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Abstract 

In this thesis, we aim to find suitable models for modelling the natural gas futures curve 

as well as modelling the gas spot prices. We begin introducing natural gas storages, 

which are key drivers of the futures, spot prices and other derivatives associated with the 

industry. This also gives us an intuition on the necessity for "convenience yield" in gas 

models. 

We then begin reviewing the literature in natural gas and energy's, spot and futures 

modelling. A two factor spot model based on Xu [14] is introduced, as well as a new 

technique, where the underlying futures curve is stripped off at every stage by linear 

regression. This approach allows us to strictly model the underlying curve, the parameters 

are estimated by maximum likelihood estimation (MLE). 

We also introduce Levy processes to capture spot dynamics and try to model the 

futures curve based on the availability of the futures price via the Characteristic Function. 

We consider 01.5 and CIR type processes with Levy processes instead of Wiener Processes 

as the noise driving term. The processes used are alpha-stable Levy processes as well as 

the normal inverse gaussian (NIG) Process. 

Two different methods of calibration are used, one of them is an estimator based on 

finding the Empirical Characteristic Function (ECF) of the observations and making use 

of the availability of the characteristic function of Levy processes to directly find the 

minimum of the parameters. We also use MLE to estimate the parameters, and we can 

see the advantages and disadvantages of the two estimation methods. 

We then look at the implication of the parameters estimated on the futures curve and 

also go ahead to calculate the risk neutral measure of the futures curve. 
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Introduction 

The natural gas industry has gone through various phases of deregulations and reforms 

across many parts of the world. There are different kinds of natural gas storages all over, 

but the kind that concerns is a salt tavern storage, these are used due to a large number 

of injections and withdrawals that are possible into these storages every year based on 

contract terms. Storages are used as a hedging instrument against volatility and possible 

shortage of natural gas during high demand seasons of the year. 

In Chapter 1, we discuss types of natural gas storages and its importance as a hedg-

ing instrument. We see its role as a demand-supply cushion for gas, and why modelling 

expected spot price processes for gas prices are necessary for pricing gas storages. 

In Chapter 2, we discuss convenience yield models that are crucial when .dealing with 

modelling commodity prices. A one factor model for natural gas prices would just involve 

a mean reverting Ornstein-Uhlenbeck(OU) process, a two factor model along the lines of 

Gibson-Schwartz [1990], which includes a convenience yield model as a second factor, is 

discussed. Then we look at Carmona [2003], where a stochastic tharket price of risk based 

on Runggaldier [2002] is suggested. Then we go on to discuss the natural gas specific 

spot models such as Pilipovic [34], Xu [12] and Hikspoor [32] as well as exclusive natural 

gas futures curve modelling that don't attempt to find a consistency between the spot 

and futures curve. 

In Chapter 3, we discuss Levy processes and the Levy Khinchtine formula. Important 

Levy processes that are used in this thesis are defined, as well as the Levy Ito decompo-
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sition. Levy based Ito calculus for discontinuous processes is discussed as well. 

In Chapter 4, we go into the alpha stable levy process, that has the advantage of 

being able to model skewness and kurtosis. We discuss the simulation of stable random 

variables by the FFT as well as a kernel density estimator of random variables using the 

FFT. We combine the two to form a risk function based on their characteristic func-

tions for parameter estimation. The natural gas spot price process has been historically 

deemed to be a mean reverting process and is cyclic in nature over a year due to seasonal 

variations in supply and demand. Since there are few jumps in natural gas spot prices, 

so we can comfortably use a stable process to model the spot price. 

In Chapter 5, we introduce the normal inverse gaussian (NIG) Process. We first 

discuss the generalized hyperbolic(GH) class of processes and how NIG is a computa-

tionally feasible case of the GH process that still manages to retain properties of assett 

returns such as semi-heavy tails. We then discuss normal variance-mean mixtures and 

the simulation of NIG processes via Inverse Gaussian (IG) random variables. Finally, we 

also estimate the parameters of the NIG process via the empirical characteristic function 

(ECF). 

In Chapter 6, we discuss the important criteria for modelling natural gas spot prices 

and how the expected value of the spot price process at different times in the future 

must be consistent with that of the futures curve. We introduce a new two factor model 

that assigns an affine structure for its seasonality term, the model being an extension to 

Pilipovic's two factor model. Another approach is that of modelling strictly the underly-

ing curve, which turns out to be the most effective model. We also, introduce two other 
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models based on an alpha stable process and an NIG process, and take advantage of the 

fact that Ornstein-Uhlenbeck processes based on stable/NIG processes have an explicit 

solutions. 

In Chapter 7, we discuss the calibration results and procedures for futures match-

ing in natural gas based on the Levy based models proposed in the previous chapter. 

We obtain the parameters of a seasonality term from a combination of spot and futures 

prices. This seasonality parameter is used in the Levy based OU and CIR processes to 

match the futures price. We use maximum likelihood and the empirical characteristic 

function method to estimate the parameters of the models, and see the advantages and 

disadvantages of each method. We also calibrate the two factor model in the previous 

section, that strips the underlying futures curve using linear regression and we then use 

maximum likelihood to estimate the parameters. 

Finally, we conclude the thesis, and discuss relevant future research. 
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Chapter 1 

Natural gas storage 

Natural gas is currently a 90 billion dollar industry [33], and is a clean and efficient 

source of energy. It is expected that 900 out of the next 1000 US power plants will use 

natural gas [33]. With an increasing usage every year and relatively limited resources for 

transportation and storage, natural gas is one of the most volatile markets in the world, 

due to supply and demand imbalances. 

Seasonal demand for gas is traditionally linked to gas heating of houses, resulting in 

higher gas demand in winter than in the summer. Storages were owned by companies 

for balancing the variability in demand of their customers. After the deregulation in US 

and Europe, natural gas storage is unbundled from the sales and transportation services 

and is now a distinct seperately charged service. Gas demand in the US, Europe and 

Asia are increasing every year, the production flexibility is falling. Therefore there is a 

growing interest to invest in new gas storage facilities. International Energy Agency ex-

pect underground storage capacity to double in the next 30 years required an investment 

of 10-20 billion dollars. Development of new storage facilities, injection and withdrawal 

rates from compressors, changes pricing. 

Natural gas is stored underground in large storage reservoirs. These storages are of 

three types aquifer, depleted gas reservoirs and salt caverns. Each of these storages have 

their advantages (and disadvantages) that can be characterized by the following four 

properties: 

1. Base and Working Gas. Capacities 

Storages have to maintain a base level of gas always. The extraction costs increase 
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when the gas level is low (mostly due to the higher pressure of gas in the storage). Traders 

speculate on prices also based on the expected rise in gas prices due to low storage levels. 

Depleted gas and aquifer storages have high base gas requirements unlike salt cavern. 

2. Deliverability 

Refers to the rate of release of gas from reservoirs, deliverability is higher when the 

storage levels are high. 

3. Injection Capacity 

This is the rate of injecting gas into a storage, injection rates are highest when storage 

levels are low. 

4. Cycling 

This refers to the natlire of operation of the facility. Single cycle storages serve 56 

percent of the natural gas demand in eastern US, single cycle refers to the fact that 

injection gradually takes place through the summer months and and withdrawal during 

the winter months. Depleted gas reservoirs fall into this category of single cycle storages. 

Salt Cavern and Aquifer storages have the advantage that they can have about 4-5 cycles 

a year, and these are important to meet peak gas demand situations. 

In order to find the optimal price of a gas storage, there are many approaches in 

literature to handle the problem. Volatility and mean-reversion in gas spot markets are 

much larger than in gas forward markets, most value can be created in the spot market. 

So we consider a spot trading strategy. The basic approach to storage valuation is to 

calculate the optimal position given the available forward curve and take this position. 

This "intrinsic value" approach captures the predictable seasonal pattern in gas prices. 

Additional value (extrinsic value) can be created by reacting to price fluctuations, i.e. 

based on gas volatility. 
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To value a storage contract, we follow a spot-based strategy because it captures most 

of the contract's flexibility. In literature, the first natural gas thesis was that of Bringedal 

[17] who took a stochastic dual dynamic programming approach to solving the storage 

formulation. Thompson [1] formulated the storage problem as a partial integro differential 

equation (PIDE) and finally narrowed down the problem to a control theory problem via 

the Bellman equation, but the problem with this approach is that the spot price process 

is taken to be a simple mean reverting OU process. If the spot price model were more 

complicated, then the Taylor series expansion would yield more parameters and terms 

and hardens the storage equation. In 2007, Chen and Forsyth [8] used a seasonality term 

into the one factor OU model and provided an improved numerical scheme for solving 

the PIDE using a semi-Lagrangian spproach. In [15] they also used a simple one factor 

regime switching model that switches between an OU process and a Geometric Brownian 

Motion (GBM) with an upward drift. The upward drift is to intuitively occur during 

winter months, and during the summer it would follow an OU process. They discuss the 

implications of this model to solving the storage equation. 

In 2008,, Boogert and De Jong [4] formulated the problem in a least squares Monte 

Carlo Approach, so in the style of American Options they price the contract starting 

backwards in time and solving a (ordinary least squares) OLS Regression problem along 

each time step. This allows us to have a complicated spot process that is not coupled with 

the storage equation, which is ideal for the goal of this thesis to incorporate Levy-based 

spot price processes. 
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Chapter 2 

Spot models for natural gas and commodities 

In this chapter, we shall discuss different spot price models used in commodity pricing. 

The typical feature of many commodities is that of mean reversion and this is captured 

by an Ornstein-Uhlenbeck (OU) process . The commonly used OU process is 'a single 

factor model with a Wiener process as the driving noise term. Schwartz [13] showed 

that this is insufficient when modelling the forward curve, as there is a cost of carry that 

affects the drift of the commodity spot prices. This "drift adjustment" was taken to be 

stochastic and is the first in the class of "convenience yield" models. 

Schwartz also considered a third stochastic factor, which was the interest rate, but 

this did not yield any qualitative advantage over the two factor model. So in commodity 

modelling literature, stochastic interest rates are rarely ever considered. Philopivic [12] 

also proposed a two factor model, which has a long run stochastic mean. Now in the 

case of natural gas, there is seasonality exhibited in the price dynamics. This is largely 

due to natural gas being a primary source of heating homes and businesses. Heat usage 

increases in the winter and goes down in the summer, so due to the market forces of 

supply and demand, the price of natural gas has a general upward price movement in 

the winter and downward movement in the summer. This seasonality is also seen in the 

price of natural gas forwards/futures. 

So when modelling natural gas prices, a general commodity pricing model is not 

adequate. Xu [14] proposed a model that is a generalization of Philipovic's model to 

include seasonality via a "positioning" term, which is a sum of two sinusoids with different 

periods, whose parameters are obtained from the forward curve. Chen and Forsyth [2007], 
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used a one factor regime switching model to simulate the natural gas price that supposedly 

emulates the two factor convenience yield model from Gibson-Schwartz [1990]. The PDE 

method of pricing by Chen and Forsyth [26] is much more efficient in computing the value 

of a storage, and Chen and Forsyth usually look for models that are more analytically 

tractible. Hikspoor and Jaimungal [2007] proposed a two-factor model with stochastic 

long run mean reversion and a seasonal component gt. 

Now there is an important test that spot models must withstand, i.e., how well does 

the model fit the futures curve. Since the futures price is equal to the discounted expected 

value of the spot price at its expiry, the proposed spot model must be able to match the 

futures curve when taking its expectation. So in literature, its important that the spot 

price process chosen has an explicit form for its expection, to determine the futures price. 

We shall now discuss different spot price models and its corresponding futures price, 

based on available literature. 

2.1 A one-factor model - Ornstein-Uhlenbeck process 

The commonly used process to model natural gas behaviour is the mean reverting 

Ornstein-Tjhlenbeck (OU) process. This is the most popular one factor model in nat-

ural gas spot simulation. The OU process is defined by 

dSt = - S)dt + o-dWt. (2.1) 

where 9 is the speed of mean reversion, is the value that the spot price reverts to, a is 

the diffusion term and W is a Wiener process. The expectation, variance and covariance 

are 

E(S) = Soe_Ot + (1 - e_0t) 

8 

(2.2) 

(2.3) 



Var(St) = - 

20 

Cov(88, S) = E[(S8 - E[S3])(S - E[S])] 

20 e 0(9+t) (e20(sAt) - 1) 

This process is used as the standard spot price model for pricing the natural gas 

storage in Boogert and Jong [23], Chen and Forsyth [26], Thompson, Davison et. al. [1] 

and Bringedal [17]. The disadvantage of this approach is that the spot price evolution 

can't be accurately accounted for. But the advantage is the ease of calibration, and the 

simple form for the futures price, which follows from equation 2.2. The futures price is 

given by F(t, T, S) = E [ST ISt]. 

F(t, T, S) = 5c_O(T_t) + IL(1 - e_0(T_t)) (2.4) 

where F(t, T, S) is the futures price at time t, for a contract expiring at time T given 

that the spot price is St. 

Now since it is important to be able to valuate the most accurate price of a natural 

gas storage, we need more accurate spot models that capture as many of the properties 

as we can of spot-future dynamics. Due to the least squares Monte Carlo type approach 

in Dc Jong [23] for storage evaluation, where the spot price can be isolated from the 

pricing methodology, we investigate more accurate models. 

With respect to storage, another model that is relatively simple but can intuitively 

simulate the expected spot price process with respect to the futures price is that of Li 

[16]. It is appropriate for industry practioners, who have to take positions every day with 

respect to injection and withdrawal of gas from the storage. He takes the spot price to 

take the following process. 
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Soexp(—ci2T + 

Fo,exp(—o-2T + O\/. 6T 

for the valuation month 

for the i1h month contract 

(2.5) 

Here ST is the spot price at time T in the future, So is the spot price on the valuation 

date and 0 is the spot price volatility. F{0, i} is the price of the futures contract as of 

today based on a expiry date i. It makes sense that for the first month, the spot price 

simulated follows todays spot price with a month's worth of simulated noise. Since the 

futures price is the expected value of the spot price, for every subsequent month he sets 

the spot price price process for the month, to begin with the futures price expiring that 

month. 

This approach simplifies the expected spot dynamics, takes into account the forward 

curve and is computationally less expensive, but our goal is to have a spot model that 

also captures futures dynamics. So we shall move on to more complex models that hope 

to capture both these features. 

2.2 Multi-factor models in commodity pricing 

We start off with a variety of two-factor models with their third-factor extensions. The 

most popular two-factor model is that of Gibson-Schwartz [10]. It was the first in the 

class of "convenience yield" models. Two factor models attempt to interpret market 

movements as having two driving noise terms, or two random sources of volatility. 

In Carmona [7], a stochastic market price of risk term is introduced to fit the implied 

convenience yield for different maturities. Before we dive into the Schwartz- Carmona 

models we shall now discuss the basics of convenience yield and futures prices in markets. 
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2.2.1 What is convenience yield? 

• The standard pricing for futures in markets is that the spot price would equal the dis-

counted forward price, i.e. 

1T 

F(t, T) = StE[exp( / r8ds)] (2.6) 
Jt 

where T is the time of exercise, r is the riskiess interest rate St is the spot price and 

F(t, T) is the price of the forward at time t with excercise at time T. In commodities 

and energy linked assets, the futures price does not work out to be of the form above but 

has an unobservable quantity called a convenience yield that factors into the above model. 

In energy linked assets there are storage costs of energy along with the other industrial 

management costs that influence the assets true value at time T from the purchase of 

the contract. In other words, on one hand the holder of the contract has the option of 

consumption flexibility and has no risk in the event of commodity shortage. But the 

decision to postpone consumption comes with an associated flow of costs implied by the 

storage expenses. This net flow of services is the convenience yield and is represented by 

8 where 

5 = Benefit of direct access - cost of carry 

Pricing is commodity market models is based on the assumption that the spot price 

exists, which wouldn't be true in the case of assets like electricity which is impossible to 

store. The forward contract price that includes the convenience yield is found by a no 

arbitrage argument and the forward price is taken to be 

T 

F(t,T) = StEQ[CXP(f (r - 53)ds] (2.7) 

where 8 is the convenience yield. Q is the risk neutral measure, so this implies that 5 

can be inferred as a drift correction term in the spot price process. We shall now discuss 
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the Gibson-Schwartz [1990] two factor model, which is based on the above intuition. 

2.2.2 Gibson-Sc1iartz model 

The first spot convenience yield model was introduced by Gibson and Schwartz in 1990. 

The spot price has the convenience yield Jt added to the drift and is assumed to be a 

mean reverting process that drives the geometric brownian motion commodity spot price 

St. 

Let (l, F, P) be. a probability space under a filtration {F} >o. According to the 

Gibson-Schwartz model, under the risk-neutral measure 

ciSt = (Tt - ot)Sdt + oStdW', (2.8) 

dJt = i(O - 5)dt + ydW2, (2.9) 

where W1 and W2 are correlated Wiener processes with dW1dW2 = pdt. 

The spot process is usually taken to be a mean reverting asset in many energy com-

modities, but in 1990 Gibson [10] argued that the convenience yield influences the spot 

price process and induces mean reversion to it. Unlike interest rate models, it makes 

sense that convenience yields can take positive or negative values so the model proposed 

seems logical. 

Schwartz in 1997 compared the one, two and three factor spot models in fitting forward 

curves. The one factor model just has the mean reverting Ornstein-Uhlenbeck spot price 

process, the two factor factor model is the above model and the three factor model has 

stochastic interest rates. His paper, showed that there was no qualitative improvement 

in assuming a stochastic interest rate, so we shall not include stochastic interest rates in 

our study. 

In Schwartz [1997], it is shown that the forward price for the above spot pricess is 
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where 

F(t, T, S) = SteLTr8seB(t,Tt+A(t,T) 

e1T - 1 
B(t,T) =   

Ic 

- Ic Ic2 O + Pa  (1 A(t, T) - - e_k(T_t) - - 

+ - t) —3+ 4e(T_t) - e_2 (T_t)) 

(2.10) 

We can see the futures price takes this form, since the spot model in equation (2.4) 

is of an affine form. Details of affine processes are given in the appendix. 

Runggaldier [31] in 2003 suggest that another OU process is used for the market price 

of risk, it is suggested since it does not affect the "affine structure" of the spot process 

in equation (2.4). The market price of risk is the risk neutral measure of the spot price 

process, i.e. 

dW' = dW' - )dt. (2.11) 

And since At follows an OU process, it has the following equation (note that the market 

price of risk can take positive or negative values): 

dAt = r.,\ (A - A)dt + cr.xdWt3 (2.12) 

In 2004, Carmona [7] used this idea to enlarge the observation equation of the spot 

price process, for better calibration of the futures curve. The Wiener process T'V' of the 

the spot price process is substituted by equation (2.5), and the extra stochastic factor At 

is added from equation (2.6). 
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dSt = (rt - 6t — a.\t)Sdt+crStdTi/', 

dc'5t = ic(6 - 8)dt + 7dW2 

dAt = —At)dt+oAdW 

dF(t, T) 
- 1 

= (rt + crAt + py A)F(t, T)dt 

- 1 
+ crF(t, T)dT 7' + 'yF(t, T1) dW2 + adWr. 

Ic 

The above equation provides another approach to modelling the forward curve, the 

implications are that the changes in the forward curve as a whole, can be fitted to the 

above equation for dF(t, Ti). The futures price has an explicit form due to the affine 

nature of the three factor model of the spot price process described above. 

The above discussed models are made for general commodities and are not specifid to 

natural gas or energy. For energy commodities, there are the seasonal forces of supply and 

demand that create complicated characteristics for the futures curve and the spot price 

process. We desire there to be a strong seasonal component since it characterizes so much 

of the movement of natural gas. We shall now discuss models where a seasonality term 

was introduced. The estimation of parameters of the seasonality term is done through 

the forward curve usually. 

To understand why seperate models are needed for energy, Figure 2.1 is an example 

of the average spot price of natural gas on the same day over the last eight years. We 

can see a general trend of high gas prices in the Winter months and lower gas prices in 

the summer months. 
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Figure 2.1: Average daily spot prices 

2.2.3 The Pilipovic two-factor model for energy 

Dragana Pilipovic in 1997 wrote the first book in Energy Risk [12], where she presents 

a two-factor model for energy taking into consideration the complex dynamics of the 

futures curve with respect to the spot price. It is seen that from the futures curve, there 

is an implied long run mean. In Pilipovic [12], she presents the following model where a 

moving long run mean is allowed, and the spot price being risk adjusted. 

dSt = o(L - S)dt + aSjdW' 

dLt = ,uLdt + yLtdW2, 

(2.13) 

(2.14) 

where arid W2 are uncorrelated standard brownian motions, and Lt is the long run 

mean. If W' is Wiener process driving the above spot process then W' = T14/i - Adi. 

She says that the futures curve should be modelled by first stripping off the seasonality, 

i.e., 

F(t, T) = FUND (t, T) + seasonality contribution. 

FUND is what should be modelled, if there is seasonality in the futures curve, as in 

natural gas. The spot process being of an exponential affine form, also has an explicit 
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form for its futures price that Pilipovic [12] shows as: 

F(t, T) = (S - Lt)e_+)(Tt) + Lte(1_\T_t) 

2.2.4 Xu's generalization of Pilipovic's model 

(2.15) 

Xu [14] added a seasonality term f(t) to Pilipovic's model, and studied a more general 

version of equation 2.7. He exclusively studied the natural gas spot-future curve. The 

following model was proposed by Xu: 

St = f(t)+Xt 

dXt = a(Lt — Xt)dt+o(t)XtdW1 

dLt = iu('y—Lt)dt+rLtdW 

0(t) = exp(c + Acos2irjt + wsim2irjt) 

f(t) = bt + 1(f3cos2irjt + ci3sin2irjt). 

As we can see above, for 'y = 0 and if a(t) is a constant, it would be equivalent 

to Pilipovic's model. He considered one factor models in the above form where Lt is 

constant, and studied models with and without seasonality. The models with season-

ality terms in it, performed the best. His calibration of the seasonality parameters is 

particularly interesting and is implemented in this thesis as well in Chapter 6. 
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2.2.5 Hikspoor and Jaimungal's model 

In 2007, Hikspoor et. al. [32] studied a class of models that looked as follows, with 

long-run mean and a seasonal component gt• 

St = exp(gt+Xt) 

dX - X)dt + cxxdWt 

dY = a(q—Y)dt+aydZ 

d[W, ZJt = pdt. 

Xt is a stochastic process which has to be estimated by the observed equation X = 

log(St) - gt. Both of these are OU processes and they both have the advantage of being 

able to estimate the conditional probabilities. 

They also considered a three factor model with additional stochastic volatility, with 

the spot price process given by: 

St = exp(gt+X) 

dXt = 8(Yt — Xt)dt+ox(Zt)dWt' 

dY = a(q—)dt+crydW2 

dZt = 

where d[W', W 2], = pdt, d[W', W 3] = pdt, d[W2, W3]t = pdt. 

They extend their two and three factor models to include jumps, such that St 

exp(gt + X + J). The jump component Jt satisfies dJ = —icJ_dt + dQt, where Qt is a 

compound poisson process. 

As can be seen above, rather than including the jump term in X, they include it in 

directly to the spot price dynamics of S. The advantage is that when modelling com-

modity prices such as electricity, the typical behaviour is that of spikes in prices and 

typically returning to its regular level. So rather than a jump that causes the entire 
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price evolution to alter itself, a jump is randomly added and the price returns back to 

its original state. 

2.2.6 Eydeland and Wolyniec's model 

In Eydeland [35], he proposes a model that attempts to model the entire forward curve. 

The forward equation is determined by the Schwartz model described previously. It is an 

HJM (Heath-Jarrow-Morton) type model, where we can think of the underlying forward 

curve stripped of seasonality to follow an interest rate type model. The forward process 

generally has the following form: 

dF(t, T) = 1u(t, T, F(t, T))dt + o(t, T, F(t, T))dW, (2.16) 

This is a multifactor equation, and Wf are Wiener processes whose correlations can be 

chosen. For commodities, the forward curve model that could be simplified to, 

dF(t, T) = F(t, T) u(t,T)dW (2.17) 

The above equations propose a very different approach, here they are not worried about 

the actual spot price process. They try to capture the dynamics of the futures curve 

which actually has a very erratic behaviour in commodities due to its dependence on 

long and short term supply and demand. In this thesis, we also of try to model the gas 

curve via such an approach, but using simple OLS regression instead. 

The models described in this chapter, show of the initial evolution of modelling the 

futures curve and a corresponding model for the spot price from general commodities to 

energies to natural gas. Now we shall discuss in detail the modelling of futures prices 

in natural gas using Levy processes, although it can be 'applied to other commodities as 

well. 
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Levy-based gas price models have the advantange of being one factor models with 

complicated noise driving terms. Since the characteristic functions are available, they 

can be estimated by the techniques developed in this paper. The densities of the spot 

price processes fit very nicely when using such classes of one factor models. Before we 

talk about futures matching, we need to have a little background discussion on Levy 

proccesses and Ito's formula for processes of this type. 
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Chapter 3 

Levy processes 

Before we begin discussion of spot models in commodities and natural gas, we shall get 

acquainted with Levy processes and the alpha-stable Levy motion, in particular. 

3.1 Stochastic processes 

A stochastic process X is a collection of random variables indexed by time where X = 

(Xt)tET. That is for each t E T, Xt is a random variable. The time parameter t can be 

either discrete or continuous, depending on the indek set T. If T is a countable set then 

we have a discrete time stochastic process, and if T is a continuous non-countable set 

then we can obtain a continous-time stochastic process. Any realization of X is called a 

sample path. In case of a continuous time stochastic process we Soften write the index set 

T as an interval [0, T]. 

Definition 1. (Cddldg function) A function f : [0,T] (R)d is said to be cádlcig 

if it is right-continuous with left limits, i.e. for each t E [0, T] the limits f(t—) = 

lim3,3<tf(s) and f(t+) = lims+t,s>tf(s) exist and f(t) = f(t+). 

The purpose of this definition is to be able to define jump discontinuities in stock 

price movements. If t is a discontinuity point we denote Af (t) = f(t) - f(t—), i.e., the 

jump of f at t. 

Definition 2. Levy process A ca'dldg stochastic process (X) >0 on (, .T, P) with val-

ues in (R)d such that X0 = 0 is called a Levy process if it possesses the following prop-

erties: 
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1. Independent increments: for every increasing sequence of times to ... t, the random 

variables X 0, X - X 0, ...Xt, - X_1 are independant. 

. Stationary increments: the distribution law of Xt+h - Xt does not depend on t. 

3. Stochastic continuity: Ve> 0, limhoP(IXt+h - XtI ≥ e) = 0. 

Now every Levy process has a general form, in order to introduce and understand 

the significance of this form, we first discuss the concepts of convolution of measures and 

infinite divisibility. 

3.2 Convolution of measures 

Let M1((R)') be the set of all Borel probability measures on 1W. The convolution of two 

probability measures is defined to be: 

(Al * 2)(A) = fRd 1(A -  x) 2(dx) (3.1) 

for each piE M, (Rd), i = 1, 2, and each A E B(Rd), where A - x = y - x, y E A. 

We note that in the one dimensional case where d = 1 above, this just means that if 

the distribution law of random variables, X and Y are AX and Ity then the distribution 

law of the sum of the random variables, i.e. X + Y is given by Ax * 

Now we define * 2 = * ... * p, (n times) and is said to have a convolution nth root, 

if there exists a measure E M1(W) for which (h1m)* 

Definition 3. (Infinite divisibility) Let X be a random variable in W with law ,ax. 

X is said to be infinitely divisible, if for all n E (N), there exist i.i.d. random variables 

such that 

xY1+Y2+ --- +yTh. 
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The characteristic function of a random variable X is denoted by X(U) 

where u E W1. If px is the law of X then Ox(u) = fRd ei(uv),u(dy) 

Proposition 1. The following statements are equivalent: 

1. X is infinitely divisible. 

2. Mx has a convolution nth root that is itself the law of a random variable. 

3. Ox has an nth root that is itself the characteristic function of a random variable. 

3.3 The Lévy-Khintchine representation 

We shall present the magnificent formula established by Paul Levy and A. Khintchine 

which allows us to characterize an infinitely divisible random variable and a Levy process 

through its characteristic function. In order to describe this formula, we first define what 

a Levy measure is. 

Definition 4. (Levy measure) Let ii be a Borel measure defined on = x E JRd, 0. 

It is called a Levy measure if 

(IyI2 A 1)v(dy) <00. (3.3) 

Theorem 1. Let (Xt)t≥0 be a Levy process on Rd with a characteristic triplet (b, A, ii), 

then 

Ox, (u) = —Pie')] = e',u E Rd 

where 

(u) = i(b, u) - (u, Au) + fRd-O [e () - 1 - i(u, y)1B1(o)]v(dy). 
2 

with B1(0), the unit sphere in Rd centered at 0, or B1(0) = lxi < 1, x e Rd. 

(3.4) 

(3.5) 

From the above definition follows the characteristic function of an infinitely divisible 

random variable. 
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Theorem 2. Let X be an infinitely divisible random variable with distribution p E 

M1 (Rd). It characteristic function is represented as 

OX (u) = e,u E R d 

where '?'(u) is from equation (3.5) 

(3.6) 

Now that we have established the Lévy-Khintchine formula, it is easy to represent 

most of the most of the stochastic processes used in financial math in terms of the triplet 

(b, A, ii). In this thesis, we shall be consistent with the definitions of processes in the 

upcoming section. 

3.4 Popular Levy Processes 

If a Levy process is represented by the characteristic triplet (b, A, ii), then the following 

are cases of the triplet. 

Standard Brownian Motion 

A standard Brownian motion is R d is a Levy process B = (B, t ≥ 0) with the triplet 

(0, I, 0), where I is the identity matrix where 

1. B N(0,tl) for each t ≥ 0 

2. B has continuous sample paths. 

This means that if B is a standard Brownian motion then its characteristic function 

is 

OBJU) = exp(— 1 tluj2),u e W1,t ≥ 0. (3.7) 

Brownian motion with drift 

If A is a positive symmetric d x d matrix and o is a d x m matrix such that cxoT = A. 

If b E R  and B is a brownian motion in Jim, then a process C = (C(t), t ≥ 0) in JRd 
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defined by 

C(t) = bt + aB(t) 

is a Levy process with the triplet (b, A, 0), i.e. 

* bc(u) = i(b, u) - (u, Au), u E Rd. 

(3.8) 

(3.9) 

which can also be recognized as C N(tb, tA). C is also called a Brownian motion with 

drift. 

Poisson process 

A Poisson process is a Levy process N, of intensity A > 0 where N(t) 7r(At), so 

P(N(t) = n) = (At)n _t (3.10) 

for n being positive integers. 

Compound Poisson process 

Let (Z(n), n E N) be a sequence of i.i.d. random variables in R' with a distribution 

pz. Also, let N be a Poisson process of intensity ,\ independent of Z(n), with the process 

X called a Compound Poisson process defined as: 

X(t) = Z(1) + ... + Z(N(t))  

for t ≥ 0, and each Y(t) i-'-' 'ir(At, liz). 

Proposition 2. The compound Poisson process X is a Levy process with Levy charac-

teristic Ox(u) = fR d(ei(u* - 1)Aliz(dy). 

The proof of the above is straightforward can be found in Applebaum [19]. There are 

many more examples of Levy processes, our focus is on the alpha-stable Levy process, 

which we shall discuss, simulate and estimate in Chapter 3. 

Note that the sum of a Brownian motion with drift and a compound Poisson process 

is a case of Merton's jump diffusion model. 
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3.5 Martingales 

If X is a stochastic process defined on a probability space with filtration (Ft, t ≥ 0) 

and an integrability precondition E(IX(t)I) < oo for all t ≥ 0 then we say that X is a 

martingale if E(X(t)jF) = X(s) a.s. 

Martingales are important since the above definition implies that the expected value 

of a process X filtered at a given point of time, is the value of the process at that time. 

In terms of spot prices of stocks, we usually need to adjust the spot price process by a 

constant drift to ensure its "risk neutrality" or "martingaleness". 

Proposition 3. If X is a Levy process with symbol O, then for u E W, a process M = 

(M(t),t ≥ 0) defined by 

M(t) = exp[i(u,X(t)) - t(u)] (3.12) 

is a martingale with respect to the natural filtration Fx. 

Theorem 3. Let N(t,A) = 0 (0 ≤ s ≤ t; AX (s) E A) = E08 1A(/X(8)). If A E 

B(W-0) then we say that A is bounded below if 0 0 A. We also write (A) E(N(1, A)) 

and call it the intensity measure. 

If A is bounded below, then.(N(t, A), t ≥ 0) is a Poisson process with intensity /-t (A) 

Definition 5. For each t ≥ 0 and A bounded below, the compensated Poisson random 

measure is defined by 

.F(t, A) = N(t, A) - t(A). (3.13) 

We note that N(t, A) is a martingale. 

Definition 6. If  is a ]3ore1measurable function from R° to Rd and let A be bounded 

below then we define the Poisson integral off as 

ff(x)N(t,dx) = E 0 u tf (AX (u))1A (AX (u)). (3.14) 
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We now have all the tools we require to define the Lévy-Itô decomposition as in 

Applebaum [19]. 

Theorem 4. (The Lévy-Itô decomposition) If X is a Levy process, then there exists 

b € Rd, a Brownian motion BA with covariance matrixA and a Poisson random measure 

N on x (W1 - 0) such that, for each t ≥ 0, 

X(t) = bt + BA(t) + J1Xj<1 x(t,dx) + 41>1 xN(t, dx). 
3.6 Stochastic Integration and Ito's Formula 

(3.15) 

For a general Levy-type stochastic integral, let Y be a process whose stochastic different 

equation can be written as: 

dY(t) = G(t)dt + F(t)dB(t) + f1Xj<1 H(t, x)li(dt, dx) + f1Xj>1 K(t, x)N(dt, dx) (3.16) 

Let Y(t) = Y(0) + Y(t) + Yd (t) where Y is the continous part of the process and Yd 

is the discontinuous part, defined by 

dY(t) = G(t)dt + F(t)dB(t), and 

dYd(t) = J<1 H(t, x)N(dt, dx) + J> K(t, x)N(dt, dx). 

Theorem 5. If Y is a Levy-type stochastic integral of the form (3.16), then for each f 
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in L2((R)d), t ≥ 0, we have 

f(Y(t)) - f(Y(0)) 

J'aif (Y(s— ))dY(s) + 1 f'aiajf (Y(s—))d[Y., Yi] (s) 

+f t p ,! [f(Y(s—) + K(s) x)) - f (Y(s—))]N(ds, dx) 
JO JIxI≥1 

10• tfilx + [f(Y(s—) + H(s, x)) - f (Y(s—))]N(ds, dx) 
I<1  

pt p 
+ J J [f(Y(s—) + H(s;x)) - f(Y(s—)) 

0 Jx<1 

—H(s, x)5f(Y(.s—))]v(dx)ds. 

In order to obtain Ito's formula for a process of type df(Y(t)) = b(t)dt + F(t)dW(t), 

we just need to put H = K = 0 into the previous theorem. 

This concludes our section for Levy processes, we are now armed with all the tools 

necessary to describe the kind of stochastic processes that we will deal with in the up-

coming sections. 
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Chapter 4 

Alpha-Stable Levy processes 

Introduction 

Alpha-stable Levy motions are flexible and extremely useful in modelling financial mar-

kets. We begin with the stable distribution, and its common parametrizations. Then we 

discuss the alpha-stable levy motion (a Levy process), which is composed of random vari-

ables that have a stable distribution. Since only the characteristic function is known for 

the stable distribution, we show how to recover the probability density function (p.d.f) 

using a fast Fourier transform (FFT) and simulate random numbers that have a stable 

distribution. In order to ensure asymptotic convergence, we adjust the number of points 

simulated using the FFT, in the algorithm. We then show a method on how to esti-

mate parameters of a stable distribution, by a histogram approximation technique called 

the Kernel Density Estimator that uses the fast Gauss transform (FGT) to efficiently 

compute the p.d.f. Natural gas prices exhibit seasonal variations, so we propose a new 

alpha-stable levy motion where the location parameter varies with time. We also discuss 

the calibration procedure for this model. 

Now the stable distribution has four parameters, and we shall generally write it as 

S(a, ,8, c, ,u), where a E (0, 2] controls the heaviness of the tails. 

Also, 18 E [-1, 1], ,8 makes the distribution skew from the left extreme to the right. 

extreme between -1 and 1. And c is the dispersion term that is similar to the volatility 

term in the gaussian distribution, whereas A is the location parameter that is similar to 

the mean in the gaussian. Infact, the gaussian distribution is just a case of the stable 

distribution with 8(2, 0, c, /h), where c is proportional to the volatility. 
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4.1 Stable distributions 

Let X be a random variable, X1 and X2 be independent copies of X and a, b be any 

positive constants. X is said to be stable if 

aX1 + bX2 I cX + d, (4.1) 

for some positive c and some d E R. The random variable X, is strictly stable if d = 0, 

for all choices of a and b. X is symmetric stable if it is symmetrically distributed around 

0, i.e. X I —X. 

To generalize this, it can be shown that X is stable if and only if for all n> 1, there 

exist constants ca.> 0 and dn E R, such that 

Xi+X2+ ... +Xc 2X+d, (4.2) 

where X1, ..., Xn are independant, identical copies of X. X is strictly stable if dn = 0 for 

all n. Nolan [1] (and many other books) show that the only possible choice for c = 

for some a E (0, 2]. Further definitions and implications can be found in Nolan [1]. 

Definition 7. A random variable X is said to be stable if and only if there exists a 

constant d where X1 + X2 + ... + X n11 X + d where a E (0, 2]. It is show in in Nolan 

[OO9] that the characteristic function of such a variable X is given by, 

ço(u) = E[exp(iuX)] = exp[iu1u - cula(1 - i/3sgn(u)], (4.3) 

where sgn(u) is simply the sign of u and q' is given by 

—(2/7r)log(Ju), if a = 1 

tan(ira/2), otherwise 
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/t E R is the location parameter, /3 E [-1, 1], is the skewness parameter and is a 

measure of asymmetry and c E [0, oo) is the dispersion parameter. 

These stable distributions are symmetric around ft when ,@ = 0, in this case the 

distribution is called a symmetric stable distribution with the characteristic function 

ço(u) = exp(—i,uu - alula) (4.5) 

where and a are the same and a = cia. Notice that this characteristic function is 

strikingly similar to that of the normal distribution (and exact when a = 2), hence a is 

chosen as a parameter for the sake of convention. 

In order to simulate these random variables, we need their probability density func-

tions (pdf). These can be obtained by taking the inverse fourier transform of the char-

acteristic function and is given by 

'too 

fx(x) = j ei(t) 
27r 

(4.6) 

The problem is that the pdf is unknown for a general stable distribution when /3 is 

not zero, which unfortunately is the case without skewness. It is for this reason that we 

discuss the simulation of general (skewed) stable random variables using the fast Fourier 

transform (FFT). However, in the case of the symmetric stable distribution, the explicit 

density function is known and can be found in Nolan(2009). 

There are three special cases of the stable distribution (from equation (4.3)) which 

are well known distributions, 

fx(x) 

/--.  -c/2x 
\/2r 3/2 

exp (x_) 2 

e/F 42 ) 
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for S(1/2, 1, c, 0) - Levy 

for 8(1, 0, c, p) - Cauchy 

for S(2, 0, c, t) - Normal 
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Figure 4.1: Stable densities in the S(a, 0. 5, 1,0; 0) parameterization, 
a = 0. 5, 0.74, 1, 1.25, 1.5 

In the second and third case, we can see that ,@ = 0, so they are both also symmetric 

stable distributions. Now, going back to the skewed stable distribution, in the literature 

there are two parametrizations that are used commonly and it is important to mention 

the parametrization one uses. In this paper, only the 1-parameterization of Nolan(2009) 

is used. The characteristic function for this is precisely that of equation (4.5). 

To understand the usefulness of the stable distribution, here is a sample of the the 

density functions whose shapes it can take. 

4.1.1 Simulation of Stable Random Variables 

Let X be a random variable, fx be its density function and c°x be its characteristic 

function. We shall now try to approximate fx from c°x using the fast Fourier transform 

(FFT), it is important to setup the problem correctly to utilize the O(Nlog(N)) speed 

of the FFT. Now by definition of the characteristic function, 

CO U 

= feiuxfx(x) dx f efx(x) dx 
- 1 
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Now we have discretized the above equation and the pdf values are required, so let 

Pn = fx(x)x, be the sample points starting from the lower bound 1 and x, = l+n(x), 

and step length Lx = where T is the total number of points used in the summed 

discretization. 

There are two steps needed in order to recover the probability density function accu-

rately. 

1. We shall make the assumption that pdf's have left and right limits, i.e., lim_ fx(x) = 

lim + fx(x) = 0, so u and 1 are chosen to be sufficiently large, the details of which we 

shall explain in an algorithm form. 

2. Even if our intervals are chosen well, in the case of delta spikes (sharp edges in the 

pdf) we still need to choose T to be of a large enough value. 

So narrowing down our problem, çox (u) is available for all u and from çox (u) we need to 

obtain P from which the pdf can be recovered. Equation (8) looks a lot like a Discrete 

Fourier Transform (DFT), so let us now bring it to a familiar form so that we can apply 

the FFT. 

Let us divide equation (8) by Ci'al and let unzx = 27rnt/T. So this gives us, 

T-1 T-1 

cox (u)e 1 = > e 1 P[n] = (4.9) 
n=O n=O 

In order to remain consistent with Fourier transform notations, we replace .P, by P[n]. 

Thus g[t] = F'(P[n]) or g[t] is the inverse discrete fourier transform of P[n]. We input 

T points of g [t] at the same time to take advantage of the square matrix advantage of 

the FFT. 

So g[t] = [g{0]g[1] ... g[T - 1]] and P[n] = [P[0].P[1] ... P[T - 1]]. Now, u(x) = 2pit/T, 

so the u values can be chosen 

2pit T T T 
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Therefore, g[t] ox (1 tl• Now when dealing with the stable distributions we 

often need large intervals chosen for u and 1, especially in the case of heavy tail distribu-

tions. And when trying to recover the density function, we need to be able to automate 

the recovery of the pdf, such that u, 1 and T are obtained. Firstly, we note that the FFT 

works the fastest when T is a power of 2, i.e, T = 2P for some p being a positive integer. 

The following algorithm calculates the pdf for an interval from -R to R, where R is 

some sufficiently large number chosen, although any interval can be chosen for u and 1. 

To ensure convergence, we make sure that the pdf recovered has extremes greater than 

iO. L is the log error that can be chosen based on your computational power. In our 

simulations we have chosen L = —log(10 4) = 4. We simply double our interval size if 

we aren't satisfied with the error. 

Algorithm 3.1 

Let a= 1,b= 1,R= 1O,L=4 
while (a < I') OR (b < L) 
l=—R,u=R 
dx=(u—l)/T 
t=[O,1, ... ,T-1] 
st = 2irt/t/dx 
g[t] = cox (st)exp(—i(st)l) 
realf ft = abs(real((fft(.qt, T) - 1/2)/R)) 
a = —log (realfft(1)), b = —log(realfft(T)) 
R=R*2 
end 

Now when a decreases, the tails get heavier. And we know that for sharp edges in 

the pdf, we need a much higher number of points in the FFT. Experimentally, we see 

that sharpness happens when a E (0, 1] and for ,8 close to -1. or I. But for practical 

purposes and with respect to natural gas spot modelling, experimentally we can see that 

a E (1.1, 2] is sufficient and /3 E [0.95, 0.95] does the job. 
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Figure 4.2: Kernel Density Estimate of a sample and its histogram 

4.2 Kernel Density Estimation of the Probability Density Function 

Kernel density estimation (also called the Parzen [20] window method) allows us to 

estimate the density function of a random variable non-parametrically. In other words, an 

underlying density function is not assumed. A histogram gives us a rough discontinuous 

shape of what a density function looks like. What a kernel density tries to do is to smooth 

the histogram by adding little gaussians at each observed data point, therefore summing 

up to a smooth looking density function by way of a histogram. Below is a picture of a 

simulation of 1000 random variables from an alpha-stable distribution with parameters 

(1.7, -0.5, 2, 0). We can see by looking at the kernel density estimator of the pdf, how 

close it looks to the actual pdf. Keeping this as our motive, we shall discuss what the 

kernel density estimator is and its implementation via the fast Fourier transform (FFT). 
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naive estimator we define the kernel estimator. 

Definition 8. If we have N i.i.d. samples, (Xi, 0 < i ≤ N) of a random variable X 

with distribution law f, then the kernel density approximation of its probability density 

function is 
N , 

- 1 fx - X  
Nh h 

where K is a kernel function and h is a smoothing parameter or the window width. 

(4.11) 

The most commonly used kernel, which we try to estimate in this thesis as well, is 

the gaussian function with mean zero and variance one. So, 

and as could be expected, choosing an optimal bandwidth h is important in finding 

a good estimator for the kernel density. It is shown in Silverman [21] than optimal value 

for h is given by 

hopt =  

where 

= f xK(x) dx, c2 f K(x)2 dx 
and 

C3 = f(f"(x))2dx. 

Silverman [21] also shows that if we choose a Gaussian kernel with then optimal 

bandwidth is given by h0 1.04N'I5. 

If we were to estimate the kernel density in a straightforward way, it would take 

0(N2) time, we setup the problem to use the FFT. The following method is adapted 

from Silverman [22]. 

Given a function g, let denote its fourier transform '(s) = (27r) -1/2 f eistg(t)dt. Now 
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the empirical characteristic function (ecf) of the samples Xi is defined to be 

ecfx(s) = 2 exp(isX) (4.12) 

So letting f(s) be the fourier transform of the function f in equation (3.11), we obtain, 

f(s) = K (hs) ecfx (s). (4.13) 

by properties of convolutions of Fourier transforms. We used the property that the 

Fourier transform of the scaled kernel function, h-'K(h-1t) is K(hs). This expression 

above is particularly useful when we use a gaussian kernel, since the Fourier transform 

of a gaussian is a gaussian itself, so we yield an explicit expression, 

f(s) = (27r)_h12exp(_h2s2)ccfx (s). (4.14) 

We once again setup this problem in a similar manner, to use the FFT two times in 

order to estimate f(s). 

Algorithm 3.2 

Let X be our sample r.v.'s, N be the number of samples and T = 2m where m> 10 
Choose R such that X E [itt] where 1 = —R and u = 1 
dx=(u—l)/T 
s = 1: dx v (a vector from 1 to u in intervals of dx 
Choose bandwidth, bw (in matlab, do [pbw] = ksdensity(X, s)) p = hist(X, s) 
(histogram of X, evaluated at points s 
fhist = if ft(p, T) (inverse fourier transform at points T) 
t=[0,1,...,T-1] 
st = 2irt/t/dx 
cx = T/Nexp(— bw2 st2 ) fhist (smoothed empirical characteristic function of X) 
= exp(—bw2st2)ecfx (t) 

In the above algorithm, we have shown a way to compute the risk function discussed 

in the next section. We shall not show a detailed estimation results in this section 

since Chapter 7 includes calibration of OU processes based on stable distributions. So 

estimating the parameters of this distribution is simply a trivial case of an OU process. 
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4.4 Parameter estimation of stable distributions 

Given as estimated density j from a sample and a true density f, the most commonly 
used risk function is the mean integrated square error, 

R(f, f) = f E[(f(x) - f(x))2]dx (4.15) 

Now we know that the probability density function f of X is related to its character-

istic function Ox, by its inverse fourier transform. 

f(x) = f°°eqx(t)dt. 

and by the definition of f for the gaussian kernel case in equation (3.13), we establish 

that 

( _ (2ir \  1)3/2 J poo Citxt dt 
-  OO  

We get the following difference between these two functions. 

f(x) - = eit x (_t) dt - f eitexp(_h2t2)ecfx (_t) dt 
2,7r f oo 

 itx  
= I00 e((t) - exp(_h2t2 oo )ecfx(_t))dt 

J— 

We can therefore see that Ox (—t) - exp(—h2t2)eefx(—t) is the fourier transform of the 

difference of the two functions, based on the optimal bandwidth selection h 1.04N"5. 

Let us define, 

= 2t2)ecfx (t) x(t) - e p(_ h (4.16) 

where 9 contains the parameters of X. Sd instead of estimating parameters through a risk 

function using their density functions, a faster way for parameter estimation through the 

characteristic function with the following risk function is established. 

R(X0,) = IDx(9)(t)II2 (4.17) 
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Figure 4.3: Fitted density of Google's returns 

So the optimal parameter, in the process of parameter estimation is 

0opt = argminoR(Xo, k) (4.18) 

Figure 4.3 shows an example of parameter estimation of the log returns of Google stock 

data using a stable process. 

These are Google's returns for the last three years in the histogram, the curve that 

fits the returns is the stable process whose parameters was found to he (1.5, 0.06, 0.13, 

0). 

4.4.1 Maximum likelihood estimation 

MLE being a standard form of estimation was not used here, but estimation for harder 

problems using MLE is done in Chapter 7 of this thesis. Now we move on to a description 

and similar discussion of the NIG process. 
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Chapter 5 

The Normal Inverse Gaussian process 

Introduction 

The normal inverse gaussian (NIG) distribution is a case of the generalized hyberbolic 

(OH) distribution. In this chapter we shall discuss GH distributions and its popular 

cases. We then discuss the NIG process as a more computationally tractible case of a 

GH distribution, and hence use it for our problem of spot-futures calibration. Then a 

discussion is made Normal mean-variance mixtures, and how NIG distributions are a 

case of the variance mixture being an inverse gaussian (IG) distribution. Then we talk 

about the simulation of JO and NIG processes, since the simulation of the NIG can be 

trickily done via the IG process. We also shall go into parameter estimation techniques for 

the NIG process, through maximum likelihood and its empirical characteristic function 

(ECF). 

5.1 Generalized Hyperbolic Distributions 

The generalized hyperbolic (OH) distribution was introduced during the study of grains 

of sand, by Barndorff-Nielsen [25] in 1997. Its probability density function is, 

(/5)A  (x-) KA_1/2 (,,V 62 + (x - )2) 

(o2 + (x - /.t)2/a) 1/2-A 

where u is the location, /3 is the asymmetry parameter, 8 is the scale, ). and a control 

the tails. Also 'y = /a2 - /32 and K is a modified Bessel function of the second kind 

[25]. 

(5.1) 
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Also, the characteristic function for the OH distribution is given by 

- K(8/a2 - (/3 + t)2) (5.2) GH( ) - (a2 - (/3 + t)2)A KA(6) 

We say that a random variable X has a OH distribution if X GH(A,a,i3,8)p. 

GH distributions are very flexible and have desirable properties due to its heavy tails 

which has two parameters ( and a) to control it. One of the criticisms of the Stable 

distribution is that the tail can be very heavy and can overestimate the risk of returns, 

which can also be a good thing for risk managers. The OH distribution typically fits log 

returns of stock prices quite well, but this can also be attributed to the extra parameter 

that the OH distribution has over the stable distribution. 

The OH is a super class of many popular distributions such as: 

1. Hyperbolic distribution with GH(1, a, /3, 6) ) 

2. Normal inverse Gaussian (NIG) Distribution with GH(-1/2, a, 3, 6, ) 

3. Variance gamma with GH(A, a, /3,0, ) 

and the normal distribution, Student-t distribution, among others. 

Until recently the OH distribution had major drawbacks due to the computationally 

intensive nature of calculating KA in the density and characteristic function. For this 

reason we use the NIG distribution, that we see in the upcoming section. Its form of the 

characteristic function and moment generating function, are of interest to us in terms of 

deriving the futures formula for Natural Gas. Now in order to understand what the NIG 

distribution is, we first study the Inverse Gaussian distribution. 

5.1.1 Inverse Gaussian Distribution 

If W, is a standard brownian motion, then a stochastic process X, = t+crW is brownian 

motion with drift p. The subordinator process is defined by 
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T(t) = inf(.s < 0; X, = a), a> 0 (5.3) 

The density of T(t) turns out to be an Inverse Gaussian(IG) distribution, IG( , gm 

The The density function for the IG distribution is, 

f(x)= 127rx3]"2 —A(x—p)2 exp  2j  2x 

and has a characteristic function defined by, 

fA\ 
1G(t) =  [I-vi- 2,21,] 

(5.4) 

(5.5) 

where A, > 0. 

The IG process is just a collection of random variables XIG = XG, t> 0 that have 

an IG distribution, XIG "-' IG(t, A). Now that we know what an IG distribution is, we 

quickly describe what are normal variance-mean mixture models. 

5.1.2 Normal variance-mean mixtures 

Normal variance-mean mixtures were discussed in detail by Barndorff-Nielsen and Kent 

[27] in 1982. If X is a normally distributed random variable with mean zero and variance 

one, i.e. X N(0, 1) and V2 has a probability density g. Then a random variable Y, of 

the form 

Y=a+bV2+crVX (5.6) 

is a normal variance-mean mixture, with "mixing" density g. The probability density 

function of the random variable Y takes the form. 

f(x)=fo  1 exp (—(x - a - bv)2/(2a2v)) g(v)dv (5.7) 
\/2qrov 
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and its characteristic function is given by, 

NVM(t) = exp(ait) çbg (_bt - i cr2t2) 

where Og is the characteristic function of V2 with density function g. 

5.2 Normal Inverse Gaussian Distribution 

(5.8) 

The normal inverse gaussian distribution is a normal variance-mean mixture where the 

mixing density g is that of an IG distribution. The formulas we have above directly 

when evaluated for the density g yield us explicit formulas for the NIG distribution and 

characteristic function. 

The density function of the NIG distribution is 

c5K1 (a.\/j2 + (x - )2) 

and has a characteristic function of 

iNIG(t) = i#t+o(.y_.../a2_()3+it)2) 

(5.9) 

(5.10) 

As mentioned previously, the characteristic function of the NIG has an easily com-

putable and clean form and parameter estimation is done by directly utilizing the FFT 

based algorithm, developed in the previous section for calibration via the empirical char-

acteristic function. 

Finally the NIG process, is a collection of random variables XfIIC , t > 0 that have an 

NIG distribution. 

5.3 Simulation 

To simulate the NIG process, we must first learn how to simulate the IG process. So we 

discuss this next. 
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5.3.1 Simulation of the IG process 

In order to generate random variables that belong to an IG distribution, we perform the 

following steps. 

G v = N(O, 1), i.e. generate a number v '-'s N(O, 1) 

V= 

oX = ,a + LLY - \/4/tAy + p2y2 

o u = U(O, 1), i.e. generate a uniformly distributed random variable, U. 

• If u then return x, else, return M 2/x. 

x generated here, is an IC random variable with distribution IG(, A). 

To generate an IG process, we consider that a process XIG = XfG, t> 0 of random 

variables has the law IC(ut, A). Below are the steps for simulating the IG process. 

• Generate N random variables, x,, i = 1, .., N with the distribution IG(1uL.t, A), 

where /t = TIN and T is the time period you want to simulate. 

Set XG = 0 

• Set Xf = (i— I)At + x 

The simulated values, XfG form an IG process. 

5.3.2 Simulation of the NIG process 

To simulate an NIG process of type NIG(a, /3, öt, 0), we think of the definition of NIG 

as an IG time-changed Brownian motion with drift. The following is the procedure to 

simulate the NIG process: 
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Figure 5.1: NIG sample paths 

• Using the above algorithm, we get a series of values Xf at times points nt, n = 0, 1, 2..., 

for values a = 1 and b - 

,32 

• Set dt,,At = X 1G - XIG 
nt "((nn— 

• Simulate the time change of a standard Brownian Motion by 

a. Simulate n random variables with, u, N(0, 1) b. W0 = = 0 c. WnAt = 

W(n_l)t + \/dtLtl1 

• Repeat path with Xf = 1362X + öW. 

5.4 Calibration 

The estimation of parameters of the NIG process follows from the previous chapter on 

the empirical characteristic function (ECF) estimation of the parameters of the alpha-

stable process. If we have a sample process (Xi, i = 0, 1, ..n), with n observations, we 

can determine its ECF by, ecfx(s) = exp(isX). We also have the characteristic 
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function of the NIG available in equation 5.10. So as in equation 4.16, our optimal 

parameter is obtained by 

where 

00pt = argmin9R(Xo, )) 

R(X9,) = NNIG(t) - exp(_h2t2)ecfx(t)I2 

(5.11) 

The estimation of ecfx is done in the previous chapter in algorithm (.2). We do not 

show the parameter estimation of the NIG process here, since in Chapter 7 we have OU 

based NIG processes that are calibrated. 

Estimating the parameters via the ECF provides the huge advantage of not having 

to evaluate the Bessel function in the density function. Other methods for estimation in 

NIG can include the Methods of Moments, Maximum Likelihood Estimation, Bayesian 

Inference. But all of them have the disadvantage of being computationally expensive, 

due to the time required to calculate the density function alone. 

I 
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Chapter 6 

Futures Matching in Natural Gas 

Introduction 

In this section we shall talk about the natural gas futures markets and the effects of 

natural gas storages on futures prices. Natural gas is produced in different parts of North 

America, and the centres of gas production have trading hubs where futures contracts 

on natural gas are bought and sold. Natural gas is produced in various locations and 

pipelines run all over North America connecting different gas storages. To understand 

the behaviour of futures prices in natural gas, we have to make a quick dicussion about 

two types of natural gas .storages. - 

Base Load Storage 

These storages are typically large and are meant for a regular base supply of gas for a 

region. They have a low daily limit on the amount of gas that can be injected and with-

drawn from the storage. They provide a steady supply of gas to the market throughout 

the year. 

Peak Load Storages 

These storages are smaller and don't operate throughout the year, but have high injec-

tion/withdrawal limits, and can make up for the supply of gas during periods of extreme 

demand (i.e. the peak winter). Storages have to maintain a base level of gas always, 

otherwise the withdrawal costs increase, due to the high pressure of gas in the storage. 

Traders speculate on prices also based on the expected rise in gas prices due to low 
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storage levels. 

One of the most important indexes of futures is that of the Henry Hub (HH), which is 

located in Louisiana. They are traded over a NYMEX (New York Merchantile) exchange. 

Natural gas pipelines run all over North America and the Henry Hub (HH) location is 

almost central to the US and Canada. In Alberta, natural gas futures are traded on the 

AECO hub. Henry Hub prices are seen as the typical gas prices in the North American 

market. 

Various other pricing points, such as AECO in Alberta, always have to price their 

contracts lower than that of Henry Hub. This is because gas from Alberta, for example, 

would be bought in the US only if the price of gas from Alberta along with the trans-

portation costs to the location of delivery would be less than the Henry Hub price (plus 

local delivery costs). The US imports gas from Canada mainly during cold peak winter 

months and on the hottest summer days. 
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Figure 6.2: HDD and CDD curves 

On the hottest days, gas is used for cooling homes (via air conditioners) and on 

the cold days gas is used for heating homes. It is during these times that the gas 

storages experience shortage, i.e. the amount of gas produced in the US does not meet 

its local demand. To meet the demand, natural gas is imported from locations which 

are geographically closer to the part of the US requiring the gas. For example, in the 

Northern states of the US, when there is shortage, gas is imported from Alberta or other 

parts of Canada. In the southern states of the US, gas is usually imported from Mexico. 

Another feature of natural gas price behaviour is that when the storage levels (as 

seen by the ETA1 inventory numbers) are low, which happens during the winter time, the 

extraction costs of gas from the storage is higher and this drives the gas prices to spike 

up during the coldest days. 

Now the spot price of natural gas is set at the different trading hubs, and as the 

'Energy Information Association - US Department of Energy (DOE), contains weekly reports on the 
gas levels in storages around North America. 
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name suggests, it is intended for spot delivery. The daily spot price is determined by 

the adppiy and demand of gas usage. Futures are traded due to the high uncertainity of 

these volatile gas spot prices on an intended day of purchase. 

6.1 Natural Gas Futures and Spot Price 

As mentioned previously, futures contracts in natural gas are traded in different exchanges 

around North America. Contracts exist on a monthly basis for every year. There are 

contracts available for the next 10 years, and each year has 12 contracts. There are 

several contracts of the same maturity being traded as well. In 2002, NYMEX had 

97,000 contracts being traded every day. Many of these contracts that have a maturity 

greater than two or more years are not very liquid. 

The futures price, F(t, T) is the price of the contract at time t with the date of 

maturity being T. Futures contracts have their expiry at the end of a month, in other 

words T can only take dates that represent the end of the month. For simplicity, we 

express all the contracts dates available after a day t to be T for i = 1, 2, ..., where i 

represents the next available contract month. This means that, T E T1, T2,.... The value 

of a futures contract at maturity T tells about the markets expectation of the spot price 

at time T under the risk neutral measure Q. 

F(s,t,T) = EQ[S(T)IS(t) = s] (6.1) 

Also, S(t) is the spot price at a time t. Now our goal for this thesis is to determine 

spot price processes that satisfies the above equation. 
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6.1.1 Handling the Futures Curve 

Say we have M available futures contracts with time to maturity T where i = 1, 2, ..., M. 

Our spot model has to satisfy the constraint, 

[F(s,t,Tl)F(s,t,T2) ... F(s,t,TM )] = EQ[S(Tl)S(T2) ... S(TM)] (6.2) 

This means that, we also need to find a relationship between each futures contract's 

traded prices and its corresponding spot price for the day. That is, 

F(t,T) = Fs(S(t),t,Ti) (6.3) 

where F8 is a function of the spot price S(t) at a time t and expiry time T. 

The relationship between different futures contracts were established the following 

way. In a continuous time model, we would use the notation 

FM(t) = [F(t,Tl)F(t,T2) ... F(t,TM)J', (6.4) 

as a vector (1xM matrix) of a collection of contracts with different maturities traded 

on a particular day t. 

In a discrete time setting which is necessary for calibration, if we are looking at N 

consecutive observed trading days of futures prices of different maturities and spot prices, 

then we can use the notation 

F(1, TI) P(1, T2) ... F(1, TM ) 

F(2, T1) F(2, T2) ... F(2, TM ) 

-j N 
'- M - (6.5) 

F(N,T1) F(N,T2) ... F(N,TM ) 

This matrix contains N observed prices on consecutive trading days, for M contracts 

with maturities T. 
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In the times of the global economic recession, the gas price as of July 1st 2009 is 

3.88/mmbtu USD (US Dollar), which is down drastically from 13.28 USD on the same day 

in 2008! As a result, we can see that the futures curve at low prices have an upward drift. 

This is because even though the gas prices are low now, the gas prices are "expected" to 

pick up soon and so futures have an upward drift. It could also be due to fluctuation in 

storage capacity issues, but the reasons are not clear for now. 

6.1.2 An Affine Seasonality Term 

In this section, we discuss an extension to Pilipovic's model and another model. Now 

we can see in section 2.2.3, the general rule as followed by Xu [14] as well, is that 

F(t, T) = FUND (t, T) + seasonality or 

F(t,T) = FUND (t,T) + f(t,T) (6.6) 

where f (t, T) is a seasonality term whose parameters are calibrated by 

f(t, T) = [usin(2rfc((T - t) - t)) + vcos(2rfc((T t) - t))] (6.7) 

Now from observations during calibration, it was seen that this seasonality was certainly 

not constant (results for this is shown in the next chapter). But an affine form for its 

coefficient does a reasonable job in trying to capture the "amplitude" of the seasonality. 

That is 

f(t,T,St) = m(t,T, St) f(t,T) (6.8) 

where m(t, T, S) = a + bS, i.e. has an affine structure. Now another observation made 

was that 

f(t, T, S) = m(t, T, F(t, T))f(t, T) (6.9) 

where m(t, T, F(t, T)) = a + b(max(F(t, [TM ... TM_12])) - min(F(t, [TM ... TM_12]))). Ei-

ther way, the idea is that the seasonality term is initially estimated in equation 6.26 and 
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is taken as f(t,T), but its coefficient is not constant, i.e., 

F(t, T, S) = FUND(t, T, St)+f (t, T, S) = FUND(t, T, St)+m(t, T, F(t, T))f(t, T) (6.10) 

It is convenient to write it in the above way, since the futures price in formulation is 

related to the spot price S. 

6.1.3 Two-Factor models for gas (Pilipovic and Xu extensions) 

Pilipovic [34], uses the following two factor model 

dSt = a(L - S)dt + uStdW1 

dL = ,uLdt + 'yLtdW2, 

(6.11) 

(6.12) 

In Pilipovic [34], she simplifies her model further which actually helps a great deal when 

doing parameter estimation, as the number of parameters reduce and there is no ambi-

guity. Equation 2.5 can be reduced to, 

FUND(t,T, S) = (S - L)C_(a')(T_i) + Lte'XT_t) 

where a' = a + .A-y and ' = p - )-y Therefore, we have a futures model where, 

F(t, T, S) = (a + bSt)f(t , T) + (S - Lt)e_'XT_t) + 

(6.13) 

(6.14) 

There are only two parameters (seen in Chapter 7) to be recovered in total, thus simpli-

fying the problem. 

Now as can see, the long run mean implied by the spot price process just follows a 

geometric Brownian motion. We believe that the long run mean should be mean reverting 

as well, we back the claim since upon calibration we saw that two parameters are not 

sufficient to estimate the system. 
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Instead we actually use the idea of Xu [14], where the long run mean is also mean 

reverting, i.e. 

dSt = a(Lt - S)dt + crSdW'dLt = - L)dt + rLdW2 (6.15) 

where r = 0, 0.5, 1. The solution to the above system is given in Xu [14] by, 

FuND°(t, T, S, L) = ea(t_T)St + a (et_T) _€a(t_T))Lt (6.16) 

+ IL'Y  (a(t_T)  a'y (eL(t_T) - 1) (6.17) 
a — IL 

so the futures curve could be modelled as, 

F(t, T, S) = (a + bSt)f(t, T) + FuND° (t, T, S, L) (6.18) 

The futures equation here requires the estimation of three parameters (as seen in Chapter 

7) and works well in calibration. In this thesis, the multifactor model that we calibrate 

is the above. 

6.1.4 General Structure of Levy-Based Models 

This time instead of working backwards, we start off with a reasonable choice of process 

for the spot price. In this thesis we shall deal with one factor Levy-based stochastic 

models of the following form 

dXt = X(b - X)dt + XrdLt 

St = f  + exp(X) 

(6.19) 

(6.20) 

where Lt is a Levy process, f(t) is the same seasonality parameter as the previous section 

and St is the natural gas spot price process. 

If r = 0, it is an OU process and for r = 0.5 it is a Cox-Ingersoll-Ross type process. 

Now for each of these models we would like to get the futures price and its characteristic 
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function, but these are unknown to the author for r = 0.5 and r = 1. So in the upcoming 

sections we only consider the above model for r = 0. 

For an OU type model we simplify the equation for the sake of parameter convergence 

during estimation, 

dX= —.\Xdt+dL (6.21) 

This is the form also considered in Cont and Tankov [24], basically the mean reverting 

indicator gets mixed into the "location" term for the Levy process. 

For the cases where r = 1 and r = 0.5 since we don't have the futures price, we 

calibrate it only for the spot process as models of such type don't a known explicit 

characteristic function when there is an underlying Levy process that is non-Wiener. 

Unfortunately such are the cases that is of interest to us. The approach we take in 

calibrating such models is that of using the simulation equation or the corresponding 

difference equation of equation 6.34, 

= A — Xth+XrLi 

X+i—X(1—Ah)  

But L1 above is just a Levy distribution, so it has a known characteristic function. 

Therefore the characteristic function for the simulation equation is 

X+1 —X(1—)  
exp(zu ) exp( L(u)) (6.22) 

At 

where 'bL (u) is the characteristic function of the chosen Levy process. In the section 

on calibration in the next chapter we discuss how the above expression is exploited to 

actually retrieve the parameters for equation 6.34. 
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Now we shall look at the explicit solutions and futures price inferred from the models 

of the following OU type Levy models. As far as naming conventions go, we shall name 

our model in equation 6.34, in the following form 

model - 1 -' distribution' - ,r 

So if we were looking at Lt being an alpha-stable noise driving term with r = 0.5, then 

the model would be called model - 1 - alpha - 0.5. Similarily for an NIG process, if 

r = 1, we call it model - 1 - NIG - 1. 

6.1.5 Model-i-Alpha-U: An alpha-stable based OU futures model 

Stable distributions were dicussed in the previous chapter. In this section we shall intro-

duce a stable Levy based spot price process and derive the futures price formula. 

dX —)Xdt + dL (6.23) 

(6.24) 

where Lt is of a stable distribution (a, ,8, o, t), f(t) is the same seasonality parameter as 

the previous section and St is the natural gas spot price process. 

The futures price of a contract where Lt is a symmetric alpha-stable process (i.e. 

= 0) is: 

F(t,T) = E[S(T)IS(t)] = E[f(T) + exp(XT)IX(t)] = 1(T) +E [exp(XT) 1X(t)] 

Now from Cont and Tankov [24], the solution to Xt is of the form, 

(6.25) 

T 

E[exp(iuXT)IX(t)] = exp(iuXtexp(—(T - t)) + f LT (_ie_T ds) (6.26) 

where Lt in the above equation can actually be any Levy process, but in our case we shall 

solve it for a Stable Levy process and in the next section we do the same for a normal 

inverse gaussian Process. Solving the above integral gives us, 

57 



ft T LT(ue8_Tds = iva (1 - e_A(T_)) - (IcuI)Oz (1 - e_(T_t)) 
(6.27) 

where Lt is an alpha-stable Levy process. Starting at a time 0, the characteristic function 

of Xt is given by 

(t, u, X) = E[exp(iuX)] = exp(iuXoexp_t + zui a (1 - e—" t) - (IcuI) (1 - e_  t) ) 

(6.28) 

Now with respect to calibration its useful to have a transitional density function, or 

a conditional density. This can be easily obtained by finding the dynamics of X1 - X, 

which can be easily obtained from the characteristic function evaluation above. 

So, the transitional characteristic function of Xt is 

E[exp(iu(X1 - Xi)] = exp(iuXo ?t(e_A - 1) 

+ iae_ t (—e + 1) - (Icu I)a (i -  e')aA  

The above equation also tells us the characteristic function of the log returns spot 

price process if we set f(t) = 0, i.e., Xt1 -  Xt  = log(S i) - log(S) = 
St 

For the futures price, we do not take into account skewness since in practice we see 

impulsiveness in noise but there is no skewness exhibited in the natural gas spot process. 

We shall not include the proof here, since it is straight forward, but the solution to the 

futures process for a symmetric alpha-stable Levy process, L, is found by simply setting 

u = —i in the characteristic function, i.e. 

F(t, T) = f(T) + E[exp(XT)IX(t)] = f(T) + '(t, —i, X) (6.29) 

= f(T) + exp(Xte_ Tt) (6.30) 

) (1 - e_A(T_t)) - (I CI) a (1 - e Aa(T_t) (6.31) 
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6.1.6 Model-1-NIG-O: An NIG process OU based futures model 

The NIG process has the advantage of having semi-heavy tails which is also gives good 

accuracy when looking at densities for gas prices for shorter periods of time. Now as the 

progression went in the previous section, we look are going to look at the equation for 

X. In this setting we have, 

dXt = —AXdt + dL 

where Lt is an NIG process with parameters (a, /3, 8, ). Now that we have a new 

process for our model, solving the same integral in equation 6.37, it works out to be 

= — A iUi (e () - i) 5 - /32 (T - t) + ptNIG(UT) (6.32) 
Jt  

where 
T   

ptNIG(UT) = it ô/a2 - (/3 + iueA(8T)) ds (6.33) 

The explicit integral solution of Pf"°(u, T) is not known to us, so we shall simply 

numerically integrate it. Therefore, the characteristic function of Xt is given by 

u, X) = E[exp(iuX)] = exp(iuXoexp_At +  

—8 Va2 _ '32 (t) + pArIG( t)) 

And the transitional characteristic function of Xt is 

E[cxp(iu(XL+l - Xe)] = exp(iuXoe"t(e" 1) 

+ zp e_t (e - i) 
A 

(e_> (t) - i) 

A 

+8 \/a2 _ '62 +  pNIG (u,t + 1) - p NIC (u, t) 

Also as in the previous section, the futures price is obtained the same way by setting 

u = —un the characteristic function, i.e. 
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F(t, T) = f(T) + (t, —i, X) (6.34) 

= f(T) + exp(Xte_(T_t) (6.35) 

(1 - e_A(T_t) - '8 2 (T - t) + pNIG(jT)) (6.36) 
A 

In the upcoming section, we calibrate all the models described in this section 
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Chapter 7 

Futures and Spot Model Calibration 

Introduction 

In natural gas futures models the ultimate test is to be able to see if the formulated 

futures price from the spot price actually captures the dynamics of the futures curve. 

Rom empirical work done in this thesis, many models were implemented, but what was 

observed was that models described in literature with parameter estimation results were 

typically estimated the futures prices of contracts for more than 1 year expiry. 

The relation between futures prices in the first year of expiry, specially in the first four 

to five months are very uncertain and is extremely difficult to model. This is because 

they are not only dependent on the spot price but also on natural gas storage levels, 

weather, hurricane forecasts, among others. In academic literature these factors are 

conveniently ignored to find a satisfactory analytical model that describes future prices 

based on seasonality relations and spot prices. 

7.1 Choosing the Spot Price 

Natural gas in North America has many different hubs and pricing points, but Louisana 

being a major producing region has the Henry Hub associated with it. Being the major 

supplier of eastern US (where the population is very high), it is considered to be nationally 

and internationally an indicator of gas prices. But over the last five years, the Henry Hub 

is no longer the major producing region for gas and so the other commonly used proxy 

for gas prices is the front month prices for the futures contracts traded in the NYMEX 
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Figure 7.1: Prompt and Henry Hub prices 
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exchange. 

That is, if we are in the month of September, the gas prices for the month are taken 

to be the futures prices for October contract being traded in September. This is known 

as the prompt price, we can see below the prompt price, spot price and their differences 

over the last 10 years. 

When testing futures models with respect to the spot price process, it is ideal to 

calibrate using one or the other. As can be seen, there are several times in which the 

Henry Hub price and the futures price has a gap, thus actually violating the usual rule of 

spot convergence of futures contracts, which says that F(T, T) = S(T). This is usually 

used as a boundary condition in computing the futures price PDE by Pilipovic [12], Xu 

[14], etc. 

So it should be considered that in the natural gas market this convergence rule doesn't 

always hold, since there is no "real" spot price for natural gas. For calibration purposes 
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however, we use mainly Henry Hub prices, but prompt prices are also mentioned if there 

was a significant difference in the model. 

7.2 Approaches to Modelling the Futures Curve 

Modelling the futures curve is similar to modeling the bond yield curve, the seasonality 

can be filtered out and the underlying curve can be obtained. Atleast that is the target 

of modelling the futures curve. 

All of the models in Chapter 2, assume a spot price process for gas and want to find 

a corresponding futures model. If the models were to fit, the parameters recovered from 

the futures model should be close to the parameters in the spot price calibration of the 

gas prices. 

However, this is usually not implemented and Pilipovic [34] describes it as an "ulti-

mate test" for model goodness. This approach is also the one used in model 6.1.2, 6.1.3 

and 6.1.4 in this thesis. 

Another way is to not worry about the implications of an underlying spot price process 

and to model the dynamics of the futures curve by itself. This approach is taken in 

Eydeland and Wolyniec [35] in Chapter 2, as well as model 6.1.1 in this thesis. Although 

this is the approach taken in 6.1.1, the parameters were seen to be related to the spot 

process and so a formulation of the spot price process was achieved. 

The calibration procedure for both models are similar except that when a spot pro-

cess is assumed, although it gives the parameters obtained an economic intuition, it also 

limits the flexibility of capturing the futures curve. In this chapter we provide the imple-

mentation, for all the models in Chapter 6. Now we talk about estimating the seasonality 

term that we have talked about a lot in the previous chapters. 
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7.3 Modelling the Underlying Futures Curve 

Now in natural gas futures modelling, a seasonality term is subracted from the spot price 

process to obtained the underlying noise. This is given by St = f(t) + X, all of our spot 

models talk about modelling X. Now seasonality terms are modelled in most literature 

so far, where f(t) is of the form 

f(t) = [usin(2rfc(t - t?)) + vcos(2rfc(t - t?))] (7.1) 

where t9 is a centering term for the function. When looking t futures curve season-

ality we shall also use the notation, f(t, T) = f(T - t), since we are looking at an entire 

range of T's or times to expiry. So a corresponding futures model for a spot process of 

the form above, is F(t, T) = f(t, T) + X(t, T), where X(t, T) is the entire underlying 

futures curve. 

If we know where the center is, we can do a linear regression to estimate one of the 

futures curves. We now describe two ways of estimating this seasonality term, f(t). The 

first one can be used by using any of the prescribed models, but in reality many of these 

models do not work when looking at the futures curve for close maturities. The second 

one is a new way to obtain the underlying curve by Pilipovic [64]. 

7.4 Calibration of Futures Models 

The one key phenomenon that has been overlooked by authors in past literature has 

been that the seasonality term f(t) is determined and is used as a deterministic term 

in the spot process. However from our work, it has been seen that this is not true and 

infact the seasonality term keeps compressing itself by a constant factor, and even the 

relations between futures prices of different expiry change as well. This is a serious error 
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to overlook, and was not addressed by past papers in the subject. 

In this section, we calibrate the model proposed in 6.1.2. The model is given by: 

7.4.1 One Factor Models - Modelling the Futures Curve by Spot Calibration 

The essence of this approach is that the futures curve should represent the expected value 

of the spot prices. We shall describe the steps involved with this procedure. 

Step 1. Estimate seasonality, f (t), from a combination of the historical futures prices 

and spot prices for the past T years. This procedure shall be explained in this section. 

Step 2. We simply subtract the seasonality f(t) from the spot prices and find the 

parameters 8 of our spot model. That is, St = f(t) + exp(X). So essentially we are 

trying to calibrate X, = ln(S - f(t)). 

Step 3. Take parameters 0 and calculate the futures curve F(0, t, Ti). 

Step 4. Estimate the parameters of the actual futures curve by our chosen model 

of F(9, t, T) , these parameters are our risk neutral parameters. The difference in our 

retrieved parameters tell us the markets price of risk. 

DATA For our data we used four years of spot and futures prices from January 5", 

2004 until January 2nd, 2008. 

Step 1, which is shown first, is the same seasonality term f (t) that is used.for the rest 

of the models. So all of our calibration methods are basically for the stochastic process 

X. This was the approach taken by Pilipovic [12] and Xu [14] to model the futures 

curve. The advantage of this approach is that-we get to experiment with models using 

Levy processes as driving noise terms, and the calibration of such models is hard since 

explicit probability density functions are unknown. But we do all our manipulations in 

the frequency domain, and make use of a combination of optimization techniques with 

the characteristic function to calibrate these models. 
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7.4.2 Capturing the Seasonality 

The whole point of finding the seasonality term is so that we have more data to work 

with. As explained earlier since there is no real spot price for gas, every month we have 

the futures dynamics for a certain number of months from the front month. We want to 

in a sense "normalize" the futures prices. In order to capture seasonality, we follow the 

approach followed by Xu [14]. We saw that it gives a reasonable underlying seasonality 

upon estimating the parameters. 

In our world of discrete observations, we denote the historical spot prices by {S}t1 

and the futures prices by F(t, T1lt = 1, 2, ..., n; i = 1) 2, ..., m). Where t = 1, 2..., n rep-

resents our observation dates and Ttj represents the next m contracts whose prices are 

available from time t. As in Xu [14], if the spot model is given by St = f(t) + Xt and 

dXt = - X)dt + oSrdWt, where r = 0, , 1 then the futures price is given by 

F0 (t, Tti, S) = cE(t_Tti)(S - L - f(t)) + i: + f(T) (7.2) 

and f(t) = 1[usim(2rfcirt) + vcos(2irrfct)]. 

We consider 252 trading days in a year, so rfc = above and the parameter 
252 

9 = [a, L, u1, u2, v1, v2]. In order to estimate the parameters we find the least squares 

error between the observed futures curve and the proposed equation above, i.e., 

9 = argomin (FO (t,T,St) —F(t,T))2. (7.3) 
t=1 i=1 

The parameters estimated for a and L are given below 

L=2.39 

a = 0.0016 
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Figure 7.2: Seasonality of the spot price and its estimated artificial value 

The parameters for the seasonality term which all of our models share is given below. 

b = 0.0031 

ul = 0.6622 

U2 = 0.1284 

= —0.0181 

V2 = 0.0068 

Seasonality simulated and estimated, i.e., our f(t) is 

Spot price and seasonality, i.e., St and f(t) is shown below 

The price process we want to calibrate, Xt = log(S - f(t)) 

Now that we have our seasonality term to calibrate our models we work with, we 

follow Step 2 and our goal is to calibrate and find an appropriate model for X,. So in 

each model we perform steps 2 to 4 and see what results. 
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Figure 7.3: Seasonality of the spot price plotted on the same time scale as the seasonality 
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Figure 7.4: The underlying process Xt that we want to calibrate 
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7.4.3 Calibration of 1-'distribution '-r Type Models 

As discussed in the previous chapter, for our model of type 

dXt = A(b - X)dt + XdL 

we have to understand that b indicates the mean level to which it reverts to. So when 

the equation is simplified to 

dXt = —AXdt + dL 

and the location term of Lt looks similar to Abdt. In other words, when simulating 

the equation, to make the mean reversion seem reasonable we have to ensure that the 

"location term" is chosen for some defined mean b and a rate of mean reversion A. So 

when simplifying the simulating equation from Chapter 5 in equation (6.36), and taking 

our observed equation to be 

-  Xt  = A - Xh + XrLi and as shown in Chapter 5, we now set Y to take the 

form: 

Y() =  +1 (' -  = L(0) (7.4) 
Xtr 

where 0L are the parameters of the Levy process we consider. 

In other words Y(5.) L1(GL), i.e., if f((A)) is the probability density function of 

Y(5) then 

1100 —iva . 

= —Je Y(3)( 

= 

= .F[E(exp('ibL(u)))] 

Here F is the fourier transform. Therefore we know what the probability density 

function of Yt is, since the characteristic function of the Levy process L1 is known. 
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Armed with the knowledge of our density function and characteristic function, we can 

use two approaches to obtain the parameters. 

1 Maximum Likelihood Estimation - an obvious choice and an unbiased estimator 

when the density is available,' our goal is to set up an appropriate error function, that 

allows us to estimate all the parameters of the system. 

2 Empirical Characteristic Function - This procedure was discussed in the Chapter 

4, and it can be used to directly estimate the parameters via an established error function. 

7.4.4 Maximum Likelihood Estimation of 1-factor Levy-based Models 

If we have a set of values X1, ..., X that belong to a distribution P with parameters 

= (Ox, . . . Ga), and if the probability density function can either be quickly and accurately 

estimated or has an explicit form, then the maximum likelihood estimator becomes a 

minimum variance unbiased estimator as the sample size increases. 

If the probability density function of the distribution L is given by f(9, 11'), then the 

mot likely" parameters of the observed variables are given by 

£*(9, {X}1) = 1-fl_1 f0 (X) 

The more commonly used version that we use in this thesis as well is the log likelihood 

function, i.e. the log of the above equation, 

)' 'ln(fo,X) 
i=1 

Then we obtain the maximum likelihood estimator by maximizing L(.), 

O = argomaxL(O, {X}t 1) 

In our case, our observed values are X, but they are transformed to 

X+1—X(1—)  
yr =L1(GL) 

(7.5) 

(7.6) 
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Since A is unknown, what we do is slightly modify the estimation equation, and our 

parameters are 0 = (, Therefore we obtain our estimate for 9 by maximizing, 

0 = argomaxL.(OL, {(A)}' 1) 
X+1—X(1-5)  

= argomaxr(0, { yr }tr=i) 

We can see in the next two sections the comparisons and efficiency of estimating the 

models of type 6.34 via this method of the maximum likelihood estimation. 

7.4.5 Empirical Characteristic Function Method 

Similar to the method in Chapters 4 and 5 for calibrating alpha-stable and NIG processes, 

we formulate the problem in equation 6.34. If we have 'n' observations, i.e., {X} 1 

ecfy(u) = exp(iv.,Y(A) 

exp(iuX,+1 — X,(1—  

Xtr 

As mentioned in Chapter 4, the empirical characteristic function is approximated by 

taking the fourier transform of the histogram, as in section 4.3. 

If our parameters are defined as in the previous section where 9 = (, 0k), our error 

function is obtained by finding the maximum of 

= argomaxIj >exp(iuXt+1 1  ) exP(bx(i))II2 (7.7) 
t=1 Xtr 

This method as we can see, directly exploits the characteristic function and is coin-

putationally inexpensive. 

7.4.6 Model 1-alpha-r 

In this model in order to calibrate, we look at an equation with: dXt = —AXdt + XrdLt 

with Lt being alpha-stable with parameters L(a, 0, c,Akdt). The location term for the 

71 



Table 7.1: MLE estimation for alpha-stable-OU process with r=0 

MLE estimation for alpha-stable-OU process with r=0 
Parameters Real Values Simulated 1000 Simulated 500 Simulated 1500 Simulated 2000 

.07410 .12320 .33910 .10120 .13100 
a 1.73110 1.72270 1.78730 1.74120 1.73720 
C .02080 .02090 .02090 .02100 .02140 
k .05570 .06580 .14580 .05890 .05940 

alpha-stable process has that form since, we want k to be what Xt mean reverts to. But 

for parameter stability during estimation, we set 

= )kdt 

and the parameters that we need to estimate are 

o = (A)d,c,p.). 

We calibrate for the maximum likelihood and the empirical characteristic function, 

their estimated parameters. These parameters are used to create simulations of the 

equation and then we try to retrieve these parameters again. We do this to ensure that 

the parameters that we have estimated are reasonably accurate and that the programs 

are doing their job properly. We also show sample paths for the models, and compare it 

to the spot price process. 
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Figure 7,5: Maximum Likelihood Density estimate for model-1-alpha.-0 

Table 7.2: Empirical Characteristic Function(ECF) estimation for alpha-stable process 
with r=0 

Empirical Characteristic Function(ECF) estimation for alpha-stable process with r=0 
Parameters Real Values Simulated 1000 Simulated 500 Simulated 1500 Simulated 2000 
A 0.0741 0.1577 0.0998 0.1104 0.1100 
a 1.7311 1.7403 1.7724 1.7477 1.7349 
c 0.0208 0.0208 0.0218 0.0219 0.0214 
k 0.0557 0.0171 0.1011 0.0620 0.0609 

In the process of calibration, the values that we find as our "real parameters" are 

those we satisfactorily obtained via both the ECF and MLE method. One observation 

we find is that the MLE estimator is not as good as the ECF in spotting spikes, as evident 

by observing the densities in each figure. 

Now we take the "real values" in the above two tables and use it into the futures 

equation for the alpha-stable process, given in equation (6.46). We then look at the risk 

neutral values of the equation that is obtained by fitting the futures equation into the 
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Figure 7.6: A sample path of Xt and St calculated underneath, in red is the true spot 
price process 

Figure 7.7: ECF density estimate for model-1-alpha-0 
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Figure 7.8: Futures curve for model-1-alpha-0 from the estimated parameters 

actual futures curve. 

Note that in the figure 7.8, we take contracts from the 5th month to the 16th month 

from the current observation date. This is because the first 4 months or so of the contract 

are highly volatile and do not follow seasonality rules (to an extent), especially in the 

last 4 years. In the case of risk neutral parameters, we see the contracts from the first 

month till the 15th month. The risk neutral parameters obtained are A = 0.03, a = 1.87, 

c = 0. 12) k = 0.06. Now we also estimate the parameters and see sample simulations for 

r = 0.5,1 in equation 6.34. We notice that for r = 1, the process is quite erratic. In both 

cases we don't show the futures curve, since we don't have an explicit expression for it, 

but it is interesting to see the performance of calibration of non-Gaussian CIR-type and 

the other "exponential Levy motion" type process. 
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Figure 7.9: Futures curve for model-i-alpha-U from the risk neutral parameters 

Table 7.3: MLE estimation for NIG-OU process with r=0 

MLE estimation for NIG-OU process with r=0 
Parameters Real Values Simulated 1000 Simulated 500 Simulated 1500 Simulated 2000 
A 0.580 0.641 0.172 0.455 0.610 
a 31.654 33.233 26.953 37.932 34.403 

3.744 4.746 -1.834 1.633 3.344 
5 0.039 0.037 0.035 0.046 0.038 

0.727 0.768 0.680 0.665 0.714 

7.4.7 Model 1-NIG-r 

Similar to last section, we use the same simulation equation and Lt has parameters 

(A, a,,3, 6, ). Also we make, = Akdt and the parameters that we need to estimate are 

9 = (A,a,fi,5,j,t). 

We show the MLE results and futures curve forecast of the NIG futures curve. 
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Figure 7.10: Maximum Likelihood Estimate for density of model-1-N10-0 

We once again see how the ECF method handles spikes well, infact we get to choose 

our intervals. One trick used in this thesis is to find first the MLE estimate and then 

find the "local" ECF estimate by making the interval smaller, so that the spikes in the 

density are given higher importance. 

Model-1-NIG-0.5 

Here we show the calibration results for model 9.34, for r = 0.5. 

Table 7.4: Empirical Characteristic Function(ECF) estimation for NIG-OU process with 
r0 

Empirical Characteristic Function(ECF) estimation for NIG-OU process with r=0 
Parameters Real Values Simulated 1000 Simulated 500 Simulated 1500 Simulated 2000 

0.580 0.616 0.132 0.580 0.577 
a 31.654 36.030 29.567 35.301 32.310 

3.744 5.528 -1.481 2.970 3.955 
8 0.039 0.041 0.041 0.044 0.041 

0.727 0.508 0.598 0.890 0.729 
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Figure 7.11: A sample path of Xt and St calculated underneath, in red is the true spot 
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Figure 7.12: ECF density estimate for model-1-NIG-0 
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Figure 7.13: Maximum Likelihood Estimate for density of model-1-NIG-0.5 

Table 7.5: Empirical Characteristic Function(ECF) estimation for NIG-CIR process with 
r=0.5 

Empirical Characteristic Function(ECF) estimation for NIG-CIR process with r=0.5 
Parameters Real Values Simulated 1000 

0.165 0.247 
59.188 55.000 

Ia 4.894 4.959 
6 0.020 0.018 
It 0.003 0.004 

7.4.8 Calibration of Two-Factor Models 

In this section we develop a new technique to calibrate a two factor model, where only 

the underlying curve is taken into consideration. The advantage of this approach is that, 

most yield curve modelling techniques would work when trying to capture the dynamics 

of a pure yield curve type process. 

Rather than the previous approach of having a single seasonality curve, we strip off the 

seasonality at every observation of the futures curve. For such a "stripping" procedure, 
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Figure 7.15: ECF density estimate for model-1-NIG-0 
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Table 7.6: Empirical Characteristic Function(ECF) estimation for NIG-CIR process with 
r==0.5 

Empirical Characteristic Function(ECF) estimation for NIG-CIR process with r=0.5 
Parameters Real Values Simulated 1000 
A 0.165 0.284 
a 59.188 51.070 

4.894 5.705 
8 0.020 0.019 

0.003 0.010 

we need to make sure that we have a consistent and computationally inexpensive method 

of determining the underlying curve. This will be truly consistent in modelling the futures 

curve by 

F(t, T) = FUND (t, T) + .seasonality (7.8) 

The seasonality is justifiably ignored, as we are only concerned about the underlying 

dynamics. We now show two ways of doing such a procedure, and choose the most 

appropriate method of finding the underlying curve. 

7.4.9 Extracting the Underlying Curve using Log Polynomials 

A simple way to extract the seasonality is given by the following regression equation 

F(t, T) = E[uisin(2rfc7r((T—t)—t9) )) +vicos(2,7rrfc(T—t—t9))]+/.t+blog(T—t) (7.9) 

We use this as an example, to strip seasonality, and obtain parameters for f(t, T). From 

this we also see how the underlying seasonality curve looks like, which is f(t, T), as well 

the underlying curve itself which is X(t, T) = + log (T - t). This is estimated by 

the following, where F0(t, T) is the above equation and F(t, T) actually refers to the 

observed futures prices, for maturities (T1, T2, ..., TM). M is the number of months and 0 

represents the parameters in the above equation. Let N be the number of observations 
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Figure 7.16: Seasonality and underlying curve using regression as of Jan 2007 

over time, i.e., t = 1, 2, 3, ..., N 

M 

0 = argmin0 (Po (t,T) - F(t,T))2 (7.10) 

We can see slight errors in the actual fit, but these errors are seen to be constant over 

a few months, and can be used an bootstrapped during forecasting. 

Calibrated parameters: u1 = —0.3330, v1 = 0.1318, u2 = —0.5271, v2 = —0.2532, 

6.2273, b = 1.1081. R-squared statistic = 0.9629, F-statistic = 229.5818 

In place of the equation F(t, T) above, we can use any of the futures models in this 

thesis in practice, but its actual abilities (with respect to parameter convergence) are 

not very consistent. Regression gives us a reliable, convergent scheme to obtain the 

underlying curve. 
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7.4.10 Extracting the Underlying Curve using Exponential Seasonality 

Pilipovic [34] came up with a slick way to estimate the underlying curve, although the 

problem is that fitting the underlying curve with an existing model is hard, but could 

be useful for traders to know the change in curves over different days. If F(t, T) = 

f (t, T) + X (t, T) is our futures equation, in the previous subsection we directly estimated 

F(t, T) and recovered f(t, T). Over here the equation below' estimates X(t, T), and we 

estimate the seasonality term by f(t, T) = F(t, T) + X(t, T). The equation is of the 

following form 

X(t, T) = 131exp(--yi(rfc((T - t) - t))2) + /32exp(—'y2(rfc((T - t) - t)).2) 

+/33exp(—'y3(rfc((T - t) - t))2)); 

Again we show what results when implementing the equation above, and see a satisfactory 

underlying curve. 
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Figure 7.17: Seasonality and underlying curve using exponential seasonality as of Jan 
2005 

Calibrated parameters: ,8 = 3.9031, 'yl = 0.0099, t? = -5.1825 

,82 = 3.8450, 'Y2 = -0.0025, to = -5.1756 

/33 = 1.5332, = 0.1846, to = -5.4838 

But the seasonality term recovered isn't consistent, and its structure seems to change 

well beyond our comfort. Crucial to futures modelling is also to be able to capture the 

underlying seasonality term, that tells us the relative prices of all contracts along the 

years. If it is not attainable easily, then it could not be used for a scientific trading 

strategy. 
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7.4.11 Extracting the Underlying Curve using a modified Nelson-Siegel Yield Curve 

Model 

In the previous subsections we have seen what the underlying curve looks like. We borrow 

literature in yield curve modelling, like that of Nelson-Siegel [36], to see if it performs well 

at fitting the underlying curve when seasonality terms are added to it. To our surprise, 

it seemed to give the best picture of the underlying yield curve. The following is the 

equation that defines it 

- - e_)Tj 

X(r)=l-i-s( 1 )+c( 1  e_ATi)+v(TI) 

Ai- A'r 
(7.11) 

where -ri = T - t, and 1, s, c, v are parameters. Now Nelson-Siegel suggests to use A = 

0.0609, so that the equation is now be estimation via regression. So we use this approach 

and set the forward curve to equal 

F(t, T) = [usin(2rfc(T - t) + vcos(2rfc(T - t)] + X(T - t) (7.12) 

The following diagram shows the underlying curve as fit by the Nelson-Siegel with sea-

sonality procedure. 

7.4.12 Modelling the Underlying Futures Dynamics 

We take the two factor model of Xu [14], but use a very different calibration technique, 

since we are only modellingthe underlying futures curve. Now we use the regression based 

method introduced in this chapter to strip off the seasonality. Our futures equation is 

supposed to model the underlying curve, which we denote for brevity as F', since we 

exclusively working with this curve. Once again we consider m futures contracts, give by 

F'(t,T) for i= 1,...,m. 
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Figure 7.18: Underlying curve using Nelson-Siegel yield curve model with seasonality as 
of Jan 2006 

dSt = - S)dt + uStrdWtl 

dLt = - L)dt + TLdWt2 

So the theoretical futures price is given by, 

F'°(t, TL, St, L) = A + BL 

where 

Ai = e45(t_T)S + .(ea(t_T) - 1) - - 1) 

and 

B- = f.4 - 6i.(t_T)) 
a— 

Filtering the Long Run Mean Lt from the Futures Prices 

Now our set of parameters that we have are 9 = [&,A) '5', -r, a]. As we can see in the 

above theoretical futures price equation, the parameters only depend on , Tt,'5'. Now for 

86 



a set of parameters, there is a unique Lt that is hidden in our data. This can be obtained 

by finding the minimum of the following. 

L(9) = argmin (F'°(t,T, St, Lt) - F'(t,T))2 (7.13) 

Substituting our equation F'°(t, Tti, S, L) in the above, and realizing that we are simply 

calculating the distance in euclidian space, Jm• We obtain 

Lt (0) = argmirtLUA+BLi - F'(t,T)II2 

= argmznLIIA - F(t,T) + BLiII2 

- IIBF'(t,T) -ABII1  
IIBIl2 

In our setting this is equivalent to, 

L(0) =  1(BF'(t,T) -  AB) 

L.jj=1 B 
(7.14) 

So we recover our Lt values by minimizing the following equation, with the above equation 

of Lt replaced in our theoretical futures equation. 

0 = ar.qmin 
n m 

i=1 i=1 

(F' °(t, S, L) - F'(t, T))2 (7.15) 

We find the values of the parameters 0 and plug it into equation (7.13). These parameters 

are our risk neutral parameters. 

We see that in both cases the risk neutral parameters are very close to each other, but 

the overal error gets minimized the most in the Nelson-Siegel type yield curve model. So 

we choose it as our risk neutral parameters, and from now onwards take the underlying 

curve observed by the market as the Nelson-Siegel curve. 

Now using the parameters above, we calculate the long run mean L. Note that there 

is a very negligible difference in the long run plot irrespective of the model we choose 
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Table 7.7: Risk Neutral values for Futures curve, using Nelson-Siegel and Log Polynomials 

Risk Neutral values for Futures curve, using Nelson-Siegel and Log Polynomials 
Parameters Nelson-Siegel Log Polynomials 

0.005885 0.0064 
Ti 3.2497 3.2775 

0.000637 0.0006 
errors 0.3864 0.4401 

4t0 No sw 1yJ 

Figure 7.19: Long Run Mean Filtered vs the Spot Price 
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but the difference is in forecasting the yield curve. The data used in our two factor 

calibrations are that of January 2002 to January 2006. 

We can see the long run mean filtered really does seem to "lead the evolution" of the 

spot price, as observed by Xu [14]. This is consistent with his observations of the long 

run mean behaviour. The parameters obtained here seem meaningful so far, surprisingly, 

'y is our rate of mean reversion and t the mean that the long run mean reverts to. We 

can see an upward drift, and a weak mean reversion for the long run mean process is seen 

in the parameter 'y = 0.0006 for ,u = 3.24. Now for the big test to see, how close are our 

parameters in the real world are with respect to the risk neutral parameters calculated 

above. 

7.4.13 Parameter estimation of two factor model 

The two factor model can be estimated via the simulation equation, that is given by 

- St = a(L - S) + aSt '"W' - We') t+1 

t 2 W2) L+1 - L = - L) + ,TL ( 
- 

(7.16) 

(7.17) 

Now T'V - l'V N(0, 1), so the probability densities for each St and L, can easily 

be calculated. If 0 are our parameters then, 

f(9, [S+, Lt+i]I[St, Li]) = f(O, S+i[S Lt])f(O, L.+iL) 

Rom the simulation equation, we have 

f(9,Si+i[St,Lt]) N(S +1 — St - a'(Lt - St),uSfl (7.18) 

and 

f(O, L+1L) N(L+1 - L - p(7 -  Li), rLfl 
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Table 7.8: Estimated Parameters of the Two-Factor Model 

Parameters Sim. Mean Sim. Std. Dcv. Real Est. 
a 0.0295 0.0085 0.0262 
a 0.2588 0.0056 0.2581 

-0.0017 0 -0.0017 
1.3147 0 1.3147 
0.0764 0 0.0764 

So since our conditional density function is known, we can easily use maximum likelihood 

to estimate the parameters. Xu [14] figured out explicit expressions for each of these 

parameters via setting the partial derivatives of the parameters to zero through the 

likelihood function. 

In this thesis we only show results for r = 0, where both factors are OU processes. 

The other cases of 'r' are just as easy to calibrate. Below are the parameters recovered 

As we can see above the parameters are recovered well (since the standard deviations 

of the simulated values are small), this was done assuming the Lt that we filtered from 

the Futures curve, and simulating values of S,. Below are sample paths with the above 

parameters, with Lt fixed, 

As we can see, the dynamics of the spot price are really very nicely captured. Now 

we look at the futures curve. 

7.4.14 Fitting the Futures Curve from the risk neutral parameters 

Using the risk neutral parameters we obtained from Table 7.7, we simulate the futures 

curve. The long run mean successfully tells us if the curve is in contango or backwarda-

tion, but then again this value is obtained from the futures curve. 
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Chapter 8 

Conclusion 

One of the aims of this thesis was to introduce Levy processes into spot modelling of 

gas prices, we concluded that the one factor OU process with the NIG process was 

the most effective in the class of one factor models. Even though we did not price 

options in this thesis, it is straightforward to use Monte Carlo methods to price options 

irrespective of our process choice. Levy based one factor models can also have their 

options priced via the fast Fourier transform method of Carr and Madan [37], since we 

know the explicit characteristic function. We also showed how the empirical characteristic 

function method of estimating these models work well when there are centered spikes in 

the density function. 

We then also showed different ways of stripping off seasonality from the spot prices, 

and used the Nelson-Siegel yield curve function to obtain the underlying seasonality. This 

method of estimation of a two factor gas futures model is different from other literature. 

Rather than trying to find meaning in the yield curve from Nelson-Siegel directly, we 

instead look at the implications of those curve shapes by calibrating it for the two factor 

model. This also gives us an economic intuition for each of the parameters obtained in 

our estimation. 

Modelling gas futures is extremely hard, and over the last two to three years, the 

market dynamics have become a lot more erratic. The modelling techniques developed 

in this thesis does work until 2006, after which was the hurricane Katrina, which was 

enough of a large period to skew data during parameter estimation. It is in the authors 

belief that it would not be possible to do so without considering the futures price also as 
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a function of storage levels. 

Hopefully this thesis does justice to futures modelling in gas, without having to deal 

with modelling time spreads seperately and establishing the relationship between different 

contracts in such a manner. Natural gas is among the worlds most volatile markets, and 

it would be expected that newer models would have to be developed routinely in order 

to accomodate for the complexity in market behaviour. 

95 



References 

[1] M. Thompson, M. Davison, and H. Rasmussen. Natural gas storage valuation and 

optimization: a real options application. Naval Research Logistics, July 2003. Submit-

ted. 

[2] H. Alm, A. Danilova, and G. Swindle. Storing ARB. Wilmott Magazine, 1, 2002. 

[3] S. G. Bjerksund, P. and F. Vagstad. Gas storage valuation: Price modelling v. op-

timization methods. Discussion Paper 2008/2, NHH Dept. of Finance Management 

Science, October 2008. 

[4] A. Boogert and C. de Jong. Gas storage valuation using a Monte Carlo method. Birk-

beck Working Papers in Economics and Finance 0704, Birkbeck, School of Economics, 

Mathematics and Statistics, January 2007. 

[5] S. Borovkova and H. Geman. Seasonal and stochastic effects in commodity forward 

curves. Review of Derivatives Research, 9(2):167186, 2006. 

[6] R. Carmona and M. Ludkovski. Gas storage and supply guarantees: An optimal 

switching approach. Submitted to Management Science. 

[7] R. Carmona and M. Ludkovski. Spot convenience yield models for the energy mar-

kets. In G. Yin and Y. Zhang, editors, AMS Mathematics of Finance, volume 351 of 

Contemporary Mathematics, pages 6580, 2004. 

[8] Z. Chen and P. A. Forsyth. A semi-Lagrangian approach for natural gas storage val-

uation and optimal operation. Submitted to Quantitative Finance, 2007. 

[9] L. Clewlow and C. Strickland. Energy Derivatives. Lacima Group, 2000. 

[10] R. Gibson and E. S. Schwartz. Stochastic convenience yield and the pricing of oil 

contingent claims. Journal of Finance, 45(3):959976, 1990. 

[11] J. Gray and P. Khandelwal. Towards a realistic gas storage model: Commodities 

96 



Now, June 2004. 

[12] D. Pilipovic. Energy Risk: Valuing and Managing Energy Derivatives. McGraw-Hill, 

1997. 

[13] E. S. Schwartz. The stochastic behavior of commodity prices: implications for valu-

ation and hedging. Journal of Finance, 52(3):923973, July 1997. 

[14] J. Xu. Stochastic models for gas prices. Masters thesis, University of Calgary, 2004. 

[15] Z. Chen and P. Forsyth, Implications of a Regime-Switching Model on Natural Gas 

Storage Valuation and Optimal Operation. September 13, 2007. 

[16] Yun Li. Natural Gas Storage evaluation. Masters thesis, Geogia Tech. 2006. 

[17] B. Bringedal. Valuation of Gas Storage, a real options approach. NTNU, 2003. 

[18] G.E.Uhlenbeck and L.S.Ornstein: "On the theory of Brownian Motion", Phys.Rev. 

36:823-41, 1930. 

[19] D. Applebaum. Levy processes and stochastic calculus. 2004 

[20] E. Parzen (1962). On estimation of a probability density function and mode, Ann. 

Math. Stat. 33, pp. 10651076. 

[21] B. W. Silverman, Density Estimation for Statistics and Data Analysis, Chapman 

and Hall, 1986. 

[22] B. W. Silverman, Kernel Density Estimation using the Fast Fourier Transform, Ap-

plied Statistics, Royal Statistical Society, (1982), Vol. 33. 

[23] R. S. Pindyck. The dynamics of commodity spot and futures markets: a primer. 

The Energy Journal, 22(3):129, 2001. 

[24] Cont and Tankov. Financial modelling with Jump Processes. 

[25] Barndorff-Nielsen, 0. E. (1977). Exponentially decreasing distributions for the log-

arithm of particle size. Proceedings of the Royal Society of London A, 353:401419. 

[26] 0. E. Barndorff-Nielsen, Thomas Mikosch, Sidney I. Resnick. Levy processes 

97 



[27] O.E. Barndorff-Nielsen, J. Kent and M. Srensen (1982): Normal variance-mean mix-

tures and z-distributions.International Statistical Review, 50, pp. 145 - 159. 

[28] A. Carteaand T. Williams. UK gas markets: The market price of risk and applica-

tions to multiple interruptible supply contracts. l3irkbeck Working Papers in Economics 

and Finance BWPEF 0608, Birkbeck School of Economics, Mathematics and Statistics, 

2006. 

[29] Z. Chen and P. A. Forsyth. Stochastic models of natural gas prices and applications 

to natural gas storage valuation. Working paper. 

[30] Canadian Natural Gas 2005. Published by Natural Resources Canada. 

littp://www2.nrcan.gc.ca/es/erb/prb/english/View.asp?x=447, 2005. 

[31] W.J. Runggaldier, Estimation via stochastic Fitering in Financial market models, 

Preprint, 2003. 

[32] S. Hikspoors and S. Jaimungal. Energy Spot Price Models and Spread Options Pric-

ing. [IJTAF, Vol.10, Nov.2007, pp.1111-1135] 

[33] US Department of Energy. http://www.energy.gov/energysources/liaturalgas.htm 

[34] D. Pilipovic. Energy Risk: Valuing and Managing Energy Derivatives. McGraw-Hill, 

2007. 

[35] A. Eydeland and K. Wolyniec (2003). Energy and Power Risk Management. New 

Developments in Modeling Pricing and Hedging. Wiley. 

[36] C.R. Nelson and A.F. Siegel (1987), "Parsimonious Modeling of Yield Curves," Jour-

nal of Business, 60, 473-489. [37] P. Can, D. B. Madan (1998), "Option Valuation Using 

the Fast Fourier Transform," Journal of Computational Finance 2, 61-73. 

98 


