
THE UNIVERSITY OF CALGARY

AN OBJECT-ORIENTED PROTOTYPE FOR AN ENVIRONMENTAL GIS

OF THE CREOSOTE SITE ON THE BOW RIVER, CALGARY

by

CHAO ZHENG

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARThIENT OF GEOMATICS ENGINEERING

CALGARY, ALBERTA

JUNE, 1996

© Chao Zheng 1996

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of

Graduate Studies for acceptance, a thesis entitled "M Object-oriented Prototype for an

Environmental GIS of the Creosote Site on the Bow River, Calgary" submitted by Chao

Zheng in partial fulfillment of the requirements for the degree of Master of Science.

Date: June 14, 1996

Sup1s5fDr. J. A. R. Blais
Department of Geomatics Engineering

/ '-'(I
Dr. R.Li
Department of Geomatics Engineering

Dr. R.C.K.W
Department of Civil Engineering

11

ABSTRACT

The relational data model is the most widely applied logical model in current

commercial GIS. Due to the increasing complexities of spatial information, this model is

begining to show its inadequacies in the areas of data handling efficiency, data semantics,

model extensibility and programming interface, etc. Object-oriented modeling,

characterized by its concept of class which encapsulates both state and function features,

exhibits great potential in modeling complex information. Using object-oriented

technology, the positional and other attribute components, as well as fundamental

operation functions of a geospatial entity can be modeled in an integrated way as a single

object. Groups of classes describing geospatial features at a high level of abstraction can

be implemented to form a generic modeling kernel. Support of class inheritance and

complex classes offers a natural and efficient mechanism to extend the kernel to specific

applications. Thus high efficiency and flexibility in model construction and extension can

be obtained. In this project, the use of object-oriented methodology in spatial data

modeling has been studied. First, a general object-oriented spatial data model of a high

level of abstraction has been designed and implemented as the kernel of a GIS application

prototype. An object-oriented analysis and design method, the Booch Method [Booch,

1995], is used for design and Borland C++ is used to implement the spatial data model.

Then, an application module is implemented using this prototype to model and manage

the DEM data sets obtained in the creosote project [Blais et al. 1995] on the Bow River in

Calgary. General conclusions and recommendations are included.

111

ACKNOWLEDGMENTS

I wish to express my deep gratitude to my supervisor, Dr.J.A.R. Blais, for his

consistent guidance, assistance, and encouragement throughout my graduate studies.

Appreciation should also go to my fellow graduate students, Mr. K. He and Dr. C.

Larouche for their cooperation during my thesis research.

This research has been supported by the University of Calgary, the City of

Calgary, Alberta Environment and the Natural Science and Engineering Research

Council. These contributions are greatly acknowledged.

I am also grateful to Imperial Oil Ltd. and to Mr. Myron Story for allowing me to

finalize the thesis writing while working as a full time employee in Imperial Oil Ltd.,

Information Services Department.

iv

Dedication

To my parents, my wife, and my new baby!

V

TABLE OF CONTENTS

APPROVAL PAGE

ABSTRACT

ACKNOWLEDGMENTS iv .

DEDICATION V

TABLE OF CONTENTS VI

LIST OF FIGURES X

CHAPTER Page

1 INTRODUCTION 1

1.1 Relational Model in GIS 1

1.2 Object Orientation 2

1.3 Object-oriented Database 3

1.4 Object Orientation in GIS 4

1.5 Research Objectives 5

1.6 Thesis Outlines 6

2 SPATIAL DATA AND SPATIAL DATA MODELING 8

2.1 Characteristics of Spatial Information . 8

2.1.1 Spatial domain 9

2.1.2 Graphical domain 9

2.1.3 Temporality 10

2.2 Traditional Logical Model 11

Vi

2.2.1 Hierarchical and network model 12

2.2.2 Relational model and limitation 14

2.3 GIS Architectures 18

2.3.1 Dual architectures 19

2.3.2 Layered architectures 20

2.3.3 Integrated architectures 22

2.4 Object-Oriented Models 23

2.4.1 Object-orientation and object-oriented logical models 24

2.4.2 Advantages of object-oriented data model 33

3 SPATIAL INFORMATION MODELING USING AN OBJECT-ORIENTED

APPROACH 37

3.2 System Analysis and Design 37

3.1.1 Object-oriented analysis and design 38

3.1.2 Overview of the Booch method 40

3.1.3 An iterative approach 42

3.2 Requirements Analysis for Spatial Information Modeling Prototype 43

3.2.1 Requirement analysis 43

3.2.2 Use case analysis 44

3.2.3 Requirements of the prototype 45

3.3 Fundamental Class Types for Spatial Information Modeling 48

3.3.1 Domain analysis 48

3.3.2 Domain analysis steps 50

3.3.3 Identify and define classes 50

vu

3.3.4 Classification 51

3.3.5 Fundamentals of topology 52

3.3.6 Classification of spatial information 54

3.3.7 Fundamental geometry elements 61

3.3.8 Defining relationships 64

3.3.9 Relationships between the seven classes 65

3.3.10 Defining operations 66

3.3.11 Attribution 68

3.3.12 Defining inheritance 70

3.4 System Design and Implementation 71

3.4.1 Structure of the prototype 72

3.4.2 Form of implementation 74

3.4.3 Implementation of modeling functionality 74

3.4.4 Object indexing 80

4 AN IMPLEMENTATION FOR CREOSOTE PROJECT USING THE

PROTOTYPE 82

4.1 Creosote Project 82

4.1.1 Creosote problem 82

4.1.2 Objectives of creosote project 83

4.1.3 Data used in creosote project 83

4.2 Reconstruction of the DEMs 84

4.2.1 DEM measurements 84

4.2.2 Triangulation and gridding 85

4.2.3 Results of measurement 85

4.3 Geometric Transformation of Digital Images 85

4.4 Generation of Intermediate Views Using Morphing 87

4.5 Rendering the 3D Surface 88

4.6 A DEM Data Management Module 90

4.6.1 DEM data modeling 90

4.7 Tools Implementation 92

4.7.1 Data construction 92

4.7.2 Information query 93

4.7.3 Image viewer 97

5 CONCLUSIONS AND RECOMMENDATIONS 100

5.1 Conclusions 100

5.2 Recommendations 103

REFERENCES 106

APPENDIX 110

ix

LIST OF FIGURES

No. Page

2.1 Dimensions of spatial object 8

2.2 A hierarchical schema among five record types 13

2.3 A network schema among eight record types 14

2.4 Dual GIS architecture 19

2.5 Layered GIS architecture 21

2.6 Integrated GIS architecture 22

2.7 A class encapsulates both state and behavior features 25

2.8 Object with messages coming 30

2.9 Single inheritance hierarchy 31

2.10 Multiple inheritance hierarchy 31

3.1 Data-processing oriented and object-oriented system development methods 38

3.2 Major steps of the Booch method 41

3.3 Requirements analysis step and deliverables 44

3.4 Domain analysis step and deliverables 49

3.5 Steps of domain analysis 50

3.6 Classification and instantiation for the "Transportation Road" type 52

3.7 K-dimensional simplices 53

3.8 Octachedral surface composed of eight 2-simplices 53

3.9 Intersections of roads represented as point type entities 55

3.10 Transportation network represented as polyline type entities 56

3.11 Land parcels modeled by areal units 58

x

3.12 Park represented by a complex entity type consisting of point, polyline and area

entity types. 60

3.13 Spatial entities and modeling class types 61

3.14 Geometric elements. (a) Nodes. (b) Arc. (c) Polygon. 63

3.15 Cardinality of the relationship between the classes arc and node 65

3.16 Class diagram 66

3.17 Scenario for adding a new polyline 68

3.18 Polygons on which node A situates. 70

3.19 System design steps and deliverables. 71

3.20 Class Categories in the spatial data modeling prototype 73

3.21 Main attributes and functions in class Node. 75

3.22 Hierarchical structure of the spatial information modeling 77

3.23 Main attributes and functions in class ComplexEntity. 79

3.24 Main attributes and functions in class Index 81

4.1 Relationship between ground area and corresponding photo area 86

4.2 Interpolation between 1991 and 1982 88

4.3 Draping of image over the resconstructed DEM of the creosote site 89

4.4 Regular grid lattice for the terrain 91

4.5 Class diagram for grid model of DEM 91

4.6 Main attributes and functions in class EleNode 93

4.7 Dialogue box for query fields selection and query criteria input 94

4.8 Query list result 95

4.9 Dialogue box for query fields selection and query criteria input 96

4.10 Coordinates list of the queried nearest boreholes 96

Xi

4.11 Dialog box for image selection. 97

4.12 Image viewing window 98

XI'

1

Chapter 1

INTRODUCTION

1.1 Relational Model in GIS

A Geographic or Geospatial Information System (GIS) is a system of computer

hardware, software and procedures designed to support the capture, management,

analysis and display of spatially referenced data for solving complex planning and

management problems. What type of database management mechanism is used to model

and manipulate spatial information is the key contributing factor to system operating

efficiency and model extensibility in a GIS implementation.

Currently, a relational database management system (RDBMS) is the dominant

DBMS used in commercial GISs. RDBMS is known for its maturity and success in

handling ordinary thematic information. But as the development of GIS produced spatial

information much more complex than ordinary thematic information. RDBMS began to

show insufficiency in data handling efficiency, model extensibility, data semantics,

program interface, etc. To solve these problems, a number of researchers have proposed

an extended relational system with more complex data structures and manipulation

functions added into the traditional relational paradigm to handle spatial information.

Representative implementations include Postgres system [Rowe and Stonebraker. 1987]

2

and SIRO-DBMS [Mime 1993, Abel 1989]. These methods, while improving the system,

still did not adequately resolve the problems.

1.2 Object Orientation

Another proposed solution is an object-oriented GIS. Object-oriented technology

was first discussed in late 1960s by researchers working with the S]MULA language. In

1970s, the widely used object-oriented programming language, Smalitalk language was

developed at Xerox PARC, recording a milestone in the development of object

orientation [Goldberg 1983]. Interest in Smailtalk was limited, however, due to separate

interest in structural programming design at the time. After decades of maturing, object

orientation began to exhibit higher efficiency in dealing with the increasing complexity of

modern software systems over traditional methodologies, and gradually became popular

not only in programming fields but also in database, system analysis and system design

fields. Strong driving forces from academy and industry have brought more and more

mature object-oriented systems and methodologies in the 1990s.

The power of the object-oriented methodology stems mainly from the fact that it

combines recognized software engineering principles which promote code reuse and

system extendibility [Jacobson et al. 1992]. Central to object orientation is the concept of

class, a software abstraction that includes both state and behavior features, which are

represented by data structures and functions, respectively. The inclusion, called

encapsulation in object orientation, ensures a class to represent an application entity by

3

keeping all data pertaining to the application entity bundled together with all the

functionality applied to it. Computational models based on class are more direct and more

efficient when compared with the separation of the data and functions in conventional

strategies. Other important mechanisms contributing to the high modeling efficiency

include inheritance, complex object, communication by message passing, etc. More

details about these features in the context of GIS applications will be discussed in

'Chapter 2.

1.3 Object-Oriented Database

Object-oriented database technology combines the representative power and

flexibility of object orientation with the capabilities of database management systems.

The first generation of object-oriented database dates back to 1986 when G-Base was

launched by the French company, Graphael. In 1987, Servio Corp. introduced Gemstone;

in 1988, Ontologic developed Vbase, and Symbolics developed Statice. Most of these

first-stage systems served limited use in research departments of large companies. The

launch of Ontos in 1989 marked the start of the second stage in this field. Third

generation products such as Itasca and 02 [Bancilhon et al. 1992] were developed in the

1990s. These products can be defined as database management system (DBMS) with

DDL/DML which are object-oriented and computationally complete Bertino and

Martino. 1993].

4

Generally speaking, object-oriented database is still in its experimental stage, but

its development has already had big impacts in fields which need to deal with complex

and large data sets of inordinate volume where existing database technologies have

shown inadequacies. Examples of these fields include computer-aided software

engineering (CASE), computer-aided design (CAD), computer-aided manufacturing

(CAM) and GIS.

1.4 Object Orientation in GIS

Object-oriented concepts were introduced in the context of GIS in the 1980s

[Egenhofer and Frank. 1987, Worboys et at. 1990], and researchers gradually realized

that GIS could benefit greatly from the object-oriented database technology, particularly

in terms of architecture, performance, and ease of use. Thus in the past few years, a large

amount of research have been devoted to incorporating object-oriented technology in

GIS, some of the research aimed at developing an object-oriented GIS (OOGIS) directly,

but most relates to building OOGTSs based on available OODBMSs. Noteworthy results

include Integraph's TIGRIS [Herring 1992, 1987], AccuMap [Lukatela 1989],

Smaliworid GIS [Newell 1992], Geo2 [David et al. 1993] and the GIS built on ONTOS

by CSIRO Division of Information Technology, Australia [Milne 1993]. The Australian

group also went further and performed a comparison among ORACLE, SIRO-DBMS (an

extended relational DBMS with special GIS capability [Abel 1989] implemented on

ORACLE) and their extended ONTOS. An impressive performance gain was reported

5

[Mime 1993]. Such research, though significant, proved the need for further study into

aspects such as more efficient physical models for spatial information, optimal query

languages, etc, before a commercially viable object-oriented GIS could result from the

experimental systems.

1.5 Research Objectives

The purpose of this study is to investigate the applicability of object orientation in

GIS. Considering that most research on object-oriented GIS is aimed at a general purpose

system, it might also be very useful to develop an object-oriented prototype which

contains general spatial data modeling components together with basic supporting

functions. For some environmental or other applications which only need to deal with

certain types of data and only need certain functions, these can be developed with special

data types and corresponding functions implemented using the prototype at a more

affordable size. Moreover, this prototype can also be a starting point for a general object-

oriented GIS with more sophisticated storage, indexing support and more comprehensive

function designs.

The basic idea is first, using object-oriented analysis and design (OOA and OOD)

methods, to model the geometric and feature information of spatial entities in an

integrated way as a single class (object), with the fundamental supporting functions

embedded. A generic kernel is implemented in Borland C++ 4.5, composed of a group of

classes describing geographic features at a high level of abstraction. Then, using this

6

modeling fundamental, an application is implemented to handle a set of Digital Elevation

Model (DEM) data obtained from the creosote project [Blais et al. 1995] on the Bow

River, Calgary. The implementation includes data conversion and storage, information

retrieval and browsing, etc. Based on these experiments, conclusions and

recommendations on applying object-oriented technology, such as OOA, OOD and

object-oriented programming, can be formulated.

1.6 Thesis Outline

The background, principle, methodology, design and implementation of building

an object-oriented prototype for an environmental GIS of the creosote site on the Bow

River will be discussed in the following chapters.

Chapter 2 discusses the background of applying object orientation in GIS. The

contents include: analysis of the limitation of the traditional logical model in spatial

information modeling, discussion of GIS architectures, fundamentals of object-oriented

technology and its advantages over traditional strategies in GIS applications.

Chapter 3 introduces basic ideas of an object-oriented analysis and design

methodology, the Booch method, followed by how to use this method to analyze, design

and how to use Borland C++ to implement an object-oriented spatial information

modeling prototype. Discussions of what should be contained in an object-oriented

spatial information modeling prototype is also included.

7

Chapter 4 begins with some background on the creosote project and the data set

obtained in this project. Then the discussion concentrates on how to use the modeling

prototype to build up an application system to handle the DEM data set.

Chapter 5 includes the main conclusions and recommendations obtained from this

project.

8

Chapter 2

SPATIAL DATA AND SPATIAL DATA MODELING

Currently, most of the commercial Geographic Information Systems use a

Relational Database Management System (RDBMS), such as Oracle or Ingres, as the data

manager. The RDBMS is known for its maturity and success in handling ordinary

thematic information. As the spatial information is much more complex than the ordinary

thematic information, higher requirements for a data handling mechanism are necessary.

2.1 Characteristics of Spatial Information

When a spatial object is studied, besides its thematic features, several other

dimensions can be of great concern as well [Worboys 1994b]. These may include spatial,

graphical, temporal and textual/numeric dimensions (Figure 2.1). All these features need

to be considered as a whole while modeling spatial information.

Spatial

Temporal

Graphical

Textual/Numerical

Figure 2.1 Dimensions of spatial object.

9

2.1.1 Spatial domain

The specification of a spatial object depends upon the real-world space in which

the object is situated. In GIS applications, the absolute and relative positional information

of spatial entities are the most fundamental concern. The variations of other aspects are

studied with respect to position so as to be within a common reference space. Thus the

spatial dimension has always been the major focus of activity for GIS research. Among

all the position related features, topological relationships are the most important ones.

Because modeling topological information, such as enclosure and adjacency, requires

more powerful model construction capability which is beyond what is provided by

traditional models, it is one of the most challenging constraints for traditional logical

models. The problem is mainly due to the limitation of the data semantics and model

extension ability supported by the traditional models [Lee 1990]. This will be illustrated

in the following section with more detailed analysis.

2.1.2 Graphical domain

Graphical domain mainly means the representation form of spatial objects in the

cartography or visualization aspect of a GIS [Worboys 1994b]. The graphical domain

focuses on a spatial objects' existence in presentation, while spatial domain is mainly

concerned about spatial objects' existence in an application. This distinction was not

clearly made until recently when more sophisticated visualization functions were applied

and more advanced techniques were demanded in GIS. Graphical domain modeling, as

10

well as the transformation from the spatial domain to graphical domain are the main

concern in this field [Veldon et al. 1990].

2.1.3 Temporality

Temporality is an inherent aspect of spatial information. Time in information

systems is measured along at least two separate axes. One is database time, the time when

transactions take place within an information system. Another is event time, which refers

to when the events actually occur in the application domain. Currently, according to

which methods and abilities to represent temporal information, there are four types of

temporal information organizations: static, static rollback, historical and true temporal

database [Snodgrass 1992]. Static systems support neither database nor event time;

static rollback systems support database time; historical systems support only event

time; while temporal systems support both database time and event time [Snodgrass

1992]. Only recently has the research towards a true temporal system been done even in

general Database Management Systems (DBMS). This is mainly because of the

inadequacy of the technological support, in terms of both hardware and software

[Worboys 1994a]. Now more and more researchers in the GIS field are aiming at a GIS

able to support temporal as well as spatial aspects of geographical information. The speed

and capacity of hardware, along with the software that is now becoming available,

making temporal information systems possible. But efficient temporal information logical

modeling is still the "bottle neck" [Muller 1993, Tansel et al. 1993] in such systems.

11

It is quite common that any set of spatial information can have all of the above

mentioned features and thus its modeling requires consideration of all the domains. For

example, a model of a national park may have a polygon representing its boundary in the

real world (spatial), polygons, points and arcs representing its cartographic form at

differing levels of generalization (graphical), times when it was created in the real world

and in the system (temporal), and attributes describing its area and name

(textual/numeric). Modeling approaches must be able to represent all of them in an

integrated format.

2.2 Traditional Logical Model

As an important component, the DBMS designed for GIS serves two major

functions: to provide efficient management and flexible manipulation of data. An

efficient spatial database minimizes storage and maximizes processing speeds, while a

flexible one provides complete support mechanisms to express the user's view of how

objects are organized in the real world. In this sense, flexibility is measured by the

expressive power of the data model. At the core of the spatial database are data structures

for spatial entities and relationships. Data structures that are flexible and efficient tend to

be complex and difficult for the general user to understand and manipulate. It is

sometimes necessary for the database designer to hide the actual data structure, called the

physical model, with a logical model which highlights flexibility and ease of use. The

12

user interacts directly with the logical model, and the database management system will

automatically map the operations to the physical model.

These logical models have actually been implemented in existing database

management systems and are also called database models, or implementation models.

The evolution of logical models has been through the hierarchical model, the network

model and the now popular relational model [Vossen 1991]. Currently, the relational

model is the most popularly applied one in GIS, but studies show that all these three

models have drawbacks in handling spatial information.

2.2.1 Hierarchical and Network Models

In the hierarchical model, the underlying logical structure is hierarchical or, more

formally, a tree. The tree structure is recursively defined as a collection of nodes T. The

collection can be empty, or consist of a distinguished node r, called the root, and zero or

more (sub)trees Ti, T2, ..., Th, each of whose roots are connected by a direct edge to r

[Smith et al. 1987]. In the tree, nodes represent record types and the edges represent the

parent-child relationships between the ancestor and descendant nodes, respectively.

Figure 2.2 shows a hierarchy among five record types.

13

d e k

Figure 2.2 A hierarchical schema among five record types.

The tree structure implies an N-to-one, written N: 1, mapping from children to

parent instances. Thus one-to-one and many-to-many strongly connected relationships,

which prevail in spatial. information, can be represented directly by hierarchies. The

advantages of this model include data access of natural tree traversal type can be

straightforward and fast, and the system is easy to extend. However, one has to duplicate

trees to represent a many-to-many relationship, which is required quite often in

topological information modeling, and huge redundancies can be caused. Thus this model

is not practical for spatial data modeling.

The network data model can be described, in the graph theoretical sense, as a

graph having no cycles (with the exception of self links), and a collection of record types

connected by a set of links to reflect the relationships between record types [Smith and

Barnes. 1987]. Figure 2.3 depicts a network schema.

14

D

Figure 2.3 A network schema among eight record types.

The network model is more flexible than the hierarchical model. Using sets, the

network model can represent diverse types of associations among record types. It can

implement M:N associations without large redundancies. But in its implementation, this

model uses a lot of pointers to maintain the direct relationships between record types.

Besides the storage space needed for the pointers, the system of pointers is very complex

and difficult to maintain, which makes data manipulation very complicated [Smith and

Barnes. 1987].

2.2.2 Relational Model and Limitation

A relational DBMS presents to the user a logical model of the database in terms

of tables, or relations. Part of the flexibility of the relational model stems from the

organization of data into homogeneous units called tuples forming rows of tables.

Simplicity and data independence are the majorfeatures of a relational DBMS, but can

also cause deficiencies in the following sense for spatial information modeling:

15

Manipulation Efficiency

Efficiency refers to the speed by which data can be processed. The primary reason

why a relational database is slow is due to the requirement that all relations must be in the

first Normal Formula (INF): the domains of attributes must only include atomic values

(simple, indivisible) and the value of any attribute in a tuple must be a single value taken

from the domain of that attribute [Smith and Barnes. 1987]. The 1NF forces a set (such as

a spaghetti consisting of several arcs) to be decomposed into its elements (arcs) before

being stored in tables. The 1NF assumption is fundamental to relational models, and the

separation of related data into different tables is dictated by rules for good design on

relational databases, mainly for integrity control. As a result, some complete geometric

information can be retrieved only by addressing multiple tables. This needs to involve a

JOIN operation which physically combines tuples from different relations through their

common values. The operations demand a lot of storage space and computation time,

thus slow down the process.

Data Semantics

Data semantics refer to the data model's capability to express the meanings of the

data attributes and relationships. Such ability is particularly important for providing

integrity constraints and efficient database browsing. A data model rich in semantics

must distinguish between different types of relationships of classification, generalization

and aggregation [Lee 1990]. The result of classification is a class of similar types.

16

Generalization is the process of generalizing several types with common properties into a

more abstract super type. This process hides the differences between several classes and

highlights their similarities. An aggregation can model composite entities from their

components.

The different types of relationships required in GIS exceed the above three. But

the relational model cannot distinguish all of them because it provides only two

constructs for representing relationships, one within a table and the other across tables

through common values. This leads to a phenomenon called semantic overloading [Hull

and King. 1987] indicating that a single construct has to support several types of

relationships thus causing an ambiguity in meaning.

Model Extension

A data model that provides a limited number of data types and cannot support the

creation of new types by the users lacks model extension capabilities. In a relational

database, only several primitive data types such as integers, real numbers and character

strings are supported. Above them are the relations, the only type-like construction a user

can define. But relations are not true types and cannot be used in the same way as the

built-in types. For example, a relation can reference an integer number but cannot

reference another relation.

17

This deficiency is directly related to the 1NF assumption because 1NF does not

allow nested relations. So the modeling for complex objects can be very complicated. For

an example, aggregations can only be expressed in the form of SQL query such as

SELECT lakes, path FR OM National_Park where Park _name = Banff " .But this scheme

usually requires the user to possess complete knowledge of the relations in order to form

the queries, which is often a difficult task for general users.

Program Interface

Another problem faced by relational DBMSs is impedance mismatch [Bancihon

1988], that is, the difference between the type system of the programming language and

the type system of DBMS Data Definition Language (DDL) and Data Manipulation

Language (DML). When the user of a database is a piece of software which accesses and

manipulates data through a program interface provided by the DBMS developer, the gap

between the two systems can hamper smooth interaction. The discrepancies are caused by

two major reasons.

First, a programming language is procedure oriented, whereas the DDL and DML

are entity oriented. One system is designed for defining the behavior of entities through

procedures while the other is for recording the state of entities through the use of data. As

a result, programming languages in general lack the capability to maintain data items

residing in permanent storage. Conversely, database languages such as SQL cannot be

used for general programming. There are pre-compilers that allow a procedural language

18

to embed SQL commands in its source code, such as Pro*C in ORACLE, which enable

the program to access a relational database. But this method only produces a hybrid

environment, however, and does not truly integrate the two approaches.

Secondly, a programming language (before Object-Oriented programming)

supports more general and primitive data types such as integers, whereas a database

language supports richer and more complex data types such as date type or data set. This

reflects their differences in the degree of specialization and, as a result, likely produces

problems during the transfer of data from one environment to another. For example, the

transfer of records from a program to relation tables often involves considerable changes

in data structure.

2.3 GIS Architectures

As the above analysis shows, general purpose DBMSs do not have direct support

for geometric attribute types (e.g., point, polylines, polygons) and operators (e.g.,

distance, intersection, circumference, area). Multidimensional access methods and index

mechanisms are not directly supported either. It is impossible to store geographic data in

a natural manner, or to pose queries such as: "Select all lakes with an area of 1,000

square metres that are located within 1 kilometre from a path ". So currently, extra

modules have been added into GIS to enhance its capabilities to efficiently handle spatial

information. This has led to three main different types of GIS: dual architectures, layered

architectures, and integrated architectures [Vijlbrief and van Oosterom. 1992].

19

2.2.1 Dual architectures

The most common and straightforward type of commercial GIS architecture is the

dual one. The basic idea of this architecture is that besides embedding a relational DBMS

to handle the thematic information, another separate subsystem is included to store and

retrieve geometric information. These dual architectures are easy to implement but not

efficient in terms of performance. The thematic and geometric components of a certain

spatial object are stored in two separate subsystems and linked by a common identifier. In

order to retrieve an object, the two subsystems have to be queried and the answer has to

be composed. Figure 2.4 illustrates one dual GIS architecture. Typical examples of GIS

with dual architectures are ARC/INFO of ESRI and MGE of Intergraph.

(

Geographic Information System

I

Relational

DBMS

Unique id Geometric

Storage

System

Figure 2.4 Dual GIS architecture.

Because the dual architecture has direct support of a standard DBMS, the storage

and retrieval of attribute data can be very efficient. However, this architecture has some

severe drawbacks directly caused by the existence of two different storage mechanisms.

20

First, the integrity constraints of the system can be violated. For example, an entity's

geometric information can still exist in the geometry storage subsystem while its attribute

information has been deleted from the relational DBMS. Second, query optimization is

impossible to the extent of the whole system. Third, the currency control is difficult,

because the two storage managers have their own locking protocols.

2.2.2 Layered architectures

Because the drawbacks of dual architectures are directly caused by the

coexistence of two different kinds of data managing mechanisms, another kind of

architecture, layered architectures were proposed in GIS. Instead of two data managers,

only relational data models are adapted in GIS to store the spatial data [van Oosterom and

van Den Bos. 1989]. In order to fit the complexity of spatial data into the relational

model, a spatial support layer is added on top of the standard relational database (Figure

2.5). The responsibilities of this layer include:

1. Converting the spatial information into the elementary data types of RDBMS.

2. Translating spatial information queries into standard SQL queries.

3. Implementing spatial indexes. These indexes are usually implemented by means of

auxiliary relations that contain the required index data.

21

I

Geographic Information System

Spatial Support Layer J
Standard Relational DBMS

-i

Figure 2.5 Layered GIS architecture.

In this way, the support for transaction semantics and integrity constraints is

restored and users can be freed from formulating difficult queries by the help of the

additional layer. However, since the coherent geographic information has to be broken

into its most primitive parts to be stored in separate tables, retrieval of the original

geographic entities has to be done by joining relations, which may greatly effect the

efficiency of the system because joining operations are the most time and space

consuming operations in RDBMS. Another drawback of this methodology is that the

spatial indexes are usually implemented by means of auxiliary relations which contain the

required index data. This can speed up spatial access, but the queries become even more

complicated due to the additional use of the auxiliary relations. This indirect

implementation of an access method is less sufficient than a direct implementation in the

DBMS kernel. System 9 [Unisys 1994] from Unisys and SIRO-DBMS [Abel 1989] from

CSRIO Australia are characteristic examples of layered architecture systems.

22

2.2.3 Integrated architectures

The inconvenience and inefficiency mapping from the complex spatial objects to

traditional data types is a fundamental problem of GIS architectures. To avoid this, now

more and more researchers are working on integrated architecture GIS, a kind of system

with direct support for more attribute types and access methods. Based on these supports,

users may extend the DBMS with their own basic abstract data types. Of course, for this

purpose, extra efforts are needed to implement additional data types and access methods

within the DBMS environment, which can soon become quite complicated. However,

once this task has been performed, the advantages of this approach are great. The

implementation of the data model becomes easy due to the availability of appropriate

geometric types. The formulation of spatial queries becomes straightforward and efficient

because of the direct support of extensible query language by means of adding more

spatial operators such as distance, area, and intersection.

Geographic Information System

(

Extensible

DBMS

I IN

Handling of

Geometric Data

Figure 2.6 Integrated GIS architecture.

23

The development of integrated GIS architectures mainly depends on the

availability of open DB's. According to the above analysis, this architecture cannot be

feasibly based on a standard relational DBMS. The object-oriented paradigm, which is

characterized by its support of users own defined types, makes a more open system. It has

shown great advantages in model extension and flexibility over traditional paradigms.

Most of research activities in this stream are focused on adapting the object-oriented

model in GIS, trying to achieve working object-oriented GIS systems. Characteristic

examples of integrated GIS architecture are TIGRIS [Herring 1987] from Intergraph and

the research oriented system GBO++ [Vijibrief and van Oosterom. 1992].

2.4 Object-Oriented Models

With the integration of database technology with the object-oriented paradigm, a

new type of DBMS, the object-oriented DBMS (OODBMS) began to emerge in 1986 (G-

Base). Unlike the relational system that is characterized by its maturity based on the

sound systematic theory and firm mathematical foundation [Maier 1982], the object-

oriented model has no standards yet, implying no common model as reference, no formal

foundation for the concepts. However, different object-oriented models or systems share

similarities in the fundamental supporting concepts and features, such as class, object,

encapsulation, inheritance, etc [Garvey and Jackson. 1989]. In this section, fundamental

object orientation concepts and features will be described, together with the features of an

24

object-oriented database model. Then the advantages of object-oriented systems for

spatial information modeling will be summarized.

2.4.1 Object orientation and object-oriented logical models

Object-oriented methodology originated in the computer programming field.

Many of the ideas come from the SJMULA language, but this method only became

popular later as a result of the introduction of Smailtalk. The key to object-oriented

programming is to consider a program as being composed of independent objects,

grouped into classes, which communicate with each other by means of messages. The

concepts of class, object, encapsulation, polymorphism and inheritance are the

fundamental elements of object orientation.

For the integration of database technology with the object-oriented paradigm,

current OODBMSs are still at an experimental stage because of technical and commercial

complications. Though the available OODBMS show different features due to the lack of

standard object-oriented database specifications, they also exhibit a type of common

database model which consists of certain generally accepted concepts with combined

features of both object-orientation and database system. This collection of concepts and

features can serve as the core model and identify the main differences in comparison to

the traditional models.

Class and Object

25

As the basic modeling unit, an object models a real world entity of interest in an

application. It encapsulates the entity state and behavior through data structures and

functions. The state is represented by the values of the object's attributes, whereas

behavior is defined by the methods acting on the state of the object upon invocation of

corresponding operations [Jacobson et al. 1992]. An object is an instance of a class type.

A class describes a group of similar objects. It names and types the common components

of the data structure of each object in the class and declares the behavior that can be

applied to them.

Class

member states
tt*4

I I

member functions

Figure 2.7 A class encapsulates both state and behavior features.

Objects and Identity

In an object-oriented DBMS, each object is identified by a single OlD (Object

Identifier). The identity of an object has an existence independent of the values of the

26

object attributes. By using the OlDs, objects can communicate with other objects and

general object networks can be built.

An important concept of the relational model is the key concept, an attribute or set

of attributes whose values identify unequivocally each tuple in the set of all those tuples

belonging to the same relation. A key consists of the value of one or more attributes and

can be modified, whereas an OlD is independent of the state of the object. Two objects

are different if they have different OlDs, even when their attributes have the same values.

Moreover, a key is unique within a relation, whereas the OlD is designed to be unique

within the entire database. By using OJDs one can define heterogeneous collections of

objects which even belong to different classes. Indeed, a collection consists of a set of

O]Ds which identify the objects belonging to the collection. These OlDs are independent

of the class to which the objects belong.

Researchers have investigated different approaches to constructing OlDs in order

to have OlDs with richer semantics and be more efficient for information retrieval. One

example is that an OlD consists of a pair - 'class identifier, instance identifier, system

generated number' - where the first is the identifier of the class to which the object

belongs, the second identifies the object within the class, and the third one is system

generated serial number. When an operation is invoked on an object, the system can

extract the class identifier from the OlD which then determines the method for executing

27

the operation. Usually this number is stored in a LookUp Table (LUT), and maintained

by the system to keep track of objects.

Encapsulation

Encapsulation is one of the most beneficial concepts in the context of object

orientation. Encapsulation combines data structures and functionality into objects. This

mechanism ensures that an object represents an application entity naturally and

efficiently by keeping all data pertaining to the application entity bundled together with

all the functionality that applies to it [Coad and Yourdon. l99l].

Encapsulation also supports information hiding, that is, internal aspects of objects

are hidden with specification for which features of an object to be accessible. The users

only need to know what to perform instead of how to perform. Access to data and code

has to be granted explicitly and achieved through sending messages. A message refers to

a request to perform a method for an object. It results in the invocation of the method.

Encapsulation in 000BMS

Encapsulation in programming languages means that an object consists of an

interface and an implementation. The interface is the specification of the set of operations

which can be invoked on the object and is its only visible part. The implementation

contains the data, i.e. the representation or state of the objects and the methods which

provide, in whatever programming language, the implementation of each operation.

28

But this principle is not applied very strictly in database since it is not clear

whether the structure is part of the interface or not, whereas in programming languages

the data structure is clearly part of the implementation and is not visible. Query

management needs direct access to objects' attributes, and this makes violating

encapsulation almost obligatory. In fact, in databases, it should not be considered a

disadvantage to know which attributes and references an object consists of. Queries are

very often expressed in terms of predicates for the values of the attributes. Therefore,

object-oriented DBMSs (OODBMSs) should allow direct access to attributes supplying

'system-defined' operations which read and modify these attributes. These operations are

provided as part of the system (and are not defined by the user) and they are implemented

by the system in a highly efficient manner and at a low level. There are two advantages,

described below, of being able to access or modify directly the attributes of an object

{Bertino and Martino. 1993]

• It avoids the users having to implement a considerable amount of methods which

have the sole purpose of reading and writing the various attributes of the objects.

• It increases the efficiency of the applications, in that direct access to the attributes of

objects is implemented as system-provided operations.

For the contrasting requirements, various OODBMSs provide different solutions.

Some systems, provide 'system-defined' methods for reading and writing the attributes of

an object. These methods are implemented efficiently and at low level by the system.

29

However, these methods can be redefined by the user (overriding). Other systems, such

as 02, allow the user to state which attributes and methods are visible in the object's

interface and which can be invoked from outside. Finally, in other systems, all attributes

can be accessed directly, both while reading and writing, and all methods can be invoked.

Message Passing

The execution of an object-oriented procedure or function occurs through

message passing (see Figure 2.8), instead of arguments passing in traditional systems

[Jacobson et al. 1992]. A message usually includes the information about sender, receiver

and the functions to be invoked. When received by an object, a message is matched with

one of that object's methods or attributes, and then a method would start executing. The

execution of a method can involve sending messages to other objects, and execution

spreads through the system as messages are passed from one object to the next. When a

method finishes executing, a value (object) may or may not be returned as control is

passed back to the object that sent the message. The message serves as the interface

between objects.

inside

30
M ww M6+.W4.

$j Object

— **:

f4:±f4:

member states

member functions

Inheritance

messagel

message2

Figure 2.8 Object with messages coming.

outside

One of the most important features supported by the object-oriented methodology

is inheritance: the ability to derive new classes from existing ones [Jacobson et al. 1992].

New classes can be constructed by extracting some features from existing classes and

adding some new features, thus common specifications and elements can be reused.

Inheritance is the mechanism that contributes most to the productivity increase attained

with object-oriented systems. The class that the other classes inherit features from (both

state and behavior) is called the superclass, while the inheriting class is called the

subclass.

There are two types of inheritance. Multiple inheritance allows a subclass to share

features of several incompatible superclasses, while single inheritance only involves one

superclass for a subclass. Single inheritance and multiple inheritance can be represented

by tree structure and network structure, respectively (Figure 2.9 and 2.10)

31

inherits

inherits inherits

Figure 2.9 Single inheritance hierarchy.

inherits inherits

Figure 2.10 Multiple inheritance hierarchy.

Polymorphism

Polymorphism is another key concept, which means that the sender of a message

does not need to know the receiving instance's class. The receiving instance can belong to

an arbitrary class [Jacobson et al. 19921. A message can be interpreted in different ways,

depending on the receiver's class type. It is the instance which receives the message that

determines its interpretation, not the transmitting instance. Thus one operation can be

32

implemented in different ways in different classes. Conceptually, it is based on the

assumption that the type (or class) of an instance needs not match the type (or class) of

the object that the variable refers to.

Polymorphism allows the specification of modules at higher or more abstract

levels. The user only needs to know that another instance can perform a certain behavior,

not which class the instance belongs to and thus not which operation actually is to be

performed. This is a powerful tool for more flexible systems.

Complex objects

Complex object refers to the mechanism that the member attribute can be another

object or a set of objects. Compared with the 1NF constraints in the relational model, the

attributes of an object can be other objects, both primitive and non-primitive ones. This

characteristic enables arbitrarily complex objects to be defined in terms of other objects.

Completeness

Most of the OODBMS have very basic supporting manipulation language, leaving

a big part of complex manipulation functions to be implemented directly by the

programming language. Great flexibility and completeness can be obtained from this

combined support.

33

2.4.2 Advantages of object-oriented data model

The object-oriented model has advantages in the areas of modeling and

manipulation efficiencies, data semantics and model extension capabilities over the

relational model, showing great potential in GIS applications.

Modeling Efficiency and Extendibility

All real world entities have both state and behavior features, thus conventional

methods require extra efforts to combine the separated primitive data types and

algorithms to model the entities. In relational systems, the state attributes of spatial

entities are represented by tables while their behaviors are implemented by SQL

programs or vendor-supplied subroutine calls outside the DBMS. The class, as an

integration of both states and behavior information, enables the object-oriented logical

model to represent entities more naturally and directly. Moreover, the complex objects

and classes mechanism provides the aggregation support which is lacking in relational

models. This enables the object-oriented system to model complex entities by simply

composing the fundamental class types instead of going into very basic elements, which

is very beneficial for modeling geometric entities. The modeling efficiency can be

improved greatly, and system extension can have increased flexibility.

Another object-oriented concept, inheritance, further enhances the systems'

representation capabilities because it reflects the nature of the relationships between real

34

world entities. An inheritance hierarchy can clearly show the similarities shared by the

concerned entities, and the sharing implies reusing of code which results in a dramatic

increase in programming productivity. Hence users only need to consider the specialties

of subclasses while modeling them. Building or extending an application based on well

defined fundamental classes become more efficient and easier.

Manipulation Efficiency

Because of the direct mapping from real world entities to classes and objects, the

retrieval of complex objects is more straightforward in an object-oriented system,

compared with relational systems where queries usually involves complicated SQL

commands to locate the elements and reconstruct the geometric information of spatial

entities from the decomposed information. With some data access method encapsulated

in objects, certain information retrieval can be carried out by a single message directly

and easily.

Data Semantics

Based on the support of class, complex class types and inheritance, the object-

oriented system can distinguish between classification, generalization and aggregation,

thus enrich its data semantics.

Modularity

35

This object-oriented system also supports the concept of modularity [Coad and

Yourdon. 1992]. Here modularity does not mean groups of similar and closely related

functions in a traditional solution of a problem, but the general aspect of decomposition

of a complex problems into collections of smaller units (modules) for easier handling.

The object-oriented paradigm provides a natural way to modularize an application where

the class serves as the unit for a module.

Object Identity

In an object-oriented system, unique identifications are generated for all objects

by the system, independent of address or data value, and can survive updating and

database reorganization. They are useful both for data access and for maintaining

relationships among the objects. The essential advantage of using OlDs over keys as the

object identification is that the risk of changing the uniqueness of the object identification

can be completely avoided while updating the attributes. Also, since OlDs are

implemented by the system, the applications programmer does not have to concern

himself with selecting the appropriate keys for the various classes of objects.

Smoother Program Interface

A smoother program interface can be achieved through the similarities between

object-oriented programming systems and OODBMSs. The most important one is the

generic object concept which helps not only encapsulation but also data modeling. For

36

the first time, this concept makes models of real objects basic building blocks of a

program. This provides both the programmer and database user with a common

perspective and programming fundamental. Thus the semantics and programming gaps

between the two systems has been reduced.

In summary, the inadequacy of traditional logical models to handle increased

complex spatial information efficiently, coupled with the emerging trend in the database

field towards object-oriented database systems converges towards the utility of

developing object-oriented model for GIS application.

37

Chapter 3

SPATIAL DATA MODELING

USING AN OBJECT-ORIENTED APPROACH

As stated in Chapter 2, a logical model is actually a high-level interface

between users and the physical model to makethe latter more flexible and easier for

understanding and implementing. To construct a system with object-oriented modeling

capability, the first step is building up the prototype for a physical model. An object-

oriented software development method is used to build up the prototype. This chapter

describes the method to analyze, design and implement the prototype. The design and

implementation will concentrate on the general spatial data model and related

supporting functions.

3.1 System Analysis and Design

To develop a software package, the selection of analysis and design method is

important. A software development method is a standardized means of presenting and

communicating the requirements of a system and the design decisions, which provide an

effective means of delivering those requirements to developers and users. This

technology emerged as the solution to the 'software crisis' in 1970s, and has benefited

from the phase of data-processing oriented methods to object-oriented method phase. The

data-processing method distinguishes between processing and data, where processing, in

38

principle, is active and has behavior, and data are passive holders of information which

are affected by functions. Software systems are typically broken down into groups of

processings, whereas data are sent between the processings. Examples include SADT

(Structured Analysis and Design Technique) [Ross 1985], SA/SD (Structured Analysis

and Structured Design) [Yourdon 1979]. From the late 1980s, the Object-Oriented

method began to dominate this field.

ystem development method

Data-Processing oriented

(SA6O (SNSD

Figure 3.1 Data-processing oriented and object-oriented system development methods

In this project, an object-oriented method will be used to analyze, design and

implement the system, a decision based not only because of its popularity, but also for the

consistency of the development procedure within the planned system itself.

3. 1.1 Object-oriented analysis and design

The object-oriented analysis and design method is the integration of the

development of information system analysis and design methodologies and object-

39

oriented programming languages. In an object-oriented method, the basic unit of design is

the object, with both state and behavior encapsulated, compared with the separation of

the data and functions in conventional methods. An object can correspond directly to a

recognizable real world entity or an abstraction based on that entity. This allows the

software to obtain an almost one-to-one mapping with the real world. Compared with the

fact that in traditional methods, a large amount of effort is spent applying sophisticated

algorithms to the very basic and limited data types to construct complex models of the

dynamically changing world, thus object orientation improves the modeling capability

greatly. It also implements the sound concepts of information hiding, coupling, and

cohesion.

Compared to systems designed using traditional software development methods,

these designs

are more adaptable as the world (or the designer's understanding of the world)

changes

provide units that fit the environment rather than a specific system, and apply

to any system dealing with that part of the environment

make the system easier to understand, and thus to maintain, by both

customers and software developers

40

There are several object-oriented development methods available. The early

pioneers include Booch, whose first version of his Object-Oriented Design (OOD or the

Booch Method) emerged in 1983; Jacobson, whose famous Objectory method was

formulated in 1985. Other popular methods are the Object-Oriented Analysis (OOA) by

Coad and Jourdon [Coad et al. 1991], Object Modeling Technique (OMT) by Rumbaugh

et al., which is based on entity-relationship modeling [Chen 1976] with extension to

modeling classes, inheritance and behavior [Rumbaugh et al. 1991]. The OMT and the

Booch method have been combined to form a more powerful method in 1995.

The Booch method was selected in this project because of its popularity.

Another reason is that this method has an implementation software tool called Rational

Object-oriented Software Engineering (ROSE) available with interface in Borland C++,

the programming language used in this research. ROSE can generate frames of C++ code

from the analysis deliverables directly thus easing implementation.

3.1.2 Overview of the Booch Method

The Booch method is an object-oriented method based on proven heuristics for

developing quality software. It provides a model to support solid analysis and design, and

allows the developers to enhance, correct, and maintain the same consistent model from

the beginning of analysis through coding and implementation.

As shown in Figure 3.2, the Booch method consists of five iterative steps:

41

cReal World

Requirements analysis

Domain analysis

System design

System evolution

System maintenance

C Software

Figure 3.2 Major steps of the Booch method.

Requirements analysis, which provides the identification of the functionality

of the system.

. Domain analysis, which provides the key logical structure of the system.

. System design, which provides the key physical structure of the system,

maps the logical structure to it, and leads to working executable releases.

• System evolution, which provides the growth and change on the

implementation through successive refinement, ultimately leading to the

production.

42

System maintenance, which provides the postdelivery evolution.

Each step has deliverables which construct and document the progress from the

understanding of the problem to the solution to the problem. With the deliverables

specifying the design more and more clearly and closer to the computational model, the

frame of code can be obtained.

As this research is focused on prototype analysis, design and implementation,

discussion will concentrate on the first three steps.

3.1.3 An iterative approach

Traditional software development methods used to insist on a rigid series of

steps. Classically, first the developer discovered aspects about the user requirements, then

the general design of the problem solution, and so on. Sub squent steps are always based

on the assumed correctness and completeness of the previous steps, a view more often

than not in conflict with the natural way of thinking in human. The difficulties and high

cost for correction of early stage analysis and design has been one of the biggest

problems faced by the traditional methodology. The Booch method allows for the reality

that the development of a system is an iterative process--previous work must always be

added to or refined as the results of that work are used in the next stage of development,

which is more close to nature of human's thinking.

43

This iterative approach retains the classic steps: developers study the user

requirements first and then map them to design. However, as developers continually

integrate their analysis results into one underlying model, they can easily move back and

forth between analysis and design to refine their study. In fact, the iterative approach

allows developers to analyze a little, design a little, and then implement a little. In

practice, the method specifically encourages early implementation of pieces of the system

to aid in the requirements analysis process. Then the developer cycles back and goes

through the procedure again, only for better understanding and design of the system. All

of analysis, design, and implementation are accomplished, but in a series of cycles rather

than three large leaps.

3.2 Requirements Analysis for Spatial Data Modeling Prototype

3.2.1 Requirements analysis

Requirements analysis is the process of determining what the a system is

expected to do. It is a high-level stage to identify the key functions the system is to

perform, to define the scope of the domain that the system will support. The first step

analysis results provide the fundament for further development.

Requirements analysis essentially forms a conclusive understanding of what

kind of functions the system is going to provide. The understanding is not fixed, instead,

44

it is changed often as the development cycle continues. It, however, does serve as a

starting point and central reference for what the system is supposed to do.

The understanding of the requirements usually is put in forms of two

deliverables: system charter, which outlines the responsibilities of the system, and system

function statement, which outlines the key use cases of the system.

1. Requirements

Analysis

System function
statement

System
charter

Figure 3.3 Requirements analysis step and the deliverables

3.2.2 Use case analysis

Use case is defined as "a particular form or pattern or exemplar of usage, a

scenario that begins with some user of the system initiating some transaction or sequence

of interrelated events." [Jacobson et al. 1992]. For example, in a GIS system, to display

the DTM of a certain interested area according to a user's request is a use case. The

functionality of a system can be considered as the whole collection of use cases. In most

of the object-oriented analysis and design methods, identifying use cases in an

application is the first step to specify the complete functionality of an application system.

The basic idea is that, at this stage, the scenarios that are fundamental to the system's

operation are first enumerated. The functions of the application can be primitively

45

outlined by these scenarios. Analysis then proceeds by closer studies of each scenario,

using the traditional storyboarding technique. As the study walks through each scenario,

objects which participate in the scenario are identified. Then the responsibilities of each

object, and how those objects collaborate with other objects, in terms of the operations

each invokes upon the other, could be discovered. At this point, the system development

is ready to enter the domain analysis phase, whose duty is mainly to deepen and refine

the analysis results of this phase. The use case driven analysis ideas will be applied in the

whole analysis and design, through to the implementation procedures. Moreover, further

specified scenarios also serve as the basis of system tests.

3.2.3 Requirement of the prototype

In this project, the main purpose is to setup an object-oriented GIS prototype for

modeling the digital terrain information. First, a general object-oriented spatial data

model is implemented as the core of prototype, then the data model will be adapted to

construct an application module to handle a set of DEM data. To reach these goals, the

support in the following fields is critical.

Two general types of modeling components

In terms of GIS applications, aspects of the real world can be viewed as a

collection of entities with combined features in different domains, such as spatial,

graphical, temporal and textual/numeric domains. Interactions between entities exist and

contribute to the changes on entities' features. A GIS modeling prototype should have

46

direct support for entities and the relationships between them as the fundamental model

components. The entities can range from a national park to a transportation network, and

relationships can include topological relationship and cause-result relationships. Further

analysis techniques such as abstraction and classification will be applied in the following

design and lead to concise and efficient groups of modeling components. The

components can be implemented as class types, objects or attributes while using an

object-oriented programming language.

Support of modeling mechanisms

As the research is an investigation in object-orientation's applicability in GIS,

the core data model is designed to serve as object-oriented constructing fundamental to

modeling different kinds of spatial information. This means that the prototype is expected

to be customized for most situations, so the data model should be for general purpose in

nature. Since it is impossible to include all kinds of components to correspond to all kinds

of objects in the real world in this modeling prototype, the core of the modeling

prototype should be of a high level of abstraction and contain very general class types.

Support for specification from existing model components to generate new model

components for particular situations is necessary. As this is expected to be an object-

oriented modeling prototype, the following object-orientation features should also be

supported: encapsulation, inheritance, aggregation, message communications, etc. All

these mechanisms should be implemented in a software system, and used to specify what

47

form a system should take. An object-oriented programming language such Borland C++

provides direct support for several of the above mentioned object-oriented features at

certain levels, which makes the implementation of further support easier. Thus Borland

C++ has been used as the implementation language. The object-oriented analysis and

design method was applied to implement these features more thoroughly.

Support of functions

Since the prototype is designed to be used to build up other specific applications,

besides the behavior of features of each component, the prototype should also have

modeling capabilities to do the work such as generating new model components by

inheriting from superclass types. Thus, basically two kinds of functionality are

necessarily considered: system functionality which supports the creation, use,

maintenance of the model components in the prototype; and operation functionality

which is built on the prototype components by the user for feature operation. These are

implemented in the form of functions. As this is in an object-oriented development

environment, the functions can be classified into two categories:

• the functions which mainly describe the objects' own behavior features such as

displaying or changing features. Usually these are encapsulated within the class types

of modeling components;

48

. functionalities to work with class types or operate on the class types. Usually these

are encapsulated within the class types other than those of modeling components.

Generally speaking, the prototype should meet the following main objectives:

• modeling various type of spatial objects with one group of data modeling

components;

providing basic supporting manipulation functions, such as objects creation, object

maintenance.

3.3 Fundamental Class Types for Spatial Information Modeling

3.3.1 Domain analysis

Domain analysis is the process of defining a precise, concise, and object-

oriented model of the part of the real-world related to the application, or the problem

domain. It is through this process that the detailed knowledge of the problem domain can

be gained, which is needed to create a system capable of carrying out the required

functions.

49

2. Domain

Analysis
Class
diagrams

Class
specifications

inheritance
diagrams

Object-scenario
diagrams

Object
specifications

Figure 3.4 Domain analysis step and deliverables

More specifically, domain analysis identifies all major class types and objects in

the domain, including all data and major operations that will be needed to carry out the

system's functions. It produces a central model containing all the semantics of the system

in a set of concise but detailed definitions of classes and objects, which will map directly

to final implementation.

Good domain analysis not only simply refines and details the previous analysis

results, but also adds appropriate levels of abstraction to a system. In fact, this is the

phase when object-oriented analysis skills such as classification, instantiation,

specialization, generalization can be applied further to lead to high efficient modeling.

With classification, a limited number of class types can be obtained to represent the

groups of countless entities in the real world, where each group includes entities sharing

certain commonalities. Then with careful analysis and definition of the domain scopes,

hierarchical structures can be built with more abstract class types on the root levels and

more specified class types on the higher levels. In this way, reusability can be realized in

the application system by support of inheritance mechanism to make the development

50

more efficient. It can also make it easier to further extend or modify the system by

specializing the abstract types with the support of inheritance. Thus efficiency and

flexibility can be obtained during both its development and its productive life.

3.3.2 Domain analysis steps

The following steps are performed during domain analysis: defining classes,

defining relationships, defining operations, finding attributes, defining inheritance

(Figure 3.5).

-

Define

classes
-

Define

relationships

Define

operations
—)

Find

attributes

Figure 3.5 Steps of domain analysis.

3.3.3 Identify and define classes

Define

inheritance

To identify and define the key classes is the first important step towards finding

out major abstractions in the problem domain. More specifically, it can help to obtain

knowledge about what domain the application system works in and what data it contains.

This step can begin with identifying nouns in the system charter. It is important

that the defining classes should stay at a logical level since the system charter usually

contains some implementation characteristics. Domain related classes should be

independent of any given implementation of a system, thus concentrating on the problem

51

domain, not on how domain entities map onto an implementation. By this, thorough

understanding of problem and design at a certain level of abstraction can be guaranteed,

which can lead to flexible implementation.

3.3.4 Classification

The identification of key classes and objects is the hardest part of object-

oriented analysis and design. Through its ability to abstract a class type from and for a

group of entities sharing a certain commonality in structure, classification is a very

helpful tool at this stage. Classification recognizes the similarity among key abstractions,

eventually leading to smaller and simpler architectures. It also affects understandibility

and effective communication greatly. For example, assuming that an application requires

one to model "highways" and "streets " There are two types of objects, but they share

similarities in terms of state and behavior. They can be represented by only one type of

class "transportation road", and "highways" and "streets" can be sets of instances,

objects. The class can denote the common features such as road name, road type, length,

display method, etc. The specialization can be obtained when the objects of a certain

street or highway are constructed (Figure 3.6).

52

Construction

Class Type

1st Street

City

25 km

Display() J

Objects

Figure 3.6 Classification and instantiation for the "Transportation Road" type.

3.3.5 Fundamentals of topology

A basic idea in algebraic topology is that most fundamental element for

constructing geometric objects is called the simplex. A k-dimensional simplex or

simplex is the convex hull s (vo,...,vk) of k+1 points v0, ... , v with (V1 —v0, ... , VkVO)

linearly independent [Jänich 1984]. There are 0-simplex (point), 1-simplex (segment), 2-

simplex (triangle), 3-simplex (tetrahedron), etc (Figure 3.7). Groups of simplices form

complices, (Figure 3.8) and spatial space can be decomposed into complices [Janich

1984, Gamelin and Greene. 1983].

53

v3

vO

vi vO

0-simplex 1-simplex

(point) (segment)

V2

2-simplex

(triangle)

Figure 3.7 K-dimensional simplices.

3-simplex

(tetrahedron)

Figure 3.8 Octachedral surface composed of eight 2-simplices.

This idea was applied in the spatial information modeling. First, three geometric

elements: node, arc and polygon were identified as fundamental composing elements for

complex entities. Geometric information, in terms of both positional and topological

information, is stored in terms of these elements. Complex entities contain the geometric

information by holding logical pointers to the member elements. On the other hand,

attributes of spatial entities are always directly related to the entities instead of the

constructing elements. So three types of entity type: point, polyline and area, were also

54

identified to obtain direct access to the attribute information. More details about how

these element types and basic entity types can be used to model general spatial entities

will be discussed in the following paragraphs.

3.3.6 Classification of spatial information

Spatial information can be viewed as a combination of all kinds of spatial

entities. Spatial entities can range from forestry coverage to land parcels. To have model

components for every entity is not only impossible but also unnecessary. Abstraction can

help to discover the commonality shared by spatial entities. Then classification

techniques can be applied to draw several general classes which include entities based on

the commonality found.

Geometric characteristics are the most important feature of a spatial entity for

GIS application. Classification can proceed according to spatial entities' geometric

characteristics. Studies have shown that all 2-I) spatial entities can be classified into one

of the following entity types: point, polyline, area and complex entity, these can serve as

fundamental modeling units. More details about these four geometric abstract types will

be given in the following paragraphs.

Point Entity

Point entity refers to a kind of spatial entity whose location is important, but

whose size is too small to be represented as a line or an area. For example, in a

55

transportation network modeling system, the intersections can be represented as points

(Figure 3.9). In reality, the ignorance of size really depends on different observation

scales or different applications. If in another application of land usage administration, the

size of intersection were to be important, and have to be modeled as polygons.

intersection C

(x3, y3)

intersection B
(x2, y2)

intersection D

(x4. y4)

Figure 3.9 Intersections of roads can be represented as point type entities.

For each point entity, the most basic and important attribute is its position.

Usually, it is represented by a pair of coordinates, which could be in the form of UTM,

3TM or other local map coordinates. Other concerned features, including logical identity

in a GIS, can be attached as an attribute to describe the point. In the above example, the

intersection point can have a set of attributes "Traffic Control", "Control Type" to hold

information about whether there is traffic control in an intersection and what kind control

it is. Other examples include in utility and transportation systems inventory and analysis,

such point entities as the location of telephone poles or sewer manholes, or of individual

houses with discrete addresses.

56

Polyline Entity

This is used to represent a linear entity which has location and length, but where

occupation can be ignored. For example, on a map showing if there is a highway network

connecting city A, city B and city C, the highways can be represented as polyline type

(Figure 3.10). The entities may be directly observable or may be conceptual only, as is

the case of air routes. They are not necessarily only in a horizontal plane, like a borehole

or a water level in a mine. Again, the ignorance of the entities' occupation depends on

different observation scales and different applications. The same highway may have to be

modeled as polygons in a land usage administration application.

Figure 3.10 Transportation network represented as polyline type entities.

For a polyline entity, the information of the set of points on this linear entity is

important to record their position. This information can be stored as a set of coordinate

pairs directly, or a set of the points' IN in the system and retrieved through the JDs when

57

required. The latter way is better for maintaining the correctness and consistency of the

information. For most of the applications, attributes such as the length of the entity and

the orientation are also very important. The specialties of each entity can be represented

by the specification of its attribute set.

Linear features are important in transportation studies, hydrology, utilities

management and geology, and are prominent features on many types of mapping.

Areal Entity

Sometimes referred to as regions or zones, they may be identified for natural or

man-made phenomena whose occupation cannot be ignored in a GIS application. The

areal units may be entities like lakes, islands, territory with a particular soil type, or land

parcels (Figure 3.11). The units can also be artifacts used for statistical reporting like

census zones or delivering mail like postal zones, or discretizations (the creation of pieces

or segments) of continuous space like climate regions. Other sets of attributes can be

designed to represent special cases of area type entities.

58

Figure 3.11 Land parcels can be modeled by area units.

In a simple areal entity, a polyline (modeled as polyline type) is included to

serve as the boundary to locate the area. For some complicated cases where there are

holes in an area, two or more polylines should be embedded to represent the location of

the holes. In this project, concentration has been placed on simple area! modeling. The

popular way to include polyline information is to store the system ID to build up the

logical connection with physical data. Other particular spatial properties associated with

area entities are: area extent (the size of forestry coverage), perimeter length (the extent

of a shoreline), etc.

Areal units are important in socio-economic studies, analysis of terrain

conditions, land use and natural resources inventory, and recordings of real estate.

Complex Entity

59

This kind of entity usually has a combination of more than one of point, polyline

and area types. For example, a park might have paths as polyline type entities, picnic

spots as point type entities, lake and meadow as area entities (Figure 3.12). Complex

entities usually can be decomposed into and modeled by the three basic types. But in

some cases when there are attributes and indexing mechanisms directly related to the

complex entity as a whole instead of related to each component, a complex entity type

- can also be used in addition to its components of the three basic types. This can improve

query speed at the cost of limited redundancy (extra complex entity type itself) by

reducing the efforts to reconstruct the complex entity from components at running time.

In fact, redundancies of storing the attributes of a complex entity repeatedly in all of its

components can also be reduced this way.

60

Figure 3.12 Park represented by a complex entity type consisting of point, polyline and

area entity types.

Usually, a complex entity has a polyline to specify its boundary and the 1D of

the boundary polyline should be placed separately from its components' IDs. Complex

entities include three sets of system IDs of the included point, polyline and area entity

types to connect to the physical data. Which of the component entities should be listed in

the ID sets depends on which of them are indexed or expected to be queried at this level.

For example, both path intersections and picnic spots are point entities in park entity, but

assuming that users are only concerned about where to find picnic spots, only IDs of

picnic spots are necessary to be stored in the ID sets.

61

So these four fundamental spatial entity types can serve as four superclass types

to model various kinds of spatial entities (Figure 3.13), and the complex entity type is

based on the availability of the other three types.

National Park

Residencial Area

Pipelines Network

Highway Network

Road Intersection

Polyline Entities

Land Parcel

Vegetation Coverage

Figure 3.13 Spatial entities and modeling class types

3.3.7 Fundamental geometry elements

Telephone Pole

In spatial information, an important part is the topological relationships between

spatial entities, which include enclosure, connectivity and adjacency [Blais 1987]. Good

spatial information modeling must be able to reflect topological information. For this

purpose, geometry knowledge and skills are naturally applied in a GIS study. In spatial

information modeling, three geometric elements can be introduced to make all the spatial

entities be built on them, then geometry can be applied for the topological information

study.

62

Three basic geometric elements to construct complex objects are node, arc and

polygon.

Node

Called a vertex in geometry, node refers to a point that terminates a line or a

point at which lines cross. Therefore it has a property of connectivity, being related to the

lines (Figure 3.14 (a)).

Node is different from point in this context: it is considered as the abstraction of

point. The principal attributes of a node are its position and relative relationship with arcs

and polygons, such as on what arcs or polygons the node is situated. A point can be

defined based on a node to hold the positional information, but usually the focus is placed

on non-positional features, such as what kind of object it stands for.

Are

Referred to as edges in geometry, both ends of an arc terminate in two nodes.

Every arc has, and only has, two nodes (Figure 3.14 (b)).

The difference between an arc and a polyline is very similar to the difference

between a node and a point in terms of focus on the included information. One special

case is a polyline may contain one or more arcs, so a polyline may contain one more

piece of information: how it is composed.

63

Polygon

A polygon refers to a piece of surface bounded by a minimum of three arcs

(Figure 3.14 (c)).

The relation between a polygon and an area entity type is similar to the

difference between an arc and a polyline.

Node 1 Node B

Node 4

Node

Node 2

(a)

Node 5

Arc

Node A

Figure 3.14 Geometric elements. (a) Nodes. (b) Arc. (c) Polygon.

These three elements can be grouped together with the four entity types as the

seven fundamental modeling class types. Every complicated spatial entity can be first

modeled as one of the four entity types, then the entity types can be decomposed into the

very three basic types of geometric elements, and at this level, topological information is

easier to store because the relationship between the elements is relatively clearer and

more systematic from the support of geometry theory.

64

3.3.8 Defining relationships

Classes do not exist in isolation. Rather they are related in a variety of ways to

form the class structure for the domain. Finding relationships help further define the

classes by exposing their contents and dependency to the contents of others. There is an

important relationship in spatial information modeling: aggregation, which denotes a

"part of' relationship. It occurs when an entity is physically constructed from other

entities, or an entity logically contains another entity (Figure 3.15). It reflects the way

spatial entities are structured. It is also essential for the modeling of complex entities.

Thus aggregation should be clarified and defined in this modeling prototype.

Cardinality refers to the number occurred in a relationship between two objects.

It is usually expressed by four numbers defining the minimum and maximum number of

objects occurring in the relationship. For example, an arc can and does only have two

nodes, a node can be connected with one or many arcs (Figure 3.15). So, from node to

arc, the cardinality is 1-N, where N represents always greater than one, from arc to node,

the cardinality is 2-2. Cardinalities are important aspects necessary to include in

implementation. Some of them are part of integrity constraints, too. As cardinality

reflects the state of a relationship at any given time, and some relationships may have

varying cardinality depending on the states of the objects involved, so the constraints

which may be restricting at certain times should be also included in the relationship

specifications.

65

Minimum cardinality

\

Relationship

Maximum cardinality

"Part-of" relationship, a node is a part of an arc

Figure 3.15 Cardinality of the relationship between the classes arc and node.

3.3.9 Relationships between the seven classes

The main class types have been identified, but the relationships between the

classes and the detailed definitions still need to be specified.

The relationships between them can be clarified as follows. First, complex entity

types consist of point, polyline and polygon types.

A polygon is part of an area entity. An area entity can include one or more

polygon.

A polygon is bounded by three or more arcs. When no attribute connected with

arcs are of interest in an application, the polygon can be directly modeled by three or

more nodes.

A polyline contains one or more arcs, thus it also contains two or more nodes.

When no attribute connected with arcs are of interest in a polyline, the polyline can be

directly modeled by nodes.

66

An arc has two nodes, a node can be on several arcs. When a node is extended to

model an independent point, a node can be on no arcs.

Figure 3.16 shows aggregation existing between these seven class types with

corresponding cardinality constraints.

Figure 3.16 Class diagram.

3.3.10 Define operations

With the above analysis, a general abstraction about what classes need to be

included in an application domain and how they relate to one another has been obtained.

But this is just a static model. How the instances of the classes, objects, functions in the

67

application are not known yet. An additional step to identify the major operations

required to support class structure and system functions is needed.

As mentioned before, the complete functionality of the system is defined by the

use cases listed in the system function statement. Expanding a use case into a detailed

scenario shows the operations needed to accomplish the use case. Modeling scenarios

shows which objects collaborate in the use case and identify the operations needed with

each object.

The use case analysis method was used in the operation definition. As the focus

of the prototype is model construction, the main use cases are creation, alternation and

deletion of the entity or element classes. The design of a function for creating a polyline

entity can be used as an example here. To create a polyline entity, the set of arcs should

be read in and checked if they already exist. If not, a message is passed to the arc class to

activate the construction function to generate them. To create an arc, the pair of nodes

have to be checked, too, and if necessary, a message is passed to node class to generate a

node object. Then the uniqueness of the arc should be checked before the arc object

created. So for this simple function, several cooperating membership functions have to be

defined in classes of nodes and arcs. Similar analysis on other use cases can lead to the

full list of functions for each class. Figure 3.17 is the object-scenario diagram of the

example.

68

Figure 3.17 Scenario for adding a new polyline.

An object-scenario diagram is used to help in the analysis. It provides details

about how objects collaborate to realize a use case, tracing the execution of a scenario.

The diagram is usually incorporated with detailed script. The steps in the script align with

the message invocations, and express conditional statements and iterations, which lead to

a design close to the computational model. Developing object-scenario diagrams gives a

more complete picture of the operations needed for each class.

3.3.11 Attribution

Attribution is the process of determining the application related properties that

describe the classes. This section will introduce the some of the main attributes defined in

the classes to model position information.

First of all, every class has a system ID attribute to contain a unique identifier of

objects. The IDs can be numbers generated by the system, and a copy of ID is always

69

stored in a LookUpTable (LUT). The LUT is updated by the system whenever an object

is created or deleted so that the system can keep track of objects and ensure the

uniqueness of the IDs. Ideas are also proposed to contain certain semantics in IDs. One

example is to add extra numbers in the ID to hold class type information to ease some

retrievals.

For each class, the most important attributes are their positional ones. For the

node class, the pair of coordinate values should be included, as well as the IDs of the arcs

connected with the node. An are contains the IDs of a pair of the nodes and IDs of right

and left polygons so as to locate the arc and record an adjacency of two polygons. A

polygon keeps IDs of the boundary arcs (or nodes if directly modeled by them), together

with the IDs of surrounding polygons. For arcs and polygons, the location retrieval needs

to go through two more levels, but this organization method can help to maintain data

consistency and correctness.

To set up attributes for node, arc and polygon classes in this way, the position

information is contained in a safe way in terms of consistency, and the relationships

among these three types of entities can be traced easily. For example, if one wants to find

out which polygons a node A is situated on (Figure 3.18), first the arcs connected to the

nodes can be obtained (AB, AC, AD), then all the polygons contain any of the selected

arcs can be extracted (P 1, P2, P3).

70

B

Figure 3.18 Polygons on which node A situates.

For the entity class types of points, polylines, areas, complex entities, all of them

carry the]Ds of the composing elements to make the logical connections to the element

classes, where the data are physically stored.

More attributes can be added in the entity and element classes to fit different

application requirements.

3.3.12 Defining inheritance

This step is to discover generalizations, which are usually called superciasses,

and specialization, which are usually called subclasses, within similar domain types.

Finding semantically correct inheritance structures provides good reuse, because

the states and behaviors of the superclass do not have to be rewritten for each of the

subclasses. It also allows simplification, since developers can work with the specific or

general object as appropriate. Generalization and specialization are the main tools used to

do this job.

71

As these seven class types are designed as fundamental modeling units to

compose other classes with more specialties, they are superciasses themselves without

much inheritance occurring among them. Only the definition of point type inherit from

the node type. But whenever building an application based on this, inheritance can

improve reuse of code greatly.

3.4 System Design and Implementation

The previous analysis steps focus on understanding the domain and abstracting

the computational model. System design focuses on how the computational model can be

implemented. It is the process of expanding what was learned from the domain analysis

and then determining effective, efficient, and cost-effective implementation to carry out

the functions and store the data defined in domain analysis (Figure 3.19).

3. System

Design

Class category

diagrams

Class

specifications

Design class

diagrams

Architecture

description

Design

Object-scenario

diagrams

Excutable release

plans -

Figure 3.19 System design step and the deliverables

72

As more details are required for a working implementation than for the domain

analysis, an iterative approach rather than a full scale leap is even more imperative than it

was during domain analysis. The Booch method encourages series of smaller steps and

graduate integration leading to a working system.

3.4.1 Structure of the prototype

How the functional components are organized to construct a software system is

usually referred to as system architecture. It is one of the major standards to judge the

quality of a system, since a clean and efficiently organized internal structure makes a

system easy to understand, maintain and extend. As stated in Chapter 2, integrated

architectures show more advantages.

During system development, the complicated integrated system can be

decomposed into loosely coupled partitions which carry out relative independent and

complete functional ities. In traditional design, partitions are groups of functions or

procedures. In the Booch method, these partitions are called class categories, groups of

classes cooperating in certain use cases.

Interface should be clearly defined and provided between class categories to

accomplish the interactions. The interfaces tell the other categories of the system what

kind of functionalities are provided without specifying how they are implemented

internally. This guarantees the independence of each class category's design and

73

implementation. During the system maintenance, the modification can be limited within

certain class categories.

Two main class categories are identifed in this prototype: the spatial entity and

geometry element groups. According to the design principle, they are designed with

different emphasis. The element group concentrates on the positional information of each

element and the relationships among them. Whereas the entity classes group concentrates

on the non-spatial information, such as what kind of objects they represent, how they are

displayed on a map, etc. The entity classes have logical pointers to their composing

elements to contain the access to positional information. To make it easier for end users

to use the classes, some simple MS Windows style interfaces are implemented based on

the Object Window Library (OWL) provided by Borland C++ which developers can use

to customize for their own window style interface. This brings the third class category in

the prototype. Figure 3.20 shows the Class Categories in this prototype.

User Interface)

Spatial Entity)

Geometry Element)

Figure 3.20 Class categories in the spatial data modeling prototype.

74

3.4.2 Form of implementation

As this research focuses on object-oriented spatial data modeling, the prototype

is designed to be a fundamental one which other GIS applications can make use of and

build on. The prototype is not implemented as an executable system including all the

popular GIS functions, instead, it is implemented as a group of classes providing basic

modeling components or units, as well as modeling construction functionalities. They can

work as the kernel of data modeling module to handle the data conversion and storage.

To make use of these capabilities, an application systems can embed the classes just in

the same way as including other standard classes in C++. For particular applications,

other tools can be implemented by adding more classes for more convenient interface,

more complicated retrieval, more sophisticated processing functions, etc. This provides

flexibility for users to utilize the modeling capabilities of this prototype for different

purposes.

3.4.3 Implementation of modeling functionality

The prototype is designed as an object-oriented modeling fundamental group for

spatial information, so one of the focus of the implementation is the supporting modeling

functionalities and object-oriented features discussed in Section 3.2.3. In this section,

how these functions and mechanisms are implemented is going to be reviewed.

75

Class and encapsulation

All types of modeling components are implemented in the form of classes. As

analyzed before, to accomplish the required functionalities for the whole system, each

class should carry part of responsibilities which considered to be its own behavior. For

example, a node class includes the following main functions: NodeO, —Node() for

constructing and destructing node object; Read(), Write() for reading and writing data

about the node; GetConnectedArcO, AddConnectedArcO, RmConnectedArcO for getting,

adding and deleting the IDs of connected arcs, etc. Figure 3.21 shows the main definition

of the Node class.

class Node

I
protected:

long mt ID;
EleArray ConnectedArc;
void ReadQ;

void Write 0;
public:

Node(');
--'NodeQ;
long mt GetIDQ;
EleArray GetConnectedArcO;
EleArray AddConnectedArcO;

EleArray RmConnectedArcO;

)

Figure 3.21 Main attributes and functions in class Node.

76

In fact, all the classes have included functions for creating and maintaining the

corresponding objects, changing the components of an entity to reflect the change of real

situation. Thus the classes are relatively complete modeling units. Directly including

these classes in an application can access these functionalities of object creation and

operation to produce proper computation models for various applications.

As an object-oriented programming language, C++ provides basic support for

some of the mechanisms expected in the prototype, thus using C++ surely facilitates part

of the work. Implementation of encapsulation is a good example. Since every type of

modeling components is implemented as classes, the encapsulation of state and behavior

within model components is achieved through the use of the class in C++. As analyzed

before, to accomplish the required functionalities for the whole system, each class carries

part of responsibilities such as creating and maintaining the corresponding objects,

changing the components of an entity to reflect the change of real situation. These duties

are implemented in the form of functions as part of a class. While using C++ to

instantiate objects from the defined classes or inherit and specify new classes with more

features added to build up an application system, encapsulation is still obtained.

Message passing and inheritance

Similarly, communication with messages is also directly supported by C++, as

well as with the inheritance mechanism. Besides the inheritance already existing among

the classes defined in the prototype, all of the classes can be superciasses that others can

77

be derived from. For example, a national park can be defined as a subclass of the class

ComplexEntity, inheriting all the state and behavior from the class ComplexEntity

instead of defining them again. Of course, more features can be added to meet the need of

a particular application. With this support, the hierarchical structure of the modeling can

be obtained based on the classes defined (Figure 3.22). The very roots are the geometry

element classes, providing fundamental functions such as positional information

modeling, then the entity classes providing information of geometry construction. New

classes can be derived by specialization of these basic types with more special functions

and states introduced for a particular purpose.

Geometry elementsNodes, Arcs, Polygons

Spatial entities: Complex entities, Area entities,
Polyline entities, Point entities

Specialization

 Superclasses

erived classes

C Classes: NationalPark, ResidentialArea, Vegetation, Highway, etc.)

Figure 3.22 Hierarchical structure of the spatial information modeling

It was found that the template feature of C++ could also promote code reuse in

GIS applications. Template provides a mechanism for indicating those types that need to

change with each class instance [Lippman 1995]. This is done by parametrizing the types

within a template class definition. Not like inheritance enabling developers to share code

78

between classes on different levels of the inheritance hierarchy, template enables

developers to share code between objects on the same level of hierarchy. This feature

can be very useful for modeling entities sharing the same attributes and functions but of

different types, which is very common in GIS. But this feature was not used in the project

because the data used were relatively simple.

Aggregation

As mentioned before, object-oriented programming languages support complex

objects. These allow the construction of complex classes based on already defined classes

by directly declaring them as parts of the complex class. This implies one of the key

modeling capability expected in this prototype: aggregation. In practice, there are two

ways to implement this capability. One way is to directly declare a defined class as a

member of a new class. Another way is to include an ID of the defined class as a logical

pointer in the new class to make a connection to the defined class. The first method is

very practical for the situation when immediate access to an entity's components is

necessary, whereas the second one is clearer and more concise in structure and efficient

in storage. In fact, definition of class ComplexEntity is an example of using the complex

class mechanism to generate complicated class types based on pie-defined simple class

types. Figure 3.23 illustrates how ComplexEntity includes other class types as its

members. The EntArray is a pre-defined array type containing the IDs of the component

entities such as points, polylines in a complex entity. The IDs logically point to the

79

objects of the component entities where the detailed information is stored. Adding or

removing a component from a complex entity is achieved by maintaining the array of

IDs, as shown in the Figure 3.23.

class ComplexEntizy

I
protected:

long mt ID;
EntArray EntitylDs;

public:

ComplexEntity Q;
- ComplexEntity;

float GetID(');
EntArray GetEntiiy(');
EntArray AddEntity(,);
EntArray RrnEntity;

float GetAreaO;
float GetperimeterO;
EleArray GetBound;

EleArray GetBoundPoint;

void Remove 0;

)

Figure 3.23 Main attributes and functions in class ComplexEntity.

With the support of aggregation, more complex class types can be generated by

utilizing the basic classes. Extending the basic element to model more complicated

spatial entities can be much more straightforward.

80

3.4.4 Object indexing

Indexing of data is the key factor in retrieval efficiency. According to various

GIS applications, the index could be built on certain non-spatial features or on spatial

positions. Due to the specialty of GIS, spatial indexing is usually more important and

more challenging. For years, lots of researchers have worked on it, and lots of methods,

such as space-filling curves, quadtrees, R- and R+-trees, etc, have been proposed and

applied successfully [Laurini et al. 1992]. No matter what kind of index it is and what

kind of algorithm is used, the indexing result is usually a collection of pointers

(physically or logically) pointing to the stored physical data in certain orders to guide

retrievals. So in this research, instead of concentrating on discussion on the mature

indexing algorithms, some efforts have been made to design a new class to contain the

indexing result from an indexing program. Thus this class actually serves as an interface

between indexing programs and the data the index applied on (in this prototype, objects).

The following information is included in the class to make the connection: object ID and

its relative position in the array, size of an index array, etc. Users can write indexing

programs using certain algorithms and put the results into the array of index objects.

Figure 3.24 illustrates the main member attributes and functions of the index class.

class Index

{
protected.-

long mt ID;
mt Offset;
char * IndType;

IndArray ObjectlDs;

81

mt num;
public:

IndexQ;
.-IndexQ;
long ml GelObjectIDO;
mt GetOffsetQ;
IndArray AddlndexO;

Figure 3.24 Main attributes and functions in class Index.

82

Chapter 4

AN IMPLEMENTATION FOR CREOSOTE PROJECT

USING THE PROTOTYPE

In this project, the main purpose is to investigate the applicabilities of object-

orientation in spatial information modeling. As described in Chapter 3, a general object-

oriented spatial data model is first implemented as the core of a prototype. In this chapter,

discussion will be made on how the data model can be adapted to construct an application

module to model and manipulate DEM data obtained in the creosote project.

4.1 Creosote Project

4.1.1 Creosote Problem

Creosote is a kind of compound obtained from distillation of coal tar. It is a

colorless or yellowish oily liquid containing a mixture of phenolic compounds. Being

denser than water, it can penetrate the vadose and ground water zones. Between the early

1920s and 1964, a large amount of creosote was introduced into the soil and ground water

by the former Canada Creosote Ltd. plant located on the Bow River in downtown

Calgary. Release of creosote into the subsurface have resulted in the accumulation of

significant quantities of creosote liquids in the sand and gravel aquifer underlying the

site. Recently, blobs have been observed in the Bow River due to this creosote extensive

discharge.

83

4.1.2 Objectives of creosote project

Several groups of scientists have been working on the creosote problem. The

research work include evaluating the creosote migration and dissolution at the Creosote

Site in Calgary and studying the mechanism of creosote movement into the Bow River at

the same site. Our group has carried out research on the construction appropriate

evolutionary spatial model of the creosote site to help scientists to visualize the surface

changes over the past sixty eight years and decide on a proper course of action. The main

idea is, first, to use photogrammetry technologies to reconstruct the Digital Elevation

Models (DEMs) from available historical data, in this case, twelve pairs of historical

aerial photographs. Then the corresponding images has been processed and draped over

the reconstructed DEMs for more realistic rendering and visualization. Morphing

software has also been used on the DEMs to generate intermediate views and

demonstrate evolutionary changes of the creosote site over the years [Blais et al. 1995].

4.1.3 Data used in creosote project

In order to reconstruct evolutionary digital terrain models with good quality, it is

required to find all spatial information available about the creosote site on the Bow River,

dating back to as early as 1924. Historical aerial photographs and control information, as

well as some related environmental data for the past sixty-eight years (from 1924 to

1991) were obtained from the City of Calgary, Alberta Environment and MacKimmie

Library in the University of Calgary. On consideration of photo quality and reasonable

84

time intervals, twelve pairs of aerial photographs, corresponding to epochs of: 1924,

1949, 1951, 1953, 1956, 1958, 1966, 1975, 1979, 1980, 1982 and 1991 respectively, were

selected and digitized at 450 dots per inch (dpi) resolution.

4.2 Reconstruction of the DEMs

4.2.1 OEM Measurements

The PC based system Digital Video Plotter (DVP) [DVP, 1991] was used to

construct the stereomodels. After sufficient fiducial marks were located on the whole

twenty four photos, the DVP software was used to carry out the interior orientations and

camera calibrations with the expected accuracy. Then for each epoch, from four to six

ground control points were used to carry out the absolute orientation. Due to the fact that

quality and completeness of the available data varied from one epoch to another,

selection of the control points for absolute orientation was complicated. Details can be

found in the final report of this project [Blais et al. 1995].

Following the generation of the stereomodels, regular grids of 131 x 46 points (1

point every 10 pixels) for each epoch were measured with DVP, where each point has X,

Y and Z coordinates. So about 6000 points were measured for each of the eleven epochs,

except for the 1924 model. The photos for 1924 do not cover the area of interest

completely, as the north and west parts are missing. So a smaller grid of 112 x 30 points

was measured. Surface reconstruction of the creosote site can then be carried out based

on the measured grids of points.

85

4.2.2 Triangulation and Gridding

Triangulation and gridding were also used in this project to fill in the blank areas

in the DEM coverage provided by the City of Calgary and to form a regular grid over the

terrain for the whole creosote site area. They were also used to densify the grid data in

order to provide better visualization of the reconstructed ground surface. The

mathematical library IMSL, which is available on IBM RS/6000 computer on the

University of Calgary campus, was used in the gridding program GRID to process the

data sets and produce gridded data. A Delaunay triangulation was carried out internally

by the program GRID and a smoothing algorithm was applied to the interpolated data to

form a smooth grid surface.

4.2.3 Results of measurement

After the above described operations, DEMs of twelve epochs were

reconstructed with a lOm by lOm resolution. The whole creosote site is contained in a

1300m by 450m area.

4.3 Geometric Transformation of Digital Images

A geometric transformation was applied to the digital images before they were

draped over the corresponding reconstructed DEMs for visualization in order to make

sure that the extracted image does geometrically correspond to the ground DEM grid.

Figure 4.1 shows the relationship between an aerial photo and ground DEM in two

Ground Area

86

dimensions disregarding parallax effects between the photo and the ground spatial

coordinate system.

Corresponding Photo Area

Figure 4.1 Relationship between ground area and corresponding photo area.

To transform the ground area into the corresponding photo area, a 2D projective

transformation was applied. The formulas of a 2D projective transformation are:

(4.1)

where X, Y are the photo coordinates, x and y are the original ground coordinates, and a,

b, c, d, e, f g and h are the coefficients which can be estimated with a least-squares

method.

In the ground system, the size of the creosote site area is 1300 in x 450 in. By

maintaining the relative scale factor between the two axes and considering the size of all

the images that cover the same area at different epochs, the optimal size for the

transformed images was chosen to be 2200 pixels x 760 pixels. Six to nine points with

87

recognized ground features were selected within the creosote area to be used as control

points for each epoch and the corresponding photo coordinates of the control points of the

ground area have been obtained with DVP and then used to solve Eq. (4.1) for the

coefficients. Then, these coefficients are used to compute the corresponding coordinates

of the original image for each pixel of the output image so that the images have a uniform

size of 2200 pixels x 760 pixels. The gray value of the point located at these coordinates

is then interpolated by using a nearest neighbor resampling approach and assigned to the

corresponding point in the output image. The processing has been done on either the left

or right photos of the stereomodels covering the creosote site.

4.4 Generation of Intermediate Views Using Morphing

In order to visualize the evolutionary changes of the creosote site, the generation

of intermediate views was proceeded to fill up the gaps between the available epochs.

One 3D model for each year from 1924 to 1991 has been generated. This operation has

been done in two steps. The first step is to use a simple linear interpolation approach to

generate the DEM grids between two available epochs. For example, eight interpolation

values have been estimated for each elevation data between 1982 and 1991.

The second step consists in metamorphosing one image into another. In image

processing terms, metamorphosing is replaced by the new term "morphing". Another

linear interpolation of grey level has been implemented to generate intermediate views

between existing epochs (Figure 4.2).

88

Figure 4.2 Interpolation between 1991 and 1982.

1991
Image

Interpolated
Image

1982
Image

4.5 Rendering the 3D Surface

Visualization of the DEMs with images draped over is one of the most important

parts of this project. With all the DEMs of the twelve epochs completely reconstructed

and other fifty six epochs interpolated, as well as all the corresponding digitized

photographs preprocessed in the way described in the previous section, the surface of the

creosote site can be visualized with the corresponding images draped over. The

Advanced Visualization System (AVS) on IBM RS6000 was used to reconstruct the 3D

geometry view of the DEM for the creosote site based on the measured elevation data

89

sets for sixty eight epochs. Then the images were draped over the re-generated 3D model

to rebuild the historical scenes of the creosote site in three dimensions over the sixty-

eight years. Figure 4.3 illustrates this procedure.

1982
image

1982
DEM

Figure 4.3 Draping of image over the resconstructed DEM of the creosote site.

For visualization purposes, the following two groups of images are also

generated in TIFF format by using AVS: the images of the perspective view of DEMs

reconstructed; images of the reconstructed DEM with corresponding images draped over

to provide more information.

90

4.6 A DEM Data Management Module

The continuous change for the creosote contamination site can be viewed by the

series of generated 3D surfaces. It could be also very helpful to have some incorporating

tools to manage and retrieve the elevation information when users require detailed

elec,ation for certain positions at a certain time. So an application module was designed

and implemented using the developed prototype of spatial data model to provide the

following functions: DEM data conversion and storage, elevation data query, image

display.

4.6.1 OEM data modeling

In GIS applications, there are several ways to model the DEM information, such

as a grid, an irregular triangulated network (UN), contour lines surface, gradients, etc. In

grid format, only points at the intersection of two imagined orthogonal lines in x and y

are stored. To fit the real condition of the irregular terrain, tighter grid lines are used in

the area with much roughness, while sparse grid lines are used for relatively plain area.

However, regular gridding lattice (Figure 4.4) with the finest gridding interval is much

more often used due to the ease of generation, maintenance and processing. In this

project, a regular grid is the final generated data format to represent terrain.

91

Figure 4.4 A regular grid lattice for the terrain.

Figure 4.5 is the class diagram for using the implemented object-oriented

prototype to model the regular grid DEM data. Only a new class of EleNode needs to be

defined in C++ based on the node class type. The EleNode can directly inherit from the

basic model component Node class with TerrainlD, Elevation, etc. additional attributes to

hold position and elevation information and some more functions defined and re-defined.

So the terrain model can be built directly on the EleNode class type.

Figure 4.5 Class diagram for grid model of DEM.

92

4.7 Tool Implementation

When the C++ class types have been added, the model for DEM information has

been constructed. Information can be stored and some tools can be implemented to

manipulate and view the information.

4.7.1 Data construction

The original data sets are stored in flat files as a series of (X 1', ELEVATION).

The data construction function is designed to convert the data set for the, new model. It

reads the regular gridded DEM data set, sends appropriate messages to the model

handling function to generate and connect model components, and put the actual values

into them. A member function PutElevation() is implemented to carry out this task. Once

the objects for the model have been constructed, they can be saved and accessed by other

C++ tools later.

For information retrieval efficiency, the data need to be indexed. Member

functions IndexOnElevationO and IndexOnLocationO were coded to generate index on

elevation and position, corresponding to the most possible situations of retrieval

occurrence. The indexing result containing a list of objects']Ds in ascending order of

elevation then have been stored in the objects of Index class type described in Chapter 3.

The lists can be used to speed up retrievals when a query requires them. Figure 4.6 list

the main state and functions defined in the EleNode class.

93

class EleNode: public Node

I
protected:

long mt ID;
long mt TerrainlD;
float Elevation;

public:

EleNodeO;
float GetElevation();

float PutElevationO;

void IndexOnElevationO;
void IndexOnLocation(');

Figure 4.6 Main attributes and functions in class EleNode.

4.7.2 Information query

The information query tool is implemented to retrieve and display the stored

DEM model consisting of time, elevation and position information. The retrievals are

mainly in terms of one of the above three items versus the other two. This tool is

implemented using MS Windows style interface to enable the user to interactly select

query fields, query criteria and view the query results.

For example, a user may want to know in 1982, which areas in the creosote

contamination site have elevation between 1052.00 in and 1053.50 m. This is a query on

positions versus time and elevation. Using a common dialogue box as an interactive

selection mechanism, the user can first choose the type of selection criteria. In this

example, the query is applied on position so the button besides 'Position' is clicked on.

Then the values of selection criteria are entered (Figure 4.7). This information is then

94

passed to the search function and the function filters the points meeting the criteria and

then a new window pops up containing the list of the points (Figure 4.8).

OEM DATA MANAGER

File Query Help

Figure 4.7 Dialogue box for query field selection and query criteria input.

95

OEM DATA MANAGER

= file query Help

Figure 4.8 Query list result.

Another type of necessary query function in this project is to find out the nearest

boreholes to a certain point. This module allows users to select the borehole query option,

enter the coordinates of the point, then calculate the distances between this points and

boreholes, pop out the coordinate list of the first ten nearest boreholes. Figure 4.9, 4.10

show an example of this type of query.

96

File Query Help

Figure 4.9 Dialogue box for query fields selection and query criteria input.

OEM DATA MANAGER

File Query Help

Figure 4.10 Coordinate list of the queried nearest boreholes.

97

4.7.3 Image viewer

Two groups of images for the geometry reconstruction of the DEM were obtained

as an important part of the information. A tool named 1MG_VIEW is also implemented

to handle these images to help to visualize the information. Again, featured with

Microsoft Windows style interface, this tool can be used with ease.

The name of the image file is retrieved from the user using the common dialogue

box shown in Figure 4.11, which is provided with Microsoft Windows. This allows the

users to make their selection with ease and flexibility.

1949.111
1969. Lii
1970. Lii
1971.111
1972.111
1973. (ii
1974. tit
1975. tit
1976. [ii
1 977. Lii

Figure 4.11 The dialog box for image selection.

The image_viewer display the image at the top-left of the window; however, if the

window is too small, the edges of the image may extend beyond the boundaries of the

window. To deal with this kind of situation, a scroller control feature is added in the

98

display window (Figure 4.12). A user has the flexibility of utilizing the scroller bar to

move the image up and down, left and right in the window.

Figure 4.12 Image viewing window.

Creosote Site on the Bow Riuer 1982

This implementation is a test of the applicability of the object-oriented spatial data

modeling prototype. Due to the nature of data set used in this project, only NODE and

INDEX classes were applied for DEM modeling. But this does not imply that only these

two classes are useful. As a matter of fact, for applications which involve more types of

spatial features, the other classes are very useful to model various complex features. One

99

ongoing research project is to use this method in geomorphological and hydrological

applications. All the seven classes are being used to model the complicated

geomorphological features, such as channel and ridge networks. The prototype is

designed to be adaptable to various type of applications, simple or complex.

100

Chapter 5

CONCLUSIONS AND RECOMMENTATIONS

The main purpose of this project was to investigate the applicabilies of object-

orientation in spatial information modeling. The experiments have included

investigations of using the Booch Method to analyze and design a general object-oriented

data model for representing geospatial information, implementation of the prototype data

model in C++ and adaption of the model for an application handling the data set obtained

in the creosote project. This chapter summarizes the main conclusions and

recommendations obtained in this research and development.

5.1 Conclusions

1. Traditional logical models like hierarchical and network models have limitations in

handling the complexity of spatial information. The relational model is the dominant

logical model applied in current GISs. Simplicity and data independence are the

major features of a relational DBMS, but these features can also cause deficiencies in

the following sense for spatial information modeling: manipulation efficiency,

modeling capability, data semantics, modeling extension, programming interface, etc.

With its ability to address these deficiencies, the object-oriented model shows great

potential in GIS applications.

101

2. The object-oriented analysis and design (OOA & OOD) method is the integration of

the development of information system analysis and design methodologies and

object-oriented programming. Using OOA & OOD and an object-oriented

programming language for software development can help implement object-oriented

mechanisms in the system more thoroughly.

3. As the basic modeling unit in object-oriented analysis and design, a class

encapsulates both state and behavior features. The encapsulation makes the modeling

closer to a one-to-one mapping procedure. During the modeling, a developer can

concentrate on what role an entity takes (what it can do) in the world, instead of

what kind of role it takes and bow it carries out its task. Thus not only does the

development of the prototype benefited from it, but also the utilization of the

prototype to construct the application module had a smoother implementation using

this idea. Of course, it is still far away from a human being's way of thinking. But

compared - with conventional strategies, such as in relational modeling, object

orientation is one step closer to it, thus more natural, more direct and more efficient.

4. The complex object and class mechanisms provide the aggregation support in object-

oriented modeling. This enables the system to model complex entities by simply

composing the fundamental class types instead of going into very primitive elements.

The definition detail's are shared by different components with each one handling

certain information and functionalities to facilitate the application needs. This is very

102

beneficial for modeling geometric entities and general information. The modeling

efficiency can be improved greatly, and system extension can have more flexibilities.

5. The inheritance mechanism further enhances an object-oriented systems' modeling

capabilities. An inheritance hierarchy can clearly show the similarities shared by the

interested entities, and the sharing implies reusing of code or specification of model

components, which results in a dramatic increase in modeling and programming

productivity. In GIS modeling, developers only need to consider the special features

of certain interesting entities while building or extending an application based on well

defined fundamental class types.

6. Smoother program interfacing can be achieved through the similarities shared by

object-oriented programming languages (C++ in this project), the Booch method and

the way to organize the data in the prototype. During the development of the

prototype, the analysis and design using classes as the basic working units and the

standard deliverables of each step describe the model in a method very close to

object-oriented programming language, which can ease the implementation. During

the utilization of the prototype, because the class is the common building block of the

programming language and the data model, the programming gaps between the two

systems are thereby reduced. Model extension and Microsoft Windows style interface

development benefited greatly from this.

103

7. Compared with the conventional method, data semantics in object-oriented spatial

data models has been enriched greatly because the object-oriented system can

distinguish between classification, generalization and aggregation due to the support

of class, complex class types and inheritance. This eases the understanding and usage

of the spatial data model.

8. Direct support of class and complex class types imply logical and physical pointers

connecting various information components, either physically or logically.

Information access is usually achieved by navigation through pointers and no

physical operations are needed to reconstruct the information from pieces like in the

relational model. So the information access becomes more direct and straightforward

both conceptually and physically, and manipulation efficiency is improved.

5.2 Recommendations

This project aimed at exploring how the object-oriented mechanisms can be

applied and implemented in GIS applications instead of building a working system, the

data set used and the experiments done are relatively limited. Recommendations for

further research are as follows:

1. The development of the prototype has concentrated on design of general spatial data

model which can be adapted for some specific GIS applications, such as the

application for handling the DEM data set. To extend it to a complete and general

104

purpose GIS, more design in terms of data creation, storage and spatial analysis

functions, etc., should be considered from the initial analysis phases. These are very

important components in GIS and need further investigation.

2. In the implementation, data operations and system extensions still need C++ coding,

which is not suitable for general users. More research should be done to investigate

some high level language, such as CO2 in 02 system, to provide easier data

manipulation.

3. In the application module for the creosote project, most of the data queries are

relatively straightforward, and limited in query types and complexities. More

investigation should be done on more general data retrievals for different kinds of

situations.

4. The data set used was relatively small and simple. Larger size and more general types

of data sets should be tested to investigate various kinds of situations. Moreover,

analysis of storage and manipulation efficiency should be performed to refine the

system.

5. This study can provide some general ideas for data modeling and system architecture

for the ongoing Crown of the Continent Environment Information System (EIS)

development [Blais, 1996]. The Crown of the Continent project involves

multidisplinary users, multitype and multiresolution data collections, multilocation

computer systems in southwestern Alberta, southeastern B.C. and Western Montana.

105

An integrated object-oriented architecture GIS obviously is the most optimal design

approach to facilitate the variety of requirements. Of course, as mentioned above,

more comprehensive studies on design and implementation need to be done to build a

system of such scale. A recent doctoral study on handling large objects using object-

oriented approach in GIS [Zhou, 1995] also provides very valuable experience on

data storage facilities, query tools, spatial analysis functions, data conversion utilities,

etc, in GIS development.

6. Most of the object-oriented analysis and design methods, including the Booch

method, do not have sound theoretical support. System design and implementation

still largely depend on developers' experience. More study in this fields can improve

the design quality and consistency for GIS and other applications.

106

References

Abel, D.J. [1989]: SIRO-DBMS: A Database Tool Kit for Geographical Information

Systems. International Journal of Geographical Information Systems 3, pp. 103-1 15.

Bancilhon, F., C. Delobel and P. Kanellakis (editors) [1992]: Building an Object-oriented

Database System: The Story of 02 (San Mateo, California: Morgen-Kaufmann).

Bancilhon, F. [1988]: Object-oriented Database System. In Proc. of ACM Symposium on

Principles of Database Systems. Austin TX. May 1988.

Blais, J.A.R., W. Zhou and A.W. Colijn [1996]: On the Optimal Design of an

Environmental Information System for the Crown of the Continent, Proceeding of 96's

Canadian GIS Conference, Ottawa, on CD.

Blais, J.A.R., K. He, C. Larouche and C. Zheng [1995]: Final Report on the Project of

Evolutionary Spatial Modeling of Creosote Site on the Bow River, Calgary, Dept., of

Geomatics Engineering, The university of Calgary.

Blais, J.A.R. [1994]: On Database Considerations for Geoscience Information Systems,

Proceeding of 94's Canadian GIS Conference, Ottawa, pp.912-923.

Blais, J.A.R. [1987]: Theoretical Considerations for Land Information Systems, The

Canadian Surveyor, vol 41. No. 1, pp. 5 1-64.

Bertino, E. and L. Martino [1993]: Object-oriented Database System, Concepts and

Architectures, Addison-Wesley.

Booch, G. [1994]: Object-oriented Analysis and Design with Application Redwood City,

California: Benj aminlCummis).

Chen, P. [1976]: The Entity-relationship Model Toward a Unified View of Data. ACM

Trans. on Database System, 1(1), pp.9-36.

Coad, P. and E. Yourdon [1991]: Object-oriented Analysis, Prentice-Hall, Inc.

David. R., I. Raynal, G. Schorter and V. Mansart [1993]: GeO2: Why Objects in a

Geographical DBMS. In Advances in Spatial Database (Proceedings of the Third
Symposium Database), volume 692 of Lectures Notes in Computer Science, edited by D.

Abel and B. C. Ooi (Heidelberg: Sprinder-Verlag), pp. 264-276.

DVP Geomatic System Inc. [1991]: User Guide.

107

Egenhofer, M.J. and A. Frank [1992]: Object-oriented Modeling for GIS. Journal of the

Urban and Regional Information Systems Association, 4, pp. 3-9.

Faison, T. [1995]: Borland C++ 4.5 Object-oriented Programming, Fourth edition, SAMS

publishing.

Gamelin, T.W. and R.E. Greene [1983]: Introduction to Topology, Saunders college

publishing.

Garvey, M.A. and M.S. Jackson [1989]: Introduction to Object-oriented Database,

Information and Software Technology, vol. 31, pp. 521-528.

Goldberg [1983]: Smalltalk-80: The Language and Its Implementation, Addison-Wesley.

Herring, J. [1992]: TIGRIS: A Data Model for an Object-oriented Geographic

Information System. Computers and Geosciences, 18, pp. 443-452.

Herring, J. [1987] TIGRIS: Topological Integrated Geographic Information System, In

Auto-Carto 8, pp. 282-291.

Hull, R. and R King [1987]: Semantics Database Modeling: Survey, Application and

Research Issues. ACM Computing Surveys, 19(3), pp.201-260.

Jacobson, I., M. Christerson, P. Jonsson and G. Overgaard [1992]: Object-oriented

Software Engineering, A Use Case Driven Approach, Addison-Wesley Publishing

Company.

Jänich, K. [1984]: Topology, Springer-Verlag.

Koshafian, S. [1993]: Object-oriented Database (New York: Wiley).

Koshafian, S. and R. Abnous [1990]: Object-orientation: Concept, Languages and

Database (New York: Wiley).

Laurini, R. and D. Thompson [1992]: Fundamentals of Spatial Information Systems,

Academic Press.

Lee, Y.C. [1990]: A Comparison of Relational and Object-oriented Models for Spatial

Data. Technical Report, The University of New Brunswick.

Lippman, S.B. [1995]: C++ Primer, 2nd Edition, Addison Wesley.

108

Lukatela, H., G. Murdeshwar and M. Shandro [1989]: An Object-oriented Database for

GIS, Unpublished Manuscript.

Maier, D. [1982]: The Theory of Relational Database (Rockville, Marland: Computer

Science Press).

Mime, P., S. Milton and J.L. Smith [1993]: Geographic Object-oriented Database: A

Case Study, International Journal of Geographical Information Systems, 7, pp. 39-56.

Muller, J. [1993]: Latest Developments in GIS/LIS, International Journal of Geographical

Information Systems, vol. 7, No. 4, pp. 293-303.

Newell, R. [1992]: Practice Experience of Using Object-oriented Database to Implement

a GIS, In Proceedings, GIS/LIS Annual Conference (Bethesda: ASPRS and ACSM),
pp.624-629.

Ross, D.T. [1986]: Applications and Extensions of SADT, IEEE Computer, April, pp. 98-

106.

Rowe, L.A. and M.R. Stonebraker [1987]: The Postgres Data Model. In Proceedings of
the 13th VLDB Conference, edited by P. Stocker and W. Kent (San Mateo, California:

Morgan Kaufmann Publishers), pp. 83-96.

Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy and W. Lorensen [1991]: Object-
oriented Modeling and Design (Englewood Cliffs, New Jersey: Prentice-Hall).

Smith, P.D. and G.M. Barnes [1987]: Files & Database, An Introduction, Addison-

Wesley.

Snodgrass, R.T. [1992]: Temporal Databases. In Theories and Methods of Spatio-

Temporal Reasoning in Geographic Space, volume 639 of Lecture Notes in Computer

Science, edited by A. U. Frank, I. Campari and U. Formentini (Heidelberg: Springer-

Verlag). pp. 22-64.

Tansel, A.U., J. Clifford, S. Gadia, J. Sushil, A. Segev and R.T. Snodgrass (editors)
[1993]: Temporal Databases: Theory, Design and Implementation (California

Benjamin/Cummings).

Unisys [1994]: System 9 Manuals.

Van Oosterom, P. and J. Van den bos [1989]: An Object-oriented Approach to the Design

of Geographic Information Systems. Computer and Graphics, vol. 13, pp.409-41 8.

109

Veldon, H.E., Ten. and M.Van. Lingen [1990]: Geographical Information Systems and
Visualization. In Geographical Information System for Urban and Regional Planning,

edited by H. I. Scholten and J. C. H. Stillwell (Amsterdam: Kluwer Academic

Publishers), pp. 229-237.

Vijibrief, T. and P. van Oosterom [1992]: The GEO++ System: An extensible GIS,
Proceeding of 5th International Sysmposium on Spatial Data Handling, IGU Commision

on GIS. August3-7, Charleston, South Carolina, pp.40-50.

Vossen, G. [1991]: Data Models, Database Languages and Database Management

Systems, Addison-Wesley.

Worboys, M.F. [1994a]: Unified Model for Spatial and Temporal Information. The

Computer Journal, vol. 37, pp. 26-34.

Worboys, M.F. [1994b]: Object-oriented Approaches to Geo-referenced Information.
International Journal of Geographical Information Systems, vol. 8, pp. 385-399.

Worboys, M.F., H.M. Hernsbaw and D.J. Maguire [1990]: Object-oriented Data
Modeling for Spatial Database. International Journal of Geographical Information

Systems, vol. 4, pp. 369-383.

Yourdon, E. and L.L. Constantine [1979]: Structured Design: Fundamentals of a Displine

of Computer Program and Systems Design. Englewood Cliffs, NJ: Prentice-Hall.

Zhou, W. [1995]: Large Object Support Using an Object-oriented Approach in Spatial
Information Systems, Doctoral Dissertation, UCGE Report No.20084, The University of

Calgary.

110

APPENDIX:

Main Member Attributes and Functions Defined in the Class Library

class Node

{
attributes:

long mt ID;
EleArray ConnectedArc;

EntArray PointiD;
float Coord_x, Coord_y;

functions:
NodeO;

NodeO;

BOOL AveNodeO;

long mt NewNodeØ;
long mt GetiD;
EleArray GetConnectedArc;
EleArray AddConnectedArcO;
EleArray DeleteConnectedArcO;

void ReadCoordO;

void Remove;
void writeO;

void readO;

class Are

{
attributes:

long mt ID;
long mt Nodel]D, Node2ID;
long mt PolygonRlD, PolygonLlD;
EntArray PolylinelD;

float length;

functions:

ArcO;
-'ArcO;
BOOL AveArcO;

long mt NewArcO;
long mt Get]D;
float GetLengthO;

I/object ID
II IDs of the connected arcs
II containing point
II coordinates

II constructor

II destructor

II check existance of a node

II generate new object
I/get object ID
II read all connected arcs' ID
II add a connected arc
II remove the disconnected arc ID

II read coordinates

II Erase a node

I/object 1D
II IDs of the two end nodes

//]Ds of polygons left right to the arc

fl containing polyline
I/length

II constructor
II destructor

II check availability of an arc

II generate new arc

I/get object ID

II get length

111

EntArray GetPolyLine;
void GetPolygon;
void ChangNodeO;

void ChangePolygonO;
void ChangePolyLineO;

void Remove;
void wiiteO;
void readO;

class Polygon

{
attributes:

long mt ID;
EleArray BoundArc;
EntArray ArealiD;
float perimeter;

float area;

functions:
PolygonO;
-'PolygonØ;
BOOL AvePolygon;
long mt NewPo1ygon;
long mt GetID;
float GetPerimeterO;
float GetAreaO;
EntArray GetArealØ;

EleArray GetArcsO;
ElementArray GetNodesO;
void ChangArcsO;

void ChangeArealO;

void Remove;
void writeO;
void readO;

class Point: Node

{
attributes:

II get containing Polyline

II get containing polygon
II change ending nodes
II change containing polygon
II change containing polyline

II delete arc

I/object ID
II IDs of closing arcs
//ID of areal containing polygon

II perimeter

II area

II constructor
II destructor

II check availability of an polygon
II generate new polygon

I/get object ID

II get Perimeter

II get area

II get containing areal

II get closing arcs
II get bound nodes

II change boundary
II change containing real

II remove polygon

112

long mt ID;
long mt NodelD;
Entariy CompEnt;

functions:
PointO;

Point 0;
BOOL AvePointO;
long mt NewPoint 0;
long mt GetiD;
long mt GetNode]D;
long mt ChangeNode;
EntArray GetCompEntO;

EntArray ChangeCompEntO;

void Remove;
void GetPositionO;

void writeO;
void readO;

class Polyline

{
attributes:

long mt ID;
EleAnay ArciDs;

mt NumArcs;
Entarry CompEnt;
float length;

functions:

Polyline 0;
-'Polyline ();
long mt NewPoyline0;
long mt GetID;
BOOL AvePolylineO;

EleAnay RmArcO;
EleArray AddArc 0;
EntArray GetCompEnt0;

EntArray ChangeCompEntO;
void Remove;
float GetLengthO;
EleA.nay GetArcs 0;

II containing complex entity

II check availability of the entity
II generate new entity

II get the point ID

II get the node ID
II change the node
II get containing complex entity
II change containing complex entity

II remove the point
II get location

II Object ID
II]Ds of arcs contained

II number of composing arcs
II containing complex entity

II Generate new entity

II check availability of the entity

II remove an arc
II add an arc
II get containing complex entity
II change containing complex entity
II remove the entity

II get length

II get composing arcs

113

EleArray GetPoint;
void writeO;
void readO;

class Areal

{
attributes:

long intlD;
EntityArray Polygons;
EntityArray Bound;
float Perimeter;
float Area;

functions:
Areal 0;
—Areal 0;
BOOL AveArealO;

long mt NewAreal 0;
long mt Get]D;
EntityArray ChangeBound 0;
EntArray GetCompEntO;
EntArray ChangeCompEntO;
ElementArray GetPolygon 0;
void Remove;
float GetPerimeter0;

float GetArea0;
ElementArray GetBoundPointO;
ElementArray GetBoundO;

void write0;
void readO;

class ComplexEntity

{
attributes:

long mt ID;
EntArray Entity]Ds;
float Perimeter;
float Area;

II get location

II check Availability of the entity
/1 generate new entity

II change boundary
II get containing complex entity
II change containing complex entity
II get composing elements
II remove the complex entity
II get perimeter
II get occupation
1/ get boundary location
II get boundary arcs

I/object ID
II IDs of entities contained

114

functions:

ComplexEntity 0;
—ComplexEntity 0;
BOOL AveComEntO;
long mt NewCompEnt 0;
long mt GetiD;
EntArray GetEntityO;

EntArray AddEntity ();

EntArray RmEntity 0;

void Remove;

float GetPerimeter0;
float GetArea0;

ElementArray GetBoundPoint;

ElementArray GetBound;

void write0;
void readO;

class Index

{
attributes:

long mt ID;
mt Offset;
IndArray ObjectlDs;
char* IndType;

functions:
IndexO;
-'IndexØ;
IndArray NewlndexO;

long mt GetObjectiD 0;
mt GetOffsetØ;
void Remove;

IndArray AddlndexO;
IndArray RmlndexØ;

II check Availability of the entity
II generate new entity

fl get included entities

fl add an entity in the complex type
fl remove a member entity

II remove the complex entity

II get perimeter

II get occupation
II get boundary location
II get boundary arcs

//Ids of indexed object

I/index fields

II new index
//get object ID in array

II offset of DD in array

II remove an index

fl enter new member
fl remove a member

