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ABSTRACT 

This thesis is primarily concerned with the continuous 

complex—valued mean periodic functions of a real variable that were 

innovated by Laurent Schwartz and also considered by J. P. Kahane. 

An account of such functions, together with some results from a 

previous thesis of the author 'is given in Chapter 0 

Our results concerning such functions fall into two main 

categories: new properties of the functions themselves and a 

consideration of some systems of functional differential equations 

(Chapter 2) and Volterra integral equations of convolution type 

(Chapter 3) that admit continuous mean periodic functions as solutions. 

Throughout Chapters 0 - 4, frequent reference is made to 

the truncated convolution product of two functions f, g defined as 

t 
g : t + f f(t - r)g(r.)dr for all real t 

Several function spaces, including the set of continuous mean periodic 

functions, are identified as algebras with the operations of addition 

and truncated convolution. Properties of this convolution product 

and subalgebras are considered in Chapter 1 whereas some ideals of 

such algebras are described in Chapter 4 

Chapter 5 is concerned with entire functions and the entire 

mean periodic functions of a complex variable z . The theory of 

entire mean periodic functions is due mainly to Laurent Schwartz and 

an outline of his theory is included in Chapter 5 . It is shown that 



if f, g are entire functions, so is the 'truncated convolution' 

product 
z 

f®•g : z +  - 

Chapter 5 also contains other properties and applicationsof entire 

mean periodic functions that are similar to some of the properties 

and applications of continuous mean periodic functions given in the 

earlier chapters. 
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Chapter Zero 

PRELIMINARIES 

This Introductory chapter serves to familiarize the reader 

with some concepts of continuous mean periodic functions and 

relevant properties of continuous functions and measures 

(Sections 01 - 0.4) that will be required in subsequent chapters. 

The term, mean periodic function, was coined by Delsarte [1] 

in 1935 to denote a complex-Valued continuous function, f, of a 

real variable t that satisfies an integral equation of the form 

ff(t - r) k(r) dr = 0. for all 

where k is anot identically zero continuous function with compact 

support. This name is suggested by the fact that if f is a periodic 

function of period 'r then its aVege is zero if and only if 
T. 

- r)'dr = 0 for all t 

A more complete theory was presented by L. Schwartz [i] in 

1947. For any topological vector space, E, of complex-valued 

functions of a real variable, the function f e E is defined to be 

mean periodià in E if the linear combination of the translates 

is not dense in E . For E C(R), the space of all complex-valued 

continuous functions defined on the real line and equipped with the 

topology of convergence unifOrm on all compact subsets of R, 

Schwartz obtains properties similar to those of Delsarte and shows 

that the general and intrinsic definition is equivalent to the 

following. . 
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A necessary and sufftciênt condition that f c C(R) be 

mean periodic is that there exists a now-zero measure, p, with 

compact support for which 

!f(t - r) dp(r) = 0 for all t 

The main property of mean periodic functions in C(R), is 

that they are limits of-linear combinations of exponential monomials. 

The means Kahane fi), [2] used to prove this are summarised in the 

Section 0.5 and make use of the Carleman transform. This approach 

to the theory of mean periodic functions in C(R) relies on the 

theory of analytic functions of one complex variable and extensively 

uses the Fourier transform ot a measure. In this thesis, i is 
• -zt -2irizt 

defined as p : a + fe dp . t) instead of fe dp(t) (Schwartz) 

or fe*1Ztdp(t) (Kahaite); consequently, statements like is 

bounded on the real axis" 'as ond in Schwartz and Kahane will read 

here as " j is bounded on the imaginary axis" 

The reader's attention is drawn to the fact that the 

contents of this chapter, and this chapter only, have been adapted 

from the author's M.Sc. Thesis Laird, [1]) 
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§0.1 The Space C(R)  

We denote by C(R) the complex vector space of all complex 

valued continuous functions defined on the real line (R) and 

equipped with the topology of convergence uniform on all compact subsets 

of R . This topology may be defined by the seminorms 

= sup{Jf(t)f : -k < t < k} 

As the sets {f : f e C(R) and < c}, formed when 

c ranges over all positive numbers and k ranges over the set N 

of positive integers, ate convex and form a base of neighbourhoods 

at the origin, C(R) is locally convex. This topology for C(R) 

is Hausdorff, since = 0 for each k e N 4 f = 0 

A bounded metric defining the given topology is 

00 -k  P(f) 

p(f, g) k=1 + - g) 

with 0) -- 0 + 0 as n + co for each k c N 

C f -- 0 in C(R) as n -- °° 

def. 
f ft converges "locally uniformly" to zero as n + 

C(R) is a complete space, for if {f} is a Cauchy sequence 

of elements of C(R), i.e., p(f, f) --*. 0  as m, n • , then 

there exists an f e C(R) such that p(f, f) + 0 as n -- . This 

follows since for each t E R, {f (t)} is a Cauchy sequence of 

complex numbers and so convergent to f(t), say. Then {f} 
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converges to f locally uniformly and so f is continuous. Thus, 

C(R) is a Fréchet space. 

The support of a function f is the closure of the set 

{t f(t) 0 0} . The set of all complex-valued continuous functions 

having compact supports is denoted by Cc(R) . As well, C(R) 

denotes the set of all indefinitely differentiable complex-valued 

functions defined on R and 00 C(R) denotes those C 00 (R) functions 

with a compact support. C(R +) is used to denote the set of all 

continuous complex-valued functions defined on R+ = Eo °°) 

The truncated convolution product of two continuous 

functions x and y is defined as 

t 
x®y : t -'- I x(t - r) y(r) dr 

and x®y is continuous. With addition and this product, C(R) 

is a commutative ring and an algebra over 4 (see Erdlyi, [1], 

page 15 for details of C(R +) that apply to C(R).) 

§0.2 M , The Dual Space of C(R)  

The term, "measure", will be used in this thesis to denote 

a continuous linear functional on the complex topological linear 

space C(R) . The set of all such measures is denoted by Mc . The 

relevant properties of these measures are outlined here; for full 

details of their theory involving integration theory and Radon 

measures on C(R), see, for example, Edwards [l], Chapter 4 

Any such measure, i, assigns to each f c C(R) a complex 

number (f) in such a way that:-
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p(af) = au(f) for every complex number a, 

ii(f + g) = p(f) + P(g) for f, g e C(R), and 

+ p(f) when f + f in C(R) as n 4c0 

A positive measure, A, is one for which X(f) Z 0 

whenever f £ C(R) and f >0 • It is customary and often convenient 

to write i(f) as ffdp or ff(t)dp(t) 

For a linear functional, p, on C(R) to be continuous, 

(i.e., to be a measure in the above sense), it is necessary and 

sufficient that there exist a compact set K and a non-negative real 

number C such that 

(0.1) I(f)I C sup{If(t)l : t s K} for each f c C(R) 

For a given measure p, there exists a smallest compact 

set K for which (0.1) holds for a suitable C = C  and K is 

called the support of p . If a äontinuous function, f, is zero 

on K, then p(f) is zero. The smallest closed interval containing 

K, i.e., the closed convex envelope of K, will be called the 

segment of support of p 

It can be shown that, for any measure p with compact 

support K, there exists a complex valued function u defined on R 

that is of bounded variation and constant on each component interval 

of R\K for which 

p(f) = f f(t) du(t) for each f £ C(R) 
K 

Conversely, any such function u will define through the 
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above formula a measure p 

If v is a complex-valued Lebesgue integrable function of 

compact support, then a measure p is defined by 

p(f) = ff(t) v(t) dt for each f c C(R) 

Such a measure is said to have density v relative to Lebesgue 

measure and, when there is no possibility of confusion, we use p to 

denote both the function and the measure. However, the supports of 

v and p may not agree when the support of a function is defined as 

in §0.1 

defined as 

IIH 

The norm of the measure p with compact support K is 

= sup{Ip(f)I : f c C(R) and If(t)j< 1 for all t e K} 

In Chapters 2 and 3, we will make use of distributions. Let 

Ctl(R) denote the complex vector space of all complex-valued 

functions on R that have continuous ne" order derivatives, equipped 

with the topology defined by the semi norms 

(n)(f) sup{IDf(t)I -k < t k, p = 0, 1, •••' n} 

for k e N and f e C(R) 

In this thesis, the, term 'distribution' will denote any linear 

functional on C(R) that is continuous on Cn(R) for at least one 

non-negative integer n. (This restricted concept of a distribution 

is consistent with the more general definition given by Edwards {l], 

Chapter 5). Thus, a distribution which is also a continuous linear 
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functional on C(R) is a measure. The distributional derivative, DT, 

of a distribution T is defined by 

CO DT(f) = - T(f') for each f c C(R) 

and is also a distribution. 

§0.3 The Fourier-Laplace Transform  

The Fourier-Laplace transform of a measure ii is defined 

here as 

-zt 
= fe d(t) 

This transform proves to possess certain 

properties. If M(z) = i(z): 

Ci) H is an entire function. •To see this, set 

t + exp(-t(z + h)) - exp(-zt)]/h + texp(-tz) .' 

Now ->. O  as h + 0 for each n N and so + 0 as 

h -'- 0 . Hence H is complex-differentiable at each point and so 

analytic in the complex plane. 

(ii) H is of exponential type and bounded on the imaginary 

axis. For if p has support K C E-L, U and z = x + iy, 

I1(z)I fluid exp(LIx) and so M is of order one and type not 

exceeding L; also M(iY) < 11 P Il . 

(iii) From (i) and (ii), the zeros of H have no finite 

limit point; in fact, by Hadamard's factorization theorem, if the 
(see Titchmarch [1], page 250) 

zeros of M(z) are a 0 of orders p respectively, 
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(n = 1, 2, ... ), and if M(z) has a zero of order k at the 

origin (k = 0 if M(0) 0 0), then 

kcz 00 

M(z) Az e II (1 — -z/ a ) exp(zp/a 
n1 

where c is imaginary and 

(0.2) E p ha 12 < 

(iv) From (ii), the entire function M satisfies 

CO 
L and 00 

so by Levinson [i], pages 25-28, 

ivax(loglM(iy) I, 0)  
1+y2 dy<°o 

R 
urn f log IM(iy)M(-ir) J - dy exists and is finite. Then 
R+ool 

(a) the set of zeros of M has a finite density L, ie.., 

urn n(r)/r exists and doe6 not exceed L,, where n(r) is the 

number of zeros of M, counted according to their order, inside the 

circle IzI = r 

(b) Let the non-vanishing zeros of M be an = r exp(iO) Then 

Ep Icos Our - Co. showing that for any sector S containing the 

imaginary axis, 

(0.3) 1)n /lan l < CO 

jS 

For a distribution, T, the Fourier-Laplace 
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transform will still be an entire function of exponential type. 

However, T need only be of polynomial order on the imaginary axis. 

Finally, we note that p = 0 p = 0 

§0.4 Convolution Products  

The convolution product of a measure p c M and a function 

f c C(R) is defined as 

p * f t f f(t - r) dp(r) = PTf) 

where K is the support of p and the translation operator, Tt, 

takes f into T : r + f(r - t), and f:t + f(-t) . This product 

is a continuous function s for 

* f(r) - p * f (s)I IIi4I sup lf(t - r) - f(t - 

teK 

The function, (p, f) f is a bilinear map from M C x C(R) 

into C(R) 

If f + 0 in C(R) as n -- , then p * n • 0 in 

C(R) . For let c be any positive number, L be any compact subset 

of R and let p have support K . An m c N can be chosen such 

that when n > 

sup{ If(t - r)J t CL, r c K}< 

whence Iu * fn(t) < C for t C L 

C/ IIi.'II 

If a C R, the a-translate of a measure p is defined by 

Tp(f) = p(Tf) for each f c C(R) 
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the convolution product of two functions f, g is defined, 

when it exists, as 

co 

f * g : t + I f(t - r)g(r)dr 
-00 

The convolution product of two measures p,A is denoted by p * A 

and is a measure. For measures, this operation is associative and 

commutative. If V and A have segments of supports [a, J and 
[y, s], then p * A has segment of support [a + -y, + S] . Also 

(p * A) = p A (• denoting, of course, the pointwise product). If T 

is any distribution of compact support, then for all p c 

00 T*pcCc (R) 

We will make use of the Dirac measures, either 6 = cS 

placed at the origin or 6 placed at any point, a, on the real 

line. 6 has support {a} and for each f ,c C(R), we have 

f) = f(0) = f(a) 

5 
a a 

a 
*pT all S a * 

with. D * f = f' when f is absolutely continuous. 

We can show that Mc(+, *) is an integral domain. 

The following formulae are valid for distributions as well 

,as measures:  

T(p * A) = Tp * A = p * TA 

• T(p * f) Tp * f = p * Tf  

'D(p*A)Dp*X.p*DA ' and 

* f)= Dp * f,= p * f' when f is absolutely continuous. 



11 

§0.5 Continuous Mean Periodic Functions  

For f e C(R), let V  denote the closed subspace of 

C(R) generated by f and its translates. 

DEFINITION. If f c C(R) andif Vf C(R) . then f is mean 

periodic. 

From this definition, it follows that a necessary and 

sufficient condition for £ e C(R) to be mean periodic is that 

there exists a non-zero measure p such that p * £ = 0, i.e., 

ff(t - r) dp(r) = 0 1for all real, t 

DEFINITION. An exponential polynomialis a. finite linear combination 

of terms u e : t --. tn at e where n is any non-negative integer 
n  

and a is any complex 'nü'nbe±. 

If £ is an exponential polynomial, then the subspace 

generated by f and its translates is finite dimensional and so 

closed. Then Vf 0 C(R) and so any exponential polynomial is mean  

periodic. 

In the remainder of this chapter, let £ denote any mean 

periodic function in C(R) and let. p be any non-zero measure for 

which p * £ = 0'. Put , 

f+(t) = f(t) for t > 0 and f+(t) = 0 for t < 0 

Also put g = p * f+ and f = f, - f+ Then g = -p * f and 
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g is an integrable function of compact support contained in the 

segment of support of i . As in Section 0.3, put 

p(z) fe t dp(t) . Also let g(z) = fe t g(t) dt, 

so that ii(z) and g(z) are entire functions of exponential type. 

DEFINITION. The Kahane Transform of a continuous mean periodic 

function, f, is K(f) where 

K(f)(z) = 9(z)/P(Z) 

Note that K(f) is independent of the choice of non-zero 

measure i for which jt * f = 0 

where ci. E S and p 

If (a, p) c 

at z = a of order p . So the conditions of Section 0.3 

DEFINITION. The spectral set, Sf3 of a continuous mean periodic 

function, f, is the set of all poles of the Kahane transform, 

K(f) . The spectrum, Af3 of f is the set of pairs (a, p) 

is the order of the pole K(f)(z) at z = a 

A  and' p * f = 0, then ii(z) has a zero 

pertaining to the zero's of p(z) apply to A  . Thus, if 

Co 
A = {(a k, kk=l' then (0.2) and (0.3) hold. 

If f+ ct (t) e and 

then the Carleman transforms 

f(t) et are bounded for all real t, 

F+(z) = ff+(t) e -zt  - -zt dt and F_ (z)  = ff (t) e dt 
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are defined, analytic, and coincide with the Kahane transform on the 

respective half planes x > -c and x < - when z = x + iy 

We now state four theorems which serve to illustrate the 

steps that were taken by Kahane [1], [2], to show that any mean 

periodic function f may be expressed as the locally uniform limit 

of a sequence of exponential polynomials in V  

THEOREM 0.1 Let V be a closed translation invariant subspace of 

C(R) . If 0 is any fixed real number and if i * g() = 0 for 

every p c Mc that satisfies p * Y = {0}, then g e V 

THEOREM 0.2 The following are equivalent: 

a) u e e  
n  f 

1,) for each non-zero measure p with p * f = 0, 

V (z) = 0 for z = a and k =0, 1, ... n, 

a) K(f) (z) has a pole at z = a of order exceeding n., and 

d) (a, p) c A  where n < p 

THEOREM 0.3 If f is 'a mean periodic function whose spectrum is 

void (i.e.., K(f)(z) is entire), then f = 0 

THEOREM 0.4 f belongs to the closed subspace generated by the 

exponential polynomials of Vf 
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DEFINITION. The mean period, Lfl. of a mean periodic function f is 

the infimum of the lengths of the segments of supports of the measures 

11 CMc such that p 0 0 and p*f=O. 

Some properties, of the mean period given by J- P. Kahane 

(E2J, pages 29, 33) may be summarized as: 

THEOREM 0.5 (i) mean periodic functions with the sane spectrum have 

the same mean period. 

(ii) If f is zero on an interval of length exceeding 

its mean period, then f = 0 

(iii) Af {(a 1) : n 1, 2, ...} and 

El/Ia n I < 4 f L = 0 

(iv) If f is a continuous periodic function of period 

r and if all Fourier coefficients of f are non-zero, then Lf = T. 

Some properties of mean periodic functions that have been 

stated and proved by the author elsewhere (Laird [1], Chapter 2, and 

[2]) may be summarized as follows. Let NP denote the set of all 

mean periodic functions in C(R) and let MPc denote the set of all 

mean periodic functions with mean period zero. Also let MQ denote 

the set of all exponential polynomials. 

THEOREM 0.6 Let f, g c NP . Then 

a) ef, ff(r)drand f' (when it is continuous) are mean periodic 

and each has the same mean period as f, 

b) If h MQ, then fh c MP 

c) MQ, MP0 and MP are subalgebras of C(R) (+, (9) and each is 
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dense in C(R) . Also 

MQ C MP C NP C C(R) 

and the inclusion is proper in each case 

it is worth remarking that fg need not be mean periodic 

when f and g are mean periodic. This can be seen by the following 

example: if f and g. are continuous periodic functions of periods 

and where cii is irrational and if f and g have all 

Fourier coefficients non-zero, then fg is not mean periodic. 

We also give some examples, due to L. Schwartz, [1], of 

continuous functions that are not mean periodic. They are: 

a) exp (t2) 

b) any non-zero absolutely integrable function (and so any Cc(R) 

function), and 

c) g : t + I aexp(ici t) where 
n1 

sequence of real numbers with a finite limit 

E an I and is any 

point (an 0 0). 

This last mentioned function is a uniformly almost periodic 

function. Several properties of these well known functions that 

contrast with continuous mean periodic functions are as follows. 

Uniformly almost periodic functions are uniformly 

continuous and bounded. The set -of-such functions forms a Complex 

Banach space with the norm hf II = sup{lf(t)I : t c R} . When f is 

almost periodic, e.f is almost periodic when ci is real, f' is 

almost periodic when it is uniformly continuous and ff is almost 

periodic when it is bounded. When f and g are almost periodic, 
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fg is almost periodic but in general f®g is not bounded and so 

not almost periodic. 

An example of an almost periodic function that is not mean 

periodic has already been given. The exponential function is not 

bounded on R and provides an example of a mean periodic function 

that is not almost periodic. 

It has been shown by Kahane [1 that a bounded uniformly 
continuous mean periodic function is uniformly almost periodic. 
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Chapter One 

FURTHER PROPERTIES OF MEAN PERIODIC FUNCTIONS 

In this chapter, we first discuss in Section 1.1 some 

interesting properties (see Propositions 1.1, 1.2 and 1.3) of 

Kahane's Transform of mean periodic functions (defined in 

Chapter 0). These properties are analogous to those of; the Laplace 

Transform of continuous functions. 

Section 1.2 is mainly concerned with the mean period of 

the truncated convolution product of two mean periodic functions. 

In Section 1.3, properties are given of some subalgebras of the 

algebras MP, 1'11' and MQ taken with the operations of addition 

and truncated convolution. These algebras are also commutative 

rings with no non-zero divisors of zero. In Section 1.4, it is 

noted that it is possible to construct fields of convolution quo-

tients from any one of these three rings in the same manner that 

Mikusinsk± (c.f. Erdlyi, [1]) constructed a field of convolution 

quotients from the ring C(R•) 

§1.1 Kahane's Transform of Mean Periodic Functions  

When f is a non-zero mean periodic function, its 

Kahane Transform, K(f)(z), is a meromorphic function with at 

least one pole. Many of the statements in this section will be 

expressed as identities involving meromorphic functions. If G 

and H are meromorphic functions, the statement "G = H" will 

indicate that if G(z) does not have a pole at z = a, then 
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neither does 11(z) and G(a) =,H(a), whilst if G(z) has a pole 

of order n at. z = a, then so has 11(z), . To establish such an 

identity, it is sufficient to find an entire function, say M, such 

that M C and M. H are entire and M C = M • H 

In the proofs of these properties, we will assume without 

further reference, the following facts: 

(i) convolution of measures with compact supports and/or functions 

whose supports lie on a fixed half line is an associative and 

commutative operation (Ge1'fand and Shilov, [11, page 104); and 

(ii) the Fourier-Laplace transform of a measure or function with a 

compact support is an entire function (Chapter 0, §0.2) 

PROPOSITION 1.1 Let f,g be mean periodic functions and let a,b 

be cOmplex numbers. Then af + bg, f ® g are mean periodic and 

K(af + bg) = aK(f) + bK(g) and K(f ® g) = K(f) • K(g) 

PROOF. Let .t,A be non-zero measures so that ji * f = 0, 

A * g = 0 . Then i * f+ A * g+ have compact support. 

As p * A * (af + bg) = 0 and as i.' * A is a non-zero 

measure, af + bg is mean periodic. Also p * * (af + bg)+ 

has compact support and is equal to aX * (p * f+) + bp * (A * g+) 

Hence 

(p *. A) K(af+ bg), aX K(f) + b K(g) 

are entire functions and equal to one another. Since 
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(p * A) = p A is also an entire function, 

K(af + bg) = aK(f) +bK(g) 

For f® g, we note that 

(f® g)+ = f+ * g 

so that 

and (f®g) = - f * g 

P * A * (f®g) = X * (p * f+ * g+_ * f* g) 

= A * (p * f+) * g = 0 

Thus f®g is mean periodic: Also, p * A * (f®g)+ has compact 

support and is equal to p * f+ * A * g+ • Hence 

(p * A) K(f®g) = i K(f) A K(g) 

and so 

K(f(Dg) =K(f) • K(g) 

PROPOSITION 1.2 Let f be mean periodic. Then 

a) If DF = f, F is mean periodic and 

K(F)(z) = (K(f)(z) + F(0))/z 

b) If Df is continuous, it is mean periodic and 

K(Df)(z) = zK(f)(z) f(0) 

c) If a is any complex number, 6 a f : t -)-- eat f(t) is mean 

periodic and K(ea f)(Z) = K(f)(Z - a) , 

d) If y is any real number, Tf.: t + f(t - y) is mean periodic 
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and K(Tf)(z) =e K(f)(z) + H(z). where H is an entire 

function, and 

e) If c is any real number, foci t -- f(at) is mean periodic 

and when ci 0 0, K(foc)(z) -K(f)(--) 

PROOF. Firstly, we show that K(e)(z) = l/z where e : t -'- 1 

If 8 is any positive number and if A is the measure, defined by 

8 
A(g) = f r g(r) dr for each g c C(R), then A * .e = 0 . A 

-8 
little calculation shows that 

(z) = 2(sinh(8z) - 8z cosh(8z))/z2 

A* e+(t) = ½(t2 - 82) and (A *e+)(z) = 

and so 

K(e)(z) = l/z 

t 
If DF = f, then P(t) = F(0) + f f(r) dr or 

0 
F = e® f + F(0)e . Thus, by Proposition 1.1 , F is mean periodic 

and K(F)(z) = (K(f)(z) + F(0))/z 

In the remainder of the. ,proof, we assume that p is a 

non—zero measure and p * f = 0 • If Df is continuous, then 

p * Df = 0 and so Df is mean periodic. As f = f(0)e + e®Df, 

K(f)(z) = (f(0) + K(Df)(z))/z 

and so 

K (Df )(z) = z K(f)(z) - f(0) 

With p * f = 0, (e p) * (e f) = 0 where 
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(eP)(g) = ji(eg) for each g e C(R) . With 

(eii) * (ef)+ = e(ji * f+) and (ep)(z) = j(z - a), it follows 

that K(ef)(z)= K(f)(z - a) 

Also, (Ti) * f = 0 where (T..1.i)(g) = i(T 1g) for each 

g C(R) and i.' * Tf = 0 . From (T f)+ = T(f+) + h where h is 

a function with a compact support, 

p * (T1f)+ = p * T1(f+) + p * h = Tu * f+ + p * h 

Moreover, (T11.x)(z) = * p)(z) = e''ji(z) so that 

K(T1f)(z) = (p * (T1f))(z) 

= ((T) *-f )(z) e' / (TP)(z) + h(z) 

= e K(f)(z) + H(z) 

Here H, being the Fourier-Laplace transform of a function with a 

compact support, is an entire function. 

For (e), by convolving i, if need be, with a suitable 

twice differentiable function, we may and shall suppose that 

* f = 0 where is a non-zero continuous function with support 

in [o, L] for some L > 0 

With 

if r as, ci 

so 

L 
f f(t - r) 4(r) 
0 

L/o 

L/c 

dr = 0, 

f(t - as) f(as) ds = 0 

foci (t/c - s) p(s) ds = 0 
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where p = coa . As i 0 0, foa is' mean periodic. After some 

routine calculations, 

( * (foa))(z) = lo  * f)(-) and )(Z) = 

and so 

K(foct)(z) = K(f) Z 
a 

COROLLARY. If f is mean periodic, and if ct is a real non-zero 

number, then L foa f = L /Ia 

PROOF. In the proof of (e) above, for any c >0, L may be 

chosen so that L < L  +c • Since i * (foa) = 0, -tp 0 0 and p 

has support in [0, L/a], (or [L/a, o] if a < 0), Lfoa 

Hence L foa - < L f /jai . With f = foaoa-1 , 

Lf < Jai Lfoa foa and so L Lf/IaI 
-  

L/jaj 

PROPOSITION 1.3 Let f be mean periodic with spectral set S  

and spectrum Af . Then uf : t -* tf(t) is mean periodic. If 

z 4 Sf, then 

- d 
K(uf)(z) —K(f)(z) 

- - dz 

and if (a, p) c Af, then (a, p + 1) c A f 

PROOF. As usual, let p be a non-zero measure with p * f = 0 

Put p * f+ = g and 0 = C/Sf . If up denotes the measure defined 

for each x c C(R) by (up)(x) = p(ux), then 
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p * •(uf) =u(p *f) - (up) * f and so p *p * (uf) =0 

As p * p is a non-zero measure, uf is mean periodic. 

From j(z) = I ezt d p(t), f  1 (z) = - (up )(z) 
or Dj:i = -(up) . Also Dg ̂ = - (ug) . On Q, differentiation of the 

formula p • K(f) = g yields 

so 

Dg = Dp • K(f) + p DK(f) 

that 

-(ug) = -(up) K(f) + p DK(f) 

Then p p DK(f) = p • (up) K(f) - p(ug) 

= (up) • g - p(ug) = 

where y = (up) * g - p * (ug) 
y 

+ + 
Now p * (uf) = ug - (up) * f 

and so p * p * (uf)+ = -y . As p * p * (uf) = 0, 

(p * jt)• K(uf) = -; . With (p * p) = p.ji , we see that 

K(uf)(z) - D K(f)(z) when z c R 

If (a, p) c AV we may suppose that g(a) 0 for if not, 

another non-zero measure A can be found for which A * f = 0 and 

(A * f+)(a) 0 0 • With g(a) 0 0, p(z) has a zero of order p at 

z = a • From y = (up) . - j . (ug) - Dp . g + p Dg, and the 

fact that if H(z) is an entire function with a zero at z = a of 

order p, then DH(z) has a zero at z = a of order p - 1, (z) 

has a zero of z = a of order p - 1 . Since (i.i)2(z) has a zero 

at z = a of order 2p and since (p) 2 K(uf) = -y, we see that 
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K(uf)(z) has a pole at z = a of order p + 1 . Thus 

(a, p+l) CA f 

§1.2 The Truncated Convolution Product  

An application of Propositions 1.1 and 1.3 is now given. 

As defined in Chapter 0, Lf denotes the mean period of a mean 

periodic function f and V f'denotes the-closed translation in-

variant subspace generated by f 

PROPOSITION 1.4 Let f be mean periodic. Then f e Vuf and 

uf c Vfef • Moreover, 

Luf Lff S 2L 

00 PROOF. Let Af = ((ak, Pkl so that A f = ((ak, 1)k+lk=i 

Since f is the limit in C(R) of a sequence of exponential poly-

nomials {f} c Vf, and since V f is spanned by the exponential 

polynomials it contains, {f} c VUf and so f c V f . From 

Proposition 1.1, K(f®f) = (K(f)) 2, so co Aff = ((ak, 2pk))1 

and as + < 2k when Pk is any positive integer, we 

see that uf c Vfef 

Thus, if A is any measure with A * uf = 0, then 

A * f = 0 and so L s L f Also, if v c Mc and ' * (f * f) = 0, 

then ' * (uf) = 0 and so L f Lf .. f . Since ' * f = 0 entails 

11 **(f®f)=O, LffZLf. 
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PROPOSITION 1.5 Let f,g be mean periodic. If h = f®g, then 

-L J <L <L +L 
g - h - f g 

PROOF. For any c > 0, non-zero measures p, A, v may be chosen 

so that their supports are contained in intervals of lengths not 

exceeding L  + € L  + c, L  + c respectively and p * f = 0, 

A * g = 0, v * h = 0 

With p * A * h = 0, as p * A is a non-zero measure 

with support contained in an interval on length L  + L  + 2€, it 

follows that L  < L  + L  + 2€ • Hence L  L + Lg 

Now from 

11* (f®g)=p* (f+* g+_ f_ *g_)= (p*f+) * g, 

OV*p*hv*(p*f+)* g 

Since v * (p *f is a non-zero measure with support contained in 

an interval of length L  + L  + 2€, it follows that 

L  . L  + L  + 2€ for any c > 0 . Hence, L  L  + L  . Similarly 

Lf L  + L  and so IL  - Lgl L  

REMARK. These bounds for the mean period of f ® g when f and 

are mean periodic are the best possible in the sense that it is 

possible to find two sets of functions f, g, each with 

g 

L f = L g h > 0' and in one case, L = 2L f h and in the other L = 0 

For our first example, we use the fact that the mean period 

of a continuous periodic function is equal to the period when all 

Fourier coefficients are non-zero. Let f be such a function of 
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Tr  
period r so that f f(t) e2111tdt 0 for all n c Z 

By Theorem 0.5, ef : t • e1t f(t) has mean period ir 

(although e   has period 2ir). Let h = f®ef so. that by 

Propositions 1.1 and 1.2 , K(h)(z) = K(f)(z) K(f)(z - 1) 

If i = 6 -  6 Jr  , then i* f = 0 • Also 

(p *f)() = ff(t) et dt = (z), say. Then (ni) 0 for all 

n c Z and K(f)(z) = (z)/p(z) = (z)/(l - e) . Thus 

K(h)(z) = (z) -ir (z-l) (z - i) / (1 - eZ) .(l - e ) 

4(z) 4(z - i) / (1 - e  -2irz) 

Now 1 - e -2irz = 0 if and only if z = ni for some 

n c Z and 1 - e-27rz has only simple zeros. With 4(ni) Q it 

is apparent that K(h)(z) has a'simple pole at z F. ni for 411 

inte9ers n and K(h)(z) has no other poles. So, the mean periodic 

function h has spectrum ((ni, 1)) . Hnce h is a periodic 

function of period 2ii that has all Fourier coefficients non-zero 

and so h has mean period 2ir 

We then have mean periodic functions f, g with 

L =L >0 and L.. =L +L 
f g f-g f g 

Our second example is a consequence of Theorem 3.4; namely, 

if y, is any mean periodic function, a unique mean periodic function 

x can be found satisfying x + y + x y = 0 . For any c > 0, we 

may choose a non-zero -measure A with A * x 0 and whose support 

is contained in an interval of length L x +-e . Then 

+ + A * y + (A * x ) * y = 0 and as A ± A * x is a non-zero measure 
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with support contained in an interval of length L x + c, 

L < L + c • Hence L < L . Similarly, L < L and so L = L 
y x y   x  x Y 

For such a pair of functions x, y with L x > 0, put 

f=é®x+e, g=e®y+e where e t - l . Then f, g are 

mean periodic and L  = L x = L = L  • From x+ y + x®Y = O 

e & e x + e 8 e y + e x e y = 0, 

so 

e® (f- e) +e (g- e) + (f- e)®(g- e) = 0 

whence f ® g = e e . As e QD e has mean period zero, we have 

L = IL - LI =0 and Lg>O føg f g 

In addition to each of NP, MPG, and MQ being subalgebras 

of C(R), we now show 

PROPOSITION 1.6 Let f g c C(R) and f 0 0 • If 

f, f®g c HP, MP  or MQ, then g c MP, MP O or MQ respectively. 

PROOF. Let f, f®g e HP and let - p,.v be non-zero measures 

with p * f 0, v * (f(D g) = 0 . With p * (f(D g) = (p * f+) * 

* (p * f+) * g = 0 • Since f 0, v * (p * f+) is a non-zero 

measure and so g is mean periodic. 

When f, f®g c MP0 31 the non-zero measure v * (p * f+) 

can be chosen with support contained in an interval of arbitrarily 

small length.. Thus g has mean period zero. 

When f, f ® g C MQ C NP, we know that g € MP 

93, 



28 

Now a mean periodic function is an exponential polynomial 

if, and only if, its Kahane Transform has a finite number of poles. 

Since K(f®g) = K(f) K(g) and as K(f), K(f®g) have a finite 

number of poles, K(g) must have a finite number of poles. Thus g 

is an exponential polynomial. 

REMARK We note that it is possible to have both f, g continuous and 

non mean periodic but h = f®g to be an exponential polynomial. As 

a consequence of Theorem 3.4, if x c C(R), there exists a unique 

continuous y c C(R) satisfying x + y + x®y = 0, and x e NP 

if, and only if, y c HP . Choosing an x c C(R)\1P so that 

y c C(R)\MP and setting f = e®x + e, g = e®y + e, we find 

as before that f®g = e®e . Then f, g c C(R)\MP and 

e®ecMQ 

One may then ask if f is continuous and if f®f is 

mean periodic whether f is mean periodic. The answer is by no 

means affirmative, even when f®f is an exponential polynomial. 

This is illustrated by the function (one of many) f : t -- + 

which is not mean periodic and 

t   
f®f(t)=f 1t-r Vdr , 

½ir 
= f 2t 2 s'in2Ocos 2 dO 

which is an exponential polynomial. 
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§1.3 Subalgebras of MP, Mi'0  and MQ  

As a spectral set is not defined for a non mean periodic 

continuous function, but a mean periodic function does have a spectral 

set, we are able to characterize some subalgebras of MP with this 

concept. Properties are given of subalgebras of each of the algebras 

NP, Ml' and MQ . More properties will be given for the subalge-

bras of MQ . However, we do not attempt to describe all of the 

numerous subalgebras of each of these algebras. 

PROPOSITION 1.7 Let M denote any one of thealgebras NP, 11P  

or MQ and let A be any set of conplex numbers. Then 

M(A) ' {f c M : Sf c Al 

is a subalgebra of N. Moreover, M(A) is translation invariant 

and contains uf whenever f c 14(A) 

PROOF. Let a, b c C . Also let f, g e M(A) so that the poles 

of the Kahane Transforms, K(f), K(g) are contained in A • By 

Proposition 1.1, K(af + bg) = a K(f) + bK(g) and 

K(f ® g) = K(f) K(g) and so the poles of K(af + bg) and 

K(f ® g) are contained in Sf U S  c A Hence 

af + bg, f®g c 14(A) and so M(A) is a subalgebra of N 

From Propositions 1.2 and 1.3 , the spectral sets of 

Tf, uf and f coincide. Thus, if f c M(A), T  and uf 

belong to 14(A) 
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Notes. 1. If f e M(A) fl C1(R), then f' E M(A) (by use of 

Proposition 1.2), 

2. M(A) is dense in C(R) . For if a c A, the 

CU e} 1 C M(A) and the set of all polynomials is dense in C(R), 

3. If f c M and if U(f) = fX A f : A c C, n=l,2,...) 
p=l p 

then 13(f) is a subalgebra of H. Here f01 = f, f = f® f(P1) 

If f = A e a , then it is apparent that as 

®(q+l) = a ®(q+1) U q a e /q (from e u q /!) q , U(f) = M({A}) and 

so 13(f) is translation invariant when f = A e a . However, if 

f = e a + e  (a b), then 13(f) does not contain 

T (e +e b)=e e +e b e =e -ace (e +e (a-b) o e b) 
aa a a  

when a 0 . Thus, in general 13(f) is not translation invariant. 

4. If 3cM and if 

U(B) = {I A f ®f . . . f : f C B} 
p p1 p2 •pk 

then 13(B) is a subalgebra of H . In general, U(B) is not trans-

lation invariant. One exception to this is given in the following: 

PROPOSITION 1.8 If fCM and if Vf denotes the closed translation 

invariant subspace generated by f., then U (Vf) is a translation in-

variant subalgebra of M. 

PROOF. If f E NP, and if p is any measure for which p * f = 0, 

then p * V = 0 . Thus V C HP and if f e HP , V C HP 
f f 0 f 0 
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If f .c NQ, and if U  is the subspace spanned by f and 

its translates, then U  C MQ . Since U  is finite dimensional, it 

is closed and so when f c MQ, Uf = Vf C MQ 

Thus, if f e H, then Vf C N . So TJ(Vf) is a subalgebra 

of N . •To show that U(Vf) is translation invariant, it suffices 

to show that if x, x2, ... .x n c Vf , and if g = x, x2 ... ® 

then T a g £ U(Vf) 

Let x, y c C(R) . Then 

t-a 

Ta(x(Dy)(t) = I x(t - a - r)y(r)dr 

t-a t 

= f x(t - . a - r)y(r)dr + f x(t - a - r)y(r)dr 
t 

= f x(s -a)y(t - s)ds + ((T ax) ®Y)(t) 

so Ta(x(Dy) = 'p * y + (Tx)y 

where ,p is a measure, defined for each h £ C(R), by 

a 
fx(s - a) h(s) ds 

On repeated applications of such a formula, 

Tg = n 1 * X  + * x_1 ) ®x + ••• (Tc:X:i,) ®x2 ••• ex n 

If y =71 * X  where T1 is any measure and xk £ Vf , then for 

each measure p satisfying i * f = o, p * y = 0 and so y £ Vf 

Hence Tg £ U(Vf) and so U(Vf) is translation invariant. 

REMARK. We note that if f c N, then U(Vf) CM(Sf) since if 

x., x2, ... X £ V S S, ... S CS and if 
n £ x x2 xn f 
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g = x1 ® x2 .. *X n ,  then S  C S  so g c M(Sf) 

It may also be noted that when a c S  ea C Vf and so 

uqe c U(Vf) for q = 0, 1, 2, .... Since M(Sf) also contains 

uqea for q = 0, 1, 2, ... when a c S and M(Sf) is translation 

invariant, it would be intereáting to know if indeed U(Vf) = M(Sf) 

or merely uh c U(Vf) when h c TJ(Vf) . No answer is yet available 

for when f is any mean periodic function but when f is an expo-

nential polynomial. 

PROPOSITION 1.9 Let V be a translation invariant subalgebra of 

MQ. If A= U S,, then 
XCV 

V{xcMQ : S x CA} 

PROOF. It is clear that if x c V, then S CA 
x 

Conversely, let x c MQ and S C A and suppose that 

x = A(k,q) Uq S where a1, a2, ... a c A 

It is required to show that x c V • For each a c A, there exists 

an x. c V with a c S Since V is a translation invariant 
J x 

subspace of MQ, V contains U and so e aj As V is also a 

subalgebra, V contains u(1 ea.1. and so V contains x 

Hence V = {x c MQ : S C Al 
x 
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§1.4 Fields of Convolution Quotients  

In concluding this chapter, it is shown that the ring NP 

has no non-zero divisors of zero. As well, a brief account of 

Mikusinski's convolution quotients in C(R+) that is extracted from 

Erdélyi's book, [1], is included. 

PROPOSITION 1.10 MP has no non-zero divisors of zero. 

PROOF. Let f, g c NP, f®g = 0 and suppose that f 0 0 . From 

Theorem 0.5, f cannot be zero on any interval of length exceeding 

the mean period of f . So fi and f are both non-zero. As 

(f®g) 
= f+ * + 

g and (f®g) = rC * g are both zero, it 

follows from Titchmarsh's convolution theorem (see, for example, 

Erdlyi, [1], page 16) that both g+ and g are zero. Thus 

g = 0 and so NP has no non-zero divisors of zero. 

REMARK. It is possible to show that MQ has no non-zero 

divisors of zero without recourse. to Titchmarsh's convolution theorem. 

For details of an elementary proof that the set of entire 

functions (and so exponential polynomials) have no non-zero divisors 

of zero, see Theorem 5.3  

Mikusinski observed that the set C(R+) of continuous 

ëomplex-valued functions on R+ = [o, co) with the operations of 

addition and truncated convolution formed an integral domain without 

an identity and an alge1ra -over 4 . Thus a quotient field F can 

be constructed in which the equation x®g = f (g 0), always has 
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a solution. To do this, one defines an equivalence relation on the 

set of ordered pairs {(f, g):f, g c C(R+) and g 0 O} by putting 

(f, g) and (f1, g1) equivalent if f®g1 = f1®g 

Each equivalence class is called a convolution quotient 

and f/g is used to denote an equivalence class that contains (f, g). 

The set of such equivalence classes, F, may be shown to be a field 

and a vector space over c . Moreover, it is possible to embed both 

4 and C(R+) into F. Thus, some elements of F will correspond 

to numbers or continuous functions, still others will correspond to 

abstract entities including Dirac's delta function which appears as 

the identity in the field and the equivalence class g/g 

(g  E: C(R), g 0 0) Also, F contains an 'extended' derivative 

s = e/(e*e) with s®x = Dx + x(0)S for each x e C(R) 

With MP having no non-zero divisors of zero, and MQ, 

MP 0 being subsets of NP that are closed with respect to addition 

and truncated convolution, it is apparent that if N denotes any 

one of NP, NP or MQ, then M is an integral domain without an 

identity and an algebra over . Thus, in the same way that the 

quotient field F is constructed from C(R+), a quotient field F 

may be constructed from N when M is any one of NP, NP or MQ 

One difference between F and FM is that F is complete 

(in the sense that C(R+) is a complete metric space) whereas 

is not.. 
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Chapter Two 

ORDINARY AND FUNCTIONAL DIFFERENTIAL EQUATIONS 

In this chapter, we show that if A(t) is a. continuous 

periodic matrix (i.e., a matrix whose elements are continuous perio-

dic functions with a common period), then for certain mean periodic 

vector functions, f, all solutions to the system of equations 

X' = A(t)x + f are mean periodic. Also, in Section 2.2, we show 

that if [XI and [ii] are matrices whose elements are certain 

measures, then the system of equations x' = [X] * x' + * x has 

non-trivial solutions and moreover, all solutions valid on R are 

mean periodic. Such functional-differential equations have been 

studied in a different context by J. Hale, [l], and others, and 

include as special cases, differential-difference equations. 

As well, in Section 2.3, we give examples of ordinary 

and functional differential equations that admit non mean-periodic 

solutions. 

The results given in this chapter represent a continuation 

of some of the authors earlier work, that included (Laird [2]), the 

following propositions: 

1. For the system of equations, 

x' (t) + Ax(t) = (t) with x(c) = c 

where y is an n-vector valued function with continuous components 

and A is a constant n x n matrix, a necessary and sufficient 
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condition that x be mean periodic is that y be mean periodic, and 

2. For the differential-difference equation 

n 
X' (t) + X a  x(t - = y(t) 

k=O 

where y is continuous on R, n > 0, a0, a1, ..., an are non-zero 

complex numbers and w < w  < •..n are real numbers, if any 

solution is mean periodic, then y is mean periodic. Conversely, 

if y is mean periodic, then all solutions valid on R are mean 

periodic. 

§2.1 Ordinary Differential Equations  

THEOREM 2.1 Let A(t) be a continuous periodic n x n matrix of 

period T . Let f be an n-vector whose i th component is of the 

form b.g (i = 1, 2, ... n) where b is a continuous periodic 

function of period r  where each Ti is commensurable with T. and 

gi is any exponential polynomial. Then all solutions of the system 

of equations 

(2.1) x' (t) = A(t) x(t) + f(t) 

are mean periodic. 

PROOF. An example is given in Section 2.3 that shows some restriction 

• additional, to f being mean periodic must be made to ensure that x 

is mean periodic. Let Y(t) be a fundamental matrix for the system 

= A(t) x . By Floquet's Theorem, Y(t) = P(t) etL where P(t) 
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and P-1 (t)are continuous periodic matrices of period T and L 

is a constant matrix. Then any solution of (2.1) may be written as 

• t 
x(t) = P(t) etT tL c • P(t) e f e_sL P -1 (s) f(á) ds. 

0 

•  where ' c is a constant vector and the elements of the matrices e tL 

and e T are exponential polynomials (see, for example, Coppel, [lj, 

pages 45-47). 

Hence each component x. 1 of x is of the form 
- 

t 

= 

j  
g c 
jk k ijkm 

where p, g• are continuous periodic functions of period t and 

jk h are exponential polynomials. Now ,a periodic function is 

mean periodic, the product of a mean periodic function with an 

exponential polynomial is mean periodic and a fi'ite linear 

combination of mean periodic functions is mean periodic. Thus each 

is mean periodic when the terms p,, f h kk gkM f have been shown 

to be mean periodic. We now use f = b g whre b is a 
m mm m 

continuous periodic function of period T where T is commensurable 
in in 

with t and the fact that an exponential polynomial is a finite 

linear combination of terms u e : t t ear. Let w be the 
n a 

least common multiple of T, T1 , T2, ••• Tm Then each function 

pij f• k g km f is mean periodic if for n = 0, 1, 2, ..., the 

functions 
t 

F n : t + P (t) f r n ar e q(r) dr 
0 

are mean periodic when p and q are complex-valued continuous 
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periodic functions of period w. 

To show that F is mean periodic, we start by observing 

that F(t - w) = p(t) ft(_w) q(s) ds so that 

F(t) - e aw F(t - w) = A0p(t) where A0 = f q(r) dr . This 

may be written as A * F Ap where A is the non-zero measure 

- ea) 5 With F defined as above. 
n 

F(t) - eaw  F(t - w) = Ap(t) - C(-w) F.(t) 

or 

A * F = A p - '1C.(-w) F 
n n 3 n-j 

where A is some constant. 
n 

With 6 p=p, A*p(l - e a )p. Thus 

X * X * F =Bp+B F +...B F , where B.,B, 
n n 00 n-2 n-2 n o 

are constants. Continuing in this manner, we find that 

* tn+l 
A ' / * F n = Cp where C is another constant. If 

Un *(n+l) = A * (5 - ô(), then p. is a non-zero measure and 

p * F = 0, showing that F is mean periodic. 

Hence the solution to (2.1) is mean periodic. 

'S. 

REMARK. A special case of the above theorem is as follows: 

B 
n-2 

Let A(t) be a continuous periodic n x n matrix of period w and 

let f 'be a continuous periodic n-vector valued function of period 

Then all solutions of the system of equations (2.1) are mean 

periodic. 
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§2.2 Functional Differential Equations  

Our next Theorem will involve linear systems of functional 

differential equations with constant coefficients that admit mean 

periodic functions. Before moving onto this Theorem, we give a 

brief account of some Functional Differential Equations considered 

by J. Hale and others (Hale [1], Hale and Meyer [1]). As well, we 

state and prove an interesting Lemma that will be used in this and 

the next chapter. 

Let r be a fixed non-negative integer and, when x is 

defined on [-r, co), let x be the function defined on [-r, oj 

by x 0 + x(t + 0) for -r < 0 0 and t Z 0 . Also let 

denote the n-dimensional vector space over c1 and let X denote 

the space of continuous functions from [-r, 01 into 

J. Hale ([].], page 293) has defined a linear functional 

differential equation with constant coefficients as any equation of 

the form 

(2.2) x' (t) = f(x) 

where f is any continuous linear map of X into . For such a 

map, he notes the existence of an n x n matrix [Ti(0)] 

(-r < 0 < 0) whose elements are of bounded variation and 

(0) 

for all e X . Hale also observes that such equations include 

systems of linear differential-difference equations of retarded type 

and with constant coefficients; for example, 
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n 
X' (t) = A.x(t - T k) 

k=l 
T  0 

By a simple change of variable, we see that equation (2.2) 

may be rewritten as x' Ct) [) * x(t) or 

= k=l jk * Xk (j = 1, 2, ... n) where [] denotes an 

n x n matrix of measures jk whose suppdrts lie in [0, rJ 

Hale and Meyer [1] have considered more general systems 

including those of the form 

X' (t) =() +f(—Ist) -I- Z(t) 

where f and & are continuous linear maps of X into Rn and 

c X . This equation may be written as 

(2.3) x' (t) = LA] * x' (t) + [ii] * x(t) + Z(t) 

or (j = 1, 2, ... n) 

where [x] = {Xjk} and [] = are n x n matrices whose 

elements are measures with supports lying in [o, rj 

Hale and Meyer (loc. cit., page 6) note that such "neutral" 

equations would also include equations of advanced type unless some 

restriction is made on the function g or the matrix [x] . The 

restriction used by Hale and Meyer is to require that [x] "be 

uniformly non-atomic at zero " . Although we have nothing against 

equations of advanced type, some restriction on [A] will be needed 

to guard against systems of equations (2.3) that admit arbitrary 

solutions: for example, if n = 2, A ] = 0 = A22 Al2 = = A21 11 
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= 0 and y = 0, then x' = [x] * x' is equivalent to 

= x . Accordingly, we shall adopt Hale and Meyers' concept of 

the restriction of [A] being uniformly non-atomic at zero but shall 

restate it as follows: 

DEFINITION: Let [x] be an n x n matrix whose elements are 

measures with supports lying in EO, r for some r > 0 . If there 

existp an c c (0, r) and a function 6 on [o, c] that is 

continuous and non-decreasing with 6(0) = 0, and if for eah element 

A of the'matrix 

'S 

(2.4) If O)dA(0) < 6(s) sup{ I4(e)l : 0 0 ≤ s} 

for all C([o, €]) and s e [0,c], then [x] is said to be 

unifoimly non-atomic at zero. 

LEMMA 2.2 Let T = {T. . } be an. n x n matrix whose elements are 
1J 

distributions with compact supports and let x be a continuous 

vector function that satisfies T * x = 0 . Then x is mean periodic 

when T has a non-zero "determinant" or when T(z) ., the matrix 

whose elements are the Fourier-Laplace transforms of the elements of 

T., has a determinant that does not vanish identically. 

PROOF. We make use of the fact that the set of distributions with 

compact supports taken with the operations of addition and convolution 

forms a commutative ring with identity. Thus, certain matrix 

concepts and operations (as in Jacobson, [1], page 56) can be employed. 
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Let M.K].. 
n 

ki 

From 

denote the cofactor-of Tk. in the matrix T so that 

T.. is equal to det T for k = j and is zero for k j 

T.. 13 * x 3 . = 0, we see that. 

j=l Ri 13 
X. = 0 (k = 1, 2, ... n), 

and so (det T) * x. = 0 (j = 1, 2, ... n) Thus, x is mean 

periodic when det T 0 

Let S = det T so that 

s = I sgncT *T *T 
la(1) 2c(2) n(n) 

acS 
n V  

where a ranges over all the permutations on {1, 2, ... n} 

Also'(a T1 + b T2) = a + b T2 and (T 1 * T2) = T2 

when a, b c iJ and T1, T2 are distributions with compact supports. 

Then 

V5 aS sgn T1(1) T2 . T ncr o 

and so if H(z) = det T(i), H(z) = S(z) . If H(z) is not 

identically zero, then S = det T is non-zero and so x is mean 

periodic. 

COROLLARY: If T is an n x i matrix whose elements are measures3 

then. det T is aVmeasure. 
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THEOREM 2.3 For the system Of linear functional differential equations 

(2.3) ' *X+ . 

where (1) [x] is an n x n matrix whose elements are measures 

with compact supports lying in [0, 00) and [x] is uniformly 

non-atomic at zero, 

(2) [ii] is an n x n matrix whose elements are any 

measures with compact supports, and 

(3) y is a continuous n-vector function on R, then 

(a) if y = 0, there is at least one non-trivial exponential solution 

on R and all continuous solutions valid on R are mean periodic, 

(b) if y is mean periodic, all continuous solutions valid on R 

are mean periodic, and 

(c) if any continuous solution x is mean periodic, then y is 

mean periodic. 

PROOF. Let T denote the n x n matrix 

I DS - [DX] - [] 

where I is the unit n x n matrix, D5 is the distributional 

derivative of the Dirac measure, and [DX] is the distributional 

derivative of the matrix [x] . Then T is an n x n matrix whose 

elements are distributions with compact supports and equation (2.3) 

may be written as T * x = 

For a), we show that T * x = 0 has at least one 

non-zero solution of the form x = d eZt 
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zt zt 
Now T*(de )= T(z) de 

where T(z) = Iz - z[5(z)] - [i:I(z)] 

Here [x(z)], [(z)] are matrices whose elements are the Fourier-

Laplace transforms of the elements of [x], [] respectively. 

zt 
Thus there exists a non-zero vector d with T * (d a ) = 0 if, 

and only if, h(z) E det T(z) = 0 for some z c . (Incidentally, 

the equation h(z) = 0 is known as the characteristic equation of 

(2.3)) 

We now show, indirectly, that h(z) has at least one 

zero. Suppose that h(z) does not have any zeros. As h is an 

entire function, there exists an entire function g so that 

h(z) = e2) . Moreover, as h is of order one and of polynomial 

order on the imaginary axis, h(z) = c e az where c is complex and 

is real. 

It is well known that if A is any n x n matrix, 

det(zl - A 
n n-i n-k 
+ z p1 + .;. k + •• P  

where each pk involves a finite number, say 1k' of sums of terms 

that are ±1 times a product of k elements of A (for example, 

pl = - trace A and p n = (_1)n det A) . If we regard A as 

z[(z)] + [i(z)], then from h(z) = c e az and 

n n-i n-k 
h(z)z +z p1+...z pk+... pn , 

n-i n-k 
kI + I + az (2.5) IzI'1 Iz p11 + •• n IC a 
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Now let p be any measure and let A be any measure with 

support lying in [0, r] belonging to the matrix [x] satisfying a 

uniformly non-atomic at zero condition. Suppose also that p has 

'support (a, t3) and norm 2 and A has norm m . If z = x + iy 

and x > 0, then 

-z1 - ax Ip(z)I sup{Ie : a S t ≤ } ≤ 2.. e 

Also, if () = f (0)dA(0) for each c c([o, r]) and 

0 < s < r, A5 and v = A - A5 are measures. 

By equation (2.4), 

$ -zt1 IA (z)I . 5(s) sup{1e : 0 < t s r} = 6(s) 

where z = x + iy and x > 0 

As well, 

-zt 
S 

Iv (z) l m sup{ je I: s < t < 

when x > 0 and so 

-xS IA(z)I cS(s) + m e 

—sx 
= me 

when x, s > 0 

Let A = ta. } and a jk = zX jk (z) (z) + Pk(z) 

Also let p jk have norm 2'jk' A jk have norm mjk' and p jk have 

support 10'k'jk] Put 

L = max{2..k 1 < j, k < n}, 

max{m.k : 1 j, k n}, 

and a = min {a.k : 1 j, k .≤ n}. 
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As [A] is uniformly non-atomic at zero and each Aik has support 

in [0, r], it follows that 

a ,z (6(s) + MeXS) + Le 
-xct 

jk 

for x>O and j, k=l,2, ... n. 

Next, choose any tE(0, 1) . By referring again to the 

uniformly non-atomic at zero definition, an s > 0 can be chosen so 

that 6(s) < ½ . With this s, fix x > 0 so that Me < ½ 

Putting -xct = Le , we then have Ia I Izk + jk 

Recalling the definition of p1, p2, ...p, we see that 

when z = x + iy and x > 0 is chosen as above, 

Ip1L n1(Izk+) and 

k k  qk 
'k1 nk(I2I ) Izi + 

Here n = max{n1, T12 P ••• 71k is dependent only on n and 

polynomial in IzI of degree k - 1 

From equation (2.5), we obtain 

Now 

Izi 

n 
n n n-k Izi < ni IzI + z + Icecz 

k=l 

n 
(Izi) = Izn-k I 

k=l 

If we choose 

is a polynomial of degree n - 1 

(0, 1) ,so that < ½, 

is a 

and consequently. 

n . 

choose x > 0, then -Izj P(IzI) + Icl ec x 

But this is contradictory for large values of IYI 

Hence h(z) has at least one zero and so the homogeneous equation (2.3) 
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with y = 0 has at least one non-trivial solution. 

As well, h(z) is not identically zero. For if we 

assume otherwise, we have, as above, ½lzlnl. P(IzI) which is 

contradictory. 

Since h(z) = det(T(z)) is not identically zero, 

Lemma 2.2 shows that all continuous x satisfying T * x = 0 are 

mean periodic. 

For b), if y is mean periodic, let v be a non-zero 

measure with v * = 0 and put z = v * x (i.e., v * yj = 0 

•and z, = ' * x for i = 1, 2, ... n) . From equation (2.3), and 

= ' * x', we obtain 

= [A] * A' + [] * A 

If x is any continuous solution on R, then z is 

continuous. From part a), any continuous solution z to this 

equation is mean periodic. Hence z, and so x is mean periodic 

when x is a continuous solution on R and y is mean periodic. 

For c), if x is any contirnious mean periodic solution 

to (2.3), let p be any non-zero measure with p * x = 0 . Then 

P * x' = 0 and so p * = 0 showing that y is mean periodic. 

REMARKS. We note that a considerably shorter proof can be given for 

the above theorem when [x] = 0, that is, when (2.3) is replaced by 

= [1 *x+ 

Also, we note that the theorem includes as a special case 
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the following concerning linear differential difference equations 

with constant coefficients. 

Let a.k , bjk, (1 j, k ≤ n) be complex numbers. Let 

be positive real numbers and let T (1 < 2 < m) be any real 

numbers. Also let x, y have components x1, x2 ... Xn and 

y1, Y2 ••• y respectively , and y be continuous. Then for the 

system of equations 

m in m in 

x(t) = I Y a Xi - w) + b. kt xk(t - T) + y.(t) 
£=l k=l 2=l k=l 

(j = 1, 2, ... n), the conclusions of Theorem 2.3 hold. 

§2.3 Counter examples  

We now give examples of ordinary and differential difference 

equations that admit non mean periodic solutions. All of these 

examples will be scalar equations. The claims made for most of these 

equations may be verified by making use of the properties of 

Kahane Transforms shown in Chapter 1 and properties of spectral sets 

of mean periodic functions. 

Our first example complements Theorem 2.1 of this chapter. 

EXAMPLE A Let g be a continuous periodic function of period 2ir/ 

Let g(n) (the n th Fourier coefficient of g) be non-zero for 

n = 1, 2, ... and let a, be irrational. Then there are no mean 

periodic solutions to the equation 

(2.6) X' (t) = eit x  + g  
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Clearly x= 0 is not a solution of (2.6) . If we 

suppose that (2.6) has a non-zero mean periodic solution x, then 

on taking Kahane Transforms,, we obtain, with f(z) = K(x)(z) 

(2.7) z f(z) - x(0) = f(z - i) + K(g)(z) 

Since (n) 0 0, K(g)(z) has  pole at z = in so 

K(g)(in) is infinite for n = 1, 2, ... . From (2.7), we see 

that at least one of f(in) and f(in - 1) is infinite. If 

f(in) is infinite, with inO # i and K(g)(in + i) finite, 

f(in + i) is infinite. Continuing in this manner, and using 

in + im 0 ip for any integer p, we conclude that f(in + im) is 

infinite for m = 1, 2, ... . Also, if for a fixed value of n, 

f(in - 1) is' infinite, then f(in - im) ;Ls .infinite for 

M = 1, 2, 

Thus, f(x) has poles at points including 

{z = ni + e im in, n = 1, 2, . . .} where c = ±1 • Since 

00 CO 

m1 n1 

1  
imIz xx 

m n 

1  
+ m1 2 

co 

we see, by (0.2), that f(z) = K(x)(z) canndt be the Kahane 

Transform of any mean periodic function, x 

EXAMPLE(S) B When a (t) , is any one of the exponential polynomials 

2t, et or 'a cos at + 0 cos Ot (where aI is irrational) any 

'non-zero solution to the equation x1(t) = a(t) x(t) is not mean 

periodic. 
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If a(t) = 2t and x'(t) = a(t) x(t), then x(t) = c et2 

That e t2 is not mean periodic has been noted by Laurent Schwartz [1]. 

If x'(t) = at x(t), suppose that x is mean periodic. 

Taking the Kahane transform of this equation, from Proposition 1.2, 

we obtain with f(z) = 

z f(z) - x(0) = f(z - 1) 

If x 0 0 and x is mean periodic, then the spectral set S of 

x contains at least one point, say a, and so f(a) is infinite. 

Then (a + 1) f(a + 1) is infinite and so f(a + 1) is infinite. 

Thus f(a + n) is infinite and so a + n e S for all n c N 
00 

Since X Ia .+ ni -1 =  , S cannot be the spectral set of a mean 
n1 

periodic function; Hence x'(t) = et x(t) has no non-zero mean 

periodic solutions. 

Now if x' (t) = (a cos at + cos t) x(t) , then 

sinat sint - sinctt 
x(t) = c e • e for some constant c . As e 

e5h1t are two periodic functions with non-zero Fourier coefficients 

of respective periods 27r/a, 27r/ and as a/ is irrational, the 

product of these two functions is not mean periodic, (see remark 

following Theorem.0.6). Hence if c 0, x is not mean periodic. 

EXAMPLE C The solutions to the equation x'(t) = 1- x2(t) are not 

mean periodic. 

For a solution to this equation is x(t) = tanh (t + c) 

Since x'(t) = sech2 (t + c) is an absolutely integrable function, 

it is not mean periodic and so x(t) is not mean periodic. 
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Before giving examples of differential difference equations 

that admit non mean periodic solutions, we may observe that the 

equation x' (t) = a(t) x(t) may have all solutions mean periodic 

but a(t) is not mean periodic. Two simple examples are 

i) a(t) = b + n/t (ii a non-negative integer), a function that is 

discontinuous at the origin with x(t) = c tn bt e , an exponential 

polynomial, and 

ii) a(t) = tanh t, a non mean periodic function with x(t) = cosh t, 

an exponential polynomial. 

EXAMPLE D The equation 

(2.8) x'(t) = - x(t/k) with k > 1 

has no non-zero mean periodic functions. 

This equation has been considered by G. Morris, [1] 

On (0, 03) it is seen to be a differential difference equation of 

retarded type as it may be written as 

X' (t) = - x(t - T(t)) where T(t) = t(k - 1)/k > 0 

Morris shows that any non-zero solution to this equation on 

oscillates unboundedly, and also, from seeking a solution 

x(t) c. n et , one obtains 
nZ 

x(t) = c / ½(n+0) 2 n+c+½ k exp(-tk ) 
n6Z 
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Suppose that equation (2.8) has a non-zero mean periodic 

function x • Then the Kahane transform of this equation, with 

f(z) = K(x)(z) is 

(2.9) z f(z) - x(0) = - k f(kz) 

Now as x is supposed mean periodic, the spectral set, S, of x 

is non empty. Moreover, S {O} since there is no constant 

solution to (2.8) . So there exists an a ? 0 with a e S • From 

(2.9), it is clear that f(z) has a pole at z = b if, and only if, 

f(z) has a pole at z = kb • Thus ak" E: S for all integers n 

Since I Ikn I-2 x cannot be the spectral set of a mean 
nez 

periodic function. Thus we have a contradiction and so equation (2.8) 

has no non-zero mean periodic solutions. 

Our next example concerns a special case of the differential-

difference equation 

(2.10) x1(t) = p(t) x(t - w) with-p(t + w) = p(t), p continuous. 

Systems of such equations' have been considered by 

A. Stokes [11, and A. Halany [1] 
w t 

Put f p(r) dr = üL so that f p(r) dr - Lt is 

periodic of period w . If x satisfies both (2.10) and 

x(t + w) = zx(t), then x1(t) = p(t)x(t)/z . Thus 

x(t) = c exp( f p(r) dr) and if 

q(z, t) = c exp( (fp(r)dr - Lt)) 
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Lt/z 
then x(t) = q(z, t) e , where q(z, t) is periodic in t of 

period w • Hence x(t +w) = zx(t) and x is a solution of (2.10) 

if, and only if, e wL/z =  z 

When wL 0 0, it is known that the equation e/Z = z 

has an infinity of solutions. Consequently, equation (2.10) will 

Lt/z 
admit many solutions or Floquet terms of the form x(t) = q(z,t) e 

Any finite linear combination of such terms is a solution of (2.10) 

and is also mean periodic. However, there exist sdlutions of (2.10) 

that are limits of infinite series of such terms, and it remains 

unknown as to whether or not such limits are mean periodic. 

() 

EXAMPLE B When I p(r) dr = 0, the equation 

(2.10) x'(t) = p(t) x(t - w), p(t + w) = p(t), p continuous, 

has precisely one family of periodic solutions 

t 
x(t) = cexp(f, p(r) dr 

0 

and all other solutions are non mean periodic. 

(c constant) 

To show this, we use the terminology and a Theorem of 
t 

A. Stokes, [11 • With f p(r) dr = 0, x(t) = c exp(f p(r) dr) is 

clearly a solution of (2.10) and it is periodic. Moreover, there is 

no other solution to (2.10) that also satisfies x(t + w) = zx(t) 

for any complex z . 

Thus, the period map T mapping the Banach space 

X = C([-w, 0]) into X defined by Tx(r) = x(w + r) (-w r 0) 

is a completely continuous operator that has only one non-zero 
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eigen-value. If E is the corresponding eigen manifold and if P 

is the projection of X onto E, then by Theorem 1, Strokes ['1], 

if 4) is any function in X, if R(4)) = 4) - P(4)) and if y is 

the solution agreeing with R(4)) on [-t*, 0], we have eat11 iI 40 

as t-'-. 

To complete the proof, it is only necessary to show that 

such a function cannot be mean periodic when it is non-zero. Suppose 

that y is non-zero and mean periodic, then, for each real a 

there exists a positive Ma such that Jy(t)J < M et for t z 0 

In 'the half plane Re(z) > - a, the Laplace transform of 

y exists, is analytic and coincides with the transform of Kahane. 

As a is any real number, it is clear that the transform of Kahane 

is an entire function and so y must be zero. 

EXAMPLE F The equation x t(t) = e x(t - w) has no non-zero mean 

periodic solutions. 

Suppose that x is mean periodic. By use of Proposition 1.2 

the Kahane transform of this equation yields with f(z) = K(x)(z), 

zf(z)=e-wz f(z-l)+H(z) 

where H(z) is an entire function. If x 0 and x is mean 

periodic, the spectral set S contains at least one point, say a 

Then f(z) is infinite and so (a + 1) f(a + 1) is infinite. 

Hence f(a + 1) is infinite. Continuing in this manner, we find 

that f(a + n) is infinite and so a + a c S for all n 6 N 
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Since Ela + nj 1 = co, S cannot be the spectral set of a mean 

periodic function (Chapter 0, (0.3) and §0.5) . Hence 

x'(t) = et x(t - u) has no non-zero mean periodic solutions. 
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Chapter Three 

SYSTEMS OF INTEGRAL EQUATIONS 

Our main results in this chapter (Section 3.2; Theorem 3.4) 

concern the following system of integral equations 

xik(t) - f gij  (t - r) x.k(r) dr = .fik(t) (1 ≤ i n, 1 ≤ k ≤ m) 
j=lo 

or 

X - G ® X = F 

where G = {g1 .} is an n x n matrix whose elements are continuous 

functions and F is an n x m matrix whose elements are continuous 

functions. We prove the existence of a unique continuous solution 

to this equation. Moreover, when F and G have certain properties 

such as mean periodicity, so has the solution. As well, we consider 

the system 

Xt - G®X = F 

and give (Section 3.3) a brief discussion of the system 

G®X=F 

Throughout this chapter, the term 'continuous matrix' will 

denote a matrix whose elements are complex valued continuous functions 

defined on R . The term 'mean periodic matrix',will denote a 

continuous matrix whose elements are also mean periodic functions. By 

a matrix with mean period zero is meant a mean periodic matrix whose 

elements have mean period zero. 
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A sequence of £ x m continuous matrices {F } will 
pp-i 

be said to tend, locally uniformly as p -'- , to a matrix F if 

F = {f1 .} is a £ x m matrix,. F = {f 11 }, and for 1 < i < 

1 1 j m, each f 1 -'- f1 locally uniformly as p -'- co • In this 

case, we write F + F locally uniformly as p + and we observe 

that F is a continuous matrix. 

The statement and proof of our Theorem 3.4 are preceded 

by Section 3.1 that contains three propositions that are relevant to 

the proof of this theorem. 

For more information about the linear functional equation, 

x - g®x = f, and systems of such equations, the reader is referred 

to Bellman and Cooke ([1], Chapters 7, 8) who also give teferences to 

certain applications of these equations, and call such functional 

equations "renewal equations". 
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§3.1 Preliminaries  

Propositions 3.1 and 3.2 are concerned with continuous 

matrices. These propositions may be regarded as extensions of 

properties of continuous functions-given by Erdélyi ([1], §4.1) 

PROPOSITION 3.1 Let G = (.g...} be an. n x n continuous matrix and 

let 2, be a positive constant. If c is another constant with 

c for. I  £ and 1 1, j n and if G1 = 

G 1 = G ® G = m+,, ij }, then 

(3.1) (t) I c(cn (t I )ni/m ,c(cn)mIrn 

for Itt <.2. 

PROOF. The formula is .true for in = 1. By assuming 

rn,ij I 
(t)' c(cniti)ml / (_ 

n 
it follows that asg 1 ..(t) = 

p=1 

m+lij (t) 

, 

M-1 iti 
ncc(cn) ,. rn-1 
(rn-i): J r dr 

0 

c (cn2) rn 
M. 

when It! , 2. . So, by induction, the statement is true for all 

positive integers in 

COROLLARY. G + 0 locally uniformly as in • 
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PROPOSITION 3.2 Let a) {F} be a sequence of 9. x in continuous 

locally uniformly as p oo 

b) {G} be a sequence of m x n continuous 

matrices and G -+ C locally uniformly as p ->- oo and 

C) H = F ® C and H = F ® C . Then 

matrices and F • F 
P 

HP - H locally uniformly as p - 

PROOF. Throughout this proof, it will be assumed that the indices 

i, j, k will take the values 1 i < 2,, 1 < j m and 1 k n 

Let to be any positive number and choose an e >0 1 As 

{f.} and pjk are sequences of continuous functions that 

converge uniformly on [-t0, r0] to g respectively, as' 

there exists a positive constant c such that -* 00, 

If Pu (t)i < c and Jg.(t)i < for itt < t 0 and all p 

Moreover, there exists an integer no such that 

I . .(t) - f (t)i < c/ 2nt 
1j pij 0 

whenever itt < t 
- 0 

h ik -h . = pik 
i 

and p>n0 . As 

® jk  5jk 

and it) - 

+ 

J 

< c/2n t C 
0 

-f )®g 
ij pij pjk 

and after applications of a well known and elementary estimate for the 

absolute value of an integral, it follows that 

ihik(t) - hik(t) i < c whenever p > n and itt < t 
0 - 0 

Hence F ® C + F ® G locally uniformly as p • 00 
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COROLLARY. If F and G are n x n continuous matrices and if 

F=F®G or F=G®F, then F=O. 

PROOF. If F = F(E)G, then F = (F®G)®G so F = F®G for 

all positive integers in, where G is defined as in Proposition 3.1 

As G ->- 0 locally uniforiiily as in + , F = 0 

PROPOSITION 3.3 Let x c C'(R) and y c C' 1 (R) where 

n = 1, 2, ... . Then x(E)ye Cn(R) and 

(3.2) n((D) = x(0) 0n_i + Dx(0) D' 2y 

+ ... D'1x(0) y + (D'x) ® y 

PROOF. A proof may be given by induction. If x c C1 (R) and 

y c C (R), put h x(0)y + (Dx) ® y .. Then h c C (R) and if 

e : t + 1, 

e®h=x(0)e®y+(Dx®e)®y 

= x(0) e®y + (x - x(0)e) ®y = x®y 

Since h c C(R), e®h e C(R) and so x®y cC1 (R) . Also 

D(x®y) = D(e®h) = h so the formulA is true for n = 1 

Now assume that the formula is true for n k where k 

is a positive integer. Assume also that x c C k+1 (R) and 

yEC k (R) so that if 

=  (0)D k-i + D k-i (0) . y + (Dkx) ® y g x y... x 

k k k-i 1 
then g = D (x * y) . Moreover, since D x c C (R) and D Y C (R), 
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(Dkx) ® y e C1 (R) and D((Dkx)® y.) = Dkx(0) y + (D 1x) ® y) 

Thus g e C1 (R) and 

Dg = x(0) D k y + .. Dklx(0) Dy + Dkx(0) y + (D 1x) ® y 

As Dg = D 1 (x®y), D 1 (x(Dy) e C(R) and the forumla is true 

for n = k + 1 , Hence, by induction, the statement is proved for 

all positive integers n 

Alternatively, one may verify the statement by showing that 

if x c c'ci and y c C 1 (R), and if g is defined as above, 

then e Gk ® g = x y + P where P is some polynomial of degree less 

than k. 

COROLLARY • Let F be a 9 x in matrix whose elements are Cn (R) 

functions and let G be an in x n matrix whose elements are 

(R) functions where n = 1, 2, •.. 

matrix whose elements are Cn (R) functions. 

Then F®G is  Z x  

§3.2 Systems of Volterra Integral Equations of Convolution Type: 

Second Kind  

THEOREM 3.4 Let F be an n x m continuous matrix and G be an 

n x n continuous matrix. Then each of the systems of equations 

X - G ® X = F 

X' - G®X = F X(0) = C 

has a unique continuous n x in matrix solution. Furthermore 
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a) X depends continuously on F, G (and C), 

b) if F and G are mean periodic then x is mean periodic, 

c) if F and G have mean period zero, then X has mean 

period zero, 

d) if F and C. are indefinitely differentiable, then X is 

indefinitely differentiable, and 

e) if the elements of F and C are exponential polynomials, then 

the elements of X are exponential polynomials. 

PROOF. The system of equations X — G®X = F is equivalent to in 

systems of the form x — GØx = f and we shall consider this system. 

The system XT — C®X = F, X(0) = C is also equivalent to m 

systems of the form x' — G®x = f, x(0) = c and this system shall 

be considered after x — C = f has been dealt with. 

Setting G1 = G and C q+l G®Gq put 

= f + C ®f + ... C q ®f for q = 1, 2, 3, If x 
qi •—q —  1 —   

th 
denotes the i component of ;, from (3.1), it is apparent that 

Co 

{Xqj}q= is a Cauchy sequence in C(R),. and so, has a limit, say 

x., in C(R) •for i = 1, 2, ... n . From 

x - G®x q q+l =f - C Of — - - 

it follows from Proposition 3.2 that and Gq+i®L tend 

locally uniformly to GO  and 0 respectively as q --Co Thus, 

there exists a continuous solution x to the equation x — GO  = f 

That there is only, one solution to this equation may be 

shown by assuming z to be the difference between any two solutions. 
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Then z = G@z and so z = G® (G® z) = Gq ® z for any integer 

As G  ->.O locally uniformly as q  , z = 0 

For (a), we show that if G -'- G and f ->. f  locally 
p -p - 

uniformly as p + and if x - G O x = f , then x x 
-p p -p -p -p -

locally uniformly as p -'- where x - G®x = f . From 

- -p G C!) x + G ® X T G ® x + G C!) x = f - f 

if z = x  and if v = x®(G-G)+f-f, then 
-p - -p . -p - p -p 

z - G ®z v 
- ,' -p -p 

Now by Proposition 3.2, v +0 locally uniformly as 

If 2. is any positive number, a positive constant c can p ± Co 

be chosen so that if G = {g 1 .}, then 

Igjj (t)I .5 c for Iti . 2., 1 i, . n and p = 1, 2, 

q 

Also, if an e > 0 is chosen, an integer no can be found for which 

c whenever Iti s 2. and p > n . By expanding z. as 

a series as above and by the estimates (3.1), we find that 

so 

Jz pi (t)J . c + ccn2. + ... c(cn)/q +   

Iz pi (t)I c e cn2. 2, . when Iti < and p > n for 

i = 1, 2, ... n 

Hence z -p ->- - -p 0 or x x locally uniformly as p -* 
- 

To prove (b), it suffices to take a single non-zero 

measure A such that A * g1 = 0 = A * f for i, j = 1, 2, ... n 

(That this can be done: if y1, y2, ... y are mean periodic 
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functions with A. 1 i 1 * y = 0, A. 0 1 A. a measure for 
,  

i = 1, 2, ... k, put A = A1 * A2 * ... * X  so that A is a 

non-zero measure and A * y. = 0). 

With A * (g (Dx ) =(A * g )* x 
ii j ii j' 

n 
X. — I (A*g+)*x.=O 
1 j=] ij 3 

Let N be the n x n matrix whose elements are the measures 

= A - A * and n.. = -A * gt. (i j) 

Then N * x = 0 • Now the expansion of det N gives A * (5 + h) 

where h is a sum of convolution products of functions + 
ij 

that are zero on (_oo, 0) . Then h is a function that 'is zero on 

(_oo, 0). and so h+0 As X0, A** (ô+h) 0 0 

Thus the measure det N is non-zero and as N * x = 0, x is mean 

periodic -by Proposition 2.1 

Part (c) is shown by observing that in the proof of (b), 

when f and G have mean period zero, it is possible to choose A 

to have support contained in an interval of arbitrarily small length. 

Thus a non-zero measure, det N, can be found so that det N * x = 0 

with det N having support in an interval of arbitrarily small 

length, showing that x has zero mean period. 

For (d), one may show that x is indefinitely 

differentiable when f and C are indefinitely differentiable by 

use of Proposition 3.3 and induction. Assuming that x is n times 

continuously differentiable leads to GO X, and so x, being n + 1 
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times continuously differentiable. Hence x has derivatives of all 

orders. 

When f and G have elements that are exponential 

polynomials (and so indefinitely differentiable), we may choose a 

non-zero linear differential operator, L(D), with constant 

coefficients so that. L(D)f = 0, L(D)g = 0 for i, j = 1, 2, 

From Proposition 3.3, if x, y c C(R), 

L(D) (x®y) = M(D)x + x.®L(D)y 

where M(D) is a linear ordinary differential operator with constant 

coefficients depending only on L(D) and y and whose order is less 

than that of L(D) . From 

xi - jj ®Xj = (i = 1, 2, ... n) 

we obtain L(D)xi - j=l Mij(D) x = 0 

or 

Tx=0 

n. 

Here T {T ij } is an n x n matrix of linear differential operators, 

and if S(D) = det T, S(D) x = 0 for i = 1, 2, ... n 

As Tji = L(D) - Mji(D) and T. = _Mi(D) (i j) 

an examination of the expansion of det T shows that there is only 

one term cbntaining (L(D)) and all other terms contain operators 

H •(D) . Since the order of each H •(D) is less than the order 

of L(D), it is clear that S(D) = det T is a non-zero linear 

differential operator. 
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Hence x has exponential polynomial components. 

Turning now to the second equation, or 

- G®x = f with x(0) = c 

we may integrate this equation to get 

x - H®x = v + c 

where H = {h ij } h1.(s) = f gij (r) dr, and vi(s)= fSfi(r) dr 

As f and G are continuous, v + c and H are continuous and 

so there exists a unique continuous solution x 

If f -* f and G + G locally uniformly as p • and 
tp p t 

if v(t) = f i1) dr and h.(t) = I 9 j (r) dr, then 

v ->. v  and H + H locally uniformly as p + . If as well, 

c + c as p + , we see that if x is the solution of 
-p - -p 

x' p -G p ® -p -p -p x =f c =x p (0) - - 

then x p + x locally uniformly as 
- - 

When £ and G are mean periodic, v + c and H are 

p + 

mean periodic and so x is mean periodic. Also, when £ and G 

have zero mean period; v + c and H have mean period zero and so 

x has zero mean period. It is also clear that when £ and G are 

indefinitely differentiable, so is x, and when £ and G have 

elements that are exponential polynomials, so does x 
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§3.3 Systems of Volterra Integral Equations of Convolution Type: 

First Kind  

THEOREM 3.5 Let C be an n -x ,n continuously differentiable matrix 

with det G(0) 0 0 . Let F be an n x m continuously differentiable 

matrix. Then the system of equations G ® X = F admits a continuous 

n x m matrix solution if, and only if, F(0) = 0 . Moreover, 

a) if F and C are mean periodic, then X is mean periodic 

b) if F and C have zero mean period, then X has zero mean 

period.; 

c) if F and C are indefinitely differentiable, x is indefinitely 

differentiable;  and 

d) if F and C are matrices of exponential polynomials, X is a 

matrix of exponential polynomials. 

PROOF. From I g. ® X jk the condition that F(0) = 0 is 
l j=  

readily seen to be necessary. To show that it is sufficient along 

with the other hypotheses, let A = G(0) so that A is non—singular. 

Write B = A 1 and consider the system of equations 

X + (B DG) ®X = B • DF 

Since BDC and BDF are continuous, Theorem 3.4 

guarantees the existence of a continuous solution x . On integration 

of this system, we obtain, with F(0) = 0, 

B(G®X) = BF 

and so X satisfies G®X = F 
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The remaining statements are proved by directly appealing 

to Theorem 3.4 

In the above theorem, it may be noted that the condition 

det G(0) # 0 is a sufficient but not a necessary condition for the 

existence of a continuous solution. (An example of this is given for 

the scalar equation g®x = f in the next chapter.) 

When G®X = F has a continuous solution, it is possible 

to give a sufficient condition for X to be mean periodic 

(cf. Proposition 1.6). In the following theorem, det G denotes a 

determinant formed from the commutative ring of continuous functions 

with the operations of addition and truncated convolution. 

THEOREM 3.6 Let F be an 12 x m mean periodic matrix and let G 

be an n x n mean periodic matrix with det G 0 0 . If the system 

of equations G ® X = F admits 'a continuous solutions it is mean 

periodic. 

PROOF. Let F = If ik and G = . Choose a non-zero measure 

+ 
p for which p * f ik = 0, p * g. 0 and put v ij = p * ij for 

i, j = 1,2, ... n and k = 1, 2, ... in • Also let V denote the 

matrix ij of measures and let V denote the cofactor of v 911 

in this matrix (here, multiplication is convolution of measures). 

As well, put v = det V 

From jl gii  ® in  X = ik 

jl ii * Xjk = 0 
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so I V* \)* =0 
1=1 2i j=l '1 jk 

I = 1, 2, ... n, k = 1, 2, ... m . Thus, to show X is mean 

periodic, it suffices to show that the measure v is non-zero. To 

do this, we make use of the definition and properties of Kahanes 

transform given in Theorem 1.1, and also, the fact that if f is 

and v * x ik =0 for 

mean periodic, K(f) = 0 if, and only if f = 0 

From v = det V, V = det V . Also 

= det (p * g ij = det (i • K(g..)) 

= (.i) det K(g..iJ ) = ()n K(det G) 

Since by hypothesis, det 0 0, K(det G) 0 0 and so v is non-zero. 

Hence v is non-zero and so X is mean periodic. 

REMARK. A simpler method of proof is as follows. Let G ij denote 

the cofactor of g 13 in the matrix 0, so that each G 13 .. is mean 

periodic. From 

ii 

j=l ® jk  ik =  

we obtain 

, 

n 

det G®x.k = G Of ii 1 
1=1 

By Proposition l.6,.with det 0 0 0, we find that each Xik 

per ipdic 

is mean 
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Chapter Four 

RINGS ASSOCIATED WITH MEAN PERIODIC FUNCTIONS 

We have noted in Chapter 0 that the function space C(R) 

is an algebra over $ and a commutative ring with the operations of 
addition and truncated convolution. It was also noted (Theorem 0.6) 

that each of 'MQ, MP0 and MP are subalgebras of C(R) 

In Section 4.1, we describe some of the ideals to be found 

in the ring C(R), along with some of the ideals of the sets MP 

and NP, each regarded as ring and an algebra. In discussing 

ideals,, we shall find it convenient to let V denote any one of the 

rings C(R), NP or MP taken with the operations of addition and 

truncated convolution. Thus V will be a commutative ring and an 

algebra over . Consequently, an ideal of V will be a subspace 

of V that contains x®y whenever x belongs to V and 

belongs to the ideal. 

Section 4.2 contains a brief description of some of the 

'ideals in the rings C(R), C(R)fl MP and. C(R) 1) NP 

For the ring of exponential polynomials, it will be shown 

that an unusual situation occurs in that all of the ideals in this 

ring form a single descending chain. As this is not the case, in any 

of the other rings considered in Sections 4.1, 4.2, discussion of 

ideals in the ring MQ is -given separately in Section 4.3 

Section 4.4 concerns the embedding of the ring of exponential 

polynomials into a ring that has an identity and is a Euclidean Domain. 

The results of Sections 4.3, 4.4 have already been 

y 
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incorporated into a paper of the author (Laird, L31) 

§4.]. Ideals in the Rings C(R), Ml', NP  

With V denoting any one of these three rings, a restatement 

of parts of Theorem 3.4 gives: 

If f, g e V, then the equation x g x = f has a 

unique solution, x, in V . 

1. From this, we obtain 

PROPOSITION 4.1 Let f, g, c V C(R)' 

f(0) = 0 for k = 0, 1, ... M, 

D  g(0) = 0 for k = 0, 1, ... rn-i , 

and Din g(0) # 0 where in < 

then the integral equation x g = f has a solution, x, in V 

PROOF. When f, g e Ctl(R) fl v, in < n and a = Dm g(0) # 0, the 

equation 

in+i in+i 
ax+(D g) *x=D 

has a solution, x, in V . On convolving this equation with 

(i.e., on integration of the equation from 0 to t), 

ax®e - (Ding - ae)®x = Dinf - Dinf(0) e 

As Dinf(0) = 0, (Dmg) ® x = 

With in further integrations, using 
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Dkg(0) = 0 = Dkf(0) 

x®g = f 

,for k = 0, 1, ... rn-i 

REMARK. When f, g are continuous functions and -when g(0) # 0 , 

the condition that f(0) = 0 is clearly necessary to ensure that 'x 

is continuous when x®g f . Although the requirement of f, 

being continuously differentiable may appear -extraneous to the 

existence of a continuous function x, with x®g = f, one cannot 

assume that f, g are merely continuous. One reason for this is 

that if x is "locally integrable" (and not necessarily continuous) 

and if g is continuous, then £ x®g is continuous (see, for. 

example, °Erdélyi, [ii, pages 9, 27) 

PROPOSITION 4.2 If V denotes any one of the rings -C(R), MP 

or M' the following are ideals in V for ii = 0, 1, 2, 

a) 1(x) = {x ® y y c V} when. x c V 

7,) J (x) = {Xx + x y : x e 4, y, e v} when x e V 

C) W=C1 (r)flV 

d) X = {x c C' (R) fl V Dkx(0) = 0 for k = 0, 1, ... n} 

e) Y = {x c C' 1 (R) fl V : Dkx(0) = 0 for k = 0, 1, ... n} 

f) Z  = {x e c12 (R) fl V I Dx(0) = 0 for k = 0, 1,... n} 

g) I = {x c V : x(t) = 0 for a t where a < 0 < 

PROOF. It is apparent that each of these subsets of V are also 

g 

subspaces of V • To show that W, X, Y, Z (n = 0, 1, 2, ...) 
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are ideals of V, we may use Proposition 3.3 that when restated says 

that if x c CZ(R) and if y c then x®y C' (R) and 

Dk(x®y) = x(0)D' 1y ± ... Dlx (0)Dk y 

+ ... Dklx (0) . y± (Dkx) ®y 

for k n . Thus, if x c W = C1 (R) fl V and if y c V, then 

x ® yeW showing that the sub space W of v is an ideal of V 

If x cx, y c V, then (x® y)(0) = 0 and 

D(x®y) = x(0)y +(Dx)®y = (Dx).®y . Also, if k ≤ n, if 

x c X,and if y c V, Dk(x ® y) = (Dkx) ® y showing that 

x y e Cn(R) fl V and Dk(x (D y) (0) = 0 . Thus x y c X and 

so X is an ideal Of V fpr n = 0, 1,2, 

If x n'= = X fl nl c + (R) and if y c V, then 
n 

D(x(D Y) (DTix) 0 y so D 1 (x(D y) D •= U n+l x(0) y + (D x)®y 

= (DU+lx) 0 y 

Thus x®y c Yn and so Y n is an ideal of V for n = 0, 1, 2, 

If x c Zn = Y fl c 2 (R)and if y c V, then 

'S 

= (Dn4.1X)® Y so D n±2((Dy) = DU+lx(0).y + (D+2x)®y 

Thus x®ycY n-
n 

n = 0, 1, 2, ... 

fl±2(R) = Z and so Z is an ideal of V for 

For (g), when c <0 < 0 , I. is seen to be an ideal 

of V for if x e I and if y c V, then 
t 

x®y : t f x(r)y(t - r)dr is -zero for c t and 
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x®y e V . Thus x®y 6 I c,f3 and so I c,f3 is an ideal of V 

REMARKS. It is clear that 1(x) c J(x) . When x 0, x I 1(x) 

and 1(x) J(x) 

It may be noted that neither of {x c V : x(0) = 0 = Dx(0)} 

nor v fl C2 (R) are ideals of V . The former set is not well 

defined and for the latter, if V = C(R), if x = e : t -' 1 and if 

y c C(R)\C1(R), then x c C2 (R) . However, D(x(Dy) = y f C1 (R) 

so x®y c2 (R) and so the subspace C2 (R) is seen not to be an 

ideal of C(R) 

For the same reasons, neither of 

{x c v fl Cn(R) : Dkx(0) = 0 for k = 0, l,'2 ... n+} 

nor' 

{x c v n c 2 (R): Dx(0) 0 for k = 0, 1, ... n} 

is seen to be an ideal in V when k is a positive integer and n 

is any non—negative integer. 

In the proof of the, above proposition, we have noted that 

X n n n o Y D Z .. If is apparent that Y = .w Ii Xo and 

Y n+l = Z n n+l 1 o n+2 fl X , also X C Y C W and X C Y n+l n C Z . The 

relationship between the ideals is illustrated as follows: 
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V D  

U U 

X D Y D  
0 0 0 

U U 

D 

co 

zi 

U 

00 

U U 

X D  D Z 
ii n n 

U U 

X DY D 
n+1 n+l 

and fl X = flY = fl Z = fl {I 
n 0 n=O n 1 

n n •n a8 a, 

Also, if a' <a<O and O<<' 

'a' , 

fl n 

allo c  cx, 

zn+l 
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PROPOSITION 4.3 Let g e V . If K is any one of the ideals 

W, X, Y z  (n = 0, 1, 2, ...) or I (c < 0 < ) defined 

in Proposition 4.2, then 

g c K J(g) C K 

Also, if g e W, then J(g) = W g(0)O0 

and, if g c Z, then J(g) = W D n+ l g(0) 0 

PROOF. If. g c K, where K is any one of the above ideals, 

g®y E  for all y c V . As K is a subspace of V, it follows 

that 

J(g) = {Ag + g®y A e , y e V} C K 

It is clear that if J(g) C K, then g K 

Suppose that g c W and g(0),0 0 . If z c W, we may 

choose b c so that f(0) = 0 where f = z - bg . As 

f, g £ W = C1 (R) fl V, and as f(0) = 0 and g(0) 0 0, 

Proposition 4.1 guaranties the existence of an x c V with g®x ='f 

Thus z = bg + g® x' and so z c J(g) . Hence W C J(g) and as 

J(g) C W, J(g) = W . 

Conversely, if g c U and. g(0) t= 0, g C Y so 

J(g) C Y Since YC W. and o ' ! we see that J(g) = W 

entails g t Y 0 or g(0) 0 

Similarly, if g £ Z /Y (n = 0, 1, 2, ... ) so that 
n n+l 

n±2 k n+l 
g E C (R), D g(0) = 0 for k = 0, 1, 2, ... n and D g(0) 0, 
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let z c X and choose b so that D' 1f(0) = 0 where f = z - bg 

As f, g € C1±2 (R) , Dkf(0) = 0 = Dkg(0) for k = 0, 1, ... n, 

there exists an x c V with g®x = f by Proposition 4.1 . Thus 

z = bg + g®y so z c J(g) Hence V  c J(g) and as J(g) c V. 

J(g) = V 

Conversely, if g e Y c Z, J(g) c Y . As 

Z, we see that J(g) = Z entails g t 

§4.2 Ideals in the Rings C Go (R) C CO (R) fl MP, C(R) fl MP  

It is a consequence of Proposition 3.3 that C°° (R) (+, 

is a ring and an algebra over . Thus C CO (R) fl MP and 

C CO (R) fl Ml are rings and algebras over . If W denotes any one 

of these three rings, it follows from Section 4.1 and Theorem 3.4 

that: 

a) If f, g c W, tiiere.exists a unique .x e W satisfying 

x - g®=f , 

b) If f, g c W, if Dkf(0) = 0 for k = 0, 1, 2, ... m and if 

•Dmg(0) 0, •then there exists an t c W satisfying g(Dx = f 

c) If W = {x c W: Dkx(0) = 0 for k = 0, 1, 2, ... n} , then 

W is an ideal of W for n = 0, 1, 2, ... , and 

d) If 9 I ={çcU:x(t)=0 for tB} is an 

ideal of W. 

With the above properties of W and by modifying the proof 

of Proposition 4.3, if 

J(g) = Ag + x®g :X 6 , x E W} for g c W, then 
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1) g  J(g)cW 
n n 

ii) g J(g)c'I 
c,i3 c,13 

iii) g(0) 0 J(g) = W 

iv) If Dkg(0) 0 for k = 0, 1, ... n and if D1+lg(0) 0, 

then J(g) = 

§4.3 Ideals in the Ring of Exponential Polynomials  

The remainder of this chapter shall be concerned only with 

the ring X (and algebra over ) of exponential polynomials with 

the operations of addition and truncated convolution. 

DEFINITION. Let x be an exponential polynomial. Then the degree  

of x is zero if x(0) 0 and n if DICx(.0) = 0 for 

k = 0, 1, 2, ... n-i but DlaX(0) 0 . When x X has degree n, 

we write deg x= n 

We note that as any exponential polynomial is an entire 

function, if x c X and x 0 0, then x has finite degree. If 

x = 0, we regard the degree of x as being infinite. 

PROPOSITION 4.4 Let f, g c X .. Then 

a) there eists a unique x d X satisfying x - g(D x = f, i2nd 

b) when g 0 a necessary and sufficient condition for the 

equation x®g = f to have a solution x is that deg f > deg g 
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PROOF. Part a) is a special case of Theorem 3.4 . The sufficiency 

condition for part b) is shown as for Proposition 4.1, and by using 

a). 

Conversely, suppose that deg f = m and that m ≤ deg g 

Suppose also that there exists an x c X for which x g = f 

If m = 0 so that f(0) 0 0, there is a contradiction of 

x®g(0) = 0 • If m > 0, the relation x®g = £ leads, after 

differentiating m times, to a similar contradiction. Hence it is 

necessary that deg £ >'deg g for x®g = £ to have a solution 

in X. 

PROPOSITION 4.5 Let f be any non-zero exponential polynomial of 

degree n . If 

If ={f®g : geX} 

Y={ycX: deg y>n}, 

then 
I =Y 
f n 

and if 

PROOF. We firstly show that if f, g c X, f, g # 0, then 

(4.1) deg(f®g) = deg f + deg g + 1 

From f®g(0) = 0, deg (f®g) 1 . From Proposition 3. 3, 

Dk(f®g) = f(0) Dklg + 0k_lf(0) g+ (kf)®g 

so that 
k 

Dk(f ® g) (0) = Dkf(0) D1g(0) 
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Let deg £ = m and .deg g= n . If m = 0 = n, then f(0) 0, 

g(0) 0 so D(f(Dg)(0) = f(0) 9(0) 0 . As f®g(0) = 0, 

deg(f®g) = 1 . If m + n > 0 and m + n k > 0, then 

D1 (f(Dg)(0) = 0 . However, Dm+l(f(D g)(0) =/Dmf(o).Dng(o) 0 0, 

and so deg(f(Dg) = deg f+ deg g+ 1 

Hence, if h = f®g c If, deg h > deg f = n and so 

C Yn The reverse inclusion is a consequence of Proposition 4.4 

since if h c Yn' deg h > deg f and so h = xf for some x c X 

PROPOSITION 4.6 Let I be any non-trivial ideal of X . Then 

I = Y for some non-negative integer n 

PROOF. It is trivial that each Y is an ideal of X . If J is 

any ideal of X that contains an element . x for which x(0) 0 0 

and z(0) = bx(0)' where z is any element, of X, then, by 

Proposition .4.4, the equation Dz - bDx = (Dx) ® y + x(0)y has ,a 

solution y in X . On integration, this equation yields 

z bx + x y and so z c 3 . Hence 3 = X 

Let . I be any' non-trivial proper idealof X and x be 

any element of I so that x(0) = 0 . Thus i = e®Dx and so-

x E IDx 

Now let h C I 'with h = g®Dx where g C X. With 

X(0) =O, 

h= g®Dx = D(g(Dx) = g(0)x + (Dg)®x 

and so h C I . Thus x C I C I for all x 6 1 
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By Proposition 45, 'Dx = for some non-negative 

integer n(x) . Hence I = U Y and as 
xI n(x) 

• . .cY cY 
m n-i 

C  cY 
1 0 

we see that I = Y for some non-negative integer n 

Notes: Since X J 0 1 n n+1 Y D • . • • Y D Y D • . . , by 

definition of each Y, Theorem 4.6 states that these are the only 

ideals in X . With the observations that Y n = I Un where 

u n : t + t1' 0 and that the trivial ideal is none other than I , we 

see that any proper ideal is of the form I = {g®f : g e X} for 

some fcX 

It is clear that no non-trivial proper ideal of X is 

semiprime or prime -since for any f e X, I contains f®f but not 

f'. Thus, the prime radiôal of X, being the intersection of all 

prime ideals of X, is zero. 

However, if I is a non-trivial proper ideal of X so 

that I = y for some non-negative integer n, then x belongs 

to Y for all x c X . Adopting the definition of the radical of 

an ideal given by Jacobson ([1], page 17.3) as the set 

{x e X : x Om e I for some positive ihteger m} 

we see that the radical áfanynon-trivial. ideal is X, and so all 

ideals of X are primary.. 
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§4.4 An Euclidean Domain  

The ring X may be embedded in a ring U consisting of 

ordered pairs (a, x) where a e and x e X and where addition 

and multiplication are defined as 

(a, x) + (b,. y) = (a + b, x 4- y) 

(a, x) ® (b, y) = (ab, ay + bx + x®y) 

(See, for example, Jacobson, [J.J, page 85 for applicable details 

that show U is a ring with identity (1, 0)) . Moreover, U is 

an algebra over C 

The following propositions give details about U 

PROPOSITION 4.7 U is anintsgral domain. An elmsnt (a, x) e U 

is a unit if, and only if, a 0 0 

PROOF. Let (a, x) E U and a 0 0 . By Proposition 4.4, there 

exists y c X such that 

ay + -x + x®y = 0 
a 

and so (a, x) @(1-; y) = (1, 0) . So, if a O, (a, x) has an 

inverse in U and so (a, x) is a unit. 

Clearly, there is no (b, y) e X such that 

(0, x) ® (b, y) = (1, 0) and so (a, x) is a unit if, and only 

if, a 4 O. 

To show that U is an integral domain, let 

(a, x) 0 (b, y) = (0, 0) 0 and suppose that (a, x) 0 0 . If 
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a 0, (a, x) is a unit and so (b,. y) = 0 . If a 0, then 

x 0 and from (a, x) ® (b, y) = O bx + x®y = 0 . Since 

x 0, bx must be zero, and so b = 0 and x®y = 0 . Since X 

has no non-zero divisors of zero, y = 0 

Thus (b, y) = 0 and so U has no non-zero divisors of zero. 

PROPOSITION 4.8 If I is any ideal of X, then (0, I) is a proper 

ideal of U . If J is any ideal of U, then 3 = (0, I) 

for some ideal and subspace I of X . Also if (0, x) 3 where 

x(0) 0., then 3 = (0, X) 

PROOF. Let I be an ideal of X • If' x e I and if (b, y) e U, 

then (0,'x) (D (b, y) = (0, bx + x®y) c (0, I) . Hence (0, I) 

is a proper ideal' of U 

Let 3 be any proper ideal of U • Then J contains no 

units. By Proposition 47, (a, x) c 3 entails a = 0 and so, 

J =(0, 5) for some subset S of X . If (0, x), (0, y) c J, 

then (0, x + y) c 3 so x, y S x + y c J . Also 

(0, x) ® (c, 0) = (O,cx) c 3 so that cx e S for all c c and 

x c S. Thus S is a subspace of X • Now if (0, x) c 3 and 

(b, z) E U, bx + x®z c S and so x®z e S, that is, if 

x c S and z c X, x®z.eS . Thus S is an ideal and so 

J = (0, I) for some ideal and subspace I of X 

Suppose 3 is proper ideal of U that contains (0, x) 

where x(0) 0 0 . Let z be any element of X . Choosing b c 

so that z(0) = bx(0), Proposition 4.4 guarantees the existence of 
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a y c X so that z - bx = x®y . Thus (0, z) = (b, y) ® (0, x) 

and so (0, X) C J • Hence J = (0, X) 

An immediate application of the preceding work is that all 

ideals of U form a single ascending chain 

U D (0, X) D (0, Y 0) J . . ,. (0, Y) (0, Yn+l ) D 

It is also easy to see that each of these ideals are principal ideals. 

Since 

(1, -e) IQ (0, x + e1 ®x) = (0, x) for all x c X, 

(0, X) is generated by (1, .-e) 

As (0, u) ®(0, n D' 1x) = (0, n! u D" 1x) = (0, x) 

for each x e Y, (0, Y) is generated by (0, u) 

Thus U is a principal ideal domain. 

Jacobson ([l], page 122) defines an Euclidean Domain U 

as an integral domain with an identity where there exists a function 

S(A) defined on U for which 

1) S(A) is a non-negative integer, ô(A) = 0 = A = 0 ; 

2) o(AB) = 6(A) 6(B) 

3) If A, B c U, and if B 0 and if A is arbitrary, there 

exists Q, R c U such that A = BQ + R where 6(R) < 6(B) 

PROPOSITION 4.9 U is an Euclidean Domain. 

PROOF. For A = (a, x) e IT, define 6(0) = 0, 6(a, x) = 1 if 

(deg 
a = 0 and if a 0, 6(a, x) 2 . It is clear that 
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6 as defined satisfies the first of the above properties. For the 

second, let A = (a, x) and B = (b, y) and note that if A = 0 

or B = 0, then A®B = 0 and 6(A) , 6(B) = 0 = 6(A(D B) 

Suppose now that •A and B are non-zero. If A and B are both 

units, then A®B is a unit and 6(A®B) = 1 = 6(A) 6(B) . If 

only one of A, B are units, say A with a # 0, then b = 0 

and y 0 . Also A®B = (0, ay + x®y) and as 

deg (ay + x®y) = deg y when a 0 0, we see that 

cS(A®B) 6(B) = 6(A) 6(B). When A and B are neither units 

nor zero, then a = 0 = b and x 0 0 0 y . By (4.1), 

deg(x® y) = deg x + deg y + 1 and so, 6(A® B) = 6(A) 6(B) 

To show the third property, let B = (b, y) be non-zero 

and let A = (a, x) c U • If b 0 0, B is a unit and so there is 

always a C e U such that A = B ® C . Now consider the cases when 

b0 and y#O. If aO or if a=O and deg y> deg x, 

then 6(A) < 6(B) . Since A = B®O + A, we may put Q = 0 and 

R= A • The only remaining cases are when a = 0 = b, x # 0 y 

and deg y . deg x . If. deg x = n = deg y, choose c 0 0 so 

that deg(x - cy) > ii (i.e., Dtlx (0) = c D"y(0)) and solve for 

g e X satisfying x - cy = y®g '. Then A = B®Q where Q = (c, g). 

But if deg y < deg x, one can find g c X so that y®g = x and 

if Q = (0, g), then A = B®Q 

Thus, for all B 0 0 and A c U, elements Q and R of 

U can be found so that A = B®Q + R and 6(R) < 6(B) . 

Hence U is an Euclidean Domain. 

We have already noted that U is a principal ideal domain 
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and so U is a unique factorization domain. An element 

A = (a, x) e V is said to be irreducible if (a, x) is not a unit 

and has no proper factors. Two elements, A, B € U are associates  

if there exists a unit C and A®C = 

PROPOSITION 4.10 Let x, y c X and lt x, y 4 0 . Then 

A = (0, x) and B = (0, y) are associates if., and only if3 

deg x = deg y 

PROOF. We have already noted in the proof of Proposition 4.9 that 

if deg x = deg y, then there is a non-zero c € 4 and g e X 

such that x - cy = y®g and so, if Q = (c, g), Q is a unit and 

A=B®Q. 

Conversely, if A and B. are associates, there exists a 

unit (c, z) with c 0 0 such that (0, x) = (c, z) (D (0, y) 

Then x.= cy + y®z and as c 0 0, deg x = deg y 
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Chapter Five 

ENTIRE MEAN PERIODIC FUNCTIONS 

This chapter is concerned with entire functions (Section 5.1) 

and thé mean periodic entire functions (Section 5.2) introduced by 

Laurent Schwartz ([1], §4). 

It is shown (Theo±em 5.1) that it is possible to define 

a 'truncated -convolution' product oftwo entire functions f, g as 

z 

f®g a -'- f f(z - 

and that f®g is entire. With addition and this product, H,, the 

set of entire functions is an algebra. Moreover, the set of entire 

mean periodic functions is a subalgebra of H (Theorem 5.4). 

Section 5.3 contains new properties of entire mean periodic 

functions that resemble some of the properties given earlier in this 

thesis for continuous mean periodic functions of a real variable. 

However, Kahane's definition of a transform for a continuous mean 

periodic function does not apply to entire mean periodic functions. 

For this, and other reasons, some of the results in earlier chapters 

of this thesis will not have counterparts in this chapter. 

Differential and differential—difference equations that 

admit entire mean periodic solutions are discussed in Section 5.4 
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d(f, g 

§5.1 Entire Functions  

We denote by U the tpological vector space of all entire 

functions equipped with the topology of convergence uniform on all 

compact subsets of cj .. This topology may be defined by the seminorms 

'kk=l where, for f c  

= sup{Jf(z)J : Izi i k} 

A metric defining this topology is 

-k — g) 

k=1 
+ - g) 

with d(fn f) + 0 rx - f) + 0 as n + for each •k e N ; 

f+f in H as n+; 

+ f "locally uniformly" as nt-,-

H is .a complete space, for if {f} is a.Cauchy sequence 

of elements of H, then there exists a function f c H such that 

+ f locally uniformly as n -'- co . Like C(R), H is a Frchet 

space. However, H has an additional property in that if {f} c H 

and if f n + f locally uniformly as n -'-

then D k fn + D k f locally uniformly as n + 

for all positive integers k . (See, for example, Ahifors, [1], 

page 138) . 

When f, g are entire functions, and z is any complex 

number, f(z - )g() is an entire function of . The integral 
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f f(z -9jg(9)d9 is then independent of the path, of integration. 

Accordingly, we may define a 'truncated convolution' product of two 

entire functions, f, g as 

f®g(z) = - 

THEOREM 5.1 Let f, g be entire functions. Then 

f®g : z + f f(z - 

is an entire function and 

(5.1) D'(f (D g) = f(0)D 1g + Df(0)D 2g + ... (D'f(0))g + (D'f) ® g 

PROOF. We use the fact that any entire function is the locally 

uniform limit of a sequence of polynomials. Let n' {} be 

sequences of polynomials that converge, locally uniformly, to f, 

respectively. Let h = f® g . If u : z + then 

Up ®Uq (Z) = (z - 

PC ; z3(-l)3 f 
j=O , 0 

= A z p+q+l 
p,q 

where Apq is a constant. Thus {h} is a sequence of polynomials. 

We now show that h -- h locally uniformly as n -- . Let 

r be any positive number and let S = {z : Izi . r} . As f ' 
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g + g uniformly on S as n + , and as each f, g is continuous, 

there exists a positive constant c such that 

jf(z)I, g (z), !f(z)J, g(z)I are bounded by c 

when z c S and n = 1, 2, ... . Now, for any c > 0, there exists 

an integer m for which 

If (Z) - f (z) < c 
n and g(z) - gn(z)I < c 

whenever z S and n > m . As 

h(z) - h(z) 

z z 
= f (f(z - - fn (z - ))g()d + .f f n (z - )(g() - 

0 0 

it follows that 

Ih(z) - h  I < 2crc 

whenever n > m, z E S -and the paths of integration of-the integrals 

are chosen to be the line joining 0 to z . Hence h  - h 

uniformly on S as n + 

Since {h} is a sequence of polynomials and h  + h 

locally uniformly as n ->-- ,  h is an entire function. 

- To prove the identity (5.1) when f, g are entire, it is 

only necessary to note that both sides of the identity are entire 

functions, and, by Proposition 3.3, agree on R (the set of reals). 

Hence (5.1) holds on 4 . 
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THEOREM 5.2 The set I-! of entire functions with the operations of 

addition and truncated convolution is a commutative ring without, 

divisors of zero and an algebra over 4 

PROOF. It is clear that H is a vector space over . To show the 

other properties, we may use the facts that: 

i) C(R+) (+, (D) is a commutative ring without divisors of zero and 

an algebra over (Erdlyi, [1], Chapter 2); and, 

ii) If an entire function vanishes on a half line, it is identicl1y 

zero. 

Let f, g, 'h e H and let f, g, h be the respective 

restrictions of these functions to R+ . To show that f®g = g® f, 

observe that 

(f®g - = f®g - g®f = 0 

As if g - g ® f is an entire function that vanishes on 

f ® g = g ® £ . Similarly, 

((f(Dg)®h_f(D(g®h)) I R+ '(f(Dg)®h_f®(g (Dh)O 

Thus ® is an associative operation in H . In this manner, it may 

be shown that H(+, (D) is a commutative ring and an algebra over 

We now show that H has no non-zero divisors of zero in a 

manner that does not require the use of Titchmarsh's convolution 

theorem. Firstly, suppose that g, h c i-I and .g®h =h . Then 

h = g ® (g ® h) = 9' ® h for n = 0, 1, 2, ... and as 
n 

->-0 
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locally uniformly as n it follows that h = 0 (cf. Proofs of 

Propositions 3.1 and 3.2 that are also valid for entire functions). 

Now suppose that f®g = 0 and g # 0 . By (5.1) 

0 = D(f®g) =, f(0)g + (Df)®g 

and as g # 0, f(0) = 0 . Inductively, D nf(0) is zero for 

n = 0, 1, 2, ... and as f is an entire function, f = 0 

Hence 1( ' (D) : has no non-zero -divisors of zero. 

The next theorem is concerned with certain integral equations 

involving entire functions. These include 

w(z) - ki o. jk - )wkp ()d (1 j n, l p m) jp 

or 

W - G®W = F 

where G = { j } and P = {f jp 

entire functions. 

are matrices whose elements are 

THEOREM 5.3 Let F, G be n x m n x n matrices respectively 

whose elements are entire functions. Then each of the matrix systems 

of equations 

W - G®W = F 

W' -G®W = F 10 W(0) = C 

has as a sOlution, a unique n x m matrix whose elements are entire 

functions. Moreover, if det G(0) 0 0, then the system of equations 
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G ® W = F admits an n x in matrix of entire functions as a solution 

if, and only if, F(0) = 0 

PROOF. The proofs of Propositions 3.1, 3.2 and Theorems 3.4, 35 

given for systems of integral equations involving continuous functions 

hold, with due alteration of details (such as given in the proof of 

Theorem 5.1 and using' H as a complete metric space) for systems 

involving entire functions. 

§5.2 Laurent Schwartz's Theory  

In this section, we outline properties of entire mean 

periodic functions due to Laurent Schwartz (ElI, §4), who was the first 

to introduce such functions. Our outline is adapted from this 

reference but some changes are made in notation. 

A complex translate of an entire function £ is 

•Taf :z + f(z - a) where a is any complex number. If W  denotes 

the closed linear subspace of H spanned by f and its complex 

translates, then f is said to be mean periodic in H if W 0 1-1 

This may be shown to be equivalent to the existence of a continuous 

linear functional L on H such that 

L(Tf) = 0 ' for all z c 

V 

.wheie f : + f(-) 

The main property of any entire mean periodic function f 

is that it is the limit in H of a sequence of exponential polynomials 

belonging to W  . Here, by an exponential polynomials is meant a 
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finite linear combination of terms u e : z + z eaz where n is 
n a 

a non-negative integer and a is any complex number. 

If L is any continuous linear functional on H, (i.e., if 

L c H', the dual-space of H) it may, by virtue of the Hahn-Banach 

Theorem, be extended to a continuous linear functional on C(R2), 

the space of continuous complex-valued functions defined on R2 with 

the topology of locally uniform convergence. Thus, there exists at 

least one measure p with a compact support K in the plane such 

that, for f c H 

(5.2) L(f) = !ff(x + iy)dp(x, y 

We may write (5.2) as L(f) = ff()dp() . It is noted 

that for a given L H", ther6 exists. an infinity of such measures,, 

the difference between any two being orthogonal to H . Moreover, if 

L, M c H' and L, M are extended by measures p, A respectively, 

p * A defines a 'convolution' L * M of L and M . L * M 

belongs to H" and is independent of the choice of measures that 

extend L, M . (Since the set of complex measures with compact support 

in the plane forms an integral domain with the operations of addition 

and convolution, H' with addition and convolution defined above is 

also an integ'al domain) . 

Usewill be, made of the "Fourier-Laplace transform"'of L 

defined by 

(5.3) z) = L(e) = _Zdp() 
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where e_ : t e . This transform is independent of the measure 

ji that extends L . Moreover, I(z) is an entire function of 

exponential type. Conversely, any entire function of exponential type 

is the Fourier-Laplace transform of an element of H' . (For if 

z) is an entire function of exponential type,.then from the 

Paley-Wiener Theorem,O(z) is the Fourier-Laplace transform of a 

distribution T of compact support in R2 . Thus T = 

where o' l' are measures with compact supports and hence 

T is the extension of an element of U n(R2) to C   .) 

According to a theorem of Borel, there exists a unique 

function 4(e) that is analytic for 

infinity, and such that 

(z) - . '0  e()d 
C 

ll large enough, zero at 

Here, C is a simple closed curve that encloses all the singularities 

of 4 . As well, 

" Ca,, 

= f e4(z)dz 

where the limit at infinity and the path of integration is chosen so 

as to ensure th convergence of the integral. 

and if , 

CO 

If 4(z) = I a n n z In. 
n0 

L = lim sup n VIan f 
fl+CO 

, 

z) is an entire function of exponential type L . Then 
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= - : (_l)r1an/+l 
n0 

and () is analytic on { : > L} . Moreover, 

=. L * 4 (0) 
27T i TI 

where u : z --z n and L * u (0) = L("u') = 
n .n TI 

)L(u) 

V 

As L * f(z) = L(Tf) and f has a Taylor series 
oo 

development f = Dnf(o) u /n :, we see that 
n O  

CO 

(5.4) L * = n0 

The formula (5.4) shows that the equation L * f = 0 is 

none other than a linear ordinary differential equation with constant 

coefficients and of infinite order in f . Thus: 

An entire function f is mean periodic in H if, and only 
CO 

if, X aDnf(z)/n! = 0 for some sequence {a} C 4 with 
n=l 

,  
urn sup n Via n I < 00 

n+00 

For any entire mean periodic function f, with W 0 H, 

the spectral set is defined as S  = {a k .: eak C W.} . The spectrum; 

Af , is the set of ordered pairs (a k, YO 

ii. e c W for j p - 1 but not 
j ak = 

such that a  c. Sf and 

It is noted that the spectrum, Ac, of an entire mean 
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periodic function f is less restricted than that of a continuous 

mean periodic function, because if 1(z) is the Fourier-Laplace 

transform of L with L * f = 0, then (z) of exponential type 

but is not required to be bounded on the imaginary axis. Accordingly, 

if 
00 

00 

A  = {(a k, Pk)}k=l then k1 
k=l 

03 

'but condition (0.3) on the spectrum of a continuous mean periodic 

'function does not apply to the spectrum of an entire mean periodic 

function. 

The distribution, Do ,with DO(f) = f'(0) for f c H, is 

a continuous linear functional on H, and f' = DO * £ • if L c I-I', 

then (DS *L)*f=L*f' 

The function f : z'-.>, z2 e is noted as not being mean 

periodic in H • It is also noted that if 

CO 

(5.5) g : z -)- I an exp(icz) 
n=l 

where the sequence is real and has infinite density and the 

a decreases rapidly enough so that g is entire, then g is not 

mean periodic in H 

However, if f is entire and is such that its restriction 

to R is mean periodic in C(R), then f is mean periodic in U 

'But it is possible that f is mean periodic in H and its restriction 

to R is not mean periodic in C(R) • (An example of this is 

£ : z -'- exp (exp z) .) 
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Another characterization of mean periodicity in U is 

given. For f c H, let D  denote the closed subspace of H 

generated by the derivatives of f • Then: 

= W  and so f is mean periodic in H if, and only if, D  # H 

For Df = urn (T_ f - f)/ C Wf whence D"f C Wf for 

n = 1, 2, ..., and so D  C W  . Taylor's formulae, 

f(z - = E(_l)nIlDf(z)/n shows that T  C D Hence W C 

and so W  = D  

§5.3 Further Properties  

We now give new properties of entire mean periodic functions. 

Throughout this section, we shall assume that H' with the operations 

of addition and 'convolution'- (* as defined in §5.2) has the 

properties of an integral domain. The set of all entire mean 

periodic functions 9hall be denoted by MU 

THEOREM 5.4 MU is a subalgebra of H C +,® ). 

PROOF. If a, b c 4, if f, g c MU and if L * f = 0, M * g = 0 

where L, M are non-zero elements of H', then 

L *M * (af + bg) ='aM * (L * f) + bL * (M * g) = 0 

As L * M isa non-zero element of H', af + bg c Mi-I . Thus MU 

is a subspace of H 

We now show that f ® g 6 MU. Let {g} be a sequence of 
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exponential polynomials that converge, locally uniformly, to g and 

• such that gin c g W for each m c N 

Now let a be any complex number, n be any non-negative 

integer and u  : z -'- n eaz • If L(D) = (D - al)hl+l, L(D) is 

a non-zero differential operator with constant coefficients and 

L(D)uea = 0 . From (5,; 1)." 

L(D)(ue®f) = M(D)f + (L(D)ue) ®f = M(D)f 

where M(D) is a non-zero differential operator with constant 

coefficients. So, 

L(D)(L* (ue®f)) = L * (L(D)(ue®fn a. ) 

=L * (M(D)f) 

M(D)(L * f) 

=0 

Thus L * (Pnea ® = 'n ea where is a polynomial of degree 

not exceeding n . 

Hence L * (g®•f) e W  

so that M * L * (g(D f) = 0 for m = 1, 2, 

g®f -- g®f locally uniformly as in + 

M * L * (g ® f) = 0: showing that f ® g c MH 

COROLLARY If f £ WI, then e®f : z -' f.f()d £ WI 
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PROPOSITION 5.5 If f c MU and if g £san exponential polynomial., 

then fg c MU . Also., if c E , h : z -* f(cz) c MU 

PROOF. Since MU is a subspace of H, it is only necessary to 

show that ue f c MU when f c MU . In turn, this reduces to 

showing that ef, uf c Ml-( when . £ e MU 

Let t be any non-zero measure such that 

/ f(z - )di() = 0 • If A is the non-zero measure defined by 

A(g) = p(eg) for all g c C(R2), then 

A * (e f)(z) = fe a(z-) f(z - a az )e di() = e 0 = 0 
a 

So e a f is mean periodic in U 

If v is the non-zero measure defined by v(g) = ii(ug) 

for all g e C(R2), then 

uf)(z) = /(z - )f(z - )dp() z 0 - v * f(z) 

So t * 11 * uf = 0 and as i * 0, uf is mean periodic in U. 

Hence fgEMH. 

To show that h: z -- f(cz) is mean periodic in H, we 

use the fact that f is mean periodic in U if, and only if 

Co 

no aD'1f(z)/n = 0 for all complex z 

where L = lim sup V'IaI < 

n+co 

If c = 0, then h is constant and so h is mean periodic. 
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If c 0 0 and f c Mit, then 

Eac'D'1h(z)/n = EaDf(cz)/n! = 0 

for all complex z . Since 

urn sup 1lachhI = Lid 
fl. + 00 

L is mean periodic in it 

00 
, 

We note that just as the product of to continuous mean 

periodic functions of a real variable need not be' mean periodic, the 

product of two entire mean periodic functions need not be mean 

periodic. A specific example of two such entire mean periodic 

functions is exp(exp(:kz)), exp(exp(iz)) where ct/s is irrational. 

For if h denotes their product, then 

h(z) = 
m, nZ 

1 
m! n! 

exp(imcz + inz) 

and since {am + Bn : m, n c Z} has infinite density, h is. not 

mean periodic in It (see §5.2 (5.5)) 

The next result is a counterpart of a part of Proposition 

1.6 . However, the short method of proof used in Proposition 1.6 

for continuous mean periodic functions does not appear to be 

applicable 'to entire mean periodic functions. 

PROPOSITION 5.6 Let f, g c H f 0 0 and f, f®g c MIt 

Then g e MIt. 
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PROOF. Let L, N be non-zero elements of H' such that L- * f .O, 

N * (f ® g) = 0 . If we can show that there is a non-zero M c H' 

for which 

(5.6) L * (f®g) = M g, •then 

M * N * g = L * N* (f(Dg) = 0 

and so g will be mean periodic in H 

We now show (5.6). First consider the function 

h = L * (f®e) where i is any complex number. It follows from 
71 

• Dh = L * D(f ® e) = L * (f + n  ® e) 

and the assumption L f = 0 that Dh nh . So h = 

for some number N() and N() = h(0) 

As both convolution products *, ® are linear, 

L * (f (D - e)/)(0) = (N( + ) - 

for any complex numbers, n and 

As -* 0, (e+ - e)/ ue locally uniformly in H 

Then 

f® (e+ - e)/ + f®ue in H as -- 0 

and so 

L * (f®(en+ - e )/)(0) - L * (f® ue )(0) . 11 

as -'- 0 • Hence lim (N(n + ) - N())/ exists and so N() is 

an entire function of n 
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Since L e I-P, L, may be extended to a measure with a 

compact support in the planes So there exists positive constants, c, 

T, such that 

IL * h(0)I cp(h) 

where p(h) = sup{h(z) : IzI T} for all h c H 

As If * e 11 (z)l T p(f)p(e) for all Izi < T 

and as p(e) = sup{Ie'I : Izi T} < e2 IfhT 

2 IriJT I (n)I = IL * (f®e)(0)l cTp(f)e 

So, the entire function N() is of exponential type. Hence there 

exists an M c H' whose Fourier-Laplace transform is N and so 

M * e = eN(n) for all ii c 

We have now shown that under the initial assumptions, there 

exists an M E H' such that 

L * (f®e) = M* e for all i c 

From this, it readily follows by another use of the 

linearity and continuity of L, M and * that 

L * (f®ue) M 

and so * (fu e) M * u  for n = 0, 1, 2, ... 

Thus L *(f®p) = 

for all polynomials P ,. As any entire function g is the locally 



104 

uniform limit of a sequence of polynomials {g}, and as 

f®g + f®'g 

and 

in H as n + 

L * (f(Dg) - L * (f®g) 

M * g + M * g as n+ 

Thus L * (f (D g) = M * g for all g c H 

It remains to show that M is non-zero. Suppose otherwise 

so that L * (f(D g) = 0 for all g c H, and all f E H for which 

L * f = 0 . As f 0, W  contains at least one exponential, say 

ea, and L * ea = 0 . Now a sequence {g} of functions may be 

chosen so that g®e unea for n = 1, 2, ... . Thus 

L * (ue) = 0 for n = 0, 1, ... . But since the subspace spanned 

by {u e 100 is dense in H, L * h = 0 for all h c H, and so 
nan1 

L 0, a contradiction. 

Hence M 0 0 where M e H' and L * (f ® g) = M * g 

COROLLARY f, g c MI-I f®g c MI-i 

PROOF. If L * f = 0, then L * (f ® g) = M * g whence 

f®gcMH. 

PROPOSITION 5.7 Let f, g c MH . Then the integral equation 

(5.7) h -g®h=f 

has a unique solutions h, in MI-I 
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PROOF. From Theorem 5.3, this equation has a unique entire function 

as a solution. If € : z -'- z, equation (5.7) is equivalent to 

h®(e - e®g) e®f 

Now e ® f and e - e g are entire mean periodic 

functions by Proposition 5.4 . So, by Proposition 5.6, h is an 

entire mean periodic function. 

Proposition 5.7 has been stated and proved for a single 

integral equation and not systems of integral equations. For systems 

of integral equations (cf. Theorem 3.4(b)), the details used in the 

proof of Theorem 3.4(b) showing the existence of continuous mean 

periodic solutions do not apply to entire mean periodic functions. 

As in §4.3 for exponential polynomials, we may define the 

degree of an entire function f to be zero if f(0) 0 and n if 

Dkf(0) = 0 for k = 0, 1, ... n-1 but D'1f(0) 0 • When £ c H 

and f has degree n, we write deg £ = n and note that if £ 0, 

deg f is finite. 

Now if X denotes either of the commutative rings H or 

WI with the operations of addition and truncated convolution, X 

has no non-zero divisors of zero and is an algebra over Moreover, 

part of Theorem 5.3 and Proposition 5.7 may be restated as follows: 

If f, g e X, then the integral equation h - g®h = f 

has a unique solution, h, in X. 

The proof of Proposition 4.4(b) may then be modified so as 

to give: 

Let f, g c X and f 0 • Then a necessary and sufficient 
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condition for the equation g®h = f to have a solution, h, in 

X is that deg f > deg g 

Thus, if If = {f®g : g e X} for f s X, 

and-if Y={geX: deg g>n} 

Proposition 4.5 may be changed to: 

If f c X and if deg f n, then 'f = 

From this, it follows that Theorem 4.6 holds with 

replacing X, i.e., 

Let I be any non-trivial proper ideal of X 

I = Y for some non-negative integer n 

x 

Then 

The remarks following Theorem 4.6 in 4.3 concerning the 

ring of exponential polynomials therefore apply to the ring X . In 

particular, the set of all ideals of X form a single ascending 

chain, 

cy n n-i cy • • •cy1 cy0 cX 

As well, X may be embedded in a ring with an identity that is also 

an Euclidean Domain. 

It is also apparent that the ring X may be embedded in a 

'field of convolution quotients (cf. §1.4) . The embedding of the 

ring I-I into a field of convolution quotients yields a field that 

is complete (in the sense that H is a complete metric space) . 

§5.4 Functional-Differential Equations  

We begin this section by considering a simple system of 

differential equations and its connection with entire mean periodic 
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functions. Thus, if f = (f1, f2, "' .fn) is mean periodic, then 

L• * f. = 0 where L1 2 , L , n •,.L are non-zero elements of H', 
.  

and so L * f = 0 where L=L 1 2 *L *... L 
- - n 

PROPOSITION 5.8 For the system of equations 

(5.8) w' (z) = Aw(z) + f(z) with w(0) = c 

where f is an n-vector whose components are entire-functions and 

A is a constant n x n matrix, a necessary and sufficient condition 

that w be mean periodic is that f be mean periodic. 

PROOF. Suppose that w is mean periodic and M * w = 0 where M 

is a non-zero element of H' • Then M * w' = 0 and 

* Aw = A M * w = '0 . Thus M * f = 0 and so f is mean periodic. 

Conversely, suppose that f is mean periodic. The 

solution to (5.8) is 

Az Az fZe_A ()d 
w(z) = e d+ e 

0 

and the components of w are entire functions. As the elements of 

the matrices e, eAZ are exponential polynomials and the 

components of f are mean periodic, it follows by use of 

Propositions 5.4 and 5.5 that th, components of w are mean periodic. 

Our next result is an application of Theorem 2.1 . We say 

that an entire function f has a period c, where c is a non-zero 

complex number, if f(z + c) = f(z) for all complex z 
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THEOREM 5.9 Let A(z) be an n x n matrix whose elements are entire 

functions with a complex period c . Let f be an n-vector whose 

th component is of the form g  where each g is an exponential 

polynomial and h. is an entire function with complex period d. 

If each d. is a real., positive and rational multiple of c, then 

all entie solutions to the system of equations 

(5.9) w' (z) = A(z)w(z) + f(z) 

are mean periodic in H 

PROOF. Let w(z) be an entire solution of (5.9) . Let T = id, 

i6 
c = te , T = d. so that d. r.e for j = 1, 2, ... n 

j . 3 1 3 

Put B(t) = A(te10) so that B(t) is a continuous -periodic matrix 

of real period T • Also put b  = h(te1 ) so that each b 

is a continuous periodic function of period r. where each T. is 

th 
commensurable with r . If x(t) = w(te ie ) and if the j  

component of y is b i 9V then 

X' (t) = B(t)x(t) + t) 

where B(t), (t) satisfy the condition of Theorem 2.1 . By this 

theorem, x(t) is mean periodic in C(R) . But x(t) is the 

restriction of w(ze10) to the real line and so w(ze18) is mean 

periodic in f-I • So, by Proposition 5.4, w(z) is mean periodic in 

H •. - 

REMARK. The scalar differential equation, w' (z) = eZw(z) has 

eZ 
solutions w(z) = ce (c constant) . As a special case of the 
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above theorem, such solutions are mean periodic in 1-1 . This may be 

compared with Example B, Chapter2, where it was shown that the. 

differential equation x (t) = etx(t) has solutions that are not 

mean periodic in C(R) 

The next theorem concerns systems of linear differential 

difference equations that admit entire mean periodic functions as 

solutions. A counterpart to Theorem 2.3 involving functional-

differential equations is not given here. For if one were to replace 

in Theorem 2.3 measures with compact support in the real line with 

measures with compact support in the complex plane, the Fourier-

Laplace transform of the latter need not be bounded on the imaginary 

axis, but, the proof of Theorem 2.3 is dependent on the Fourier-

Laplace transform of a measure (with compact support in R) being 

bounded on the imaginary axis. 

Differential difference equations that admit entire mean 

periodic functions as solutions, but not including the following 

theorem, have been considered by H. S. Shapiro, [1] 

As before, a mean periodic vector function is one that has 

mean periodic components. As well, reference to a vector that is 

entire will indicate that the components of the vector are entire 

functions. 

THEOREM 5.10 Consider the system of equations 

(5.10) w'(z) = 

m 
- a) + B w(z - b) + f(z) 

2=l 

where i) for £ = 1, 2, ... m, A, B are n x n matrices of 
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complex numbers, a2, are, non-zero complex numbers lying in a sector 

(z = :1.0 : 0 + , re Tr/2 for some fixed c and b9, are any 

complex numbers, and 

ii) the components of f are entire functions. Then 

a) the homogeneous equation has at least one non-zero entire solution. 

b) If f is mean periodic, then all solutions that are entire are 

also mean periodic, and 

c) If any entire solution w is mean periodic, then £ is mean 

periodic. 

PROOF. Let T denote the n x n matrix 

• m m 
ID6 - A £ DS - B2,S 

Z=l a9, k=l 91 

Then T is a matrix whose elements belong, to H' and equation (5.10) 

may be written as T * w = f 

Now let T(z) denote the matrix whose elements are the 

Fourier-Laplace transforms of the elements of T, i.e., 

m m 
T(z) = Iz - A2,z exp(-a9,z) - B2, exp(-b9,z) 

2=l 2=1 

An examination of the expansion of the determinant of T(z) shows 

that it is equal to I zg (z) where each g is a finite linear 
P=O p 

combination of exponentials. In particular, 

m 
g(z) = det(I - A9,exp(-a9,z)) 

2=1 
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If S = {z = re 10 : O- al < ¶/2 , then by assumption, 
q 

-a1, -a2, ... -a £ S . Hence g(z) = 1 + c exp(dz) , say, 

p=l 
where c1, C2 , ••• C c S and so g(z) is not identically zero. 

We now show that h(z) = dat T(z) has at least one zero 

and also that h(z) is not identically zero. If h(z) has no zeros, 

then as h(z) is an entire function of ecponential type, 

h(z) = ce for some complex numbers, ct(0) and . Thus, 

n 
1 z  (z) = cte 

p=o 
for all complex z 

But this is contradictory 'since g(z) is not identically zero and 

the left side of (5.1) is a finite linear combination of exponential 

monomials which is linearly independent over . Hence h(z) has 

at least one zero. If we assume that h(z) is identically zero, 

then a similar contradiction results in (5.11) with c = 0 

Let h(c) = 0 . If w(z) = de cz , T * w(z) = cz  T(c)d 

As dat T(c) = 0, a non-zero vector d may be chosen so that 

T(c)d 'O and so T * w = 0 has a non-zero entire solution, 

cz 
w(z) = de 

Also, any entire solution to T * w = 0 is mean periodic 

in H since dat T(z) is not identically zero and the arguments' 

used in Proposition 2.2 are valid when the-matrix T has elements 

belonging to, 1-1' rather than distributions with compact support 

lying in the real line. 

For part b), if f is mean periodic in H with M * £ 0 

where M is a non-zero element of H', put . 

* where w• is 
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any entire solution to (5.10) . From T * w = 

T*=T*(M*w)M*(T*w)=M*f=0 

Since w is entire, , is entire. By the preceding paragraph, 

is mean periodic in H . Hence w is mean periodic in H 

For c) let w be any entire mean periodic solution to 

(5.10) . Since the derivative and any translate of an entire mean 

periodic function is mean periodic, it readily follows that f is 

mean periodic. 

REMARK. To ensure that the conclusions of the above theorem hold, 

it is necessary to place some restriction on the numbers 

a1, a2, ... am •. This is shown by the following example. Let a 

be a fixed non-zero complex number, m = n = 2, and 

w(z) = w(z - a), w(z) = wl(z + a) (a special case of equation 

(5.10)) . Then w1 may be any entire function. 
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APPENDIX 

This appendix concerns properties and applications of the 

Kahane transform of a mean periodic function suggested by 

Dr. H. K. Farahat, University of Calgary, subsequent to the writing 

of the text of this thesis. 

By its definition, (page 12), the Kahane transform is a 

mapping from the ring NP(+, (D) into the field MER of meromorphic 

functions with the operations of addition and pointwise multiplication. 

From Theorem 0.3, the Kahane transform is a 1-1 mapping and from 

Proposition 1.1, this mapping is a ring homomorphism. Thus 

K : NP 4. MER 

is a monomorphism. 

From this observation, it readily follows that NP has 

no non-zero divisors of zero (cf& Proposition 1.10). For if 

f, g c NP and if f®g = 0, then 

K(f) .K(g) = K(f ® g) = 0, 

and so K(f) = 0 or K(g) = 0 . Thus f = 0 or g = 0 

It would be interesting to, know the images of MP and 

NP under K in MER . 

0 

The remainder of this appendix is concerned with exponential 

polynomials. In the proof of Proposition 1.2 it is shown that 

K(e)(z) = l/z and so K(ea)(z) = l/(z- a) . Since 
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(n+l) n+1 
n a u e = n! e , n a K(u e )(z) n!/(z - a) . Thus, if f is 
a  

any exponential polynomial, say 

n Pk 

(A.1) f = I I A(k, q) u e (ak's distinct) 
k=1 q0 qa 

then, 
n Pk 

(A.2) K(f)(z) = A(k, q) q! q+l 
k1 q=O (z -.a k) 

For a polynomial, p(z), of a complex variable z, denote 

by d(p), the degree of p(z), (i.e., if p(z) = b zk, bn O 
k=O  

d(p) = n . Note that this usual definition of the degree of a 

polynomial differs from th definition given on page 78 of the degree 

of an -exponential polynomial.). Now, let 

PA = {p(z) . p, q are polynomials, q 0 0, d(p) < d(q)} 

so that PA, with the operations of addition and pointwise 

multiplication, is a ring. Moreover, any element of PA admits a 

unique decomposition into partial fractions. 

From (A.2), if f c MQ, K(f)(z) e PA . So the Kahane 

transform, K, is a ring homomorphism from MQ into PA. If 

K(f)(z) is identically zero, then 

A(k, q) = 0 for q = 0, 1, k = 1, 2, ... n 

and so f = 0 . This shows that the K is a 1-1 mapping without 

recourse to Theorem 0.3 . Moreover, K maps MQ onto PA and so 
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MQ is isomorphic to 

Now let 

SA {P(Z) q(z) : p, q are polynomials, q 0, d(p) ≤ d(q)} 

Then SA is a subring of the field of rational functions in z and 

RA. is an ideal of the ring SA . A non-zero element p(z)/q(z) of 

SA is a unit in SA if, and only if, d(p) = d(q) and so RA is 

the unique maximal ideal of SA . Obviously every non-zero element 

of SA can be expressed uniquely in form 
1 
—u 
z 

where u is a unit 

of SA . Thus SA is a unique factorization domain with only one 

prime divisor. The ideals of SA are simply 

". 

z z2 z3 

Refering now to Section 4.4,' if (a, x) belongs to the ring U 

defined on, page 82, and if 

L(a, x) = a + K(x) 

then it iñay be verified that L is 'an isomorphism from U onto SA 

Since SA is an Euclidean Domain with a function defined on SA by 

O) = 0, and (/) = 2d(q)-d(p) 

when p/q c SA, p/q 0, U is , an Euclidean Domain. 


