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Abstract 

For relational structures F, G, H, and a positive integer r, the Ramsey arrow nota-

tion F -+ (G)H means that for any partition of the H-substructures induced in F 

into at most r classes, there is a G-substructure induced in F having all its induced 

H-substructures in one partition class. The central aim in this thesis is to determine 

for which pairs of finite graphs G, H, an F can be found satisfying the Ramsey 

arrow. This pursuit extends to hypergraphs, both ordered and unordered. 

Some background results are surveyed. Both the finite and infinite form of Ram-

sey's theorem are proved, together with results on arithmetic progressions. A the-

orem by Hales and Jewett concerning partitions of combinatorial spaces is proved. 

Van der Waerden's theorem is then derived from this. Shelah's proof that the Hales-

Jewett function is primitive recursive is given. 

Well known vertex and edge partition Ramsey theorems for graphs are proved. 

The edge partition theorem is proved using 'partite amalgamation', a technique 

developed by Neetil and Rödl. The existence of a k-uniform hypergraph which has 

arbitrarily large girth and chromatic number is shown by means of a constructive 

proof by Neeti1 and RM. 

The Ramsey theorem for ordered hypergraphs is given in its utmost generality. 

A proof by Neetfil and Rödl is given in which both the Hales-Jewett theorem and 

partite amalgamation is used. The arguments used for this powerful theorem are 

in every way complete, and until now, have been inaccessible due to the complexity 

of the proof and technical difficulties in the literature. This theorem completely 

answers the main question of this thesis for ordered hypergraphs. 
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Applications of the Ramsey theorem for ordered hypergraphs were developed by 

V. Rödl, N. W. Sauer, and the present author. These include a complete character-

ization of those pairs of finite unordered graphs and hypergraphs G,H and integers 

r for which there exists a 'Ramsey graph' F satisfying F -* (G)'. This charac-

terization settles many questions, but since it is in terms of chromatic numbers, it 

is difficult to employ in the actual production of the pairs G,H. For F2, a path on 

three vertices, it is found that those graphs G for which there exists an F satisfying 

F - (G)'2 are precisely those which are both chordal and comparability graphs or 

those satisfying an easily stated ordering condition. This is also a new significant 

step by the three authors in the direction of a complete answer to the main question 

of this thesis. 

Theorems and conjectures regarding minimal Ramsey graphs are also surveyed. 

The' author presents a new minimal ordered graph and a conjecture is extended. 

For the most part, Chapters 5 and 6 represent new results jointly discovered by 

V. R8d1, N. W. Sauer and the present author. Chapter 7 contains musings regarding 

some independent research of the author. 
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Chapter 0 

Introduction 

0.1 The Party 

There seems to be a standard way to introduce Ramsey theory, and that is by 

means of the 'party puzzle'. 1. was first introduced to it by Prof. Ron Aharoni in an 

undergraduate set theory course. I was told a story similar to the following one. 

Suppose there was a party, a very crowded party, and six people were forced into 

a room away from the main crowd. The door was closed behind the sixth person 

and the introductions were about to begin. But before we let these six people talk 

to each other, let us just freeze the action for a moment. If three of these six people 

were selected, what is the chance that these three people already knew each other, 

that is, that each of the three knew the other two? If the likelihood of any one person 

at the party knowing another is one half, then there are 7 to 1 odds against the three 

selected people all knowing each other. (Here we assume that if A knows B, then 

B knows A.) This works for any three people at the party, not just those frozen in 

time in the side room. Similarly, based on the same probabilities, there are also 7 to 

1 odds against these three people being complete strangers to one another. What is 

the likelihood that of these six people, either three people are mutual acquaintances, 

or three people are mutual strangers, (or both)? The claim is, that no matter what 

select group of six people are ushered into the room, at least one of the two scenarios 

holds. 

1 
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For the sake of discussion, let A, B, C, D, E, and F be the names of the six people. 

The possibility exists that three of the six all know each other and the other three 

are mutual strangers, however the claim is only that at least one of these situations 

hold. We will now prove our claim. 

Take a look at A. She faces five remaining people in the room. Classifying the 

five, she divides them into two groups, those she knows and those she does not. Of 

these two groups, one must have at least three people in it. As we will soon see, 

it matters not which, so suppose that the group of strangers is largest and that, 

say, C, D, and E are three she hasn't met. If C has never met D then the triple 

A,C,D is a group of three mutual strangers and we are done. So suppose C knows D. 

Similarly, if C has never achieved enough courage to be introduced to E, the triple 

A,C,E would suffice as the group of strangers, so assume C and E know each other, 

too. Lastly, if D and E did not know each other, then the triple A,D,E would be 

the trio of strangers, so suppose D and E have met. Then C,D,E must be a triple 

of acquaintances. In each possible case we have given, one of the required situations 

arises. Now apply the same argument when the group of friends is the larger lot and 

obtain the analogous result. So the claim has been shown. 

If only five people were in the room, one could suggest a scenario which shows 

that the 'three-three' result does not occur. Namely, if A knows B, B knows C, C 

knows D, D knows E, E knows A, and no one knows anyone else in the room, then 

no such result holds. This shows that six is the minimum number of people required 

in the room to guarantee this 'three-three' phenomenon. Naturally, if more people 

were allowed into the room, the same bizarre claim would hold. 

If we required a foursome to exist which either all knew each other or were total 
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strangers to each other, then eighteen people in the room would suffice. The same 

claim for fivesomes holds but the minimum number of people has not been calculated 

yet. 

0.2 Ramsey Theory 

The fact that six people suffices for either a 'stranger trio' or 'friendly trio' is ab-

breviated by 6 -) (3,3). Similarly, 18 -+ (4,4). We could have asked how many 

people are required so that, say, either 3 are friends or 4 are strangers. This number 

is 9, denoted by 9 - (3,4). For any such party, one could draw a chart with dots 

representing people, and lines between pairs of dots representing the relationship 

between these people. Every pair would have a'colored line joining them, say, red 

indicating friendship, and blue indicating those pairs who have not yet met. Then 

such a chart, or graph, on 6 points would contain either a red triangle or a blue 

triangle by the earlier claim. Notice that a triangle contains all the edges possible on 

three points, hence we call it ' complete'. So the statement 6 -+ (3,3) is the same 

as saying that if we are given a complete graph on six vertices with edges colored red 

and blue, we could find in it a red triangle or a blue triangle (or possibly both). For 

any number k, does there always exist a number R(k, k) so that R(k, k) -+ (k, k) 

holds? 

The answer is an astounding "yes"; these numbers are called Ramsey numbers. 

The existence of these numbers was proved by F. P. Ramsey earlier this century while 

trying to solve a problem in logic. Three Hungarians rediscovered this fact, and one 

of them, Pal Erd6s, generalized and popularized the theory. Extensions were made 
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to the infinite too, however, in this thesis, we restrict ourselves to finite. 

As it turns out, Ramsey theory is intimately connected to many areas of mathe-

matics. Geometry, arithmetic progressions, field theory, lattice theory, block designs, 

and graph theory are just a few of the areas which Ramsey theory has contributed 

to. Besides graph theoretic results, we include, as a matter of taste, a few results 

from other areas of Ramsey theory. 

0.3 The Objective 

Without being too precise, an induced subgraph of a graph G is a collection of vertices 

in G together with all the edges of G found among vertices in the collection. If F, G, 

and H are graphs and r is a positive integer, the Ramsey arrow notation F - p (G)' 

means that for any labelling of the induced H-subgraphs (subgraphs isomorphic to 

H) of F with at most r distinct labels, there exists an induced G-subgraph of F, call 

it G', so that all the induced H-subgraphs of G' have the same label. 

The main objective in this thesis was to completely ' classify' all those pairs of 

graphs G,H and integers r for which there existed a Ramsey F, that is, a graph F 

satisfying F -+ (G)'. This is one of the main problems in the field of 'finite graph 

Ramsey theory', or more properly, 'finite induced graph Ramsey theory'. The case 

for ordered graphs (graphs with a given orientation of the vertices) has already been 

solved—surprisingly, every pair qualifies! The situation for unordered graphs is more 

complicated. 

A complete characterization is given of those graphs and hypergraphs G,H for 

which there exists a Ramsey F for r colors. This characterization involves orderings 
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and chromatic numbers of hypergraphs, so it does not satisfactorily meet the main 

objective. It does, however, serve nicely as a tool by which to answer many questions. 

For example, when H = F2, a path on 3 vertices, all those graphs G for which there 

exists an F satisfying F - p (G)' are explicitly given. Cases for most other non-

trivial cases are intractable. 

It should be noted that it is not part of the main objective to give a complete 

overview of the field. There are many areas of Ramsey theory , even topics involving 

finite graph Ramsey theory which are not discussed here. In 1987, H. J. Prömel [100] 

produced Ramsey theory for discrete structures, a manuscript over 350 pages long. It 

contains wonderful accounts of many early results together with a good cross section 

of modern results. See [55] for another excellent compilation of theorems, proofs, 

history, and anecdotes which describe the field of Ramsey theory more eloquently 

than we can hope to do here. Both works contain splendid bibliographies. Among 

other significant works which contain excellent surveys are [51], [54], [64], [84], [86], 

[108], [109], [112], [113], all vast in their scope. 

There have been easy to read, albeit enlightening, articles on Ramsey theory. One 

very recent one [57] appeared in Scientific American. That particular introduction 

to Ramsey theory should perhaps be required reading for anyone interested in the 

area—it will only serve to enhance one's enthusiasm for puzzle solving. Other very 

good introductory reading includes [49]. 

Of Chapter 1, only one result is required later in the thesis, namely the finite 

version of Ramsey's original theorem. The remainder of the contents of Chapter 

1 are included only to give a very brief historical perspective hence some results 

are only stated, not proven. The two works of Prömel and Voigt, [112] and [113] 
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represent the definitive work on two chapters of early Ramsey theory (integrated 

with modern material). 

Similarly, the only result contained in Chapter 2 which is critical to later chapters 

is the Hales-Jewett Theorem. The implications of the Hales-Jewett theorem are so 

numerous and exciting that we include some related results. All other results found 

in Chapters 1 and 2 are included solely as a matter of preference. The main theorems 

are contained in Chapters 3 thru 6. Chapter 7 represents a related interest of the 

author, and as of yet, does not have a major bearing with respect to satisfying the 

main objective of the thesis. However, the author believe that the direction taken in 

Chapter 7 will ultimately prove to be invaluable, and so we include th preliminary 

examinations. 



Chapter 1 

Some Background 

1.1 Notation 

For a set X and a subset Y of X, we write Y C X. If Y C X and it is possible that 

X = Y, then we write Y C X to emphasize this. The notation x e X is used if x is 

an element of X. The power set 

2(S)={T:TcS} 

of a set S is the collection of all subsets of S. The notation 2 is sometimes used to 

denote the power set of S. The symbols N, Z, Q, and R are used to denote the set 

of natural numbers, integers, rational numbers, and real numbers respectively. The 

set of non-negative integers is denoted by w, the first infinite ordinal. For m E w it 

is often convenient to use the ordinal representation, 

m={O,1, ... ,m-1}. 

For non-negative integers i, m satisfying 0 < i < m, we may write i E m. 

For a set S and a given n E w we define 

[S]={TcS:lTI=n} 

to be the set of all subsets of S of size n. Similarly we define [S]. We denote by 

lxi the least integer z ≥ x and [xj is the greatest integer y ≤ x. 

The expression "if and only if" is occasionally abbreviated by "1ff". 

7 
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1.2 Some Familiar Partitions 

For a fixed r E w and a set 5, a partition of S into r classes is a collection JSi C S: 

i E r} satisfyingUj€r Sj = 5, S.flS = 0forit4 j, and for each i Er, Si 54 0. A 

partition of S into at most r classes can be viewed as a function A : S - f r. Such 

a prtition is also called an r- coloring of S; usually A will denote such a function. 

Braces are often deleted, as in i(X, y) rather than z({x, y}). 

Perhaps the sirñplest of all combinatorial results having a 'Ramsey flavor' is the 

pigeon hole principle. If r + 1 pigeons were to roost in r holes, then two pigeons 

would just have to get acquainted. In general, if r(rn - 1) + 1 pigeons were to roost 

in r holes, then there would be at least one hole with rn pigeons in it. Written in 

the notation of colorings, this says that for any coloring 

r(m - 1) + 1 - r 

there exist m elements of {O, 1,2,... , r(m - 1)} which are monochromatic with re-

spect to 4 (colored the same). Similarly, if one were to divide an infinite set into 

two 'smaller' sets, then one of them must be infinite also (if they were both finite, 

putting them back together gives just a finite set, obviously not the whole set!). The 

same argument works for dividing an infinite set into any finite number of pieces. 

We give this in the form of a lemma, also called the pigeon hole principle. 

Lemma 1.2.1 For any fixed r E w and w -+ r, there exists an i E r so that 

1(i) is infinite. 

Along the same vein, one can discuss partitioning 'subtrees of an infinite tree' in 

order to give a very useful result. 
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A partially ordered set (or simply a poset) (F, ≤) is a set P together with a relation, 

< which is reflexive (p ≤ p), antisymmetric (p ≤ q and q ≤ p implies p q), and 

transitive (p ≤ q ≤ r implies p ≤ r), that is, ≤ is a partial order. The relation ≤ 

is a total order, or linear order if for any two elements p, q E P, either p < q or 

q p holds. A poset (T,≤) is a tree if for every  E T, the set {x E T : x ≤ t} is 

a totally ordered set with no infinite descending subsequence. A tree (T, ≤) is said 

to be rooted if there exists a unique vertex (called the root) v E T with the property 

that v < x for every x E T. A vertex y 0 x is a successor of x if x < y and for any 

z 54 x satisfying x < z < y, y = z holds. A tree is locally finite if every vertex has 

finitely many successors. A branch of a tree is a maximal linearly ordered subset. 

We recall König's Infinity Lemma [72]: 

Lemma 1.2.2 A locally finite rooted infinite tree has an infinite branch. 

Proof: Let (T, ≤) be a locally finite tree with root v, and let v, v11, . . . , vj,..., 

E 11 be a labelling of the successors of v. By Lemma 1.2.1, one of the trees 

{(27,≤) : = T: vj ≤ x} : i E I'} 

is infinite, say (with root v) is one such. Repeat this idea using trees having 

roots which are successors of v01 to obtain another infinite tree T. Continue in 

this manner to get an infinite number of trees, T, T, T03,.... Then  the vertices 

v, v, Vt.... determine an infinite path. 0 
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1.3 Ramsey's Theorem 

Frank Plumpton Ramsey was a logician, economist, philosopher, and mathematician 

born in 1903. He died at 26 years of age. Despite his early demise, he was a man 

of many accomplishments. (See for example, [100],[112],[55] for personal history and 

further references.) Among these accomplishments was the following theorem [116], 

known as the 'infinite version of Ramsey's theorem'. The proof given here is an 

adaptation of that found in [100]. 

Theorem 1.3.1 Let a countably infinite set G and positive integers r,k E w be given. 

For any r-coloring A : [G]' —• r, there exists an infinite set X C G so that L is 

constant on [X]'. We denote this by  —+ (w). 

Proof: The proof is by induction on k. The case k = 1 is trivial by the pigeon 

hole principle, so assume the theorem is true for some k ≥ 1. Let A : [G]' 1 —* r 

be a given coloring and pick an arbitrary x0 E G. Then L induces a coloring 

[G\{xo}]iv — p r by zo(H) = (H U {x0}). So by the induction hypothesis, 

there exists an infinite set A0 C G so that L0 is constant on [A0]IC, and hence L is 

constant on 

{x0} x [A0]' = {{mo,yi,. . . ,yk} : {yi, ... . yk} E [A]k} C 

say ({x0} x [A0]') = ro E r. Now pick any element x1 E A0. Repeating the same 

argument, there exists an infinite set A1 C A0 so that .A is constant on {x1} x [A1]", 

say L({xj} x [A1]") = ri E r. [Note that r0 and r1 may be different, while still 

L({xo} x [A1]") = ro.J Continuing in this manner, we get a set X = {x : i e w} 

so that for H,H' E [X]"', A(H) = i.(H') whenever min(H) = min(H'). [If i = 
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min{j xj E H} we say min(H) = xi.] This induces an r-coloring L of X by 

= L(H) for any H E [X]1'+' satisfying min(H) = x. 

By the pigeon hole principle, there is an infinite set Y C X so that L is constant 

on Y, andhence A is constant on [Y]' 1, since 

[y]k+1 c {H E [X]'' : min(H) E Y}. 

0 

Let us iemark that it is sometimes convenient to totally order the set G at the 

beginning of the above proof, then we need only pick the lowest element in the order 

for the subsequent element in the formation of X. Such a device also allows us to pick 

an ordering of some other type rather than just an w-ordering and obtain extensions 

of this result, but this does not concern us directly in this thesis. Similar results are 

also obtained for other infinite cardinals. The infinite version of Ramsey's theorem 

was first generalized to all cardinals by P. Erds and R. Rado [40], [38]. (There is an 

extensive bibliography on the subject of infinite generalizations; for other work see 

[36], [35], [120].) We are more concerned with obtaining finite results. 

Ramsey gave a construction for the proof of the finite version, but we prefer to 

derive it from the infinite version using König's Lemma, (a method referred to in 

[411—perhaps for the first time). We now give the finite version of Ramsey's theorem. 

Theorem 1.3.2 For any m, Ic, r E w, there is a smallest number n = R(m, k, r) so 

that for any coloring L [n]" - p r, there exists A e []m  so that L is constant on 

[A]'. We express this property of n by writing n - p (m) 

Proof: Assume, in hope of a contradiction, that the theorem does not hold, that 

is, for every n E w there, exists a 'bad' coloring L : [n]" - p r so that for every 
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A E []m, L. is not constant on [A]'. The restriction of a bad coloring L: [n]' - i r 

to a coloring [n - i]' - r is again bad. Order all such bad colorings by 

restriction to form a tree (T, :5) with the coloring of the empty set as the root. 

(T, ≤) is locally finite since any coloring of [n - l]' can only have finitely many 

'extensions' to a coloring of [] IC. Thus by König's Lemma (Lemma 1.2.2), (T, ≤) 

contains an infinite branch, corresponding to a bad coloring of w. This contradicts 

Theorem 1.3.1. 0 

The Ramsey arrow notation n -+ (m)k is due to Erd&s and Rado [39]. The 

numbers R(m, k, r) are very elusive. Extensive studies of these are given in [128] and 

[51]. Other comments on these numbers appear later throughout this thesis. 

1.4 A Geometric Analogue 

A proof of the finite version of Ramsey's theorem (simply known as Ramsey's the-

orem) was rediscovered by G. Szekeres inspired by an observation of Esther Klein 

(later to become E. Szekeres) in a completely different setting. (See, for example, 

[57] for an interesting account; also see [55].) The generalization of E. Klein's result 

[41] is by Erd& and Szekeres: 

Theorem 1.4.1 For any n E w, there exists in E w so that if m points on a plane 

are placed with no three collinear, then there are n of the in points which determine 

a convex n-gon. 

This theorem has been generalized (e.g., [6]) and reproven (e.g., [69], [55]). Many 

modern day proofs use Ramsey's Theorem. The original paper contains a proof using 

Ramsey's discovery and a second proof using a blend of geometric and combinatorial 
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arguments. (See also [53] for another geometric analogue to Ramsey's theorem. For 

Ramsey-type theorems for metric spaces, see [71]. 

1.5 Schur's Lemma 

The following theorem is of Ramsey nature, even though it appeared in 1916, when 

F. P. Ramsey was approximately 13 years old. It is a. result of I. Schur, a student of 

Hilbert and doctoral supervisor of R. Rado. The proof we give [100] uses Ramsey's 

Theorem. The result is known as "Schur's Lemma" [119], a slight strengthening of 

the original. 

Theorem 1.5.1 Fix r E w. Then there exists n E w so that for any coloring 

there exist positive integers x, y E {1, . . . , n} so that 

L(x) = L(y) = L(x + y). 

Proof: Using Ramsey's Theorem, let n E w so that n - 1 -+ (3). Fix a coloring 

L: {1,. .. ,n} -+ r. Then A induces a coloring : [n]2 - p r defined by L(a, b) = 

L(b - a) for b > a. By the choice of n there exist positive integers u, v, w E 

U < v < w, so that 

*(u,v) = *(u,w) = 

and hence, 

- u) = A(w - u) = Aw - v). 

Setting x = v - u and y = w - v concludes the proof. 0 
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Schur was actually trying to reprove the following theorem of Dickson, a modular 

form of 'Fermat's Last Theorem'. For the proof, a basic knowledge of algebra is 

assumed. 

Theorem 1.5.2 For every  E w and for all primes p sufficiently large, the equation 

xm+ymEzm (mod p) 

has a non-trivial solution. 

Proof: Fix in E w. Using Schur's Lemma, pick a prime p sufficiently large so that 

for any coloring A : p - m, there exist positive integers x, y E p so that 

(x) = (y) = L(x + y). 

Let G = be the multiplicative group of the field Zr,. It is well known that G 

is cyclic (of order p - 1), so for convenience write G = {a, a2,. . . , aP' = 1}, where 

1 is the identity of the group. Let 

H={mm (modp):xG} 

and let 

K={XEG:xmE1 (modp)}. 

K is the kernel of the obvious homomorphism of G, having H as the image. So 

H G/H, and by Lagrange's theorem, IKI = GI/IHI = IG/HI, the number of 

distinct cosets xH partitioning G. We wish to use this partition as a coloring, so 

first we need to count the elements in K. 
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Letp-1 = qdandm = rdwhered= gcd(m,p-1). Now ai E K if (p—i) urn 

if q I jr. But q and r are relatively prime, so aj E K if and only if q I j. Thus 

K . . ,a (d_1) ,a dq }, 

hence IKI = d < m. 

The d cosets xH of G define a coloring L : G —p d defined by *(b) = 

if and only if b and c are in the same coset, i.e., when b'c E H. By the choice of 

p, there exists positive integers a, b E p so that L*(a) = = *(a + b). In Zr,, 

1 + a 1b = a'(a + b) and each of 1, alb, and a'(a + b) are m-th powers (i.e., are 

elements of H). 0 

1.6 Van der Waerden's Theorem 

We conclude this chapter with one last important theorem. B. L. van der Waerden 

attended a lecture given by Baudet in which he learned of a conjecture by Schur (for 

his own account of the story see [127]). He managed to give a proof [126] for the so 

called 'Baudet's conjecture', now becoming eponymous with van der Waerden. We 

give one form of van der Waerden's theorem: 

Theorem 1.6.1 Fix r,t E w. Them there exists a smallest n = W(t,r) so that 

for any coloring A : n - r there exists a monochromatic arithmetic progression 

containing t terms in n. 

This will follow from the Hales-Jewett theorem in Section 2.4. A result by Shelah 

will prove that the function W(t, r) is primitive recursive. Some numbers W(t, r) are 

known, for example, W(2,2) = 3, W(3,2) = 9, W(4,2) = 35, and W(5,2) = 178. 
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See [19] and [125] for some work done on finding these numbers. For a related 

theorem using infinitely many colors, see [102]. 

There are many other significant results proved early in the age of Ramsey The-

ory; we choose to omit them. See any of the references mentioned in the introduction 

for a thorough historical exposition. 



Chapter 2 

The Hales-Jewett Theorem 

2.1 Introduction 

In this chapter we prove a Ramsey-type theorem which is very general in its combina-

torial nature, namely the Hales-Jewett Theorem. Remarkably, this theorem, which is 

central in Ramsey theory, arose from a generalization of the game 'Tic-Tac-Toe'. It 

can be stated in terms of 'combinatorial subspaces' or in terms of 'parameter words'. 

Although we give the development and proof in terms of parameter words, we can 

give the general idea as follows. Suppose f : n - p A is a function corresponding 

to an ordered n-tuple from a finite alphabet A. We are interested in combinatorial 

subspaces of An. For example, the set of functions which agree with f in all but, 

say, n-i fixed positions is a particular kind of an rn—dimensional subspace of An. The 

Hales-Jewett Theorem says we can make n large enough so that no matter how we 

partition An = {f: n -+ A} into r classes, there exists an rn-dimensional subspace 

of An which is contained entirely in one class. 

In choosing parameter words as the method of presentation numerous corollaries 

may be obtained in a rather straightforward manner. We give some of these corol-

laries, among which are van der Waerden's Theorem and applications suitable for 

discussion of lattices. Perhaps more importantly, we use the Hales-Jewett Theorem 

in a later chapter to prove a difficult theorem which is used many times in subsequent 

chapters. The result we speak of is a Ramsey theorem for ordered hypergraphs. 

17 
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Also included in this chapter is a result by Shelah which concerns bounds on 

the number promised by the Hales-Jewett theorem. It is found that this number is 

bounded above by a primitive recursive function. 

2.2 Notation and Preliminaries 

Throughout this chapter, A is a finite alphabet and )o, A, . . . , are symbols not 

in A, called parameters. As usual, we use An = {f : n -* A}. For m < n we define 

the set of rn-parameter words of length ri over A by 

[A]() = {f: n (Au { o,A1,. . . ,Am _i}): 

Vi E m, f 1(1) 54 0 and for i < j,minf'() <minf'(A1)}. 

So [A] (mn ) can be viewed as a set of ordered n-tuples containing each of the 
i E in, at least once and the first occurrence of Ai must precede the first occurrence 

of )j if i < j. For example, if A = {a, b, c}, ab)*o)\i and Aoc) i)o are in [A] () but 
a\1)oA1 and a\00b are not. We make the trivial observation that An = [A] (). For 
f E [A] (,) and ,g E [A] () we define the composition f o g E [A] () by 

• { f (i) if f(i)EA, 
fog= 

g(j) if f(i) = )tj. 

For example if f = aA0A1A0 and g = b)0, then f o g = ab,\0b. 

Lemma 2.2.1 The composition of parameter words is associative. 

Proof: Let f E [A](), g E [A](7) and h E [A](L). Since g o h E [A]() and 

f 0 9 E [A] ('), both f o (g o h) and (f o g) o h are defined and are parameter words 
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in [A] (). Using the definition we have 

f(i) if f(i) E A, 

fo(goh)(i) = g(a) iff(i) Aa and g(a) E A, 

h(j) if 1(i) = A and g(a) = 

and 

(fog)oh(i)= 

f(i) if 1(i) E A and fog(i) E A, 

g(a) if 1(i) and f o g(i) E A, 

h(j) if fog(i)=A. 

If f(i) E A then f o g(i) e A, and so trivially 1(i) E A if and only if f o g(i) E A. If 
1(i) 0 A, say f(i) = A and g(a) E A, then f o g(i) = g(a). Similarly, if f(i) 0 A, 

say f(i) = A, and g(a) = A, then f o g(i) = Aj. Hence the conditions given above 

are equivalent and so f o (g o h) = (f o g) o h. 0 

For fE [A](), define the space of f, 

sp(f) = {fog:gE 

sometimes denoted f o [A] ('), to be the set of words from [A] () which are formed 
by faithfully replacing parameters in f with elements from A. We define an m-

dimensional (combinatorial) subspace of An to be the space of some word in [A] (). 
If f E [A] () then we say sp(f) is a combinatorial line in A", or simply, a line. For 
example, if f = a\0,\j,\0, then sp(f) = {axoxixo : xo, x1 E A} C A4. In this example 

IAN 
sp(f) can be seen as a 2-dimensional subspace of A4 where f E [A] (i). 

Note that if A = {O, 1,... , t - 1} and we view Atm as a discrete 'geomet-

ric' n-cube, then not all 'geometric lines' are combinatorial lines. For example, 

({2, 0, 0}, { 1, 1, 0}, {0, 2, O}) is a geometric line with equation x + y + z = 2 in the 
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three dimensional cube over { 0, 1, 2} but 200, 110, 020 is not a combinatorial line in 

[{0, 1, 2}] (). However, there are Ramsey type theorems for affine spaces and vector 
spaces (e.g. [47], [50] and [123]), although we do not go into these here. 

We now give a type, of concatenation of parameter words which distinguishes 

between parameters from respective words. If f E [A] () and g E [A] () we define 
f'g E [A] (in+ln+k) as follows: 

g(i) = 

f  ifi<n, 

g(i — ri) ifi≥n and g(i—r)EA, 

if i ≥ 72 and g(i - n) = 

For example, a) 0b) 1 " cA0A1A0a = aAob) 1c,\2.X3X2a. Note that 

sp(fg) = {f"g' : f E sp(f),g' E sp(g)}. 

Counting the number of elements in [A] () is interesting. If IAI = t, then clearly 

[A]() =. 

Now examine  e [A](). Since f(i) E AU{Xo} and f"(.A0) 0, there are 

choices for f, that is, 

Lemma 2.2.2 

= (t-i-1)—V. 

= - E(-') M (7) (t + )n. 
Proof: Let B = (AU {) 0, . . , ) m—i}) be the set of all strings of length n formed 

from letters of A and the set of m parameters. Setting IAI = t, then we easily see 
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that I B I = (t + m). Let Cm C B be the set of strings each of which contains exactly 

m distinct parameters. (So [A] () C Cm.) For each j E rn, let 

If E B: f1(\) = O} C B 

be those strings not containing the parameter Aj. Then, by the Inclusion-Exclusion 

principle, 

Cml = 

= (t+m)— 1)(t+m-1)+ 2)(t+m-2)—... 

= E1)m- (t + i)tm. 
i=o 

Any element of Cm contains m parameters occurring first in any of m! possible orders, 

and [A] (mn ) determines those elements using a specific order of first occurrences, so 
we have that 

 n. = Cml = (_ i)m (7) (t +  

Division by m! concludes the proof. 0 

One can obtain a recursive formula for I [A] () 
Lemma 2.2.3 Setting IAI = t, 

[A](1) =(t+m) 

Proof-

1 m (m (.)fl+1 

= fl*j=Z) 

+ [A](Th 1) 

1 m-1 

[E ((-1)M-i(M) (t + m - (m - i))(t + i)n) +(t + m)1], 
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1 Im-1=  ((t + m)(_1)m (,n) (t + i)Th - (_ l)m-i(m - i) (7) (t + i)n) 
L=0 ' 

+ (t + m) 1] 

rn-i (m (t + )n, t + m m—i (m (t + i)Th - (_ 1)m-i(m - i) m! 

+ in M  rn i (in) m rn-i (n 1'\ (t + 
rn! i=O - . (t + )n + - (_ 1)m_i_i k. I m 

= (t+m) + [A](Th 1) 0 

This recursion formula can be made sense of by looking at how f E [A] (mr) 

could be constructed. If f(n) = Arn...i and f(i) 0 '\rni for i < n, then f = g 

for some g E [A] (m.1) If 1(i) = )'rn-i for some i < n then f can be formed from 

some g € [A] () by affixing f(n) , of which there are t + m choices, to the end of g. 
The expression for I [A] () I agrees with that for "non-central Stirling numbers 

of the second kind" [100]. The recursion formula developed here for such numbers 

resembles one for Stirling numbers of the second kind. The insight for such a relation 

came from the study of parameter words, and thus it is possible that parameter words 

have use in the study of partitions and factorial polynomials. 

2.3 The Main Theorem 

The following result, known as the Hales-Jewett Theorem [62], is one of the main 

tools used in a later chapter. This theorem captures the intrinsic nature of Ramsey-

type theorems. 
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Theorem 2.3.1 Let m,r E w and a finite alphabet A be given. Then there exists a 

smallest number n = HJ(IAI, m, r) E w so that for every coloring L : [A] () -• r 
there is an f E [A] () for which sp(f) is monochromatic. 

Proof: Put t = Al. The proof will be by induction on t and will be based on the 

following two inequalities: 

HJ(t,m + 1,r) ≤ HJ(t, 1,r) + HJ(t,m,rt tl ), (2.1) 

HJ(t+ 1,1,r+ 1) HJ(t,1 + HJ(t+1,1,r),r+ 1). (2.2) 

Observe that for all m and r, HJ(1,m, r) = m since the space of any word in [{ a}] () 
is unique (for any n ≥ m). Let P(t, rn, r) denote the assertion that the theorem is 

true for t,m, and r. It follows by induction on rn that, for a fixed t, (2.1) implies 

Vr[P(t, 1, r)] Vm, r[P(t, m, r)]. 

Now suppose for the moment that to is smallest so that there exists r0 with 

-i[P(to + 1,1,r0 + 1)]. 

(2.3) 

Fix r0 smallest. Then for all r, both P(to, 1, r) and P(t0 + 1, 1, ro) hold. So by (2.3), 

Vm, r[P(to, m, r)] 

holds and using in = 1 + HJ(to + 1, 1, ro) we then have, by (2.2), that 

P(to + 1, 1, ro + 1) 

holds, a contradiction. So, essentially, induction on t is done by first decreasing r 

by 1. Thus it remains to prove (2.1) and (2.2). 
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Throughout the proof fix t, m, and r. 

Proof of (2.1): Set M = HJ(t,1,r) and N = HJ(t, m ,rtM). Fix a coloring 

: [A] +N) -* r and define N: [A]()—) rtM by 

N(f) = ((gf) : g E [A]()) 

i.e., each f is colored with a sequence induced by A. Let fN e [A] (), guaranteed 
by the choice of N, be so that sp(fN) is monochromatic with respect to / N. Define 

M: [A]() -* r by 

Am(g) = L(g" (fN o h)) 

for any h E [A] ('). Note that by our choice of IN this does not depend on A.So 

there exists fm E [A] () so that sp(fM) is monochromatic with respect to LM. 
Setting 

f = fM fN E [A] (- :) 
we claim that sp(f) is monochromatic with respect to A. For any 1 E [A] (01), 
hE [A]('), 

fo(lh) = (fMol)^(fNoh) 

and so L(f o (l"h)) = / M(fM o 1) is constant. Hence we have shown (2.1). 

Proof of (2.2): In this part, we put M = HJ(t + 1, 1, r) and N = HJ(t, 1 + 

M, r + 1). With IA! = t, choose b 0 A and put B = AU {b}. Fix a coloring 

(0) r+1. 

We wish to show there exists a monochromatic line in BN , i.e., an h E [B] () so 
that h o [B] () is monochromatic with respect to A. 
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Define 

AA: [A] (N) +11 

the restriction of A to A, in the natural way (i.e.,LA(f) = z(f) for any f E AN). 

By the theorem, there is fA E [A] IV (1-M) which has fA o [A] (i.M) monochromatic 

with respect to LA. Without loss, let LA (f) = r for every f E fA o [A] (1+M). Now if 

there is a g E [B]('') so that also L(fA o (( b) g)) = r, (i.e., if there is a word in B" 

containing b's which occur in the same positions as Ao occurs in fA and is colored 

the same as fA) construct h by replacing the occurrence of each b in fA o (( b) 

with A0. Clearly h E [B]() and 

(1+M 
ho(x)EfAo[A]( o 

whenever x E A, and so in this case L(h o (x)) = r. Also 

ho(h) = fn o((b)g) 

and so L(h o (b)) = r. We have shown that in this case h o [B] () is monochromatic 
with respect to L. 

Now suppose there is no such g E [B] () satisfying L(fA o ((b) 'g)) = r. Define 

Am (g) = L(fA o (( b) g)). 

By the theorem, there is fm E [B] (') with fm o [B] () monochromatic with respect 
to LM. Look at 

h = fA o ((b) ^ fM) E [B] (N). 
Then h o [B] () is monochromatic with respect to /.., finishing the proof. E 



26 

A natural question arises. Can the word guaranteed by the Hales-Jewett theorem 

be chosen so that for each i, If1(A)I = 1? The following example (given by N. 

Sauer - oral communication) answers this in the negative. Let A = {O, 1,. . . , 9}, 

in = 1, r = 2, and fix n = HJ(10, 1, 2). Now define the coloring L: [A]() - p 2 by 

L(f) = f  
iEn 

(mod 2). 

One need only observe that if sp(f) is a monochromatic line in A, then f must have 

the parameter in an even number of places, not just one. 

It is interesting to note that Graham and Rothschild [52] proved a much stronger 

partition result for parameter words generalizing the Hales-Jewett theorem to higher 

dimensions. Although we do not give the proof here, we include the statement of 

the Graham-Rothschild theorem for completeness: 

Theorem 2.3.2 Let k,m,r E w and a finite alphabet A be given. Then there exists a 

smallest number  = GR(IAI,k,m,r) E w so that for every r-coloringL: [A]() — p 

r, there exists f E [A] () so that f o [A] is monochromatic. 

Observe that the Hales-Jewett theorem is the case k = 0. See [98], [105], [111] for 

extensive discussion and extensions fo the Graham-Rothschild theorem. 

2.4 Some Applications 

We are now ready to give one proof of van der Waerden's theorem. 

Proof of Theorem 1.6.1: Let A = 10,1,2,...,t - 1} and define a map b 

[A] () - V by 1(f) = Eien f(i)t. Observe that 0 is one to one on An For an 
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element f E [A] (), sp(f) determines an arithmetic progression of t terms under the 
mapping 7k. In this setting, Theorem 2.3.1 immediately gives the result. D 

The above proof occurred in [55], however another idea [100] is to set &(f) = 

iEn f(i). Then, as above, if f E [A] (), then sp(f) determines an arithmetic 
progression. If we denote an arithmetic progression by {ao + id : i E t}, then the 

given proof of van der Waerden's theorem does not enable us to specify d. However, 

some conditions on d may be imposed. For example, suppose for some given x E w 

we need d to be of the form d = >IjEICw X and we need t' ≤ x terms. Apply the 

proof with t = x obtaining f with 

a ox+)ox 2. 

iEn\I iEI 

Now only pick, say, thefirst t' terms of the progression determined by sp(f). Observe 

that the alternate idea of setting &(f) = f(i) does not allow any non-trivial 

conditions on d. We now turn to a generalization of van der Waerden's theorem. 

Let R denote the set of real numbers. For X C R, a function f : X - R7Th is 

homothetic if there is a E Rm and d E R so that for each x E X, 1(x) = a±4x. Gallai 

—see [114] (alias Grünwald) and Witt [129] independently proved the following: 

Theorem 2.4.1 Given a finite X C Rm and r E w, there exists a finite Y C Rm so 

that for every coloring of Y with r colors, X has a monochromatic homothetic imag e' 

my. 

Proof: Fix a finite set X C R' and set n = HJ(IXI, 1, r). Put 

= {Ef(i) : 1 E [X] (n) 
iEn 
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where the sums are component wise, and let A : Y -* r be a coloring. Examine the 

induced coloring x : [X] () A M E" r defined by x(f) = L En f(i)). By the Hales-

Jewett theorem, there is a g e [X]() with go [X] () = sp(g) being a monochromatic 
line. Supposing A0 is the parameter of g occurring d = I{ : g(i) = )¼}j times, set 

a= E g(i). 

So 

{>f(i):fEsp(g)}={a+dx:xEX} 
iEn 

is monochromatic with respect to A and we are done. 0 

An extension of this theorem can be found in [101]. Many other related observa-

tions regarding sums also occur (cp. [55],[43]). 

We now turn to lattices. For f E [0] () and g € [0] () we say f ≤ g if and only 
if there exists an h E [0] () so that f o h = g. Observe that there is a one to one 
correspondence between elements of [0] () and partitions of n = {0, 1,.. . , n— 1} into 
lc parts. Furthermre, if f g then the partition determined by f is a refinement of 

that determined by g. 

For example, if f = .A0A1\0.\2 e [0] () and g = ) oA1Ao)¼1 E [Oil (), then f ≤ g 
with h = )o)) o E [0] () as a witness. In this light, we see that Uk<n[O] () together 
with the relation ≤ is isomorphic to the lattice of partitions. Although we do not 

discuss them here, one can deduce partition theorems for these lattices from the 

Hales-Jewett theorem. Interpretations using a two letter alphabet also yield partition 

theorems for Boolean lattices, distributive lattices, and posets in general. See [100], 

pp. 47-57, for a more comprehensive discussion of these and other classes. The 

interested reader may consult [76] and [92] for other extensions. Many other results 
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in combinatorics have been discussed using parameter words—see e.g. [103], [106], 

[107], and [110]. 

2.5 Shelah Bound 

By 1988, S. Shelah had discovered a truly remarkable proof that the function 

HJ(t,m, r) is primitive recursive. Shèlah then relayed this information to W. Deu-

ber, who lectured on this in Germany later that year (and also in Norwich,1989 

[24]). N. Sauer attended this lecture and gave the outline for the case m = 1 at the 

University of Calgary in September of 1988. We give here a version of these handed 

down arguments for the case m = 1. The author noticed that essentially the same 

proof works for arbitrary in, yet Rödl (oral communication) pointed out that a (well 

known) lemma gives another way of proving the general case from the case m = 1. 

The paper by Shelah [121] was discovered only after learning the proof we give here; 

in his paper, Shelah proves much more, and in a more condensed fashion. 

As usual, [] = {P C n = {0,1,2,...,n - 1} : I P1 = i}. In what we refer to as 

"Shelah's Lemma" we will be interested in 'strings' of the form 

({x0,y0}, {x1,y1},. . . ,{Xi_1,yi....i}, {x}, {Xi+i,yj+i},.. ., {xn _i,Ym _i}) 

and coloring such strings. The string given will be said to be an element from 

([n]2, [ri]2,. . .., [n]2, [n]', {n]2,. . . ,[n]2), where [n] 1 is in the i'th position. It will some-

times be convenient to put subscripts in to mark positions, such as in [n]. We now 

give Shelali's Lemma. 

Lemma 2.5.1 Given m,r E w, then there exists a smallest ri = Sh(m, r) so that for 
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every family Ai, (i E m), of m functions 

([n]2, [n]2, . . . , [n]2, [n], [n]2, . . . , [n]2) -* r 

there exists x0 < Yo, X1 < Yi, ..., xm -1 <Ym-i so that for each i E m 

z({x0, yo}, {x1, yi}, ... , {x_i, yi-i}, {x}, {x+1, yi+i},. .. , {S_i, Ym-i}) = 

L1({xo,yo},{xi,yi}, .. . , {xj_l,Yi_l},{Yi},{Xj+l,yi+l},. .. 

Proof: Sh(1, r) = r + 1 trivially by the pigeon hole principle. Assume that Sh(m, r) 

exists. We claim Sh(m + 1, r) < n where 

(Sh(m,r))m 

n=1+r 2  

Consider any m + 1 colorings zj .: ([n], . . . , [n]%,. . ., [n]) 

restriction of /- m 

• ([Sh(m, r)],. .. , [Sh(m, r)]_, [n]) —+ r. In. 

For each x E [n], there are (81t(m'rn strings of the form 
2) 

{xo)yo}, {x1,y1},. . , {xm_i,y,n_i}, {x}, 

r. Examine the 

where {x, y} [Sh(m, r)] and xi < nj, each of which are colored by with one 

of r colors. So for each x E [n]', there are r(s,)m possible choices for colorings of 

22 ([Sh(m, r)],. . . , [Sh(m, r)]_1, {x}). Thus by the pigeon hole principle, there is 

{Xm ,yin} E [n]2, Xm  < Ym , 

so that for each choice of pairs {x, y} E [Sh(m, r)]2, i E m, we have 

.,{X_i,Ym_i},{Xm}) = 

L({xo,yo}, {xi, y1},. . ., {xm _i,Ym .-.i}, { Ym}). 
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Fix such a pair {xm ,ym }. 

We now look at the remaining m - 1 maps Lj, i = 0,1,... ,m - 1. Define 

restrictions 

([Sh(m, r)]2, . . . , [Sh(m, r)], . . . , [Sh(rn, r)]_i, { -i r. 

By the induction hypothesis, for each i = 0, 1,. . . ,rn—i we can select a pair {x, y} E 

[Sh(m, r)]2, x < j which satisfy the required conditions. This completes the proof 

by induction. 0 

Let us now examine the bounds on the function HJ(t,m, r). First we must discuss 

what it means for a function to be primitive recursive. The exact definition lies in 

a detailed explanation from recursion theory, a discussion we choose not to go into 

here. If f : wmi w, i E I, are primitive recursive functions, then f W m w is 

primitive recursive if f(x1,... , x,,) can be written as a finite collection of symbols 

from x1, ..., +, —, •, , parentheses, and . . ,ym1 ),.where the y's are chosen 

from {x1,. . . Xm}. For example, exponential functions and n! are both primitive 

recursive. 

One example of a function which is not primitive recursive is an 'Ackermann 

function' [2]. We use f() to denote the n'th iterate of f under composition. If we 

define functions f : w -+ w by f, (x) = 2x and f+1 (x) = f)(x), then the function 

F defined by F(n) = f(2) is an Ackermann function. Such a function eventu-

ally dominates any one primitive recursive function. (See [55], p.51 for additional 

discussion.) 

The inequalities (2.1) and (2.2) in the proof of Theorem 2.3.1 do not yield primi-

tive recursive bounds for HJ(t,m, r). However, Shelah's lemma can be used to show 
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that HJ(t, 1, r) has a primitive recursive upper bound (viewed as a function of t). 

We first observe that the function Sh(m, r) has a primitive recursive upper bound. 

One obvious bound, 

2mr 

Sh(m, r) (2mr )(2mT)" , a tower of height m, 

follows from the inequality 

Sh(m + 1, r) < 1 + r(5,)m_l 

We can now give Shelah's result [121] which shows HJ(t, 1, r) is primitive recursive. 

Theorem 2.5.2 HJ(t + 1, 1,r) HJ(t, 1,r) Sh(HJ(t, 1,r),r(t+1)hIJ(t1_1) 

Proof: Let rn = HJ(t,1,r) and n = Sh(m,r(t+1)ml). Fix an alphabet A with 

Al = t and let a E A and b 0 Abegiven. Set B = AU{b}. For each x,y En, 

x < y <n, define words Lxy E [B]() by Lxy(i) = aifi E x, Lxy(i) = )ifx ≤ i < y 

and Lxy(i) = b if y ≤ i < n. That is, Exy is of the form aa... a)\. . . Abb. .. b where 
there are a's in the first x positions, )'s in the next y - x positions, and b's in the 

remaining n - y spots. Also, for each x E n define words Rx E [B] () by Rx(i) = a 
if i E x and Rx(i) = bifx < i < n. Let A : [B](7 ) - r be given. We need to 

show the existence of a monochromatic line in [B] (' j). 

For the moment, let us examine restricted collections from [B] As a local 

definition, we shall say that f E [B] (,') is of type i if f is of the form 

f = Lxoyo'Lxiyi". .. '1m-1Ym-i, 

(where ) = ).j in Lx'). Restrict A to 

Ai: / {fog : f E [B]I mn 1),  is of type i, g E [B]t O) - f 1'. 
m— 
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For each f of type i, substitutions of the m - 1 parameters (from t + 1 letters), ij 

produces a vector of colors, one of r(t+1)m_l such possible. That is, Lj induces a 

coloring of each f of type i using r(t+1)ml colors. But each such f is determined by 

an element from ([n]2,. . ., [n]',. . . , [n]2) determining the indices x, y. So by Shelah's 

Lemma, there exists a fixed choice of the xi's and say 

so that 

t(Lxoy0 Lxiy1 . . . . Lm...iym i) = 

(Lxoy0L 1y1'... ... "L m_iym_i). 

Furthermore, this does not depend on i; the set of indices is a uniform choice. 

Now look at the rn-parameter word 

S = Lxoyo"L iyi" . . . 'LX,n_ym_. 

The coloring A induces a coloring As: [B] (') - f r by Ls(g) = z(S a g). For any 

h E [B] ('), we claim that zs(h o a) = Ls(h a b). Observe that Lxjyj o a = Ryi and 

Lxyob = Rx. Since /j is insensitive to changes between Rxi and Ry, we have that 

As (h a a) and As (h o b) must agree, settling the claim. This gives us that the coloring 

Ls: [B] (') - p r is induced by a coloring L [A] ('a) - p r, omitting the element b. 

But rn was chosen large enough so that there exists a monochromatic line in [A] ('), 

i.e., since HJ(t, 1, r) = in, there is f E [A] (') so that sp(f) is monochromatic with 

respect to A. This is clear, since As was determined by those words in the space of 

f. So the word S a f E [B] (T) is as desired. El 
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One might observe that this shows the function W(t, r) asserted by van der 

Waerden's Theorem is also primitive recursive. Apparently, this was previously not 

known. See [55], pp. 52-3 for discussion related to these bounds. Some recent work 

in this area (not using Shelah's work) can be found starting with [58]. 

An observation, somewhat astonishing, is that in the proof of Theorem 2.5.2 

nowhere was it relied on that we were doing the case for only lines, i.e., nowhere was 

it used that m = 1, except in some details near the end. Well, in fact, the proof 

works for arbitrary rn, but if this assertion is not convincing, there is a more direct 

[and hence more satisfying?] proof of the general case. This alternate method (see 

e.g. [55] p.3'?) simply relates the Hales-Jewett number for rn-spaces to that for lines. 

Theorem 2.5.3 The function HJ(k, t, r) is primitive recursive. 

Proof: We claim that t. HJ(lct, 1, r) ≥ HJ(k, t, r). In order to prove this claim we 

use the idea that if A = Bt where B is an alphabet, then a combinatorial line in A 

is a t-space in 

So let B be an alphabet with IBI = k and set A = If : t - B}. Fix n = 

HJ(kt,1,r). If g E [B]('), then setting 

gi = g(it)g(it + 1). . . g((i + 1)t - 1) 

for each i E n, we have 

g=gog1  ... gn-i E [A]() 

showing [B] (') 9 [A] (). In fact, [B] ( t) can be viewed as precisely [A] (c). Fix a 
coloring L : [B] (7t) - p r (which is also a coloring of [A] (c)). By the choice of n, 
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there exists g E [A] (') so that A is constant on g o [A] (c). But since the parameter 
of g can be replaced by any f : t - B we have that g E [B] (it) and L is constant 

on g o [B] M. Thus nt ≥ HJ(k, t, r), proving the claim and hence the theorem. 0 

The powerful techniques of Shelah have put an end to a very difficult outstanding 

question. It may be of no surprise to some that, in the same paper, Shelah completely 

settled the same question for the function GR(IAI, k, m, r) (as given in the statement 

of Theorem 2.3.2) among other related functions. 



Chapter 3 

Finite Graph Ramsey Theory 

3.1 Introduction to Graphs 

Many visions come to mind when one hears the word "graph", but this discussion 

deals with only certain types of graphs - graphs in the combinatorial sense. Before 

we give the definition of a graph, let us give the general idea. If one puts dots on 

a page and then connects some pairs of them with lines, then one has a graph in 

the simplest sense, sometimes referred to as an ordinary graph. The dots are called 

vertices (or points) and the lines are called edges. Edges ordinarily 'include' only 

two vertices each, but we need not restrict ourselves so. We could use any number 

of vertices in one edge, even though this is hard to imagine (and draw!); such a 

hypergraph is a very useful structure. The generic term "graph" is often used to 

denote hypergraphs in general although it is usually reserved for ordinary graphs. 

One could look at graphs in another sense. Suppose we are given a set X and 

finitary relations J?, R1, ..., R_1,which are symmetric (i.e., R(y0, . . . ) ymj-1) = 

R(y(o),. . . , Ycr(mj_i)) for any permutation o- of mi). We could say {x0,.. . , x,_} C 

X is an edge if R(x0,. . . , mm_i) holds for some i E n. These relations determine 

a hypergraph on the vertex set X. If there is only one binary relation then the 

hypergraph is just an ordinary graph (providing R(x, x) never holds). If all the 

relations are of the same arity, then the graph has all edges the same 'size' and hence 

the hypergraph is said to be uniform. 

36 
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A last look at how hypergraphs can be envisioned is as follows. Given a set X, we 

might be interested in a collection of subsets of X. These subsets are simply edges 

of a hypergraph on X and thus hypergraphs are a useful, in fact equivalent, way of 

examining many combinatorial problems. Since Ramsey theory is a branch of com-

binatorics, it is natural to consider the theory in the setting of graphs. The language 

and notation used in graph theory is well established and hence presents a natural 

environment for Ramsey theory. When couched in graph theoretical language, the 

original questions and results in Ramsey theory correspond to only certain types of 

graphs (namely the 'complete' ones). Recently, the same types of questions have 

been asked of arbitrary graphs, and to emphasize this, "graph Ramsey theory" is 

used to denote this stimulating, although sometimes difficult, field. 

3.2 Notation and Preliminaries 

The basic notions in this and subsequent chapters are common to many of the popular 

books (e.g. [3],[71,[63]) in graph theory. To preserve uniformity we review some basic 

definitions and notation. 

As mentioned in the introduction, there are two kinds of graphs we wish to 

consider here, ordinary graphs and hypergraphs. Usually ordinary graphs are referred 

to as simply "graphs", although "graphs" may refer to hypergraphs in general. We 

hope that the context will remain clear throughout regarding the kind of graph we 

are discussing. We give most of the definitions in their general form, that is, for 

hypergraphs, of which ordinary graphs form a special case. 

A hypergraph G is a pair G = (V(G), E(G)) where V(G) is the vertex set and 
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E(G) C 2['(G)] is the edge set. We restrict ourselves to finite hypergraphs, i.e., 

IV(G)I is finite. By this definition, no edge appears more than once in E(G), i.e., for 

any given set X C V(G) , X determines at most one edge. This is often expressed 

by saying the graph has no multiple edges. (If 2 towns are connected by 2 distinct 

roads, the corresponding map would contain multiple edges - we do not discuss 

such cases here.) Each edge is considered to be an unordered set, quite unlike the 

case of ' directed graphs'. Ramsey properties of infinite directed graphs has also been 

studied (for example, see [16],[17],[18], and [27]), but surprisingly there seems to 

have been little accomplished in the finite case ([5] is an exception). The size of 

an edge e E E(G) is merely the number of vertices contained in e. If all edges of 

a hypergraph G have the same size, say k, then G is called k-uniform, i.e., when 

E(G) C [V(G)]'. A k-uniform graph is often referred to as a k-graph. Later we shall 

see that edges can be further classified into types or multiplicities-,we need not give 

the formal definition here. A loop is an edge consisting of a single vertex. 

An ordinary graph, or simply, a graph C = (V(G), E(G)) on a finite vertex set 

V(G) has edge set E(G) 9 [V(G)]'. Note that under this definition, a graph has no 

loops or multiple edges, is undirected and is finite. If E(G) = [V(G)]2 we say G is 

complete and if E(G) = 0, we say C is an empty graph. A 'graph' with no vertices 

is called a null graph. We use standard notation for ordinary graphs: K, denotes a 

complete graph on n vertices. A path is a graph on vertices x0, x1, ..., x, where 

(xi, x + 1), i E n are edges. We use P to denote the path of length n on n + 1 

vertices. A star is a graph with one vertex connected to all others by an edge and 

no other edges present. A star with one central vertex and n end vertices is denoted 

by S. 
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A cycle in an ordinary graph is a sequence of vertices xO, x1, ..., x,, where 

(xi, xi + 1), i E n and (x, x) are edges. A cycle on n vertices is denoted by C. 

A cycle of length p in a k-uniform hypergraph G = (V, E) (where E C [V]') is a 

sequence e0, e1,. . . , e_1 of different edges in E so that there are distinct vertices 

v0,v1,...,v.1 E V so that Vi E efle +i for  < p — land v,_i E e_1fleo. 

A hypergraph G = (V, E) is connected if for any two vertices v, w E V there is a 

path in C containing both v and w. A (hyper)graph which is not connected is called 

disconnected. A graph is n- connected if between any two vertices there are n vertex-

disjoint (except at endpoints) paths joining them. It is easy to see that a graph is 

2-connected if and only if the graph can not be made disconnected by the removal 

of any single vertex, that is, its smallest cutset contains at least two elements. See 

[4], ch. 9 for detailed explanation of ' connectivity'. We also say, in this case, that 

the graph has no cutpoints. (A cutpoint is a vertex whose removal disconnects the 

graph.) 

For two hypergraphs H and G, we say an injection f : V(H) -* V(G) is a (graph) 

embedding just in case f(X) E E(G) if and only X E E(H) holds, in which case we 

say H embeds in C (or, G embeds H). If f: V(H) - V(G) is a bijective embedding 

(graph isomorphism), H and C are isomorphic, denoted by H C. 

When V(H) C V(G) and E(H) c 2[h'(FI)] fl E(G) then H is a weak subhypergraph 
of C and we write H C G. If H C G and E(H) = 2[V()] fl E(G) then we say H is 
an induced subhypergraph of G, denoted by H G. So H embeds into C if there is 

H' G so that H' H. If we speak of a sub(hyper)graph we shall take it to be 

induced. Graph Ramsey theory for weak subgraphs is also studied, but we emphasize 

that our interest here is primarily in the induced, or 'strong' Ramsey theory. Some 
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interesting results arise from the weak cases which are relevant in our study, so some 

references are given later. We sometimes confuse issues by saying "H is a subgraph 

of G" when it is actually meant that H embeds into G. We hope these situations 

are clear when they present themselves. 

A clique in an ordinary graph G is a maximal complete subgraph of G. We define 

the clique number, cl(G), to be the maximum size of a clique in G. The chromatic 

number, (G), of a hypergraph G is the least positive integer n so that there exists 

a partition of V(G) into n classes with no edge contained entirely in any one class. 

If no such integer exists, (as in the case of a graph with loops) then we say (G) is 

infinite. For example, (K3) = 3 and (G) n for any n-partite graph G (without 

loops) and the chromatic number of an empty graph is 1. The girth of a hypergraph 

is the size of the smallest cycle contained in it as a subhypergraph. For a family . 

of hypergraphs, we let Forb(.F) be the class of all hypergraphs which do not contain 

any induced subhypergraph isomorphic to an element of T. 

For hypergraphs we define the binomial coefficient 

(G) 
This notation is apparently due to Leeb (—see [84]). For hypergraphs F, G and H, 

and a fixed r E w the standard Ramsey arrow notation F -+ (G)' denotes the*fact 

that for any coloring 

L: ( F  -+ 
H) 

there exists G' e () F so that A is constant on (). We use the analogous notation 
for ordered graphs. This notation will be used extensively throughout this and later 

chapters since our main objective is to study the triples G,H,r for which there is an 
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F satisfying F —+ (G)'. With this goal in mind, it is convenient to introduce the 

special notation 

= {F: F — p (G)'}, 

the Ramsey class for G in coloring of H's with r colors. This notation was devel-

oped by the author (and may not yet be standard) to eliminate many cumbersome 

statements. 

Another notation used in Ramsey theory is used when we have two (or more) 

graphs of which we require only one to be monochromatic. Most common is the case 

of edge colorings with two colors. Then F —+ (G, H) means that in any red-blue 

edge coloring of F, there is either a red copy of G or a blue copy of H. More often than 

not, this notation was used for the weak subgraph Ramsey statements and was very 

commonly referred to as Generalized Ramsey Theory. The reason it is referred to as 

'generalized', is that this study stemmed from the examination of Ramsey numbers, 

diagonal and otherwise. There is extensive literature on generalized Ramsey theory 

(e.g.,[32],[44], [64], [65]). The (diagonal) Ramsey numbers correspond to the size of 

the smallest graph F satisfying F —* (if, Km) where in = n. (The off-diagonal 

numbers are when m n.) One can also assign Ramsey numbers to the 'generalized' 

cases (i.e., when F —* (G, H) for arbitrary graphs G and H). Determining such 

numbers (and their existence) is difficult work. Although no complete solution exists, 

significant progress has been made (e.g., [20], [29], [30], [45]). Cases dealing with 

only certain families of graphs, such as stars, matchings and forests have been looked 

at extensively (e.g. [11], [12], [13], and [68]). 

A familiar Ramsey statement is: 6 — f (3,3). This says that if we color the pairs 

of a six element set with two colors then we are guaranteed the existence of a three 
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element subset, all of whose two element subsets are colored the same. Translated 

into the language of graph theory, this statement reads: K6 -+ (K 3) 2. 

Theorem 1.3.2, the finite version of Ramsey's theorem [116] can be stated as 

follows: 

Theorem 3.2.1 For any m,k,r E w, there exists an n E w so that K, 

i.e., R[(Km)r] 0. 

An ordered hypergraph (G, :5) is a hypergraph G together with a total order ≤ 

on V(G). Two ordered hypergraphs are isomorphic just in case there is an order 

preserving graph isomorphism between them. Definitions analogous to those given 

above hold for ordered hypergraphs as well. For a hypergraph H we let 

ORD(H) = {(H, ≤ o), (H, ≤),. . . , (H, ≤k-1)}, 

be the set of (distinct) isomorphism types of orderings of H. It is often convenient to 

abuse the notation and deliberately confuse an isomorphism type with a hypergraph 

of that given type. 

In some theorems we use 'partite' graphs. Let V0, V1,. .., V,_1 be a system of 

pairwise disjoint nonempty sets and let E C P([UE7j']) be so that for any e E 

In V21 ≤ 1 for each i En. Then G = (V0,V1,...,V_1,E) = ((V) € , E) is called 

an n-partite hypergraph with parts (or coordinates) 14 = 14(G). For n = 2, the graph 

is called bipartite. All the remaining notation we give here regarding partite graphs 

also applies to hypergraphs but we state it only for ordinary graphs. 

Given an n-partite graph G = ((VZ)Efl, E) and graph H = (W, D) then H embeds 

(partite-wise) into G if there exists a partition of W = W0 U Wi U ... U Wm_i with 
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D fl [will = 0 for each i E m ≤ n (i.e., H is rn-partite) and there exists an injection 

f : W — UiEflV so that for each i E m there is a(i) E n with f(W) C Vc,.(j) and 

f(D) = Efl [Ui€mf(Wi)]2. This says that H is isomorphic to some m-partite induced 

subgraph of G, that is, H H' = (V', E') where V' C UIE,IVI, V fl V' o 0 for exactly 

m values of i, and E' = [V']2 fl B. In this case we write H' part G to emphasize 

the fact that H and G are partite graphs. As before, for a partite graph G, let 

() = {H' H : H part G}. Note that when the partite structure is ignored, 

(i) may contain more elements than does () part 
For partite graphs F, G, H, and r E w, we use the partite Ramsey arrow notation 

F part (G)' to mean that for every coloring z : () part —+ r there exists 

G' € () so that . is constant on () . Observe that if F, G, H are 1, m, part part 
n-partite respectively, we need 1 ≥ m ≥ n for this statement to be non-trivial. 

3.3 Vertex Partitions 

A coloring of the vertices of a graph can be viewed as a partition. In this section, we 

are interested in expressions of the form F —+ (G)' where K denotes a vertex. 

In general, if we are given two graphs G and H and a number r E w , it is quite 

difficult to ascertain whether or not there is a graph F E R.[(G)']. One of the earlier 

successes [46] is the following 

Theorem 3.3.1 For any ordinary graph G, 1.[(G)Ch] 0 0. 

Proof: Let the graph G be given and define the lexicographic product F = G 0 G 



44 

on V(F) = V(G) x V(G) by 

((uo,vo),(uj,vi)) E E(F) iff (uo,ui) E or, 

= u1 and (vo, vi) E E(G). 

It can be verified that F satisfies F -* (G)" (sine if there is no monochromatic 

copy of G in any of the ' coordinates' of F, then there is certainly one straddling the 

coordinates). 0 

We now turn the discussion to the existence of hypergraphs with high chromatic 

number and containing no small cycles. Naively, one would think that since short 

cycles force the chromatic number up, short cycles are necessary to do so. In fact, 

quite the opposite is true. According to [87], the study of such questions began with 

Tutte and Zykov [21] in the 1940's. The question was finally answered by P. Erd.3s 

[28] and Erd& and A. Hajnal [33] in the 1960's using probabilistic methods. The 

first constructive proof was given by L. Lovász [73]. The author is not familiar with 

Lové.sz's construction (of uniform hypergraphs having arbitrarily large chromatic 

number and girth); the construction of Neetil and Rödl [87] which we give here is 

apparently an extension of an idea of Tutte [21]. 

The method we use here is called partite amalgamation a method generally at-

tributed to Neetil and Röd1. If we think of this process as 'gluing' partite graphs 

together but only at certain parts or coordinates, the process we use here consists of 

gluing only at a single part. In the next section (Theorem 3.4.4) we employ a similar 

technique but involving the amalgamation along two parts. In a more general situa-

tion, the method will be again dressed up for the occasion to prove a most powerful 

theorem later in this manuscript (Theorem 4.5.2). Because of the difficulty of the 

process of partite amalgamation, the proof we give of the existence of sparse (large 
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girth) highly chromatic hypergraphs will serve as a nice introduction to the idea. 

As usual, we let (G) denote the chromatic number of G. 

Theorem 3.3.2 For positive integers k ≥ 2, n, p there exists a k-uniform h-yper-

graph G so that girth(G) > p and x(G) > n. 

Proof: For an a-partite k-uniform hypergraph C = (( Vi)iEa, E) with IVrJ = l 

for some r E a, and an 1-uniform hypergraph H = (X, D), we define H *,. G = 

((V')iEa, E'), an a-partite k-uniform hypergraph as follows. 

For i 54 r, set V' = V x D and set V.' = X. For each d E D fix an injection 

Od UjEaV 4 UiEaV' taking Vr to d C Vr' and for i 54 r, pSid(V2) = {(v, d) : v 

Define 

E' = {{?/ d(v1),...,?/'d(vk)} : {v1,...,vk} E E,dE D}. 

An edge e E E' will be denoted Od (e) for some e E .E, and d E D. So H*r G is formed 

by taking IDI copies of C and identifying the copies of V with edges of H. So we 

have amalgamated copies of C together along the r-th part, using H as a ' template' 

for the new r-th part. 

We now prove the theorem by induction on p. For p = 1, observe that any 

loopless hypergraph C satisfies girth(G) ≥ 2, and for each k, trivial examples of 

k-graphs exist with x(G) ≥ n. So assume that for fixed p the theorem holds for 

every q satisfying 1 ≤ q < p and for all edge sizes W. Put a = (k — 1)n + 1 (note 

that a —+ (k)), and let 

Go = ((V °)iEa,E°) 

be such an a-partite k-uniform hypergraph so that for every set A C [a]' there is an 

edge 6 e E° with e fl V' 54 0 for every i E A and has girth(GO) > p. (We can take 
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G° to be a collection of disjoint k-edges.) 

Define inductively a-partite k-graphs G' = ((Vt')jEa, Ei), 1 ≤ j ≤ a, as fol-

lows. Having defined Gm = ((Vm)jEa,Em), (m < a), put 'I = im and let 

Htm = (X, Dm) be an 1,n-graph which satisfies girth(H-) ≥ p and (H-) > n. 

(Such a hypergraph exists by induction hypothesis using a different value for k.) 

Put 

Gm+l = H *m G = ((Vm+l)j€a, .Em+l). 

We claim the graph G° = (( V')jEa, Ea) satisfies the theorem. 

To see that girth(G3) > p for each j ≤ a, we use induction on j; suppose that 

girth(G1) > p for a fixed j. In pick a sequence of vertices 

C = JOdo  . . . ,'cbdq_i(Vq_1)} 

of minimal length q which determine a cycle. If all the d, i E q were equal, by the 

induction hypothesis there are no small cycles in a copy of Gi and so q > p would 

hold as desired. So suppose that not all the di are equal. Then in this case, the only 

way that C can be a cycle is if it uses vertices from V/+', the j-th part of G31. Now 

use the fact that, by induction hypothesis, girth(Hi) ≥ p and conclude that q > p 

(in fact, q would in this case be at least 2p) as desired. 

To see the proof of X(G') > ri, fix a coloring L : V(Ga) -* n. The restriction 

of A to X 1, the last part of G, imposes a coloring on Xa-1, the vertices of H'. 

But X(Hai) > n by the inductive hypothesis, and so there exists a monochromatic 

edge da....i E Da-1- Setting Za_i = da_i E [X_1]12_1 to be the last part of a new 

graph F°' i.e., 

((Xi Z._,, Za_i, E' - n [u_1X' U Za...iI'), 
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we shall look only at how A colors V(F°'). Certainly A is constant on Za_i by 

design. Repeat in this manner, using the vertices of a monochromatic edge of H°- 2 

as a new part, a subset of create F'-2, A being constant on the second last 

part thereof. Continuing in this manner, we get F° = ((ZfljEa, E(F°)), a copy of G°, 

the vertices of which have colors depending only on the part from whence they came. 

By the choice of a, there exist k parts all colored the same. By the design of G°, there 

exists a k-edge determined by those parts, guaranteed now to be monochromatic. 0 

We will later observe how closely this proof follows that of a Ramsey theorem 

(Theorem 3.3.1) for edge partitions. This is not surprising since one can interpret 

Theorem 3.3.2 as a Ramsey result. For a k-uniform graph G, let a copy of an edge 

of G (all of which are isomorphic) be denoted by PiG. Also, let Ci be a k-uniform 

hypergraph which is a cycle of length i (they are unique even in this hypergraph 

setting). Then Theorem 3.3.2 can be restated as follows. 

Theorem 3.3.3 For positive integers k ≥ 2, n, p there exists a k-uniform hyper-

graph G E Forb(C2, C3,. .. , C,) so that G -+ (EG) 1. 

Imposing ordinary graphs on hyperedges is a common trick used in graph theory. 

It is interesting to play with this idea using Theorem 3.3.3. NeetIil and Rödl 

[81] noticed the following strengthening of Theorem 3.3.1. (The proof we give here 

captures the simplicity of that given in [100].) We shall say a graph is 2-connected if 

it is connected and can not be made disconnected by removing one vertex. 

Theorem 3.3.4 Let A be a finite family of 2-connected graphs and r E W. If G E 

Forb(A), then there is F E Forb(A) so that F - f (G)". 
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Proof: Let p = min{IV(A)I : A E A}. If p = 1, Forb(A) is empty and if p = 2, 

Forb(A) consists only of empty graphs or complete graphs and the theorem reduces 

to the pigeon hole principle. So assume p > 2. Set q = max{IV(A)J : A E A} and 

let G = (V, P2) E Forb(A). Using Theorem 3.3.2, let H be a k-uniform hypergraph 

with girth(H) > q and (H) > r. Define an ordinary graph F which is constructed 

from H as follows. Let V(F) = V(H). We wish to embed a copy of G in each 

edge of H (and then 'forget' the k-edges of H). For each e E E(H), fix an injection 

V(G) -+ e. Since girth(H) > 2, hyperedges of H intersect in at most one vertex 

and so each fi is a graph embedding, i.e., the copies of G are embedded consistently. 

Since girth(H) > q no copies of any element in A are formed in F, so F E Forb(A). 

The chromatic number of H now ensures that F has the Ramsey property for G, 

i.e., F -* (G) 1. 0 

Here we see the utility of Theorem 3.3.2. This theme is repeated in other appli-

cations, for example, in Theorem 5.7.2. 

Before we leave this section, we mention that many results for vertex colorings 

are extendable to the infinite (e.g. [61]). However, we must limit ourselves to the 

finite cases here. Any partial list of contributors and accomplishments in the field of 

infinite Ramsey theory, that we could supply here, could do no justice. 

3.4 Edge Partitions 

The next obvious problem for graphs is to consider edge (K2) partitions, as Henson 

[66] first did, rather than vertex partitions. A similar result to that of Theorem 3.3.1 

holds for edge colorings. We wish to prove such a theorem (following [88]) but we 
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must first prove some lemmas. 

For d,k E w, define B(d, k) to be the bipartite graph (X, [X]', D) where X is a 

set with IXI = d, and for x E X, A E [X]', {x, A} E D holds if and only if x E A. 

Lemma 3.4.1 ([88]) For any bipartite graph G = (V1, V2, E) there exists d,rn E w 

so that G B(d,m). 

Proof: Suppose IV, I = m and IV2I = n. We will construct G' = (V',V2,E') with 

G so as to increase the degree of each vertex in V2 to m + 1. This will be done 

by adding m + n new vertices to V1 (forming V11) and adding sufficiently many edges. 

The addition of rn vertices to Vj will serve to bring the degree of vertices in V2 to m, 

and the remaining n new vertices will bring the degree to in + 1; 

Let A and 'B be disjoint sets with I A I = in, I B I = n, (A U B) fl V1 = 0 and set 

= V1UAUB (where IVI'I = 2in+n). For each vertex yi E V2 let ci = I{x 

(x) y) E E} I be the degree of yi, and fix a (possibly empty) set A [A]m-ci. Let 

f: V2 - B be a bijection. To complete the definition of G', define 

EU{(x,y) : x C V21  {(f(y),y) : yi E V2}. 

It is clear that G G'. We now claim G' B(2m + n, m + 1). Suppose 

B(27n+n,m+1)=(W,[W]m+l,D). Let g: V( -+ Wand extend gto h : V'UV2 -+ 

Wu [W] --' defined as follows. Set h(x) = g(x) C W for each x C V. For yj C V2, let 

h(y1) = { h(x) : (x, y) C E'}. Straightforward verification shows h is an embedding 

required by the claim. (Edges of the form (f(y),y) in E' ensure that h is an 

injection.) 0 

The values Ic = in (cp. Ic = in + 1 in above proof) and d = 2m + n are given 

as sufficient in [88]. This is not quite accurate [the author could not find other 
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references], however, we can prove a special case of the stated (unproved) claim by 

induction. 

Lemma 3.4.2 Let G = (V1,V2,E) be a bipartite graph with I Vii = m > n = 1V21. 

Then G B(2m+n,m). 

Proof: We use induction on rn. For m = 2, the result is clear since m > n. So 

assume the lemma is true for a fixed m ≥ 2 and let IV = m + 1, 1 V2 = n. In fact, 

let V1 = jai, ... ,a,,, am+i}, V2= {b1,. . . , b,}. Let G* G be the subgraph induced 

by V = {ai,. . . ,a,}, i.e., G* = G\{am+i}. Let B(2m + n, m) = (X,[X]m,F) 

where X {x1,. . . , a2m+n}. If we let Y = X U {yi, Y2}, then use (Y, [y]m+', F') to 

denote B(2(m + 1) + n,m + 1). By the induction hypothesis, G* B(2m + n, m) 

with, say, f* the embedding of G* into B(2m + ii, m). We wish to show that G 

B(2(m + 1) + n, m + 1). 

List [X]m A : /9 E (2in), iAi = m} and for each A, E [X]', let A = 

E [y]m+i : A' c C [Y]m +'. Note that i.4,i = m + n + 2. For a fixed 

9 E Yi E A,j for exactly one i and Y2 E' A,3 for exactly one j i. So 

without loss, for each /3, let Yi E A,1 and Y2 E A,2. Furthermore, we can rename 

the A13's so that f*(b) = Ai for each i ≤ n. 

We can now describe f, an embedding of G into B(2(m + 1) + n, m + 1). Set 

f(a) = f*(ai) for i ≤ rn and f(am+i) = Yi; say. For ba E Y2, we choose f(bot) = Aa,i 

if (am+i, b0) E F' and if (am+i, ba) 0 F' then choose f(ba) = Aa,2. This completes 

the construction of f and we see that f is an injection satisfying f(a, b) E F' if and 

only if (ai, b) E E.' 0 

Note that actually we created two copies of G, one for each of Yi and 1,2. One 
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easily sees that G -< BR, 1) for all k ≥ 2m + n and 1 ≥ 'in in the proof. As noted by 

E. C. Milner (oral communication), the statement of Lemma 3.4.2 fails if 'in = n, for 

one only need examine G = K272, the complete bipartite graph on four vertices. 

We now prove our first of a sequence of four Ramsey results for edge coloring; 

it is called the "Bipartite Lemma". The statement and proof we give here is a 

generalization of the case r = 2 whose proof is outlined in [88]. 

Lemma 3.4.3 For every bipartite (ordinary) graph G and r E 

Ramsey bipartite graph F satisfying F part (G) 2. 

W) there exists a 

Proof: By the above lemmas, we may assume that G = B(d, lc) fo.r some fixed 

d,k E W. Put 1 = r(k — 1) + 1 and let Y be a set so large that IYI —+ (ld)l (i). Let 

F = (Y, [Y]', D) = B(IYI, 1). We claim that F part (G)'2. Regarding notation, 

impose a fixed total order on Y = {Yi < Y2 < < YIyI}. Any subset of Y will be 

taken as an ordered tuple respecting the underlying order on Y. Let A : D —+ r be 

a given coloring of the edges of F. 

We produce a coloring ti" : {Y}1 —+ r(L) induced by L, as follows. For B E [Y]', 

let B(i) denote the i-th element of the (ordered) B. We first define LB : [B]" — r. 

Let /. B(x) = z({x,B}) for x E B. Since 1 = r(k — 1) + 1, the pigeon hole principle 

gives us that there is a k-tuple C = C(B) in B colored entirely the same. Since there 

are () possible positions for such a C, and there are r colors such a C could take, 
we could color each B by the position of the first (in say, a lexicographic ordering 

of [B]") occurrence of such a 4-monochromatic C, thereby defining the induced 

coloring L. 

By the choice of II'!, there exists R E [Y]" which is monochromatic with respect 
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to , i.e., every B E [R]' has a k-tuple colored the same under LB, say 0, and in 

the same position, say /3 = (/3o,i3, ... ,8k.-1). So, for all i E k, L5(B(/3)) = 0, that 

is, z({ B(/3), B}) = 0 for every B E [R]1 and every i E k. 

We now set out to find a monochromatic element of (). Enumerate R = 

{XI, x2,. . . , xj} respecting the order of Y. Fix 

X' = {x, Xp0 1, X 0+21, .... Xp0+(d_j)l} C R, 

where IX'I = d. Note that ,8o ≤ 1 - k < 1 and so X' is defined. 

If for every A E [X"]' we could choose exactly one B(A) E [R]1, A C B(A), 

satisfying z.({x, B}) = 0 for each x € A, then the bipartite graph 

GI = (X', {B(A) : A E [X1]'}, {{ x, B(A)} X E A}) F 

is isomorphic to G and hence would be the monochromatic element of () as required. 
So we only have to find such a B(A) for each A E [Xh]c. 

Since X' is 'spread out' sufficiently in R, there is B(A) E [R]' so that A occurs 

in B(A) in precisely the position 3, i.e., there is B(A) = B so that 

A= (B(/30),B(/31),...,B(/3k_l)) 

Then by the choice of R, A C B(A) is monochromatic with respect to AB, in fact, 

for every x E A, A{x,B(A)}) = 0. So B(A) behaves as a k—tuple with respect to 

coloring as required, and we are done. G 

Before we leave (at least for now) bipartite graphs, let us just mention that 'weak' 

Ramsey statements are considered for bipartite graphs in [44], where the notions of 

'achievement' and 'avoidance' games are employed for edge colorings. 
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We are now ready to prove the Ramsey theorem for (ordinary) graphs under edge 

colorings. It was first proved independently by Deuber [22], Erd6s, Hajnal, and Posa 

[37] and Rödl [117], proofs appearing first in the mid 1970's. In 1978, Neetil and 

Rödl [83] gave a proof using the fact that every finite graph is an induced subgraph 

of a direct product of complete graphs. Again, in 1981 Neetfll and Rödl [88] proved 

the edge coloring case using a 'partite amalgamation' construction. We give this 

proof (with minor technical corrections) for two reasons. 

Firstly, many additional related results follow quite easily as a result of the partite 

construction used in the proof of the main theorem. Most of the many consequences 

of the construction were proved years earlier, but one would be hard set to find 

a common theme to all of the associated proofs. We present four of these related 

theorems here in one unified setting. 

Secondly, this proof can serve as an introduction to the method of partite amal-

gamation. Partite amalgamation may very well be the consummate combinatorial 

construction, but to the uninitiated, it appears inelegant and is hence quite diffi-

cult. A constructive proof of a theorem which gives sparse hypergraphs having high 

chromatic number (Theorem 3.3.2) used this method as well but with amalgamation 

defined on a single part (or coordinate). The proof of the edge coloring Ramsey 

question given here uses amalgamation along two parts. As we have already men-

tioned, this method will be used again later (Theorem 4.5.2) in greater generality 

where amalgamation occurs across many coordinates. 

Theorem 3.4.4 For any ordinary graph G, R[(G)C2] z 0. 

Proof: Let G = (V(G),E(G)) with I V(G) I = m. By Ramsey's theorem, choose s 
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so large that s -* (M)2 and fix a set H = {vo,vi,. . . ,v3_1}. Let {el, e2,. . . , e(5)} = 
[H]2 be a list of all pairs in H. Enumerate [H]m = {A0, A1,. . . , A(s)_1} as well. 
Define the .s-partite graph 

P° = ((V°), B°) 

011 .s (,) vertices as follows. For each i E .s define the part 

Vio =  (Vi, i) : j E W1. 
For each A5 E [H]m, fix a graph embedding 

f V(G) -+ {(vj,j) : Vi E A5}, 

and define 

= {{(Vj,j),(Vji,j)} : f1'(v,vi) E E(G)}. 

So we have 'strung a copy' of G across each 'level' of H x (,), each copy 'touching' 
a different rn-subset of parts. 

Now suppose we have defined P = ((T')jES, E n) for some n E (). Examine 
en+l = {v0,v 1} E [H]2, (x0,x1 E .$). Let B be the bipartite graph induced by 

the vertex set U V. Using Lemma 3.4.3, letR(B) be a bipartite graph which 

is Ramsey for B using r colors. List ()) part  = {B0, B1, . . . , Bq_i}. We define 
pn+1 = ((1/n+l)iEB,En+1) as follows. 

For i =A x0, x1, set V7' = Vin x q, and put '' = (R(B)) for i E 2. For each 

i E q, fix natural embeddings qj : B —+ B R(B) and extend each to an injection 

V' -+ V' defined by '&(v) = qj(v) if v E V(B) and &(v) = (v, i) if v 0 V(B). 

We can now define 

= : (u1,u2) E E,i e q}. 
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See Figure 3.1 for rough idea. Observe that each copy of P in is induced. 
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Figure 3.1: Amalgamation along two coordinates. 

We now claim that E 7?[(G) 2]. Let 1: E(PW) —) r be a given coloring 

and suppose e = (v1, v2). Then there exists a copy of P(&)_1, call it 

embedded in p(), that has all of its edges which occur between Vn and v2)1 

colored the same. Next we consider p21• Again, there is so 

that all edges of occurring between some fixed but different pair of parts are 

monochromatic. Continuing in this manner, we get P°, a copy of F°, P° 

which has the property that the color of an edge in P° depends only on the pair of 

parts determining it. But by the choice of .s, there exist rn parts (Wj)jE .. of P° so 
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that E(P0) fl [Ui€m W]2, the edges induced in P° are monochromatic. However, a 

copy of G existed across every such collection of m parts by the construction of P° 

and so we are done. 0 

Two of the papers giving proofs of Theorem 3.4.4, [37] and [22], were presented 

at a conference in 1973 at Keszthely, Hungary. Yet at the same conference Neetil 

and Rödl submitted a paper [77] which solved a related problem which looked only 

at triangle-free graphs: 

Theorem 3.4.5 Fix r E w. Then for any triangle-free graph G, there exists a 

triangle-fre F E R.[(G)K2] 

Neetf ii and Rödl [80] produced a more general result in 1974 (published in 1976) 

using ' types', a notion also used in [79], but introduced in [34]. This next theorem 

extends Theorem 3.4.5 and answers a question posed by F. Galvin (see e.g. [34]). 

Since Erd&, Folkman, and Hajnal knew certain cases, this theorem was known as 

a solution to 'the EFGH problem', also known as the ' Galvin-Ramsey' property. 

Again, we give the theorem for any number of colors, the proof for which is an easy 

extension of the case for two colors found in [88]. Recall that we use cl(G) to denote 

the clique number of the graph C, the size of the largest complete subgraph contained 

in G. 

Theorem 3.4.6 For any ordinary graph C and r E w there exists F E 7Z[(G)2] 

with CI(F) = cl(G). 

Proof: In the construction used for the proof of Theorem 3.4.4, observe that cl(G) = 

cl(P°) and this number is never increased (i.e., cl(P') = cl(P'') for each n E ()) 
thereafter. 
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This result has been extended even further. In triangle-free graphs, we may say 

that a triangle is 'forbidden' (as are larger complete graphs). Graphs with certain 

clique numbers are similarly determined by forbidden subgraphs. Not always does 

the forbidden subgraph need to be complete in order to make sense of this notion. 

Extensions of Theorem 3.4.6 are possible where the forbidden family of graphs is 

more extensive (the first of which can be found in [82],[86], [88], for examples). Some 

of these extensions will be corollaries of proofs we present both in this chapter (cp. 

Theorem 3.4.8) and elsewhere. 

This next theorem [88] settles a question of Erd8s given in [29]. The theorem 

says something 'about how much graphs need to be intermeshed in order to produce 

a Ramsey graph - not very much! 

Theorem 3.4.7 Fix a positive integer  ≥ 3. Then there exists FE 7?.[(Km)2]so 

that any two elements of (') intersect in at most two vertices. 

Proof: Applying the construction used for the proof of Theorem 3.4.4 with G = 

then certainly no two copies of Xn in P° intersect at all. We need only observe if P' 

satisfies the required conditions, then so does since each copy of K3 in P'' 

belongs to exactly one copy of P. (The copies of p n  in .P'1 are disjoint except at 

two parts, and then the partite nature prevents any triangles existing along just two 

parts.) 0 

In order to state the last of the four related theorems, we need some more no-

tation. We say C C V(G) is a cutset of a graph G if the deletion of C (and all 

associated edges) disconnects G. If we use G[C] to denote the subgraph of G in-

duced by C cV(G), then for n ≥ 2 we say G is n-chromatically connected if the 
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chromatic number x(C[G]) > n for any cutset C. We now can give the theorem. 

Theorem 3.4.8 Let be a set of 3-chromatically connected graphs. Then for every 

G E Forb(.F), R,[(G)2] fl Forb(.F) 54 0. 

Proof: Using the construction given in the proof of Theorem 3.4.4, we claim that 

if P E Forb(.F), then so also P' 1 E Forb(.F). Suppose K E Forb(.F) and K 

pn In pn+1, copies of P' intersect in a bipartite graph, and bipartite graphs have 

chromatic number 2. So any 'newly created' subgraphs will have vertices from a 

bipartite graph as a cutset, and hence no copy of K can be formed in the construction 

of P' 1. 0 

This concludes the results found in [88]. In [31] Erd6s looks at the size of .i(4-free 

Ramsey graphs ,F satisfying F - (K 3) 2. (The existence of such an F for any 

number of colors was guaranteed by Neetfi1 and Rödl in [80]; Folkman [46] proved 

the case for 2 colors.) In [124] and [67] Spencer showed that three billion vertices 

suffice, claiming a reward offered by Erd6s. Some bounds on the size of the Ramsey 

F for edges are discussed in [86] (sections 1,2, and 10) as well as some interesting 

references regarding this. 

3.5 Some Related Facts 

Another difficult result proven by Deuber [23] and Neetil and Rôdl [78], which is 

an extension of Theorems 3.3.1 and 3.4.4, is the following: 

Theorem 3.5.1 For any ordinary graph G and fixed r,n E w 7.[(G)] 0. 

This will be proved in the next chapter (see Corollary 5.3.2) by use of Theorem 

4.5.2, but let us make a few remarks. A simple proof using the Graham-Rothschild 
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theorem (Theorem 2.3.2) was given in [93] which uses the fact that any graph can 

be embedded into the complement of some power set lattice. 

So far, we have been very careful to prove graph Ramsey results for a specific 

number of colors. This is not always necessary since, in many cases, the general 

theorem follows from the situation using only two colors. Specifically, it is an easy 

exercise to prove the following lemma. 

Lemma 3.5.2 Fix a hyperyvaph H and a family of hyper.qraphs 9. If for every 

GEc, 

0 1.[(G)'] c c 

holds, then R.[(G)'] 0 for any G € 

So, for example, Theorem 3.5.1 need only be proved for r = 2. 



Chapter 4 

The Ordered Hypergraph Ramsey Theorem 

4.1 Introduction 

The primary purpose of this chapter is to give a Ramsey theorem for ordered hyper-

graphs. The theorem says that for any two ordered hypergraphs, i.e., hypergraphs 

with a fixed orientation of the vertices, say (G, ≤) and (H, ≤), and a number r E c, 

there exists (F, ≤) so that (F, ≤) - (G, ≤) h1 ≤), the usual Ramsey arrow. This 

was first proved by Neetfil and Rödl [82], [90] and independently by Abramson 

and Harrington [1]. Many more proofs of this result have appeared since (see e.g. 

[89], [95]), and for the special case of ordered graphs (see e.g. [98] for a proof us-

ing a generalization of the Graham-Rothschild theorem). A technique employed by 

Neetfi1 and Röd1 is called partite amalgamation; most recent proofs follow this idea. 

Much progress has been made in extremal graph theory due to this amalgamation 

technique, a technique known to Neetil and Rödl since 1976 [95]. 

An acquaintance with the amalgamation technique was acquired with the proofs 

of Theorem 3.3.2 (existence of a highly chromatic graph with no short cycles) and 

Theorem 3.4.4, (.Ramsey theorem for ordinary graphs coloring edges). The Neeti1 

R6dl technique is usually broken into two parts, the first being a Ramsey theorem for 

'partite' graphs, all with the same number of 'parts', and the second, a more general 

partite graph Ramsey result for which an amalgamation is defined. These two steps 

can be compared to Lemma 3.4.3 and Theorem 3.4.4 respectively. The first part has 

61 
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had many proofs and variations, but we give here perhaps the most powerful, that 

which employs the Hales-Jewett theorem. 

We follow closely the proof given in [95], where the result is given for 'systems'. 

A system is really an ordered hypergraph in the most general sense. As an added 

bonus in this proof, certain conditions concerning induced subsystems (or induced 

ordered sub-hypergraphs) can be given. The next section helps us to interpret a 

hypergraph as a system (using the notation in [95]). The following section gives the 

first of the two steps necessary for the proof of the main theorem, namely a 'partite 

lemma'. Another section is used to define the type of amalgamation used in the 

main theorem; this is done rigorously, however, this may be the most streamlined 

(yet complete) definition given so far. The main theorem follows in another section 

and some easy corollaries (re: ordered graphs) of the powerful theorem are given in 

the final section. 

4.2 Preliminaries 

A type A = (no : 5 E ) is a collection of positive integers indexed by some set 

A C w. For the remainder of this chapter, A is fixed. A system G of type A is a 

pair (X, ) where X is a finite linearly ordered set, and = { 5 : S E L} where 

cs C [X]' 6, and fl gs, = 0 for S 5'. Elements of each 96 shall be called edges 

of type S (of size ne). We see that the index set L might just as well be andnitial 

segment of w, that is, an ordinal. 

Although we have fixed the type A, one may note that for any two systems of 

putatively different types, one can find a single type common to both. The type 
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will be taken to be so inclusive in this discussion, and so "system" will now be taken 

to indicate a system of such a general type. 

A simple (no loops or multiple edges) ordered ordinary graph could be seen as a 

system of type (2,2) where 'non-edges' are of type 0 and edges are of type 1. Using 

this notation of systems, one can easily see that a system is merely the (most?) gen-

eral form of an ordered hypergraph. For example, if an ordered hypergraph (H, ) 

is defined on the vertex set {0, 1, 2, 3} with hyperedges (0, 1), (0, 2), ( 1,2,3), (0, 1, 2), 

the first having 'multiplicity' 1 (or ' type' or 'kind') and the remainder with multi-

plicity 2, then (H, :5) can seen as a system H of type (2, 2, 3) where the given edges 

are of type 1, 2, 3 and 3 respectively. 

Two systems H = (Y, fl) and G = (X, !g) are isomorphic if there exists a mono-

tone bijection f : X - Y taking onto 7-t, in which case we write G H. A system 

F = (Z, J) is a subsystem of the system G = (X, ) if Z C X (with the induced 

order) and F5 8 fl P(Z) for each 5 E L (i.e., consider only induced subsystems). 

A system A = (VA) is called irreducible if every pair of vertices in V is contained 

in some edge of A (having non-zero type). H = (Y, 7-i) is called complete if for the 

set of non-zero types L 

7is=[Y]n. 

4.3 The Partite Lemma 

Let G = (X,!9) be a system with = S E z} where each s 9 [Xjn6 and 

X is a totally ordered set. For a partition X = Uj€aXj (each X 0), satisfying 

Xo < X1 < ... < X 1, we say G = ((Xj)jEa,c) is an a-partite system if for each 
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i E a, Ic fl X ≤ 1 for every edge e E ug = USEQ5. (X <Y denotes that for every 

E X, y E Y, x < y holds.) The sets Xi are called parts (or coordinates) of G. 

Given a subset Y C X, let 

sh(Y)={i : YflX O} 

denote the shadow (sometimes called the trace) of Y. The a-partite system G = 

((Xi)iEa, ) is transversal if for each i E a we have lxii = 1. A complete a-partite 

system has every subset of vertices (which intersects each part in at most one vertex) 

as an edge. 

The a-partite system H = ((Yi)iEa, R) is (partite) isomorphic to G = ((Xj)iEa, ) 

if there is a (system) isomorphism f : UX - UYi preserving parts, i.e., f(X) = Yi 

for each i E a. If necessary to emphasize the partite structure, we denote this by 

G — part H. We say F = (( Zj)iEb, T) is a partite subsystem of G if there is a monotone 

injection o : b - a so that Zi C X(I) for each i E b and .F6 = g6 fl [UiEa Z,]n6 for 

each S E z, denoted by F part G. 

For the partite situation, we use 

ILTIJ çit 

i-i - j- part 'J • pert 

(G) 

Ipart 

Also analogous to the graph case, we use F part (G)' to denote the corresponding 

partite Ramsey statement for systems. We now are ready to state an analogue to 

Lemma 3.4.3, referred to as "The Partite Lemma". 

Lemma 4.3.1 Let r E w be given and suppose G and H are a-partite systems with 

H transversal. Then there exists an a-partite system F so that 

F part (G)'. 
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Before we give the proof, let us just mention that in the proof given in [95], it was 

stated that H could be assumed to be complete without loss. We shall briefly out-

line the trick. Let G = ((Xj)jEa, ), and set X = UXi If H was not complete, add 

"dummy edges" to form H complete. Then, (as outlined by V.Rödl—oral commu-

nication) if an edge e was added to H in the formation of H, look at each subset 

e' C X with Ic' fl Xj 1 ≤ 1 which satisfies sh(e) = sh(e'). If e' is an edge of G, delete 

it; if e' is not an edge of G, add it as an edge. Continue for each dummy edge of 

H, thereby producing U. Then take P satisfying - and in , 'undo' the 

complementing. All the "s return to G's and all the H's return to H's. There seems 

to be a problem with this. If across, say Xo and X1 there are two (or more) different 

types of edges (of size 2), then the 'undoing' process does not seem to be well defined. 

.However, this trick works just fine for hypergraphs (X, E) with E C 'P(X), i.e., for 

hypergraphs with only one 'type of edge' for each size. To avoid this difficulty, let 

all the non-edges of H be given new types, types not used for edges in G and 'fill in' 

G accordingly (introducing only new 'transversal' edges). When we are done finding 

the necessary F, dismiss all such edges added with the new types and all remains 

the same. Using this idea, it suffices to prove the theorem for H complete and C 

a-partite complete. With no significant modifications the proof given in [95] still 

works. - 

Proof of Lemma 4.3.1 : Let H = (( ll)jE, '7-1) with UjYj = Y and C = ((Xj)jEa, ) 

with UiEaXi = X be given, and let H be transversal. By the preceding comments, 

we can assume that H is complete. Also without loss of generality, we can assume 

that every vertex of C is contained in some H-subsystem, for if G* is the system 
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induced by () part and F* part (G* )H , then enlarging every copy of G* in F* 

can be done to produce a system F satisfying F *part (G). (See [84] for general 

comment.) 

Set I (G)part = t and using the Hales-Jewett theorem (Theorem 2.3.1), set N = 

HJ(t, 1,r). For each SE L, put 

where is the set of all edges of ,s which belong to a copy of H in G. 

Define an a-partite system F = (( Zj)j(Ea,.F'), .T = { 6 : S E z} with Z = UjaZi 

as follows. For each i E a, set Z,  (X,)" , the direct product N times, .that is, each 

vertex of Zi has the form 

X  . . ,4_) : E X,j EN. 

For each j E N, define a projection ir3 : Z —+ X by 

k k 
XO,Xl,...,XN_l))Xa. 

Each projection is onto and preserves parts. For any set r C Z, we use the notation 

,x1(r) = {7r3(x) : x E }, 

and likewise, we can speak of a projection of a subsystem in F to be a system. 

For each S E L, define F8 in the following manner. For F E [Z], I' E .F5 if and 

only if one of the following conditions holds: 

1. (r) E for every  EN. 
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2. There exists J C N, J 54 0, and B E so that whenever j E J, 7rj = B, and 

whenever j 0 J, 7r(F) E 1, for some 77 E 

Notice that if every edge of G was an edge of some H-subsystem, then condition (2) 

would never be invoked. Setting .F = { s : S E L} completes the definition of F. 

Let W : () part r be a given coloring. We wish to show the existence of 

G' E (F) so that is constant on (GI) 
G part part 

Suppose that we have some H' E () induced by the vertex set Y' C Z. By 

the product construction of F, it is clear that for every j e N, ir1(Y') induces an 

). Similarly, if Y* E [Z}a is so that for every j N, irj(Y*) induces a element of (  

copy of H in G, then condition 1 gives us that * induces a copy of H in F. We 

abbreviate these facts by saying H' E () if and only if ir1(H') E () for every 
jEN. 

List () = {H0, Hi,. .. , H_1}. Now employing the notation of parameter sets, 

examine ()](NM 0), words of length N over the alphabet {Ho, H1, . . . , H_1}. For 

each f E ()](''), define 

V(f) = {x E Z : r(x) induces f(j) E () ,j E N}. 
So each V(f) is a set of vertices of F whose each projection determines a member of 

the alphabet. For gE [()](), put 

V(g) = UfE$p(g)V(f). 

(For example,when N = 5, if g = H1H2H1H1A, then the set of vertices are all those 

determining H1,H2,H1 and H1 in the first four projections respectively, and in the 

last projection, there are no restrictions.) 
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) if and only if ir(H') E () for every J E N, 'I' induces a Now since H' E (  

coloring 

By the choice of N, let h E be sothat sp(h) is monochromatic with respect 

to By virtue of condition 2 and the fact that H is complete, V(h) indices a copy 

of G in F (along those projections 17r : j E f'(A)}—all other positions are fixed), 

call it G. It is now easy to see that (H ) is monochromatic with respect to W. 0 

4.4 *j-Amalgamation Defined 

In the proof of the Ramsey theorem for systems, the main tool we use is that of *j-

amalgamation. To streamline the already challenging proof, we first define in detail 

the amalgamation process used. 

Let A = ((Xi) ia .4) and B = (( 1)jEb,B) with Y = UjEaYj be partite systems 

with b> a. Fix a subset J E [b]a. 

For each S E L, let 

= B6 fl 2(UjEJYa) 

be those edges e of 13s with sh(e) C J, and set 

I3j = { s,j S E }. 

The system B = ((1')jEJ, 134 is the a-partite system of B induced by Y = UjEJyj 

Enumerate 

(BJ) ={Bf,Bj,...,By'}, 
\ Jpart 

and for each i E s, set B3 = ((')jEJ,l3 ) with YJ = UjEJYJ. 
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We are now prepared to define the b-partite system 

B *. A = (( Zj)Eb, E) 

which is formed by copies of B amalgamated (along parts J) on A. For each i E J, 

set 

Zj=Yzxs={(y,j);ya EYj,jEs} 

and let Z = UiEbZi. For each i E .s, let çj Y -+ Yj be an embedding of Bj into 

and extend each qj to 

Y -+ {(Ya,) y E Y} 

defined by 

q'i(y) if, EYj. 

(y, i) if y ØYj. 

For each 5 E A, define 

Es= {{'/'(u):ue} : eE5s}UAs. 

Now set e = {Es : S E z} to complete the definition of B *j A. See Figure 4.1 for 

the idea. 
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s copies of B 

F 
L 

-r 

0 a — i 

. . . . . . . . . . 

0 1 ... b — i 

Figure 4.1: B *j A: Amalgamation along a parts. 

In our application it is not necessary that we keep the 'non-essential' edges of A, 

(i.e., those which are not included in some copy of Bj) for usually we use each copy 

of A as a Ramsey graph for B. 

We note that variants of this amalgamation are used by different authors. In [100], 

[108], and [109], 'left-rectified' amalgamation is used. It has been noted by myself 

and independently by V. Rödl (—oral communication, Aug. '89) that applications 

of this variant may be more restricted than previously thought. 

The amalgamation defined here has had many applications. In [94], a version is 



71 

used to give a Ramsey theorem for Steiner systems. Amalgamation also appears in 

the proofs of Theorem 3.3.2 [87] and Theorem 3.4.4 [88]. It was also used in [91] to 

show restricted Ramsey results for graphs. 

4.5 The Ubiquitous Theorem 

We are now ready for the theorem on which this thesis thrives, namely the Ramsey 

theorem for systems [95] and so the proof is complete. Recall that a system is an 

ordered structure. 

Theorem 4.5.1 For a given r E w and systems G and H, there exists.a system F 

so that F —+ (G)'. Moreover, if G and H do not contain an irreducible system A, 

then F can be chosen with the same property. 

Proof: Let G = (X,g) and H = (Y,R) where IXI = b and IYI = a and let s 

be minimal so that s -* (b). We consider G and H as transversal b-partite and 

a-partite systems respectively. 

Choose an s-partite system P° = ((V20)ES, S°) with the property that for each 

I E [8]b the system induced by parts {TO : I E I} contains an induced (transversal) 

copy of G. This may be found easily as a disjoint union of copies of G. (Each V° can 

be chosen so that IV2I (1) since () disjoint copies of G contains b() = s(r) 
vertices.) 

= q and list [S]' = {J0, Ji,.  Jq}. We will define inductively s-partite Set a 

P2 for i q. Suppose that for some n< q the system P = ((V)1E3, E') 

has been defined. Let Py 1 be the a-partite system induced by {(V) : i E J+1}, 
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and select (by Partite Lemma 4.3.1) an a-partite system T' satisfying 

Tn+l part ( jn+i)r• 

Furthermore, let TTh+l be minimal so as to not contain edges which are not in some 

copy of pjn Set p n+1 = T Th+l *J .f1 P'. Notice that any irreducible subsystem of 

pn+1 is also a subsystem of P's. Set F = pq and notice, by downward induction, 

that any irreducible subsystem of F is contained in G. 

We claim F E 1t[(G)']. Let W : () —+ r be a given coloring. By the construc-
tion of pq, there is 

P-1 C (pF 1) 
so that every H' C (Pc') satisfying sh(H') = Jq is colored the same. Now by the 

construction of P1, there is 
pq-1 

C (P2) 

2) satisfying sh(H') = J,_1 is colored the same. Continuing so that every H' C (  

in this manner, we get P° e () so that the color of any H' E () depends only on 
sh(H'). This induces a coloring on [] L and by the choice of s, there exists I C [8]b 

J) satisfying sh(H') C I is monochromatic. By the choice of so that every H' C (  

F°, there exists G' C (°) with sh(G') = I, and so we are done (finally!). 

This theorem for systems can be rewritten in terms of hypergraphs (which may 

have edges of multiple types of the same size). It is in this form that we most refer 

to it in this thesis. 

Theorem 4.5.2 Given r C w and ordered hypergraphs (G, :5) and (H, ), 

7?.[(G, <)(H<)] 0. 
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As in Chapter 3, there are a number of extensions [95] of Theorem 4.5.1 which 

are related by the constructions used in the proofs in this chapter. We choose not 

to include them here for the sake of brevity. 

4.6 The Ordering Property for Graphs 

For a given ordered (ordinary) graph (H, ≤) if C = (V(G), E(G)) is an unordered 

(ordinary) graph with the property that (H, ) (G, ≤*) for every ordering of G, 

then we write C *Ord (H, ≤). The following well known theorem is proved in [100], 

for example. 

Theorem 4.6.1 For every ordered graph (H, :5), there exists an (unordered) graph 

C so that G ord (H, <). 

Proof: Let v0 < V1 < ... < Vm_i be an enumeration of V(H) respecting the order 

of (H, ≤). Furthermore, assume that pairs of the form (vi, v+,) are edges, for if not, 

introduce a new vertex between vi and v 1 connected to both. Let (H, ≤_1) be a 

copy of H with ≤ the inverse of ≤. Form an ordered graph (H*, *) by taking the 

ordered sum (in fact any disjoint union preserving each order will do) of (H, ≤) and 

(H, <'). By Theorem 4.5.2, select an ordered graph (C, ≤') satisfying the Ramsey 

statement 

(G, <') — f (H,≤*)2. 

We claim that G, the unordered version of (C, ≤'), satisfies C ord (H, :5*). 

Let (G,:5") be an arbitrary ordering of C and define the coloring IF : E(G) —+ 2 by 
W({ x, y}) = 0 if the orders ≤' and ≤" agree on x and y, and ({x, y}) = 1 otherwise. 
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By the choice of (G, :5'), there exists an ordered (H*, <*).subgraph monochromatic 

with respect to IF. Depending on the color of this subgraph, the connections in (H, :5) 

ensure that either the (H, :5)-portion or the (H, ≤')-portion yields the desired copy 

of (H; <). Removal of any 'new' vertices completes the proof. 0 



Chapter 5 

Some Results 

5.1 Notation 

This chapter contains material which was assembled in the form of a joint paper [59] 

by the author together with Professors N. W. Sauer and V. Rödl. Theorems 5.5.1 

thru 5.7.4 are new results from that paper. 

For this discussion we introduce some new notation. For a hypergraph H we let 

ORD(H) = {(H, ≤o),.(H, ≤),. . . , (H, ≤ k-1)}, 

be the set of (distinct) isomorphism types of orderings of H. It is often convenient to 

abuse the notation and deliberately confuse an isomorphism type with a hypergraph 

of that given type. For a given (unordered) hypergraph H and an ordered hypergraph 

(G, <*) define 

DO(H,G,≤*) = {(H,≤) E ORD(H): (R?) 5A O}. 

Set mdo(H, G) = min{IDO(H, G, ≤)I : (G, :5j) E ORD(G)}, denoting the smallest 

number of orderings of H in any one ordered G. For example, if an ordinary graph 

H is complete, then mdo(H, G) ≤ 1 for any choice of G. The number mdo(H, G) 

will be of particular interest throughout this chapter. 

Observe that for these Ramsey type statements to be non-trivial we usually only 

consider pairs G, H so that mdo(H, G) ≥ 1. 
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5.2 Introduction 

Could it be that for every triple C, H and r we have a Ramsey F E 1[(G)']? This 

can be answered in the negative by the following well known example (e.g. [100], 

p.192): 

Example 5.2.1 7.[(C4)2] = 0. 

Proof: Let 'K be any total order of V(C4). Then it is easy to see that (C4, :5*) 

contains at least two distinct orderings of F2, namely one with the middle vertex 

highest in the order, and one with the middle vertex lowest in the order. (These 

two 'middle' vertices correspond to the two vertices on the 'ends' of the order in 

(C4, <*)-) 

Now fix any (ordinary) graph F. Impose an arbitrary order < on V(F). We will 

produce a coloring of () which ensures that every copy of C4 in F is multicolored. 
Simply color the copies of .P2 according to their orientation; if one is 'pointed' up-

wards, color it red and if one is pointed downwards, color it blue. We can color the 

other ordered P2's arbitrarily. Now since each ordered C4 contains one of each kind 

of P2 it receives two colors. E 

It is not difficult to see that mdo(P2, C4) = 2. In subsequent sections we rely 

heavily on this idea of ordering graphs so that we can find particular colorings. Pairs 

like C4 and P2 are not anomalous; there are 'many' such cases, as given in the 

following theorem [78]. 

We call a graph trivial if it is either complete or empty. 
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Theorem 5.2.2 For any non-trivial graph H there is a graph G so that 

=0. 

A proof of this theorem uses an idea similar to the one used for Example 5.2.1, 

that is, the idea of coloring ordered graphs. It is an easy application of Theorem 

4.6.1 and we omit it. 

5.3 The Question 

For a fixed r E w and given graphs G and H, how can wetell if R[(G)] 4 0? Oddly 

enough, this is completely answered in the case of ordered hypergraphs. This might 

seem counterintuitive since ordered graphs are rigid and so any Ramsey structure 

would have to be larger, in some sense, than in the unordered case so as to contain 

the necessary richness of substructures required. Nevertheless we recall Theorem 

4.5.2 which states that for r E w and ordered hypergraphs (G, ≤) and (H, :5), the 

Ramsey class 7?.[(G, ≤)"-<] is not empty. An immediate application of this powerful 

theorem is the following: 

Corollary 5.3.1 Fix r E w. If H and G are (unordered) hypergraphs which satisfy 

mdo(H, G) = 1 then 

0. 

Proof: Let rndo(H, G) = 1 and fix an ordering ≤ of G so that every induced H-

subgraph of G is <-order-isomorphic to say (H, :5). Apply Theorem 4.5.2 to obtain 

(F, :5) E 7[(G, ≤) claim the unordered F l satisfies F "≤)J. We  e unorere also  - p (G)' 
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Fix a coloring L : () — r and order F according to ≤. Then t induces a 

coloring Li" () —* r and so there exists a ( G', -<) E () so that L is constant 

on (:) . But since IDO(H, G, ≤)I = 1, L assigns a color to every copy of H in 

) is monochromatic with respect to and so also with respect to L1. G'. Hence (  

D 

Now another otherwise difficult result proven by Deuber [22] and NeetIil and 

Rödl [78], (which is an extension of Theorems 3.3.1 and 3.4.4) is simply an obvious 

Corollary 5.3.2 For any ordinary graph G and fixed r,n E w 7Z[(G 7. )] 0. 

One might hope to find some necessary conditions on G, H and r so that R[(G)'] 

76 0, however at least one straightforward restriction must be respected. 

Lemma 5.3.3 Fix hypergraphs G and  where IORD(H)I = r. Ifrndo(H,G) ≥ 2 

then 1?4(G)] = 0. 

Proof: In hope of a contradiction, suppose F is so that F —+ (G)' and impose an 

arbitrary ordering ≤ on V(F). Now define an r-coloring L: () — p r by 

= i if (H', ≤) (H, ≤) e ORD(H). 

Since mdo(H, G) ≥ 2, every copy of G in F is two-colored. 0 

5.4 Counterexample 

In a corollary ([104] p.54) Prömel and Voigt state that for all hypergraphs G and H, 

mdo(H, G) = 1 if and only if R.[(G)'] 54 0. 

After trying to prove this ' corollary' we discovered the following counterexample. 



79 

Theorem 5.4.1 There exist graphs G and H so that rndo(H, C) = 2 but 

7?.[(G)] :, Ø• 

Proof: Let T and P = P2 be the graphs given in Figure 5.1. 

Label ORD•(P) = {(P, ≤o), (P, :51)(P, ≤ 2)} as in Figure 5.2. 

.  

T P 

Figure 5.1: Graphs used for counterexample. 

• 

• • . 

• 

(P,≤1) (PI <2) 

Figure 5.2: Orderings of P 

It is easy to verify that mdo(P, T) = 2. Fix three orderings of T as shown in 

Figure 5.3. 

We point out that for each i E 3, (T, ≤) contains as induced P-subgraphs exactly 

(P, :5j) : j € 3,j 0 i}. Let (B, ) be the ordered (disjoint) sum of (T, :5'), (T, ≤') 

and (T, ≤ 2), taken in a fixed, but arbitrary order. 
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(T, :5 0) (T,:5') (T, < 2) 

Figure 5.3: Three orderings of T. 

Using Theorem 4.5.2 successively choose ordered graphs (C, ≤), (D, ) and (F, ≤) 

so that 

(C,≤) -+ (B,≤)r' °, (5.1) 

(D,≤) -+ (C,≤)'_<1) ,and (5.2) 

(F, :5) -+ (D, < )P1≤2) (5.3) 

We claim that F, the unordered version of (F,.≤), actually satisfies F (T)'. Fix 

a 2-coloring Li : M 2. By (5.3), there is (D', ≤) E () so that L is constant 
on (<), say 

DI 1:5 () S2 E 2. 
Now by (5.2) there also exists (C', <-) E (') so that L is constant on ('), sa,' 

= s1 (while of course Li is still constant on (')). Similarly, by (5.1) we 

choose (B', ≤) E (") with E 2 while still being constant on (i,') 

and So in (B', ) all copies of P are colored with two colors, only depending 

on their orientation. Since {So, S1, 32} C 2, at least two of SO, S1 , S2 agree. If, say, 
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30 = .s1 then the (T, ≤ 2) part of (B', ≤) has all its P-subgraphs colored the same. In 

any case, at least one monochromatic copy of T will exist as an induced subgraph of 

F.D 

In general, the idea is easy to apply if we can find an H with IORD(H)I = 3, 

and G so that mdo(H, G) ≥ 2 and yet there are 3 orderings of G witnessing the fact, 

each containing a different pair of (distinct) elements from ORD(H) as induced 

subgraphs. This recipe can be generalized to reveal the essence of the method, as 

we see in the next section. 

5.5 A Characterization 

Let K = (X, K) be a hypergraph and recall that the chromatic number, x(K), of 

K is the least integer n so that there is an n-coloring of the vertex set X yielding 

no monochromatic edge B E K. For a given pair of hypergraphs G and H, let us 

define a new hypergraph KH,G on the vertex set ORD(H) with edge set E(KH,G) = 

{DO(H, G, ≤) : (GI :5j) e ORD(G)}. Since for each edge there corresponds an 

ordering of G we may, by abuse of notation, refer to the edges as orderings of G, 

i.e., we could say B(KH,G) = ORD(G), and a vertex (H, ≤) is contained by an edge 

(G, ≤) if and only if (H, ≤) (G, ≤ 2 ). We now give a characterization of those 

triples H, G and r for which there exists a Ramsey graph. 

Theorem 5.5.1 Let G and H be hypergraphs. Then 7?[(G)] 54 0 if and only if 

x(KH,G) > r. 

The proof in one direction is based on the construction given in the proof of the 

counterexample and the other direction is by simple contradiction. It might be 



82 

helpful to keep in mind that if x(KH,G) > r this would mean that for every r-

coloring x: ORD(H) —* r there exists an order ≤* of G so that DO(H, G, ≤*) is 

monochromatic. This fact will be used to show that the graph we construct in the 

first part of the proof is indeed in '7?.[(G)']. Throughout the proof we fix r E w, 

hypergraphs G, H and K = KG,H. 

Proof:(=) Assume x(K) > r. Enumerate 

ORD(H) = {(H,≤0),(H,≤1),.. .,(H,≤_1)} and 

ORD(G) = {(G, < 0), (G, ≤'),. . . , (C, ')}. 

Construct the graph (B, ≤) = U1€ (G, ≤), the (disjoint) ordered sum of the order-

ings of C. (It is not necessary that all the vertices of one ordering of G be entirely 

below all vertices of another,—though it helps to imagine it this way—only that 

the order of each is preserved and they remain disjoint, but yet form a new ordered 

graph.) By Theorem 4.5.2 choose (Bo, :5) satisfying 

(Bo, :5) — f (B, <) H≤o), 

and for i = 1,. .. , t - 1 choose (again by Theorem 4.5.2) successively (B, ≤) so that 

(B, ≤) "(B_1, ≤)≤ i) . 

We claim that B_1, the unordered version of (B_1, ≤), satisfies B_1 —p (G)'. 

Fix a coloring 

(B 1\ 

As in the proof of Theorem 5.4.1, construction guarantees the existence of 

(B', ≤) E (Bi≤) 
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so that for any fixed i, all the induced (H, <j)-subgraphs of (B', ) are monochro-

matic. This coloring of ordered H's in (B', ≤) induces a r-coloring x of the vertices 

of K and hence (by the remark preceding the proof) there exists a (G, ≤) in the 

edge set of K which is monochromatic (since x(K) > r) with respect to X. Thus, 

Bj.i) monochromatic with respect to L. there exists G* E (  

() Assume x(K) ≤ r. So choose a coloring x: ORD(H) -+ r so that each 

element in ORD(G) is multi-colored. Choose any F and impose an arbitrary (but 

fixed) ordering on V(F). This naturally imposes an order on each H' E (), so 
IF color W according to X. That is, define L : () - f r by (H') = x((H', *)) 

for each H' E (); where (H', ≤*) E ORD(H) is the <*..ordered H-subgraph: Then 
since each element in ORD(G) is multi-colored with respect to x, so also is each 

G' E () with respect to L. 0 
This theorem is a strengthened version of a general comment made in the first page 

of [8], concerning the work of de Bruijn and Erd& [8]. 

Theorem 5.5.1 also yields the following characterization which was also suggested 

to the present author by Xuding Zhu (oral communication). 

Corollary 5.5.2 For given hypergraphs G and H, mdo(H, G) = 1 if and only if for 

every  E  7Z[(G)'] 54 0. 

Proof: One direction is simply Corollary 5.3.1, so assume that for some fixed G and 

H and every r E w, 1?.[(G)'] 0. Then by Theorem 5.5.1 the chromatic number 

of the associated KH,G is infinite. Since KH,G is finite, this means that there is a 

hyperedge consisting of only one point. A single vertex edge would correspond to an 

ordering of G witnessing mdo(H, G) = 1. 0 
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Additionally, one can now derive the following corollary of Theorem 5.5.1 by only 

examining a particular KH,G with known chromatic number. This gives sufficient 

conditions (which can be tested directly) on pairs of hypergraphs G and H for which 

0 holds. 

Corollary 5.5.3 Let G and H be hypergraphs with 

mdo(H,G) = l≤ k = ORD(H)I 

and fix r E w. If there exists an s E w, (1 < s < k), so that both ic ≥ rs - 1 

and for each J c ORD(H) with IJI = s there exists (C, ≤) E ORD(G) so that 

DO(H, C, ≤.) = J, then 'R.[(C)'] 0. 

5.6 A Special Hypergraph 

We will, in the next section, give an infinite family of pairs of graphs H and C so 

that mdo(H, G) ≥ 2 however 7?.[(G)'] is non-empty. To do this we must first find a 

(very large) hypergraph with certain properties. 

Let us recall the following definition of a hypergraph with no short cycles (cf. 

[33] p.94). For the r-uniform hypergraph E = (X, ') has girth(E) > 1 if for every 

sequence of distinct edges fo, fi,. . . , ff0_i E S with jo ≤ 1 

IUf3I ≥jo(r1)+1 (5.4) 
jEjo 

holds. If (5.4) fails to be true, then a cycle of length ≤ jo exists among the edges 

fo,fi,. . . ,f0-i. 

For a hypergraph on a vertex set X partitioned by 

x=x0cix11i... ux_1, 
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we use the notation ((Xi) iEn, E), commonly used for n-partite graphs. 

Theorem 5.6.1 For a given integers n ≥ 1 and 1 ≥ 2 there exists a 2n-uniform 

hypergraph E = ((X)jEfl ,E) with IXol = Xii = •.. = iXn.iI , which enjoys the 

following properties: 

1. For each edge eEE, IeflXI=2 for all iEn. 

2. Girth(E)> 1 

S. For each choice of X,X11 ..... X_1 with X C Xi and IXI ≥ IXiI for all 

i € n, e fl [Uifl X,,]In 54 0, i.e., there exists an edge in the hypergraph induced 

by UEfl X. 

For this proof we use the probabilistic method, due to P. Erd&s [28], in a manner 

similar to that used in [33]. We use the notation f(n) = o(g(n)) if 

urn f(n)/g(n) = 0 
n—+oo 

for functions f and g. Note that if f(n) = o(n) then so also f(n) = o(kri) for fixed 

k>0. 

Proof: The case n = 1 is trivial so consider only when n ≥ 2 (while of course 1 ≥ 2 as 

well). We use elementary asymptotic formulae (see [42]) throughout; it will be tacitly 

assumed that numbers used are large enough so these formulae hold. Let N = N(n, 1) 

be a large positive integer. Consider n pairwise disjoint sets Xo, X1,.. . , X_j of 

cardinality N. 

Let U be the set of all 2n-element sets f with the property If fl Xi I = 2 for every 

i E n. Fix e = and set M = IN/ni. Let 9 be random subset of U, where for 
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f 

Prob[f E El = p = M 6_2n+l . 

Let X' C X,i = 0,1,... ,n —1 be subsets so that IXI ≥ M. Then 

rob[IE fl [U X,]2 I <M] 
iEn 

M ( (2) ) pi( _ p )( , 

3=o. 3  

M( (M \ )PM(1 _)()m M , 

M(M2n_1)M(M_21)Mexp [_M6_2n+1 ((J - M)] 
2 

M.M exp [_ M1 Tn  

o(i). 

(5.5) 

(5.6) 

(5.7) 

The first equality (5.6) merely sums probabilities according to the binomial distri-

bution. In such a distribution, it is well known that the occurrence with highest 

probability occurs close to the expected value, which is, in this case, 

2  1 .Mc Nl+E _2n+l = 
2) 2 

For large enough N, we see that this can be made larger than M, and so the inequality 

(5.7) holds. These equations show us that for sufficiently large N the graph induced 

by UjEfl X has more than N/n edges with probability close to 1. 

Now we will examine short cycles; if (5.4) fails to be true (with r = 2n) for 

some jo ≤ 1, then there exists an l-tuple of edges f0, f1,... , fi1 € E and a set 

Y C Ui€fl X, JYJ = l(2n - 1) so that UaE1 f C Y. The number of choices for each 
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set Y is bounded by 

(nN <c1N'2' 
1(2fl— 1))  

and given Y, the number of choices for f°, fj, . . . , f.....1 is easily bounded by 

(l(2n - 1)\ 1 

j 
<C2 

2n 

where c1 = ci(n, 1), c2 = C2 (n, 1) are independent of the choice of N. Thus the ex-

pected number of cycles of length at most 1 can be bounded from above by 

I N\ l(-2n+1) 
cic2N'(2"' )PI <_ c1c2N'(2"') (k 2- ) = c3 /7 7 = o(N) = o(M), 

where c3 = c3(n, 1) is a constant independent of N. 

Summarizing, with large probability ((Xi) jEm, E) has the following properties: (i) 

l[UiEnX]2flEl > M whenever X C X and lXl ≥ -! Xi for all i En; and (ii): the 

number of cycles of length at most 1 is o(M). 

Let E') be a hypergraph satisfying both (i) and (ii) (while still satisfying 

condition 1 in the statement of the theorem). Delete an edge from each cycle of 

length at most ito obtain a hypergraph E = ((Xj)Efl, E). We deleted at most o(M) 

edges, and thus due to (i), 

l[U X,}2 E > M -O(M)  > 0 
iEn 

whenever X C X and IXZ1 ≥ lXil.0 

The hypergraph constructed in the above theorem has a very special property; 

with the help of this next useful lemma, we shall find it. For a given order ≤* on a 

set A, we use C D to denote c d for all c E C C A and d E D C A, where no 

relations in C or D are specified. 
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Lemma 5.6.2 For given n, N E w, let (X, ≤*) be a totally ordered set with IX  = 

nN. Let X = X0UX1Ci ... CiX_1 be a partition of X with lxii = N for each 

i E n. Then there exists a subfamily . . where for each i X 

and IXI ≥ N/n, together with a permutation o : n —* n so that 

X(0) <* X(1) <* ... < X n_1. 

Proof: Since the case n = 1 is trivial, assume n ≥ 2 and let X (i E n) and (X,<*) 

be given with x0 ≤* Xi ≤ <* XnN_1 an enumeration of X. First we select the 

smallest k0 E (nN - 1) so that for some i E 

= IN/ni, 

and set o(0) = i. Note that, by the pigeon hole principle, 

lco≤n(IN/ni - 1)+ 1 N. 

Also observe that for each j 54 o(0) 

l{xko,...,xnN_1}flKjl > N— IN/ni, 

since at most IN/ml - 1 elements of X3 (j o(0)) occurred in { x0,.. , xk0} and 

ko was chosen smallest. We set 

{xo,...,xk0_1}flX(o) 

• We repeat the procedure with {xk0 ... . . xN....1} and {X : i 54 o(0)}. In general, 

suppose we have found 
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and {X : j E J} so that 

X(0) <* ... <* X_1 

where max(X_l)) = with t <n. Then for v 0 J 

I{xk_1,.. . ,x, J'i_} fl X111 ≥ IN - t(IN/nl — 1)] > (n - t)(fN/n] — 1), 

where the first inequality is because we could have 'used' only so many at each step 

and the second inequality holds since N > n(fN/nl - 1). Thus we can continue, 

finding o(t) E n\J and a minimal kt so that 

IX (t) fl {x k_1 ≤ i < k} I ≥ IN/ni 

and so we set 

X () = X) fl {x : k_1 < i < k}. 0 

Let E = ) be the hypergraph guaranteed by Theorem 5.6.1. Since 

for each e E E, le fl X4 = 2 for each i E n, let us denote each edge by e = 

{x0, YO) x1,y1,. .. ,x_,y,_j} where Xjj E Xi for each i En. 

Lemma 5.6.3 For B = ((Xi)€,E) and <* a total order on UEflXi, then there 

exists e = {xo, yo, xi, yi,. . ., Xn_i,yn_i} E 5 and a permutation o of n so that the 

vertices of e satisfy 

X0.(o) <* o(o) <* Xu(l) <* Yq(i) <* ... <* <* Ycr(n-1), 

where {Xq (j), Y(i)} C for each i e n. That is, there remains at least one edge 

which keeps vertices from the same coordinate X 'together' in the order <*. 
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Proof: Let <* be a given order on UEflX; then by Lemma 5.6.2 there exists a 

subfamily . . ,X 1, where for each i X Xi and IX,I ≥ N/n, and a 

permutation o : n -* n so that 

<* <* ... < 

Now by condition 3 of Theorem 5.6.1, the desired edge exists. 

5.7 Infinite Family of Counterexamples 

In this section, we produce infinitely many pairs H and G so that 

mdo(H, G) ≥ 2 and yet R.[(G)'] 54 0. We do this by choosing H of a particular 

nature (of which there are infinitely many) and, using the large hypergraph of The-

orem 5.6.1, produce a corresponding G satisfying the sought after conditions. We 

first give a simple observation. 

Lemma 5.7.1 All connected non-trivial ordinary graphs contain a copy of P2 as an 

induced subgraph. 

Proof: Let H = (V(H), E(H)) be connected. Choose a, b € V(H) so that { a, b} V 

E(H). Since H is connected there exist x1, X2,. .. Xm E V(H) determining a path 

ax1x2.. . Xm b. Assume that no copy of F2 occurs as an induced subgraph of the graph 

induced by {a,xi,x2,. . . ,x,,}. Then we must have a, X2} E E(H) (otherwise a,x1 

and x2 determine a copy of F2). Similarly, {a, x3},. . ., {a, Xm} must also be edges. 

In this case a,xm and b determine a copy of P2. D 

We now come to the main theorem of this section. This result ([60]) yields 

infinitely many desired examples. Recall that a graph is 2-connected if it is connected 
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and has no cutpoints. 

Theorem 5.7.2 If H is a non-trivial 2-connected (ordinary) graph, then there exists 

a graph G so that mdo(H, G) ≥ 2 and R[(G)'] 0. 

Proof: Let H = (V(H),E(H)) be given with IV(H)I = n. By Lemma 5.7.1 fix a 

copy of P2 across {h0, h1, h2} C V(H) with enumeration V(H) = {h0, h1,. . . , h_1}. 

Form a new graph K H, V(H) fl V(K) = 0, with 0 : V(H) V(K) = 

{k0, k1,. . . , k_1}, the isomorphism defined by (h) = ki+l(m0d3) for i = 0, 1 and 

2 and &(h) = ki otherwise. We have simply relabeled H using a permutation of 

the first three vertices. Order each of V(H) and V(K) in the natural way (i.e., 

hi < hj and k1 < k-j if and only if i <i) producing (H, ≤) and (K, ≤). Note that 

(H, ≤) 0 (K, ≤). 

Select a hypergraph E = E) satisfying the conditions in Theorem 5.6.1 

with girth(E) > n. Construct a new (ordinary) n-partite graph G on the vertex set 

UiCn Xi by disjointly embedding a copy of HCJK into each hyperedge of E (as in Theo-

rem 3.3.4) in the following manner: For each hyperedge e = {x0, yo, xi, Yi, , n-1, Yn-1 } 

(where xj,yj e Xi for each i e n) in S define embeddings fe : V(H)UV(K) — k e 

by f(h) = xi and f(k) = yi for each i E n. So la, b} E E(G) if and only if 

{f;' (a), f,,-' (b)} E E(H) U E(K) for some e E S. 

Since girth(E) > 2, hyperedges of E intersect in at most one point and so these 

embeddings are well defined. Essentially, G = ((Xj)jEfl, E(G)) is a graph formed by 

'stringing out' copies of H across its coordinates; the H-subgraphs can sit in one of 

two ways. We claim that mdo(H, G) ≥ 2. 
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Let ≤ be an order on V(G) = V(E). By Lemma 5.6.3, there exists a hyperedge 

e E S which respects grouping of vertices along coordinates, and hence we find a 

copy of H and a copy of K which satisfy {fe(hj), fe(kj)} C X 1 for each i and 

some permutation o. We need only notice that permuting the order of the vertices 

of both (H, :5) and (K, :5) in the same way produces again two non-isomorphic 

orderings of H. So any ordering of G produces two non-isomorphic ordered H's, i.e., 

mdo(H, G) ≥ 2. We have yet to demonstrate that R4(G)H} 0. 

Rename (H, :5) = (H, ≤°) and (K, :5) = (H, ≤') and fix (H, 2), a third ordering 

of H defined by 

h2 ≤ 2 h0 < 2 h1 < 2 h3 ≤ 2 h4 ≤ 2 ... ≤ 2 h_1, 

agreeing with the first two except by a cyclical permutation on h0, h1 and h2. Let 

≤o, <1 and ≤ 2 be three total orders on V(G) which preserve coordinates and agree 

except that the first three coordinates are permuted, e.g.: 

xo ≤o Xi ≤o X2 o X3 ≤o •.. ≤o 

x1≤1x2≤1x0≤1x3≤1 ... ≤lxn-1, 

X2 ≤ 2 X0 ≤ 2 X1 ≤ 2 X3 ≤ 2 ... ≤ 2 X.4. 

Now each of (G,:50), (G, :51) and (G, ≤ 2) can be seen to contain a different pair of 

(H, :5 0 ), (H, :5') and (H, ≤ 2) as induced subgraphs. We claim that these are the 

only induced H-subgraphs of the given ordered G's. 

In the construction of G no edges were added between hyperedges of E. Since 

hyperedges of E intersect in .at most one point and H is 2-connected, no new copy of 

H is introduced by two hyperedges intersecting. (If one was newly formed, the point 
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of intersection would be a cutpoint, contrary to being 2-connected.) The introduction 

of more hyperedges intersecting the first two might help to construct a new copy of H 

except that the condition 'girth(E) > n' prevents any such occurrence. So no other 

copies of H exist in G other than those produced explicitly in the construction. Recall 

now Theorem 5.5.1, and, using the three orderings of G and the three orderings of 

H, we see x(KH,G) ≥ 3. Hence '7?4(G)'] 0. 0 

We denote the complement of an ordinary graph G by . Given a collection 

c of graphs, we define U = {: G E }. Let M he the collection of all graphs G 

containing a cutpoint which is connected to all other vertices except at most one. It 

is not difficult to derive the following: 

Lemma 5.7.3 H E M U XT if and only if neither H nor 77 is 2-connected. 

This was proved in [118]. Using this terminology, we obtain an immediate corollary 

of Theorem 5.7.2. 

Corollary 5.7.4 Let H be a non-trivial ordinary graph. If H 0 M U M then there 

exists a graph G so that mdo(H, G) ≥ 2 and 'J?.[(G)'] 0. 

Proof: If H V M U 3 then either H or F is 2-connected. If H is 2-connected, 

we are done by Theorem 5.7.2. Suppose H is not 2-connected but F is. By Lemma 

5.7.1, F contains a copy of P2. So we duplicate the construction in Theorem 5.7.2 

to produce G and F with F —* (G)'. We claim that —+ Fix a coloring 

: () —+ 2. This induces a coloring 2: () —* 2 by (') = L(H). Since 

F — p (G)' there exists a G' E () so that () is monochromatic with respect to 
. Hence () is monochromatic with respect to L. 
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So we only need show mdo(H, ) ≥ 2. Choose an ordering (, ≤) of . If 

(H, :50 ), (H, :5') E DO(H,, ≤) are non-isomorphic, then certainly we have that 

(:-, ≤°), ≤') E DO(71, G, ≤) are non-isomorphic as well. 0 

We conclude with some remarks. Many generalizations of these results to hyper-

graphs are possible. The notions of connectivity and complement must be extended 

however. One may also choose a subhypergraph which plays the role of P2 in The-

orem 5.7.2, but with cautionary heed to extra assumptions. Are there 'elegant' 

extensions of this type? 

Hitherto, even a partial classification of ordinary graphs for which the statement 

"rndo(H, G) = 1 if and only if R.[(G)'] 0" has not been given. However, the, case 

for H = P2 is settled in the next chapter. 

Alternately, how much can the conditions on H be weakened so that this state-

ment fails; Theorem 5.4.1 shows that H'need not be 2-connected. Numerous other 

interesting questions should suggest themselves to the reader now. .If one is to com-

plete the classification of ordinary graphs with respect to Ramsey properties, it is 

believed that pursuits in directions similar to those taken here may be of assistance. 



Chapter 6 

Ramsey Graphs for Coloring P2 's 

6.1 Introduction 

When one studies the pairs H, G for which R[(G)'] is non-empty, it is natural to 

begin by classifying the smallest non-trivial cases. In this chapter, we are particularly 

interested in finding those graphs C for which 1.[(G)'2] 54 0 (where P2 is the path 

on three vertices). We use standard notation along with specialized notation given 

in previous chapters. Recall that DO(H, G, ≤) is the collection of different ordered 

induced H-subgraphs of (G, :5), and mdo(H, G) is the minimum (taken over all 

orderings of G) number of distinct orderings of H in any one ordered (G, :5). We 

also use the graph KH,G as defined in the previous chapter. 

Recall that a forest is an ordinary graph containing no cycles, and a connected 

forest is a tree. For x E V(G), we use N(x) = NG(x) = {y : (x,y) E E(G)} to 

denote the neighborhood of the vertex x, and let N*(x) = N(x) = N(x) U {x} be 

the extended neighborhood. 

6.2 Colored Forests 

Attempting to determine those graphs G for which R[(G)] is non-empty, we find 

that members of a very large class appear. This class was discovered {60] primarily 

as a result of examining the proof of Theorem 5.4.1. 

95 
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Theorem 6.2.1 If G is a forest, then 7?,[(G)'2] 0. 

Proof: If () = 0 then the result is trivial. If P3 G, then every connected 

component of G is a star. Clearly then mdo(P2, G) = 1 and hence X(KP2,G) = 00 

giving the result by Theorem 5.5.1. So assume P3 G. We will produce three 

orderings of G, namely (G, ≤°), (G,:<') and (C, ≤ 2) , so that each of DO (P2, C, ≤), 

i E 3, is a unique pair from ORD(P2). Hence x(KP2,G) ≥ 3, for in this case Kp2,G 

will contain a triangle. 

Fix a representation of G as a collection of rooted trees with at least one of these 

roots being an inner vertex of some copy of P3 C. Let 

V(G)=L1CiL2Ci ... UL 

be a partition of V(G) into 'levels', that is, each Lj is the union of the j-th levels 

of all the rooted trees comprising C, where L1 is the set of all the roots. Note that 

we have insisted that a copy of P3 begins in L2, goes 'down' to L1, then back 'up' 

through L2 to L3. Impose an order ≤ 2 on V(G) which respects 

L < 2 L ≤ 2 £ 3 ≤2 ... 
— -I-in, 

and let < 1 be the inverse order of ≤ 2. Lastly, fix an order ≤° of V(G) which 'folds' 

at levels, i.e., 

<0 L5 < 0 £3 ≤° L <0 £2 ≤ L4 <0 £6 ≤ ..., 

continuing until all levels are exhausted. Let ORD(P2) be enumerated as in Figure 

6.1. 

Straightforward verification shows that 

DO(P2, G, :5') = {(P2, ≤) : j 0 i} 
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. 

(P2, ≤o) (P2, :51) (F2, ≤ 2) 

Figure 6.1: ORD(F2) 

for each i E 3 as required. 0 

Notice that we can not conclude from this proof that the resulting Ramsey graph 

is also a forest, even if it is minimal in some sense. 

It is natural to ask whether or not any converse of Theorem 6.2.1 holds, i.e., if 

G is so that R.[(G)'2] is non-empty, is G necessarily a forest? As it turns out, we 

can not conclude that G is a forest, however G may look like a forest with 'exploded 

vertices'. 

6.3 Exploded Vertices 

If R.[(G)] j4 0, G need not be a forest. If G is a triangle (a K3), we trivially have 

0, just choose F = G = 1(3. Furthermore, the orderings of the two 

graphs, C1 and C2, in Figure 6.2 show mdo(F2,G) 1 for i = 1,2 and hence each 

7?.[(G) 2J is non-empty. Note that G1 consists of n copies of 1(3 attached at a single 

vertex, while G2 is m copies of 1(3 all sharing a common edge. Alternatively, we 

could say C1 was constructed by starting with a star S,, replacing each end-vertex 

with a copy of 1(2 (edge) and then joining vertices of each 1(2 in the same manner 

the original vertex was. Similarly, C2 could be conceived by replacing the central 
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2n 

2n - 1 

2n - 2 

2n - 3 

2n — 4 

1 

0 

G1 

0•-

G2 

Figure 6.2: Vertices of a star exploded into edges. 

vertex of S with an edge in a like manner. Observe that mdo(Sn, F2) = 1 and so 

0 also holds. 

This method of replacing a vertex by a 1(2 works in general. We first give a 

definition which generalizes that for a lexicographic product. Let G be a graph with 

a fixed enumeration x0, x1, ..., xkl of V(G). Let M0, M1, ..., Mk-1 be (vertex 

disjoint) graphs and define the product G ® (M0, M1,. ... Mk-1) on the vertex set 

UiEkV(Mi) by 

E(G 0 (Mo,. . . , Mk-1)) = CJiEkE(Mi) U {(yi, y) : Yj E M, Yj E M, (xi, x) e E(G)}. 

In this product, we replace each vertex by a graph (possibly empty) and connect 

each vertex of a 'replacement' graph to each vertex of another 'replacement' graph 

if and only if the replaced vertices were originally connected. If we let Ifo denote a 

null structure (a 'graph' with no vertices), and If, a single vertex, the graph 

G®(Ko,Ki,Ki,...,Ki)=G\{xo} 
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is the graph formed by deletion of a vertex and all edges containing that vertex. 

Such a graph is often denoted by G \ x0. The product G ® M is just the standard 

lexicographic product (cp. Theorem 3.3.1). If, in using the definition, all the graphs 

Mi are complete (or null), we shall write G ® (no, ni,. . . , ri,_i) rather than G ® 

(KnO ,KTh1 ,... )Knk_l). For example, K4®(0,1,1,1) = 1(3 and 1(30(0,1,2) = 1(3. 

In applying the definition of this product, we tacitly assume there is a fixed 

enumeration of V(G); our arguments do not depend on which enumeration. We 

remark that if G' = G® (no, n1,. . . , n_), then 

G®(no+1,nl, ... ,nk_l) =G'®(2,1,1,1,...,1) 

for some appropriate enumeration of V(G'). Using this type of inductive step, it is 

not hard to prove the following lemma: 

Lemma 6.3.1 If for each i E k,ni, Mi E w and n ≤ m, then 

G® (no,ni,. . . ,n..i) G® (mo,mi,... 

In the last chapter we were assured of infinitely many pairs H, G so that both 

mdo(H, G) > 1 yet R[(G)fl 0 held. 'Phis was a difficult construction using 

probabilistic arguments. In Theorem 5.4.1 a small example of such a pair was also 

given with H = P2. Using this example, the next theorem ([59]) actually gives us a 

construction for infinitely many G's so that mdo(P2, G) > 1 while R.[(G)'2] 0. 

Theorem 6.3.2 LetG be a graph satisfying 1[(G)'2] 54 0. If JV(G)J = k, then for 

any collection no, n1, ..., E w of non-negative integers, 

' \ P2 1 0 

also holds. 
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Proof: We first show the result for the case when each ni > 0. In this case we use 

induction on > jEk n, the size of the vertex set of the product graph. The base step 

no = n1 = ... = = 1 is the assumption. Fix positive integers no, n1, ..., 

set 

G'=G®(no,nl,...,nk_l) 

and 

G"= G®(no+1,nl,...,nk_1), 

and assume 0. It will suffice to show that R.[(Gh1)'2] 0 

Fix an ordered (G', '). Extend ≤ ' to ≤ ", an ordering of G" by inserting 

the 'new' vertex arbitrarily in the order. It is easy to see that the construction of 

(G", ≤") from (G', ≤') introduces only copies of P2 of order type identical to those 

already present. This fact (together with an application of Lemma 6.3.1) shows 

DO (P2, G') ≤') = DO (P2, G", ≤") 

regardless of which extension ≤" is chosen, and hence KP2,G! and Kp2,ii have the 

same hyperedges. Theorem 5.5.1 now yields that 7?[(G!1)'2] is non-empty. 

The case where some of the ni's are zero follows from the fact that for any graph 

G, the vertex deleted graph G ® (0, 1, 1,. . . , 1) is an induced subgraph of C. If F is 

so that F__.(G)'2,thensoalsoF_._*(G®(0,1,1,...,1))'2. D 

Following the proof of Theorem 6.3.2, a stronger theorem ([60]) is available which 

no longer restricts us to P2-colorings. 

Theorem 6.3.3 Let G and H be graphs which satisfy R.[(G)'] 0 and let C 

(no,n1,...,nk-1) be defi'ñed. If for all pairs (h, k) E E(H) there exists y E V(H) \ 
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{h, k} so that exactly one of (y, h) E E(H) or (y, k) E E(H) holds, then 

R.[(G® (no,ni,. . ., flk_i)) '] 0 

also holds. 

Proof: The proof follows identically the proof of Theorem 6.3.2. We have only 

to check that in the construction of G" = G® (no + 1,n1,. . . ,nj_) from G' = 

we have 

DO(H, G', ≤') = DO(H, G", ≤") 

for each order ' on V(G') and ≤" respecting this order. (≤* arises from inserting 

an element in the order ≤.) 

Fix an ordering ≤' of G' and let x and y be vertices of G" which replace x0 in G', 

keeping x in the same position as x0 was and introducing y arbitrarily in the order 

≤' to determine ≤". Any copy of H in (G", ≤") which does not contain (x, y) as an 

edge is of the same order type as one found in (G', ≤'). The assumed condition on 

H is so as to prevent any new copies of H being formed which might contain (x, y) 

as an edge since the construction guarantees that x and y are of the same type with 

respect to the remainder of G". Thus we have shown that 

DO(H, G', ≤') 2 DO(H, G", ≤"), 

and the proof now duplicates the proof of Theorem 6.3.2. 0 

One may observe that if H is a connected triangle-free graph with IV(H)J ≥ 2 

the condition of Theorem 6.3.3 is met. 

Although we have not yet classified all those graphs G for which 1.[(G)ç2] 0, a 

great deal many have been found so far. 
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Let T be the collection of graphs arising from forests whose vertices have been 

(possibly) 'exploded' into complete subgraphs. That is, 

.F={F®(nO,...,nk_l):Fa forest, k≥ l,iE k, ni Ew}. 

As a direct consequence of Theorems 6.2.1 and 6.3.2, we have the following [60]. 

Theorem 6.3.4 If G E .F 1t[(G)'2] 54 0 

But there are others; consider the graph on five vertices formed by adding two 

pendant edges to a triangle (V. Rödl—oral communication). 

6.4 Chordal and Comparability Graphs 

An ordinary graph is chordal if every cycle of length ≥ 4 has a chord, i.e., a chordal 

graph is that which contains no cycle on ≥ 4 vertices as an induced subgraph. (A 

chordal graph is sometimes called a rigid circuit graph (cp. [26]) or a triangulated 

graph (cp. [25],[75]). An easy lemma [60] is as follows. 

Lemma 6.4.1 If a graph G is so that R.[(G)c2] 0 then G is chordal. 

Proof: This proof mimics that of Example 5.2.1. If G is not chordal, then there 

exists an induced cycle of length ≥ 4 in G. Then any ordering of G produces two 

distinct ordered P2's as induced subgraphs, namely (P2,:51) and (F2, ≤ 2) (the ones 

which have the middle vertex at either end of the order). 

Fix any graph F and impose an order < on V(F). Let Li : () -* 2 be a 
coloring which satisfies 

z.(P) = 0 if (.P,≤) (P2,≤1), 
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and 

L(P21) = 1 if (P,≤) (P2, <2), 

where (P, ≤) is a copy of P2 F with the order ≤ imposed. Thus every G' E () 
is multicolored and so F 0 R[(G) 2]. Hence we have shown that if C is not chordal, 

then R.[(G)'2] is empty. 0 

A vertex x in an ordinary graph C is simplicial if its neighbors, NG(x), induce a 

complete subgraph of C. We will need the following result of Dirac [26] (Thm. 4; 

also see [48]) concerning simplicial vertices, (which we give without proof). 

Theorem 6.4,2 Every chordal graph contains a simplicial vertex, and upon removal, 

produces another chordal graph. 

Given a partially ordered set (Q, ≤), construct the graph G(Q) on vertex set Q, 

where (x, y) E E(G) if and only if x <y or y < x. Such a graph G(Q) is called the 

comparability graph for (Q, :5). One can think of G(Q) as the undirected version of 

the transitive closure of the directed graph associated with (Q, ≤). 

Given a partial order (Q, ≤), (Q, ≤*) is a linear extension of (Q, :5) if ≤* is a 

linear (total) order and a ≤ b implies a ≤* b. Such a linear extension always exists; 

one can construct it by first choosing a minimal element of (Q, ≤) to be the smallest 

element in (Q, ≤*), then choosing the minimal element of the remaining, and so on. 

An interesting characterization of comparibility graphs is the following, which 

appears to be part of the folklore. 

Lemma 6.4.3 G is a comparability graph if and only if C has an ordering ≤° so 

that (P2,≤o) (G, <0). 
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Proof: Let G = G(Q) be a comparability graph for some poset (Q, ≤). A linear 

extension (Q, ≤) of (Q, ≤) gives rise to the ordered graph (G, ≤*) in the following 

manner: for x y, (x) y) E E(G, ≤*) if and only if x ≤ y. If (x, y) and (y, z) 

determine a weak (P2, ≤o)-subgraph of (G, :5*), then transitivity of ≤ gives (y, z) to 

be an edge also, preventing an induced copy of (& :5o). 

Now suppose that G has an ordering < 0 so that (P2, :5o) (G, :5 0 ). Look at the 

relational structure (Q, ≤) defined by x ≤ y if and only if (x, y) E E(G) and x <0 y. 

If (x, y) and (y, z) are (ordered) edges of (G, < 0), (x, z) is also, since (G, ≤°) does 

not contain a copy of (F2, ≤ o). Thus x < z and the transitivity condition is satisfied 

for (Q, ≤) to be a partial order and G = G(Q) is a comparability graph. 

6.5 Complete classification 

We are now ready to give the complete classification [60] of those graphs G for which 

1?,[(G)2] is non-empty. 

Theorem 6.5.1 R[(G)c2] 0 if and only if either G is both chordal and a compa-

rability graph, or there is an ordering of G so that DO(P2, G,≤*) = {(P2, ≤o)}. 

Proof: First assume that G is chordal and is a comparability graph. We define three 

orderings of G as follows. 

By Theorem 6.4.2 there exists a simplicial vertex so E V(G). By the same 

theorem, there is si E V(G) \ {so}, again simplicial. Continue, exhausting V(G) 

and let ≤' be an ordering of V(G) given by so s ... ≤' sv(G)_1. Observe 

that (P2,:51) (G, s'), because each upper (right) neighborhood of each vertex is 



105 

complete. Similarly define (G, ≤ 2) where ≤ 2= (≤')'. Then (P2, :52) (G, < 2). 

Now let ( G, ≤°) be an ordered graph guaranteed by Lemma 6.4.3 so that (P2, :50) 

(G, <0). So by Theorem 5.5.1, 7.[(G)2] 0. (cp. comment after 5.4.1). 

If <* is an ordering of V(G) so that DO(P2, G,:5*) = {(P2, :5o)}, then by Theo-

rem 5.5.1 or 5.3.1 we have R.[(G)ç2] 0 as well. 

Now suppose that 1?.[(G)] 0. Then by Lemma 6.4.1, G must chordal. It 

remains to show that G must be a comparability graph. Use of Theorem 5.5.1 

together with the two orderings given by chordality in the first part of the proof, 

we see that either G must have an ordering which 'omits' (F2, ≤ 0) (in which case, 

by Lemma 6.4.3 we are done) or there exists an ordering of V(G) so that 

DO(F2,G,≤*) = {(F2,≤o)}. 0 

For a good survey on comparability graphs, see [70], and [97] for many other 

references. In [75] there are examples of chordal graphs and comparability graphs 

which are not both. An excellent bibliography is given in [25] concerning chordal 

graphs and related topics. It would be very interesting to classify those graphs which 

are both. For this, methods of Diestel and Galvin might be useful combined with 

those of Kelly and Möhring. 

It is not known whether or not those graphs G which have an ordering admitting 

only 'fiat' copies of F2 are also comparability graphs; work with small examples seems 

to indicate that these two classes of graphs are in fact the same, but no proof has 

been discovered. We note that the graphs having an ordering admitting only fiat 

P2's are chordal. 

Work on the case for perhaps the next simplest case, the star S3, has been difficult, 

but it appears that such a classification is possible, although not nearly as elegant 
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as Theorem 6.5.1. 



Chapter 7 

Minimal Ramsey Graphs 

7.1 Development 

We have already seen that the notion of ordering plays a significant role in graph 

Ramsey theory. In an attempt to actually produce some examples of ordered Ramsey 

graphs, it may seem natural to restrict the search to small, or minimal, such graphs. 

Given the importance of ordered graphs in graph Ramsey theory, it seems surprising 

that there are few results concerning the minimality of ordered Ramsey structures. 

A great deal of work has been done to find unordered minimal Ramsey graphs and a 

number of results are known. However;even for the unordered case, much waits to 

be discovered. 

In this chapter we restrict ourselves to edge colorings of ordinary graphs (ordered 

and unordered) with two colors. Some known results are surveyed for the unorderd 

case and we examine possible directions for the related study of ordered graphs. 

Some trivial cases are looked at, and one non-trivial minimal ordered Ramsey graph 

is given for the first time. Proofs will be omitted, or at most outlined. This is not 

meant to be a complete study, only a brief look at the problem. 

The notation 

F -* (G0, G1,. . . , 

means that for any edge coloring of F with 2 colors, there exists i E n so that there 

is a monochromatic induced copy of G2 in F. (This is not to be confused with the 
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similar notation for more than two colors.) The associated notation 

F weak (G0, G1,. . . , Gm_i) 

means there is a weak subgraph Gi of F which is monochromatic. These are known 

respectively as the strong and weak Ramsey arrows. We say F is a strong Ramsey 

graph for (Go, G1,. . . ,G_1) if 

F  (Go,G1,...,G_1), 

and we say F is a weak Ramsey graph for (Go, G1,. . . , G,_1) if the arrow is weak. 

We extend the notation for ordered graphs in the natural way. When it causes no 

confusion, the mention of the graphs (Go, G1,. . . , G,_1) will be suppressed and we 

shall only say that F is a Ramsey graph—specifying "weak" or "strong" only as 

needed. (Note that if F is a Ramsey graph for a complete graph, then it is both a 

weak and a strong Ramsey graph.) 

If F is a Ramsey graph so that for any other Ramsey graph F', IV(F)I ≤ I V(P)l 

holds, then we say F is a vertex-minimal Ramsey graph. Given a graph F and a 

vertex x € V(F), define the vertex deleted subgraph 

F \ x = (V(F) \ {x}, E(F) fl [V(F) \ {x}]2). 

A Ramsey graph F is vertex-critical if every vertex deleted subgraph fails to be 

Ramsey. Clearly every vertex-minimal Ramsey graph is also vertex-critical, but a 

vertex-critical Ramsey graph need not be vertex-minimal. 

Similarly, a Ramsey graph F is edge-minimal if for any other Ramsey graph F, 

E(F')I holds. For an edge e E E(F) define 

F \ e = (V(F),E(F)\ { e}). 



109 

A Ramsey graph F is edge-critical if F \ e fails to be Ramsey for any edge e of F. 

As before, edge-minimal Ramsey graphs are edge-critical, but the converse does not 

necessarily hold. 

If G has no isolated vertices, and F is an edge-critical Ramsey graph for G, then 

F is also vertex-critical. If F is a weak Ramsey graph for (Go,. .. , G,_1), then some 

authors ([12], [13], [15]) say F is "(Go,. .. , G,_,)-minimal" if F is edge-critical, and 

in some cases ([12]) "edge-minimal" is used to denote edge-critical. Also, in [85], F 

is said to be a "critical" Ramsey graph for G if F is a strong Ramsey graph for G 

which is edge-critical. If a strong Ramsey graph F is edge-critical, then for any weak 

subgraph F of F, F fails to be Ramsey. It is worth noting that the existence of a 

Ramsey graph (weak or strong) for (Go,. .. , G,_) is guaranteed by Theorem 3.4.4. 

A great deal of the work done in the area of minimal Ramsey graphs has been 

to show whether or not there are infinitely many such (e.g. [29],'[12], [13], [14], 

[15], [93]). There has also been a great interest in finding Ramsey numbers, that is, 

the sizes of vertex-minimal weak Ramsey graphs (e.g. [9], [10], [11], [20], [29], [30], 

[31], [32], [44], [45], [49], [51], [68], [74], [122]). Many (e.g. [96]) have contributed in 

closely related areas. 

7.2 Some Unordered Results 

Some questions concerning minimal Ramsey graphs were raised as early as 1975 

[29]. Soon after, Burr, Erdös, and Lovász (see reference in [85]) proved the following 

theorem. 
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Theorem 7.2.1 For each n E w there exist infinitely many edge- critical Ramsey 

graphs for If,,. 

Theorem 7.2.1 also appears as a corollary to a theorem proved in [85]. Also in [85], 

Neetfil and Rödl proved the following three theorems. 

Theorem 7.2.2 If G is a forest with P3 G, then there are infinitely many edge-

critical strong Ramsey graphs for G. 

Theorem 7.2.3 If G is a graph with (G) ≥ 3, then G has infinitely many edge-

critical strong Ramsey graphs. 

For the next theorem, we need a definition. Recall that a graph is 2-connected if the 

graph is connected and the removal of any vertex does not disconnect the graph. A 

graph is 2.5-connected if the removal of any two adjacent vertices does not disconnect 

the graph. 

Theorem 7.2.4 If G is a 2.5-connected graph, then G has infinitely many edge-

critical strong Ramsey graphs. 

It was also conjectured by Neetil and Rödl that if G and H were graphs with 

E(G)I ≥ 2 and G .R[(H)2], then there are infinitely many vertex-critical Ramsey 

graphs for H which contain G as a subgraph. This conjecture was partially settled 

by the following theorem [15]. 

Theorem 7.2.5 Let G and H be 2.5-connected graphs and suppose F is not a Ram-

sey graph for (G,H). Then there are infinitely many edge- critical strong Ramsey 

graphs for (G, H) which contain F as an induced subgraph. 
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We now take another look at minimal Ramsey graphs. Define a minimal-Ramsey 

graph to be a vertex-minimal Ramsey graph with fewest edges. It is not clear that 

a minimal-Ramsey graph is edge minimal, or even edge critical! It is precisely these 

questions which promoted further research. 

Notice that S3 - (P2)2, and 53 is minimal-Ramsey. (Recall S3 is a star with 

one central vertex and 3 end vertices.) Suppose we have a copy of C5 and we attach 

to each vertex of C5 a pendant edge to form a graph on 10 vertices. Call the resulting 

graph *F (looks like a starfish?). 

Lemma 7.2.6 *F - (P3)2 

Proof: Let the V(*F) = {x0,. .. , x4, yo,. . . , y} where x0 thru x4 forms a cycle and 

for each i E 5, { xi, yj} is an edge. Fix a coloring L : (E(G)) -+ 2. Without loss, 

we can assume that AUx4, x0}) = ({x0, x1}) = 1, say. If any of the four edges 

{x1,YO, {x1,x2}, {x4,y4}, {x4, x3} are also colored 1, then we are done. So assume 

not. Then any coloring of the three remaining edges {x3, y}, {x2, x3}, { x2, y2} yields 

a monochromatic copy of P3. 0 

It is easy to see that *F is an edge-critical and vertex-critical strong Ramsey graph 

for P3. The author knows of no proof verifying that *F is vertex-minimal. (In fact, 

the author believes Lemma 7.2.6 is original.) 

7.3 Minimal Ordered Ramsey Graphs 

In Figure 7.1, some minimal Ramsey ordered graphs are given. For the most part, 

these are all trivial examples. 
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Figure 7.1: Some Minimal Ordered Ramsey Graphs 

Figure 7.2 shows the first non-trivial ordered Ramsey graph, that for the linearly 

order P2. It is easy to see that the graph is both vertex and edge-critical. It can 

be shown that the graph in Figure 7.2 on 7 vertices is both vertex-minimal and 

edge-minimal. (Contrast this to the unordered case, where S3 suffices.) The proof 

is by (many) cases and we omit it. A computer program was written to verify the 

claims of minimality, which took 39 days to complete on a Commodore 64. An 

ordered Ramsey graph for a linearly ordered P3 appears to have over 20 vertices—a 

computer search does not seem feasible. (Compare this with ≤ 10 vertices given in 
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• the unordered case by Lemma 7.2.6. Due to the work on ordered graphs, the author 

arrived at some interesting questions. 

Figure 7.2: A non-trivial example 

7.4 A Conjecture 

Suppose that G and G' are graphs on the same number of vertices, and that F is a 

strong Ramsey graph for G. Furthermore, suppose G is a weak subgraph of G'. If 

one was to prove that F is in fact Ramsey for G, one might try to color F edge by 

edge, at all times trying to avoid a monochromatic copy of G, only to be forced to 

create one. While attempting this coloring, any copies of G contained in a copy of 

G' need not be worrisome, as we are looking for monochromatic induced copies of G. 

Hence, if F were to be minimal, one would expect to find as few copies of G' in F 

as possible. This same reasoning holds for ordered graphs, as well. 

Conjecture: Suppose F -* (G) 2 and G is a proper subgraph of some G' satisfy-

ing IV(G)I = IV(G')I. If F is vertex-minimal or edge-minimal, then 9 F. 
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The similar conjecture for ordered graphs seems to offer more hope of proof. In 

ordered graphs, the notion of 'forcing' a bad coloring is easier. 
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