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ABSTRACT 

The relational data model is the most widely applied logical model in current 

commercial GIS. Due to the increasing complexities of spatial information, this model is 

begining to show its inadequacies in the areas of data handling efficiency, data semantics, 

model extensibility and programming interface, etc. Object-oriented modeling, 

characterized by its concept of class which encapsulates both state and function features, 

exhibits great potential in modeling complex information. Using object-oriented 

technology, the positional and other attribute components, as well as fundamental 

operation functions of a geospatial entity can be modeled in an integrated way as a single 

object. Groups of classes describing geospatial features at a high level of abstraction can 

be implemented to form a generic modeling kernel. Support of class inheritance and 

complex classes offers a natural and efficient mechanism to extend the kernel to specific 

applications. Thus high efficiency and flexibility in model construction and extension can 

be obtained. In this project, the use of object-oriented methodology in spatial data 

modeling has been studied. First, a general object-oriented spatial data model of a high 

level of abstraction has been designed and implemented as the kernel of a GIS application 

prototype. An object-oriented analysis and design method, the Booch Method [Booch, 

1995], is used for design and Borland C++ is used to implement the spatial data model. 

Then, an application module is implemented using this prototype to model and manage 

the DEM data sets obtained in the creosote project [Blais et al. 1995] on the Bow River in 

Calgary. General conclusions and recommendations are included. 
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Chapter 1 

INTRODUCTION 

1.1 Relational Model in GIS 

A Geographic or Geospatial Information System (GIS) is a system of computer 

hardware, software and procedures designed to support the capture, management, 

analysis and display of spatially referenced data for solving complex planning and 

management problems. What type of database management mechanism is used to model 

and manipulate spatial information is the key contributing factor to system operating 

efficiency and model extensibility in a GIS implementation. 

Currently, a relational database management system (RDBMS) is the dominant 

DBMS used in commercial GISs. RDBMS is known for its maturity and success in 

handling ordinary thematic information. But as the development of GIS produced spatial 

information much more complex than ordinary thematic information. RDBMS began to 

show insufficiency in data handling efficiency, model extensibility, data semantics, 

program interface, etc. To solve these problems, a number of researchers have proposed 

an extended relational system with more complex data structures and manipulation 

functions added into the traditional relational paradigm to handle spatial information. 

Representative implementations include Postgres system [Rowe and Stonebraker. 1987] 
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and SIRO-DBMS [Mime 1993, Abel 1989]. These methods, while improving the system, 

still did not adequately resolve the problems. 

1.2 Object Orientation 

Another proposed solution is an object-oriented GIS. Object-oriented technology 

was first discussed in late 1960s by researchers working with the S]MULA language. In 

1970s, the widely used object-oriented programming language, Smalitalk language was 

developed at Xerox PARC, recording a milestone in the development of object 

orientation [Goldberg 1983]. Interest in Smailtalk was limited, however, due to separate 

interest in structural programming design at the time. After decades of maturing, object 

orientation began to exhibit higher efficiency in dealing with the increasing complexity of 

modern software systems over traditional methodologies, and gradually became popular 

not only in programming fields but also in database, system analysis and system design 

fields. Strong driving forces from academy and industry have brought more and more 

mature object-oriented systems and methodologies in the 1990s. 

The power of the object-oriented methodology stems mainly from the fact that it 

combines recognized software engineering principles which promote code reuse and 

system extendibility [Jacobson et al. 1992]. Central to object orientation is the concept of 

class, a software abstraction that includes both state and behavior features, which are 

represented by data structures and functions, respectively. The inclusion, called 

encapsulation in object orientation, ensures a class to represent an application entity by 
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keeping all data pertaining to the application entity bundled together with all the 

functionality applied to it. Computational models based on class are more direct and more 

efficient when compared with the separation of the data and functions in conventional 

strategies. Other important mechanisms contributing to the high modeling efficiency 

include inheritance, complex object, communication by message passing, etc. More 

details about these features in the context of GIS applications will be discussed in 

'Chapter 2. 

1.3 Object-Oriented Database 

Object-oriented database technology combines the representative power and 

flexibility of object orientation with the capabilities of database management systems. 

The first generation of object-oriented database dates back to 1986 when G-Base was 

launched by the French company, Graphael. In 1987, Servio Corp. introduced Gemstone; 

in 1988, Ontologic developed Vbase, and Symbolics developed Statice. Most of these 

first-stage systems served limited use in research departments of large companies. The 

launch of Ontos in 1989 marked the start of the second stage in this field. Third 

generation products such as Itasca and 02 [Bancilhon et al. 1992] were developed in the 

1990s. These products can be defined as database management system (DBMS) with 

DDL/DML which are object-oriented and computationally complete Bertino and 

Martino. 1993]. 
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Generally speaking, object-oriented database is still in its experimental stage, but 

its development has already had big impacts in fields which need to deal with complex 

and large data sets of inordinate volume where existing database technologies have 

shown inadequacies. Examples of these fields include computer-aided software 

engineering (CASE), computer-aided design (CAD), computer-aided manufacturing 

(CAM) and GIS. 

1.4 Object Orientation in GIS 

Object-oriented concepts were introduced in the context of GIS in the 1980s 

[Egenhofer and Frank. 1987, Worboys et at. 1990], and researchers gradually realized 

that GIS could benefit greatly from the object-oriented database technology, particularly 

in terms of architecture, performance, and ease of use. Thus in the past few years, a large 

amount of research have been devoted to incorporating object-oriented technology in 

GIS, some of the research aimed at developing an object-oriented GIS (OOGIS) directly, 

but most relates to building OOGTSs based on available OODBMSs. Noteworthy results 

include Integraph's TIGRIS [Herring 1992, 1987], AccuMap [Lukatela 1989], 

Smaliworid GIS [Newell 1992], Geo2 [David et al. 1993] and the GIS built on ONTOS 

by CSIRO Division of Information Technology, Australia [Milne 1993]. The Australian 

group also went further and performed a comparison among ORACLE, SIRO-DBMS (an 

extended relational DBMS with special GIS capability [Abel 1989] implemented on 

ORACLE) and their extended ONTOS. An impressive performance gain was reported 
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[Mime 1993]. Such research, though significant, proved the need for further study into 

aspects such as more efficient physical models for spatial information, optimal query 

languages, etc, before a commercially viable object-oriented GIS could result from the 

experimental systems. 

1.5 Research Objectives 

The purpose of this study is to investigate the applicability of object orientation in 

GIS. Considering that most research on object-oriented GIS is aimed at a general purpose 

system, it might also be very useful to develop an object-oriented prototype which 

contains general spatial data modeling components together with basic supporting 

functions. For some environmental or other applications which only need to deal with 

certain types of data and only need certain functions, these can be developed with special 

data types and corresponding functions implemented using the prototype at a more 

affordable size. Moreover, this prototype can also be a starting point for a general object-

oriented GIS with more sophisticated storage, indexing support and more comprehensive 

function designs. 

The basic idea is first, using object-oriented analysis and design (OOA and OOD) 

methods, to model the geometric and feature information of spatial entities in an 

integrated way as a single class (object), with the fundamental supporting functions 

embedded. A generic kernel is implemented in Borland C++ 4.5, composed of a group of 

classes describing geographic features at a high level of abstraction. Then, using this 
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modeling fundamental, an application is implemented to handle a set of Digital Elevation 

Model (DEM) data obtained from the creosote project [Blais et al. 1995] on the Bow 

River, Calgary. The implementation includes data conversion and storage, information 

retrieval and browsing, etc. Based on these experiments, conclusions and 

recommendations on applying object-oriented technology, such as OOA, OOD and 

object-oriented programming, can be formulated. 

1.6 Thesis Outline 

The background, principle, methodology, design and implementation of building 

an object-oriented prototype for an environmental GIS of the creosote site on the Bow 

River will be discussed in the following chapters. 

Chapter 2 discusses the background of applying object orientation in GIS. The 

contents include: analysis of the limitation of the traditional logical model in spatial 

information modeling, discussion of GIS architectures, fundamentals of object-oriented 

technology and its advantages over traditional strategies in GIS applications. 

Chapter 3 introduces basic ideas of an object-oriented analysis and design 

methodology, the Booch method, followed by how to use this method to analyze, design 

and how to use Borland C++ to implement an object-oriented spatial information 

modeling prototype. Discussions of what should be contained in an object-oriented 

spatial information modeling prototype is also included. 
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Chapter 4 begins with some background on the creosote project and the data set 

obtained in this project. Then the discussion concentrates on how to use the modeling 

prototype to build up an application system to handle the DEM data set. 

Chapter 5 includes the main conclusions and recommendations obtained from this 

project. 
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Chapter 2 

SPATIAL DATA AND SPATIAL DATA MODELING 

Currently, most of the commercial Geographic Information Systems use a 

Relational Database Management System (RDBMS), such as Oracle or Ingres, as the data 

manager. The RDBMS is known for its maturity and success in handling ordinary 

thematic information. As the spatial information is much more complex than the ordinary 

thematic information, higher requirements for a data handling mechanism are necessary. 

2.1 Characteristics of Spatial Information 

When a spatial object is studied, besides its thematic features, several other 

dimensions can be of great concern as well [Worboys 1994b]. These may include spatial, 

graphical, temporal and textual/numeric dimensions (Figure 2.1). All these features need 

to be considered as a whole while modeling spatial information. 

Spatial 

Temporal 

Graphical 

Textual/Numerical 

Figure 2.1 Dimensions of spatial object. 
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2.1.1 Spatial domain 

The specification of a spatial object depends upon the real-world space in which 

the object is situated. In GIS applications, the absolute and relative positional information 

of spatial entities are the most fundamental concern. The variations of other aspects are 

studied with respect to position so as to be within a common reference space. Thus the 

spatial dimension has always been the major focus of activity for GIS research. Among 

all the position related features, topological relationships are the most important ones. 

Because modeling topological information, such as enclosure and adjacency, requires 

more powerful model construction capability which is beyond what is provided by 

traditional models, it is one of the most challenging constraints for traditional logical 

models. The problem is mainly due to the limitation of the data semantics and model 

extension ability supported by the traditional models [Lee 1990]. This will be illustrated 

in the following section with more detailed analysis. 

2.1.2 Graphical domain 

Graphical domain mainly means the representation form of spatial objects in the 

cartography or visualization aspect of a GIS [Worboys 1994b]. The graphical domain 

focuses on a spatial objects' existence in presentation, while spatial domain is mainly 

concerned about spatial objects' existence in an application. This distinction was not 

clearly made until recently when more sophisticated visualization functions were applied 

and more advanced techniques were demanded in GIS. Graphical domain modeling, as 
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well as the transformation from the spatial domain to graphical domain are the main 

concern in this field [Veldon et al. 1990]. 

2.1.3 Temporality 

Temporality is an inherent aspect of spatial information. Time in information 

systems is measured along at least two separate axes. One is database time, the time when 

transactions take place within an information system. Another is event time, which refers 

to when the events actually occur in the application domain. Currently, according to 

which methods and abilities to represent temporal information, there are four types of 

temporal information organizations: static, static rollback, historical and true temporal 

database [Snodgrass 1992]. Static systems support neither database nor event time; 

static rollback systems support database time; historical systems support only event 

time; while temporal systems support both database time and event time [Snodgrass 

1992]. Only recently has the research towards a true temporal system been done even in 

general Database Management Systems (DBMS). This is mainly because of the 

inadequacy of the technological support, in terms of both hardware and software 

[Worboys 1994a]. Now more and more researchers in the GIS field are aiming at a GIS 

able to support temporal as well as spatial aspects of geographical information. The speed 

and capacity of hardware, along with the software that is now becoming available, 

making temporal information systems possible. But efficient temporal information logical 

modeling is still the "bottle neck" [Muller 1993, Tansel et al. 1993] in such systems. 
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It is quite common that any set of spatial information can have all of the above 

mentioned features and thus its modeling requires consideration of all the domains. For 

example, a model of a national park may have a polygon representing its boundary in the 

real world (spatial), polygons, points and arcs representing its cartographic form at 

differing levels of generalization (graphical), times when it was created in the real world 

and in the system (temporal), and attributes describing its area and name 

(textual/numeric). Modeling approaches must be able to represent all of them in an 

integrated format. 

2.2 Traditional Logical Model 

As an important component, the DBMS designed for GIS serves two major 

functions: to provide efficient management and flexible manipulation of data. An 

efficient spatial database minimizes storage and maximizes processing speeds, while a 

flexible one provides complete support mechanisms to express the user's view of how 

objects are organized in the real world. In this sense, flexibility is measured by the 

expressive power of the data model. At the core of the spatial database are data structures 

for spatial entities and relationships. Data structures that are flexible and efficient tend to 

be complex and difficult for the general user to understand and manipulate. It is 

sometimes necessary for the database designer to hide the actual data structure, called the 

physical model, with a logical model which highlights flexibility and ease of use. The 
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user interacts directly with the logical model, and the database management system will 

automatically map the operations to the physical model. 

These logical models have actually been implemented in existing database 

management systems and are also called database models, or implementation models. 

The evolution of logical models has been through the hierarchical model, the network 

model and the now popular relational model [Vossen 1991]. Currently, the relational 

model is the most popularly applied one in GIS, but studies show that all these three 

models have drawbacks in handling spatial information. 

2.2.1 Hierarchical and Network Models 

In the hierarchical model, the underlying logical structure is hierarchical or, more 

formally, a tree. The tree structure is recursively defined as a collection of nodes T. The 

collection can be empty, or consist of a distinguished node r, called the root, and zero or 

more (sub)trees Ti, T2, ..., Th, each of whose roots are connected by a direct edge to r 

[Smith et al. 1987]. In the tree, nodes represent record types and the edges represent the 

parent-child relationships between the ancestor and descendant nodes, respectively. 

Figure 2.2 shows a hierarchy among five record types. 
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d e k 

Figure 2.2 A hierarchical schema among five record types. 

The tree structure implies an N-to-one, written N: 1, mapping from children to 

parent instances. Thus one-to-one and many-to-many strongly connected relationships, 

which prevail in spatial. information, can be represented directly by hierarchies. The 

advantages of this model include data access of natural tree traversal type can be 

straightforward and fast, and the system is easy to extend. However, one has to duplicate 

trees to represent a many-to-many relationship, which is required quite often in 

topological information modeling, and huge redundancies can be caused. Thus this model 

is not practical for spatial data modeling. 

The network data model can be described, in the graph theoretical sense, as a 

graph having no cycles (with the exception of self links), and a collection of record types 

connected by a set of links to reflect the relationships between record types [Smith and 

Barnes. 1987]. Figure 2.3 depicts a network schema. 
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Figure 2.3 A network schema among eight record types. 

The network model is more flexible than the hierarchical model. Using sets, the 

network model can represent diverse types of associations among record types. It can 

implement M:N associations without large redundancies. But in its implementation, this 

model uses a lot of pointers to maintain the direct relationships between record types. 

Besides the storage space needed for the pointers, the system of pointers is very complex 

and difficult to maintain, which makes data manipulation very complicated [Smith and 

Barnes. 1987]. 

2.2.2 Relational Model and Limitation 

A relational DBMS presents to the user a logical model of the database in terms 

of tables, or relations. Part of the flexibility of the relational model stems from the 

organization of data into homogeneous units called tuples forming rows of tables. 

Simplicity and data independence are the majorfeatures of a relational DBMS, but can 

also cause deficiencies in the following sense for spatial information modeling: 
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Manipulation Efficiency 

Efficiency refers to the speed by which data can be processed. The primary reason 

why a relational database is slow is due to the requirement that all relations must be in the 

first Normal Formula (INF): the domains of attributes must only include atomic values 

(simple, indivisible) and the value of any attribute in a tuple must be a single value taken 

from the domain of that attribute [Smith and Barnes. 1987]. The 1NF forces a set (such as 

a spaghetti consisting of several arcs) to be decomposed into its elements (arcs) before 

being stored in tables. The 1NF assumption is fundamental to relational models, and the 

separation of related data into different tables is dictated by rules for good design on 

relational databases, mainly for integrity control. As a result, some complete geometric 

information can be retrieved only by addressing multiple tables. This needs to involve a 

JOIN operation which physically combines tuples from different relations through their 

common values. The operations demand a lot of storage space and computation time, 

thus slow down the process. 

Data Semantics 

Data semantics refer to the data model's capability to express the meanings of the 

data attributes and relationships. Such ability is particularly important for providing 

integrity constraints and efficient database browsing. A data model rich in semantics 

must distinguish between different types of relationships of classification, generalization 

and aggregation [Lee 1990]. The result of classification is a class of similar types. 
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Generalization is the process of generalizing several types with common properties into a 

more abstract super type. This process hides the differences between several classes and 

highlights their similarities. An aggregation can model composite entities from their 

components. 

The different types of relationships required in GIS exceed the above three. But 

the relational model cannot distinguish all of them because it provides only two 

constructs for representing relationships, one within a table and the other across tables 

through common values. This leads to a phenomenon called semantic overloading [Hull 

and King. 1987] indicating that a single construct has to support several types of 

relationships thus causing an ambiguity in meaning. 

Model Extension 

A data model that provides a limited number of data types and cannot support the 

creation of new types by the users lacks model extension capabilities. In a relational 

database, only several primitive data types such as integers, real numbers and character 

strings are supported. Above them are the relations, the only type-like construction a user 

can define. But relations are not true types and cannot be used in the same way as the 

built-in types. For example, a relation can reference an integer number but cannot 

reference another relation. 
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This deficiency is directly related to the 1NF assumption because 1NF does not 

allow nested relations. So the modeling for complex objects can be very complicated. For 

an example, aggregations can only be expressed in the form of SQL query such as 

SELECT lakes, path FR OM National_Park where Park _name =  Banff " .But this scheme 

usually requires the user to possess complete knowledge of the relations in order to form 

the queries, which is often a difficult task for general users. 

Program Interface 

Another problem faced by relational DBMSs is impedance mismatch [Bancihon 

1988], that is, the difference between the type system of the programming language and 

the type system of DBMS Data Definition Language (DDL) and Data Manipulation 

Language (DML). When the user of a database is a piece of software which accesses and 

manipulates data through a program interface provided by the DBMS developer, the gap 

between the two systems can hamper smooth interaction. The discrepancies are caused by 

two major reasons. 

First, a programming language is procedure oriented, whereas the DDL and DML 

are entity oriented. One system is designed for defining the behavior of entities through 

procedures while the other is for recording the state of entities through the use of data. As 

a result, programming languages in general lack the capability to maintain data items 

residing in permanent storage. Conversely, database languages such as SQL cannot be 

used for general programming. There are pre-compilers that allow a procedural language 
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to embed SQL commands in its source code, such as Pro*C in ORACLE, which enable 

the program to access a relational database. But this method only produces a hybrid 

environment, however, and does not truly integrate the two approaches. 

Secondly, a programming language (before Object-Oriented programming) 

supports more general and primitive data types such as integers, whereas a database 

language supports richer and more complex data types such as date type or data set. This 

reflects their differences in the degree of specialization and, as a result, likely produces 

problems during the transfer of data from one environment to another. For example, the 

transfer of records from a program to relation tables often involves considerable changes 

in data structure. 

2.3 GIS Architectures 

As the above analysis shows, general purpose DBMSs do not have direct support 

for geometric attribute types (e.g., point, polylines, polygons) and operators (e.g., 

distance, intersection, circumference, area). Multidimensional access methods and index 

mechanisms are not directly supported either. It is impossible to store geographic data in 

a natural manner, or to pose queries such as: "Select all lakes with an area of 1,000 

square metres that are located within 1 kilometre from a path ". So currently, extra 

modules have been added into GIS to enhance its capabilities to efficiently handle spatial 

information. This has led to three main different types of GIS: dual architectures, layered 

architectures, and integrated architectures [Vijlbrief and van Oosterom. 1992]. 



19 

2.2.1 Dual architectures 

The most common and straightforward type of commercial GIS architecture is the 

dual one. The basic idea of this architecture is that besides embedding a relational DBMS 

to handle the thematic information, another separate subsystem is included to store and 

retrieve geometric information. These dual architectures are easy to implement but not 

efficient in terms of performance. The thematic and geometric components of a certain 

spatial object are stored in two separate subsystems and linked by a common identifier. In 

order to retrieve an object, the two subsystems have to be queried and the answer has to 

be composed. Figure 2.4 illustrates one dual GIS architecture. Typical examples of GIS 

with dual architectures are ARC/INFO of ESRI and MGE of Intergraph. 

( 
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Figure 2.4 Dual GIS architecture. 

Because the dual architecture has direct support of a standard DBMS, the storage 

and retrieval of attribute data can be very efficient. However, this architecture has some 

severe drawbacks directly caused by the existence of two different storage mechanisms. 
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First, the integrity constraints of the system can be violated. For example, an entity's 

geometric information can still exist in the geometry storage subsystem while its attribute 

information has been deleted from the relational DBMS. Second, query optimization is 

impossible to the extent of the whole system. Third, the currency control is difficult, 

because the two storage managers have their own locking protocols. 

2.2.2 Layered architectures 

Because the drawbacks of dual architectures are directly caused by the 

coexistence of two different kinds of data managing mechanisms, another kind of 

architecture, layered architectures were proposed in GIS. Instead of two data managers, 

only relational data models are adapted in GIS to store the spatial data [van Oosterom and 

van Den Bos. 1989]. In order to fit the complexity of spatial data into the relational 

model, a spatial support layer is added on top of the standard relational database (Figure 

2.5). The responsibilities of this layer include: 

1. Converting the spatial information into the elementary data types of RDBMS. 

2. Translating spatial information queries into standard SQL queries. 

3. Implementing spatial indexes. These indexes are usually implemented by means of 

auxiliary relations that contain the required index data. 
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Figure 2.5 Layered GIS architecture. 

In this way, the support for transaction semantics and integrity constraints is 

restored and users can be freed from formulating difficult queries by the help of the 

additional layer. However, since the coherent geographic information has to be broken 

into its most primitive parts to be stored in separate tables, retrieval of the original 

geographic entities has to be done by joining relations, which may greatly effect the 

efficiency of the system because joining operations are the most time and space 

consuming operations in RDBMS. Another drawback of this methodology is that the 

spatial indexes are usually implemented by means of auxiliary relations which contain the 

required index data. This can speed up spatial access, but the queries become even more 

complicated due to the additional use of the auxiliary relations. This indirect 

implementation of an access method is less sufficient than a direct implementation in the 

DBMS kernel. System 9 [Unisys 1994] from Unisys and SIRO-DBMS [Abel 1989] from 

CSRIO Australia are characteristic examples of layered architecture systems. 
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2.2.3 Integrated architectures 

The inconvenience and inefficiency mapping from the complex spatial objects to 

traditional data types is a fundamental problem of GIS architectures. To avoid this, now 

more and more researchers are working on integrated architecture GIS, a kind of system 

with direct support for more attribute types and access methods. Based on these supports, 

users may extend the DBMS with their own basic abstract data types. Of course, for this 

purpose, extra efforts are needed to implement additional data types and access methods 

within the DBMS environment, which can soon become quite complicated. However, 

once this task has been performed, the advantages of this approach are great. The 

implementation of the data model becomes easy due to the availability of appropriate 

geometric types. The formulation of spatial queries becomes straightforward and efficient 

because of the direct support of extensible query language by means of adding more 

spatial operators such as distance, area, and intersection. 
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Figure 2.6 Integrated GIS architecture. 



23 

The development of integrated GIS architectures mainly depends on the 

availability of open DB's. According to the above analysis, this architecture cannot be 

feasibly based on a standard relational DBMS. The object-oriented paradigm, which is 

characterized by its support of users own defined types, makes a more open system. It has 

shown great advantages in model extension and flexibility over traditional paradigms. 

Most of research activities in this stream are focused on adapting the object-oriented 

model in GIS, trying to achieve working object-oriented GIS systems. Characteristic 

examples of integrated GIS architecture are TIGRIS [Herring 1987] from Intergraph and 

the research oriented system GBO++ [Vijibrief and van Oosterom. 1992]. 

2.4 Object-Oriented Models 

With the integration of database technology with the object-oriented paradigm, a 

new type of DBMS, the object-oriented DBMS (OODBMS) began to emerge in 1986 (G-

Base). Unlike the relational system that is characterized by its maturity based on the 

sound systematic theory and firm mathematical foundation [Maier 1982], the object-

oriented model has no standards yet, implying no common model as reference, no formal 

foundation for the concepts. However, different object-oriented models or systems share 

similarities in the fundamental supporting concepts and features, such as class, object, 

encapsulation, inheritance, etc [Garvey and Jackson. 1989]. In this section, fundamental 

object orientation concepts and features will be described, together with the features of an 
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object-oriented database model. Then the advantages of object-oriented systems for 

spatial information modeling will be summarized. 

2.4.1 Object orientation and object-oriented logical models 

Object-oriented methodology originated in the computer programming field. 

Many of the ideas come from the SJMULA language, but this method only became 

popular later as a result of the introduction of Smailtalk. The key to object-oriented 

programming is to consider a program as being composed of independent objects, 

grouped into classes, which communicate with each other by means of messages. The 

concepts of class, object, encapsulation, polymorphism and inheritance are the 

fundamental elements of object orientation. 

For the integration of database technology with the object-oriented paradigm, 

current OODBMSs are still at an experimental stage because of technical and commercial 

complications. Though the available OODBMS show different features due to the lack of 

standard object-oriented database specifications, they also exhibit a type of common 

database model which consists of certain generally accepted concepts with combined 

features of both object-orientation and database system. This collection of concepts and 

features can serve as the core model and identify the main differences in comparison to 

the traditional models. 

Class and Object 
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As the basic modeling unit, an object models a real world entity of interest in an 

application. It encapsulates the entity state and behavior through data structures and 

functions. The state is represented by the values of the object's attributes, whereas 

behavior is defined by the methods acting on the state of the object upon invocation of 

corresponding operations [Jacobson et al. 1992]. An object is an instance of a class type. 

A class describes a group of similar objects. It names and types the common components 

of the data structure of each object in the class and declares the behavior that can be 

applied to them. 

Class 

member states 
tt*4 

I I 

member functions 

Figure 2.7 A class encapsulates both state and behavior features. 

Objects and Identity 

In an object-oriented DBMS, each object is identified by a single OlD (Object 

Identifier). The identity of an object has an existence independent of the values of the 
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object attributes. By using the OlDs, objects can communicate with other objects and 

general object networks can be built. 

An important concept of the relational model is the key concept, an attribute or set 

of attributes whose values identify unequivocally each tuple in the set of all those tuples 

belonging to the same relation. A key consists of the value of one or more attributes and 

can be modified, whereas an OlD is independent of the state of the object. Two objects 

are different if they have different OlDs, even when their attributes have the same values. 

Moreover, a key is unique within a relation, whereas the OlD is designed to be unique 

within the entire database. By using OJDs one can define heterogeneous collections of 

objects which even belong to different classes. Indeed, a collection consists of a set of 

O]Ds which identify the objects belonging to the collection. These OlDs are independent 

of the class to which the objects belong. 

Researchers have investigated different approaches to constructing OlDs in order 

to have OlDs with richer semantics and be more efficient for information retrieval. One 

example is that an OlD consists of a pair - 'class identifier, instance identifier, system 

generated number' - where the first is the identifier of the class to which the object 

belongs, the second identifies the object within the class, and the third one is system 

generated serial number. When an operation is invoked on an object, the system can 

extract the class identifier from the OlD which then determines the method for executing 
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the operation. Usually this number is stored in a LookUp Table (LUT), and maintained 

by the system to keep track of objects. 

Encapsulation 

Encapsulation is one of the most beneficial concepts in the context of object 

orientation. Encapsulation combines data structures and functionality into objects. This 

mechanism ensures that an object represents an application entity naturally and 

efficiently by keeping all data pertaining to the application entity bundled together with 

all the functionality that applies to it [Coad and Yourdon. l99l]. 

Encapsulation also supports information hiding, that is, internal aspects of objects 

are hidden with specification for which features of an object to be accessible. The users 

only need to know what to perform instead of how to perform. Access to data and code 

has to be granted explicitly and achieved through sending messages. A message refers to 

a request to perform a method for an object. It results in the invocation of the method. 

Encapsulation in 000BMS 

Encapsulation in programming languages means that an object consists of an 

interface and an implementation. The interface is the specification of the set of operations 

which can be invoked on the object and is its only visible part. The implementation 

contains the data, i.e. the representation or state of the objects and the methods which 

provide, in whatever programming language, the implementation of each operation. 
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But this principle is not applied very strictly in database since it is not clear 

whether the structure is part of the interface or not, whereas in programming languages 

the data structure is clearly part of the implementation and is not visible. Query 

management needs direct access to objects' attributes, and this makes violating 

encapsulation almost obligatory. In fact, in databases, it should not be considered a 

disadvantage to know which attributes and references an object consists of. Queries are 

very often expressed in terms of predicates for the values of the attributes. Therefore, 

object-oriented DBMSs (OODBMSs) should allow direct access to attributes supplying 

'system-defined' operations which read and modify these attributes. These operations are 

provided as part of the system (and are not defined by the user) and they are implemented 

by the system in a highly efficient manner and at a low level. There are two advantages, 

described below, of being able to access or modify directly the attributes of an object 

{Bertino and Martino. 1993] 

• It avoids the users having to implement a considerable amount of methods which 

have the sole purpose of reading and writing the various attributes of the objects. 

• It increases the efficiency of the applications, in that direct access to the attributes of 

objects is implemented as system-provided operations. 

For the contrasting requirements, various OODBMSs provide different solutions. 

Some systems, provide 'system-defined' methods for reading and writing the attributes of 

an object. These methods are implemented efficiently and at low level by the system. 
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However, these methods can be redefined by the user (overriding). Other systems, such 

as 02, allow the user to state which attributes and methods are visible in the object's 

interface and which can be invoked from outside. Finally, in other systems, all attributes 

can be accessed directly, both while reading and writing, and all methods can be invoked. 

Message Passing 

The execution of an object-oriented procedure or function occurs through 

message passing (see Figure 2.8), instead of arguments passing in traditional systems 

[Jacobson et al. 1992]. A message usually includes the information about sender, receiver 

and the functions to be invoked. When received by an object, a message is matched with 

one of that object's methods or attributes, and then a method would start executing. The 

execution of a method can involve sending messages to other objects, and execution 

spreads through the system as messages are passed from one object to the next. When a 

method finishes executing, a value (object) may or may not be returned as control is 

passed back to the object that sent the message. The message serves as the interface 

between objects. 
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Figure 2.8 Object with messages coming. 

outside 

One of the most important features supported by the object-oriented methodology 

is inheritance: the ability to derive new classes from existing ones [Jacobson et al. 1992]. 

New classes can be constructed by extracting some features from existing classes and 

adding some new features, thus common specifications and elements can be reused. 

Inheritance is the mechanism that contributes most to the productivity increase attained 

with object-oriented systems. The class that the other classes inherit features from (both 

state and behavior) is called the superclass, while the inheriting class is called the 

subclass. 

There are two types of inheritance. Multiple inheritance allows a subclass to share 

features of several incompatible superclasses, while single inheritance only involves one 

superclass for a subclass. Single inheritance and multiple inheritance can be represented 

by tree structure and network structure, respectively (Figure 2.9 and 2.10) 
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inherits 

inherits inherits 

Figure 2.9 Single inheritance hierarchy. 

inherits inherits 

Figure 2.10 Multiple inheritance hierarchy. 

Polymorphism 

Polymorphism is another key concept, which means that the sender of a message 

does not need to know the receiving instance's class. The receiving instance can belong to 

an arbitrary class [Jacobson et al. 19921. A message can be interpreted in different ways, 

depending on the receiver's class type. It is the instance which receives the message that 

determines its interpretation, not the transmitting instance. Thus one operation can be 
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implemented in different ways in different classes. Conceptually, it is based on the 

assumption that the type (or class) of an instance needs not match the type (or class) of 

the object that the variable refers to. 

Polymorphism allows the specification of modules at higher or more abstract 

levels. The user only needs to know that another instance can perform a certain behavior, 

not which class the instance belongs to and thus not which operation actually is to be 

performed. This is a powerful tool for more flexible systems. 

Complex objects 

Complex object refers to the mechanism that the member attribute can be another 

object or a set of objects. Compared with the 1NF constraints in the relational model, the 

attributes of an object can be other objects, both primitive and non-primitive ones. This 

characteristic enables arbitrarily complex objects to be defined in terms of other objects. 

Completeness 

Most of the OODBMS have very basic supporting manipulation language, leaving 

a big part of complex manipulation functions to be implemented directly by the 

programming language. Great flexibility and completeness can be obtained from this 

combined support. 
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2.4.2 Advantages of object-oriented data model 

The object-oriented model has advantages in the areas of modeling and 

manipulation efficiencies, data semantics and model extension capabilities over the 

relational model, showing great potential in GIS applications. 

Modeling Efficiency and Extendibility 

All real world entities have both state and behavior features, thus conventional 

methods require extra efforts to combine the separated primitive data types and 

algorithms to model the entities. In relational systems, the state attributes of spatial 

entities are represented by tables while their behaviors are implemented by SQL 

programs or vendor-supplied subroutine calls outside the DBMS. The class, as an 

integration of both states and behavior information, enables the object-oriented logical 

model to represent entities more naturally and directly. Moreover, the complex objects 

and classes mechanism provides the aggregation support which is lacking in relational 

models. This enables the object-oriented system to model complex entities by simply 

composing the fundamental class types instead of going into very basic elements, which 

is very beneficial for modeling geometric entities. The modeling efficiency can be 

improved greatly, and system extension can have increased flexibility. 

Another object-oriented concept, inheritance, further enhances the systems' 

representation capabilities because it reflects the nature of the relationships between real 
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world entities. An inheritance hierarchy can clearly show the similarities shared by the 

concerned entities, and the sharing implies reusing of code which results in a dramatic 

increase in programming productivity. Hence users only need to consider the specialties 

of subclasses while modeling them. Building or extending an application based on well 

defined fundamental classes become more efficient and easier. 

Manipulation Efficiency 

Because of the direct mapping from real world entities to classes and objects, the 

retrieval of complex objects is more straightforward in an object-oriented system, 

compared with relational systems where queries usually involves complicated SQL 

commands to locate the elements and reconstruct the geometric information of spatial 

entities from the decomposed information. With some data access method encapsulated 

in objects, certain information retrieval can be carried out by a single message directly 

and easily. 

Data Semantics 

Based on the support of class, complex class types and inheritance, the object-

oriented system can distinguish between classification, generalization and aggregation, 

thus enrich its data semantics. 

Modularity 
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This object-oriented system also supports the concept of modularity [Coad and 

Yourdon. 1992]. Here modularity does not mean groups of similar and closely related 

functions in a traditional solution of a problem, but the general aspect of decomposition 

of a complex problems into collections of smaller units (modules) for easier handling. 

The object-oriented paradigm provides a natural way to modularize an application where 

the class serves as the unit for a module. 

Object Identity 

In an object-oriented system, unique identifications are generated for all objects 

by the system, independent of address or data value, and can survive updating and 

database reorganization. They are useful both for data access and for maintaining 

relationships among the objects. The essential advantage of using OlDs over keys as the 

object identification is that the risk of changing the uniqueness of the object identification 

can be completely avoided while updating the attributes. Also, since OlDs are 

implemented by the system, the applications programmer does not have to concern 

himself with selecting the appropriate keys for the various classes of objects. 

Smoother Program Interface 

A smoother program interface can be achieved through the similarities between 

object-oriented programming systems and OODBMSs. The most important one is the 

generic object concept which helps not only encapsulation but also data modeling. For 
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the first time, this concept makes models of real objects basic building blocks of a 

program. This provides both the programmer and database user with a common 

perspective and programming fundamental. Thus the semantics and programming gaps 

between the two systems has been reduced. 

In summary, the inadequacy of traditional logical models to handle increased 

complex spatial information efficiently, coupled with the emerging trend in the database 

field towards object-oriented database systems converges towards the utility of 

developing object-oriented model for GIS application. 
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Chapter 3 

SPATIAL DATA MODELING 

USING AN OBJECT-ORIENTED APPROACH 

As stated in Chapter 2, a logical model is actually a high-level interface 

between users and the physical model to makethe latter more flexible and easier for 

understanding and implementing. To construct a system with object-oriented modeling 

capability, the first step is building up the prototype for a physical model. An object-

oriented software development method is used to build up the prototype. This chapter 

describes the method to analyze, design and implement the prototype. The design and 

implementation will concentrate on the general spatial data model and related 

supporting functions. 

3.1 System Analysis and Design 

To develop a software package, the selection of analysis and design method is 

important. A software development method is a standardized means of presenting and 

communicating the requirements of a system and the design decisions, which provide an 

effective means of delivering those requirements to developers and users. This 

technology emerged as the solution to the 'software crisis' in 1970s, and has benefited 

from the phase of data-processing oriented methods to object-oriented method phase. The 

data-processing method distinguishes between processing and data, where processing, in 
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principle, is active and has behavior, and data are passive holders of information which 

are affected by functions. Software systems are typically broken down into groups of 

processings, whereas data are sent between the processings. Examples include SADT 

(Structured Analysis and Design Technique) [Ross 1985], SA/SD (Structured Analysis 

and Structured Design) [Yourdon 1979]. From the late 1980s, the Object-Oriented 

method began to dominate this field. 

ystem development method 

Data-Processing oriented 

(SA6O (SNSD 

Figure 3.1 Data-processing oriented and object-oriented system development methods 

In this project, an object-oriented method will be used to analyze, design and 

implement the system, a decision based not only because of its popularity, but also for the 

consistency of the development procedure within the planned system itself. 

3. 1.1 Object-oriented analysis and design 

The object-oriented analysis and design method is the integration of the 

development of information system analysis and design methodologies and object-
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oriented programming languages. In an object-oriented method, the basic unit of design is 

the object, with both state and behavior encapsulated, compared with the separation of 

the data and functions in conventional methods. An object can correspond directly to a 

recognizable real world entity or an abstraction based on that entity. This allows the 

software to obtain an almost one-to-one mapping with the real world. Compared with the 

fact that in traditional methods, a large amount of effort is spent applying sophisticated 

algorithms to the very basic and limited data types to construct complex models of the 

dynamically changing world, thus object orientation improves the modeling capability 

greatly. It also implements the sound concepts of information hiding, coupling, and 

cohesion. 

Compared to systems designed using traditional software development methods, 

these designs 

are more adaptable as the world (or the designer's understanding of the world) 

changes 

provide units that fit the environment rather than a specific system, and apply 

to any system dealing with that part of the environment 

make the system easier to understand, and thus to maintain, by both 

customers and software developers 
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There are several object-oriented development methods available. The early 

pioneers include Booch, whose first version of his Object-Oriented Design (OOD or the 

Booch Method) emerged in 1983; Jacobson, whose famous Objectory method was 

formulated in 1985. Other popular methods are the Object-Oriented Analysis (OOA) by 

Coad and Jourdon [Coad et al. 1991], Object Modeling Technique (OMT) by Rumbaugh 

et al., which is based on entity-relationship modeling [Chen 1976] with extension to 

modeling classes, inheritance and behavior [Rumbaugh et al. 1991]. The OMT and the 

Booch method have been combined to form a more powerful method in 1995. 

The Booch method was selected in this project because of its popularity. 

Another reason is that this method has an implementation software tool called Rational 

Object-oriented Software Engineering (ROSE) available with interface in Borland C++, 

the programming language used in this research. ROSE can generate frames of C++ code 

from the analysis deliverables directly thus easing implementation. 

3.1.2 Overview of the Booch Method 

The Booch method is an object-oriented method based on proven heuristics for 

developing quality software. It provides a model to support solid analysis and design, and 

allows the developers to enhance, correct, and maintain the same consistent model from 

the beginning of analysis through coding and implementation. 

As shown in Figure 3.2, the Booch method consists of five iterative steps: 
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Figure 3.2 Major steps of the Booch method. 

Requirements analysis, which provides the identification of the functionality 

of the system. 

. Domain analysis, which provides the key logical structure of the system. 

. System design, which provides the key physical structure of the system, 

maps the logical structure to it, and leads to working executable releases. 

• System evolution, which provides the growth and change on the 

implementation through successive refinement, ultimately leading to the 

production. 
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System maintenance, which provides the postdelivery evolution. 

Each step has deliverables which construct and document the progress from the 

understanding of the problem to the solution to the problem. With the deliverables 

specifying the design more and more clearly and closer to the computational model, the 

frame of code can be obtained. 

As this research is focused on prototype analysis, design and implementation, 

discussion will concentrate on the first three steps. 

3.1.3 An iterative approach 

Traditional software development methods used to insist on a rigid series of 

steps. Classically, first the developer discovered aspects about the user requirements, then 

the general design of the problem solution, and so on. Sub squent steps are always based 

on the assumed correctness and completeness of the previous steps, a view more often 

than not in conflict with the natural way of thinking in human. The difficulties and high 

cost for correction of early stage analysis and design has been one of the biggest 

problems faced by the traditional methodology. The Booch method allows for the reality 

that the development of a system is an iterative process--previous work must always be 

added to or refined as the results of that work are used in the next stage of development, 

which is more close to nature of human's thinking. 
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This iterative approach retains the classic steps: developers study the user 

requirements first and then map them to design. However, as developers continually 

integrate their analysis results into one underlying model, they can easily move back and 

forth between analysis and design to refine their study. In fact, the iterative approach 

allows developers to analyze a little, design a little, and then implement a little. In 

practice, the method specifically encourages early implementation of pieces of the system 

to aid in the requirements analysis process. Then the developer cycles back and goes 

through the procedure again, only for better understanding and design of the system. All 

of analysis, design, and implementation are accomplished, but in a series of cycles rather 

than three large leaps. 

3.2 Requirements Analysis for Spatial Data Modeling Prototype 

3.2.1 Requirements analysis 

Requirements analysis is the process of determining what the a system is 

expected to do. It is a high-level stage to identify the key functions the system is to 

perform, to define the scope of the domain that the system will support. The first step 

analysis results provide the fundament for further development. 

Requirements analysis essentially forms a conclusive understanding of what 

kind of functions the system is going to provide. The understanding is not fixed, instead, 
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it is changed often as the development cycle continues. It, however, does serve as a 

starting point and central reference for what the system is supposed to do. 

The understanding of the requirements usually is put in forms of two 

deliverables: system charter, which outlines the responsibilities of the system, and system 

function statement, which outlines the key use cases of the system. 

1. Requirements 

Analysis 

System function 
statement 

System 
charter 

Figure 3.3 Requirements analysis step and the deliverables 

3.2.2 Use case analysis 

Use case is defined as "a particular form or pattern or exemplar of usage, a 

scenario that begins with some user of the system initiating some transaction or sequence 

of interrelated events." [Jacobson et al. 1992]. For example, in a GIS system, to display 

the DTM of a certain interested area according to a user's request is a use case. The 

functionality of a system can be considered as the whole collection of use cases. In most 

of the object-oriented analysis and design methods, identifying use cases in an 

application is the first step to specify the complete functionality of an application system. 

The basic idea is that, at this stage, the scenarios that are fundamental to the system's 

operation are first enumerated. The functions of the application can be primitively 
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outlined by these scenarios. Analysis then proceeds by closer studies of each scenario, 

using the traditional storyboarding technique. As the study walks through each scenario, 

objects which participate in the scenario are identified. Then the responsibilities of each 

object, and how those objects collaborate with other objects, in terms of the operations 

each invokes upon the other, could be discovered. At this point, the system development 

is ready to enter the domain analysis phase, whose duty is mainly to deepen and refine 

the analysis results of this phase. The use case driven analysis ideas will be applied in the 

whole analysis and design, through to the implementation procedures. Moreover, further 

specified scenarios also serve as the basis of system tests. 

3.2.3 Requirement of the prototype 

In this project, the main purpose is to setup an object-oriented GIS prototype for 

modeling the digital terrain information. First, a general object-oriented spatial data 

model is implemented as the core of prototype, then the data model will be adapted to 

construct an application module to handle a set of DEM data. To reach these goals, the 

support in the following fields is critical. 

Two general types of modeling components 

In terms of GIS applications, aspects of the real world can be viewed as a 

collection of entities with combined features in different domains, such as spatial, 

graphical, temporal and textual/numeric domains. Interactions between entities exist and 

contribute to the changes on entities' features. A GIS modeling prototype should have 
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direct support for entities and the relationships between them as the fundamental model 

components. The entities can range from a national park to a transportation network, and 

relationships can include topological relationship and cause-result relationships. Further 

analysis techniques such as abstraction and classification will be applied in the following 

design and lead to concise and efficient groups of modeling components. The 

components can be implemented as class types, objects or attributes while using an 

object-oriented programming language. 

Support of modeling mechanisms 

As the research is an investigation in object-orientation's applicability in GIS, 

the core data model is designed to serve as object-oriented constructing fundamental to 

modeling different kinds of spatial information. This means that the prototype is expected 

to be customized for most situations, so the data model should be for general purpose in 

nature. Since it is impossible to include all kinds of components to correspond to all kinds 

of objects in the real world in this modeling prototype, the core of the modeling 

prototype should be of a high level of abstraction and contain very general class types. 

Support for specification from existing model components to generate new model 

components for particular situations is necessary. As this is expected to be an object-

oriented modeling prototype, the following object-orientation features should also be 

supported: encapsulation, inheritance, aggregation, message communications, etc. All 

these mechanisms should be implemented in a software system, and used to specify what 
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form a system should take. An object-oriented programming language such Borland C++ 

provides direct support for several of the above mentioned object-oriented features at 

certain levels, which makes the implementation of further support easier. Thus Borland 

C++ has been used as the implementation language. The object-oriented analysis and 

design method was applied to implement these features more thoroughly. 

Support of functions 

Since the prototype is designed to be used to build up other specific applications, 

besides the behavior of features of each component, the prototype should also have 

modeling capabilities to do the work such as generating new model components by 

inheriting from superclass types. Thus, basically two kinds of functionality are 

necessarily considered: system functionality which supports the creation, use, 

maintenance of the model components in the prototype; and operation functionality 

which is built on the prototype components by the user for feature operation. These are 

implemented in the form of functions. As this is in an object-oriented development 

environment, the functions can be classified into two categories: 

• the functions which mainly describe the objects' own behavior features such as 

displaying or changing features. Usually these are encapsulated within the class types 

of modeling components; 
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. functionalities to work with class types or operate on the class types. Usually these 

are encapsulated within the class types other than those of modeling components. 

Generally speaking, the prototype should meet the following main objectives: 

• modeling various type of spatial objects with one group of data modeling 

components; 

providing basic supporting manipulation functions, such as objects creation, object 

maintenance. 

3.3 Fundamental Class Types for Spatial Information Modeling 

3.3.1 Domain analysis 

Domain analysis is the process of defining a precise, concise, and object-

oriented model of the part of the real-world related to the application, or the problem 

domain. It is through this process that the detailed knowledge of the problem domain can 

be gained, which is needed to create a system capable of carrying out the required 

functions. 
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Figure 3.4 Domain analysis step and deliverables 

More specifically, domain analysis identifies all major class types and objects in 

the domain, including all data and major operations that will be needed to carry out the 

system's functions. It produces a central model containing all the semantics of the system 

in a set of concise but detailed definitions of classes and objects, which will map directly 

to final implementation. 

Good domain analysis not only simply refines and details the previous analysis 

results, but also adds appropriate levels of abstraction to a system. In fact, this is the 

phase when object-oriented analysis skills such as classification, instantiation, 

specialization, generalization can be applied further to lead to high efficient modeling. 

With classification, a limited number of class types can be obtained to represent the 

groups of countless entities in the real world, where each group includes entities sharing 

certain commonalities. Then with careful analysis and definition of the domain scopes, 

hierarchical structures can be built with more abstract class types on the root levels and 

more specified class types on the higher levels. In this way, reusability can be realized in 

the application system by support of inheritance mechanism to make the development 
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more efficient. It can also make it easier to further extend or modify the system by 

specializing the abstract types with the support of inheritance. Thus efficiency and 

flexibility can be obtained during both its development and its productive life. 

3.3.2 Domain analysis steps 

The following steps are performed during domain analysis: defining classes, 

defining relationships, defining operations, finding attributes, defining inheritance 

(Figure 3.5). 

- 

Define 

classes 
- 

Define 

relationships 

Define 

operations 
—) 

Find 

attributes 

Figure 3.5 Steps of domain analysis. 

3.3.3 Identify and define classes 

Define 

inheritance 

To identify and define the key classes is the first important step towards finding 

out major abstractions in the problem domain. More specifically, it can help to obtain 

knowledge about what domain the application system works in and what data it contains. 

This step can begin with identifying nouns in the system charter. It is important 

that the defining classes should stay at a logical level since the system charter usually 

contains some implementation characteristics. Domain related classes should be 

independent of any given implementation of a system, thus concentrating on the problem 
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domain, not on how domain entities map onto an implementation. By this, thorough 

understanding of problem and design at a certain level of abstraction can be guaranteed, 

which can lead to flexible implementation. 

3.3.4 Classification 

The identification of key classes and objects is the hardest part of object-

oriented analysis and design. Through its ability to abstract a class type from and for a 

group of entities sharing a certain commonality in structure, classification is a very 

helpful tool at this stage. Classification recognizes the similarity among key abstractions, 

eventually leading to smaller and simpler architectures. It also affects understandibility 

and effective communication greatly. For example, assuming that an application requires 

one to model "highways" and "streets "  There are two types of objects, but they share 

similarities in terms of state and behavior. They can be represented by only one type of 

class "transportation road", and "highways" and "streets" can be sets of instances, 

objects. The class can denote the common features such as road name, road type, length, 

display method, etc. The specialization can be obtained when the objects of a certain 

street or highway are constructed (Figure 3.6). 
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Figure 3.6 Classification and instantiation for the "Transportation Road" type. 

3.3.5 Fundamentals of topology 

A basic idea in algebraic topology is that most fundamental element for 

constructing geometric objects is called the simplex. A k-dimensional simplex or 

simplex is the convex hull s (vo,...,vk) of k+1 points v0, ... , v with (V1 —v0, ... , VkVO ) 

linearly independent [Jänich 1984]. There are 0-simplex (point), 1-simplex (segment), 2-

simplex (triangle), 3-simplex (tetrahedron), etc (Figure 3.7). Groups of simplices form 

complices, (Figure 3.8) and spatial space can be decomposed into complices [Janich 

1984, Gamelin and Greene. 1983]. 
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Figure 3.7 K-dimensional simplices. 

3-simplex 

(tetrahedron) 

Figure 3.8 Octachedral surface composed of eight 2-simplices. 

This idea was applied in the spatial information modeling. First, three geometric 

elements: node, arc and polygon were identified as fundamental composing elements for 

complex entities. Geometric information, in terms of both positional and topological 

information, is stored in terms of these elements. Complex entities contain the geometric 

information by holding logical pointers to the member elements. On the other hand, 

attributes of spatial entities are always directly related to the entities instead of the 

constructing elements. So three types of entity type: point, polyline and area, were also 
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identified to obtain direct access to the attribute information. More details about how 

these element types and basic entity types can be used to model general spatial entities 

will be discussed in the following paragraphs. 

3.3.6 Classification of spatial information 

Spatial information can be viewed as a combination of all kinds of spatial 

entities. Spatial entities can range from forestry coverage to land parcels. To have model 

components for every entity is not only impossible but also unnecessary. Abstraction can 

help to discover the commonality shared by spatial entities. Then classification 

techniques can be applied to draw several general classes which include entities based on 

the commonality found. 

Geometric characteristics are the most important feature of a spatial entity for 

GIS application. Classification can proceed according to spatial entities' geometric 

characteristics. Studies have shown that all 2-I) spatial entities can be classified into one 

of the following entity types: point, polyline, area and complex entity, these can serve as 

fundamental modeling units. More details about these four geometric abstract types will 

be given in the following paragraphs. 

Point Entity 

Point entity refers to a kind of spatial entity whose location is important, but 

whose size is too small to be represented as a line or an area. For example, in a 
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transportation network modeling system, the intersections can be represented as points 

(Figure 3.9). In reality, the ignorance of size really depends on different observation 

scales or different applications. If in another application of land usage administration, the 

size of intersection were to be important, and have to be modeled as polygons. 

intersection C 

(x3, y3) 

intersection B 
(x2, y2) 

intersection D 

(x4. y4) 

Figure 3.9 Intersections of roads can be represented as point type entities. 

For each point entity, the most basic and important attribute is its position. 

Usually, it is represented by a pair of coordinates, which could be in the form of UTM, 

3TM or other local map coordinates. Other concerned features, including logical identity 

in a GIS, can be attached as an attribute to describe the point. In the above example, the 

intersection point can have a set of attributes "Traffic Control", "Control Type" to hold 

information about whether there is traffic control in an intersection and what kind control 

it is. Other examples include in utility and transportation systems inventory and analysis, 

such point entities as the location of telephone poles or sewer manholes, or of individual 

houses with discrete addresses. 
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Polyline Entity 

This is used to represent a linear entity which has location and length, but where 

occupation can be ignored. For example, on a map showing if there is a highway network 

connecting city A, city B and city C, the highways can be represented as polyline type 

(Figure 3.10). The entities may be directly observable or may be conceptual only, as is 

the case of air routes. They are not necessarily only in a horizontal plane, like a borehole 

or a water level in a mine. Again, the ignorance of the entities' occupation depends on 

different observation scales and different applications. The same highway may have to be 

modeled as polygons in a land usage administration application. 

Figure 3.10 Transportation network represented as polyline type entities. 

For a polyline entity, the information of the set of points on this linear entity is 

important to record their position. This information can be stored as a set of coordinate 

pairs directly, or a set of the points' IN in the system and retrieved through the JDs when 
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required. The latter way is better for maintaining the correctness and consistency of the 

information. For most of the applications, attributes such as the length of the entity and 

the orientation are also very important. The specialties of each entity can be represented 

by the specification of its attribute set. 

Linear features are important in transportation studies, hydrology, utilities 

management and geology, and are prominent features on many types of mapping. 

Areal Entity 

Sometimes referred to as regions or zones, they may be identified for natural or 

man-made phenomena whose occupation cannot be ignored in a GIS application. The 

areal units may be entities like lakes, islands, territory with a particular soil type, or land 

parcels (Figure 3.11). The units can also be artifacts used for statistical reporting like 

census zones or delivering mail like postal zones, or discretizations (the creation of pieces 

or segments) of continuous space like climate regions. Other sets of attributes can be 

designed to represent special cases of area type entities. 
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Figure 3.11 Land parcels can be modeled by area units. 

In a simple areal entity, a polyline (modeled as polyline type) is included to 

serve as the boundary to locate the area. For some complicated cases where there are 

holes in an area, two or more polylines should be embedded to represent the location of 

the holes. In this project, concentration has been placed on simple area! modeling. The 

popular way to include polyline information is to store the system ID to build up the 

logical connection with physical data. Other particular spatial properties associated with 

area entities are: area extent (the size of forestry coverage), perimeter length (the extent 

of a shoreline), etc. 

Areal units are important in socio-economic studies, analysis of terrain 

conditions, land use and natural resources inventory, and recordings of real estate. 

Complex Entity 
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This kind of entity usually has a combination of more than one of point, polyline 

and area types. For example, a park might have paths as polyline type entities, picnic 

spots as point type entities, lake and meadow as area entities (Figure 3.12). Complex 

entities usually can be decomposed into and modeled by the three basic types. But in 

some cases when there are attributes and indexing mechanisms directly related to the 

complex entity as a whole instead of related to each component, a complex entity type 

- can also be used in addition to its components of the three basic types. This can improve 

query speed at the cost of limited redundancy (extra complex entity type itself) by 

reducing the efforts to reconstruct the complex entity from components at running time. 

In fact, redundancies of storing the attributes of a complex entity repeatedly in all of its 

components can also be reduced this way. 
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Figure 3.12 Park represented by a complex entity type consisting of point, polyline and 

area entity types. 

Usually, a complex entity has a polyline to specify its boundary and the 1D of 

the boundary polyline should be placed separately from its components' IDs. Complex 

entities include three sets of system IDs of the included point, polyline and area entity 

types to connect to the physical data. Which of the component entities should be listed in 

the ID sets depends on which of them are indexed or expected to be queried at this level. 

For example, both path intersections and picnic spots are point entities in park entity, but 

assuming that users are only concerned about where to find picnic spots, only IDs of 

picnic spots are necessary to be stored in the ID sets. 
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So these four fundamental spatial entity types can serve as four superclass types 

to model various kinds of spatial entities (Figure 3.13), and the complex entity type is 

based on the availability of the other three types. 

National Park 

Residencial Area 

Pipelines Network 

Highway Network 

Road Intersection 

Polyline Entities 

Land Parcel 

Vegetation Coverage 

Figure 3.13 Spatial entities and modeling class types 

3.3.7 Fundamental geometry elements 

Telephone Pole 

In spatial information, an important part is the topological relationships between 

spatial entities, which include enclosure, connectivity and adjacency [Blais 1987]. Good 

spatial information modeling must be able to reflect topological information. For this 

purpose, geometry knowledge and skills are naturally applied in a GIS study. In spatial 

information modeling, three geometric elements can be introduced to make all the spatial 

entities be built on them, then geometry can be applied for the topological information 

study. 
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Three basic geometric elements to construct complex objects are node, arc and 

polygon. 

Node 

Called a vertex in geometry, node refers to a point that terminates a line or a 

point at which lines cross. Therefore it has a property of connectivity, being related to the 

lines (Figure 3.14 (a)). 

Node is different from point in this context: it is considered as the abstraction of 

point. The principal attributes of a node are its position and relative relationship with arcs 

and polygons, such as on what arcs or polygons the node is situated. A point can be 

defined based on a node to hold the positional information, but usually the focus is placed 

on non-positional features, such as what kind of object it stands for. 

Are 

Referred to as edges in geometry, both ends of an arc terminate in two nodes. 

Every arc has, and only has, two nodes (Figure 3.14 (b)). 

The difference between an arc and a polyline is very similar to the difference 

between a node and a point in terms of focus on the included information. One special 

case is a polyline may contain one or more arcs, so a polyline may contain one more 

piece of information: how it is composed. 
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Polygon 

A polygon refers to a piece of surface bounded by a minimum of three arcs 

(Figure 3.14 (c)). 

The relation between a polygon and an area entity type is similar to the 

difference between an arc and a polyline. 

Node 1 Node B 

Node 4 

Node 

Node 2 

(a) 

Node 5 

Arc 

Node A 

Figure 3.14 Geometric elements. (a) Nodes. (b) Arc. (c) Polygon. 

These three elements can be grouped together with the four entity types as the 

seven fundamental modeling class types. Every complicated spatial entity can be first 

modeled as one of the four entity types, then the entity types can be decomposed into the 

very three basic types of geometric elements, and at this level, topological information is 

easier to store because the relationship between the elements is relatively clearer and 

more systematic from the support of geometry theory. 
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3.3.8 Defining relationships 

Classes do not exist in isolation. Rather they are related in a variety of ways to 

form the class structure for the domain. Finding relationships help further define the 

classes by exposing their contents and dependency to the contents of others. There is an 

important relationship in spatial information modeling: aggregation, which denotes a 

"part of' relationship. It occurs when an entity is physically constructed from other 

entities, or an entity logically contains another entity (Figure 3.15). It reflects the way 

spatial entities are structured. It is also essential for the modeling of complex entities. 

Thus aggregation should be clarified and defined in this modeling prototype. 

Cardinality refers to the number occurred in a relationship between two objects. 

It is usually expressed by four numbers defining the minimum and maximum number of 

objects occurring in the relationship. For example, an arc can and does only have two 

nodes, a node can be connected with one or many arcs (Figure 3.15). So, from node to 

arc, the cardinality is 1-N, where N represents always greater than one, from arc to node, 

the cardinality is 2-2. Cardinalities are important aspects necessary to include in 

implementation. Some of them are part of integrity constraints, too. As cardinality 

reflects the state of a relationship at any given time, and some relationships may have 

varying cardinality depending on the states of the objects involved, so the constraints 

which may be restricting at certain times should be also included in the relationship 

specifications. 
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"Part-of" relationship, a node is a part of an arc 

Figure 3.15 Cardinality of the relationship between the classes arc and node. 

3.3.9 Relationships between the seven classes 

The main class types have been identified, but the relationships between the 

classes and the detailed definitions still need to be specified. 

The relationships between them can be clarified as follows. First, complex entity 

types consist of point, polyline and polygon types. 

A polygon is part of an area entity. An area entity can include one or more 

polygon. 

A polygon is bounded by three or more arcs. When no attribute connected with 

arcs are of interest in an application, the polygon can be directly modeled by three or 

more nodes. 

A polyline contains one or more arcs, thus it also contains two or more nodes. 

When no attribute connected with arcs are of interest in a polyline, the polyline can be 

directly modeled by nodes. 
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An arc has two nodes, a node can be on several arcs. When a node is extended to 

model an independent point, a node can be on no arcs. 

Figure 3.16 shows aggregation existing between these seven class types with 

corresponding cardinality constraints. 

Figure 3.16 Class diagram. 

3.3.10 Define operations 

With the above analysis, a general abstraction about what classes need to be 

included in an application domain and how they relate to one another has been obtained. 

But this is just a static model. How the instances of the classes, objects, functions in the 
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application are not known yet. An additional step to identify the major operations 

required to support class structure and system functions is needed. 

As mentioned before, the complete functionality of the system is defined by the 

use cases listed in the system function statement. Expanding a use case into a detailed 

scenario shows the operations needed to accomplish the use case. Modeling scenarios 

shows which objects collaborate in the use case and identify the operations needed with 

each object. 

The use case analysis method was used in the operation definition. As the focus 

of the prototype is model construction, the main use cases are creation, alternation and 

deletion of the entity or element classes. The design of a function for creating a polyline 

entity can be used as an example here. To create a polyline entity, the set of arcs should 

be read in and checked if they already exist. If not, a message is passed to the arc class to 

activate the construction function to generate them. To create an arc, the pair of nodes 

have to be checked, too, and if necessary, a message is passed to node class to generate a 

node object. Then the uniqueness of the arc should be checked before the arc object 

created. So for this simple function, several cooperating membership functions have to be 

defined in classes of nodes and arcs. Similar analysis on other use cases can lead to the 

full list of functions for each class. Figure 3.17 is the object-scenario diagram of the 

example. 
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Figure 3.17 Scenario for adding a new polyline. 

An object-scenario diagram is used to help in the analysis. It provides details 

about how objects collaborate to realize a use case, tracing the execution of a scenario. 

The diagram is usually incorporated with detailed script. The steps in the script align with 

the message invocations, and express conditional statements and iterations, which lead to 

a design close to the computational model. Developing object-scenario diagrams gives a 

more complete picture of the operations needed for each class. 

3.3.11 Attribution 

Attribution is the process of determining the application related properties that 

describe the classes. This section will introduce the some of the main attributes defined in 

the classes to model position information. 

First of all, every class has a system ID attribute to contain a unique identifier of 

objects. The IDs can be numbers generated by the system, and a copy of ID is always 
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stored in a LookUpTable (LUT). The LUT is updated by the system whenever an object 

is created or deleted so that the system can keep track of objects and ensure the 

uniqueness of the IDs. Ideas are also proposed to contain certain semantics in IDs. One 

example is to add extra numbers in the ID to hold class type information to ease some 

retrievals. 

For each class, the most important attributes are their positional ones. For the 

node class, the pair of coordinate values should be included, as well as the IDs of the arcs 

connected with the node. An are contains the IDs of a pair of the nodes and IDs of right 

and left polygons so as to locate the arc and record an adjacency of two polygons. A 

polygon keeps IDs of the boundary arcs (or nodes if directly modeled by them), together 

with the IDs of surrounding polygons. For arcs and polygons, the location retrieval needs 

to go through two more levels, but this organization method can help to maintain data 

consistency and correctness. 

To set up attributes for node, arc and polygon classes in this way, the position 

information is contained in a safe way in terms of consistency, and the relationships 

among these three types of entities can be traced easily. For example, if one wants to find 

out which polygons a node A is situated on (Figure 3.18), first the arcs connected to the 

nodes can be obtained (AB, AC, AD), then all the polygons contain any of the selected 

arcs can be extracted (P 1, P2, P3). 



70 

B 

Figure 3.18 Polygons on which node A situates. 

For the entity class types of points, polylines, areas, complex entities, all of them 

carry the ]Ds of the composing elements to make the logical connections to the element 

classes, where the data are physically stored. 

More attributes can be added in the entity and element classes to fit different 

application requirements. 

3.3.12 Defining inheritance 

This step is to discover generalizations, which are usually called superciasses, 

and specialization, which are usually called subclasses, within similar domain types. 

Finding semantically correct inheritance structures provides good reuse, because 

the states and behaviors of the superclass do not have to be rewritten for each of the 

subclasses. It also allows simplification, since developers can work with the specific or 

general object as appropriate. Generalization and specialization are the main tools used to 

do this job. 
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As these seven class types are designed as fundamental modeling units to 

compose other classes with more specialties, they are superciasses themselves without 

much inheritance occurring among them. Only the definition of point type inherit from 

the node type. But whenever building an application based on this, inheritance can 

improve reuse of code greatly. 

3.4 System Design and Implementation 

The previous analysis steps focus on understanding the domain and abstracting 

the computational model. System design focuses on how the computational model can be 

implemented. It is the process of expanding what was learned from the domain analysis 

and then determining effective, efficient, and cost-effective implementation to carry out 

the functions and store the data defined in domain analysis (Figure 3.19). 

3. System 
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Design 
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Figure 3.19 System design step and the deliverables 



72 

As more details are required for a working implementation than for the domain 

analysis, an iterative approach rather than a full scale leap is even more imperative than it 

was during domain analysis. The Booch method encourages series of smaller steps and 

graduate integration leading to a working system. 

3.4.1 Structure of the prototype 

How the functional components are organized to construct a software system is 

usually referred to as system architecture. It is one of the major standards to judge the 

quality of a system, since a clean and efficiently organized internal structure makes a 

system easy to understand, maintain and extend. As stated in Chapter 2, integrated 

architectures show more advantages. 

During system development, the complicated integrated system can be 

decomposed into loosely coupled partitions which carry out relative independent and 

complete functional ities. In traditional design, partitions are groups of functions or 

procedures. In the Booch method, these partitions are called class categories, groups of 

classes cooperating in certain use cases. 

Interface should be clearly defined and provided between class categories to 

accomplish the interactions. The interfaces tell the other categories of the system what 

kind of functionalities are provided without specifying how they are implemented 

internally. This guarantees the independence of each class category's design and 
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implementation. During the system maintenance, the modification can be limited within 

certain class categories. 

Two main class categories are identifed in this prototype: the spatial entity and 

geometry element groups. According to the design principle, they are designed with 

different emphasis. The element group concentrates on the positional information of each 

element and the relationships among them. Whereas the entity classes group concentrates 

on the non-spatial information, such as what kind of objects they represent, how they are 

displayed on a map, etc. The entity classes have logical pointers to their composing 

elements to contain the access to positional information. To make it easier for end users 

to use the classes, some simple MS Windows style interfaces are implemented based on 

the Object Window Library (OWL) provided by Borland C++ which developers can use 

to customize for their own window style interface. This brings the third class category in 

the prototype. Figure 3.20 shows the Class Categories in this prototype. 

User Interface ) 

Spatial Entity ) 

Geometry Element) 

Figure 3.20 Class categories in the spatial data modeling prototype. 



74 

3.4.2 Form of implementation 

As this research focuses on object-oriented spatial data modeling, the prototype 

is designed to be a fundamental one which other GIS applications can make use of and 

build on. The prototype is not implemented as an executable system including all the 

popular GIS functions, instead, it is implemented as a group of classes providing basic 

modeling components or units, as well as modeling construction functionalities. They can 

work as the kernel of data modeling module to handle the data conversion and storage. 

To make use of these capabilities, an application systems can embed the classes just in 

the same way as including other standard classes in C++. For particular applications, 

other tools can be implemented by adding more classes for more convenient interface, 

more complicated retrieval, more sophisticated processing functions, etc. This provides 

flexibility for users to utilize the modeling capabilities of this prototype for different 

purposes. 

3.4.3 Implementation of modeling functionality 

The prototype is designed as an object-oriented modeling fundamental group for 

spatial information, so one of the focus of the implementation is the supporting modeling 

functionalities and object-oriented features discussed in Section 3.2.3. In this section, 

how these functions and mechanisms are implemented is going to be reviewed. 
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Class and encapsulation 

All types of modeling components are implemented in the form of classes. As 

analyzed before, to accomplish the required functionalities for the whole system, each 

class should carry part of responsibilities which considered to be its own behavior. For 

example, a node class includes the following main functions: NodeO, —Node() for 

constructing and destructing node object; Read(), Write() for reading and writing data 

about the node; GetConnectedArcO, AddConnectedArcO, RmConnectedArcO for getting, 

adding and deleting the IDs of connected arcs, etc. Figure 3.21 shows the main definition 

of the Node class. 

class Node 

I 
protected: 

long mt ID; 
EleArray ConnectedArc; 
void ReadQ; 

void Write 0; 
public: 

Node('); 
--'NodeQ; 
long mt GetIDQ; 
EleArray GetConnectedArcO; 
EleArray AddConnectedArcO; 

EleArray RmConnectedArcO; 

) 

Figure 3.21 Main attributes and functions in class Node. 
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In fact, all the classes have included functions for creating and maintaining the 

corresponding objects, changing the components of an entity to reflect the change of real 

situation. Thus the classes are relatively complete modeling units. Directly including 

these classes in an application can access these functionalities of object creation and 

operation to produce proper computation models for various applications. 

As an object-oriented programming language, C++ provides basic support for 

some of the mechanisms expected in the prototype, thus using C++ surely facilitates part 

of the work. Implementation of encapsulation is a good example. Since every type of 

modeling components is implemented as classes, the encapsulation of state and behavior 

within model components is achieved through the use of the class in C++. As analyzed 

before, to accomplish the required functionalities for the whole system, each class carries 

part of responsibilities such as creating and maintaining the corresponding objects, 

changing the components of an entity to reflect the change of real situation. These duties 

are implemented in the form of functions as part of a class. While using C++ to 

instantiate objects from the defined classes or inherit and specify new classes with more 

features added to build up an application system, encapsulation is still obtained. 

Message passing and inheritance 

Similarly, communication with messages is also directly supported by C++, as 

well as with the inheritance mechanism. Besides the inheritance already existing among 

the classes defined in the prototype, all of the classes can be superciasses that others can 
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be derived from. For example, a national park can be defined as a subclass of the class 

ComplexEntity, inheriting all the state and behavior from the class ComplexEntity 

instead of defining them again. Of course, more features can be added to meet the need of 

a particular application. With this support, the hierarchical structure of the modeling can 

be obtained based on the classes defined (Figure 3.22). The very roots are the geometry 

element classes, providing fundamental functions such as positional information 

modeling, then the entity classes providing information of geometry construction. New 

classes can be derived by specialization of these basic types with more special functions 

and states introduced for a particular purpose. 

Geometry elementsNodes, Arcs, Polygons 

Spatial entities: Complex entities, Area entities, 
Polyline entities, Point entities 

Specialization 

 Superclasses 

erived classes 

C  Classes: NationalPark, ResidentialArea, Vegetation, Highway, etc. ) 

Figure 3.22 Hierarchical structure of the spatial information modeling 

It was found that the template feature of C++ could also promote code reuse in 

GIS applications. Template provides a mechanism for indicating those types that need to 

change with each class instance [Lippman 1995]. This is done by parametrizing the types 

within a template class definition. Not like inheritance enabling developers to share code 
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between classes on different levels of the inheritance hierarchy, template enables 

developers to share code between objects on the same level of hierarchy. This feature 

can be very useful for modeling entities sharing the same attributes and functions but of 

different types, which is very common in GIS. But this feature was not used in the project 

because the data used were relatively simple. 

Aggregation 

As mentioned before, object-oriented programming languages support complex 

objects. These allow the construction of complex classes based on already defined classes 

by directly declaring them as parts of the complex class. This implies one of the key 

modeling capability expected in this prototype: aggregation. In practice, there are two 

ways to implement this capability. One way is to directly declare a defined class as a 

member of a new class. Another way is to include an ID of the defined class as a logical 

pointer in the new class to make a connection to the defined class. The first method is 

very practical for the situation when immediate access to an entity's components is 

necessary, whereas the second one is clearer and more concise in structure and efficient 

in storage. In fact, definition of class ComplexEntity is an example of using the complex 

class mechanism to generate complicated class types based on pie-defined simple class 

types. Figure 3.23 illustrates how ComplexEntity includes other class types as its 

members. The EntArray is a pre-defined array type containing the IDs of the component 

entities such as points, polylines in a complex entity. The IDs logically point to the 
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objects of the component entities where the detailed information is stored. Adding or 

removing a component from a complex entity is achieved by maintaining the array of 

IDs, as shown in the Figure 3.23. 

class ComplexEntizy 

I 
protected: 

long mt ID; 
EntArray EntitylDs; 

public: 

ComplexEntity Q; 
- ComplexEntity; 

float GetID('); 
EntArray GetEntiiy('); 
EntArray AddEntity(,); 
EntArray RrnEntity; 

float GetAreaO; 
float GetperimeterO; 
EleArray GetBound; 

EleArray GetBoundPoint; 

void Remove 0; 

) 

Figure 3.23 Main attributes and functions in class ComplexEntity. 

With the support of aggregation, more complex class types can be generated by 

utilizing the basic classes. Extending the basic element to model more complicated 

spatial entities can be much more straightforward. 
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3.4.4 Object indexing 

Indexing of data is the key factor in retrieval efficiency. According to various 

GIS applications, the index could be built on certain non-spatial features or on spatial 

positions. Due to the specialty of GIS, spatial indexing is usually more important and 

more challenging. For years, lots of researchers have worked on it, and lots of methods, 

such as space-filling curves, quadtrees, R- and R+-trees, etc, have been proposed and 

applied successfully [Laurini et al. 1992]. No matter what kind of index it is and what 

kind of algorithm is used, the indexing result is usually a collection of pointers 

(physically or logically) pointing to the stored physical data in certain orders to guide 

retrievals. So in this research, instead of concentrating on discussion on the mature 

indexing algorithms, some efforts have been made to design a new class to contain the 

indexing result from an indexing program. Thus this class actually serves as an interface 

between indexing programs and the data the index applied on (in this prototype, objects). 

The following information is included in the class to make the connection: object ID and 

its relative position in the array, size of an index array, etc. Users can write indexing 

programs using certain algorithms and put the results into the array of index objects. 

Figure 3.24 illustrates the main member attributes and functions of the index class. 

class Index 

{ 
protected.-

long mt ID; 
mt Offset; 
char * IndType; 

IndArray ObjectlDs; 
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mt num; 
public: 

IndexQ; 
.-IndexQ; 
long ml GelObjectIDO; 
mt GetOffsetQ; 
IndArray AddlndexO; 

Figure 3.24 Main attributes and functions in class Index. 
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Chapter 4 

AN IMPLEMENTATION FOR CREOSOTE PROJECT 

USING THE PROTOTYPE 

In this project, the main purpose is to investigate the applicabilities of object-

orientation in spatial information modeling. As described in Chapter 3, a general object-

oriented spatial data model is first implemented as the core of a prototype. In this chapter, 

discussion will be made on how the data model can be adapted to construct an application 

module to model and manipulate DEM data obtained in the creosote project. 

4.1 Creosote Project 

4.1.1 Creosote Problem 

Creosote is a kind of compound obtained from distillation of coal tar. It is a 

colorless or yellowish oily liquid containing a mixture of phenolic compounds. Being 

denser than water, it can penetrate the vadose and ground water zones. Between the early 

1920s and 1964, a large amount of creosote was introduced into the soil and ground water 

by the former Canada Creosote Ltd. plant located on the Bow River in downtown 

Calgary. Release of creosote into the subsurface have resulted in the accumulation of 

significant quantities of creosote liquids in the sand and gravel aquifer underlying the 

site. Recently, blobs have been observed in the Bow River due to this creosote extensive 

discharge. 
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4.1.2 Objectives of creosote project 

Several groups of scientists have been working on the creosote problem. The 

research work include evaluating the creosote migration and dissolution at the Creosote 

Site in Calgary and studying the mechanism of creosote movement into the Bow River at 

the same site. Our group has carried out research on the construction appropriate 

evolutionary spatial model of the creosote site to help scientists to visualize the surface 

changes over the past sixty eight years and decide on a proper course of action. The main 

idea is, first, to use photogrammetry technologies to reconstruct the Digital Elevation 

Models (DEMs) from available historical data, in this case, twelve pairs of historical 

aerial photographs. Then the corresponding images has been processed and draped over 

the reconstructed DEMs for more realistic rendering and visualization. Morphing 

software has also been used on the DEMs to generate intermediate views and 

demonstrate evolutionary changes of the creosote site over the years [Blais et al. 1995]. 

4.1.3 Data used in creosote project 

In order to reconstruct evolutionary digital terrain models with good quality, it is 

required to find all spatial information available about the creosote site on the Bow River, 

dating back to as early as 1924. Historical aerial photographs and control information, as 

well as some related environmental data for the past sixty-eight years (from 1924 to 

1991) were obtained from the City of Calgary, Alberta Environment and MacKimmie 

Library in the University of Calgary. On consideration of photo quality and reasonable 
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time intervals, twelve pairs of aerial photographs, corresponding to epochs of: 1924, 

1949, 1951, 1953, 1956, 1958, 1966, 1975, 1979, 1980, 1982 and 1991 respectively, were 

selected and digitized at 450 dots per inch (dpi) resolution. 

4.2 Reconstruction of the DEMs 

4.2.1 OEM Measurements 

The PC based system Digital Video Plotter (DVP) [DVP, 1991] was used to 

construct the stereomodels. After sufficient fiducial marks were located on the whole 

twenty four photos, the DVP software was used to carry out the interior orientations and 

camera calibrations with the expected accuracy. Then for each epoch, from four to six 

ground control points were used to carry out the absolute orientation. Due to the fact that 

quality and completeness of the available data varied from one epoch to another, 

selection of the control points for absolute orientation was complicated. Details can be 

found in the final report of this project [Blais et al. 1995]. 

Following the generation of the stereomodels, regular grids of 131 x 46 points (1 

point every 10 pixels) for each epoch were measured with DVP, where each point has X, 

Y and Z coordinates. So about 6000 points were measured for each of the eleven epochs, 

except for the 1924 model. The photos for 1924 do not cover the area of interest 

completely, as the north and west parts are missing. So a smaller grid of 112 x 30 points 

was measured. Surface reconstruction of the creosote site can then be carried out based 

on the measured grids of points. 



85 

4.2.2 Triangulation and Gridding 

Triangulation and gridding were also used in this project to fill in the blank areas 

in the DEM coverage provided by the City of Calgary and to form a regular grid over the 

terrain for the whole creosote site area. They were also used to densify the grid data in 

order to provide better visualization of the reconstructed ground surface. The 

mathematical library IMSL, which is available on IBM RS/6000 computer on the 

University of Calgary campus, was used in the gridding program GRID to process the 

data sets and produce gridded data. A Delaunay triangulation was carried out internally 

by the program GRID and a smoothing algorithm was applied to the interpolated data to 

form a smooth grid surface. 

4.2.3 Results of measurement 

After the above described operations, DEMs of twelve epochs were 

reconstructed with a lOm by lOm resolution. The whole creosote site is contained in a 

1300m by 450m area. 

4.3 Geometric Transformation of Digital Images 

A geometric transformation was applied to the digital images before they were 

draped over the corresponding reconstructed DEMs for visualization in order to make 

sure that the extracted image does geometrically correspond to the ground DEM grid. 

Figure 4.1 shows the relationship between an aerial photo and ground DEM in two 
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dimensions disregarding parallax effects between the photo and the ground spatial 

coordinate system. 

Corresponding Photo Area 

Figure 4.1 Relationship between ground area and corresponding photo area. 

To transform the ground area into the corresponding photo area, a 2D projective 

transformation was applied. The formulas of a 2D projective transformation are: 

(4.1) 

where X, Y are the photo coordinates, x and y are the original ground coordinates, and a, 

b, c, d, e, f g and h are the coefficients which can be estimated with a least-squares 

method. 

In the ground system, the size of the creosote site area is 1300 in x 450 in. By 

maintaining the relative scale factor between the two axes and considering the size of all 

the images that cover the same area at different epochs, the optimal size for the 

transformed images was chosen to be 2200 pixels x 760 pixels. Six to nine points with 



87 

recognized ground features were selected within the creosote area to be used as control 

points for each epoch and the corresponding photo coordinates of the control points of the 

ground area have been obtained with DVP and then used to solve Eq. (4.1) for the 

coefficients. Then, these coefficients are used to compute the corresponding coordinates 

of the original image for each pixel of the output image so that the images have a uniform 

size of 2200 pixels x 760 pixels. The gray value of the point located at these coordinates 

is then interpolated by using a nearest neighbor resampling approach and assigned to the 

corresponding point in the output image. The processing has been done on either the left 

or right photos of the stereomodels covering the creosote site. 

4.4 Generation of Intermediate Views Using Morphing 

In order to visualize the evolutionary changes of the creosote site, the generation 

of intermediate views was proceeded to fill up the gaps between the available epochs. 

One 3D model for each year from 1924 to 1991 has been generated. This operation has 

been done in two steps. The first step is to use a simple linear interpolation approach to 

generate the DEM grids between two available epochs. For example, eight interpolation 

values have been estimated for each elevation data between 1982 and 1991. 

The second step consists in metamorphosing one image into another. In image 

processing terms, metamorphosing is replaced by the new term "morphing". Another 

linear interpolation of grey level has been implemented to generate intermediate views 

between existing epochs (Figure 4.2). 
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Figure 4.2 Interpolation between 1991 and 1982. 

1991 
Image 

Interpolated 
Image 

1982 
Image 

4.5 Rendering the 3D Surface 

Visualization of the DEMs with images draped over is one of the most important 

parts of this project. With all the DEMs of the twelve epochs completely reconstructed 

and other fifty six epochs interpolated, as well as all the corresponding digitized 

photographs preprocessed in the way described in the previous section, the surface of the 

creosote site can be visualized with the corresponding images draped over. The 

Advanced Visualization System (AVS) on IBM RS6000 was used to reconstruct the 3D 

geometry view of the DEM for the creosote site based on the measured elevation data 
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sets for sixty eight epochs. Then the images were draped over the re-generated 3D model 

to rebuild the historical scenes of the creosote site in three dimensions over the sixty-

eight years. Figure 4.3 illustrates this procedure. 

1982 
image 

1982 
DEM 

Figure 4.3 Draping of image over the resconstructed DEM of the creosote site. 

For visualization purposes, the following two groups of images are also 

generated in TIFF format by using AVS: the images of the perspective view of DEMs 

reconstructed; images of the reconstructed DEM with corresponding images draped over 

to provide more information. 
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4.6 A DEM Data Management Module 

The continuous change for the creosote contamination site can be viewed by the 

series of generated 3D surfaces. It could be also very helpful to have some incorporating 

tools to manage and retrieve the elevation information when users require detailed 

elec,ation for certain positions at a certain time. So an application module was designed 

and implemented using the developed prototype of spatial data model to provide the 

following functions: DEM data conversion and storage, elevation data query, image 

display. 

4.6.1 OEM data modeling 

In GIS applications, there are several ways to model the DEM information, such 

as a grid, an irregular triangulated network (UN), contour lines surface, gradients, etc. In 

grid format, only points at the intersection of two imagined orthogonal lines in x and y 

are stored. To fit the real condition of the irregular terrain, tighter grid lines are used in 

the area with much roughness, while sparse grid lines are used for relatively plain area. 

However, regular gridding lattice (Figure 4.4) with the finest gridding interval is much 

more often used due to the ease of generation, maintenance and processing. In this 

project, a regular grid is the final generated data format to represent terrain. 
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Figure 4.4 A regular grid lattice for the terrain. 

Figure 4.5 is the class diagram for using the implemented object-oriented 

prototype to model the regular grid DEM data. Only a new class of EleNode needs to be 

defined in C++ based on the node class type. The EleNode can directly inherit from the 

basic model component Node class with TerrainlD, Elevation, etc. additional attributes to 

hold position and elevation information and some more functions defined and re-defined. 

So the terrain model can be built directly on the EleNode class type. 

Figure 4.5 Class diagram for grid model of DEM. 



92 

4.7 Tool Implementation 

When the C++ class types have been added, the model for DEM information has 

been constructed. Information can be stored and some tools can be implemented to 

manipulate and view the information. 

4.7.1 Data construction 

The original data sets are stored in flat files as a series of (X 1', ELEVATION). 

The data construction function is designed to convert the data set for the, new model. It 

reads the regular gridded DEM data set, sends appropriate messages to the model 

handling function to generate and connect model components, and put the actual values 

into them. A member function PutElevation() is implemented to carry out this task. Once 

the objects for the model have been constructed, they can be saved and accessed by other 

C++ tools later. 

For information retrieval efficiency, the data need to be indexed. Member 

functions IndexOnElevationO and IndexOnLocationO were coded to generate index on 

elevation and position, corresponding to the most possible situations of retrieval 

occurrence. The indexing result containing a list of objects' ]Ds in ascending order of 

elevation then have been stored in the objects of Index class type described in Chapter 3. 

The lists can be used to speed up retrievals when a query requires them. Figure 4.6 list 

the main state and functions defined in the EleNode class. 
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class EleNode: public Node 

I 
protected: 

long mt ID; 
long mt TerrainlD; 
float Elevation; 

public: 

EleNodeO; 
float GetElevation(); 

float PutElevationO; 

void IndexOnElevationO; 
void IndexOnLocation('); 

Figure 4.6 Main attributes and functions in class EleNode. 

4.7.2 Information query 

The information query tool is implemented to retrieve and display the stored 

DEM model consisting of time, elevation and position information. The retrievals are 

mainly in terms of one of the above three items versus the other two. This tool is 

implemented using MS Windows style interface to enable the user to interactly select 

query fields, query criteria and view the query results. 

For example, a user may want to know in 1982, which areas in the creosote 

contamination site have elevation between 1052.00 in and 1053.50 m. This is a query on 

positions versus time and elevation. Using a common dialogue box as an interactive 

selection mechanism, the user can first choose the type of selection criteria. In this 

example, the query is applied on position so the button besides 'Position' is clicked on. 

Then the values of selection criteria are entered (Figure 4.7). This information is then 
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passed to the search function and the function filters the points meeting the criteria and 

then a new window pops up containing the list of the points (Figure 4.8). 

OEM DATA MANAGER 

File Query Help 

Figure 4.7 Dialogue box for query field selection and query criteria input. 
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OEM DATA MANAGER 

= file query Help 

Figure 4.8 Query list result. 

Another type of necessary query function in this project is to find out the nearest 

boreholes to a certain point. This module allows users to select the borehole query option, 

enter the coordinates of the point, then calculate the distances between this points and 

boreholes, pop out the coordinate list of the first ten nearest boreholes. Figure 4.9, 4.10 

show an example of this type of query. 
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File Query Help 

Figure 4.9 Dialogue box for query fields selection and query criteria input. 

OEM DATA MANAGER 

File Query Help 

Figure 4.10 Coordinate list of the queried nearest boreholes. 
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4.7.3 Image viewer 

Two groups of images for the geometry reconstruction of the DEM were obtained 

as an important part of the information. A tool named 1MG_VIEW is also implemented 

to handle these images to help to visualize the information. Again, featured with 

Microsoft Windows style interface, this tool can be used with ease. 

The name of the image file is retrieved from the user using the common dialogue 

box shown in Figure 4.11, which is provided with Microsoft Windows. This allows the 

users to make their selection with ease and flexibility. 

1949.111 
1969. Lii 
1970. Lii 
1971.111 
1972.111 
1973. (ii 
1974. tit 
1975. tit 
1976. [ii 
1 977. Lii 

Figure 4.11 The dialog box for image selection. 

The image_viewer display the image at the top-left of the window; however, if the 

window is too small, the edges of the image may extend beyond the boundaries of the 

window. To deal with this kind of situation, a scroller control feature is added in the 
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display window (Figure 4.12). A user has the flexibility of utilizing the scroller bar to 

move the image up and down, left and right in the window. 

Figure 4.12 Image viewing window. 

Creosote Site on the Bow Riuer 1982 

This implementation is a test of the applicability of the object-oriented spatial data 

modeling prototype. Due to the nature of data set used in this project, only NODE and 

INDEX classes were applied for DEM modeling. But this does not imply that only these 

two classes are useful. As a matter of fact, for applications which involve more types of 

spatial features, the other classes are very useful to model various complex features. One 
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ongoing research project is to use this method in geomorphological and hydrological 

applications. All the seven classes are being used to model the complicated 

geomorphological features, such as channel and ridge networks. The prototype is 

designed to be adaptable to various type of applications, simple or complex. 
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Chapter 5 

CONCLUSIONS AND RECOMMENTATIONS 

The main purpose of this project was to investigate the applicabilies of object-

orientation in spatial information modeling. The experiments have included 

investigations of using the Booch Method to analyze and design a general object-oriented 

data model for representing geospatial information, implementation of the prototype data 

model in C++ and adaption of the model for an application handling the data set obtained 

in the creosote project. This chapter summarizes the main conclusions and 

recommendations obtained in this research and development. 

5.1 Conclusions 

1. Traditional logical models like hierarchical and network models have limitations in 

handling the complexity of spatial information. The relational model is the dominant 

logical model applied in current GISs. Simplicity and data independence are the 

major features of a relational DBMS, but these features can also cause deficiencies in 

the following sense for spatial information modeling: manipulation efficiency, 

modeling capability, data semantics, modeling extension, programming interface, etc. 

With its ability to address these deficiencies, the object-oriented model shows great 

potential in GIS applications. 
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2. The object-oriented analysis and design (OOA & OOD) method is the integration of 

the development of information system analysis and design methodologies and 

object-oriented programming. Using OOA & OOD and an object-oriented 

programming language for software development can help implement object-oriented 

mechanisms in the system more thoroughly. 

3. As the basic modeling unit in object-oriented analysis and design, a class 

encapsulates both state and behavior features. The encapsulation makes the modeling 

closer to a one-to-one mapping procedure. During the modeling, a developer can 

concentrate on what role an entity takes (what it can do) in the world, instead of 

what kind of role it takes and bow it carries out its task. Thus not only does the 

development of the prototype benefited from it, but also the utilization of the 

prototype to construct the application module had a smoother implementation using 

this idea. Of course, it is still far away from a human being's way of thinking. But 

compared - with conventional strategies, such as in relational modeling, object 

orientation is one step closer to it, thus more natural, more direct and more efficient. 

4. The complex object and class mechanisms provide the aggregation support in object-

oriented modeling. This enables the system to model complex entities by simply 

composing the fundamental class types instead of going into very primitive elements. 

The definition detail's are shared by different components with each one handling 

certain information and functionalities to facilitate the application needs. This is very 
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beneficial for modeling geometric entities and general information. The modeling 

efficiency can be improved greatly, and system extension can have more flexibilities. 

5. The inheritance mechanism further enhances an object-oriented systems' modeling 

capabilities. An inheritance hierarchy can clearly show the similarities shared by the 

interested entities, and the sharing implies reusing of code or specification of model 

components, which results in a dramatic increase in modeling and programming 

productivity. In GIS modeling, developers only need to consider the special features 

of certain interesting entities while building or extending an application based on well 

defined fundamental class types. 

6. Smoother program interfacing can be achieved through the similarities shared by 

object-oriented programming languages (C++ in this project), the Booch method and 

the way to organize the data in the prototype. During the development of the 

prototype, the analysis and design using classes as the basic working units and the 

standard deliverables of each step describe the model in a method very close to 

object-oriented programming language, which can ease the implementation. During 

the utilization of the prototype, because the class is the common building block of the 

programming language and the data model, the programming gaps between the two 

systems are thereby reduced. Model extension and Microsoft Windows style interface 

development benefited greatly from this. 
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7. Compared with the conventional method, data semantics in object-oriented spatial 

data models has been enriched greatly because the object-oriented system can 

distinguish between classification, generalization and aggregation due to the support 

of class, complex class types and inheritance. This eases the understanding and usage 

of the spatial data model. 

8. Direct support of class and complex class types imply logical and physical pointers 

connecting various information components, either physically or logically. 

Information access is usually achieved by navigation through pointers and no 

physical operations are needed to reconstruct the information from pieces like in the 

relational model. So the information access becomes more direct and straightforward 

both conceptually and physically, and manipulation efficiency is improved. 

5.2 Recommendations 

This project aimed at exploring how the object-oriented mechanisms can be 

applied and implemented in GIS applications instead of building a working system, the 

data set used and the experiments done are relatively limited. Recommendations for 

further research are as follows: 

1. The development of the prototype has concentrated on design of general spatial data 

model which can be adapted for some specific GIS applications, such as the 

application for handling the DEM data set. To extend it to a complete and general 
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purpose GIS, more design in terms of data creation, storage and spatial analysis 

functions, etc., should be considered from the initial analysis phases. These are very 

important components in GIS and need further investigation. 

2. In the implementation, data operations and system extensions still need C++ coding, 

which is not suitable for general users. More research should be done to investigate 

some high level language, such as CO2 in 02 system, to provide easier data 

manipulation. 

3. In the application module for the creosote project, most of the data queries are 

relatively straightforward, and limited in query types and complexities. More 

investigation should be done on more general data retrievals for different kinds of 

situations. 

4. The data set used was relatively small and simple. Larger size and more general types 

of data sets should be tested to investigate various kinds of situations. Moreover, 

analysis of storage and manipulation efficiency should be performed to refine the 

system. 

5. This study can provide some general ideas for data modeling and system architecture 

for the ongoing Crown of the Continent Environment Information System (EIS) 

development [Blais, 1996]. The Crown of the Continent project involves 

multidisplinary users, multitype and multiresolution data collections, multilocation 

computer systems in southwestern Alberta, southeastern B.C. and Western Montana. 



105 

An integrated object-oriented architecture GIS obviously is the most optimal design 

approach to facilitate the variety of requirements. Of course, as mentioned above, 

more comprehensive studies on design and implementation need to be done to build a 

system of such scale. A recent doctoral study on handling large objects using object-

oriented approach in GIS [Zhou, 1995] also provides very valuable experience on 

data storage facilities, query tools, spatial analysis functions, data conversion utilities, 

etc, in GIS development. 

6. Most of the object-oriented analysis and design methods, including the Booch 

method, do not have sound theoretical support. System design and implementation 

still largely depend on developers' experience. More study in this fields can improve 

the design quality and consistency for GIS and other applications. 
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APPENDIX: 

Main Member Attributes and Functions Defined in the Class Library 

class Node 

{ 
attributes: 

long mt ID; 
EleArray ConnectedArc; 

EntArray PointiD; 
float Coord_x, Coord_y; 

functions: 
NodeO; 

NodeO; 

BOOL AveNodeO; 

long mt NewNodeØ; 
long mt GetiD; 
EleArray GetConnectedArc; 
EleArray AddConnectedArcO; 
EleArray DeleteConnectedArcO; 

void ReadCoordO; 

void Remove; 
void writeO; 

void readO; 

class Are 

{ 
attributes: 

long mt ID; 
long mt Nodel]D, Node2ID; 
long mt PolygonRlD, PolygonLlD; 
EntArray PolylinelD; 

float length; 

functions: 

ArcO; 
-'ArcO; 
BOOL AveArcO; 

long mt NewArcO; 
long mt Get]D; 
float GetLengthO; 

I/object ID 
II IDs of the connected arcs 
II containing point 
II coordinates 

II constructor 

II destructor 

II check existance of a node 

II generate new object 
I/get object ID 
II read all connected arcs' ID 
II add a connected arc 
II remove the disconnected arc ID 

II read coordinates 

II Erase a node 

I/object 1D 
II IDs of the two end nodes 

//]Ds of polygons left right to the arc 

fl containing polyline 
I/length 

II constructor 
II destructor 

II check availability of an arc 

II generate new arc 

I/get object ID 

II get length 
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EntArray GetPolyLine; 
void GetPolygon; 
void ChangNodeO; 

void ChangePolygonO; 
void ChangePolyLineO; 

void Remove; 
void wiiteO; 
void readO; 

class Polygon 

{ 
attributes: 

long mt ID; 
EleArray BoundArc; 
EntArray ArealiD; 
float perimeter; 

float area; 

functions: 
PolygonO; 
-'PolygonØ; 
BOOL AvePolygon; 
long mt NewPo1ygon; 
long mt GetID; 
float GetPerimeterO; 
float GetAreaO; 
EntArray GetArealØ; 

EleArray GetArcsO; 
ElementArray GetNodesO; 
void ChangArcsO; 

void ChangeArealO; 

void Remove; 
void writeO; 
void readO; 

class Point: Node 

{ 
attributes: 

II get containing Polyline 

II get containing polygon 
II change ending nodes 
II change containing polygon 
II change containing polyline 

II delete arc 

I/object ID 
II IDs of closing arcs 
//ID of areal containing polygon 

II perimeter 

II area 

II constructor 
II destructor 

II check availability of an polygon 
II generate new polygon 

I/get object ID 

II get Perimeter 

II get area 

II get containing areal 

II get closing arcs 
II get bound nodes 

II change boundary 
II change containing real 

II remove polygon 
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long mt ID; 
long mt NodelD; 
Entariy CompEnt; 

functions: 
PointO; 

Point 0; 
BOOL AvePointO; 
long mt NewPoint 0; 
long mt GetiD; 
long mt GetNode]D; 
long mt ChangeNode; 
EntArray GetCompEntO; 

EntArray ChangeCompEntO; 

void Remove; 
void GetPositionO; 

void writeO; 
void readO; 

class Polyline 

{ 
attributes: 

long mt ID; 
EleAnay ArciDs; 

mt NumArcs; 
Entarry CompEnt; 
float length; 

functions: 

Polyline 0; 
-'Polyline (); 
long mt NewPoyline0; 
long mt GetID; 
BOOL AvePolylineO; 

EleAnay RmArcO; 
EleArray AddArc 0; 
EntArray GetCompEnt0; 

EntArray ChangeCompEntO; 
void Remove; 
float GetLengthO; 
EleA.nay GetArcs 0; 

II containing complex entity 

II check availability of the entity 
II generate new entity 

II get the point ID 

II get the node ID 
II change the node 
II get containing complex entity 
II change containing complex entity 

II remove the point 
II get location 

II Object ID 
II ]Ds of arcs contained 

II number of composing arcs 
II containing complex entity 

II Generate new entity 

II check availability of the entity 

II remove an arc 
II add an arc 
II get containing complex entity 
II change containing complex entity 
II remove the entity 

II get length 

II get composing arcs 
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EleArray GetPoint; 
void writeO; 
void readO; 

class Areal 

{ 
attributes: 

long intlD; 
EntityArray Polygons; 
EntityArray Bound; 
float Perimeter; 
float Area; 

functions: 
Areal 0; 
—Areal 0; 
BOOL AveArealO; 

long mt NewAreal 0; 
long mt Get]D; 
EntityArray ChangeBound 0; 
EntArray GetCompEntO; 
EntArray ChangeCompEntO; 
ElementArray GetPolygon 0; 
void Remove; 
float GetPerimeter0; 

float GetArea0; 
ElementArray GetBoundPointO; 
ElementArray GetBoundO; 

void write0; 
void readO; 

class ComplexEntity 

{ 
attributes: 

long mt ID; 
EntArray Entity]Ds; 
float Perimeter; 
float Area; 

II get location 

II check Availability of the entity 
/1 generate new entity 

II change boundary 
II get containing complex entity 
II change containing complex entity 
II get composing elements 
II remove the complex entity 
II get perimeter 
II get occupation 
1/ get boundary location 
II get boundary arcs 

I/object ID 
II IDs of entities contained 
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functions: 

ComplexEntity 0; 
—ComplexEntity 0; 
BOOL AveComEntO; 
long mt NewCompEnt 0; 
long mt GetiD; 
EntArray GetEntityO; 

EntArray AddEntity (); 

EntArray RmEntity 0; 

void Remove; 

float GetPerimeter0; 
float GetArea0; 

ElementArray GetBoundPoint; 

ElementArray GetBound; 

void write0; 
void readO; 

class Index 

{ 
attributes: 

long mt ID; 
mt Offset; 
IndArray ObjectlDs; 
char* IndType; 

functions: 
IndexO; 
-'IndexØ; 
IndArray NewlndexO; 

long mt GetObjectiD 0; 
mt GetOffsetØ; 
void Remove; 

IndArray AddlndexO; 
IndArray RmlndexØ; 

II check Availability of the entity 
II generate new entity 

fl get included entities 

fl add an entity in the complex type 
fl remove a member entity 

II remove the complex entity 

II get perimeter 

II get occupation 
II get boundary location 
II get boundary arcs 

//Ids of indexed object 

I/index fields 

II new index 
//get object ID in array 

II offset of DD in array 

II remove an index 

fl enter new member 
fl remove a member 


