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ABSTRACT

This thesis is priﬁarily concerned with the continuous
complex-valued mean periodic functions of a real variable that were
innovated by Laurent Schwartz and also considefed by J. P. Kahane.
An account of such functions, together with some results from a
previous thesis of the author is given in Chapter 0 .

Our results concerniné such functions fall into two main
catégories: new properties of the functions themselves and a
consideration of some systems of functional differential equations
(Chapter 2) aﬁd Volterra integral equations of convolution type
(Chapter 3) that admit continuous mean periodic functions as solutions.

Throughout Chapters 0 - 4, frequent reference is made to
the truncated convolution product of two functions f, g defined as

t
fE@g:t > [ £ - p)g(x)dr for all real ¢t .

o
Several function spaces, including tﬁe set of continuous mean periodic
functiqns, are identified as algebras with the operations of addition
and truncated convolution. Properties of this convolution product
and subalgebras are considered in Chapter 1 whereas some ideals of
such algebras are described in Chapter 4 .

Chapter 5 is concerned with entire functions and the entire
mean periodic functions of a complex variable 2z . The theory of
éntire mean periodic functions is due mainly to Laurent Schwartz and

an outline of his theory is included in Chapter 5 . It is shown that



‘iv

if f, g are entire functions, so is the 'truncated convolution'

product

’ z
£®@g : 2z [ £(z - E)g(E)dE .
. o

Chapter 5 also contains other properties and applications-of entire
mean periodic functions that are similar to some of the properties
and applications of continuous mean periodic functions given in the

earlier chapéers .

~
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Chapter Zero

PRELIMINARIES

This inéroductéty chapter serves to familiarize the reader
with some concepts of continuous mean periodic functions and
relevant properties of continuous functions and measures
(Sections 0.1 - 0.4) that will be required in subsequent chapters.
The term, mean periodic function, was coined by Delsarte [1]
in 1935 to denéte a complex-Valued.continuoué function, £, of a

real variable t that satisfies an integral equation of the form
JE(t - r) k(r) dr =0 - for all t

where k 1is a.not identically zero continuous‘functioh with compact
: suﬁport. This name is‘éuggested by the fact that if f is a periodic
function of period 1t then its average is zero if and only if

[T f(t - r) dr = 0 for all t .

° A more complete theory was presented by L. Schwaftz [l] in
1947. For anyrtopological Vectof spaée, E, of complex=valued
fundtions of a real variable, the fﬁ@ction f ¢ E is defined to be
mean peripdic in E if the linear combination of the translates

.is not dense in E . For E = C(R), the space of all complex-valued
continudus functions definéd on the real line and equipped with the
topology of convergence uniform on all compact subséts of R,
Schwartz obtains properties similar to those of Delsarte and shows
that the general and intrinsic definition is equivalent to the

following.



A necessary and sufficient condition that £ ¢ C(R) be
mean periodic is that there exists a non-zero measure, u, with

compact support for which
JE(t = r) du(x) =0 for all t .

The main property of mean periodic functions in C(R). is
that the& are limits éfrlinear combinations of exponential monomials.
The means Kahane [l], [2] used Fo pfova this are summarised in the
Section 0.5 and make use of the Carleman transform. This approach
to the theory of mean periodic functions in C(R) relies on the
theory of anaiytic functions of one complex variable and extensively

uses the Fourier transform of a measure. In this thgsis, ﬁ is

defined as u : z +~fe_thu(t) instead of feuZﬂthdu(t) (Schwartz)

or feletdu(t) (Kahané); consequently, statements like " ﬁ is
bounded on the real axis" as found in Schwartz and Kahane will read

here as "

2 is bounded on the imaginary axis" .
The reader's attention is drawn to the fact that the
contents of this chapter, and this‘chapter only, have been adapted

from the author's M.Sc. Thesis (Laird, [1]) .



§0.1 The Space C(R)

We denote by C(R) the complex vector space of all complex
valued continuous functions defined on the real line (R) and
equipped with the topology of convergence uniform on all compact subsets

of R . This topology méy be defined by the-seminorms
pk(f) = sup{lf(t)[ ¢~k <t < k} -

As the séts {f : £ e C(R) and pk(f) < g}, formed when
€ ranges over all positive numbers and k ranges over the set N
of positive integers, are convex aﬁd form a base of neighbourhoods
at the origin, C(R) is locally convex. This topology for C(R)
is Hausdorff, since pk(f) =0 foreach keN & f=20.
A boun&ed‘metric defining the given topology is
© P (£ - &)

. - -k
p(fs g) kzl 2 1 + pk_(f - g)

with p(fn, 0) -0 = Pk(fn) +0 as n > for each k € N .

- fﬁ >0 4in C(R) as n ~ w:.
def.

o fn converges "locally uniformly" to zero as n -+ « .
C(R) is a complete space, for if {fn} is a Cauchy sequence -
of elements of C(R), i.e., p(fm, fn) +~0 as m, n - o, then
‘thgre’exists an f e C(R) such thaf o (£, fn) +0 as n + «. This
follows since for each t e R, {fﬁ(t)} is a Cauchy sequence of

complex numbers and sd‘convergent to f(t), say. Then {fn}



converges to £ 1locally uniformly and so f is confinuous. Thus,
C(R) 1is a Fréchet space.
The support of a function f is the closure of the set
{t : £(t) # 0} . The set of all complex-valued continuous functions
having compact supports is denoted by CC(R) . As well, C (R)
denotes the set of all indefinitely differentiable complex-valued
functions defined on R and C:(R) denotes those Cm(R) functions
with a compact support. C(R+) is used to denote the set of all
continuous complex-valued functions defined on -R+ = [0, ©) ,
The truncated convolution product of two continuous
functions x and .y_ is defined as
t
x®y t+f x(t - ) y(r) dr
o
and x® vy 1is continuous. With addition and this product, C(R)
is a commutative ring and an algebra over { (see Erdélyi, [l],
page 15 for details of C(R+) that apply to C(R).) |

§0.2 M The Dual Space of C(R)

__C’

The term, "measure'", will be used in this tﬁesis to denote
a continuous linear functional on the complex topologicalllinear‘
space C(R) . The set of all such measures is denoted by MC . The
relevant prqperties of these measures are outlined here; for full
details of theif theory involQing integration theory and Radon
measures on. C(R), see, for example, Edwards [l], Chapter 4 .

Any such measure, u, assigns to each f € C(R) a complex

number p(f) in such a way that:-



u(af) = au(f) for every complex number a,
u(f + g) = u(f) + u(g) for £, g e C(R), and
u(fn) + u(f) when fn +f in C(R) as n -+ = ,

A positive measure, A, 1is one for which A(f) 2 0
whenever f € C(R) and £ 3\0 . It is customary and often convenient
to write u(f) as JSfdu or JSE(t)du(t) .

For a linear functiomnal, u, on C(R) to be continuous,
(i.e., to be a measure in the above sense), it is necessary and
sufficient that there eiist a compact set K and a non-negative real

number C such that
(0.1) lu(f)|5 C '.sup{lf(t)l t te Kj for each f & C(R) .

For a given measure u, there exists a smallest compact

set K for which'(O.l) holds for a suitable C =C and K is

K’
" called the support of u . If a continuous function, £, is zero

on K, then u(f) is zero. The smallest closed interval containing

K, i.e., the closed conﬁex envelope of K, will be called the

segment of support of u .

It can be shown that, for any measure u with compact
support K, there exists a complex valued function u defined on R
that is of bounded variatidn and cbnstapt on each component interval

of R\K for which
n(E) = S £(t) du(t)  for each f € C(R)‘ .
K . ‘ .

Conversely, any such function u will define through the



above formula a measure u .
If v is a complex~valued Lebesgue integrable function of

compact support, then a measure p is defined by
uw(f) = SE£() v(t) dt for each f ¢ C(R) .

Such a measure is said go have density v relative to Lebesgue
measure and, when there is no possibility of confusion, we use u to
denpte both the function apd the measure. However, the supports of
v and u may not agr;e when the support of a function is defined as
in §0.1 . :
The norm of the measure u with compact support ‘K is
defined as

[[u]] = sup{|u(f)|\: f ¢ C(R) and If(t)]g 1° for all t e K} .

[

In Chapters 2.ahd13, we will make use of distributions. Let
Cc"(R) denote the complex vector space of all complex—valuéd
functions on R that have continuous nth order derivatives, equipped

with tlie topology defihed by the semi norms

plgn)(f) = sup{|DPE(L)| : -k < thf_ k, p=20,1, ..., n}

for ke N and f ¢ Cn(R) .

‘ In this thesis, the term 'digtribution' will denote any linear
functional on C(R) ﬁhaf is ‘continuous on Ch(R) fér at least one
non-negative integer n. (This restricted concept of a distribution
is consistent with the more general definition given by Edwards [l],

Chapter 5), Thus, a distribution which is also a continuous linear



functional on C(R) is a measure. The distributional derivative,
of a distribution T is defined by
DT(f) = - T(f") o for each . f ¢ Cz(R)

and is also a distribution.

§0.3 The Fourier-Laplace Transform’
The Fourier-Laplace transform of a measure p is defined
here as

n(z) = fe—Zt du(t) ‘ .

This transform proves to possess certain

properties. If M(z) = n(z):

(i) M is an entire function. To see this, set

fh st > [exp(—t(z + h)) - exp(—zt)]/h + texp(~tz) .

. Now pn(fh) +0 as h~+0 for each n e N ‘and s0 u(fh) -+ 0 as
h-+0. Hence M is complex-differentiable at each point and so

analytic in the complex‘plane.

(did) M 1is of exponential type and bounded on the imaginary
axis. For if u has support K < [—L, L] and z = x + iy,
Mcz)| < |y exp(L|x|) and so M is of order one and type mnot

exceeding L; also’ ]M(iy)| < i .

‘(iii) From (i) and (ii), the zeros of M have no finite

limit pomnt in fact, by Hadamard's factorization theorem, if the

(see Titchmarch [1] page 250)
zeros of M(z) are a, # 0 of orders P, respectively,

DT,



(n=1, 2, e ), and if M(z) has a zero of order k at the

origin (k=0 4if M(0) # 0), then

o]
. P .
M(z) = Azk > 1 @ -z/a)™ exp(zp_/a )
n n''n
n=1
where c¢ 1is imaginary and
2 .
(0.2) | pX pn/|an| < ® K
(iv) From (ii), the entire function M satisfies

- 0 .
T Lo zM(z)l <L and [ maX(loilf(lz)l, 0 4y <«
B o y
so By Levinson [JJ, pages 25-28?
R ‘ ' . 1
lim f logIM(iy)M(—iy)l =5 dy exists and is finite. Then
R 1 : Y

(a) the set of zeros of M has a finite demsity < L, ie..,

lim n(r)/r exists and does not exceed L,, where n(r) is the
n->o ’

number of zeros of M, counted acéording to their order, inside the
circle |z| =r .

gb) Let the non-vanishing zeros of M be a =71, exp(i6n) . Then
an|cos enl/rn > s showing that for any sector S containing the

imaginary axis,
(0.3) g pn/|anl < ® .
a, s T o

For a distribution, T, the Fourier-Laplace



transform will still be an entire function of exponential type.

However, T need only be of polynomial order on the imaginary axis.

A

Finally, we note that p=0 = u=20.

§0.4 Convolution Products

The convolution product of a measure 1y € MC and a function

f e C(R) is defined as

v
p*f:t-~ f £(t - ) du(x) = u(th)
K

where . K is the support of 'u‘ and the translation operator, Tt’
takes f into th‘: r > f(r - t), and E:t + f(~-t) . This product
is a continuous function, for
|u * £(x) = u * £(s)| < [lull sup|f(t - 1) - £(t - s)| .
) - teK :

The function, (u, £) »pu * £ dis a bilinear map from MC x C(R)
~into CQR) .

If £ >0 dn CR) as n>w, then p*f >0 in
C(ﬁ) . For let e be any positive number, L be any compact subset

of R ard let u have support K. An m e N can be chosen such

that when n > m,
sup{|fn(t -r)| s tel, rekK}<ell|u|

whence ]u * fn(t)l <g for tel.

If o € R, the a—translate oan measure Y is defined by

Tau(f) = u(T_af) for each £ £ C(R) .
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The convolution product of two functions £, g is defiped,
when' it exists, as

f* gt~ f f(t - f)gtr)df 7 .

-0

The convolution product.of two measures HsyA dis denoted by u * A
an& is a meésure, For ﬁeasures, thié operation is associative and
commutative, If M and A have segments of ‘supports [a, B] and
[y, 6], then p % A hés segment of support [u + v, B + 6] . Also
(p * Xs = ﬁ .« A (e denoting,rof course, the pointwise product). If T
is any distributibn of éompact support, then for all p ¢ C:(R),
T % p e CuR) - |

We will make use of the Dirac measures, either 6 = 60

placed at the origin or Ga placed at any point, «, on the real

line. Ga has support {o} and for each £ e C(R), we have

§(f) = £(0) Ga(f) = f(a)
§ % f=f : § * £=Tf
| o o o
* = ) * =
Ga i .Tau _ Ga ‘GB 6a+8

with. D& * £ = £' when f is absolutely continuous.
We can show that Mt(+, *) 1s an integral domain.
The following formulae are valid for distributions as well

as measures:

| * = * = %
Ta(u A) : Tu“ A= iak
* = * f =y %
Ta(u ,f) Tap £ u Tuf
D(u * \) =Du % A= % DA and
ZD(u % £). * £' when £ is absolutely continuous.

I
E
%
rh
gy
=
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§0.5 Continuous Mean Periodic Functions

For f e C(R), let V_. denote the closed subspace of

f;
C(R) generated by f and-its translates.

DEFINITION. If £ e 0(1{) and.if V. # CQR), then £ <s mean
periodic. | '

From thié definition, it foliows ihat a neceésary and
sufficient condition for, f € C(R) to be mean periodic is that

there exists a non-zero measure u such that u * £ =0, i.e.,

SJE(t = ) du(x) =0 © for all real ¢t .

DEFINITION. An exponential polynomial is a finite linear combination

of terms u e : t +:tn eth

where n <8 any non-negative integer
and a is any complex number.
If £ is:an,exponentiai polynomial, then the subspacé

generated by £ and its translates is finite dimensional and so

closed. Then Vf # C(R) and so any exponential polynomial is mean

- periodic.
In the remainder of this chapter, let £ denote any mean
peripdic function in C(R) and let. u be any non-zero measure for

A whighr u*f =20, Put,
+ ' ] + :
f () = f(t) for £t >0 and £ (t) =0 for t <0 .

Also put g = p * f+ and f = f - f+ . Then g=-u* £ and
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g is an integrable function of compact support contained in the

segment of support of p . As in Section 0.3, put

-2z

‘ﬁ(z) = fe_Zt du(t) . Also let é(z) = fe t g(t) dt,

so that ﬁ(z) and g(z) are entire functions of expomential type.

DEFINITION. The Kahane Transform of a continuous mean periodic

funetion, £, 1s K(f)  where
R(E) (2) = g(2)/u(z) .

Note that K(f) dis independent of the choice of non-zero

measure Y for which uw *# £ =0 .

DEFINITION. The spectral set, S of a continuous mean periodic

f.’
function, £, is the set of all poles of the Kahane transform,

K(f) . The spectrum, A of £ 1is the set of pairs (a, p)

f.’
where a € Sf and p is the order of the pole K(f)(z) at z = a .

If (a, p) ¢ Af and' 4 * £ = 0, then ﬁ(z) has a zero
at z =a of order > p . So the conditions of Section 0.3

pertaining to the zero's of ﬁ(z) apply to A Thus, if

f .
Ag = {(aps pk)}E___l, then (0.2) and (0.3) hold.

If f+(t) eOLt and f (t) eBt are bounded for all real t,

then the Carleman transforms

Fl(z) = f£7(t) e 2% dt and F(z) = £ (t) e 2% dt

7
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are defined, analytic, and.coincide with the Kahane transform on tﬁe
respective half planes x > -0 and x < -8 when 2z = x + iy .

We nOW‘étate four tbeorems which serve to iliust;ate the
steps that were taken by Kahane [L], [2], to show that any mean
periodic function £ may be expressed as the locally uniférm limit .
of a sequence of exponential polynomials in Vf .
THEOREM 0.1 Let V be a closed translation invariant subspace of
C(R) ; If B <is any fixed real number and 1f n * g(B) = 0 for

every u e M, that satisfies p*V = {0}, them ge V.

C

THEOREM 0.2 The following are equivalent:
a) u e ¢ Vf ,

b) for each non-zero measure u with u * f = 0,
Dk ﬁ(z) =0 for z=a and k=0, 1, ... n,
e) K(£)(z) has a pole at z = a of order exceeding n, and

d) (a, p) € Af where - n <p .

THEOREM 0.3 If £ <is a mean périodic functibn whose spectrum is

void (i.e., K(£f)(z) <8 entire), then f =0 .

THEOREM 0.4 £ belongs to the closed subspace generated by the

exponential poZynoMi&Zs of Vg .
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DEFINITION. The mean period, Lf, of a mean periodic function £ <is
the infimun of the lengths of the segments of supports of the measures

ueM, such that w+# 0 and u * £ =20 .

C
Some properties‘bf the mean period given by J- P. Kahane

([2], pages 29, 33) may be summarized as:

THEOREM 0.5 (72) mean periodic functions with the same spectrum have
the same mean period.
(i2) If £ <s zero on an interval of length exceeding

its mean period, then £ = 0 .

(ii1) Mg {(an, 1) :n=1, 2, ...} and

Zl/lanl <w 3 Lg= Or.
(iv) If f is a continuous periodic function of period
t and if all Fourier coefficients of £ are non-zero, then L. = T.
Some properties of mean pefiodic functions that have been
stated and proved by the author.elsewhere (Laird [l], Chapter 2, and
[2]) may be summarized as follows. Let .MP denote the set of all
mean periodic functions in C(R) and let MP, denote the set of all

mean periodic functions with mean period zero. Also let MQ denote

the set of all exponential polynomials.

THEOREM 0.6 Let £, g e MP . Then
t - .

al eaf, [ £(x)dr and £' (when it is continuous) are mean periodic
)

and each has the same mean period as f,

b) If heMQ, then fh € MP ,

ec) MQ, MP, and MP are subalgebras of C(R) (+, ® and each is
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dense in C(R) . Also
MQ C MPo c MP ¢ C(R)

and the inclusion is proper in each case.

It is worth remarking that fg need not be mean periodic
when f and ‘g are mean periodic. This can be seen by the following
examplé: if f and - g are continuous pefiodic functions of periods
o and B where o/f is irrational and if £ an& g have all
Fourier coefficients non-zero, then fg 1is not mean periodic. |

We also give some examplgs, due to L. Schwartz, [1], of

continuous functions that are not mean periodic. They are:

a) exp (£2).

b) ‘any non-zero absolutely integrgblé function (and so any CC(R)
function), and

c) gt~ nzl an:éxP(iant) Whé?e Zlanl < o and {an} is any
sequence of real ﬁumbers with a finite limit point (a # 0).

This last mentioned Function is a uniformly almost periodic
functiog. Several propertiesrof these well known functiops that
contrast with continuous mean periodic functioﬁs are as follows.

Uniformly élmost periodic functions are uniformly
" continuous and bounded. The set;of,such functions forms a Complex
Banach space with tﬁe pérﬁ. Il = sup{lf(t)I:: t € R} . ﬁhen £ is
almbst periodic, eiaf is almost p;riodic when o is real, f' 1is

almost periodic when it is uniformly continuous and Jff is almost

periodic when it is bounded. When f and g are almost periodic,
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fg is almost periodic but in general f® g is not bounded and so
not almost periodic.

An example of an‘almost periodic function that is not mean
periodic has already been given. The exponential function is not
bounded on R and provides an example of a mean periodic function
that is not almost periodic.

It has been shown by Kahane [3] that a hounded uniformly

continuous mean periodic function is uniformly almost periodic.
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Chapter One

~ FURTHER PROPERTIES OF MEAN PERIODIC FUNCTIONS

In this chapter, we first discuss in Section 1.1 some
iﬁteresting.properties (see Propositions 1.1, 1.2 and 1.3) of -
Kéhane's Transform of mean periodic functions (defined in .
Chapéer 0). These properties are analogous to those of the Laplace
Transform of continuous functions.

Section 1.2 is mainly concerned with the mean period of
the truncated convolution product of two mean periodiq functibné.
in Section 1.3, propeities are given of some subalgebras of the
algebras MP, MTO and MQ taken with the operations of addition
agd trunéated convolution. These algebras are also commutative
rings with no non-zero divisors of zero. ‘In Section 1.4, it is
noted that it is possible to construct fields of convolution quo-
tients from any one of these three rings in the same manner that

Mikusinski (c.f. Erdélyi, tl]) constructed a field of convolution

quotients from the ring C(R+) .

§1.1 Kahane's Transform of Mean Periodic Functions

When f 1s a non-zero mean periodic funcéion, its
Kahane Transform, K(f)(z), is a meromorphic function with at
least one pole. Many of ;he statements in this section will be
expressed as identities involving meromorphic functions. If G
aﬁa H are meromorphic functions, the statement "G = H" " will

indicate that if G(z) does not have a pole at z = a, then
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neither does H(z) and G(a) =‘ﬁ(a), whilst if G(z) has a pole

of order n at. z = a, then so has' H(z) . To establish such an

identity, it is sufficient to find an entire function, say M, such

that M - G and M.« H are entireand M « G=M *« H .

In the proofs of these properties, we will assume without
further reference, the following facts:

(1) convolution of measures with compact supports and/or functions
whose supports lie 6n a fixed half line is an assdciat;ve and
‘commutative operation (Gel'fand and Shilov, [l], page 104); and

(ii) the Fourier-Laplace transform of a measure or function with a

compact support is an entire function (Chapter 0, §0.2) .

PROPOSITION 1.1 Let £,g be mean periodic functions and let a,b

" be complex numbers. Then af + bg, £ ® g are mean périddic, and

K(af + bg) = aK(f) + bK(g) and K(E® g) = K(f) * K(g)

PROOF. Let u,A be non-zero measufes so that p * £ =0,
A% g=0., Then' p * f+, A% g+ have compact support.

As n % X * (af +bg) =0 and as p * A 1is a non-zero
measure, af + bg is meaﬁ periodic. Also u * A * (af + bg)+
has compact support and is equal to ékﬁ* (u * f+) +bu * (A * g+) .
‘Hence |

(u % A) + K(af'+ bg),  ak - 0 - K(E) + b - & - K(g)

are entire functions and equal to one another. Since
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%

(n * X)) = ﬁ . i is also an entire function,
K(af + bg) = aK(f) +‘bK(g) .

For £® g, we note that

(f@g)+=f+*g+ and (f@g)—='—f_*g

so that . \

Ak (kR g -k E k)

pEA Kk (£@®g)

Ak (uEET) kg=0 :

Thus f@g is mean periodic.’ Also, pu * ) % (£@® g)+ has compact

support and is equal to u * f+ )k g+ . Hence

W) - KE®g) = i KE) » K(g)
and so

K(£®g) ="K(f) * K(g) .
PROPOSI".I.‘ION i.z Let £ bé mean periodic. Then
a) If DF = f, Fois mean periodic and
K(F) (2) = (R(£)(2) + F(0))/z ,
b) If Df is continuous, it is mean pémﬁodic and
R(D£) (2) = 2K(£)(2) = £(0) ,

e) If a is any complex number, e £t et £(t)

peritodic and K(eal £) (2) = K(f) (VZ -a),

18 mean

19

d) If vy <is any real number, TYf": t » £(t - y) <8 mean periodic
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and K(Tyf)(z) =_e_ZY K(£)(z) + H(z)_ where H 1s an entire‘
funetion, and
e) If o s any real number, foo : t + f(at) <s mean period%c

and when o # 6, K(foa) (z) = %-K(fjég) .

PROOF. TFirstly, we show that K(e)(z) = 1/z where e : t =+ 1 .

If B 1is any positive number and if A is the measure, defined by
B
Alg) = f r g(r) dr for each g e C(R), then A *e=0. A
-8
little calculation shows that

i(z) = 2(sinh(Bz) - Bz cosh(Bz))/z? ,

Ak et(e) = 5(t2 - 82) and (1 * €D (@) = A(2)/2
and §o ’
K(e)(z) = 1/z .

i

t

If DF = £, then F(t) = F(0) + f(r) dr or

/
F = e®@f + F(0)e . Thus, by Proposiﬁion l.g , F is mean periodic
and K(F)(z) = (K(£f)(z) + F(0))/z .

In the remainder of the ,proof, we assume that u is a
non~zero measure and p * £ = 0 . If Df is continuous, then

u *Df =0 and so Df is mean periodic. As f = £(0)e + e@Df,

R(f)(z) = (£(0) + K(DE)(z))/z
and so

RK(D£)(z) = z K(£)(z) - £(0) .

With p * £ = 0, (eau) * (eaf) = 0 where



21

(eaﬁ)(g) = u(eag) for each ge C(R) . With
+ + 3 ~ ’ .
(eau) * (eaf) = ea(u # £ ) and (eau)(z) = u(z - a), it follows

that K(eaf)(z)= K{(f)(z - a) .
Also, (Tyu) * f = 0 where (TYu)(g) = u(T_Yg) for each
ge C(R) and u * Tyf =0 . From (Tyf)+ = TY(f+) + h where h is

a function with a compact support,

po* (TYf)+ =qu * TY(f+) + u*h= TYu * f+ +u *h .

Moreover, (TYu)(z) (GY * ) (z) = e-Yziﬁ(z) so that

R(TH @) = G * @©H)E 7 uE

(@ * £ 7%/ (T 1) @) +hz)

e T2 R(£) (z) + H(z) .

]

Here H, being the Fourier-Laplace transform of a function with a
compact support, is an entire function.
For (e), by convolving u, 1f need be, with a suitable
twice differentiable function, we may and shali suppose that
- ¢ * £f =0 where ¢ 1is a non-zero continuous function with support
in [0, L] for some L >0 .
L
with [ f£(t - r) ¢(x) dr = 0,
;/a

if r = as, o f f(t - as) ¢(os) ds = 0 ,
o

L/a
80 f foa (t/o — 8) Y(s) ds = 0
0
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where ¢ = ¢oo . As P # 0, foo 1s mean periodic. After some

routine calculations,

W * (Fo))(2) =26 * £IE) and Y(2) = 4B
and so ’

K(fow) (2) = 2 k()& .

COROLLARY. If f <s mean periodic, and 1f o s a real non-zero

number, then L. = Lg/|a| .

PROOF. 1In the proof of (e) above, for any € >0, L may be

]

chosen so that L < Lf +¢ . Since ¥ * (foo)

has support in [0, L/a], (or [L/a, 0] if o

0, v#0 and ¢

A

0), L, < L/|o] .
‘ 1
Hence Lfoa < Lf/|a! . With £ = foooo ~,

Le < 1 Le,, @ndso L = Lf/|a| .

PROPOSITION 1.3 Let £ be mean periodic with spectral set S¢
and spectrum Af . Then wuf : t - tf(t) <& mean periodic. If

z ¢ Sgs then
K(uf)(z) = - g—; K(f) (z)

and 1f (a,p) € A, then (a, p+ 1) ¢ Auf .
PROOF. As usual, let 1 be a non-zero measure with u * £ =0 .
Put u * fH = g and Q=C/S; . If up denotes the measure defined

for each x ¢ C(R) by ()(x) = u(ux), then
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p* (uf) =u(pn * £) — (up) * f and so u *pu % (uf) =0 .

As u * 4 1is a non—zero measure, uf is mean periodic.
. -zt d :
From w(z) = [ e du(t), ;0@ = - () (2)
or Dp = —(uu) . Also Dé == (ug) . On Q, differentiation of the

formula ﬂ + R(f) = é yields

Dg = Dp + K(£) + u DK(£)

so that
~(ug) = -(uy) * R(£) + 1l DK(E)
Then ﬂ ﬁ DK(f) = 1 ° (uus K(f) - ﬁ(ugs
= (uus - g - ﬁ(ugs =3
where y=(u) ¥g-=u%* (ug) .

Now pu * (uf)+ = ug - (uu) * f+
and so u % p * (uf)+ =-y . As u * uv* (uf) = 0,
(u % u3° K(uf) = —; . With (n * u$'= ﬁ'ﬁ , we see that
K(uf)(z) = - DK(f)(z) when z e Q .

If (a, p) ¢ Af, we may Suppoge that é(a) # 0 for if not,
another non-zero measure ) can be found for which A * £ = 0 and
( * f+$(a) £0 . With é(a) # 0, ﬁ(z) has a zero of order p at
z=a ., From § = (uu$‘° é -u - (ugs = - Dﬁ . é +ou e Dé, and the
fact that if H(z) 1s an entire function with a zero at z = a of
order p, then DH(z) has a zero at z = a of order p - 1, ﬁ(z)

has a zero of z = a of order p - 1 . Since (ﬁ)z(z) has a zero

at z =a of order 2p and since (p)2 K(uf) = -y, we see that
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K(uf)(z) has a pole at z =a of order p + 1 . Thus

(a, p+ 1) ¢ Adf .

§1.2 The Truncated Convolution Product

An application of Propositions 1.1 and 1.3 is now given.
As defined in Chapter 0, Lg denotes the mean period of a mean
periodic function £ and Vf‘ denotes the- closed translation in-

variant suBspace generated by f .

PROPOSITION 1.4 Let £ be mean periodic. Then f eV . and

uf ¢ erf + Moreover,

Le S Lo < Lege < 2Lg .
PROOF. Let Ag = ((ay pk))k;l 'so that Auf = ((ak’_pk+1))k=l
Since £ is the limit in C(R) of a sequence of exponential poly-
nomials {fn} C Vf, and since Vuf is spanned by the exponential
polynomials it contains, {fn} C Vuf and so f ¢ Vuf . From

= 2 = s
Proposition 1.1, R(E®E) = K())2, so Afef = ((ay, 2pk))k=1
and as P S P + 1 < 2pk when Py is any positive integer, we
see that uf ¢ Vf@f .

Thus, if A is any measure with X * uf = 0, then

PR

]

0 and so Lf S Luf

* = E3 =
then v (uf) 0 and so Luf < Lfef . Since u * £ 0 entalls

. Also, if v e MC and v * (f * £) = 0,

p*u* ®£)y=0, L s 2L

fef £°
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PROPOSITION 1.5 Let £,g be mean periodie. If h=ft® g, then

Ly - L SLo+1L .
PROOF. For any e > 0, non-zero measures u, A, v may be chosen
so that their supports are contained in intervals of léngths not
exceeding Lf + g, Lg + e, Lh + € respectively and u * £ = 0,
A*g=0, v*¥ h=20.,

With p* A * h=0, as pu * A 1s a non-zero measure
with support contained in an integval on length Lf + Lg + 2e, it

+L_+ 2 . Hence L

follows that L £ g h

p S L SLe+ 1L, .

Now from
., + - = +
n* E@g) =% (£ *g' -f *xg')=(u*£f) *g,

0

\)*u*h:\)*(u*‘f-'-)*g .
Since v * (u * f+) is a non-zero measure with support contained in
+ 2e, it follows that

an interval of length L, + L

h £
Lg < Lh + Lf + 2¢ for any € > 0 . Hence, Lg < Lh + Lf . Similarly
Lg 2 Lg + Lh and so |Lf - Lgl < LH .

REMARK. These bounds for the mean period of f ®g when f and g

‘are mean periodic are the best possible in the sense that it is

possible to find two sets of functions f, g, each with

Lf = Lg > 0 and in one case, Lh = 2Lf and in the other Lh =0,
For our first example, we use the fact that the mean period

of a continuous periodic function is equal to the period when all

Fourier coefficients are non-zero. ‘Let f be such a function of
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T .
period 7 so that f f(t) e 2inty, #0 for all ne Z .

By TheoremoO,S, eif I eit £(t) has mean period =
(althqugh eif has pgg?od 2n1). Let h ?:ECDeif so. that by
Propositions 1.1 and 1.2 , K(h)(z) = K(£)(z) * R(E)(z - 1)
7 If uy=26 - Gn’ then u:* f=0. Also
(u *.f+$(z) = fﬂf(t) %t gt = $(z), say. Then ¢(mi) # 0 for all
0

ne? and K(£)(z) = ¢(2)/n(z) = ¢(2)/(L -~ e "?) . Thus

R (2) = ¢(2) oGz - 1) / L - e a - "D

' o A -2
= ¢(z) ¢z - 1)/ @ -e %) .
-2nz . . .
Now 1 - e = 0 if and only if =z = ni for some
neZ and 1 - e_“27rz “has only simple zeros. With ¢(ni) # Q- it

is apparent ghaf K(h)(z): has a simple pole at 2z = ni for all‘
integers n and K(h) (z) has no other poles., So, the mean periodic
function h has spectrum ((ni, 1)):=_w . Hence h is a periodic
function of period 2w éhat has all Fourier coefficients.non—zero
‘and so h has mean period 2w .

We then ha?e'mean periodic functions 'f,‘g with
Le = Lg >0 and Lf®g = L; + Lg

- Our second example is a consequence of Theorem 3.4; namely,

~if y is any mean periodic function, a unique mean periodic function

X can‘ﬁg found Satisfying ‘x+t vy +-:;C)y' 0. For:ahy e >0, we

may choose a non-zero' measure -A with A * x

0 and whose support

is contained in an interval of length Lx + e . Then

ARy + (4 * x+) *y =0 and as X + A % x+ isia'non—zero measure



27

with support contained in an interval of length Lx + €,

L <L +¢ . Hence L < L1_ . Similarly, L < L and so L_=1L_ .

y X y X X y X y
For such a pair of functions x, y with Lx > 0, put

f=é®x+e, g=e@y+e where e : t > 1. Then £, g are

mean periodic and Lf = Lx = Ly = Lg . From x+ y + x@y =0, .

e@e®Px+e®@®e®Py+e®@x®P®e®y =0,

so

e®@® (Ff-e)+e®(g-e)+ (f-e)®(g-e)=0
whence £®g=e®e. As e®e has mean period zero, we have
Ligg = lLf—Lgl =0 and Lg >0 .

In addition to each of MP, MPo’ and MQ being subalgebras

of C(R), we now show

PROPOSITION 1.6 Let £, ge C(R) and £#0 . If

£, £®g ¢ MP, MP0 or MQ, then g e MP, M:Po' or MQ respectively.

PROOF. Let f, f® g e MP and let- u,.v be non-zero measures
with p* f=0, v* (£@g) =0 . With u*(f@g)=(u*f+)*g,r
v* (u* f+) * g=0, Since £ #0, v* (u* f+) is a:non-;ero
measure and so g 1s mean periodic.

When £, £® g € MPO, the non-zero measure v ¥ (u * f+)
can be chosen with support contained in an interval of arbitrarily
small length. Thus g has mean period zero.

When £, £®g e MQ CMP, we know that g e MP .
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Now a -mean periodic function is an exponential polynomial
if, and only if, its Kahane Transform has a finite number of poles.
Since K(f@g)r = K(f) * K(g) ana as K(f), K(f@ g) have a finite
number of poles, K(g) must have a finite number of poles. Thus g

is an exponential polynomial.

REMARK. We note that it is possible to have both £, g continuous and
non mean peri;)dic but h = £® g to be an exponential polynomial; As
a consequence of Theorem 3.4, if x e C(R), there exists a unique
continuous vy € C(R) satisfying x + y + x@y =0, and x & MP

if, and only if, y ¢ MP . Choosiné an x € C(R)NMP so that

vy € C(R)\MP and setting £ = e@x+e, g= e®y + e, we find

as before that f@lg =e®e .7 Then f, g e C(RN\MP and

e®e ¢ MQ . '

" One may then ask if f is continuous and if f®f is
mean periodic whether £ 1is mean per‘iodic. The answer is by no
means af.firmative, evén When f®f is an exponential polynomial.
This is illuétrated by the function (one of man}Jr) f:t>+/t
which is not mean periodic and |

t

]

0 — .0 *—
X

£F® £(t) Yt - r ° /f"dr

i
2t2 sin26 cos?20 de

mt2/8

which is an exbonential polynomial.
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§1.3 Subalgebfas of MP, MPo and MQ

" As a spectral set is not defined for a non mean periodic
continuous function, but a mean periodic function does have a sﬁectral
. set, we are able to characterize some subalgebras of MP with this
concept. Properties are given of subalgebras of each of the algebras’
MP, MPo aild MQ . More properties Wiil be given for Fhe subalge-
bras of MQ . However, we do not attem?t to describe all of the

numerous subalgebras of each of these algebras.

PROPOSITION 1.7 Let M denote any one of the algebras MP, MR

or MQ and let A be any set of complex numbers. Then

M@A) = {feM : S;.cA}

£

18 a subalgebra of M. Moreover, M(A) <is translation invariant

and contains uf whenever £ e M(A) .

PROOF., Let a, beC . Also let f, g e M(A) so that the poles
of the Kahane Transforms, K(f), K(g) are contained in A . By
Proposit;ion 1.1, K(af + bg) = a K(£f) + bK(g) and
K(f@g) = K(f) * K(g) and so the poles of k(af + bg) and
K(fE®g) are contained in Sg U Sg c A. Hence
af + bg, :EC)g ¢ M(A) .and so M(A) is a subalgebra of M'.,

" From Propositions 1.2 and 1.3 ; the spectral sets of
;‘,Taf’ uf and fr coincide. Thus, if £ ¢ M(A), T&f and uf

belong to M(A) .
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Notes. 1. If £ ¢ M(A) N ¢cl@®), then f' e M(A) (by use of
Proposition 1.2),
2. M(A) is dense in C(R) . For if a € A, the

{un ea}:=l C M(A) and the set of all polynomials is dense in C(R),
a
3. If feM and if U(f) = {}] A £2P ;5 e C, n=1,2,...}
p=1 P P

- U/ ] Q(p-
then U(f) is a subalgebra of M. Here for =f, £P =f® £ P1)

If £ =A e s then it is apparent that as

R @(qt+l) _ u ®(qt+1) _

a ea/q! (from e uq/q!), U(f) = M({A}) and

so U(f) dis translation invariant when f = A ea . However, if

f = e, + ey (a # b), then U(f) does not contain

T (e + e ) = e 2% o 4+ é~ba e, = e—aa(e + e(a—b)a e
o a ‘b a

a - b b)

~when o # 0 . Thus, in general U(f) is not translation invariant.
4. If BcM and if

n
Uu@B) ={ )

plAprl@sz@.'. f :+ £ . € B}

pk
then U(B) is a subalgebra of M . In general, U(B) is not trans-
lation imvariant. One exception to this is given in the following:

PROPOSITION 1.8 If f e M and ©f V. denotes the closed translation

f

' invariant subspdce generated by £, ' then U(Vf) is a translation in-

r‘vafiant subalgebra of M..

PROOF., If £ e MP, and if ¥ 1is any measure for which p*f =0,

* - = ‘ i
then Vf 0 . Thus Vf CMP and if £ ¢ MPo’ Vf C:MPo .
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If £ e MQ, and if Uf 18 the subspace spanned by f and

£ CMQ . Since Uf is finite dimensional, it

is closed and so when £ e MQ, Uf = Vf cMQ .

its translates, then U

Thus, if f eM, then Vf CM. So U(Vf) 1is a subalgebra

" of M. To show that U(Vf) is translation invafi-ant, it suffices
{

_to show that ’i:f ?{1’ Xyy eoe X € Ve, and if g = xl® X, = ® X s

tl‘lep Tag € U(Vf) .

Let x, y € C(R) . Then

t-a
Ta(x®y) )y =[ =x(t-o - r)y(r)dr
o
t—-o ot
= f x(t -~ a - )y(x)dr + f x(t - o - r)y(r)dr
t "o }

.
[ x(s - o)y(t - s)ds + (T %) ®y)(t)
o . ' .

so T (x®y)=yv*y +'(TOLX)®‘y‘

where ¢ is a measure, defined for each h e C(R), by

o
p(h) = - f'x(s -~ a) h(s) ds .
: o

On répeated applications of such a formula,

= % *
Te=nmn X + (n, *x ;) ® X, + .. (Taxl) @xz . ® X .

if yj = * Xy where n. 1s any measure and X, € Vf, then for

"3 i

each measure yu satisfying u * £ =0, u * vy = 0 and so yj € Vf .

Hence Tag £ U(Vf) and so U(Vf) is translation invariant.

REMARK. We note that if f e M, then U(Vf) C M(S since if

£)
s e0s S CS and if
Xn :

xl, Xy oo x‘:‘l € Vf, le,

®xy
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= * .
g xl®x2 -+ *x , then Sg(‘_'Sf so g e M(S;) .

It may also be noted that when a e S e € V. and so

f

u € U(Vf) for ¢q =0, 1, 2, .... Since M(Sf) also contains

q%a
for q =0, 1, 2, ... when ace S, and M(S.) is translation

invariant, it would be interesting to know if indeed U(Vf) = M(Sf)

u e
q a

or merely ‘uh € U(Vf) when h ¢ U(Vf) . No answer is yet available
for when f is any mean periodic function but when f is an expo-

nential polynomial.

PROPOSITION 1.9 Let V be a translation invariant subalgebra of

M. If A= U 80 then
xevV .
V={xeMQ : SxCA} .

PROOF. It is clear that if x e V, then Sx CA .
Conversely, let x € MQ and Sx C A and suppose that

X = zzié(k,q) uq;eak where ays 855 +e. @ € A .

It is required to show that x € V . For each aj e A, there exists

an Xj e V with aj € Sx . Since V dis a translation invariant
: ] : :
subspace of MQ, V contains Ux and so e, . As V 1is also a
j J

subalgebra, V contains and so V contains x .

uq eaj

Hence V = {x ¢ MQ : S, C A} .
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§1.4 Fields of Convolution Quoﬁients

In éoncluding this chapter, it is shown that the ring MP
has no non-zero divisors of zero. As well, a brief account of
Mikusinski's convolution quotients in C(R+) that is extracted from

Erdélyi's book, [1], is included.
PROPOSITION 1.10 MP has no non-gero divisors of zero.

PROOF. Let £, g € MP, .fC)g =0 and suppose that f # 0 . From
Theofem 0.5, £ cannot be zerolon any interval of 1ehgth exceeding
the mean period of £ . So ff and f_‘ are both non-zero. As
(f@g)+ = f+ * g+ and (f®g)” = ~f * g are both zéro, it
follows from Titchmarsh's convolution theorem (see,-for éxample,

Erdélyi, [l], page 16) that both g+ and g are zero. Thus

g =0 and so MP has no non-zero divisors of zero.

REMARK. It is pbssible to show that MQ .has no non—zefo
divisors of zero without recourse. to Titchmarsh's convolution theorem.

For details of an elementary proof that the set of entire
functions (and so exponential polynomials) have no non-zero divisors
6f zero, see Theorem 5.3 .

Mikusinski observed that the set C(R+) of continuous.
complgx—valued functions onr R+ = [0, ©) with the operations of
addition and trﬁncated convolution forﬁed an integral domain without
an identity and an algebra'OQer ¢ . Thus a quotient field F can

be constructed in which the equation x® g =£f (g # 0), ~always has
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a solution. To do this, one defines an equivalence relation on the
set of ordered pairs {(f, g):f, g ¢ C(R+) and g # 0} by putting
(£, g) and (fl, gl) eciuivalent if f@g:L = fl®g .

Each equivalence class is éalled a convolution quotient
and f/g is used to denote an equivalence class that contains (£, g).
The set of such equivalence classes, F, may be shown to be a field
and a vector space over ¢ . Moreover, it is possible to embed both
¢ and C(R+) into F. Thus, some elements of F will correspond
to numbers or continuous functions, still others will correspond to
abstract entities including Dirac's delta function which appears as
the identity in the field and the equivalence class g/g
(ge CR), g#0) . Alsb, F contains an 'extended' derivative
s = ef(e*e) with s®x = Dx + x(0)§ for each x € C(R) .

With MP having no non-zero divisors of zero, .and MQ,
MPO being subsets of MP that are closed with respect to addition
and truncated convolution, it is apparent that if M‘ denotes any
one of MP, MPO or MQ, theﬁ M is an integral domain without an
identity and an algebra over ‘¢ . Thus, in the same way that the
quotient field F dis constructed from C(R+), a quotient field F
may be constructed from M when M is any one of MP, MPo or MQ .

One difference between F and FM is that F 1is complete

(in the sense that C(R+) is a complete metric space) whereas Eﬁ

is not..
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Chapter'Two

ORDINARY AND FUNCTIONAL DIFFERENTIAL EQUATIONS‘,

In this qhapter, we show that if A(t) is a continuous
periodic matrix (i.e., a matrix whose elements are continuous perio-
dic functions with a coﬁmon period), then for certain mean periodic
vector functioms, £, all solutions to the system of equations
_57 = A(t)x + f are mean periodic. Also, in Section 2.2, we show

that if [A] and [u] are matrices whose elements are certain
‘' measures, then the system of equations x' = [x] * X'+ [p] * x has
non-trivial solu;ions and‘moreover, all solutions valid on R are
mean periodic. Such functional-differential equations have been
studied in a different context by J. Hale, [1], and others, and
include as special cases, differential-difference equations.

As well, in Section 2.3, we éive examples of ordinary

and functidﬁal differential equations that admit non mean-periodic
zsolutions.

The results given in this chapter represent a continuation

of some of the authork earlier work, that included (Laird [2]), the

4following propositions:

1. TFor the system of equatiomns,
x'(£) + Ax(t) = y(£) with x(o) =¢

where y i1s an n-vector valued function with continuous components

and A is a constant n x n 'matrix, a necessary and sufficient
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condition that x be mean periodic is that y be mean periodic, and

2, For the differential-difference equation

n

x'(t) + ) a x(t - o) =y()
k k

k=0 ]
where y d1s continuous on R, n > 0, a,s @y +.+s & are mon-zero
complex numbers and W, < 0y < 4w w, are real numbers, if any
solution is mean periodic, then y 1is mean periodic. Conversely,

if y is mean periodic, then all solutions valid on R are mean

periodic.

§2.1 Ordinary Differential Equations

THEOREM 2.1 Let A(t) be a continuous periodiec n x n matrix of

‘ periéd t. Let £ be an n-vector whose 4th component is of the
form b.gy i1=1, 2, ... n) bhere bi 18 a continuous periodic
function of period Ty where each T, is commensurable with - and
84 is any exponential polynomial. Then all solutions of the system

of equations
(2.1)  x'(t) = A(t) x(t) + £(¢)

are mean periodic.

PROOF. An example is given in Section 2.3 that shows some restriction
"additional to f being mean periodic must be made to ensure that x
is mean periodic. Let Y(t) be a fundamental matrix for the system

x' = A(t) x . By Floquet's Theorem, Y(t) = P(t) etL where P(t)
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and P_l(t) are continuous periodic matrices of period T and L
, .

. 18 a constant matrix. Then any solution of (2.1) may be written as

' t
x(8) = B(t) e ¢+ 2(e) e [ &L pl(s) £(s) ds.
. o . .

where' ¢ 1s a constant vector and the elements of the matrices etL

and e--SL are exponential polynomials (see, for example, Coppel, [l],
pages 45-47).
Hence each component X of x is of the form
X, =1 ) Pys By ZZZHP.g f g

i ik 1§ Cik Iikem jk hkz fm m
where Py By aTE continuous periodic functions of period T and
gjk’ hkz are exponential polynomials. Now a periodic function is
mean periodic, the product of a mean periodic function with an
exponential polynomial is mean periodic and a finite linear
combination of mean periodic ‘functions is mean periodic. Thus each

t

Xy is mean periodic when the terms Pij f hkz &om fm have been shown

to be mean periodic, We now use £ =Db g where b is a
! m m °m m

continuous periodic function of period T where T is commensurable

with 1 and the fact that an exponential polynomial is a finite

linear combination of terms un ea t t > tn at’ . Let w Dbe the

least common multiple of T, Tys Tos eeee Tooo Then each function

. t ' . ¢
pij f hki 8om fm is mean periodic if for n =10, 1, 2, ..., the
J 5 ! 7
functions
t
Fn : t > p(t) f &t &2 q(r) dr

o}

~are mean periodic when p and q are complex-valued continuous
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periodic functions of period w.
To show that Fn is mean periodic, we start by observing

t :
that Fo(t - w) = p(t) f éa(s w) q(s) ds so that
: w w
aw - - _ar .
Fo(t) e Fo(t w) Ao?(t) where Ao £ e” q(r) dr . This
may be written as A\ ¥ Fo =’A°p where A is the non—-zero measure

aw

§ -~ e Gw . With Fn defined as above.

n .
F_(£) - ™ F_(t - w) = A p(t) - jZl ncj (~w)? By (®)
or

A*F =Ap - % e o)l F
n nP =1 J n—j

where An is some constant.
With Gw *p=p, A*p= 1 - eam)p . Thus
* )\ K =
A A Fn Bnp + BO F0 + ... Bn—2 Fn—2’
are constants., Continuing in this manner, we find that

*
A (ntl) Fn

where Bn’ Bo’ e Bn—2

= Cp where C 1s another constant. If

*
n = A (mtl) 4 R Sw), then W is a non-zero measure and

By * Fn = 0, showing that Fn is mean periodic.

Hence the solution to (2.1) is mean periodic.

REMARK. A special case of the above theorem is as follows:

Let A(t) be a continuous periodiec n x n matrix of period w and
let £ be a continuous periodic n-vector valued fﬂnction of period
w . Then all solutions of the system of equations (2.1) are mean

periodic.
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§2.2 Functional Differential Equations

Our next Theorem will involve linear systems of functional
differential equations with constant coefficients that admit mean
periodic functions. Before moving onto this Theorem, we give a
brief account of some Functional Differential Equations considered
by J. Hale and others (Hale [l], Hale and Meyer [l]). As well, we
state and prove an interesting Lemma that will be used in this and
the next chapter.

Let r be a fixed non-negative integer and, when x is
defined on [~r, «), let x_ be the function defined on [~r, 0]
by X, 0t é + x(t + 8) for =~-r < 6.5 0 and t >0 . Also let ¢n
denote the n—-dimensional vector space over ¢ and let X denote
the space of continuous functions from [—r, O] into ¢n .

J. Hale ([i], page 293) has defined a linear functional
differential‘equation with constant éoefficients as any equation of

the form

(2.2)  x'(t) = £(x,)

-where £ is any continuous linear map of X dinto ¢n . For such a
map, he notes the existence of an n x n matrix [n(e)]

(-r < 6 < 0) whose elements are of bounded variation and
o
£@) = [ [dn(®)] ¢(®)
-r

for all ¢ e X . Hale also observes that such equations include
systems of linear differeﬁtial—difference equations of retarded type

and with constant coefficients; for example,
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n
x'(t) = X Ak x(t - 1,) .o T, 20 .
= =1 k k=

By a simple change of variable, we see that equation (2.2)
may be rewritten as x'(t) = [u] * x(t) or
n
r - F 3 =
xj kzl ujk X & 1, 2, ... n) where [u] denotes an
n x n matrix of measures {ujk} whose supports lie in [0, r] .

Hale and Meyer [l] have considered more general systems

including those of the form

x'(t) = g(x)) + £(x,) + y(t)

where f and g are continuous linear maps of X into R" and

y € X . This equation may be written as

(2.3)  x'(t) = [A] * x' (&) + [u] * x(t) + y(t)

: n ' n
or xj = kzl Ajk * X + kzl ujk * X + Yj G=1, 2, ... n)-
where [A] = {Xjk} and [u] = {ujk} are n xn matrices whose
elements are measures with supports lying in [0, r] .

Hale and Meyer (loc. cit., page 6) note that such "neutral"
equations would also include equations of advanced type unless some
restriction is made on the function g or the matrix [A] . The
restriction used by Hale and Meyer is to require that [A] "be
uniformly non—-atomic at zero'. Although we have nothing against
equations of advanced type, some restriction on [A] will be neéded
to guard against systems of equations (2.3) that admit arbitrary

solutions: for example, if n = 2, A =0= 2 A =§ =

11 21
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Eﬂ = 0g énd y = 0, then ‘5' = [X] * x' is equivalent to

LI
Xl X2.

the restriction of EA] being ﬁniformly non—-atomic at zero but shall

Acqérdingly, we shall adopt Hale and Meyers' concept of
restate it as follows:

DEFINITION: Let [A] be an n x n matrix whose elements are
measures with supports Zyihg in [0, r] for some r > 0 . If there
exists an e e (0, r) and a function & on - [0, e] that is
continuous and nbn-decreasing with &(0) = 0, and if for each element

A of the matrix x],
. S B N ) ' N . ‘ -
(2.4) | ¢(e)ax(e)| = 8(s) * sup{|e(8)] : 0 <0 < s}
(o]

for all ¢ e C([0, €]) and s e [0,e], then [X] <s said to be

unt formly non-atomic at zero.

LEMMA 2.2 Let T = {Tij} ' be an. n x n matrix whose eZeMénts are
distributions with compaét supports and let x be a continuous
vector function that satisfies T *# x =0 . Then x is mean periodic
wﬁen T has a non-zero "déterminant"; or when %(z), the matrix
whose elements are the Fourier-Laplace transforms of therelemeﬁts of

T, has a determinant that does not vanish identically.

PROOF. We make use of the fact that the set of distributions with
compact supports taken .with the operations of addition and convolution
forms a commutative ring with identity. Thus, certain matrix

concepts and operations (as in Jacobson, [l], page 56) can be employed.
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Let Mki denote the cofactor of Tki “in the matrix T so that

Z Mki % Tij is equal to det T for k = j and is zero for k # j

From Tiq * Xy = 0, we see that
n
Z Z Mk xj =0 k=1, 2, ... n),
i=1 j=1
and so (det T) *‘xj = 0 (j =1, 2, ... n) . Thus, x is mean

periodic when det T # 0 .
Let S = det T so that

S = z sgno T

ceS

o) “Tag2) t F Taom)
N ,

where o ranges over all the permutations on {1, 2, ... n} .

) - A= A ) * '\=" .
Alsq (a T1 + b T2) a Tl + b T2 andr (T1 T2) T1 T2
when a, b € C and Tl,‘ IZ are distributions with coﬁpact supports.
Then

~ ~ ~

-8 =.G§S sgno T, (l) 20(2) oo Tﬂ?(n)

and so if H(z) = det T(z), H(z) = S(z) . If H(z) is not
identically zero, then S = det T is non-zero and so x is mean

periodic.

COROLLARY: " If T <s an n x n matrix whose elements are measures,

~then. det T <s a measure.
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THEOREM 2.3 For the system of linear functional differential equations
2.3) x' =[] *x' +[u] *x+y

where (1) [A] s an n x n matric whose elements are measures
with compact supports Zying in [0, ®) and [A] <s wniformly
non-atomic at zero,

(2) [u] <8 an n x n matriz whose elements are any
' measurés with compact suppori;s, and

(3) 3y is a continuous n-vector function on R, then
(a) if y =0, there is at least one non-trivial exponential solution
on R and all continuous soiutions valid on R are mean periodic,
(b) if y <is mean periodic, all continuous solutions valid on R
are mean periodic, and
(¢) if any continuous solution x <8 mean periodic, then y 1is

mean periodic.

PROOF, Let T denote the n x n matrix
IDs - [DA] = [u]

where I 1is the unit n x n matrix; DS is the distributional
derivative of the Dirac measure, and [DA] is the distributional
derivative of the matrix [A] . Th.en T dis an n x n matrix whose
elements are distributions with compact supports and equation (2.3)
may be written as T ¥ x =y . '

For a), we show that T * x = 0 has at least one’

non-zero solution of the form x =d et ,
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Now T * d eZt) = %(z) d e
where %(z) = Iz - z[i(z)] - [ﬁ(z)] .

Here [A(z)], [ﬁ(z)] are matrices whose elements are the Fourier-

Laplace transforms of the elements of [A], [u] respectively.

t

Thus there exists a non-zero vector d with T * (d e®y =0 if,

and only if, h(z) det T(z) = 0 for some 2z ¢ ¢ . (Incidentally,

the equation h(z)

2.3)) .

0 4is known as the characteristic equation of

We now show, indirectly, that h(z) has at least one
zero. Suppose that h(z) does not have any zeros. As h is an
entire function, there exists an entire function g so that
h(z) = eg(z) . Moreover, as h i1s of order one and of polynomial
order on the imaginary axis, h(z) = ¢ % where ¢ is complex and
o is real. |

It is well known that ;f A is any n x n matrix,

_ .n n-1 ] n—-k

where each Py involves a finite number, say Ny s of sums of terms
that are *1 times a product of k elements of A (for example,

Py =~ trace A and P, = (--l)n det A) . If we regard A as
z[i(z)] + [ﬁ(z)], then from h(z) = ¢ e??  and |

h(z) = z2" + zn—l Py S zn'—k Py + oeee P, ,

(2.5) |z|n s |z
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Now let u be any‘measure and let A be any measure with
support 1ying in [0, r] belongigg‘to the matrix [A] satisfying a
uniforml& non~atomic at zero condition. éuppose also th;t p  has
-support (o, B) and norm & and A hasnorm m . If 2z = x + iy

and x > 0, then

|ﬂ(z)| <% sup{[e-ztl t o<t s B} < e .

. s

Also, if AS(¢) = f $(8)dr(8) for.each ¢ ¢ C([O, r]) and
) o

0 <s<r, As and Vg = A - AS are measures.

By equation (2.4),

6(5) . sup{|e-Zt|

1A

A, (2] 0 <t s )= 6(s)

where z=x+ iy and x> 0 .

As'well;
|;S(Z)| <m e sup{]e—?tj ts<tsr) = ne” 5%
when x > 0 and so
' ]i(z)| < 6(s) +m F-xs) when x, 5> 0 :

Let A = {ajk} and éjk= zkjk(z) + ujk(z)

Also let ujk have norm ij, Ajk have norm mjk’ and ujk have
supPort [ajk? Bjk] . Put

L = max{zjk : 1<, k < n},

M= max{m.jk :1<3j, k £nl,
and o = minf{a,, : 1 < j, k < n}.

ik



46

As [A] is uniformly non-atomic at zero and each Ajk has support

in [0, r], it follows that

X0

|a.k| < lz| (8(¢s) + Me *®) + Le

J

for x>0 and j, k=1, 2, ...n.

Next, choose any te(0, 1) . By referring again to the
uniformly non-atomic at zero deéinition, an s > 0 can be chosen so
that 6&(s) < kg . With this s, fix x>0 so that Me ™5 < iz .

Putting £ = Le

in

s we then have lajkl lz|z + ¢ .
Recalling the definition of Pys Pys s+ P, We see that

when z =x+1iy and x > 0 1is chosen as above,

1A

pyl s g (fz]e+ £) and

A

lpp | = mp Clz e+ o <'ng |z|* + QG

Here n‘= max{nl, Mgy oo nk} is dependent only on ‘n and qk is a
polynomial in |z| of degree k - 1 .

From equatioﬁ (2.5), we obtain _

n
l2|® < mng |2+ § | q + |ee®®| .
k=1

n , : ‘
) |zn-k| 9y ‘is a polynomial of degree n - 1 in

Now P(|z|) =
E ' k=1

' |z1 . If we choose e(O,il) so that nng < %, and comsequently.
choose x > 0, then 4|z|" < 2(|z|) + |c| ™.
But this is contradictory for large values of |y| .

. Hence h(z) has at least one zero and so the homogeneous equation (2.3)
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with y = 0 has at least one non-trivial solution.

As well, h(z) is not identically zero. TFor if we
assume otherwise, we have, as above, %[z[n'S P(|z|) which is
contradictory. '

Since h(z) = det(i(z)) is not identically zero,

Lemma 2.2 shows that all continuous x satisfying T * x = 0 are
mean periodic.

For b), if y '1s mean periodic, let v be a noﬁ-zero

measure with v * y =0 and put z=v *x (i.e., v ¥y, =0

_and Z; =V * X, for 1 =1, 2, ... n) . From equation (2.3), and

z' =v *x', we obtain

F-Dlrz + vz

If x dis any continuous solution on R, then 2z 1is
continuous., From part a), any continuous solution 2z to this
equation:is mean periodic. Hence 2z, and so x is mean periodic
when x is a continuous solution on R and y is mean periodic.

For c¢), 1if ‘g is any continuous mean periodic solution
to (2.3), let p be any non-zero measure with p * x = 0 . Then

p*x' =0 and so p * 2.= 0 showing that y 1s mean periodic.

REMARKS. We note that a considerably shorter proof can be given for

the above theorem when [A] = 0, that is, when (2.3) 1is replaced by

x'=[l*x+y .

Also, we note that the theorem includes as a speclal case
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the following concerning linear differential difference equations
with constant coefficients.

k8’ bjkx (1 £ j, k £ n) be complex numbers. Let

wy be positive real numbers and let T, (1 < 2 <m) be any real

Let a

numbers. Also lét x, y have components X5 Xy eee X and
Yis Vg eee Yy respectively , and y be continuous. Then for the
system of equations

m m m

m
x&(t) = Z ) 214 x (t - w) + lzl kzl bjk2 x (6 = T,) + yj(t)

G=1, 2, ... n), the conclusions of Theorem 2.3 hold.

§2.3 Counter examples

We now give examples of ordinary and differentiél difference
equationS'fhat admit non mean periodic solutions. All of these
examples will be scalar equations. The claims made for most of thése
equations may be verified by making use of the properties of
Kahane Transforms shown in Chapter 1 and properties of spectral sets
of mean periodic functions.

Our first example complements Theorem 2.1 of this chapter.

EXAMPLE A Let g be a continuous periodic function of period 2m/B .

Let é(n) (the nth

Fourier coefficient of g) be non-zero for
n=1, 2, ... and let B be irrational. Then there are no mean

. periodic solutions to the equation

(2.6) x'(t) = eitlx(t) + g(t)
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Clearly x = 0 1is not a solution of (2.6) . If we

suppose that (2.6) has a non~zero mean periodic solution x, then

on taking Kahane Transforms, we obtain, with f(z) = K(x)(z)
2.7 z £(2) - x(0) = £(z - 1) + K(g)(z) .

Since g(n) # 0, K(g)(z) has a pole at z = inB so
K(g)(inB) is infinite for n =1, 2, ... . From (2.7), we see
that at least one of f(inB)l and f(inB - i) is infinite. If
f(inB) is infinite, with inB # i and K(g)(inB + i) finite,
f(inB + i) is infinite. Continuing in this manner, and using
inB + im # ip for any integer é, we conclude that £(ing + im)
infinite for m =1, 2, ... . Also, if for a fixed value ofj n,
f(inB - i) is infinite, then £(inB —'im) is dnfinite for
‘m= 1,2,

Thus, f(x) has poles at points including
{z = nBi + e im tmy n=1, 2, ...} where e = *l . Since

(e o]

1

Y 1 ki 2 7T 5= o,
el nel ]nBi + 8n,1ml‘ s |nB + m|

we see, by (0.2), that f£(z) = K(x)(z) cannot be the Kahane

Transform of any mean periodic function, x .

'EXAMPLE(S) B When a(t) is any one of the eaponential polynomials

2t, et or o cos at + B cos Bt (where of/B is irrational) any
‘non-zgero solution to the equation x'(t) = a(t) x(t) <s not mean

periodic.

is
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If a(t) = 2t and x'(t) = a(t) x(t), then =x(t) = ¢ et2 .

2
That et is not mean periodic has been noted by Laurent Schwartz [1].
CIf x'(t) = et x(t), suppose that x is mean periodic.

Taking the Kahane transform of this equation, from Proposition 1.2,

we obtain with £(z) = K(x)(z),
z £(z) - x(0) = £(z - 1) N

If‘ x # 0 and x is mean periodic, then the spectral set Sx of
¥ contains at least one point, say a, apd so f(g) is infinite.
Then (a + 1) f(a + 1) is infinite and so f(a + 1) is infinite.
Thus £f(a + n) is infinite and so a + n ¢ Sx for all n e N .

[+2]

Since ) |a+ n|_.l = o, Sx cannot be the spectral set of a mean
n=1 ‘ ‘
. a4 . ‘ ‘ t
periodic function. Hence x'(t) = e x(t) has no non-zero mean

periodic solutionms.

Now if x'(t) = (0 cos at + B cos Bt) x(t) , then

sinat sinft sinat
e s e e

x(t) = ¢ °* for some constant c¢ . As

s
sinBt . . . . .

e are two periodic functions with non-zero Fourier coefficients

of respective periods 2w/o, 27/B and as «/B is irratiomal, the

product of these two functions is not mean periodic, (see remark

followiﬁg Theorem.0.6). Hence.if ¢ # 0, x is not mean periodic.

ﬁXAMPLE C The soZufionsAto the equation x'(t) =1 ; x2(t) are not
mean . periédic. | ' N

For a solution tb this equétion is' x(t) = tanh (t +c) .
Since x'(t) = sech? (t + ¢) 1is an absoluteiy integrable function,

it is not mean periodic and so x(t) 1s not mean periodic.

———
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Before giving examples of differential difference equations
that admit non mean periodic solutions, we may observe that the
equation x'(t) = a(t) x(t) may have all solutions mean periodic

but a(t) is not mean periodic. Two simple examples are

i) a(t) = b + n/t (n a non-negative integer), a function ‘that is

discontinuous at the origin with =x(t) = ¢ £ ebt, an exponential

polynomial, and

ii) a(t) = tanh t, a non mean periodic function with =x(t) = cosh t,
an exponential polynomial.

EXAMPLE D The equation

(2.8) x'(t) = - x(t/k) with k > 1

has no non-gzero mean periodic functions.
| This equation has been considered by G. Morris, [l]
Oon (0, ») it is seen to be a differential difference equation of

retarded type as it may be written as
x'(t) = - x(t - (L)) where 1(t) = t(k - 1)/k > O .

Morris shows that any non-zero solution to this equation on R+

oscillates unboundedly, and also, from seeking a solution

x(t) = Z c eOLnt , one obtains
‘ nez
b (o) 2 torth
x(t) = ¢ ’z kécn o) exp (-t kn o 6) .

nez
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Suppose that equation (2.8) has a non~zero mean periodic
function x . Then the Kahane transform of this equation, with

U £(2) = K(x)(z) is
(2.9) 2 £(z) - x(0) = - k £(kz) .

Now as x 1is supposed mean periodic, the spectral set, Sx’ of x

is non empty. Moreover, Sx # {0} since there is no constant
solution to (2.8) . So there exists an a # 0 with a ¢ Sx . From
(2.9), it is clear that £f(z) has a pole ét z=>b if, and only if,
f(z) has a pole at z = kb . Thus ak” e Sx for all integers n .
Since ) Iaknr2 = ®, §  cannot be the spectral set of a mean
periodizézuqction. Thus we have a contradiction and so equation (2.8)
has no non-zero mean periodic solutiomns.,

Our next exampie concerns a special case of the differential-

différence equation
(2.10) x'(t) = p(t) x(t - w) with p(t + w) = p(t), p continuous.

Systems of such equations have been considered by

A. Stokes [11, and A. Halany [l] .
w t
Put f p(r) dr = wL so that f p(r) dr - Lt is
o) o
periodic of period w . If x satisfies both (2.10) and

x(t + w) = zx(t), then x'(t) = p(t)x(t)/z . Thus

t
x(t) = ¢ exp(% f p(r) dr) and if
o
1 t
a(z, £) = c exp€ ([ p(x)dr - Lt)) ,

(o]
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eLt/z

then x(t) = q(z, t) , where q(z, t) dis periodic in t of

period w . Hence x(t + w) = zx(t) and x is a solution of (2.10)

if, and only if, Sz L,

When wL # 0, it is known that the equation ewL/z =z
has an infinity of solution;. Conseqﬁently, equation (2.10) will
admit many solutions or Floquet terms of the form x(ts = q(z,t) eLt/Z.
Any finite linear combination of such térms is a solution of (2.10)
and is also mean periodic. However, there exist sdlutions of (2.10)
tHat are limits of infinite series of such terms, and it remains
unknown as to whether or not such limits are mean periodic.

w

EXAMPLE E When f p(xr) dr = 0, the equation

o}

(2.10) x"(t) = p(t) x(t - w), pﬂﬁ + w) = p(t), p continuous,

'h&s precisely one family of periodic solutions
x(t) = C“expgfv p(r) dr) - (c constant)
‘ o

and all other solutions ave non mean periodic.

To show this, we use ;he ferminolbgy and a Theorem of
A. Stokes, [1] . With fw p(r) dr ='Q, x(t) = ¢ exp(ft p(xr) dr) is
élearly a solution of (2?16) and it is periodic. Moregver, there is
no other ;olution to (2.10) that also satisfies x(t + w) = zx(t)
for any complex z .

Thus, the period map T mappiﬁg the Banach space

X = C(E—w, 0]) into X defined by Tx(r) = x(w+ r) (-w < r 5 0)

is a completely‘continuous operator that has only one non-zero
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eigen-value. If E dis the corresponding eigen manifold and if P
is the projection of X onto E, then by Theorem 1, Stokes [l],
if ¢ 1s any function in X, if R(@) = ¢ -~ P($) and if y is

- the solution agreeing with R(¢) on E—w, 0], we have eatH y|| =0
as t > x,

To complete the proof, it is only necessary to show that
such a function cannot be mean periodic when it is non-~zero. Suppose
that y 1is non-zero and mean periodic, then, for each real o ,
there exists a positive Ma such that |y(t)| < Ma e-'OLt for t 2 0.

In 'the half plane Re(z) > - o, the Laplace transform of ‘
y exists, is analytic and coincides with the transform of Kahane.

As o 1is any real number, it is clear that the transform of Kahane

is an entire function and so y must be zero.

EXAMPLE F The equation x'(t) = et x(t - w) has no mom-zero mean
periodic solutions.
Suppose that x 1s mean periodic. By use of Proposition 1.2

the Kahane transform of this equation yields with £(z) = K(x)(z),
z £(z) = e % £(z - 1) + H(z)

where H(z) "is an entire function. If x # 0 and x is me;n
periodic, the spectral set Sx contains at least one point, say a .
Then f(z) 1s infinite and so (a + 1) f£(a + 1) is infinite.

Hence f(a + 1) dis infinite. Continuing in this manner, we find

that f(a + n) is infinite and so a + n ¢ Sx for all ne N .
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cannot be the spectral set of a mean

‘periodic function (Chaptef 0, (0.3) and §0.5) . Hence

x'"(t) = et x(t - w) has no non-zerc mean periodic solutions.
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Chapter Three

SYSTEMS OF INTEGRAL EQUATIONS

Our main results in this chapter (Section 3.2; Theorem 3.4)
concern the following system of integral equations
oot .
xik‘t) - z f gij(t -r) xjk(r) dr ='fik(t) a1sx<1i s‘n,.l < k £ m)

j=1 o
or

X-G®X=F

where G = {gij} is an ‘n ¥ n matrix whose elements are continuous
functions and F is an n x m matrix whose elements are continuous
functions. We prove the existence-of a unique continuous solution

to this equétion. Moreover, when F and G have certain properties
such as mean periodicity, so has the solution. As well, we consider

the system
X' -¢@®x=F

and givé (Section 3.3) a brief discussion of the system
GAX=F .

Throughout this chapter, the term 'continuous matrix' will
denote a matrix whose elements are complex valued continuous functions
defined on R . The term 'mean periodic matrix' will denote a
continuous matrix whose elements are also mean periodic functions. By
a matrix with mean period zero is meant a mean periodic matrix whose

elements have mean period zero.
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A sequence of & x m continuous matrices {Fp};=l will

be said to tend, locally uniformly as p » », to a matrix F if

It

F

{fij} is a 2 xm matrix, F_ = { }, and for 1 <1 <2,

f
P pij
l1<j<m each fpij » £ locally uniformly as p =+ « , In this

ij
case, we write Fp -+ F locally uniformly as p > o énd we observe
that F is a continuous matrix. ,
The statement and proof of our Theorem 3.4 are preceded

by Section 3.1 that contains three propositions that are rel;vant to
the proof of this theﬁrem.

. For more information about the linear functional equationm,
X - g():x =-f, and systems of such equations,‘the reader is referred
" to Bellman and Cooke ([1], Chapters 7, 8) who also give references to

certain applications of these equations, and call such functional

equations "renewal equations"..
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§3.1 Preliminaries

Propositions 3.1 and 3.2 are concerned with continuous
matrices. These propositions may be regarded as extensions of

properties of continuous functions given by Erdélyi ([l], §4,1) .

PROPOSITION 3.1 ILet G = {-gij} be an. n x n continuous matrix and
let & be a positive constant. If c 1is another constant with

|gij(t)isc for. |t| <% and 1 <1, j sn and if G, = G,

1

Gy = C®C = {g .y 55} then

(3.1) )| < clen|t])™m! < c(ent)™/m!

Igm-!-l,ij

foiﬂ le] <2 .

PROOF. The formula is .true for m = 1 . By assuming

lg

a1y ®] s cleD™ /7 @-nr

: . n
it follows that as Y 13 (t) = z
L

®g_ _.
p=1 Bip ™ ®m,pj

-1 ltl rm--l dr = £ (cnlzm

m
n c c (cn)

= (m - 1! : m!

|81, 15 )

when ItI < % . So, by induction, the statement is true for all

positive integers m .

COROLLARY. ¢ +0 locally uniformly as m =+ « .
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PROPOSITION 3.2 Let a) {Fp} be a sequence of & x m continuous
matrices and Fp + F  locally uniformly as p =+ =,
b) {Gp} be a sequence of m x n continuous
matrices and Gp + G :ZocaZZy uniformly as p + », and
wv%=ﬁf®% and H=F®G . Then

Hp + H loeally uniformly as p » = .

PROOF. Throughout this proof, it will be assumed that the indices
i, j, k will take the values 1 <i <%, 1<j<m and 1 sk <n.
Let tO be any positive number and choose an € >0 ! As
f ..} and ...} are sequences of continuous functions that
¢ pij {ngk d S :

convérge uniformly on [;to, t0] to f,,. respectively, as

ij? gjk

p > », there exists a posiﬁive constant c such that
£ .. (t < ¢ and L ()] < e for |t] <t and all .
|£,55 ] < ENNOT LI P
Moreover, there exists an integer n such that

|fij(t) - fpij(t)| < e/2n7toc and lgjk(t) - (t)| < e/2n t.c

®pik
whenever [t| <t —and p>mn_ . As

By = Poare = L £15 @ (e = gy * § (£33 = 1) B

J

s

pik
and after applications of a well known and elementary estimate for the

absolute value of an integral, it folloﬁs that
]hik(ﬁ) - hpik(t)[ < . whenever p > n and ]t] < to

Hence FP®GP +F®G locally uniformly as p - « .
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COROLLARY., If F and G are n x n continuous matrices and if

F=F®G or F=GC®F, then F=0.

'PROOF. If F=F@®G, then F= F@)BCG so F=FDG for
all positive integers m, where Gm is defined as in Proposition 3.1 .

As G~ 0 1locally uniformly as m+», F =20,

PROPOSITION 3.3 Let x ¢ Cn(R) and y € Cn_l(R) where

n=1, 2, «o. . Then x®ye Cn'(R) and

1 n-2

(3.2)  D'x®y) = x(0) D" Ty + Dx(0) + D" %y -

+ .. Dn"lx(o) cy+ 0@y

PROOF. A proof may be given by induction. If x ¢ Cl (R) and

y € C(R), put h = x(0)y + (Dx) ®y . Then h e C(R) and if

e t~>1,

e®n

fl

x(0) e@Py+ x®@e)®y

x(0) e®y+(x—x(0)e)®y=x®y .

Since h e C(R), e®h ¢ Cl(R) and so x®y e‘Cl(R) . Also

D(x®y) = De®h) = h so the formula is true for n=1 .

Now assume that the formula is true for n = k where k

k+1

is a positive integer. Assume also that x € C (R) and

y e Ck(R) so that if

g = x(0) Dk-ly + e Dk_lx(O) cy + (Dkx) @y ,

1

then g = Dk(x®y) . Moreover, since Dkx e C (R) and Dk- vy € C1 (R),
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0% ®y e ct® and DO @y =% - y+ 0 @) .

Thus g ¢ Cl(R) and

Dg = x(0) * DY + ... DX Ix(0) Dy + Dx(0) * y + @ x) @y .

As Dg Dk+l(x® ¥), Dk+l(x® y) € C(R) and the forumla is true

1]

for n=%k+ 1, Hence, by induction, the statement is proved for -
all positive integers n .
Alternatively, one may verify the statement by showing that
k k+1
if xe C(R) and yeC (R), and if g is defined as above,
o .
then e k@ g=x@®y+P where P is some polynomial of degree less

than k .

COROLLARY. Let F be a & x m matrix whose elements are Cn(R)
functions and let G be an m x n matrix whose elements are
Cn-l(R) functions where n =1, 2, ... . Then F®G isa % xn

matriz whose elements ave G (R) functions.

§3.2 Systems of Volterra Integral Equations of Convolution Type:

Second Kind
THEOREM 3.4 Let F be an n xm econtinuous matrix and G be an

n x n continuous matrixz. Then each of the systems of equations

X-6®x=7F

X' -e®x=F , X(0) = C

has a unique continuous n x m matrix solution. Furthermore
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a) X depends continuously on F, G (and C),

b) if F and G are mean periodic, then X <18 mean periodic,

e) if F and G have mean period zero, them X has mean
period  zero,

d) if F and G. are indefinitely differventiable, then X <is
indefinitely differentiable, and

e) <if the elements of F and G are exponential polynomials, then

the elements of X are empbnential polynomials.

PROOF.  The system of equations X - c®Xx=F is equivalent to m
systems of the form x - G@_}_{_ = £ and we shall consider this system.
The system X' - G® X = F, -X(0) = C .is also equivalent to m
systems of the form x' - G@®x = ﬁ, x(0) = ¢ and this system shall
be considered after X —“G ®x = f has b“een dealt with.

Setting G, = G and G+ =G®Gq put

1 qtl
x =f+G ®Df+...6 ®f for
3{-q = 1 = q L q

1, 2, 3, ... . If xqi

‘denotes the ith component of g_q,' from (3.1), it is apparent that

{x_.}

[+2]

xqi =1 is a Cauchy sequence in C(R),  and so, has a limit, say

X:s in CR) for i=1, 2, ... n . From

27 6®x = £-6,, 0L

it follqws from PrppOSiti;on 3.2 that G@_}gq and Gq+l®—f- tend

locally uniformly to G@é{b‘ and .Q reépectively a-s g > @, .Thus, :

there exists a continuous solution x to the equation x - G@_}_{_ =f .
That there is only. one solution to this equation may be'

shown by'assuming Z to be the ‘difference between any two solutions.
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Then 2z = G@g and so z=G6® G®z) = Gq@z for any integer q .
As Gq -+ 0 locally uniformly as q >, z=0.
For (a), we show that if Gp'+ G and fp + £ locally
X £, tﬁen X *X
p TP P -P
locally uniformly as p - < where x - G®§ = f . From

uniformly as p > o and 1if l{p ~-c ®

 x-x -C®x+¢ Px-¢ +G =f - f
x ®x p®_4 p@_:_c_ p@;p ,

X
-P - 7P

if z =x-x andifv=x®(G-G)+f-—f, then

HhTETE e S p’ T =T 3p
z-GC ®z =v
2z p i T Y
Now by Proposition 3.2, v - 0 locally uniformly as

p+e., If % is any positive number, a positive constant ¢ can

be chosen so that if Gp = {gp ij}’ then
lgpij(t)l £ ¢ for |t| £ 8% 1<i, j<n and p =.l, 2, vee

Also, if an € > 0 dis chosen, an integer n_ can be found for which
lvpi(t)] < ¢ whenever |t| <% and p > noo. By expanding gp as

a series as above and by the estimates (3.1), we.find that

e+ ecnd + ... e(en)¥/q! + .....

7N

Izpi(t)l
80

e when [t] <& and »p > n_ for

IA

22|

i=1, 2, oo n .
Hence z -+ 0 or x_ - x locally uniformly as p - « .
P P - .
To prove (b), it suffices to take a single non-zero
measure A such that A #* gij =0 = )% fi for i, j =1, 2, ... n.
(That this can be done: if Y15 Yps e+ ¥y are mean periodic
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functions with Ay ® v, =05 Ay # 0, A; a measure for

=1, 2, «eo ky, put A=Ay %A, % ... k)

non-zero measure and X * y; = 0).

K so that A is a
With X * (g!.()}g) =(\ * gT.)* X,
1] J 1] J
n

AEx, - ] (Mg

D) Fx, =0 .
=1 ;

+
ij
Let N be the n x n matrix whose elements are the measures

+ +
= — * = — F3 3
., A=A 8iq and nij A gij (L 4 3) .

Then N * x = 0 . Now the expansion of det N gives AP (6§ + h)
where 'h is a sum of convolution products of functions (gzj)
that are zero on (-, 0) . Then h‘ ig a function that ‘is zero on
(-0, 0) and so h+6#0. As X # 0, V%% (8+1h) #£0.
Thué'the measure det N is non-zero and as N * x = 0, x is mean
periodic.by Proposition 2.1 .

Part (c) ‘is shown By observing that in the proof of (b),
when f and G have mean period zero, it is possible to choose A
to have support containedrin an interval of arbitrarily smail length.
Thus a non-zero measure, det N, can be found so that det N * x=0
with det N haVing support in an interval of arbitrarily small
length, showing that x has zero mean period.

For (d), one méy show that x is indefinitely
differentiable when f and G are indefinitely differentiable by

use of Proposition 3.3 and induction. Assuming that x is n times

continuously differentiable leads to G()gg and so x, being n + 1
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~ times continuously differentiable. Hence x has derivatives of all
”orders.

When £ and GA have elements that are exponenéial
éolynomials (and so indefinitely differentiable), we may choose a
non~zero linear differential operator, L(D), with constant 7
coefficients so that. L(D)fi =0, L(D)gijz= 0 for i, =1, 2, ... n.

From Proposition 3.3, if x, vy ¢ CM(R),‘
LD) x®y) = MD)x + x@ L)y

where M(D) 1s a linear ordinary differential operator with constant
coefficients depending only on L(D) and ¥y and whose order is less

" than that of L(D) . From

n
X - Z gij®xj=fjL (=1, 2, ... n) ,
j=1
' n
we obtain L(D)xi - 'Zl Mij(ﬁ) xj =0
or ’

Tx =0 .-

Here T = {Ti } is an n xn matrix of linear differential operators,

3
and if S(D) = det T, S(P) X, = 0 for i1i=1, 2, ... n .

As T, =L(®) -4, () and Ty5 = -Mij(D) @43,
an examination of the expansion of det T shows that there is only
one term containing (L(D))n and all other terms contain operators
Mij(D) . Since the order of each Mij(D) is less than the order
of L(D), it is clear that S(D) = det T is a non-zero linear

differential operator.
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Hence x has exponential polynomial components.

Tt:trning now to the second equation, or
x'-6e@®x=f with x(00) =¢ ,
we may integrate this equation to get
x-HEH®x=y+c

. s s '
where H = {hij}’ hij(s) = cj; gij(r) dr, . and vi(s)= ({ fi(r) dr .

As f and G are continuous, v +c¢ and H are continuous and
so there exists a unique continuous solution x .
If _Jip -+ £ and Gp + G locally uniformly as p - « and

t t
if Vpi(t) =£ fpi(r) dr and hpij(t) =£ gpij(r) dr, then

_\_rp + Vv and Hp >+ H locally uniformiy as p >~ , If as well,
c > c as p + o, we see that if x is the solution of
I —P

x* -G x = f c =x (0

=p P ®-p =P ’ & =50

then -}Sp + X locally uniformly as p + « .,

When f and G are mean periodic, v+ ¢ and H are
mean periodic and so x 1is mean periodic. Also, when £f and G
have zero mean period; v + ¢ and ' H have mean period zero and so
x has zero mean period. It is also clear that when £ and G are
indefinitely differentiable, so is x, and when f and G have

elements that are exponential polynomials, so does x .
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§3.3 Systems of Volterra Integral Equations of Convolution Type:

First Kind
THEOREM 3.5 Let G be an w x n continuously differentiable matrix
with det G(0) # 0. Let F be an n x m continuously differentiable
matrixz. Then the system of equations G® X = F admits a continuous
n x m matrixz solution if, and only if, F(0) = 0 . Moreover,
a) if F and G are mean periodic, then X is mean periodic;
b) if F and G have zero mean period, then X has zero mean
period;
e) if F and G are indefinitely differentiable, X <is indefinitely
differentiable; and
d) if F and G are matrices of exponential polynomials, X is a

matrix of exponential polynomials.

o ‘ , .
. PROOF. From jzl gij C)Xjk =-fij’ the condition that F(0) = 0 is

readily seen to be necessary. To show that it is sufficient along
with the other hypotheses, let A = G(0) so that A is non-singular.

Write B = Aml and consider .the system of equations
X+ (B *DE)®X=B:DF .

Since B+*DG and B*DF are continuous, Theorem 3.4
guarantees the existence of a continuous solution x . On integration

of this system, we obtain, with F(0) = O,
B(G@X) = BF

and so X satisfies G@X =F .
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‘The reﬁaining statements are proved by directly appealing
to Theorem 3.4 .

In the above theorem, it may be noted that the condition
det G(0) # 0 is a sufficient but not a necessary condition for the
existence of a continuous solution. (An example of this is given for
the scalar equat;ion g ®x = £ in the next chapter.)

| When G® X = F has a continuous solution, it is possible
to give a sufficieng condition for X to be mean periodic
(cf. Proposition 1.6). In the following theorem, det G denotes a
determinant formed from the commutative ring of contiﬁuoustfunctions

with the operations of addition and truncated convolution.

THEOREM 3.6 Let F be an n x m mean periodic matrixz and let G
be an n x n mean periodic matrix with det G # 0 . If the system
of equations G®X = F admits a continuous solution, it is mean

periodic.

PROOF. Let F = {fik} and G = {gij} . Choose a non-zero measure

+
*® = * = = *
u  for which u fi 0, u gij . 0 and put Vij U gij for

k
i, 3=1,-2, vo.n and k=1, 2, ... m , Also let V denote the
matrix {vij} of measures and‘let Vzi denote the cofactor of Voi
in this matrix (here, mﬁltiplication is convolution of measures).

As well, put v = det V .

8. . @®x, =f ’

From ij in 1k

* =
xjk 0

(S5
e~ Il
|

'—l

\)ij

Ca.
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* & = & =
so ) Vi Y vij Xik 0 and v *x, 0 for

i=1,2, «..n, k=1, 2, ... m . Thus, to show X is mean
periodic, it suffices to show that the measure v is non-zero. To
do this, we make use of the definition and properties of Kahanes

transform given in Theorem 1.1, and also, the fact that if f is

mean periodic, K(f) = 0 if, and only if f =0 .

From v = det V, v = det V . Also

<>
1

+ 2 ~
%* = .
det (p gij) det (n K(gij)?

il

W det K(gg,) = 0" K(et &) .

A

Since by hypothesis, det G # 0, K(det G) # 0 and so v is non-zero.

Hence v is non~zero and so X 1is mean periodic.

REMARK. A simpler method of proof is as follows. Let Gij denote
the cofactor of gij ‘in the matrik G, so that each Gij is mean

periodic. TFrom -

I~

g.. @x_ =f s
j=1 i3~ ik ik
‘ n
we obtain det G@xjk = 2 G, @s

j21 34 ik

By Proposition 1.6, with det G # 0, we find that each xjk is mean

periodic. |



70

Chapter Four

RINGS ASSOCIATED WITH MEAN PERIODIC FUNCTIONS

We have noted in Chapter Q that the function space C(R)
is an algebra over ¢ and a commutaﬁivé ring with the operations of
addition and truncated convolution. It was also noted (Theorem 0.6)
that each of "MQ, MPO and MP are subalgebras of CR) .

| In Section 4.1, we describe some of the ideals to be found
in the ring C(R), aiong with some of the ideals of the sets MP
and MPo’ each regarded as ring and an algebré. In discussing
ideals,. we shall find it conven;ent to let V denote any one of the
rings C(R), MP or MPo taken with the operations of éddition and
truncated convolution. Thﬁs V. will be a commutative ring and an
algebra over &z. Consequently, an idéal of V will be a subspace
of V that contains xy whenever x belongs to V and y
belongs to the ideal.

Section 4.2 contains a brief description of some of the
'ideals in the rings ‘Cw(R), Cw(R)‘ﬂ MP and. Cw(R) N MPOVL

For the ring of exponential polynoémials, it will be shown
that an unusual situation occurs in that all of the ideals in this
riﬁg_form a single descending_éhain. As this is not the case in any
of:the other ringsjconsidered in éectiéns 4.1, 4.2; discussioq of
ideals’in the ring MQ :is;given'separately in Section 4.3 .

Section 4.4 concerns the eﬁbedding of the ring of exponential
polynomials into a ring that has an identity and is a Euclidean Domain.

The results of Sections 4.3, 4.4 have already been
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incorpérated into a paper of thé author (Laird, [3]) .

541 Idgals in the Rings C(R); MP, MPo
With V denoting any one éf these three r.irigs', a restatement g
ofA péfts of Theo;:em 3.4 gives: | |
If £, geV, i:heﬁ the equation x - g®@x=f hasa
uml?zue solution, x;, in V. | ‘

" . From this, we obtain

PROPOSITION 4.1 Let £, geV CPQR) . If

DX EQO) =0 for  k=0,1,...m
pfg) =0 for k=0, 1, ... m-1 ,
and D™ g(0) # 0O where 'm < n, ' ‘

then the integral equation: x®g = f has a solution, x, in V .

PROOF. When £, g ¢ Cn(R) NV, m<n and ra = D" g(0) # 0, the
equation

ax + (Dm+lg) ®@x = p™le

has a solution, ‘x, in V . On convolving this equation with e

(i.e., on integration of the equation from 0 to t),
ax®e - (Dmg-ae)®x=Dmf—Dmf(0) ‘e .
As D"£(0) =0, (@"g)®x=01"F .’

With m £further inte'gra,tions, using
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p¥g(0) = 0 = DXE(0) for k=0, 1, ... m-1,

x®g=f .

REMARK When £, g are continuous-.functions and ‘when g(0) # 0,
the condition that £(0) = 0 is cléariy necessary to ensure that ' x
is cdntinuous when x_@g = f . EAlthough the requirement of -f, g
being continu‘ousiy diffe;'entiable may appear extraneous to the
existence of a continuous function =x . with x@r‘g = £, one cannot
-assume‘that £, g are mereiy continuous. One re'ason for this is
that if x dis "locally ini:egrable'{‘ (anci not necessarily contiﬁuous)
and if g 1is continuous, ’thén f“= x@g is continuous (see, for

example, 'Erdélyi,r [l], pages 9, 27) .~

PROPOSITION 4.2 1f V denotes any one of the rings C(R), MP
or MP , thé following are ideals in V for n =0, 1, 2; oo s
a).I(x)={x®y—:er} when. x e V.

b) ‘J(x) = Hx+x@y :‘ red, yeV} :‘when xeV

e) W= Cl(r) ﬂ v

d) X ={xed®®NV:D%O) =0 for k=0, 1, ... n}
) Y = xec™@®nv:ok0 =0 for k=0,1, ... 0}
) ‘zn = {xe 2Ry N v i D*(0) =0 for k=0, 1, ... n}
g) Ia’8={er:rx(t)=0 for a <t < B where OL<'0<B‘.

“PROOF. It is apparent that each of these subsets of V are also

subspaces of V . ' To show that W, Xn’ Yri’ Zn (n=0,1, 2, ...)
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‘are ideals of V, we may use Proposition 3.3 that when restated says
that if x e CC(R) and if y ¢ Cn—l(R), then x®y ¢ Cn(R)VV and -
Dk(x®y) = x(O')D.k—yly + ... Dz'-lx(O)Dk—R'y '
+ e D 0) -y + 0F0) @y
for ks n . Thus, if XxeWs= Cl(R) NV and if v e V, then
x ® yeW showing that the subspace W of V is an ideal of V .

If xeX, yeV, then (x® y)(0) = 0 and

D(x\@y) = x(0)y + Dx) Py = V(Dx)‘t@y . Also, if k < ;1, if»rw
x‘ € Xn’ éhci if y eV, Dk(x®y) = (Dkx) ®y showi;ng tha:t
x@y € Cn(R) NV and 'Dk(x®§)(0) =70 . Thus x®vy ¢ Xn: and
‘so X is an ideal of ‘V for n=0, 1, 2, ...l .

n+l

If xeY = Xn N c*™ (R) and if y e V, then

D™%(0)y + ") @y

0" @y

PPE®y) = ™)@y so " ® y)-

]

rThus x@y'e Yn and so Yn is an ideal of V for n=20, 1, 2, .. .

If xez_ =Y N ¢™2(R)y and 1f y ¢ V, then

M@y = 0™ @y so 2@y = 0™ x©)y + 0 @y

n+2

Thus x@y € Yn nc R) = Zn and- so Zn is an ideal of V for

n=0, 1, 2, vav o

For (g), when o <0< B8, 1s seen to be an ideal

T
o, B

of V for if x e I, and if y € V, then

8
N . t ’
x@y: ¢t + [ x(r)y(t - r)dr ig-zero for o < t £ B and
)
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x@er. Thus x@yeI and so I is an ideal of V .
0B a,B

REMARKS. It is clear that I(x) < J(x)t. When x # 0, x ¢ I(x)

Vand I(x) # J(x) .

It may be noted that neither of {x € V : x(0) = 0 = Dx(0)}
nor VN C2(R) are ideals of V . The former set is not weil |
defined and for the latter, if V =C(R), if x=e : t > 1 and if
y € C(R)\Cl(R),‘ then x € CZ(R) . However, Dx®y) =y ¢ Cl(R)
so x@vy ¢ C2(R) and so the subspace C2(R) 1is seen not to be an
ideal of C(R) .

For the same reasons, neither of

fx e VN CP@®) : D’)(0) = 0 for k=0, 1, 2, ... ot}
nor‘

Cn+2+!2,

{xevVn (R) : Dkx(O)‘= 0 for k=20,1, ... n}

is seen to be an ideal im V. when & is a positive integer and =n
is any non—negative integer.
In the proof. of the above proposition, we have noted that

X DY > 2Z .. If is apparent that Y =WN X_ and
n n n o o

Y =z NX
n n

Ny c c c c .
nt+l also X Yo W and Xn+ Y Z VThe

+1° 1 2 nt+l n

relationship between the ideals is illustrated as follows:



V oW
U U

X DY o2
o o o

uu
Xl o) Y1 o) Z1
U U
u U
X 3‘ Y > Z
n n n
U U
ol > Tpl O
]
n+2
and N X =N Y =n 2Z_= n, {L.
=0 % n=0 T n=1 B o

Also, if o' < @<0 and 0 < B < B' >

c I

Ia':B" G’B'

N n

< I

I
o',B o, B .

75
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PROPOSITION 4.3 Let ge V . If K is any one of the ideals

W, X Yn, z (= O,'lé 2, «..) or Ia’B

(@ < 0 < B) defined

in Propoéition 4.2, then
gekK & J(g €K

W = g(0) #0,

Also, if g e W, then J(g)

and, 1f g e Zn, then J(g) Wn = Dn+lg(0) #0 .

PROOF. If g e K, where K is any one of the above ideals,

g@y e K for all ye V. As K is a subspace of V, it follows
that

J(g)={Ag+g®y:>\e¢,er‘}cK

It is clear that if J(g) c K, then geK.

| Suppose that g e W and g(0) # 0. If 2z € W, we may
choose | bed¢ so that £(0) = 0 where f =z - bg . As
£, geW=C'(®R) NV, and as £(0) = 0 and g(0) # 0,
Proposition 4.1 guarantees the existeqce of an x € V with g@x = f .
,Thus z = bg + g()1c and so é S‘J(g) ; Hence W C J(g) and as
J(@ < W, J( =W .

Conversely, if g e¢ U and g(0) =0, gc¢ Yo 50

J(g) < Y~o . .Since: YO C W r‘land Y‘oi#w,' ‘we see that J(g) - W
| entails -g ¢ Yo or g(0) # 0 . . | |
. Similarly, if g ¢ Zn/Y

nt+l

(m=0,1, 2, ... ) so that
gec™@®), D) =0 for k=0,1,2, ...n and D*"1g(0) # 0,
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let z ¢ Xn and choose b so that Dn+1f(0) = 0 where f =z - bg .
as £, ge c™2@®), D*F(0) = 0 = D(0) for k=0, 1, ... n,

there exists an x ¢ V with g@x = f by Proposition 4.1 . Thus
z=bg+g®y so z ¢ J(g) . Hence Vn c J(g) and as J(g)rc Vn’
J(g) = Vn .

Conversely, if g ¢ Yn+l c Zn’ J(g) c Yn+l . As

Yn+l # Zn’ we see that J(g) = Zn enta11§ g ¢ Yn+l .

§4.2 Ideals in the Rings C (R), C"(R) N MP, C"(R) (| MP_
It is a consequence of Proposition 3.3 that Cw(R) +, ®)

is a ring and an algebra over ¢‘; Thus Cm(R) N MP and
CW(R) n MPO are rings and algebras over ¢ . If W denotes any one
of these three rings, it follows from Section 4.1 and Theorem 3.4
that:

a) If ‘f, g‘erw,' there exists a uﬁiqué .x e W sétisfyiﬁg
x ~ g()acﬁgf , |
by If £, geW, if DE(0) =0 for k=0, 1, 2, ... m and if
,Dmg(O) # 0, 'then there exists an x e W satisfying ge@x =f,

c). If Wn = {xeW: Dkx(O) =0 for k

Il
o
-
=
N
-

. n} , then

Wn is an ideal of W for n =’0, 1, 2, ... , and

I
(]
Hh
[e]
R
Q
i
t
I
w
2
e
3]
()
2

d) ‘;f a <02 8, Ia,B = {g e U ::x(t)‘

ideal of W .
With the above properties of W and by modifying the proof

of Proposition 4.3, if

J(g) = g +x@g:ref, xeW for g e W, then
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i) g € Wh o J(g) c Wn
ii) g € Ia,B « J(g) c Ia,B

i) g0 £0 = J(@ =W

iv) If Dg(0) =0 for k=20, 1, ... n and if D™T1g(0) # O,

then J(g) = Wn .

§4.3 Ideals in the Ring of Exponential Polynomials

The remainder of this chapter shall be concerned only with
the ring X (and algebra over ¢) of exponential polynomials with

the operations of addition- and truncated convolution.

DEFINITION. Let x be an exponential poZynomiaZ. Then the degree
of x 18 zero if x(0) # 0 and n if Dkx(.O) =0 for
k=0, 1, 2, ... n-1 but D™x(0) 9470 . When x e X has degree n,
we write deg x =n .

We note that as any'exponential polynomial is an entire

function, if x 66X and x # 0, then x has finite degree. If

. x =0, we regard the degree of x as being infinite.

PROPOSITION 4.4 Let £, g e X .. Then
‘a) .there exists a unique x e X satisfying X - g® x = £, and
b) when g # 0, a necessary and sufficient condition for the

equation x® g = £ to have a solution  x 4is that deg £ > deg g .
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PROOF. Part a) 1s a special case of Theorem 3.4 . The sufficieﬁcy
condition for part b) is shown as for Proposition 4.1, and by using
a) .

_Conversely, suppose tha}: deg £f = m and that m < deg g .
Suppose also that there exists an x € X for which x@g = f .
If m=0 so that f£(0) # 0, there is a contradiction of
x® g(0) = 0. If m>0, the relation x® g = £ 1leads, after
differentiating m times, to a similar contradiction. Hence it is
necessary that deg f >‘.deg g for x@g = f to have a solution

in X .

PROPOSITION 4.5 Let £ be any non-zero exponential polynomial of

degree n . If

If={f®g:gsx}, . and if
Yn={yeX:degy>n},

then
If=Yn L]

PROOF. We firstly show that if f, ge X, £, g # 0, then
4.1y deg(f@g) = deg £ + deg g + l‘ .

- From £®g(0) =0, deg(f®g) 21 . From Proposition 3.3,

(e @g) = £00) * D g+ ... DIE() g+ (OE) D
so that 1 .
K
D*E@g)0) = § d¥¥(0) + p¥Ig(0) )

2=1
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Let deg £f = m and -.deg g:=1}.r‘If m=0=n, then £(0) # O,
g8(0) #0 so D(E®g)(0) = £(0) g(0)#0 . As £®g(0) = 0,
deg(f®g) =1. If m+n>0 and m+n >k >0, then
D(E@®g)(0) = 0 . However, D" l(z@®g)(0) = D™£(0)-Dg(0) # O,
and so deg(f.@ g) = dég f4+degg+1.

Hence, if h=f®gaI deg h > deg £ = n and so

f’

If c Yn . The reverse inclusion is a consequence of Proposition 4.4

since if heYn, deg h > deg £ and so h=x®Ff for some x¢ X .

PROPOSITION 4.6 Let 1 be any non-trivial ideal of X . Then

I =Y for some non-negative integer n .

PROOF. It is trivial that ea_cti Yh is an ideal of X . If J is
any ideal of X thg.t contaiﬁs an element  x for which x(0) # 0
a'md. z(0) = bx(0)' where z is any element of X, then, by
Proposition 4.4, the equation Dz - bDx = (Dx) @Dy + x(0)y has a
solution y in X . On integration, this equation yields
z,r=‘bx+x®y and so z € J . Hence J=X.

Let I be any non-trivial proper ideal of X and x be
any elément of I so that “x(O‘) = O . Thus x = e@Dx‘ and so
X e Ipx . |
Now let h e Ipy with h = g®Dx where g e X.. With

x(0) = 0,
h=g®px = DE®x) = g0)x + (Dg) @ x

,and so heI. Thus xe Ip, €I for all xe I .
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By Proposition 4.5, IDx = Yn(x) for some non~negative

integer n(x) . Hence I = U Y . and as
g (x) X o Yn)

s o+ s C Ym c Ym-l c Yl - Yo s

we see that I = Yn for some non-negative integer n .
Notes: Since XD Yo Yo .. Y DY a0, by
-def%nition of.each Yn’ Theorem 4.6 states that these are the only
ideals in X . With the observations that: Y = Iun where
u, : t +~ t° and that the trivial ideal is none other than Io’ we
see that any proper ideal is of the form If = {g®Ff : g e X} for
some f X . |

It is clear ;ha? no non~trivial proper ideal of X is
semiprime or prime,sinée fér‘any f e X,‘ If contains £ ® f but not
f . Thus, the prime radic¢al of X; being the intérsection of all
prime ideals of X, 1is zefo.

However; if I ié a non-trivial proper ideal of X so
thgt‘ I = Yn for some nop—neéative integer n, thenr ;9(n+2) belongs

to Y  for all x € X . Adopting the definition of the radical of

an ideal given by Jacobson ([1], page 173) as the set
®m s ..
{x e X:x eI for some positive integer m} ,

we see that the radical of -any non-trivial ideal is X, and so all

ideals.of X are priméryh
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§4.4 An Euclidean Domain

The ring~ X may be embedded in a ring U consisting of
‘ordered pairs (a, x) where a ¢ ¢ and x € X and where addition

and multiplication are defined as

(a, X)Z + (b,.y)

(a, x) D (b, y) = (ab, ay +bx + x®y) .

(a+b, x+y)

(See, for example, Jacobson, DJ, page 85 for applicable details
that show U 1is a ring with identity (1, 0)) . Moreover, U is
an algebra over C .

The following propositions give details about U .

PROPOSITION 4.7 U <is an integral domain. An element (a, x) ¢ U
is a unit if, and only if, a # 0 .
- PROOF. ‘Let (a, x) ¢ U and a# 0. By Proposition 4.4, there

exists y € X such that
1 ,
ay +-Ex + x()}r= 0

and so (g, x) ® é&; v) =‘(l, 0) . So,.if a #:0, (a, x) has an
inverse in U .and so (a, x) 1s a unit.
Clearly, there is no (b, y) € X such thét
0, x)® ®, v - (t, 0) and so (a, x) is a unit if, and only
if, a# 0.
| To show that U is an integral domain, let

(a, x® ®, y) = (0, 0 = 0 and suppose that (a, x) # 0 . If
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a# 0, (a, x) is a unit and so (b,.y) =0 . If a =0, then

o

x# 0 and from (a, x ) @ (P, y) =0, bx+x®y = Since

x # 0, bx must be zero, and so b = 0 and x@y 0 . Since X
has no non-zero divisors of zero, y =0 .

Thus (b, y) = 0 and so U has no non-zero divisors of zero.

PROPOSITION 4.8 If I is any ideal of X, then (0, I) <s a proper
- ideal of U. If J <s any ideal of U, then J = (0, I)
for some ideal and subspace 1 of X . Also, 1f (0, x) € J where

x(0) # 0, then J = (0, X) .

PROOF. Let I be an ideal of X . If xe I and if (b, y) e U,
then (O,‘x)@ (b, v) = (0, bx +‘x®y) g (0, I) . Hence (0, I)
is a proper ideal of U .
Let J be any proper ideal of U . Then J contains no

units. By Proposition 4..7, (a, x) ¢ J entails a =0 and so,
J =0, S8) for somer subset S of X If (0, %), (0, Y), e J,
hrthen 0, x+y)eld so'x, vy e 8 ==»7 'x+y‘eAJ . Also
0, x) ® (¢, 0) = (0O,cx) € J so that cx e S for all c ¢ ¢ and
X € S.'. Thus S is a subspace of X .7 Now if (0, x) ¢ J and
(b, 2z) € U, bx +x®z ¢S and so x®z ¢ S, that is, if
xe S and z e X, x@zfe_S . Thus 7 S~r is an ideal and so
J = (0, I) 'fo;: some idee'tlr and subspace I of X .

‘ Suppose J 'is proper ideal of U Vthat contains (0, x)
where x(0) # 0 . Let z be any element of X . Choosing b e §

so that z(0) = bx(0), Proposition 4.4 guarantees the existence of
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a yeX sothat z - bx = x@y . Thus (0, z) = (b, y)@(o, x)
and so (0, X) CJ. Hence J = 0, X) . '
An immediate application of the precéding work 1s that all

ideals of U form a single ascending chain
U > (0, X) o (0, Yo) > . ... (0, Yn) > (0, Yn+l) > ...

It is also easy to see that each of these ideals are principal ideals.

Since

(1,7 —e)@ (0, x + el®x) = ‘(0, x) for all x € X,

(0; X) is generated by (1, -e) .

As (0, un) @\(0, n! Dn+l

x) = (0, n! u Dn+lx) = (0, x)
for each x ¢ Yn’ (o, Yn) is generated by (0, un) .

Thus U dis a principai ideal domain.

Jacobson ([1], page 122) defines an Euclidean Domain U

as an integral domain with an identity where there exists a function

G(A) defined on U for which

1) 6(A) is a non-negative integer, ¢6(A) =0 = A =0 ;
2) 6S(A°B) = 8(A) * 6(B)
3) If A, BeU, and if B # 0 and if A is arbitrary, there

exists Q, R e U such that A = BQ + R where G&(R) < 8§(B) .
PROPOSITION 4.9 U %8 an Euclidean Domain.

PROOF. For A = (a, x) € U, define &(0) =0, 8(a, x) =1 if

(deg xt1)

a=0 and if a # 0, 6&(a, x) = 2 It is clear that
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§ as defined satisfies the first of the above properties. For the
second, let A= (a, x) and B = (b, y) and note that if A =10
or B=0, then A@B=0 and 6(a) * 6(B) =0=6(A®B) .

Suppose now that A and B are non-zero. If A and ‘B are both

§(A) * 86(B) . If

il

units, then A®B is a unit and sA®B) =1
only one of A, B are units, say A with a # 0, thenr b=20

and y#0. Also A®B = (0, ay+x®y) and as

il

deg(ay + x®y) = deg y when a # 0, we see that

s(A®B) = §(B)

6.(A) * 8§(B) . When A and B are neither units
nor zero, then a=0=b and x# 0 # y . By (4.1), |
deg(x®y) = deg x + deg y + 1 and so, 6(A® B) = §(A) * 8(B) .

| To show the third prpperty, let B = (b, y) be non-zero
and let':' A= (a; x) eU. If b# 0, B is a unit and so there is
always a C € U such that A = B®C . Now consider the cases when
b=0 and y#0. If a#0 or if a =0 and deg y > deg x,
- then &8(A) < 6(B) . Since A = B®o + A, we may put Q = 0 and
R = A . The only remailning cases are when a=0=Db, x $0#y
and degy < deg x . If deg x=n =degy, choose c# 0 so
that deg(x - cy) >n (d.e., an(O) = ¢ Dny(O)) and solve for
g € X satisfying x - ¢y = y@g; . Then A = B@Q where Q = (c, g).
But if deg y < deg 5{, one can findl g € X 'so that y@g = x and
if Q= (0, g), then A=B®Q. | 7

| Thus, for all B # 0 and ‘A € U, elements Q and R of
U can be found so that A= B@Q + R and &6(R) < 6(B) .

Hence U is an Euclidean Domain.

We have already noted that U is a principal ideal domain



86

and so U is a unique factorization domain. An element
A= (a, x) e V is said to be irreducible if (a, x) 1is not a unit
and has no proper factors. Two elements, A, B e U are associates

if there exists a unit C and A®c=138.

PROPOSITION 4.10 Let x, y e X and let x, y# 0 . Then
A= (0, x) and B = (0, y) are assoctates if, and only if,

deg x = deé YV .

PROOF. We have already noted in the proof of Proposition 4.9 that
if deg x = deg y, then there is a non—zefo c e ¢ and g e X
such that x - ¢y = y@g and so,‘if Q= (c, g)y Q 1is a unit and
A=3@q.

Conversely, 1f A and B. are assoclates, there exists a
wit (e, z) with c # 0 such that (0, x) = (c, z) ® (0, y) .

Then x.=cy +y®z and as ¢ # 0, deg x = deg y .
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Chapter Five

ENTIRE MEAN PERIObIC FUNCTIONS

This chapter is concerned with entire functions (Section 5.1)
and ‘the meén periodié entire fﬁnctions (Seétion 5.2) introduced by
Laurent Schwartz ([1], §4). | | 7
| It is shown (Theorem .5.1) that it is possible'tb define

a 'truncated -convolution' product of. two entire functions f, g as
z ‘
t@g:z~>[ £z - E)gk)dE
o .

_and that ffC)g is enfire. Withraddition and this product, H,. the
set of entire functions is an algebra.. Moreover, the set of énéire
mean perilodic functions is aisubalgebré of H (Theorem 5.4). 7
Section 5.3 contains new properties of entire mean periodic
functions that resemble some of the propertieslgifen earlier in this
thesis for continﬁous mean periodic functions of a real variable.
However, Kaﬂane's definition of a transform for a continﬁous mean
periodic function does not apply to entire ﬁean periodic functions.
For this,‘and oﬁhér feasons, some of the results in earlier chapters
‘ of this thesis will not have counferparts in this chapter.
Differential and differential-difference equations that

admit entire mean periodic solutions are discussed in Section 5.4 .
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:55.1 Entire Functions

We denote by. H the tépolegical vector space of ai; entire
functions equiéped with thé topology of convergence uniform on-all
compéct subsets of ¢ . This topology may be defined by the seminorms

i{Pk}§=l where, for f e H ,
p (£) = sup{[£(2)| : |z| <k} .

A metric defining this tdpolbgy is

2k P8
d(f, 8) = kzl'z 1T+ p (f - 8)

with d(fn, £f) +0 o pk(fn - f) = O as n -+ for each ke N 3
o fn‘+ f in H as n » o'}
o fn + £ "locally uniformly" as n:+ = .

H 1is a complete space, for if ,{fn} 1s a Cauchy sequence
of elements of H, then there exists a function f e H such that
fn + £ locally dniformly as n -+ ® ., Like C(R), H is a Fréchét
spade. However, H has an additional property in that if {fn} cH
and if fnv+ f locally uniformly as n > o, |

then Dkfn > DN locally uniformly as .n + «

for all positive integers k . (See, for example, Ahlfors, [l],
page 138) .
When f, g are entire functions, and 2z dis any complex

number, £(z - E)g(&) is an entire function of & . The integral
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2 ,
f f(z 1€)g(£)dg is then independent of the path of integration.

,—o “ . ‘
Accordingly, we may define a 'truncated convolution' product of two

entire functions, £, g as

. Z | '
£E@g(2) = [ £(z - B)g(E)de .
o i

THEOREM 5.1 Let £, g be entire functions. Then
z
£E@g:z+ [ £(z - E)g(E)dE
)
18 an entire function and
(5.1) D(E®g) = £(0)D" 1g + DEOIDY 2g + ... @™ LE(0))g + OVF) D g
PROOF. We use the fact that any entire function is the locally
uniform limit of a sequence of polynomials. Let {fn}, {gn} be

sequences of polynomials that converge, locally uniformly, to £, g

respectively. Let h_ = f‘() g « If u : 2z~ zp, then
n n n P

: z
u Qu (z) =/ (z - £)Pelag
p q 0

. i L2 sy

j=0 : o} :

- A zp+q+l
P»q
where A is a constant.. Thus {hn} is a sequence of polynomials.

’

We now show that hn +h locally uniformly as n =+ « ., Let

r be any positive number and let S = {z : ]z] sr} . As fn -+ £,
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g, 8 uniformly on S as n + «, and as each 'fn’ &, is continuous,

there exists a positive constant ¢ such that
lfn(z)|, |gn(z)|, ]f(z)}; |g(z)| are bounded by c

when ze¢S and n=1, 2, ... . Now, for any € > 0, there exists

aﬁ in;eger m for which

| £(z) - fn(z)l <€ and Ig(z) - gn(z)| < e
whenever z ¢ 8 and n >m . As

h(z) - hn(z)

oz ‘ z
=[ (-8 - £ (z-e)g®EE + [ £ (z - £) (&) - g (E))dE ,
o (o}

‘it follows that
Jh(z) - hn(z)|'< 2cre

whenever n >m, 2z € S and the paths of integration of the integrals
are chosen to fe the line joining O to z . Hence hn -+ h
uniformly on S as n + » ,

Since {hn} is a sequence of polynomials and hn + h
locally uniformly.as n -+, h 1s an-entire function.

To prove the identity (5.1) when f; g are entire, it is
only necessary to note that both sides of the identity are entire
functions, and, by Proposition 3.3, agree on R (the set of reals).

Hence (5.1) holds on ¢ .
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THEOREM 5.2 The set H of entire functions with the operations of
addition and truncated convolution is a commutative ring without

divisors of zero and an algebra over ¢ .

PROOF. It is clear that H is a vector space over (¢ . To show the
other properties; we‘may use the facts that:
i) C(R+) (+, ® is a commutative ring without divisors of zero and
‘an algebra over ¢ (Erdélyi, [1], Chapter 2); and,
ii) If an éntire function vanishes on a half line, it is identically
zero. ,
Let f, g, he H and let f, g, & be the respective
“+

restrictions of these functions to R, . To show that f®g = g®E,

observe that
(f@g-g®f)|R+=f®g-—g®f=o .

As f@g-g ® f is an entire function that vanishes on R+,

‘f@g=g®f . Similariy,
(E®g)®n - f®.<g®h))|R = (f@®®h-F®@E®n =0 .
: +

Thus ® is an associative operation in H . In this manner, it may
be shown that H(H, ®) is a commutativé ring and an algebra over ¢ .
We ﬁow‘show that H has no non-zero divisors of zero in a
manner that does not require the use.of Titchmarsh's convolution
theorem. Firstly, suppose that g, h ¢ H and rgC)t1=‘h . Then

[/ @
h=g®(EgE®h) =g "®h for n=20, 1, 2, ... and as gt >0
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" locally uniformly as n + «, it follows that h = 0 (cf. Proofs of
Propositioné 3.1 and 3.2 that are also valid fdr entire functions).

~ Now suppose that £® g = 0 and g # 0 . By (5.1)
0 =D(f®g) = £(0)¢ + (0f) D g

and as é £0, £() = 0. Inductively, pDP£(0) 1is zero for
.n=0,1, 2, ... and as f 1s .an entire function, f =0 .

Hence H(+, @D: ﬁas no non~zero divisors of zero.

The next theorem is concernéd with certain integral equations

~involving entire functions. These includér
n z . |
- VS ei(z - dg = £, S ¢ R lspzs
vy (@) kzl £ Bii(z = W (D46 = £, (=) (L <jsnm, psm

or

W-G®Ww=TF

where G = {g..} and F = {f, } are matrices whose elements are
_ jk jp

entire functions.

THEOREM 5.3 Let F, G be nxm, n xn matrices respéciively
whose elements ave entive functions. Then each of the matrix systems

of equations

It
=]

W-c®w

W -c®u:

I
=

w(@) =¢C

has as a solution, a unique n x m matrix whose elements are entire

functions; Moreover, if det G(0) # 0, then the system of equations
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CG®W=TF adnits an n x m matrix of entire functions as a solution

if, and only if, F() =0 .

PROOF. The proofs of Propositiops 3.1, 3.2 énd Theorems 3.4, 3.5
given for systems of integral equ;tions involving continuous functions
hold, With due alteration of details (such as given in the proof of
Theoreﬁ 5.1 and uéing‘ H as a complete metric space) for systems

involving entire functions.

§5.2 Laurent Schwartz's Theory

In this section, we outline prbpe;tieérof entire meﬁp
periodic functions due to Laurent Schwartz ([1]? §4), who was'the first
to introduce such functions; Our‘outline is adapted from this
reference 5u£ some changes are made in notation.

A complex translate of an entire function £ 1is

:Taf .z +'f(z - a) where a 1is ény complex number. If Wf denotes
the closed liﬁear subspace of H spanned by f and its complex
translates, then f -is sald to be mean periodic in H if We #H .
This may be shown to be equivalent to the existence of a continuous

1ineér functional L on #H such that
v .
L(Tzf) =0 for all =z ¢ ¢

v
where f : & -+ £(-8) .
The main property of any entire mean periodic function £
is that it is the limit in H of a sequence of exponential polynomials

belonging to Wf . Here, by an exponential polynomials is meant a
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finite linear combination of terms u ea 1z > " 8% where n is
a non-negative integer and a is‘any complex number.

If L is any continuous linear functional on H, (i.e., if
L € H', the dual-space of #H) it may, by virtue of the Hahn-Banach
Theoren, be(extended to a continuous linear functional on C(Rz),
the space of continuous complex—Valued;functions defined on R? with
the topology of locally unifgrm convergence, Thus, there exists at

least one measure 1y with a compact support K in the plane such

that, for f e H .

(5.2) L(E) = fPE(x + iy)du(x, y) .
, K , ,

We may write (5.2) as L(fj = ff(i)du(g) . It is noted
that for a given L e‘HL,' theré exists an infinity,of such measures,
the difference between any two béing orfhogonal to H . Moreover, if
L, Me H' and L, M are extended by measures U, A ‘respectively,
TN definesra"convolution' L * M of L and M. L %M
belongs té H* and is‘independent of thg choice of measufes that
extend L, M. (Sinée the set of complex measures with compact support
in‘;he pléne forms an integra; domain WiFh the operations of addition
and cohvolution, H' with édditiqn and cénvolution defined above is
also an integrai doﬁainl)

i 'Usé"wiii bé ﬁadefof‘the "fbufier—Léplace tfansforﬁ";of L

defined by

(5.3)  #(2) = Le_) = re auce).
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zE

where e_, ! E + e . ‘This transform .is independent of the ﬁeasure
u that extends L . Moreover, &(z) 1s an entire function of
exponentigl type. Conversely, any entire function‘of exponential type
is the Fourier-Laplace transform of an element of H' . (For if

d(z) 1s an entire function of exponential type, then from the

Paley-Wiener Theorem, &(z) is the qurier-Laplace transform of a

k

n
" distribution T of compact support in R2 « Thus T = z D My

k=0
where Hg» ul, cae un are measures with compact supports and hence
T 1is the extension of an element of H' to Cn(Rz) o)
According to a theorem of Borel, there exists a unique
function ¢(&) that is analytic for |g| large enough, zero at

infinity, and such that

1

0(z) = 5 § e Foedar .

c

Here, C 1is a simple closed curve that encloses all the singularities

of ¢ . As well,

"00"

0@ = [ e Pa(2)az

o

where the limit at infinity and the path of integration is chosen so
as to ensure the convergénée of the integral.

o]
If o(z) = ) anzn/n!
n=0
and if.

L = 1lim suan|an| s

n > «©

$(z) 1is an entire function of exponential type L . Then
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0(8) = =1 (D)% /g™

. n=0

"and ¢(&) is analytic on {£ : |£i > L} . Moreover,

2=~ ’z}l?f ¢ &) (E)dE =L * u_(0)

where u 'tz and L% u (0) = L(er = D) .

: v
As L * £(2) =‘L(Iz£) and f has a Taylor series
0 . .
development f = 2 an(o)un/nf, we see that
n=0 : ’ }

- (5.4) L* £(z) = ) anpnf(z)/n!
=0 ,
The formula (5.4).shows that the equation L* f= 0 is
none other than a linear brdinarj differential equation with constant

coefficients and of infinite order in £ . . Thué:

An entive function £ <is mean periodic in H <if, and only

ify ) anan(z)/n! = 0 for some sequence {a } c ¢ with

n=1
lim sup n»’|a | < ® ,
n > « n

For any entire mean periodic function f, with W # H,

‘the spectral set is definedras Sf‘= {ak.: eak € Wf} . The spectrum,

A is the set of ordered pairs (ak, pk) such that ay, e;sf and

f’

uj eak € Wf for j sp-k -1 but not j = Py -

It is noted that the spectrum, Af, of an entire mean
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periodic function £ 1is less restrictéd than that of a continubus

" mean periodic function, because if @(z) is the Fourier-Laplace
transform of L with L % f = 02' then &(z) of exponeptial type
but isrnot required to be bounded on the’im;ginary axis, Accordiﬁgly,

if

Af = {(ak, pk)}k=l’ then kzl,pk|ak| < o

"but condition (0.3) on the spectrum of a continuous mean périodic
function does not apply to the spectrum of an entire mean periodic
function. |

The distribution, DS ,with DG(é) = f'(0) for £ ¢ H, is
a continuous linear funqtiohal on H, and f'=D8§* £ . If L e #H',
then (DS * L) * £ =1L % £' ..
2

The function £ : z »~ e® is noted as not being mean

periodic in H . It is also noted that if

\
(5.5) g:z+ ) a exp (1o z)
. n=1
i

where the sequence {a;} is real and has infinite density and the
a, decreaées rapidly enough so that g is entire, then g is not
mean periodic in H .

However, if f 1is entire and 1s such that its restriction
to R 1is mean periodic in C(R), then f 1is mean‘periodic in H.
"But it is éossible that f is mean periodic in H and its restriction
to k is not mean periodic in C(R) . (An éxample of this is

£f: 2> exp(exp 2) .)
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‘Another characterization of méan periodicity in H is
given. For £ ¢ H, let Df denote the closed subspace of f

generated by the derivatives of £ . Then:

7 'Df = W, and so £ is mean periodic in H <if, and only <if, Uf #H .

For Df = lim (T _f - £)/£ € W, whence Df ¢ W. for
0 6 | £ ‘ £
n=1, 2, ..., and so Df < W . Taylor's formulae,

£(z - €) = 2(-1)"E"D"E(z) /n! " shows that Tgf C Df . Hence W, ¢ Df

and so W.=7D_.

§5.3 Further Properties

We now give new properties of entire mean periodic functioné.
Throughdut this section, We“shall assume that {' with the operations
of addition and 'convolution' ‘(* as definea in §5.2) has the
properties of an integral domain. The set of all entire mean

periodic functions §hall be denoted by MH .
THEOREM 5.4 MH <s a subdlgebrar of H ( +® ).
PROOF. If a, be ¢, if f, ge M{ and if L * £=0, M* g=0
where L, M are non-zero elements of H', then
L*M* (af +bg) =aMl * (L * £) +bL * (M * g) = 0

As L * M is-a non-zero element of H', af + bg € MH . Thus MH
- is a subspace of H . 7

We now show thét f'C)é e MH . Let {gm} be ‘a sequence of
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exponential polynomials that .converge, locally uniformly, to g' and
.such that k= e:Wg for each. me N .
Now let a b‘e any complex number, . n be any non-negative

n+l

"e? . 1f LM = @ -aD™ T, L) is

integer and u e : z > 2z
n a |
a non-zero differential operator with constant coefficients and

L(Due, =0 . From (5¢1),
L) (u e, ®E) = MDIE + (LO)u e,) ®f = M(D)E

where M(@®) is a non-zero differential operator with constant

coefficients. So,

L (L% (ue @) =L * LD) (e, @

L % (D))
MO (L * £)

I

=0 .

* - :
Thus L (}lnea® £) Pn ea where Pn is a polynomial of degree

not exceeding n .
*
Hence L (gm@f) € Wg
so that M*L*(gm®f)=0 for m=1, 2, oo
As g#@f +~ g® £ locally ‘unriformly as m > o,

M*x L *x (g®f) =0 showing that f@g e MH .

' Z
COROLLARY If £ e MH, then e®f : z + [ £(£)dE e MH .
: o
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PROPOSITION 5.5 If f e MH and if g ds an exponential polynomial,

: then fg e MH . Also, if ce ¢,' h: z > £(cz) € MH .

PROOF. Since MH 1is a subséace of H, it is only necessary to
show that ungaf e MH when fe MH,‘ In turn, this reduces to
showing that e £, uf e M when f ¢ MH .

Let u be any non-zero measure such that

Jf(z

E)du(g) = 0 . If X is the non-zero measure defined by

A(g) u(e,g) for all g e C(R2), then

>

* (e ) (=) = 12T P - p)e®faue) = 20 =0 .

So eaf is mean periodic in f .
If v is the non-zero measure defined by v(g) = u(ug)

for all g € C(R2), then
Wk uE)(z) = S(z - E)EGZ - E)AW(E) = 2 0 - v * £(2) .

So u*p*uf =0 andas u * u# 0, uf is meanrperiodic in H .
Hence fg e MH .

To shoﬁ that " h: z + f(cz) is mean periodic in H, we
use the fact that f 1s mean periodic in H if, and only if

Z anan(z)/n! = 0 - for all complex =z
n=o

where L = lim sup nV[an| <w

n - o

If ¢ =0, then h is constant and so h 1is mean periodic.



101

If ¢#0 and f e MH, then
Zanannh(z)/n! = EaDn-f(cz)/n{ =0

for all complex z . Since

lim sup n/TZ;EET'= Lle|] <o =,

n -+ )
L 1s mean periodic in H .

We note that just as the product of t@o continuous mean

periodic functions of a real‘variable need n&t be - mean periodic, the
_ product of two entire mean periodic functions need not be mean
periodic. A specific example of two such entire mean pe}iodic
functions is exp(exp(inz)), exp(exp(ifz)) where o/B is irrational.
For 1f h denotes their Product, then

h(z) = ]}

T exp (imoz + inBz)
m, neZ o

and since {om + Bfn : m, n € Z} has infinite density, h is not
mean periodic in H (see §5.2 (5.5)) .

The next result is a counterpart of a part of Proposition
1.6 . However, the short method_of proof used in Proposition 1.6
for continuous mean periodic functions does not appear to be

applicable to entire mean periodic functions.

PROPOSITION 5.6 Let £, gef, £4#0 and £, f®g e MH .

Then g e MH,
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ZPROOF. Let L, N be non-zero elements of H' such that L * £ =0, .

- N*x (£®g)

=0 , If we can show that there is a non—zerb Me H
for wh;ch
(5.6) Lx (£®@g) =M*g, then
M*N*g:L*N.*(f@g):O

and so g will be mean periodic in H .
We now show (5.6). ‘First consider the function

h=L=% UfC)en) where Vn is any complex number. It follows from
|

Dh=L*D(E@e)=L* (E+ni@e)

and the assumption L * £ = 0 that Dh = nh . 'So h = N(n)en
for some number N(n) and N(n) = h(0) .

As both convolution products *, ® are linear,
L* (£® (e 4g = ©)/E)(0) = ((n + &) - N()/E

for any complex numbers, n and £ .

As £ » 0, - en)/g - ue ~locally uniformly in H .

e

Then _
£F® (en_*_E - en')/g > f@uen in H as £ -0

- and so

L* (f® (en+£ - en)/g)(o) +~ L * (f@uen)(o)

as £ -0 . Hence 1lim (N(n + &) - N(&))/& exists and so N(n) is

g0 '

an entire function of n .
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Since L ¢ H', L .may be extended to a measure with a
compact support in the plane. So there exists positive constants, c,’

T, such that
|L * h(0)] < cp(h)

where p(h) = sup{|h(z)| : |z] < T} for all hefH.

As |£ * en(z)| <T p(f)p(en) for all |z| < T R
“and as p(en) = sup{|e"®| : |z| £ T} < §2|n|T
N | = L * E@e)@] = erpcore? NN

So, the entire function - N(n) is of exponential tyipe. Hence there
exists an M ¢ H' whose Fourier~Laplace -transform is N and so
M * én = enN(n) for all ne ¢ .

We have now shown that under the iﬁitia‘l assumptions, there

exists an M e H' such that
L * (f@en')=M:* e for all ‘.n€¢

From this, it readily follows by another use of the

~ linearity and continuity of L, M and * that
L * fr =M * qe
| (f Que ) = M* ge
- and so . L‘# '(f@ungn) =M * unen fobr n=20,1, 2, ... .

Thus L*'if@l?)éM:*P

for all polynomials P . As any entire function g dis the locally"
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uniform limit of a sequence of polynomials {gn}, and as

f@gn—>f®‘g in H as n » =,

L* (£®g)»L* (£@g)
and

M*gn+M*g as n > o .

Thus L * (F@g) =M*g forall ge H .

- It remains to show that M i-é non-zero. Suppose otherwise
so that L * (F®g) =0 for all ge H, and all f e H for which
L* £ = :0 . As £ #0, l Wf contains at least one éxponential; say
e s and L * e, = 0 . Now a sequence {gn} of functioné may be
chosen so thgt g@ea =ue for n=1, 2, ... . Thus
L * (unea)' =0 forn =‘0, L, ... " . But since the subspace spanned
by {unea}:=l is dense in H, ‘L #* h=0 for all h e H, and so
L=20, a contradigtion. |

Hence M# 0 where Me H' and L* (£®g) =M* g .
COROLLARY f, ge MH = £®g e MH .

PROOF. If L* f=0, then L* (f®g) = M* g whence
f®g e MH .

PROPOSITION 5.7 Let f, g e MH . Then the integral equation
(5.7) h-g®h-=¢£

has a unique solution, h, in MH .
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PROOF. From Theorem 5.3, this equation has a unique entire function

as a solution. If e : z - z, equation (5.7) is equivalent to
h®De-ePg) =e®@f .

Now e®f and e - e@g are entire mean periodic
functions by Proposition 5.4 . So, by Proposition 5.6, h is an
enﬁire mean periodic function.

Proposition 5.7 has been étated and proved for a single
integral equation and not systems of integfal equations. For systems
of integral equations (cf. Theorem 3.4(b)), the details used in the
proof of Theorem 3.4(b) showing the existence of continuous mean
periodic solutions do not apply to entire mean periodic functions.

As in §4.3 for exponential polynomials, we may define the
' degree of an entire function f to be zero if f(0) # 0 and =n if
D¥£(0) = 0 for k=0, 1, ... n-1 but DU£(0) # 0 . When £ e H
and f has degree n, we write deg £ = n and note that if £ #.0,
deg £ dis finite.

Now if X denotes either of the commutative rings H or
MH with the operations of addition and truncated convolution, X
has no non—zero divisors of zero and is an algébra over ¢ . Moreover,
part of Theorem 5.3 and Proposition 5.7 may be restated as follows:

If £, g ¢ X, then the integral equation h - g ®h =1
has a uniqﬁe solution, h,r in X.

The proof of Proposition 4.4(b) may then be modified so as
to give:

Let f, ge X and f # 0 . Then a necessary and sufficient
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condition for the equation g®h=1f to have a solution, h, din
X 1s that deg £ > dégng . ’7

Thus, if I {(f@g:ge X}t for feX,

and 1if

w4
[}

{g e X :degg>n} ,
Proposition_4;5 may be changed to: |

If £ e X and if deg £ = n, then ‘If = Yn .

From this, it follows that Theorem 4.6 holds with X
replacing X, i.e.,

Let I be any non;triVial proper ideal of x'. Then
I= Yn for some non—negative-in;egér n .

The remafks following Theorem 4.6 in §4.3 cﬁncerning the
ring of exponential polynomiéls therefore apply to the ring X . In
particular, the set of all ideals of X form a‘single ascen&ing

chain,

1 .C Yl C’Yo c X .

CY €Y _
As well, X may be embedded in a fing with an identity that is also
an Euclidean Domain.

It is also apparent that the ring X may be embedded in a
field of convolution quotients (cf. §1.4) . The embedding of the

ring H into a field of convolution quotients yields a field that

is complete (in the semse that H is a complete metric space) .

§5.4 Functional-Differential Equations

We begin this section by considering a simple system of

differential equations and its connection with entire mean periodic
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functions. Thus, if £ = (£ fz, see fn) is mean periodic, then

l’

Lj * fj = 0 where Ll’ L2’ ""Ln are non-zero elements of H',

and so L % f = (0 where L =L %L % oo L
= - ,l 2 n

PROPOSITION 5.8 For the system of equations
(5.8) w'(z) = Aw(z) + £(z) with - w(0) = ¢

where £ <1s an n-vector whose components arve entive.functions and
A is a constant n x n -matrix, a necessary and sufficient condition

that w be mean periodic is that £ be mean periodic.

PROOF. Suppose that w is mean periodic and M * w =0 where M

is a non-zero element of H fhen M % w' =0 and

M Aw = A M w=0. Thus M* £f =0 and so f is meéﬁ periodic.
Convefsely, gﬁpposé that f  is mean periodic. The

solution to (5.8) is

‘and the components of w' are entire functions. As the elements of
i -Af Az : . . ,
the matrices e , € are exponential polynomials and the
components of f are mean periodic, it follows by use of
Propositions 5.4 and 5.5 that the components of w ‘are mean periodic.
Our next result is an application of Theorem 2.1 . We say

that an entire function £  has a period ¢, where ¢ 1is a non-zero

complex number, if £(z + ¢) = £(2) for all complex =z .
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THEOREM 5.9 Let A(z) be an n x n matrix whose elements are entire
functions with a compléx ée}iod: c . Let';g; be an n-vector whose

jth component is of the form gjhj where each gj is an exponential
polynomial an@, hj' i8 anrentire funetion withtcomplex period dj .-

If each dj is a real, positive and rational multiple of c, then

all entire solutions to the system of equations
(5.9)  ¥'(2) = A(@)u(2) + £(2)

are mean periodic in H .

PROOF. Let w(z) be an entire solution of (5.9) . Let T = Icl,

c = Tele, T, = Idjl so that dj = tjele for j =1, 2, «oom .

J
Put B(t) = A(teie) so that B(t) is a continuous periodic matrix
of reai period T .‘ Also put bg(t) = hj(teie) sowthat each bj
is a éontinuous periodic function éf period Tj where each Tj— is
commensurable with t . If x(t) = Hﬂteie) and if the jth

component of y is bjgj, then
x'(t) = B(t)x(t) + y(t)

where B(t), y(t) satisfy the condition of Tﬁeorem 2.1 . By this
theorem, x(t) is mean periodic in C(R) . Bﬁt _§(t): is the
restriction of yxzeie) to the real line and so g(zeie) is mean:
periodic in H . So, by Proposition 5.4, gﬁé) is mean periodic in
H .

REMARK., The scalar differential equation, w'(z) = ezw(z) has

z ,
solutions w(z) = ce® (c constant) . As a special case of the
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above theorem, such solutions are mean periodic in #H . This may be
compared with Example B, Chapter 2, where it was shown that the
differential equation x'(ﬁ) = etx(t) has solutions that are not
mean periodic in C(R) . |

The next theorem concerns systems of linear differential
difference equations that admit entire mean periodic functions as
solutions. A counterpart to Theorem 2.3 involving funptional-
differential equations is not given here. For if one were to replace
in Theorem 2.3 meaéures with compact support in the real line with
measures with compact support in the complex plane, the Fourier-
Laplace transform of the latter need not be bounded on'the imaginary
axis, but, the proof of Theorem 2.3 is dependent on the Fourier-
Laplace transform of a measure (with compact support in R) being
bounded on the imaginary axis.

Differential difference equations that admit entire mean
periodic functions as solutions, but not including the following
theorem, have been considered by H. S. Shapiro, [l] .

As before, a mean periodic veétor function is one that has
mean periodic components. As well, reference to a vector that is
entire will indicate that the components of the vector are entire

functions.

THEOREM 5.10 Consider the system of equations

m m
(5.10) w'(z) = ) A, w'(z-a,)+ ) B w(z-b)+ £(2)
. 0=1 % : L 9=1 L L

"B, are n xn matrices of

where 1) for & =1, 2, ... m, Az’ .
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complex numbers, a, are non-zero complex numbers lying in a sector

{z = re® : le + a| < w/2 for some fized o and b, are any

L

complex numbers, and

11) the components of £ are entire functions. Then
a) the homogeneous equation has at least one non—zero“entifé solution.
b) If £ <s mean periodic, then all soZufions‘that are entire are
also mean periodic, and
e) If any entire solution w 18 mean periodic, then f_ 18 mean

periodic.

PROOF., Let T denote the n x n matrix
ID§ - ) ADS - B,S
g=1 ¥ 3 g1 F by

‘Then T is a matrix whose elements belong to H' and equation (5.10)
. \
may be written as T * w = f .
Now let f(z) denote the métrix whose elements are the
Fourier-Laplace transforps of the elementslof T, iQe.,
m

~ m
T(z) = Iz - z Azz exp(—azz) - Z B

exp(-blz) .
2=1 2=1

L

An examination of the expansion of the determinant of T(z) shows
n ~ '

that it is equal to Z ngp(z) where each gp is a finite linear
p=0

combination of exponentials. In particular,

m ,
gn(z) = det (I - zzl Azexp(—agz)), .



£ Nl B ' , 111

If 8= {z = rele : |e‘7 ol <w/2, then by assumption,
‘ ‘ q
—a, "3, +ee "2 € S . Hence gn(z) =‘l + 2 c exp(dpz) , say,

: P
| , p=1
where Cys Cos e cq e 8§ and so gn(z) is not identically zero.
We now show that h(z) = det T(z) has at least one zero
and also that h(z) is not identically zero. If h(z) has no zeros,

then as h(z) is an entire function of ekxponential type,

h(z) = aesz for some complex numbers, a(#0) and B . Thus,
n 8z
(5.11) Z ngp(z) = e for all complex =z .
n p=0

But this is contradictory‘sipce gn(z) is nbt identically zero and
the left side of (5.1) is a finite linear combination of e#ponential
monomials which is linearly iﬁdeééndent‘over ¢ . Hence h(z) has
at least one zero. If we assuﬁe that h(z) 4is identically zero,
then a similar contfadiction results in (5.11) with o =0 .

Let h(c) =0 . If w(z) = de®?, T * w(z) = &°% T(c)d .

As det T(c) = 0, a non-zero vector d may be chosen so that

T(c)d =0 and so T * w =0 has a non-zero entire solution,

- Also, any entire solution‘td T # w =0 is mean periodic
in H since det %(z) is‘noﬁ identically zero and the arguments
used in Proposition 2.2 aré valid when the matrix T hés elements
belonging to Hf rather than distributions witﬁ comﬁact support
lying in the real line. |

For part b), if f is mean periodic in H with M * £ =0

where M 1is a non-zero element of H', put g =M * w, where w is
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any entire solution to (5.10) . From T *w= £,
T*&:T*(M*ﬂ):M*(T*E):M*'f:_Q .

Since w 1is entire, g is entire. By the preceding paragraph, g
is mean periodic in H . Hence w is meanfperiodic in H.

For c) Vlep :E,-be any entire mean periodic soluﬁion to
(5.10) . Since the derivative and any transiqte of an entire mean
periodic function is mean periodic, it readily follows that £ is

mean periodic.

REMARK. To -ensure that the conclusiéns pf the above theorem hold,
it is necessary to place some restriction on the numbers

a;s a5 s a, - This is shown by thé following example. Lét a
"be a fixed non-zero complex;number; m=n=2, and

wi(z) = wé(z - aj, wé(z) = wi(é + a) (a special case of equation

(5.10)) . Then wy may be any entire function.
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APPENDIX

This‘appendix concerns propef&ies and applications of the
Kahane transform of a mean periodic fuhction suggested by
Dr. H. K. Farahat, University of Caigary, subsequent to the writing
of the text of this thesis.

By its definition, (page 12), the Kahane transform is a
mapping from the ring MP(+, ® into the field MER of meromorphic
functions with the operations ofréddition and poinfwise multiplication.

From Theorem 0.3, the Kahane transform is a 1-1 mapping and from

Proposition 1.1, this mapping is a ring homomorphism. Thus
K ¢« MP - MER -

is a monomorphism.
From this observation, it readily follows that MP has
no non-zero divisors of zero (cf: Proposition 1.10). For if

f, g € MP and if £f®@g =0, then
K(£)+K(g) = K(f®g) = 0,

and so K(f) =0 or K(g) =0 . Thus £ =0 or g=20.

It would pe‘intereéting to’know,the images of MP and
MPb under K in MER .

The remainder of this appendix is concerned with exponential
| polynomials. In the proof of Propdsition 1;2 it is shown tﬁat

K(e)(z) = 1/z and so K(e)(z) = 1/(z - a) . Since
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@ (n+l) n+1l \ .
= ! Y = n! -
ue =nle, , K(unea)(z) n!/(z - a) . Thus, if f is
any exponential polynomial, say

n 'pk
(A.1)° £= ) ) Ak, q) ue , (a, 's distinct)

= q a k

k=1 q=0 k
then,
. o Px '
— »
(A.2) R(E)(2) = | | Ak, @ ——m
i q
: k=1 q=0 (z -,ak)

For a polynomial, p(z), of a complex variable 2z, denote

k

: n
by d(p), the degree of p(z), (i.e., if p(2) = 2 bkz , bn # 0,

k=0
d(p) = n . Note that this usual definition of the degree of a

. polynomial differs from the definition given on page 78 of the degree

of an -exponential polynomial.). Now, let

,RA = {g%;% : p, q are polynomials, q # 0, d(p) < d(q)}

so that RA, with the operations of addition and pointwisé
multiplication, is a ring. MpreOVer, any element of RA admits a
unique decompositioﬁ into partial fractions.

From (A.Z), if f e MQ, K(£)(2) ¢ ﬁA .  So the Kahane
transform, K;' is a ring homomorphism from' MQ dinto RA. If

K(£f)(z) 1is identically zero, then
Ak, q) = 0 for q=0, 1, ... pk; k=1, 2, ... n

and so f = 0 . This shows that the K is a 1-1 mapping without

recourse to Theorem 0.3 . Moreover, K maps MQ onto RA and so
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MQ is isomorphic to RA.

Now let

SA = {E%g%-: P, q are polynomials, q # 0, d(p) s d(q)} .

Then SA is a subring of the field of rational functions in z aﬁd
RA is an ideal of the ring SA . A non—éero element p(z)/q(z) of
SA is a unit in SA if, and only if, d(p) = d(q) and so RA is
the unique maximal ideal of SA . Obviously every non-zero element
‘of SA can be expressed uniquely in form %ﬁ-u where u is a unit
of SA . Thus SA is é unique factorization domain with only omne

prime divisor. The ideals of SA are simply

sad>iga-maoisaolosas |, :
B z .z V

Refering now to Section 4.4, if (a, x) belongs to the ring U
defined 6n‘page éZ, and if
L(a, x) = a+Kx

then it may be verified that L is an isomorphism from U onto SA .

Since SA is an Euclidean'Domain with a function ¢ defined on SA by
L Ld(q)-d
$(0) = 0, and ¢(p/q) = 2 (@)-d(p)

-when p/q € SA, 'p/q # 0, U is an Euclidean Domain.



