscillations of pixel intensities in a video
sequence. In turn, the walking model then synchronizes its oscillations to the
frequency and phase of the VPLL oscillators. The concept is similar to Laszlo
et al. [9]. Whereas Laszlo et al. describe a gait model that walks on its own but
reacts to variations in terrain in order to create a synthetic gait, we are proposing
a model that walks on its own but reacts to timing patterns in a visual stimulus
in order to perceive a gait.

2 Background

The following summarizes some recent results in human motion analysis, both
model-free and model-based. Where methods are specific to human gait, the
method always performs some form of frequency entrainment. In some cases,
phase-locking also occurs, although this is not consistent.

2.1 Model-Free Methods

Several model-free methods analyze temporal variations in the shape of moving
regions. Little and Boyd [10] use optical flow to identify the moving regions
in a gait image sequence, then describe the shape of the region with a set of
scalar features that oscillate with the gait. The system extracts the relative
phases of the scalar oscillations and forms a phase feature vector that is used to
identify individual gaits. Cutler and Davis [11] identify periodicities in a vector
of intensities for a tracked object. As a periodic motion goes through its cycles,



some frames are similar to others. The periodic behavior that arises from these
self-similarities allows the system to distinguish between human, animal and
mechanical motion. Baumberg and Hogg describe oscillations in the silhouette
of human figure with a vibrating plate model [12].

Other model-free methods analyze temporal variations in pixels or small
image regions. Polana and Nelson [13] examine oscillations in the magnitude of
the optical flow in a sequence containing periodic motion. They compute a coarse
resolution flow magnitude image at eight points in the period of the motion. From
this they form a 96-element vector that they use to recognize a broad range of
periodic motions. Liu and Picard [14] examine oscillations in pixel intensity for
a gait sequence using fast Fourier transforms (FFT). Boyd [8] uses a VPLL to
synchronize an array of oscillators with the intensity oscillations observed at
pixels in an image sequence. The synchronized oscillators yield a complex image
representing the magnitude and phase of the pixel oscillations.

2.2 Model-Based Methods

Motion in a kinematic model occur in the joint angle and limb trajectories. The
majority of methods in this area are not specific to gait, i.e., they do not exploit
the periodic nature of gaits, but take the more general approach of estimating
a series of poses that may or may not be periodic. These methods include work
by Rowley and Rehg [15], Wachter and Nagel [16], Wren et al. [17], and Bregler
and Malik [18]. Fujiyoshi and Lipton [19] use a simplified kinematic model they
call a star skeleton. While they estimate the skeleton on a frame-by-frame basis,
the skeleton reveals period limb motion. Bissacco et al. [20] extract joint an-
gle trajectories from a motion sequence. They then compute an auto-regressive
moving-average (ARMA) model of the joint movement which is in turn used as
a feature vector. The method is used to recognize different types of gaits such as
running, walking, or walking a stair case. Tanawongsuwan and Bobick [21] use
joint angle trajectories derived from a motion capture system. The trajectories
are synchronized to a common reference point in the gait and then re-sampled so
that all subjects have the same number of samples. Trajectories for the various
joints are then combined to form a large feature vector used to recognize individ-
ual gaits. Bobick and Johnson [22] describe a system that uses static parameters
derived from a gait such as stride and torso length.They demonstrate that the
system can recognize individuals.

3 Synchronization of Model to Data

With few exceptions, a common need for frequency entrainment and phase lock-
ing unifies gait analysis methods. It is this unification that inspires the system
introduced here to connect model-free oscillations to a walking kinematic model.
This section describes the VPLLs that synchronize oscillators to a video se-
quence, a simple kinematic model that has an innate gate, and the process that
synchronizes the model with the VPLL oscillators.



3.1 Model-Free Timing from Video Phase-Locked Loops

Figure 1 shows a block diagram of a basic phase-locked loop (PLL). Its basic
components are a phase detector, a low-pass loop filter, and an oscillator. The
phase detector compares the phases of a sinusoidal input, w1, and the internal
oscillator, us, yielding the phase difference, ug. A low-pass filter smooths ug to
get the loop output, uy. us feeds back to the oscillator to determine the frequency
of the oscillation. If u, is a steady-state sinusoid, then u; will be constant and
ug will oscillate at same frequency as uy, but with a constant phase difference.
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Fig. 1. Block diagram of a basic PLL. A VPLL is an array of PLLs, one per pixel.

VPLLs consists of an array of PLLs, one per pixel. A band pass filter placed
at each PLL input selects oscillations of a single frequency. The VPLLs described
here use digital-averaging all software PLLs.

Within a video PLL there is an abundance of signals useful in the perception
of oscillating motion. The output of the loop, uy is a phase error, but also gives
an instantaneous estimate of the frequency of oscillation. For a gait, all pixels
for the walker will lock to the same frequency and so the PLL does frequency
entrainment.

Since all oscillators lock on the same frequency, the only difference between
oscillators is the phase of their oscillation. The relative phases of the oscilla-
tors throughout the image give the relative phases of the intensity oscillations
themselves. This performs the task of phase locking.

The use of a digital-averaging phase detector has the added benefit of being
able to compute the magnitude of the u;. This is useful in giving an indication
of the amplitude, or strength, of the locked signal. By combining the magnitude
with the phase, we get a phasor at each pixel site. The combination of phasors
over several pixels forms a pattern that rotates at the locked frequency. Although
one can use the pattern to classify and recognize oscillatory motion, in this paper
we use selected phasors to set the timing for a walking model.



3.2 A Two-Dimensional Walking Model

A walking model can be derived from different sources such as passive mechanical
models [6, 5,2, 3], or motion capture data. Here we use a model based on obser-
vations of gaits generated by Poser [23]. Figure 2 describes this two-dimensional
kinematic model. There are two legs, each composed of a shin and a thigh (see
Figure 2(a)). The shin and thigh join at two knees and the two legs join at the
hip. I and lg are the lengths of the thigh and shin respectively. 87 is the angle
formed by the thigh and vertical reference. 8g is angle formed by the shin with
the thigh. One (7,0s) pair is required for each of the two legs so four angles
plus I7 and Ig are sufficient to describe the pose of the model at any point in
time. Figures 2(b) and (c) describe the trajectories of 87 and fs over one cycle
of the gait. ¢ is the phase of the gait cycle and is normalized so that 0 < ¢ < 1
for a single cycle. 0 < ¢ < 1/2 is called the contact phase (the foot is in contact
with the ground, and 1/2 < ¢ < 1 is called the swing phase (the foot is swinging
forward).
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Fig. 2. An oscillating gait model: (a) simple two-dimensional kinematic model of a leg,
(b) oscillations in thigh-angle, and (c) oscillations in shin angle.

The model walks by cycling the 8 and g trajectories through 0 < ¢ <
1. The two legs are assumed to be exactly opposite in phase, i.e., the phase



difference between them is fixed at 1/2. The ten angular parameters described
in Table 1 combine to generate a broad range of subjectively different gaits.

| parameter | description |

lr thigh length

ls shin length

Ormax forward extent of thigh motion
Ormin backward extent of thigh motion
o1 pause after contact phase

b2 pause after swing phase

Osc contact phase knee bend

Oss swing phase knee bend

Psci start of contact phase knee bend
Psce end of contact phase knee bend
$ss1 start of swing phase knee bend
Pss2 end of swing phase knee bend

Table 1. Summary of parameters for gait model of Figure 2.

3.3 Synchronization Process

To synchronize the model with gait data we extract the VPLL oscillator phase
for a set of three points (A4, B, and C) from images of a tracked gait sequence as
shown in Figure 3. The positions of these points have the following significance:

A point of maximum backward thigh motion
B point of maximum forward thigh motion
C point of maximum forward shin/ankle motion

The VPLL phases at these points (ZA, /B, and /() identify key timing/phase
relationships in the gait and can therefore be used to synchronize the model. For
example, /B — / A is the delay between forward thigh extension and backward
thigh extension, /C —/ A is the delay between thigh extension and knee lock, and
L A determines when the @7 trajectory is at its minimum. In normal operation,
the VPLL oscillators synchronize to the frequency of pixel intensity oscillations,
which for a gait is the step (or footfall) frequency. To synchronize the model
we need an oscillator entrained to the fundamental frequency of the gait. For
that reason we add a second oscillator to each PLL that is not in the feedback
loop and oscillates at half the frequency of the loop oscillator. We synchronize
using the phase from the out-of-loop, half-frequency oscillator. ZA, /B, and /C
determine the phases in the model parameters by the following equations:

¢ = LB+ ¢, o1 =0, ¢r2 = LB — LA,

¢sc1 =1+ %, ¢sc2 = ¢sc1 +0.2,
¢ss1 = 0.45, and $ss2 = dsc1,



where ¢, is the constant phase error of the VPLL at the gait frequency. The size
of the walking figure in the image determines I and lg. We set 01min, 0Tmaz,
0sc, and fss to values approximated from observations of several gaits. In the
resulting system, the source of timing information in the walking model comes
only from the model-free VPLL output.

Fig. 3. Synchronization points to connect model-free to model-based representation.

4 Examples

To demonstrate the system we apply it to two gait sequences. The first is a
synthetic sequence generated by Poser [23]. Figure 4 shows frames from the se-
quence with the limbs of the synchronized gait model superimposed. The second
sequence is taken from the MoBo data base (Gross and Shi [24]). We use a
segmented image sequence from the database. Figure 5 shows frames from the
sequence. The segmented figure is dark gray on a black background. Limbs in
the synchronized model are plotted in white. In both cases the synchronization
results in a machine perception that matches the gait.

Note that we do not use all the parameters in the model. This suggests that
future refinements of the model will have fewer degrees of freedom.

In frames 126 and 130 of Figure 4 we see that the shin angle of the model does
not match the original image. This is due to the asynchronous gait produced
by the Poser software. Since our walking model assumes a synchronous gait,
it cannot account for differences between the left and right leg motion. When
there are tracking errors it is possible for the synchronization points to drift off
the body. This causes model synchronization to be erratic, something that we
observed for about 10 frames in the MoBo sequence.

We use the segmented image sequence from the MoBo [24] database. Loosely
draped clothing creates intensity variations due to the texture of the folds in
the clothing. Although this has not proved to be a problem when viewing VPLL
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Fig. 4. Results of gait synchronization system applied to synthetic Poser [23] data.
Frame number is indicated under each image.

104

120 124

136

Fig. 5. Results of gait synchronization system applied to sequence from MoBo [24]
database. Frame number is indicated under each image.

output as a global timing pattern for gait recognition, the timing at individual
pixels is not as reliable. Segmentation avoids the problem by presenting a situa-
tion where the person appears as though they were dressed in white walking on
a black background. The problem does not occur in the Poser sequence because
the images are synthetic. Other approaches that may eliminate problems caused
by clothing would include stabilizing (smoothing) the data in space and time.



5 Discussion

The examples of the previous section show that it is possible to synchronize a
walking model to data gleaned from a model-free analysis. The linkage to the
model is direct though, i.e., the model timing depends only on the differences
of VPLL phases and there is no feedback. The VPLL data can vary with light-
ing, clothing and errors in tracking, and the phase variations pass through to
the synchronization process. An improved system would use feedback from the
synchronized model to improve the VPLL operation.

The size of the perceptual gap between video data and a complete kinematic
model is large. Model-free methods are successful, but they do not span the
entire gap. Pose estimation and visual motion capture systems [18,15-17] do
span the gap, but not easily. We suggest that a reliable transition from data
to model will require several steps over smaller gaps. At each step, frequency
and phase data must move from the data toward the model. The following steps
illustrate one possibility.

1. Identify low-level motion features.

2. Describe the shape of the low-level features.
3. Fit a simple model to the shape data.

4. Fit a complete walking kinematic model.

It is necessary to transfer frequency and phase information at each step from one
level of representation to the next. The key will lie in choosing the representations
that best facilitate the transfer.

6 Conclusions

We described a system that connects a model-free and a model-based represen-
tation of a gait. While the connection is direct, it is successful in demonstrating
that one representation can be used to synchronize another. Thus it shows the
way toward connecting a series of representations to smoothly bridge the per-
ceptual gap between data and model.
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