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Abstract 

This thesis describes a learning system called Extended Self-Propagating Search 

(ESPS). ESPS is an extension of Self-Propagating Search (SPS), a model of the 

cerebellum. The extensions enable ESPS to solve reinforcement learning problems, a 

class of problems unsolvable by SPS. Reinforcement learning problems are charac-

terised by an environment that rates the actions of the learning system through a rein-

forcement signal. The best solution is the one which receives maximum reinforce-

ment. Solving reinforcement learning problems requires being able to internally gen-

erate new solutions, and to determine which portions of a solution are responsible for 

the reinforcement received. These abilities were added by making data retrieval 

non-deterministic, and by introducing expectation, which expresses ESPS's expecta-

tion of future reinforcement. A mechanism for associating expectations with indivi-

dual steps in a solution and for manipulating those expectations was developed. The 

changes made to SPS were, like SPS itself, physiologically plausible. 

ESPS has been implemented on a network of processors running in parallel, 

communicating via the Jade interprocess communications facility. ESPS was tested 

on two problems - the single-step problem and the multi-step problem, which differ in 

the frequency of reinforcment. It has successfully solved the single-step problem. Its 

results are compared to a similar test performed on the Associative Search Network 

of Barto, Sutton, and Brouwer. ESPS has not solved the multi-step problem. The 

reasons for this failure are discussed, as is a possible remedy. 

His 
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CHAPTER 1 

Introduction 

This thesis outlines a learning system developed by Pentti Kanerva (1984) that 

models the human cerebellum, extends the system's learning power, and applies the 

extended model to problems unlearnable by the original model. The original model 

is Kanerva's (1984) Self-Propagating Search (SPS), and the extension is called Ex-

tended Self-Propagating Search (ESPS). Extending SPS involved devising a scheme 

for internally generating solutions, a scheme for evaluating the effects of a solution, 

and a scheme for applying the results of the evaluation to generate a new solution. 

The particular schemes devised were designed to maintain the physiological plausi-

bility of ESPS as a cerebellar model. 

1.1. Learning Systems 

SPS and ESPS are learning systems. The aim of a learning system is to learn to 

solve a certain task (i.e., to achieve a certain goal). Example tasks include games 

such as checkers, chess, and blackjack (the aim being to win), as well as controlling 

physical systems like robot arms (the aim being, for example, to move the end effec-

tor to a certain point in space). An example of a physical learning problem is the 

pole-cart problem (Barto, Sutton, and Anderson, 1983). In the pole-cart problem, a 

learning system is presented with a two-dimensional cart which can roll between 

fixed barriers. Motion is produced by applying forces to either end of the cart. On 

the cart is a pole, hinged at the bottom. The task is to keep the pole balanced by 

moving the cart (figure 1.1). The learning system is given information at each step 

on the current angle and angular velocity of the pole, and the position and velocity of 
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the cart. These together constitute the current situation. 

Tasks such as the pole-cart problem are complicated enough that they require 

multi-step solutions. That is, the physical system will start in a certain situation, and 

on the basis of the current situation, the learning system chooses an action. The ac-

tion is performed, which results in a new situation, and the learning system* chooses a 

new action to perform. This process is repeated until a goal is reached, or in the case 

of the pole-cart problem, until the pole falls over or the cart touches the barriers. 

Therefore, the aim of a learning system is to learn a set of <situation,action> pairs 

that together will solve the task. This paradigm views learning systems as simple 

production systems, and is the paradigm used by SPS, ESPS, and all the learning sys-

tems reviewed in chapter 2, with the exception of Holland's classifier system (1101-

)0 
Figure 1.1. The Pole-Cart Problem. 
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land, 1986) and simulated annealing (Kirkpatrick, Gelatt, and Vecchi, 1983). 

Implicit in this formulation of the problem is the assumption that all the infor-

mation necessary to differentiate two situations must be in situation. This is because 

the choice of an action is made exclusively on the basis of the current situation. No 

other information comes into play. 

SPS belongs to a class of learning systems called supervised systems, while 

ESPS belongs to a class of learning systems called reinforcement systems (Barto, Sut-

ton, and Anderson, 1983). Both supervised and reinforcement systems learn 

<situation,action> pairs; they differ in how much help they require to learn those 

pairs, as will be explained in the next two sections. 

1.2. Supervised Systems 

Supervised systems are found mainly in the field of pattern recognition 

(Kohonen, 1984, Anderson, 1983, Hopfield, 1982, Albus, 1975, Kanerva, 1984). Pat-

tern recognition problems are characterised by an environment which offers "high 

quality" feedback: when the learning system produces an incorrect result, the en-

vironment gives an immediate and clear indication of the error and how to correct it. 

Figure 1.2 illustrates the inputs to and outputs from a supervised system. It 

takes as input the current situation, and produces as output an action. If the action is 

incorrect, the environment supplies the correct action (or the difference between the 

system's action and the correct action). The line marked "r/w" is a read/write signal. 

In normal operation, it is set to "r". Upon presentation of a situation, the system will 

produce an action. When the read/write signal is set to "w", the system will pair the 

current situation with the action supplied by the environment. 
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situation 

nw 

action 
(write) 

Supervised 
System 

Figure 1.2. Supervised System. 

Thus the basic function of a supervised system is to store <situation, action> 

pairs. After storage of a <situation, action> pair, presentation of situation will pro-

duce action. 

•As will be seen later, only a subset of pairs need be given to many supervised 

systems, as they can successfully interpolate the rest. Nevertheless, the environment 

must supply some correct <situation,action> pairs. The learning system is not capa-

ble of deriving those pairs independently. So essentially the problem must already 

have been solved, and pairs needed to solve the problem must be supplied to the 

learning system by the environment. In other words, it requires an environment 

which is "smarter" than the learning system is. 

It is not necessary to talk of supervised systems as storing <situation,action> 

pairs - there are several alternative and equivalent ways of viewing this process, each 

appropriate to some particular task. One, which was alluded to in the first paragraph 

of this section, is to view a supervised system as a pattern recognition sysiem. In-
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stead of <situation,action> pairs, we have <pattern,class> pairs (i.e., a pattern and its 

classification). After storage of a <pattern,class> pair, presentation of pattern will 

produce class (i.e., pattern will be classified). A supervised system can also be 

viewed as a random access memory. The situation is an address into the memory, 

and the action is the data stored at that address. Thus, instead of <situation,action> 

pairs, we have <address,data> pairs. This view is particularly well illustrated by 

figure 1.2. Finally, a supervised system can also be viewed as learning a function. 

The situation then becomes the input to the function, and the action consists of the 

output of the function. Thus we have <input,output> pairs. 

That a supervised system can be viewed as a random access memory suggests 

that constructing a supervised system is trivial. However, a discussion of the further 

demands usually made on a supervised system will dispel that notion. 

• First, supervised systems are often expected to recognise novel patterns, classi-

fying them on the basis of similar, stored patterns. That is, assume that the super-

vised system has learned a set of pairs, (<P0, CO>,. . . , <p5j,, , Csjm>,. .. , < p,, ca >), 

and is presented with a novel pattern, p. 'fPSI,fl is the stored pattern most similar top, 

then the supervised system should return c. 

Classifying novel patterns in this way is equivalent to solving the best match 

problem (Minsky and Papert, 1969, Kanerva, 1984). The conclusion of Minsky and 

Papert on the ability of a regular random-access memory to solve the best match 

problem is pessimistic. They concluded that a memory of size bc2bP is needed, where 

b is the number of bits needed to represent a pattern and bc is the number of bits 

needed to represent a class. That is, 2" locations are needed (one for each possible 

pattern), and at each location bc bits are needed to store the 'class designation. The 

memory is primed such that location p contains Csjm, where pj .. is the most similar 



6 

pattern top. When this is the case, classification can be done by reading at p. 

Even disregarding the time needed to prime memory, consideration of typical 

patterns will quickly reveal this scheme as impractical. Consider, for example, when 

images are used as patterns. Images are typically on the order of hundreds of 

thousands of bits in size. Even when the image size is l0xl0, with one bit per pixel, 

the pattern size would be 100 bits, and 2100 (10 °) memory locations would be re-

quired. 

Thus, solving the best match problem poses many difficulties. However, once a 

supervised system can solve the best match problem, many useful abilities naturally 

emerge. We have, seen already that classifying novel situations becomes possible 

when a system can solve the best match problem. It is also possible to deal with 

noisy input patterns. The system simply finds the stored pattern, pgj,, most similar to 

the input pattern, and returns the class stored with that pattern, c. This pro-

cedure is unsuccessful when the input pattern, is sufficiently corrupted that its 

best match, p,im, is different than the uncorrupted original pattern, Pgood. However, 

when given no information on the corruption that has occurred, as is the case "here, 

the learning system cannot be expected to recreate a badly corrupted pattern. The 

best we can expect is for it to return its best guess as to the original pattern, and that 

guess is based on similarity to stored patterns. 

If we view the supervised system as storing ,situation, action> pairs, we can see 

how it deals with novel situations. In a novel situation (a situation that has not been 

stored), the system will return the action stored with the most similar recorded situa-

tion. For tasks with continuous domains (i.e., performing two similar actions in a si-

tuation will produce similarly good results), this is a useful property. 
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Because reinforcement learning systems often work in domains where these 

abilities are important, supervised systems are often used as the basis for reinforce-

ment learning systems (e.g., see Widrow, Gupta, and Maitra, 1973). This is true of 

ESPS as well, which uses SPS, a supervised system. 

SPS, and other supervised systems, are presented and compared in chapter 2. A 

complete treatment of SPS and its characteristics is given in chapter 3. 

1.3. Reinforcement Systems 

In contrast to supervised systems, reinforcement systems require only "low 

quality" information from the environment. They derive the correct action for a 

given situation on the basis of a feedback or reinforcement signal produced by the en-

vironment during execution (figure 1.3). The feedback signal provides a rating of the 

quality of the solution produced by the learning system. Feedback comes infrequent-

ly, so that each step of a solution is not rated, and when it comes it only gives a gen-

situation 

reinforcement 

Reinforcement 
System 

Figure 1.3. Reinforcement Learning System. 
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eral indication of the overall behaviour of the system. It is not detailed enough to be 

used directly to correct the solution. In other words, the feedback signal tells the sys-

tern how good its solution is, but not why. A task is correctly solved when reinforce-

ment is maximised. Figure 1.4 illustrates the process of feedback in a reinforcement 

problem. In this figure, s—i situations are encountered and s—i actions produced be-

fore feedback from the environment is received. In this particular case, the task is not 

finished, so the learning system continues to produce actions in response to situations. 

The next episode of reinforcement may not arrive for many more steps. 

The crucial aspect of reinforcement systems is that they can derive the correct 

<situation,action> pairs on the basis of a signal that can be plausibly supplied by the 

environment. There is no longer a need for an environment which is "smarter" than 

the learning system. In other words, it is not necessary for some external entity to 

have already solved the problem, with the learning system just memorising pairs sup-

plied from outside. 

Returning to our example of the pole-cart problem, it can be formulated as a• 

reinforcement problem by introducing a reinforcement signal which is 0 as long as 

the arm has not tipped past a certain angle and the cart has not reached either end of 

the, track. When either of these is out of range, the reinforcement signal becomes - 1. 

Reinforcement 

sit  
act  act2 act. i, sits act 

sits+1 

Figure 1.4. Operation of Reinforcement System. 
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Under this feedback scheme, the system devised by. Barto, Sutton, and Anderson 

(1983) successfully solved the pole-cart problem. 

This reinforcement signal is simple, and it is easy to see how this information 

could be measured and supplied to the learning system. The behaviour implied by 

this reinforcement signal, however, is complicated, and the difficulty lies in 

transforming the simple reinforcement signal into the proper, complicated, behaviour. 

In order to use the indirect and infrequent reinforcement supplied by the en-

vironment, two main problems must be solved (Holland, 1986): 

(1) Generating new solutions. Because the environment does not directly supply 

the learning system with correct steps in the solution, the learning system must 

be able to generate new solutions on its own and test their effectiveness. New 

solutions are generally based on old solutions, and the amount they are changed 

is a function of the goodness of the old solution. 

(2) Assigning credit. Because reinforcement is infrequent, not all steps in a solu-

tion will receive direct reinforcement from the environment. Furthermore, those 

steps receiving direct reinforcement are receiving a rating of the effects of many 

actions, and therefore cannot interpret the reinforcement as a rating of only their 

behaviour. The system must be able to correctly evaluate the effects of a step 

on the overall solution. 

The particular methods used by previous reinforcement learning systems to gen-

erate solutions and assign credit will be discussed in chapter 2. ESPS will be covered 

in chapter 4. 
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1.4. The Experiments 

Two problems were presented to ESPS that were unsolvable by SPS. In the 

first, called the single-step problem, ESPS's task is to guess an n-bit number, the tar-

get, where the feedback is the similarity between its guess and the target. ESPS has 

successfully solved the single-step problem for n up to 128. ESPS has also been test-

ed on an experiment where there are two target words. That is, there are two pairs, 

<identfier1, target 1> and <ident(fier2, target 2>, where the goal is to produce target1 

when identfier1 is presented. The value of n was 8 for this experiment. This is simi-

lar to an experiment performed in Bartc, Sutton and Brouwer (1981), except that n 

was 9 for their experiment. The performance of ESPS was comparable to that of Bar-

to, Sutton, and Brouwer's system. 

The second problem, called the multi-step problem, is an extension of the first. 

In this experiment, several target words are presented, and ESPS guesses each in turn. 

Feedback is a single value that comes at the end of the series of guesses, and is calcu-

lated from the similarity between each guess and its corresponding target. This ex-

periment was designed to test ESPS's ability to solve problems where reinforcement 

is not available after each step. ESPS has not been able to solve the multi-step prob-

lem. Discussion of this is in chapter 5. 

1.5. Thesis Overview 

Chapter 2 is a survey of supervised and reinforcement learning systems. 

Chapter 3 describes SPS in detail. It covers the architecture of SPS and the method 

by which it stores and retrieves data. Its unusual architecture, and its storage and re-

trieval methods have many implications for its behaviour, which are discussed at 

length. We will see that SPS is a supervised system, capable of memorisation and of 

solving a simple version of the best match problem. It is not capable of solving rein-
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forcement problems. We will also see how SPS can be implemented by simple 

neuron-like elements. The chapter concludes with a discussion of the cerebellum, 

that part of the brain modelled by SPS. 

Chapter 4 describes ESPS. This chapter describes the changes made to SPS, es-

tablishes that these changes give ESPS the power of a reinforcement learning system, 

and provides a physiological justification for the changes. 

Chapter 5 describes the implementation of ESPS and the results of experiments 

performed with ESPS. Two experiments were run, the first being a single-step learn-

ing problem, the second a multi-step learning problem. The purpose of the first ex-

periment is to establish that ESPS can correctly generate and test new solutions, dis-

covering an optimal solution on the basis of indirect feedback. The second experi-

ment extends the problem to a multi-step problem, testing ESPS 's ability to assign 

credit correctly to steps which receive no direct reinforcement. 

Chapter 6 summarises the thesis, gives conclusions, and discusses future work. 



CHAPTER 2 

Supervised and Reinforcement Learning Systems 

This chapter reviews supervised and reinforcement learning systems and 

discusses their capabilities and limitations. It will be shown that supervised systems 

cannot solve reinforcement problems. The problems of solution generation and credit 

assignment are then discussed. The chapter is concluded with a review of reinforce-

ment learning systems, discussing how each approaches the problems of solution 

generation and credit assignment. 

2.1. Supervised Systems 

This section presents short summaries of several supervised systems, all 

neuron-based. First discussed are two early classic models - linear associatiye net-

works .(Anderson, 1983, Jordon, 1986), and the perceptron (Rosenblatt, 1962, Cohen 

and Feigenbaum, 1982). These represent the first attempts at neuron-based models, 

and were the basis for much of the work done in the 1960's on such systems. Interest, 

waned when Minsky and Papert (1969) proved that such systems were able only to 

solve a limited class of problems, and the there were many interesting problems out-

side of this class. A simple example of such a problem is the XOR problem, dis-

cussed in section 2.1.2. 

Discussed next is the Hopfield net (Hopfield, 1982), a relatively recent model 

which uses a quite different approach from perceptron-like models. This model has 

formed the basis for a new class of models, such as Boltzmann machines (Ackley, 

Hinton, and Sejnowski, 1985), which are more powerful than percepirons. 

12 
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This section closes with a discussion of two closely related models of the cere-

bellum - the Cerebellar Model Articulation Controller (Albus, 1975), and SPS (Kan-

erva, 1984). 

It will be shown that, in addition to being able to memorise <input,output> 

pairs, each of these systems can generalise. That is, if <input,output> has been 

stored, then presentation of input', a word similar to input, will produce output, or 

something close to it, even if input' has not been seen before. 

Of particular interest in the discussion will be the ability of the various networks 

to associate, arbitrary outputs with similar inputs. It will be seen that CMAC and 

SPS, due to a recoding of the input, have an increased ability to associate arbitrary 

outputs with similar inputs. In other words, they have an increased ability to discrim-

inate among similar inputs. 

2.1.1. Linear Associative Networks 

A linear associative network consists of a number of components (hereafter 

called neurons), that together learn <input,output> pairs (Anderson, 1983, Jordon, 

1986). Inputs and outputs are vectors of reals. The input vector, x, is distributed to 

each neuron. Each neuron calculates one element of the output vector, y. There are 

no connections between neurons. A linear associative network is shown in figure 2.. 

Each neuron operates in the same way, so the rest of this discussion will focus 

on a single neuron. A neuron with three inputs is shown in figure 2.2. 

Each neuron has a vector of weights, w, one weight for each element in the in-

put vector. Output y of the neuron is: 

Y = zwixi= wx 
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X2 

xn 

Figure 2.1. Linear Associative Network. 

Weights are learned by supplying an input along with its associated output, and 

applying a weight update rule. There are several rules for updating weights. Shown 

here will be the Widrow/Hoff rule (Rumelhart, Hinton, and Williams, 1986). The 

Widrow/Hoff rule is 

LWi - 1(yD- WX)X 

That is, the correction applied is proportional to the difference between the desired 

output (YD) and the actual output (wx). For this reason it is also called the delta rule. 

This rule will allow a network to learn a set of pairs 

{<xo,yo>,<xi,yi>,. . . <xn ,Yn>) if all x are linearly independent. (A set of vec-

tors is linearly independent if none of its elements is a linear combination of the oth-

ers.) 
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X3 

Figure 2.2. Linear Associative Network Neuron. 

Linear associative networks can generalise. If <input,outpu:> has been stored, 

presentation of input' will produce output', something similar to output. The simi-

larity between output and output' depends on the similarity between input and input' 

and the values of the weights. If input and input' are linearly separable, output and 

output' can be arbitrarily different. As the difference between input and input' ap-

proaches 0, so too does the difference between output and output'. 

2.1.2. Perceptrons 

Perceptions (Rosenblatt, 1962, Cohen and Feigenbaum, 1982), are much like 

linear associative networks, consisting of a number of neurons, each of which calcu-

lates some function of an input vector. Once again, each neuron operates in the same 

way, so the discussion will focus on the behaviour of a single neuron. A neuron with 

three inputs is shown in figure 2.3. Perceptions differ in that the inputs can only be 0 

or 1, and the output is a thresholded linear function of input. That is, output is: 



X3 

.16 

Figure 2.3. Perceptron Neuron. 

11 ifwx≥T 
= otherwise 

where T is a threshold, usually 0. Perceptrons are usually thought of as pattern 

classifiers, dividing input into two classes. Members of one class must be linearly in-

dependent of members of the other class for the perceptron to be able to classify them 

correctly. 

Weights are updated using the Widrow/Hoff rule. That is, 

Awi = 1(T—wx)x 

Note that the correction is made with respect,to the unthresholded sum (wx), not to 

the actual output of the perceptron. 

There is a theorem, called the perceptron convergence theorem (Rosenblatt, 

1962), that establishes that if a set of weights exist which can classify the input set 

(i.e., the inputs are linearly, independent), then the perceptron will converge to the 

correct set of weights using this learning rule. 
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Unfortunately, for many problems the input set is not linearly independent. For 

example, the XOR function cannot be performed by a perceptron as described above. 

It can be done with a two layer perceptron (see figure 2.4), but the Widrow/Eloff rule 

only works on single layer perceptrons. 

With a two layer perceptron, the middle layer is not directly affected by either 

the input or the output (the perceptron in figure 2.4 is a hybrid, with two inputs to the 

middle layer coming directly from the input, and one coming from another neuron). 

Thus it is difficult to decide how middle layer weights should be changed. This is a 

manifestation of the credit assignment problem. This problem has been tackled by 

Boltzmann machines (Ackley, Hinton, and Sejnowski, 1985), and the generalised del-

ta rule (Rumelhart, Hinton, and Williams, 1986). These systems will be discussed 

briefly in the section on reinforcement learning systems. 

Generalisation in perceptrons differs from linear associative networks, due to 

the use of a threshold in the output rule. It is possible that output will be pioduced 

Figure 2.4. Two Layer Perceptron Solution of XOR Problem. 
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given input' (unlike a linear associative network, which would produce output', dif-

ferent than output). However, once the sum produced by input' crosses the thres-

hold, input' will not produce output. The change in output as input' becomes more 

different from input is a sudden one (unlike a linear associative network, where the 

change is gradual). 

2.1.3. Hopfield Nets 

A Hopfield net consists of a number of neurons with arbitrary connections 

between neurons (figure 2.5). Each connection has associated with it a weight, w, 

and each neuron has a threshold, T. Each neuron I can be in one of two states, x1 =0 

or xi = 1. The state of the entire net is given by the vector x of individual neuron 

Figure 2.5. Hopfield Net. 
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states. Hopfield nets differ from the other supervised systems presented hete in that 

there are no explicit input and output neurons. Some arbitrary subset of the neurons 

are designated as input neurons, and all the rest are designated as output neurons. 

Output is generated for a given input by "clamping" the input neurons to their 

proper values and allowing the rest of the net to run freely, with unclamped neurons 

(i.e., output neurons) updating their states asynchronously, in any order, according to 

the following rule: 

Xi = 

1 ifw11x>T1 
joi 

0 otherwise 

where Ti is the threshold of neuron i, usually assumed to be 0. Thus, neuron i sets it-

self to 1 if its input exceeds its threshold, otherwise it sets itself to 0. 

Th6 state of the net and the weights between neurons determine a measure of the 

state of the system called energy. Energy, E, is calculated as follows: 

E = 
i:Aj 

where wij is the weight between from neuron j -to neuron i. Connections are assumed 

to be symmetric, so that wy = w1. The update rule performs a gradient descent in en-

ergy space. Each update monotonically decreases E. The descent stops when a local 

energy minimum is reached. These local energy minima are attractors that represent 

outputs. When the net is started near one of these energy "wells", the update rule 

will cause the net to descend, and remain, in that well. The state of the output neu-

rons when that well is reached is the output. 

Energy minima are created by adjusting the weights, T, between neurons. To 

store a set of states, x1,x2,. . . , x,. each weight is set using the following formula: 
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wj = 

with wii = 0. A given state, xS, represents the desired state of the entire network - 

both the state of the input neurons and of the output neurons. This rule increases the 

weights between two neurons i and j for a given state xS if 4 = x, decreasing it when 

$ # x. Thus, if i and j are usually on together, wij will be positive, and so i being on 

will increase the chances that j will be on. Similarly, if i and j usually have different 

values, wij will be negative, and so i being on will increase the chances that j will be 

off (and vice versa). 

If < input,output> has been stored and the net is presented with input ', output 

can be produced if input ' is close enough to input. If not, the net will converge on 

another well, and the similarity between output' and output depends on the similari-

ties between the two wells. 

2.1.4. Cerebellar Model Articulation Controller 

The Cerebellar Model Articulation Controller (Albus, 1971, Albus, 1975), or 

CMAC for short, was developed as a model of the cerebellum. Input to CMAC is a 

vector of n R -ary values, x. To facilitate the discussion of CMAC and its comparison 

to other systems, we assume that R is 2. Output is a vector of m reals, y. 

CMAC consists of a network of neurons, each receiving the same input, with 

each neuron computing one component of the output. In this sense it resembles 

linear associative networks and single layer networks of perceptrons. It differs in that 

a recoding stage is placed between the input pattern and the neurons. Also, the neu-

rons in CMAC are hybrids of linear associative neurons and perceptrons in that inputs 

to CMAC neurons are binary values, as with perceptrons, while the output of a neu-

ron is an unthresholded weighted sum of its inputs, as with linear associative neurons. 

CMAC is illustrated in figure 2.6. Since each neuron operates in the same way, the 
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Figure 2.6. CMAC. 

following discussion will deal with the properties of a single neuron. One neuron is 

shown in figure 2.7. 

The recoding stage increases the ability of the network to produce arbitrary 

classifications. For example, consider the extreme case, where an n to 2' recoder is 

placed between the input and the weights. For each input pattern, x, one line leading 

to a weight (4) becomes 1, all others remain at 0. By setting that one weight (wk) 

appropriately, the desired response can be produced. Each possible input pattern has 

its own weight which is adjusted independently of all others. Thus, any arbitrary 

classification is possible. This includes the XOR problem. 

It is useful to note that a standard random access memory (RAM) in a computer 

has an n to 2n recoder. An n bit address will select one of the memory locations, 
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Figure 2.7. One Neuron of CMAC. 

retrieving the data stored in the selected location when reading, and storing data at 

the selected location when writing. The address of RAM is equivalent to the input 

pattern, x, of CMAC; the data stored in RAM or retrieved from RAM is equivalent to 

the output, y, of CMAC. Thus, in RAM we have <address,data> pairs, as opposed to 

<input,output> pairs. This comparison was alluded to in section 1.2. 

There are several difficulties with using n to 2' decoder. First, for an input pat-

tern of size n, 2' weights are needed. For any reasonable number of inputs, the 

number of weights needed is impractically large. Second, no generalisation can take 

place between input patterns. Because the response for each input pattern is deter-

mined independently, producing the correct classification for one input does not mean 

that the correct classification will be produced for a similar novel input. 
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CMAC's approach is to use an n to lOOn recoder. Also, instead of mapping 

onto one weight, each input pattern x is mapped onto a subset of approximately 1% 

of the lOOn weights. The mapping is performed such that similar input patterns are 

mapped onto a similar subset of weights, and dissimilar input patterns are mapped 

onto disjoint subsets of weights. Output from CMAC is thus produced by mapping 

the input onto a subset of the lOOn weights and summing those weights. That is, out-

put is: 

lOOn 

y= 
i=l 

where 4 = 1 if x is mapped onto 4, and 0 otherwise. 

The weight update rule is similar to the Widrow/Hoff rule. It is: 

where YD is the desired output, y is the actual output of CMAC, and C is the number 

of weights which contributed to the answer. The total correction, rKyD—y), is thus 

distributed equally among contributing weights. 

Generalisation in CMAC is possible because the recoding step ensures that simi-

lar inputs will be given similar encodings, thus producing similar outputs. If input 

and input' are sufficiently different, the encodings produced will be completely dif-

ferent, and so the results produced by the system can be arbitrarily different. As input 

and input' become more similar, the encodings will also become more similar, and so 

output will become more similar to output'. At some point, output will equal out-

put'. This does not necessarily occur when input equals input'. 

2.1.5. SPS 

Note: the description of SPS in this section differs slightly from that given in 

chapter 3, the difference relating to the way data is stored in memory locations. The 
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variation described here was mentioned briefly in Kanerva (1984), and analysed by 

Chou (1987) and Keeler (1987). It is presented because it more closely resembles the 

other systems described in. this chapter, thus facilitating its comparison to those sys-

tems. 

SPS (Kanerva, 1984) is quite similar in structure to CMAC. Inputs are n bit 

words, outputs m bit words. Like CMAC, it performs a recoding of the input, from 

an n bit input onto a subset of c locations, n < c < 2n. Each neuron receives the 

same input, and calculates one bit of the output. For this reason discussion will cen-

tre on the behaviour of a single neuron. Such a neuron is illustrated in figure 2.8. 

Much like CMAC, the c locations of SPS are a subset of the possible 21 loca-

tions determined by the input. These c locations are called actual locations. Each 

2 

n — c 
Recoder 

4 

X2 

2.8. One Neuron of SPS. 
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actual location has associated with it an n bit identifier, chosen randomly, called its 

address. 

When reading, all real locations whose address differs from the input by less 

than r bits (i.e., the Hamming distance between the two is less than r) respond. The 

weights of all responding addresses are added together to form a sum. This data is 

then formed into the archetype, which constitutes the output of SPS. The archetype 

is set to 0 if the bit sum is less than 1/2, where 1 is the number of responding ad-

dresses, and set to 1 otherwise. Mathematically, 

1 ifw1x ≥ 1/2 

0 otherwise 

where% = 1 if x maps onto 4, and  otherwise. 

When writing, all real locations within r bits of the input take part in writing. 

For responding address k, Wk is incremented by 1 if the desired output is 1, otherwise 

it is decremented. That is, 

11 ifYD -1 

AWk =1-i otherwise 
Unlike CMAC, weights are updated by a fixed amount (1 or —1), not an amount pro-

portional to the difference between the desired and actual output. 

The mechanism for generalisation in SPS is similar to CMAC. Generalisation 

occurs because the recoding step ensures that similar inputs will be given similar en-

codings, thus producing similar outputs. 

2.1.6. Summary 

Supervised systems can memorise <input,output> pairs. Of particular interest 

here is SPS. The recoding stage of SPS (and CMAC) increases its ability to memor-
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ise arbitrary classifications, compared to other related systems. Like the other super-

vised systems reviewed, SPS has the ability to generalise. Finally, it is proposed as a 

model of the cerebellum, which makes SPS interesting not only as a learning system, 

but also as a system which can be used to study the brain. 

As a supervised system, though, SPS is limited as to the problems it can solve. 

It requires an environment which possesses as much knowledge about the task as SPS 

is expected to learn. In other words, the environment must be able to solve the prob-

lem already. Reinforcement systems do not suffer from this limitation. They can 

deal with an environment which does not possess (explicit) knowledge about the task 

to be learned. All that is required is a rating of the solution produced by the learning 

system. In many problems, such as the pole-cart problem, this rating is easily and 

plausibly supplied. 

From the standpoint of the human brain learning physical tasks, it seems that the 

brain must be able to do reinforcement learning. First, learning of some sort takes 

place because performance improves with practise. If no learning took place, perfor-

mance levels would remain constant. Second, the learning is reinforcement learning, 

since the brain is only given general feedback on the quality of its performance. It is 

not told by some external source which muscle movements were incorrect, and, more 

importantly, what the correct movements are. 

Therefore, we can conclude that the brain does reinforcement learning. This 

does not necessarily imply that the cerebellum, that part of the brain modelled by 

SPS, is The place where reinforcement learning takes place. Nevertheless, if a cere-

bellar model such as SPS could be made into a reinforcement learning system, and if 

this could be done in a physiologically plausible way, this would suggest that the 

cerebellum is capable of reinforcement learning. 
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Before describing ESPS, an extension of SPS which solves reinforcement learn-

ing problems, we first look at previous approaches to reinforcement learning. 

2.2. Reinforcement Learning Systems 

This section begins by discussing the problems of credit assignment and solu-

tion generation, two problems that a reinforcement learning system must overcome. 

Several reinforcement learning systems and their approaches to these two problems 

are then discussed. The systems discussed are: Holland's classifier system (Holland, 

1986), simulated annealing (Kirkpatrick, Gelatt, and Vecchi, 1983), stochastic learn-

ing automata (Narendra and Thathachar, 1974), adaptive threshold systems (Widrow, 

Gupta, and Maitra, 1973), and the associative search network (Barto, Sutton, and 

Brouwer, 1981). 

Before discussing these systems, a word should be mentioned about three im-

portant systems which will not be discussed in detail: Samuel's checker player 

(Samuel, 1963, Cohen and Feigenbaum, 1982), Boltzmann machines (Ackley, Hin-

ton, and Sejnowsld, 1985), and the generalised delta rule (Rumelhart, Hinton, and 

Williams, 1986). 

Samuel's checker player is a classic early attempt at machine learning. The goal 

was to develop a program that learned to play checkers based on playing experience. 

Samuel had to deal with the problems of credit assignment and generating new solu-

tions. However, his approach included creating a " smart" environment which would 

supply the checker player with good moves. The checker player would then adjust its 

performance on the basis of the difference between its move and the supplied move. 

The supplied moves came in the form of book moves (moves taken from a book 

of play between two master checker players) or a "performance standard"- a move 

generated by doing a deeper look-ahead search. 
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The key is that the environment supplies the checker player with "high quality" 

information. Samuel's checker player cannot operate in the environment shown in 

figure 1.3 and so it is not included in the survey of reinforcement learning systems. 

The other two systems, Boltzmann machines and the generalised delta rule, are 

two neuron-based systems which have been developed recently. These systems were 

developed to address the problem of properly adjusting weights in multi-layer neural 

networks. 

Recall that the Widrow/Hoff rule could only find the proper weights in single 

layer networks. This task was easily solved because each weight is directly deter-

mined by the desired input and output. In a two-layer network, this is not the case, as 

there are weights not directly connected to the input or the output. The effectiveness 

of a choice of values for these weights can be judged only by the effect they have on 

the overall behaviour of the network. Thus this is an instance of the credit assign-

ment problem. Credit must be properly assigned to segments of a " solution", where 

the solution is the set of weights in the network. 

Both Boltzmann machines and the generalised delta rule (also called back pro-

pagation) have developed a weight update rule which can be successfully applied to 

multi-layer networks. Both work to optimise an internally generated error signal 

measuring the difference between their behaviour and the desired behaviour as given 

by the environment. Like Samuel's checker player, however, they are not included in 

the review of reinforcement learning systems because they cannot operate in the en-

vironment shown in figure 1.3. Both require explicit <situation,action> pairs, not a 

simple reinforcement signal. 

The following two sections define the problems of credit assignment and solu-

tion generation. This will be followed by a review of several reinforcement systems, 
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and concluded by a summary of their approaches to credit assignment and solution 

generation. 

2.2.1. Credit Assignment 

The credit assignment problem appears in various guises. A classic example of 

the problem is in the game of chess. When a move in chess leads directly to a win, 

that move is good. This is less true of earlier moves. Did those moves contribute to 

the winning situation at the end of the game, or was the game won in spite of those 

earlier moves? This is a temporal form of the problem. Credit has to be assigned to 

different steps over time. 

The credit assignment problem also occurs in a structural form. If the results of 

various components of a system are combined together to form a solution, failure or 

success of that solution can depend on any or all of the components. Discovering 

which components are important and which are not is a credit assignment problem. 

Those components which play a large role in the solution should be given 

corresponding weight. Boltzmann machines and the generalised delta rule both deal 

with structural credit assignment. 

2.2.2. Solution Generation 

Figure 1.3 makes it clear that a reinforcement learning system is not supplied 

with the action to be performed in a situation. It must therefore be able to generate 

its own solutions. 

The size of the solution space makes a random search for new solutions imprac-

tical. Instead, reinforcement systems create new solutions based on existing solu-

tions. How this is done varies considerably. 
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Some systems maintain, for each situation, one action. In some systems, if that 

action leads to success, it is reinforced - it will take more negative reinforcement in 

the future to change the action. Others make small changes to the action, measure its 

effect, and accept the change if it improves the solution or satisfies some either cri-

terion. This means that ratings must be maintained on the goodness of the old solu-

tion. These ratings are produced via credit assignment. 

Other systems maintain a probability distribution for each situation. One of a 

number of actions is possible for that situation, with a probability of being selected 

determined by the distribution. Changing a solution means altering the distribution. 

Most systems make the change on the basis of the difference between expected and 

actual reinforcement, which means that, as above, ratings must be maintained. 

The choice of representation and update policy determines what kinds of prob-

lems are solvable. For example, a system which maintains one action per situation 

and updates that action by testing small changes and accepting any that improve its 

performance is performing a gradient descent in action space. Such a system must 

deal with the problem of getting trapped in local minima. 

2.2.3. Holland's Classifier System 

Holland's classifier system (Holland, 1986) is a rule-based system, where rules 

are in the form of <pattern,action> pairs called classifiers. All activity takes place on 

a global message list, a set of messages originating from the environment and from 

classifiers. The pattern portion of a classifier is a template which can match any one 

of a set of messages. If a matching message is found on the global message list, then 

the action portion of the classifier, which is itself a message, is added to a new global 

message list (subject to restrictions mentioned in the next paragraph). Thisprocess is 

shown in figure 2.9(a), where patiernk of classifier k matches message), causing 
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action/a to be placed on the new global message list. Adding an action to the new 

Global Message List 
message  

Rule Base  
<pattern1 ,action > 

messagej <patternk 

message 

Environmental 
Messages 

New 
Message 

List 

,acuon/> 

<patternm , action,,>  

(a) Matching Procedure 

New Message List 
actionk 

Global 
Message 

List 

(b) Constructing New Global Message List 

Figure 2.9. Holland's Classifier System. 
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message list can have effects on the environment. After all classifiers have been 

checked against all messages on the global message list, the old list is removed, and a 

new one is created from the new global message list and any new messages originat-

ing from the environment (figure 2.9(b)). This process is then repeated. 

Each classifier has a rating (called "strength" by Holland). In order to place a 

message on the message list, a classifier has .to bid for the privilege - the highest 

bidders get their messages placed on the message list. A winning bidder has the 

amount of its bid subtracted from its strength. The bid strength of a matching 

classifier C at time t is 

Bid (C, t) = cR (C)Strength (C, t) 

where c is a constant less than 1 (e.g., 1/16), and R (C) is a measure of the specificity 

of C - the more specific C is, the greater the value of R (C) (one classifier is more 

specific than another if the set of messages with which it matches is smaller than the 

other's). The strength of C becomes 

Strength(C,t+l) = Strength (C,t)—Bid(C,t) 

A classifier can regain strength if its message is matched by later classifiers who 

successfully bid. The amount of strength it regains depends on the bid strengths of 

the later classifiers and the number of other messages matched by those later 

classifiers. That is, if k messages are matched by a later classifier C', and C's mes-

sage is among those k messages, then 

Strength (C, t+2) = Strength (C,t+1)+Bid(C',t+1)/k 

Classifiers that lead directly to environmental reinforcement receive that reinforce-

ment. - 

Thud, Holland's classifier system deals with credit assignment through the use 

of strengths and the process of bidding. Those classifiers which are useful will gain 
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strength, either directly by receiving reinforcement from the environment, or indirect-

ly by having its message matched by other useful classifiers. 

New classifiers are generated using the genetic algorithm. A subset of existing 

classifiers are chosen according to their strengths - the higher the strength, the more 

likely the classifier will be chosen. The classifiers in the subset are paired off, and 

genetic operators are applied to the pairs, producing new classifiers. 

The newly produced classifiers replace the weakest classifiers. If these new 

classifiers are useful, they will gain strength and so will likely not be replaced in the 

future. If they are not useful, they will not gain strength, and so will likely be re-

placed in the future. 

So, the genetic algorithm produces new classifiers on the basis of the best old 

classifiers. These new classifiers replace the weakest old classifiers. The changes 

produced are based on a probabilistic procedure, both in how the candidate classifiers 

are chosen, and how they are combined. 

2.2.4. Simulated Annealing 

Simulated Annealing (Kirkpatrick, Gelatt, and Vecchi, 1983) is a method for 

solving problems of combinatorial optimisation. The goal in combinatorial optimisa-

tion is to find the minimum of a function of the configuration of a system of very 

many independent components. A configuration can be viewed as a solution to a 

problem. 

The function to be minimised (called the cost function) measures the "good-

ness" of the given configuration - the lower the cost, the better the solution. Total 

distance in the travelling salesman problem is an example of such a function. 
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If we view the cost function as a reinforcement signal from the environment, we 

see that minimising cost is equivalent to maximising reinforcement. Since the cost 

function is simple to calculate and thus plausibly supplied by the environment, this 

qualifies as a reinforcement learning problem. 

Simulated annealing is based on the ideas of statistical thermodynamics (Nash, 

1974), and so much of the terminology is borrowed from that discipline. Ergo, we 

speak not of "cost" but of "energy". A given configuration has an energy, E, given 

by the cost function. The goal of simulated annealing is to find the minimum energy 

configuration. The system starts with an arbitrarily picked configuration, which will 

have some energy. The configuration is given a small random change, which will 

change the energy of the configuration by &E. This change is accepted immediately 

if the change lowers the energy of the configuration. If the change raises the energy, 

then it is accepted with probability 

_AE 

P(AR)=e kbT 

where kb is Boltzmann's constant. This is the process by which new solutions are 

generated. One can view simulated annealing as a hill climbing search with noise, 

where the amount of noise is determined by T. 

The T parameter represents the temperature of the system, another concept bor-

rowed from statistical thermodynamics. The system is started out at a high tempera-

ture, which means that nearly all changes will be accepted. This effectively random-

ises the system. The temperature is then lowered according to a fixed schedule. As T 

is lowered, statistical thermodynamics tells us that the probability of being in a low 

energy state increases. The reason for not starting with T low is that at low tempera-

tures the time to make transitions out of sub-optimal energy minima is high. The 

hope is that' by starting at a high temperature and slowly lowering it, T will pass 
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through a value for which transitions to the global minimum are easy enough for it to 

occur within a reasonable time, but for which transitions out of the global minimum 

are difficult enough that the system stays in the global minimum. 

The process of slowly lowering T in a physical system is called annealing. Thus 

this process of lowering the T parameter is called simulated annealing. 

Simulated annealing does not deal with temporal problems, except those which 

have a fixed time span, such as the variation of the travelling salesman problem tack-

led in Kirkpatrick, Gelatt, and Vecchi (1983). In this variation, a solution always re-

quires c steps; where c is the number of cities. The entire solution can be represented 

by a single configuration. The credit assignment problem is thus structural. The 

simulated annealing system maintains a record of the overall goodness of a solution 

(via E), but does not try to assign credit to individual parts of a solution. However, 

when changes to a part of the solution increase E (i.e., result in a poorer solution), the 

probability of their acceptance decreases with the increase in E. It is through this 

mechanism that properly selected portions of a solution are maintained. 

2.2.5. Stochastic Learning Automata 

Structurally, stochastic learning automata are very simple. Input from the en-

vironment consists of a single reinforcement signal, with 0 signifying positive rein-

forcement, and 1 negative reinforcement. Since the automaton has no input other 

than the reinforcement signal, there is no concept of a current situation. To solve a 

problem which requires different responses in different situations would require one 

automata per situation. 

Output consists of one of p actions, (x1, . . . , as,. The automaton maintains an 

internal probability vector p, with one probability per action, which governs the 

choice of the next action. That is, action ak is selected with probability Pk. The en-
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vironment is random. That is, for a given output, cLk, it produces a penalty with pro-

bability Ck, where c is a vector of penalty probabilities. The vector c has one proba-

bility per input action. Note that the environment's response is dependent only on the 

current action - it does not depend on previous actions. Environments can be station-

ary, in which case c does not change over time, or nonstationary, in which case c 

does change. For this discussion, a stationary environment is assumed. 

The goal is to modify p such that reinforcement is maximised. A stochastic 

learning automata and its environment are illustrated in figure 2.10. 

Many learning schemes have been tried. All are based on the idea that when ac-

tion al is chosen at time t and positive reinforcement is received, then p(t) (i.e., pi at 

time t) should be increased and all other components of  decreased. Similarly, when 

negative reinforcement is received, then pi(t) should be decreased and all others in-

Environment 

action 
Stochastic Automaton reinforcement 

Figure 2.10. Stochastic Learning Automaton. 
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creased. Some schemes, such as the one discussed below, do not update p under cer-

tain conditions. 

The vector p represents the learning automaton's current solution to the prob-

lem. By adjusting individual action probabilities, the solution is changed. This is 

how new solutions are generated. The same mechanism deals with the credit assign-

ment problem - no ratings are kept of solutions; rather, ratings are maintained in-

directly, by increasing the probabilities of actions which lead to reward and decreas-

ing all others. Note that the credit assignment problem here is structural, as rein-

forcement is received after every step. 

The simplest learning scheme is called linear reward-inaction. When action aj 

is performed and positive reinforcement is received, then all other probabilities are 

updated by 

p(t+l) = p(t)—ap(t) 

where 0 < a < 1. The action probability for action i is updated by 

p1(t+1) = p(t)+ I ap(t). 
j#i 

The "inaction" part of the name comes into play when negative reinforcement is re-

ceived. In this case, nothing is done top. 

The performance of this scheme is c-optimal. To understance what e-optimality 

is, optimality should first be defined. An optimal scheme is one which, as time goes 

to infinity, chooses action c1 with probability 1, where action c1 produces the greatest 

positive reinforcement. An c-optimal scheme can be made as close to optimal as 

desired by proper choice of parameters. That is, the expected value of reinforcement 

can be made arbitrarily close to c1. 
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2.2.6. Adaptive Threshold Systems 

Adaptive threshold. systems (Widrow, Gupta, and Maitra, 1973) are based on 

linear threshold systems, namely perceptrons. Unlike perceptions, adaptive threshold 

systems do not require <input,output> pairs to be explicitly supplied. 

Feedback consists of a simple on/off signal - the system can receive either re-

ward or punishment. When it receives reward it updates its weights so as to decrease 

the difference between the output of the system (y) and the unthresholded output 

(wx). The Widrow/Hoff rule is used, giving: 

/w =1(y—wx)x1 

This increases the chances that y Will be produced in the future, given the input x. 

That is, changes in the weights produced by other updates will be less likely to 

change the output of the system when x is encountered in the future. In this sense, 

the pair <x,y> has a rating associated with it. The more extreme the output, the 

higher the rating. An output near the threshold indicates a low rating. 

When it receives punishment it updates its weights so as to decrease the differ-

ence between the inverse of the output of the system (i.e., 1—y) and the unthresholded 

output. Once again, the Widrow/Hoff rule is used, but the desired output is the oppo-

site of what was actually produced. That is: 

tXw1 = T((1—y)—wx)x1 

Since outputs are either 1 or 0, the desired output will be 1—y, where y is the actual 

output. 

This decreases the chances that y will be produced in the future, given x. If the 

unthresholded output was near the threshold, it is possible that the weight change will 

place wx on the other side of the threshold, and thus change y. This is the mechanism 

by which new solutions are generated. If the output is incorrect, a pair will receive 
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negative reinforcement. If this process continues long enough, the output, y, of the 

pair will change value. Pairs which begin with the output near the threshold will re-

quire less negative reinforcement to change output than pairs which have an output 

far from the threshold. 

Because it is based on perceptrons, an adaptive threshold system cannot learn 

anything that a perceptron cannot. Therefore, inputs must form a linearly indepen-

dent set. 

In Widrow, Gupta and Maitra ( 1973), the adaptive threshold system is applied to 

the game of blackjack. Input to the system is the current situation, which is com-

posed of the value of the upturned dealer's card, the current total of the system's 

hand, and whether aces are high or low. The action produced in a given situation is 

whether to draw another card ("hit") or stay with the current cards ("stick"). The 

decision to stick is final.. One cannot draw another card after deciding to stick. 

Learning proceeds as follows. One hand is played, which the player either wins 

or loses. This is done without any reinforcement taking place. The hand is then re-

played exactly, except this time the reinforcement is set appropriately (reward for 

winning the hand, punishment for losing the hand) and weights are updated for each 

<situation,action> pair encountered in playing that hand. Because reinforcement is 

determined by the outcome of the hand, rather than the merit of each decision, some 

incorrect decisions will be rewarded (if the hand is won in spite of those decisions), 

and some correct decisions will be punished (if the hand is lost in spite of those deci-

sions). Thus, while reinforcement is received on each step, it is not reliable. 

The system asymptotically approached the optimal strategy (called the Thorp 

optimal strategy). Under the Thorp optimal strategy, a player can expect to win 

49.5% of all games. Results of the adaptive threshold system varied, depending on 
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the value chosen for the learning parameter, il , with the best result being about a 48% 

winning rate (achieved after approximately 10,000 games). The initial winning rate, 

before any learning had been done, was about 22%. 

As mentioned before, because it is based on perceptrons, the adaptive threshold 

element can only properly classify linearly separable sets. Thus, the key to the suc-

cess of this system in the domain of blackjack was an encoding scheme that translat-

ed inputs into a linearly independent set. 

2.2.7. Associative Search Network 

The associative search network (Barto, Sutton, and Brouwer, 1981), or ASN for 

short, is a system based on single-layer perceptron networks. Input to the system 

consists of a vector x of reals, output is a vector y of l's and 0's. ASN also receives a 

feedback signal, z, from the environment. An ASN and its environment are shown in 

figure 2.11. 

feedback 
z 

input  
X ASN output 

Y 
Environment 

Figure 2.11. Associative Search Network and Environment. 
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If y has m elements, then ASN will have m+1 neurons; the first m neurons pro-

duce y, and the m+lst neuron produces a prediction of reinforcement used by the oth-

er m neurons. An ASN is shown in figure 2.12. Each neuron (with the exception of 

the predictor) operates similarly, so the following discussion will focus on a single 

neuron. 

More specifically, output y from a neuron at time t is 

Ii if w(t)x(t)+NOISE > 0 
Y(t) 

where NOISE is a normally distributed random variable. This output function is 

identical to a perceptron's except for the inclusion of noise. The addition of noise 

means that the weighted sum wx determines the probability of an output, rather than 

the output itself. This means that at any time, any output is possible, with the proba-

bility of a given output being dependent on the weighted sum - the more extreme the 

value of the sum, the less likely it is that this neuron will give a result different from 

that of a regular perceptron. This is the mechanism by which new solutions are gen-

erated. 

These neurons also differ from regular perceptrons in that they receive rein-

forcement from the environment, in the form of a single real value, z. The reinforce-

ment is used in the weight update rule, which is 

w1(t+1) = w1(t)+1[z (t)—p (t-1)][y (t-1)—y (t-2)]x(t-1) 

Note that the reinforcement, z, for an action at time t-1 comes at time t. The value 

p (t-1) is the output from the predictor neuron, and represents its prediction of z (t). 

The change in wi then, depends on three things: the difference between expected 

and actual reinforcement (z (t)—p (t-1)), the change in output (y (t-1)—y (t-2)), and 

the actual input (x(t-1)) When any of these is 0, so too is the change in w. 
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Figure 2.12. Associative Search Network. 

The reinforcement predictor neuron has its own set of weights, output rule, and 

weight update rule. The output of the neuron is 

p(t) — wPx 
where wP is the vector of weights for the predictor. The weight update rule is 

wf(t+1) = wf (t)+'fl"[z (t)—p (t-1)Jx(t--1) 

where 11' determines the rate of learning for the predictor. This is the familiar 

Widrow/Hoff rule, where z (t) is the desired output and p (t-1) is the actual output. 

ASN does not deal with multi-step problems, so only structural credit assign-

ment is dealt with. Credit assignment is accomplished through the combination of 

expectation, as maintained by the predictor neuron, and the strengths of the weights 
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.of the output neurons. The expectations are used to decide whether to reward or pun-

ish a neuron, and the strengths of the weights of the output neurons are adjusted to 

reflect the reward or punishment. Rewarded neurons will have their weights 

strengthened, and punished neurons will have their weights weakened. 

While ASN doesn't deal with a temporal form of credit assignment, an exten-

sion of ASN called ASE/ACE (Barto, Sutton, and Anderson, 1983), does. ASE/ACE 

(Associative Search Element/Adaptive Critic Element) resembles ASN, with an ex-

panded role for the predictor neuron. Essential to ASE/ACE's ability to deal with 

temporal credit assignment is the use of expectations of reinforcement of subsequent 

steps in determining the reinforcement given to the output neurons for the current 

step. By taking into account future expectations, it can assign credit to steps which 

receive no credit directly. This is closely related to the scheme used by Holland's 

classifier, in which classifiers are strengthened if they lead to environmental rein-

forcement or if they lead to other useful classifiers. 

2.2.8. Summary 

To be a reinforcement system, we have seen that a system must be able to deal 

with the problems of credit assignment and generating solutions. Dealing with the 

credit assignment problem means maintaining a rating system, either implicitly or ex-

plicitly. It is interesting to note that the only two systems reviewed which handle the 

temporal credit assignment problem (i.e., Holland's classifier system and ASE/ACE) 

are the only ones to maintain an explicit rating system. 

The rating system plays a part in the generation of new solutions. In the systems 

reviewed, new solutions are generated on the basis of old solutions, the variation in 

the new solution being dependent on the rating of the old solution. 
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The next chapter describes SPS in detail. This is a prelude to chapter 4, which 

describes ESPS, an extension of ESPS that can solve reinforcement learning prob-

lems. 



CHAPTER 3 

Self-Propagating Search 

This chapter describes Pentti Kanerva's (Kanerva, 1984) Self-Propagating 

Search (SPS). The architecture of SPS is given, and its method of reading and writ-

ing data is described. The properties which come about because of its architecture 

are described. In particular, it is shown how SPS can solve a limited version of the 

best match problem. Finally, the cerebellum and two theories thereof which are relat-

ed to SPS are discussed. 

In addition to Kanerva (1984), SPS has been described and analysed in Chou 

(1987) and Keeler (1987). Specifically, Chou and Keeler analyse the memory capaci-

ty of SPS (which they call Sparse Distributed Memory, or SDM). To my knowledge, 

SPS has not been applied to any problems. 

3.1. Description of SPS 

SPS is a supervised learning system based on neuron-like components, designed 

to solve the best match problem. It was described briefly in chapter 2. 

Addresses in SPS are n-bit binary numbers, where n is typically large (> 100). 

Data (also called words) are rn-bit binary numbers. For the remainder of this chapter 

and the next, assume for simplicity that n = m. 

SPS is based on the properties of n-dimensional binary metric spaces, where the 

distance metric is Hamming distance. The Hamming distance between two words is 

the number of bits at which the two words differ. Therefore, the Hamming distance 
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between 100 and 100 is 0*, the distance between 100 and 101 is 1, and the distance 

between 100 and 011 is 3. 

In a normal random-access memory with n-bit addresses, there are 2' locations 

in memory, one for each possible address. The word "location" refers to a physical 

location in memory. Locations have a label, called their address. In a normal 

random-access memory, locations are selected by broadcasting an address. The loca-

tion whose address matches the broadcast address responds. 

For the size of n dealt with by SPS, having 2' actual addresses is impractical. 

Therefore, in SPS only a small subset of all potential 2' locations actually exist. 

These locations are called actual locations. Since only a small subset of all poteniial 

locations exist, each actual location serves many addresses. The addresses it serves 

are determined by the address of the actual location (these are randomly assigned), 

and by a memory-wide constant called the read/write circle size (r for short). An ac-

tual location responds to all addresses within r bits of its address. A further differ-

ence between SPS and standard random-access memories is that in SPS, several data 

words are stored at each actual location (standard random-access memories store only 

one). 

Figure 3.1 shows a memory in which n 4 (i.e., there are 2?z = 16 total ad-

dresses), r = 1, where there are 5 actual locations, and where each location stores 2 

words: When an address is presented, each actual location checks if the presented ad-

dress is within r bits of its own address, if it is, then it responds. For example, when 

the address 0000 is presented, two actual locations respond: 0000, which is 0 bits 

away, and 1000, which is 1 bit away. The locations 0101, 1011, and 0110 do not 

respond because they are all more than r bits away. 

*Equivent phrases are "the distance between them is 0 bits" and "they are 0 bits apart". 
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actual 
location data 

flCiAh 0011 
0001 

0101 01010101 

1011 0111 
1110 

0110 0010 
0101 

1000 1110 
0000 

r=1 

Figure 3.1. Example Memory. 

3.1.1. Writing 

To write a word w at an address a means adding w to the list of words at each of 

the actual locations within r bits of a. When writing, the oldest word in the list is re-

placed by the word being written. 

Figure 3.2 shows the operation of writing a word, w = 1001, at an address, 

a = 0001. For figure 3.2 we assume that we start with the same situation as in figure 

3.1. When w is written at a, two addresses respond (0000 and 0101 - these are 

highlighted in the diagram). Therefore w is added to the head of the list at each of 

these locations (we assume that the head of the list is at the top). The oldest member 

of each list is lost. This means that at location 0000, 0001 is lost, and at location 

0101, 0010 is lost. The state of the memory after writing is shown in figure 3.2. 
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actual 
location 

0000 

data 

1001 
0011 
1001 
1101 
0111 
1110 
0010 
0101 
1110 
0000 

0101 

1011 

0110 

1000 

r=1 

Figure 3.2. Writing to Memory. 

3.1.2. Reading 

To read at an address a, we gather together the lists at the responding actual lo-

cations and form what is called the archetype. The archetype is a "representative" of 

the words in the list, and is formed by a bitwise application of the majority rule. That 

is, if there are more l's than 0's in a given bit location, the archetype has a 1 at that 

location. If 0's are more populous, the archetype has a 0. Anothei way to look at it is 

by considering bit sums. The bits at each bit position are summed. If, in a given po-

sition, the sum is greater than half the number of summands, then the archetype has a 

1 at that position, otherwise it has a 0. 

Figure 3.3 shows a read at a = 0001, the same location at which w was written. 

Once again, r = 1. While we shouldn't necessarily expect to read back w, we should 

read back something quite similar to w. More precisely, what we read back now 

should not be farther from w than if we had read before writing w. 
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(a) Memory. 

actual 
location data 

0000 1001 
0011 
1001 
1101 
0111 
1110 
0010 
0101 
1110 
0000 

0101 

1011 

0110 

1000 

r=1 

b3 b2 b1 b0 
1 0 0 1 

pooled data 0 0 1 1 
1 0 0 1 
1 1 0. 1 

bit sums 

archetype 

(b) Formation of Archetype. 

3 1 1 4 l's 
1 3 3 0 0's 
1 0 0 1 

Figure 3.3. Reading from Memory. 

In any case, the address a = 0001 once again cause 0000 and 0101 to respond. 

The lists from each of them are gathered together and the archetype is fOrmed (figure 

3.3(b)). As an example, let's detail the calculation of the left-most bit of the arche-

type (b3). Counting the number of l's and 0's in b3 of the accumulated words gives 

us a total of three l's and one 0. Since l's are more populous than 0's, b3 of the ar-

chetype is 1. The same procedure is performed for b2, b1, and b0, giving us an ar-

chetype of 1001, which was what was written previously. 



50 

3.2. Properties of SPS 

In each of the following examples of properties of SPS, assume that we start 

with the memory in figure 3.2 and figure 3.3(a). 

3.2.1. Reading at a Similar Address 

Suppose that a word, w, has been written at an address, a, and that reading at a 

produces w. Reading at an address, a', very similar to a will produce a word very 

similar to w, since most of the locations responding to a' will be the same ones which 

respond to a. This property is useful when dealing with noisy input data (i.e. cor-

rupted addresses). It is also useful for handling novel situations, if those novel situa-

tions are similar to ones stored before, and if it is acceptable to perform similar ac-

tions in similar situations. 

The effect of reading at an address close to a = 0001, which we'll call a', and 

whose value is 0000, is shown in figure 3.4. 

Reading at a' causes two locations to respond. One of these locations (0000) 

also responds to a. The archetype is 1011 (the calculation of the archetype is shown 

in figure 3.4(b)), which is similar to what is produced (1001) when reading at a. 

(Note that when the number of l's equal the number of 0's in a bit position, the ar-

chetype is 1). Thus, by moving away from the original write address, a, the original 

data is no longer recovered, but something close to it is. As a' becomes more dif-

ferent from a, the less likely it is that the original data is recovered. The reason for 

this is that, as a' moves away from a, fewer responding locations contain copies of 

the original data. The fewer copies there are, the less they influence the archetype, 

and the less likely it is that the archetype will resemble them. 
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actual 
location data 

0000 1001 
0011 
1001 
1101 
0111 
1110 
0010 
0101 
1110 
•0000 

0101 

1011 

0110 

1000 

r=1 

(a) Reading at a' = 0000. 

b3 b2 b1 b0 
1 0 0 1. 

pooled data 0 0 1 1 
1 1 1 0 
0 0 0 0 

bit sums 2 1 2 2 l's 
2 3 2 2 0's 

archetype 1 0 1 1 

(b) Formation of Archetype 

Figure 3.4. Reading at a Similar Address. 

Now, further assume that another word, w1, has been written at an address, a1, 

which is similar to a. Then, if a' moves from a to a1, the archetype will gradually 

change from w to w1, as the influence of w in the formation of the archetype wanes 

and the influence of w1 waxes. 

From a practical standpoint, this is useful for "filling in" missing parts of the 

task being learned. If SPS encounters a situation similar to other situations at which 

actions have been stored, the action returned will be a kind of average of the actions 

stored with those various situations. Note that this averaging is not explicitly per-

formed. Rather, it is a natural emergent property of the storage and recall scheme of 
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SPS. The exact result returned depends on how many copies of each action are used 

to form the archetype, and this in turn depends on the distance from the new situation 

to each of the previous situations. 

3.2.2. Rehearsal 

If a word, w, is written more than once at an address, a, the lists at each of the 

responding addresses contain more and more copies of w. Therefore, the chances of 

recalling w increase, both when reading at a and at addresses near a. Human perfor-

mance improves with practise, and the same is true of SPS. When a word is written 

many times, it is more likely to be recalled correctly, and more easily recalled at ad-

dresses near the write address. A word written many times will have more influence 

in the formation of the archetype, and thus we can move farther away from the origi-

nal write address before we are unable to read the original data. 

3.2.3. Recall Certainty 

• Assume that we read from a completely randomised memory: the archetype will 

be formed from a random collection of words. We can therefore expect the bit sums 

to be near the norm (1/2, where us the number of words in the pooled data). This is a 

simple consequence of the words forming a binomial distribution. Furthermore, the 

probability that the bit sums are near the norm increases as l grows. Similarly, the 

chances of a bit sum being 0 or l rapidly diminish as 1 grows. For example, the 

chances of a bit sum being l (i.e., all ones) when 1 = 50 is approximately 1 in 1015 . 

Therefore, if a bit sum is equal to 1, this strongly indicates that a 1 was actually writ-

ten there. Thus, bit sums can be used not only to form the archetype, but also to give 

an indication of the certainty of the archetype. This property was mentioned briefly 

in Kanerva (1984), but not pursued any further. One of the main problems in 
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developing ESPS was discovering how to calculate and manipulate these certainties 

(this is covered in chapter 4). 

3.2.4. The Best Match Problem 

We've seen that if a word is written many times, recall of the word is easier, and 

in fact the word can be recalled even when reading at an address other than the origi-

nal write address. This is the basis of solving the best match problem. SPS has found 

the data stored with the address that best matches the read address. Or, looking at it 

in terms of <pattern, class > pairs, SPS has found the class paired with the most simi-

lar stored pattern. 

SPS can only solve a limited version of the best match problem. The form of 

the best match problem which SPS can solve was given in chapter 1 and will be 

reiterated here. 

Assume that the set of pairs { <a 0,d0>,. . . , <a,4 dk> } have been stored in 

memory, and that we wantS to find the best match of an address a. Then, if a o through 

ak are sufficiently different from one another, and if a is sufficiently similar to some 

a1 in the set of pairs, then reading at a will return d7. The definition of " sufficiently 

similar" depends on the configuration of the memory, the composition of the data set, 

and the value of a. 

We are now in a position to understand why these restrictions are made on the 

best match problem. First, the condition that a0 through ak be sufficiently different is 

necessary to ensure that interference doesn't destroy the data stored. If any two of 

the addresses are sufficiently similar, then the data written at one will be overwritten 

by the data written at the other. 
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Second, the condition that a be sufficiently similar to some a1 is necessary to 

correctly retrieve d1. For example, if a is different enough from a1 that none of the 

actual locations at which d1 was stored respond to a, SPS will not retrieve d1, eccept 

by blind chance. 

There are other reasons why SPS solves only a limited form of the best match 

problem. When many words are written into memory, old words are lost, overwritten 

by newer words. Therefore, if the data set is larger than the capacity of SPS, it will 

not produce correct answers in some cases. Similarly, older words that have not been 

completely lost will be more difficult to recall than newer words, since they will be 

more likely to have had some copies of themselves overwritten by younger words. 

This means that there is an implicit bias or weight given to younger words. If the true 

best match is an old word, a younger word may be recalled instead because of this 

bias. 

3.3. Realisation of SPS with Neuron-like Components 

The architecture for SPS, as realised with neuron-like components, is shown in 

figure 3.5. The meaning and function of each of the components will be explained 

shortly. 

SPS has memory locations (these are the actual locations), which respond selec-

tively to read and write addresses (three of these are shown in figure 3.5). At each lo-

cation, data is stored, and SPS must be able to add to the data stored at a location, and 

read the data stored at a location.. To read, data from all responding locations must be 

pooled together and the archetype formed. These requirements are easily met with 

neuron-lik6 components. 
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Input bit  I 

Y, t 
I 
L 

Address 

location 

Figure 3.5. SPS Architecture. Adapted from Kanerva (1984). 

Bit location 
(a cbunter) 

Selec4 line 

Ackkess 
decder 

3.3.1. Address Decoder Neurons 

Each actual location has an address decoder neuron (three are shown in figure 

3.5). This neuron responds to an address when the address is within r bits of the actu-

allocation's address. The address decoder neuron has n inputs, one for each bit of 

the address. These inputs can take on the values 0 or 1. On each input line there is 

an unchanging weight which has a value of either —1 or 1. The input on each line is 

multiplied by the weight on that line, and the n products formed are added together. 
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This sum is compared to a fixed threshold, and the result of this comparison (0 or 1), 

determines whether the neuron responds to the address or not. 

An example address decoder is shown in figure 3.6. For this example, n =3. 

The weights, wo,w1, and w2, on the input lines are +1,_i, and —1, respectively. 

Figure 3.7 shows the output of the neuron for all possible inputs, and thresholds 

(I) varying from T =2 down to T = —2. We see that when T =2, the neuron reponds 

to no address. When T is lowered to 1, the neuron responds to one address, 100. This 

is the address of the actual location. When T is lowered again, to O, we see that the 

neuron responds to four addresses: 100, 000, 101, and 110. These addresses are all 

within 1 bit of 100 (its address). Thus, when T = 0, the value of r is effectively 1, 

since this neuron responds to all addresses within 1 bit of 100. Lowering the thres-

Weights 
(-1 or +1) 

xo   (+1) 

Inputs 
(0orl) l 

X2 

Wi 

(-1) 

W2 

(-1) 

Figure 3.6. Address decoder neuron. 

Output 
(0orl) 
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Input 
XO X  X2 

o 0 0 
o o 1 
o 1 0 
o 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 

Output 
T=2 T=1 T=O T=-1 T=-2 
o o 1 1 1 
o 0 0 1 1 
o 0 0 1 1 
o 0 0 0 1 
o 1 1 1 1 
o 0 1 1 1 
o o 1 1 1 
o 0 0 1 

Figure 3.7. Behaviour of address decoder neuron. 

d ( 100,Input) 

1 
2 
2 
3 
0 
1 
1 
2 

hold again to T = —1 effectively, increases the value of r to 2, so that this neuron 

responds to seven addresses - all those within 2 bits of 100. These results are detailed 

in figure 3.7. 

3.3.2. Storage Locations 

Previously, each actual location was described as having a list of words. 

Managing a queue is a difficult task for a neuron, or group of neurons. Therefore, a 

slight amendment is made to the model. Instead of storing words in a list, where 

writing a word inserts the new word at the head of the list and removes the oldest 

from the end of the list, bit sums are stored. A bit sum will be stored at a modifiable 

weight between the output of the address decoder neuron and the input of an output 

neuron (see figure 3.5). At each location there are n counters, one for each bit. When 

a word is stored, counter k is incremented when bit bk is 1, decremented otherwise. 

Since the storage capacity of a counter cannot be infinite, upper and lower limits exist 

on the counter. Incrementing a counter at its upper limits has no effect, as does de-

crementing a counter at its lower limit. 
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3.3.3. Output 

When reading, the bit sums at each responding location are added up and thres-

holded. The only difficulty is in deciding the value of the threshold, since for a given 

read address, the number of responding addresses vary. Kanerva (1984) suggests us-

ing the mean bit sum over all the data stored for the threshold. He doesn't elaborate 

further, and it is difficult to imagine how this could be accomplished with neuron-like 

components. 

An alternative scheme is used by Keeler (1987) and Chou ( 1987), where the 

threshold is fixed at 0, and counters are assumed to be capable of assuming positive 

and negative values (Kanerva assumed a lower limit of 0 for the counters). If the to-

tal sum is less than 0, the output will be 0, otherwise it will be 1. If this scheme is to 

be implemented with real neurons, however, it runs into trouble. Counters will be, 

modifiable weights between neurons, and according to this scheme must be able to 

assume positive and negative values. However, Kanerva (1984) states that, as far as 

is known, weights do not change from excitatory to inhibitory (i.e., from positive to 

negative values). 

A possible scheme would be to fix the threshold at some value, k, where k is cal-

culated from the average number of responding addresses (when n is large, it will not 

vary by a large amount), and the expected bit sum in each location. If we assume that 

uncorrelated data is stored (i.e., l's and 0's will be equally likely), then the expected 

bit sum would be the average of the upper and lower limits of the counter. Testing 

would confirm or refute this scheme. 

The architecture for three actual locations is shown in figure 3.5. It is important 

to note that when reading or writing, the only locations that take part in the operation 

are those whose address decoders respond. Note also that address decoders share ad-
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dress lines, and storage locations share input and output lines. 

3.4. SPS as a Cerebellar Model 

SPS is presented in Kanerva (1984) as a modal of the cerebellar cortex, the ela-

borately folded outer layer of the cerebellum (Llinás, 1975). The cerebellum is inti-

mately involved in motor control. Evidence of this is outlined in Arshaysky et al. 

(1986), where five observations are listed on the role of the cerebellum in motor con-

trol. They are: 

(1) Removal of the cerebellum or its partial destruction results in motor distur-

bances. Movements are clumsy and slow. 

(2) Cerebellar output signals reach all motor centres of the nervous system. 

(3) The cerebellum receives signals from all motor centres as well as from the 

proprioceptors (a proprioceptor is a sensory receptor that responds to an internal 

stimulus, such as a muscle's position or tension). 

(4) Stimulation of the cerebellum evokes various motor responses. 

(5) The activity of cerebellar neurons is correlated with movements. 

Kanerva's theory is similar to theories of the cerebellum put forward by Marr 

(1969) and Albus ( 1971). In particular, Albus developed a model of the cerebellar 

cortex called CMAC (Albus, 1979). CMAC was discussed in chapter 2. It has been 

used successfully to learn inverse dynamics equations for a robot arm, given a simple 

feedback system that generates approximations to desired trajectories, and a planning 

system that determines trajectories (Miller, Glanz, and Kraft, 1987). The addition of 

CMAC allows the arm to more precisely track trajectories. This is especially useful 

when arm speeds are high, since in such situations the feedback controller has 

difficulty following the trajectory. Given that the cerebellum is involved in cordina-
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tion, this adds credence to CMAC (and therefore to SPS as well) as a model of the 

cerebellum. 

However, the cerebellar theory proposed by Marr has of late fallen out of favour 

(Pellionisz, 1984), mostly due to lack of experimental results showing that synaptic 

change takes place at the connection between axons of neurons called parallel fibres 

and dendrites of neurons called Purkinje cells. Critical to the theories of Marr, 

Albus, and Kanerva is the modification of the strength of this connection in response 

to errors in its output compared to desired output. The state of Marr's theory is dis-

cussed by Pellionisz ( 1984). In spite of this evidence against these theories, however, 

the results are not conclusive, with one major school of experimentation still using 

Marr's theory as its foundation. For this reason I have continued to consider SPS a 

cerebellar model, and that, by extension, ESPS is as well. 

3.5. Conclusions 

In this chapter, we've seen how SPS can memorise <address,data> pairs. The 

manner in which it does so gives it several useful properties, including the ability to 

solve a restricted form of the best match problem. The specific scheme used by SPS 

can be implemented with neuron-like units, where these units and the way they are 

connected correspond to structures found in the cortex of the cerebellum. 

However, as pointed out in chapter 1, the ability to memorise <address,data> 

pairs, even coupled with the ability to solve the best match problem, is insufficient 

when the learning system must solve a task within an environment that offers low-

quality feedback. To deal with such an environment, the learning system must be 

able to generate and test its own solutions, and assign credit to steps in the solution. 

The changes made to SPS to produce ESPS, a learning system which has these abili-

ties, are described in the next chapter. 



CHAPTER 4 

Extended Self-Propagating Search 

We saw in chapter 2 that SPS is a supervised system, and as such is incapable of 

solving reinforcement problems. This chapter describes ESPS, an extension of SPS, 

which can solve reinforcement problems. The changes made to ESPS enable it both 

to generate new solutions and assign credit to steps in the solution. As established in 

chapter 2, these are necessary qualities for reinforcement learning systems. 

This chapter starts with an overview of the operating procedure of ESPS. This 

gives the reader a framework into which the details, explained in later sections, can 

be fitted. Next, the changes and additions made to SPS are presented, and it is argued 

that these changes make ESPS a reinforcement learning system. Finally, physiologi-

cal justification is provided for the changes made to SPS. 

In this and subsequent chapters, it is assumed that properties of SPS also apply 

to ESPS, unless otherwise noted. Therefore, when talking about some property of 

SPS and ESPS, reference will be made only to SPS, with the understanding that these 

properties apply to ESPS also. When a property is unique to ESPS, then only ESPS 

will be referred to. 

4.1. Operating Procedure 

This section describes the operating procedure of ESPS. The operating pro-

cedure is a short sequence of steps which are repeated until the goal is reached. Dur-

ing each iteration, ESPS decides on the action to be performed in the current situa-

tion, which is then executed. Reinforcement from the environment, if any, is re-
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ceived, and memory is updated according to the reinforcement. 

So, each iteration of the operating procedure consists of the following two steps: 

(1) Action Generation and Execution 

(2) Reinforcement and Memory Updating 

These steps are discussed in detail later in the chapter. The rest of this section 

discusses the properties of SPS, and how they overcome the problems posed by the 

size of the situation space. 

4.1.1. Coping With Large Situation Spaces 

For a problem of reasonable complexity, the number of possible situations is 

very large. This has two implications. First, not all situations can have their own 

"slot" in memory - ESPS, or any system, is restricted to storing some subset of possi-

ble situations. Second, there must be some mechanism for generalisation. This is 

due both to the size of situation space, as it would take too long to derive the 'correct 

action for each situation, and the restriction to a subset of situations, since actions for 

situations which have no "slot" must be induced from other known 

<situation, action> pairs. 

SPS can handle the subset restriction. We saw in chapter 3 that for SPS to store 

items in an n-dimensional address space, it only needed a randomly chosen subset of 

addresses, rather than all 2' addresses. 

As explained in chapter 3, generalisation is a natural emergent property of the 

storage scheme. If action a is written at situation s, then reading at a situation close 

to s (call it s') will return an action close to a (call it a'). The implication of this pro-

perty is that ESPS does not have to store an action for each situation. Situations not 

directly written to will be automatically "filled in" with an action that is some aver-
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age of nearby actions. This lessens the amount of work ESPS has to do, and means 

that it can produce good results in novel situations - assuming that it wants to do 

similar things in similar situations. This assumption is made, and is a critical deter-

minant of the types of problems ESPS can solve. ESPS cannot solve a problem in 

which two situations which have similar representations have radically different ac-

tions associated with them. In order for two situations to have different actions asso-

ciated with them, they must be given dissimilar representations. 

4.2. Changes to SPS 

Functionally, ESPS must be able to do two things that SPS cannot. First, it must 

be able to generate new solutions. This is accomplished by changing SPS's deter-

ministic reading process to a non-deterministic one. Making reading non-

deterministic means that ESPS is not restricted to only producing actions it has 

recorded, but is capable of generating new ones. 

The second requirement is that ESPS properly assign credit to steps in the solu-

tion. This is done through expectations and an extended concept of reinforcement. 

In ESPS, each <situation,action> pair has associated with it a number which is its ex-

pectation of future reinforcement if action is executed in situation. Reinforcement, in 

turn, can come not only from the environment, but also from the expectations of fu-

ture steps. 

Expectations are updated according to the reinforcement received. When rein-

forcement is different than what is predicted by the expectation, then the expectation 

stored with the <situation,action> pair is updated to make it better fit reality. The 

goal of this process is for each <situation,action> pair to have associated with it an 

accurate prediction of future reinforcement. To implement such a scheme, ESPS 

must be able to associate an expectation with each pair, and be able to manipulate 
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those expectations. The changes made to SPS to produce ESPS are summarised in 

figure 4.1. 

Extensions to SPS 

Requirement Extension Physiological 
Justification 

Generating new 
solutions 

• 

Non-deterministic reading 
function). The f functions 

k11 

ti 

( 
tested are: 

Imperfect neurons. 

fB(k,l)— 21 

and 

fL(k,l)=k/1 

Instead of maintaining an explicit 
action, probabilities of actions are 
stored. The probabilities are 
manipulated by changing the bit 
sums (k). 

Credit Assignment 
• 

Storage and manipulation of 
expectation, and an extended notion 
of feedback. Expectations are 
calculated according to 

bkpk+(l—bk)(l—pk) 
E= k4 

Global access to 
expectations and 
feedback through 
climbing fibres. 

n 

When feedback for an action 
exceeds its expectation, that action is 
made more probable by 
manipulating the bit sums (k). The 
notion of feedback is extended to 
include not only environmental 
feedback, but also the expectations 
of subsequent steps. 

Figure 4.1. Extensions to SPS. 
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4.2.1. Non-Deterministic Reading 

Non-deterministic reading is a bit-wise process - calculation of each bit of the 

archetype is done independently of the others, as was the case with SPS. Therefore, 

the following discussion refers only to the calculation of a single bit of the archetype, 

with the assumption that this process is applied to all bits of the archetype. Further, it 

is assumed that the pooled data contains 1 words, and so 1 bits are being used to form 

each bit of the archetype, and that k of them are l's (and therefore i—k are 0's). The 

value k will be referred to as the bit sum since it is equivalent to the sum of the 1 bits. 

The value of a given bit of the archetype is determined by applying a function f, 

to the bit sum, k. The value of the function is the probability that the output bit will 

be set to 1 for a given k. A probability of 0 means that the archetype will be 0 at that 

bit position, while aprobability of 1 means that the archetype will be 1. Values near 

0 or 1 mean that the archetype will be, with high probability, 0 or 1, respectively. A 

value of 0.5 means that the archetype will be 0 or 1 with equal probability. 

The probability returned by the f function indicates ESPS's certainty of its 

answer. When the probability is at or near 0 or 1, certainty is high. When the proba-

bility is at 0.5, uncertainty is at its maximum. 

The f function is defined to be monotonically increasing with k: 

f(k 1,i)≤f(k2,l) iff k1≤k2 

This means that to increase the probability that the given bit is 1, the bit sum (k) 

should be increased. This is done by writing a 1. To increase the probability that the 

bit is 0, k should be decreased, which is done by writing a 0. This provides a simple 

mechanism for positively or negatively reinforcing a result - if reading results in a 

value v for a bit b, then to positively reinforce b (i.e. make it more likely to occur in 

the future), v should be written. Similarly, to negatively reinforce b (i.e. make it less 
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likely to occur in the future), the inverse of v (denoted v) should be written. 

Non-deterministic reading provides a method of controlling the search done by 

ESPS for the correct solution. When search is to be limited, as is the case when a 

good action is found, 0's or l's, as appropriate, should predominate in each bit of the 

pooled data. When search is to be unconstrained, 0's and l's should occur so as to 

make f return 0.5. 

The f function has two arguments, k (the bit sum), and 1 (the number of words in 

the pooled data). I have not been able to find a "best" f function, nor is it clear that 

such a function exists. Two certainty functions were tested, one based on the binomi-

al distribution (fB), the other a simple linear rule (ft). The first, fB, was chosen arbi-

trarily, on the basis of intuition. I have not been able to justify its use (other than that 

it works). The second, fL, was chosen in response to my inability to justify fB. That 

is, it was chosen to answer this question: if I cannot prove there is a "best" function, 

or justify the choice of fB, does this mean that ESPS will work with any function 

which satisfies the condition of monotonicity? 

The first certainty function is: 

fB(k,l) - 

k 

LJ i=O _ i=O 

' i=o 

21 

This function expresses the probability of there being k or fewer l's in a randomly 

chosen set of 1 l's and 0's. When k = l,fB(k,l) = 1, when k = LlI2j,fB(k,l)= 0.5, and 

when k = 0, fB (k, 1) = The last value, fB (0, 1), is therefore not 0, as might be ex-
21 

pected, but does tend towards 0 as the sample size, 1, tends to infinity. A graph of fB 

for 1 = 25 is shown in figure 4.2(a). 
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(a) Behaviour of fB(k,l) for 1 = 25. 
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(b) Behaviour of fL(k,l) for 1 = 25. 

Figure 4.2. Behaviour of fB and fL. 

5 10 15 20 

25 

25 



68 

The second certainty function is: 

fL(k,l)=k/l 

Its behaviour for 1 = 25 is shown in figure 4.2(b)., This function was chosen to test' 

the sensitivity of ESPS to different f functions. The results of using each function are 

discussed in chapter 5. 

The function used by SPS (the majority rule) can be recast as an f function. The 

function is: 

1i if k≥l/2 

fM(k,1) HLo otherwise 
Since the probabilities returned by fm are 0 and 1, f is a deterministic step function. 

4.2.2. Expectations 

As mentioned in section 4.2, credit assignment is done through the use of expec-

tations and an extended definition of reinforcement. If the <situation,action> pair p 

has stored with it a number which accurately reflects future reinforcement, then pairs 

leading to p need not wait for environmental reinforcement. By examining the ex-

pectation associated with p, they can immediately determine the value of their action. 

Expectations are learned, so they must be updated when expected reinforcement 

does not match actual reinforcement. The goal is for expectations to accurately 

predict actual reinforcement, thereby making rewards and punishment based on those 

expectations correct. 

Expectations are stored via the bit sums. A <situation,action> pair whose ex-

pectations for future reinforcement are high will be stored such that the f function 

will return a value near 0 or 1. That is, it will be stored such that it will be recalled 

with high certainty. Aside from recording expectation, this has the effect that action 

will be recalled with little change when situation is encountered in the future. This is 
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a desirable effect. When expectations are high, the search for better solutions should 

be narrowed, as the current one already leads to high reinforcement. When expecta-

tions are low, the search for better solutions should be wide-ranging, since the ones 

already found did not lead to high reinforcement. 

Because the functions of search and storage of expectation are combined into a 

single mechanism, the range of values that reinforcement can take are important. If 

reinforcement does not reach a high enough value, then actions will not be stored 

with high enough certainty. So, even if an action maximises available reinforcement, 

it will not be recalled with high certainty, and ESPS will continue to search for a 

better solution, one which does not exist. 

This is in contrast to ASN and ASE/ACE, where certainties are stored via the 

weights in the output neurons, while expectations are stored in the predictor neuron. 

Under the ASN and ASE/ACE scheme, certainties and expectations can be manipu-

lated independently, and thus there is no restriction on the values that reinforcement 

can take as there is in ESPS. This flexibility is bought at the cost of an extra com-

ponent. Combining the two functions together as in ESPS creates a simpler solution, 

and one more easily justified on physiological terms. 

As a final point, note that ESPS cannot represent an expectation of negative 

reinforcement for a given action. Actions which lead to negative reinforcement can 

be made less likely to occur only by making other actions more likely to occur. 

4.2.2.1. Calculating Expectations 

Expectation is a measure that applies to an entire word. However, the probabili-

ties returned by the f function are defined only for individual bits. Therefore, it is 

necessary to be able to take individual bit probabilities and calculate the expectation 

for the entire word. 
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Expectations are calculated according to the following formula: 

bp+(l—b)(1—p) 

E= 1  
n 

where E is expectation, P3 15 the probability that bit j will be 1, (l—p3) is the probabil-

ity that bit j will be 0, and l, is the actual value given to bit j. For each bit, the pro-

bability of the bit taking on its actual value is calculated (this is bp+(l—b3)(1—p)). 

The average of these probabilities becomes the expectation. 

Note that the calculation of E is unusual in that it is dependent on the actual 

values given individual bits. One might expect E to be just the average of the bit pro-

babilities. However, it was felt that E should be a measure of the expectation of rein-

forcement for the actual word produced, rather than of the most probable. TI all of 

the Pj were 0.9 (i.e., each bit is likely to be 1), yet the resulting word was all 0's, then 

E would be 0. 1, because ESPS's expectation of reinforcement for that particular 

word, on the basis of the bit probabilities, should be low. This function has the pro-

perty that the most probable word produces the highest expectation, while the least 

probable produces the lowest expectation. 

As with the f functions, I have no proof that this method of calculating is op-

timal. It may be that other methods of calculating E are better. However, only this 

particular one has been tested. 

4.2.2.2. Feedback Scheme 

To cope with the infrequent feedback offered by the environment, ESPS extends 

the concept of feedback. Feedback, instead of just originating from the environment, 

can also originate internally, in the form of the expectations of other steps. If an ac-

tion, a, has a high expectation for future reinforcement, other actions which'lead to a 
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should also be given high expectations. The ultimate source of these high expecta-

tions is the environment. Steps which lead directly to environmental feedback have 

their expectations set according to that feedback. All other steps receive this feed-

back indirectly through other step's expectations. 

The feedback scheme will first be illustrated from the point of view of a bit loca-

tion (recall figure 3.5). This is done to make clearer the relationship between ESPS 

and the systems in chapter 3. Thus, for the purposes of this explanation, we assume 

that bit sums are stored, rather than a list of words. 

Recall that when the address line for a bit location is active, the value contained 

in the bit location, w, is placed on the output line, as are the values contained in all 

other activated locations on that line. The f function is applied, producing an output, 

y. If feedback exceeds expected feedback, then w should be updated so as to increase 

the probability of generating y in the future. Thus, if y = 1, then w should be incre-

mented, and if y = 0, w should be decremented. 

The feedback rule thus is: 

w (t+1) = w(t)+greater (F (t+1),E(t))(2y (t)-1) 

where w(t) is the value in the bit location at time t, F(t+1) is the feedback at time 

t+1, E(t) is expectation at time t, greater(x,y) is 1 when x≥y, -1 otherwise, and y(t) 

is the output at time t. Note that the feedback for an action at time t is received at 

time t+1. Also, the value of F(t+1) is the value of environmental feedback when en-

vironmental feedback is present, otherwise it is the expectation of the next step. 

Figure 4.3 shows how the expectation of a single <situation,action> pair 

(<sit 1 ,act1>) is updated according to the expectation of the subsequent pair 

(<sit2,act2>). Figure 4.3(a) shows act1 being performed in response to encountering 

sit1. The process of reading act 1 generates an expectation of reinforcement, e1. Ex-
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act1 
sit  >- sit2 

(a) After Execution of 

act  act2 

sit  , >- sit2 - sit3 - 

(b) After Execution of act2. 

Figure 4.3. Updating Expectations. 

ecuting act1 in situation sit1 leads to sit. The value e1 is not updated (becoming 

eç) until the feedback of the next step is received. Since this is a reinforcement prob-

lem, feedback is not received on every step, which is the case here. However, 

<sit 2,act 2> has associated with it an expectation of future reinforcement, e 2. (figure 

4.3(b)). Once e2 is available, e1 can be updated. If el>e2, this means that the ex-

pectation of the first pair is too high - act1 led to a situation which was worse than 

expected. The value e1 should be lowered. If e1 < e 2, this means that the expectation 

of the first pair is too low - act1 led to a situation which was better than expected. 

The value e1 should be lowered. - 

Note that the process of updating e1 changes the probability that act1 will be 

produced in the future. If e1 is increased, reading will become more deterministic, 

increasing the chances of producing act1 in the future. This is desirable, since e1 is 

increased only if act  leads to a situation which is better than expected. The opposite 

is true when e1 is decreased. The probability of producing act1 is decreased, which 

is desirable, since act1 led to less reinforcement than expected. 
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From the point of view of the storage scheme actually used by ESPS, the feed-

back rule slightly more complicated. The difference, as explained in chapter 3, is that 

SPS (and therefore ESPS), stores explicit words, instead of n bit sums. Thus, instead 

of having a weight w for each bit, there is a list of bits, where the length of the list is 

the number of words stored per address. Figure 4.4(a) shows an actual location at 

which z words are stored. Bit b of each of these words is highlighted. 

Bit b of the output (yb(t)) is determined by adding together bit b from each word 

at each responding address, then applying the f function. If feedback exceeds expect-

ed feedback, then this bit sum should be updated so as to increase the probability of 

generating Yb in the future. Thus, if yb(t) = 1, then the bit sum should be increased, 

address 

word1 

word2 

word2 —2 

word2 —1 

word2 

Actual Location 

10...i...00 

11,...o...01 

01...o...00 

00... 1... 10 

01...o....10 

(a) Before Reinforcement 

Actual Location 

address 

wordl 

word2 

word3 

word2 —1 

word2 

(b) After Reinforcement 

11...i...10 

10 ... 00 

11...0...01 

01...o...00 

1... 10 

Figure 4.4. Feedback in ESPS. 
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and if yb(t) = 0, then the bit sum should be decreased. 

To increase the bit sum for bit-b, a 1 is written at bit b in each responding actual 

location. To decrease the bit sum, a 0 is written. This is shown in. figure 4.4(b). 

Note that writing a 1 does not guarantee that the bit sum will increase, nor does writ-

ing a 0 guarantee that the bit sum will decrease. Writing adds a new bit to the list, 

displacing the oldest. If the new bit and the oldest bit have the same value, the bit 

sum will be the same. On the other hand, if the new bit and oldest bit have different 

values, writing will change the bit sum by two (this is the case in figure 4.4(b)). 

Overall, assuming random data, the average change will be 1. 

If we now examine the process from the standpoint of an entire word, the pro-

cess of reinforcement becomes quite simple. If reading produced y and positive rein-

forcement is called for, then y is written. If negative reinforcement is called for, then 

y is written, where y is y with every bit flipped. 

ESPS's feedback scheme is analogous to Holland's approach to credit assign-

ment, where classifiers which lead to other useful classifiers will have their strengths 

increased. It is also closely related to the scheme used by ASE/ACE, where the ele-

ment responsible for predicting feedback (ACE) updates its predictions on the basis 

of environmental feedback and on the predictions of subsequent steps. 

The concept of expectation also appears in Andreae's work on Multiple Context 

Learning Systems (MCLS's) (Andreae, 1972, Andreae, 1977, Andreae and Mac-

Donald, 1987). Expectations have a slightly different meaning in MCLS's, reflecting 

the probability of an action leading to a goal state (goal states receive reinforcement), 

rather than the expected reinforcement received if that action is executed. Expecta-

tions are highest for those actions which are part of the shortest path to the goal. That 

is, the "best" solution in an MCLS is the shortest one which leads to reinforcement 
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(called "reward" by Andreae). 

Expectations are updated via a process termed "leakback", in which the expec-

tations of future steps are propagated backwards through previous steps and recalcu-

lated with Howard's policy iteration method (Howard, 1966). Because of the struc-

ture of the memory of MCLS, it is possible to perform this process without requiring 

the system to execute in the environment. That is, it can update expectations inter-

nally. Also, because expectations are stored separately, they can be updated without 

affecting the stored solutions with which they are associated. The accuracy of the 

leakback process depends on the accuracy of its internal model of the environment - 

the generated expectations will be meaningful if the internal model is accurate. 

ESPS is meant to retain the physiological plausibility of SPS. Therefore, the 

changes made to ESPS must be justified not only on a functional basis, but also on a 

physiological basis. The next section provides that justification. 

4.3. Physiological Justification 

Three things must be justified: 

(1) A mechanism for non-deterministic reading. 

(2) Having global access to environmental feedback. 

(3) Having global access to expectations. 

4.3.1. Non-Deterministic Reading 

The premise of non-deterministic reading is that successive reads at a given ad-

dress will return different results. The justification for such a process in the cerebel-

lum is the assumption that neurons are imperfect. In Kanerva (1984), the comparison 

between a bit sum and its threshold is postulated to be performed through the com-

bined actions of three neurons - Purkinje cells, basket cells, and stellate cells. The 
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Purkinje cell is responsible for forming the bit sum and performing the comparisons, 

while the basket and stellate cells adjust the threshold of the Purkinje cell, if these 

neurons are perfect, then the comparison between the sum and the threshold will be 

performed correctly each time, and so reading will be deterministic. 

However, it seems more reasonable to assume that neurons are imperfect, so that 

the comparison is not always correct. That neurons are not perfect (i.e. that they are 

not deterministic) is a well-established fact. In Sejnowski (1986, pg. 378), he states: 

the responses of single neurons in cortex often vary from trial to trial ... Therefore, 
in many experiments the spike train is averaged over a number of responses 
(typically 10) to obtain a post-stimulus time histogram. The histogram represents 
the probability of a spike occurring during a brief interval as a function of time 
following the stimulus. 

(emphasis mine). 

Given that neurons are imperfect, and that the neurons in question (Purkinje 

cells, basket cells, and stellate cells) perform a thresholded weighted sum, it seems 

reasonable to assume that the probability of error increases as the value of the sum 

approaches the threshold. That is, when the bit sum is near the threshold, the pres-

ence of noise could easily shift the result from one value to another. When the bit 

sum is far from the threshold, the presence of noise will have less of an effect. 

This is the behaviour produced by the f functions. When the bit sum equals the 

threshold, l's and 0's are equally possible. As the bit sum moves away from the 

threshold, one value is produced with increasing probability. 

Thus, by assuming imperfect neurons, we can see how the cerebellum can pro-

duce different outputs in identical situations. Moreover, the variation in outputs 

depends on the bit sums - the more extreme the bit sums, the less the variation in out-

put. 
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4.3.2. Global Access to Environmental Feedback 

There are two possible explanations here: one is a chemical mechanism, where-

by some chemical change prompted by environmental feedback changes the charac-

teristics of storage. While possible, it would be slow, especially considering the rela-

tively high speed at which the cerebellum operates (Blomfield and Marr, 1970). 

The second possibility is that interneurons of some sort signal the presence and 

strength of feedback. There are neurons, called climbing fibres, that originate outside 

of the cerebellum which synapse with all Purkinje cells (Purkinje cells are the cells 

which store the bit sums). These climbing fibres have a powerful excitatory. effect on 

the Purkinje cells they synapse with. The theory postulated here is that when a Purk-

inje cell takes part in the producing an output, it may have a period of eligibility in 

which its weights can be updated. The update is performed on the basis of the feed-

back received through the climbing fibres during that time. This explanation is par-

ticularly appealing because it neatly accounts for the function of climbing fibres, 

which were previously postulated to supply the correct action, when the cerebellum 

was considered a supervised system. 

4.3.3. Global Access to Expectations 

Once again, the same two possibilities apply. The chemical mechanism would 

work the same here as for environmental feedback. The interneuron mechanism 

would require an interneuron which distributes the signal from a Purkinje cell (where 

the expectation would be generated) to all other Purkinje cells. There is no neuron of 

this type in the cerebellum. There are interneurons that synapse with Purkinje cells 

which could distribute its signal locally, but not globally. So one is forced to con-

clude that either only local expectations are available, or that the expectations gen-

erated by Purkinje cells are propagated by a more circuitous route, out of the cortex 
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and then back in again, perhaps by climbing fibres. 



CHAPTER 5 

Experimental Results 

This chapter describes the implementation of ESPS, both as it is implemented 

on a single processor, and as it is implemented as a distributed system over many pro-

cessors. Also described in this chapter are the experiments that were run on ESPS, 

and the results of those experiments. The chapter concludes with a discussion of the 

experimental results. 

5.1. Structure of ESPS Implementation 

ESPS consists of a set of c actual locations, each containing a list of p rn-bit 

words. Addresses are n bits long. ESPS is implemented by a c element array, where 

each array element contains 1 n-bit word (the address) and p rn-bit words (the words 

stored at that location). This is shown in figure 5.1. 

Writing the word w at address a consists of adding w to the lists at all respond-

ing actual locations. Adding w to the list at a responding address means shifting all 

words to the right (thus losing the rightmost, and oldest, word), and placing w in the 

leftmost slot. 

Responding locations are all those actual locations whose addresses are within r 

bits of a (r is the read/write circle ' size). Finding the responding addresses means 

comparing each actual address with a. Thus every element of the c element array 

must be checked. This is true for writing and for reading. 

Reading at a requires maintaining a count, 1, of the number of words used to 

form the archetype. This will be a product of the number of responding addresses 
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actual 
locations 

1 

2 

C 

address word  word2 wordy 

Figure 5.1. Structure of ESPS. 

and the number of words per address (p). Also needed is an array of m counters, one 

per bit of the archetype. This array is initially set to 0's. For each word in the list of 

each responding address, counter k is incremented if bit k of that word is 1. 

After all responding addresses have been checked, the archetype is formed. For-

mation of the archetype depends on the f function used. The deterministic step func-

tion used by SPS (fM) compares each counter to the value 1/2. If counter b is less 

than 1/2, then bit b of the archetype is 0, otherwise it is 1. 

The binomial f function (fB) sets bit b of the archetype to 1 with the following 

probability 
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[z/dJ [l/dJ 

i=O 1=0 
fB(k,l) - 

lld[l/d] 1Id 

where k is the value of counter b. Due to the limitatkns of floating point numbers on 

the computers, the values k and 1 were divided by a constant, d, in the calculation of 

fB. This prevents floating point overflows from occurring when calculating 21. It is 

possible that the division by d qualitatively changes the performance of ESPS - the 

properties of fB will change, having a steeper slope in the central section. Neverthe-

less, the basic properties of fB remain - it remains non-linear, with a rapid change in 

value as k passes through the value 1/2 (see figure 4.2). 

The linear f function (f) sets bit b of the archetype to 1 with probability k/I. 

5.1.1. Structure of Distributed Implementation 

A typical memory configuration has 10,000 actual locations, with anywhere 

from 10 to 90 words per address. A write involves looking at each actual address to 

see if responds to the write address. If it does, all the words are shifted one place, and 

the new word added. A read also involves looking at each actual address. Those that 

respond have their data pooled together. With a large memory, these are time-

consuming operations. However, ESPS is easily distributed over several processors, 

with a nearly m times speedup, where mis the number of processors. 

Consider a memory with one processor per actual location. To write word w at 

address a, one need only send a copy of w and a to each processor. Each processor 

compares a with the address of its actual location, and if the difference is less than r 

bits, writes w. This distributed approach is feasible because each processor can act 

independently of the others. 
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Reading is slightly more complicated than writing, as the data from all respond-

ing addresses must be gathered together. Each processor generates a vector of m 

counters, as well as recording how many words were gathered to form the vector. 

The vectors from all processors are added up, as are the word counts. These totals 

are then used to form the archetype. 

In general, where P processors are available, each processor can be assigned c/P 

addresses. The description in the previous paragraphs assumed P = c, and the previ-

ous section assumed P = 1. 

5.1.2. Jipc Implementation 

Memory was distributed via Jipc, the Jade interprocess communications facility 

(Unger, Dewar, Cleary, and Birtwistle, 1986). Jipc is a synchronous message-passing 

system. Two processes communicate using a send/receive/reply sequence. 

For example, assume that process P1 wants to send information to process P2. 

Process P1 would create its message, placing it in its message buffer. It then sends 

the message buffer to process P2 Until P2 receives the message and replies to it, Pi 

is blocked; it cannot do anything. 

Process P2 cannot access the message until it does a receive. If P1 has not al-

ready sent the message and P2 does a receive, then P2 will be blocked until the mes-

sage is sent. 

Once P2 has received the message, it is free to do whatever processing it likes, 

with Pi blocked the whole time. The data sent by p I is accessible in P2's message 

buffer. Once P2 replies top 1 p i will become unblocked and both will continue on. 

ESPS is implemented as a set of P+l Jipc processes on P processors. There are 

P server processes, one per machine, each containing c/P addresses. In addition, 
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there is one controller process which is responsible for organising the activity of the 

server processes. This is shown in figure 5.2. 

When ESPS is started up, it is the controller prncess which is created. The con-

troller process reads a file which determines the memory configuration. This file 

gives the size of addresses (n), the size of words (m), the number of words per actual 

location, the number of actual locations (c), and the read/write circle size (r). Having 

read this file, the controller then creates the server processes, using another 

machine1 

machine2 

machinep 

Figure 5.2 Distributed Implementation of ESPS. 
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configuration file to determine the machines on which these processes can be created. 

The memory is divided equally among all servers. 

The servers initialise their own memories to random values, then do a receive 

from the controller, awaiting instructions. The instructions of interest here are writ-

ing data at an address and reading the data at an address. 

Jipc buffers can contain typed data items, such as integers, floating point 

numbers, strings, and byte blocks (a byte block is an array of bytes). Furthermore, a 

buffer can contain several pieces of data at once, so it could contain an integer fol-

lowed by two floating point numbers, for example. In the case of ESPS, messages 

from the controller start with an integer giving the instruction (write or read). Fol-

lowing this is the information necessary for the, instruction. 

When the instruction is write, the buffer will have two byte blocks, one contain-

ing the address, and one containing the data. Upon receipt of the message, the server 

process copies the data from the buffer and immediately replies. This frees the con-

troller to send the write instruction to the other servers. After replying, the server 

then performs the write. 

When the instruction is read, the buffer will have one byte block, namely the 

address. Like the write, the address is copied from the buffer and the server immedi-

ately replies. It then performs the read, creating two pieces of data. The first is an in-

teger indicating the number of words which were read (1). The second is an array of 

m integers containing the bit sums. Once the server has finished its read, it places 1 

and the array into the buffer, and sends it to the controller. 

From the controller's point of view a read operation consists of sending all 

servers the read instruction along with the address, then performing a receive from 

each server in turn. The controller has its own 1 value and bit sum array, both initial-
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ised to 0. As each server replies, the controller updates its 1 value and bit sum array 

by adding to them the information the server sends. After all servers have sent their 

information, then the controller forms the archetype. 

5.1.3. Implementation Details 

The code for ESPS and the test routines comprises about 2000 lines of C code, 

and is broken down as follows. 

The code for distributed reading and writing is contained in three files, sps.c, 

jipc_sps.c, and jipc_sps_server.c. The file sps.c contains code for allocating and ini-

tialising memory, reading from and writing to that memory, and code for the various 

f functions. A system using ESPS, but only needing a single processor implementa-

tion, would directly use the routines in this file. 

A system needing a multi-processor implementation would call the routines in 

jipc_sps.c. To a calling program, the routines in this file are identical to those in 

sps.c, except that the routine names have a jipc_ prepended to them. Therefore, it is 

a simple matter to change a system from a single- to a multi-processor implementa-

tion. One merely needs to change the names of the routines, and recompile with the 

routines in jipc_sps.c. 

The routines in this file take care of creating and destroying jipc server 

processes on other machines, and creating and gathering messages. The actual work 

of reading and writing is done in the jipc server processes. The code for the server 

process is contained in jipcspsserver.c. This file contains the code for a stand-

alone process. The server continually performs a loop in which it waits for a com-

mand, performs the command, then waits for the next command. The server uses the 

routines in sps.c to perform the actual acts of reading and writing. 
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The files, their contents, and their sizes are shown in figure 5.3. In addition, two 

files containing useful routines are used in ESPS. They are bit_stuff.c and 

probability.c. The first file contains routines for setting and reading individual bits 

in bit strings (bit strings are represented as character arrays). Also included in the file 

are routines for printing out and reading in bit strings, useful for debugging. The 

second file contains routines for generating random numbers. 

The file testk.c contains code to perform the single- and multi-step tests. The 

parameters given to testk are contained in a file specifying word size, address size, 

number of actual locations, words per address, read/write circle size, number of trials, 

and the number of steps per trial. 

EPS Code Details 
File Contents Lenth 

sps.c Code . for allocating and 
initialising memory, reading 
from and writing to memory, 
on a single processor. 

622 lines 

jipc_sps.c Code for allocating and 
initialising memory, reading 
from and writing to memory, 
on many processors. 

344 lines 

jipc_sps_server.c Code for server process. 180 lines 
bit_stuff.c Bit string manipulation 

routines. 
258 lines 

probability.c Random number generation. 113 lines 
testk.c Code for tests. 290 lines 

Figure 5.3. ESPS Code Details. 
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When run, it creates the necessary processes and perform the test, dumping the 

results to a file with suffix .trace. In this file are the start and end time, and the 

results of each step in each trial, giving the expectation, the reinforcement, and 

whether the action or its inverse was written. 

Typical runs involved up to four Sun Microsystem workstations, depending on 

availability. Run times varied, depending on the test length, the number of steps per 

trial, the size of the addresses, the size of the words, the number of actual locations, 

the number of words per location, the number of machines used, and the load on each 

machine. For example, a run involving 2500 trials, two steps per trial, 128-bit ad-

dresses and words, 10,000 actual locations, 50 words per location, and four Suns 

takes 7.5 hours. A run involving 100 trials, one step per trial, 128-bit addresses, 8-bit 

words, 10,000 actual locations, 10 words per location, and four Suns takes5 minutes. 

5.2. Experiments 

Two experiments were run, the first being a single-step learning problem, the 

second a multi-step learning problem. The purpose of the first experiment is to estab-

lish that ESPS can correctly generate and test new solutions, discovering an optimal 

solution on the basis of indirect feedback. It also establishes that ESPS can do struc-

tural credit assignment. 

The second experiment extends the problem to a multi-step problem, where 

reinforcement is only received after the last step. This tests ESPS 's ability to do tem-

poral credit assignment. 

5.2.1. The Single-Step Experiment 

In the single-step experiment, ESPS's task is to converge on a randomly chosen 

n-bit word, called the target word. It does not know what the word is, and its only 
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feedback is the Hamming distance from its guess to the target. The situation is illus-

trated in figure 5.4. This is an instance of structural credit assignment because the 

feedback is indirect. Knowing the distance between a guess and the target does not 

give a direct indication of how the guess can be improved. 

Before going on to discuss the algorithm, a word should be said about the prob-

lem. A programmer faced with solving the single-step problem and allowed to use 

any means at his disposal would not choose to solve the problem using ESPS. It is 

easy enough to devise an algorithm which would solve it in m steps, where m is the 

number of bits in the target word. The algorithm would start with a random word, 

and test each bit in turn. Bit k would be set to 1 and the feedback would be noted, 

then set to 0 and the feedback noted. It would be then set to the value for which it re-

ceived the most feedback. 

Environment 

F = 1.0—d(g,t)/m 

ESPS 

guess 
(g) 

read(g, E) 
write(g) if F≥E 
writeg) if F<E 

reinforcement 
-: (F) 

Figure 5.4. Single-Step Experiment. 
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Such a solution suffers from several drawbacks. First, it cannot generalise its 

results from one solution to other similar problems. The ability to generalise is a na-

tural emergent property of SPS. Second, it works only on unimodal problems - those 

problems with no local minima. The algorithm works by making small changes in 

the solution and testing the effects of those changes. It is effectively doing a gradient 

descent. Were the problem multimodal, it could conceivably get trapped in a local 

minimum. 

The reason for testing ESPS on a unimodal problem was to try the simplest 

problem possible which was an instance of reinforcement learning. Further experi-

mentation will test its abilities on multimodal problems. 

As shown in figure 5.4, the environment continually receives guesses (g) from 

ESPS, and produces feedback (F), according to the formula 

F = 1.0—d(g,t)Im 

where t is the target word, and d(g, t) is the Hamming distance between g and t. 

ESPS continually reads from memory, producing a guess and the expectation (E) for 

that guess. When it receives the feedback for that guess, it updates its memory, writ-

ing g when feedback exceeds expectations, writing g when expectations exceed 

feedback. 

In the test programs, the roles of Environment and ESPS are both played by the 

test program. That is, the environment and ESPS are not separate processes. The al-

gorithm used in the single-step is illustrated in the pseudo-code below. 
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repeat 
begin 
read(g, E) 
F := 1.0 - d(g,t)/m 
if F >= E then 
write(g) 

else 
write(g) 

end 

Some tests used the binomial scheme to generate expectations, others used the linear 

scheme. 

5.2.1.1. Single-Step Experiment Results 

ESPS was tested on a series of values for m, ranging from 8 up to 128. All tests, 

with one exception, used a memory with 128-bit addresses, 10,000 locations, and a 

read/write circle of 49 bits. The exception occurred for m = 128, where, due to time 

considerations, an extremely small memory was used (1 actual location), with a 

read/write circle of 128 bits. The tests and their results are summarised in figure 5.5. 

For a given test, the number of trials to convergence is defined to be the first trial for 

Word Size 
(m) 

Words Per 
Address (p) 

Test 
Runs 

Average Trials 
To Convergence 

Standard 
Deviation 

8 5 10 >200 - 

8 10 10 68.0 47.896 
8 15 10 28.4 11.74 

16 20 10 107.7 40.93 
32 30 10 219.1 80.97 
64 50 1 471 - 

128 90 1 3626 - 

Figure 5.5. Single-Step Experiment Results. 
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which it and all subsequent guesses are correct. 

As can be seen from the data in figure 5.5, several tests were run, varying both 

the word size (m) and the number of words per address (p). FOr most configurations 

10 runs were made, although once again due to time considerations, only 1 run was 

made for m = 64 and m = 128. No standard deviation was calculated for the first test 

(m = 8 and p = 5), as it never succeeded in converging (a limit of 200 was placed on 

the number of trials in a test run form = 8).. 

There are three salient points to note about the data, which will be discussed in 

detail in the next section. First, the number of trials needed to converge grew as m 

increased (a trial consists of a guess, the reinforcement given to that guess, and the 

adjustment of expectation through storage of the guess or its inverse). Also, the 

number of words per address that were required grew also, from 10 for m =8 to 90 

for m = 128. Finally, for constant m, as p increased the number of trials required for 

convergence decreased, as did the standard deviation. 

To give a feel for the behaviour of ESPS on the single-step test, figure 5.6 shows 

a graph of expectation (E), feedback (F) and distance (d(g,t)) for a run with m = 128. 

For the most part, ESPS steadily improves its performance, although at times its per-

formance decreases, as it follows unproductive leads. The main point is that ESPS 

does not suddenly "stumble" upon the correct answer. This is perhaps not surprising 

in light of the fact that there are 2128 possible guesses, and only one is correct. 

ESPS successfully completed the single-step experiment for m ranging from 8 to 

128. When m was 128, it converged to the correct result in 3626 trials. 
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E (solid) .6 
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F (dotted) 4 

128 

—96 

- 64 d(g,t) 
(dashed) 

—32 

0 
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Trial Number 

Figure 5.6. Single-Step Experiment Results for n = 128. 

5.2.1.2. Discussion of Single-Step Experiment 

The first point to be discussed is the increase in the trials to convergence as m 

increases. This is due to the increase in difficulty of the problem as m increases - the 

search space doubles for every increase in m of 1, so that the search space for 

m = 128 is 264 times as large as for m =64 for example. The results show an approx-

imate doubling in convergence time for every doubling in m, with the exception of 

m = 128. The reasons for this exception are not clear but may be related to the 

number of words per address used in the m = 128 experiment. In the previous experi-

ments, the number of words per address (p) was approximately the same as m. In the 

case of m = 128 though, p was quite a bit less. The tests run with m = 8 show the in-

crease in performance as p increases, so the same could be expected if p was in-

creased for m = 128. The effects of changing the number of words per address (p) 
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are discussed next. 

To understand why the number of words per address must increase as m in-

creases, the concepts of correct and incorrect decisions must be defined. These con-

cepts are defined relative to a single, arbitrarily chosen bit in the guess. A decision is 

defined to be the choice of storing either the guess or its inverse. In terms of a single 

bit, then, a decision is the choice of storing either the bit or its inverse. The decision 

is correct when the bit stored is the correct value (equal to the target). The decision is 

incorrect when the bit stored is the wrong value (the inverse of the target). 

The list of words at an address contains a record of the last p decisions made by 

the learning system involving that address, where p equals the number of words per 

address. If the number of correct decisions exceeds the number of incorrect deci-

sions, then the probability of generating a correct guess is greater than 0.5 (assuming 

that the f function is the binomial or linear function). Furthermore, correct guesses 

are more likely to be stored as is (i.e., correctly), since a correct guess for a given bit 

will increase the chance that the entire guess is close to the target. Similarly, if the 

number of incorrect decisions is greater, then the probability of generating a correct 

guess is less than 0.5. Incorrect guesses increase the likelihood that the inverse will 

be stored (i.e., the correct decision is made), since an incorrect guess for a given bit 

will decrease the chance that the entire guess is close to the target. ESPS thus works 

to increase the population of correct guesses among the list of the last p decisions. 

The reason why the number of words per address needed to be increased is due 

to the decrease in the reliability of the feedback for a given bit as m increases. That 

is, as m increases, the influence a single bit has on the the guess decreases, and there-

fore the influence of that bit on the feedback also decreases. The feedback received is 

thus less reliable as an indicator of whether that particular bit was correct or not. Be-
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cause of this, correct decisions are less likely to be made. More decisions must be 

made and recorded before it becomes clear which is the correct value for a given bit. 

Recording more decisions means increasing the number of words per address. 

The final point to discuss concerns the increase in performance as p increases 

for constant m. Three tests were run for m = 8, with p assuming values of 5, 10, and 

15 (see figure 5.5). To test the change in performance, an hypothesis test was per-

formed on the data. 

Let us define test0 to be the test where p = 10, and test1 the test where p = 15. 

The hypothesis tested, H, is that there is an increase in performance from testo to 

test1 that is statistically significant. That is, the mean of test0 (.t0) is less than the 

mean of test1 (L). The risk of type-I error we are willing to accept is a = 0.05. 

The hypothesis test to be run on the data requires that they be samples from a 

normally distributed population. However, because of the size of the samples, this 

cannot be established statistically. Instead, we will appeal to the central limit 

theorem, which tells us that a variable which is the sum of many statistically indepen-

dent factors tends to be normally distributed.. In the case of the operation of ESPS, 

the value of the variable (trials to convergence) is dependent on the the initial values 

given to each memory location, the target, and the particular pertubations of the 

guesses produced by the f function. I therefore assumed that the distribution of the 

number of trials to convergence is normal. Even if the distribution is not normal, it 

has been established that " violation of the assumption of normality has almost no 

practical consequences in using the t-test" (Glass and Hopkins, 1984, pg. 237). 

An unpaired directional t-test was run on the data. The result of the test was that 

po < iii with probability > 0.95. So the hypothesis is accepted, and we can conclude 

with reasonable certainty that the performance of test1 is greater than that of test0. 
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The explanation for the increase in performance lies in the size of p. The larger 

p is, the greater the base of old decisions on which to make the current decision. As-

suming that correct decisions will be stored more frequently than incorrect decisions, 

a larger p will increase the chances that, for a given sequence of decisions, correct de-

cisions will outnumber incorrect decisions. 

These tests point out the shortcomings of storing a list of words at an actual lo-

cation, instead of bit sums. When m = 128, 90 words were stored at each address, re-

quiring 90x128 = 11520 bits per actual location. If bit sums were stored, it would 

only take 128x8 = 1024 bits, assuming 8 bits per bit sum (having 8 bits per bit sum 

would allow sums ranging from 0 to 255). Thus, bit sums use less storage space as 

soon as the number of words per address exceeds 8. Also, they are easier and quicker 

to work with. Writing would involve only incrementing and decrementing sums, 

rather than shifting every member of the list. Reading would no longer involve exa-

mining each bit of each word to create the bit sums, since those bit sums already ex-

ist. The current implementation was written assuming few words per address would 

be stored (around 4), and so lists of words rather than bit sums were used. Also, the 

theory of SPS was developed by Kanerva (1984) assuming word lists, so to ensure 

that the performance of the implementation kept as close as possible to that of the 

theory, word lists were used in the implementation. 

5.2.1.3. Comparison to ASN 

Tests were run on ESPS to compare its performance to the Associative Search 

Network (ASN), as described in Barto, Sutton and Brouwer (1981). Their experiment 

involved the presentation of two <situation,action> pairs (or more accurately, two 

<identifier, target> pairs). One identifier would be presented, and ASN would gen-

erate a guess. Feedback was the inner product of the guess and the target (output of 
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Figure 5.7. ASN Results (from Barto, Sutton, and Brouwer, 1981). 

ASN is a vector of l's and 0's, the target is a vector of l's and - l's). This is essen-

tially equivalent to Hamming distance. This step was repeated 10 times for one 

identifier, then 10 for the other, etc. Their experiment was designed to establish two 

results. First, that it is possible to derive the correct result using only indirect feed-

back. Second, that it could be done with an associative network. Their results are 

summarised in figure 5.7. 

The values X' and X2 are the target vectors. The line indicated "Chance for 

X1" is the expected payoff for a random guess of X1 's value. The size of X is 9. 

A similar test was performed with ESPS, but with m = 8. That is, the target 

words were slightly smaller than that used for the ASN (the implementation of ESPS 

restricts words to be multiples of 8). The results of the test are shown in figure 5.8. 
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Figure 5.8. ESPS Results on ASN Test. 

The expected feedback for a random guess is indicated by the dashed line labelled 

"Chance". Feedback for the first target word is indicated by the solid line; that for 

the second target word is indicated by the dotted line. Because ESPS converged fas-

ter than the ASN, only 150 trials are shown. Execution time was approximately 30 

minutes when run on 3 Suns. 

The experiments show that ESPS converges faster than the ASN. This is in part 

due to SPS's storage scheme. Given two arbitrary <situation,action> pairs, it is un-

likely that they will have any actual locations in common because of the recoding 

stage between the inputs and the weights. The result of this is that learning one pair 

does not interfere with learning the other. In contrast, the ASN has no such recoding 

stage, and so there is interference between pairs. Because the pairs were linearly in-

dependent, there existed a set of weights that enabled them both to be eventually 

learned. However, learning was slowed by the interference between them. 
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5.2.1.4. Performance with Linear Rule 

Tests were performed with ESPS using the linear f function. Performance of 

ESPS form = 8 and 10 words per address is shown in figure 5.9. 

Figure 5.9 shows that ESPS did not converge on the target word. This is not to 

say that guesses were completely random. After about 50 trials, feedback was con-

sistently greater than 0.5 (the expected value if guesses were random), averaging 

about 0.7. Therefore, some learning was taking place. However, it failed to progress 

any further. It seems that the expectation generated by the linear rule is too pessimis-

tic - this causes guesses to be wider-ranging than necessary. That is, the expectation 

associated with a guess is too low an estimate of the goodness of the guess. When 

the comparison is made to the feedback to decide whether to reward or punish the 

guess, bad guesses are rewarded unnecessarily. These bad guesses are written to 

E (solid) 
and 

F (dotted) 

0  

0 20 40 60 
Trial Number 

80 

Figure 5.9. ESPS Performance with Linear f Function. 

100 
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memory (a guess for which feedback exceeds expectation is written to memory as is). 

The effect is an increase in noise, negatively affecting the generation of the next 

guess. Tests with more words per address (50) met with the same problem. 

5.2.2. The Multi-Step Experiment 

The multi-step experiment was designed to test ESPS's ability to solve a task in 

which reinforcement is not given on each step. 

In the multi-step experiment, the environment chooses a series of target words, 

t1 to t8. ESPS guesses each word in the sequence, with feedback coming at the end 

of the series of guesses. Feedback is calculated using the following formula: 

d(g1,t1) 
1.0 

i=1 

g 

That is feedback is inversely proportional to the total distance between guesses and 

their corresponding target words. 

The feedback scheme for the multi-step experiment is more complicated be-

cause only the last step receives environmental feedback. Steps which don't receive 

environmental feedback examine thô expected feedback of the following step to up-

date their own expectations. When their expectations exceed that predicted by the 

following step, then their expectations are lowered. When their expectations are ex-

ceeded by that predicted by the following step, then their own expectations are raised. 

The pseudo-code for the multi-step experiment is rather difficult to illustrate, 

since the expectation for one step cannot be updated until the next one is read and its 

expectation calculated. It is more easily illustrated from the point of view of a bit lo-

cation. The rule is: 
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w(t+l) = w(t)+greater (F (t + 1), E (t)) (2y (t)— 1) 

Where w(t) is the value in the bit location at time t, E(t) is the expectation at time t, 

and greater (x,y) is 1 when x≥y, -1 otherwise. F(t+1) is a feedback signal that for 

the last step is the environmental feedback, and for all other steps is the expectation 

of the next step. Feedback for an action at time t is received at time t+1. 

ESPS has not successfully completed the multi-step experiment. A test in which 

m = 8 is shown in figure 5.10. Each trial consisted of two steps. In the first step, an 

8-bit guess was generated along with its expectation. The second step also generated 

an 8-bit guess and an expectation. This second expectation was the feedback for the 

first. The environmental feedback was the feedback used by the second step. Ad-

dresses were 128 bits long, there were 100 words per address, 10,000 actual loca-

tions, a read/write circle of 49 bits, and the binomial f function was used. Run time 

was 6 hours on 3 Suns. The graph shows the expectations generated on the first and 

E1 (solid) .6— 
E2 (dotted) 

and 
F(dashed) .4-

0 50 100 150 
Trial Number 

200 250 

Figure 5.10. Multi-Step Experiment Results.. 
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second steps (the solid and dotted lines, respectively), as well as the environmental 

feedback (the dashed line). 

Figure 5.10 shows ESPS's inability to converge on the correct sequence of 

guesses. The problem lies with the widely-varying values for expectation generated 

on the second step. The first step relies on these values for adjusting its expectations. 

Such widely-varying values would send it confusing signals, making correct adjust-

ments more difficult. Nevertheless, if correct decisions are more common than in-

correct decisions, it should be possible to eventually converge on the correct answer. 

Two tests were run in which correct and incorrect decisions were recorded. 

Both had the same memory configuration (8-bit words, 128-bit addresses, 10000 ac-

tual locations, 30 words per address, and a read/write circle size of 49 bits). The first 

test ran for 250 trials, the second for 1000. Both were two-step multi-step tests. Of 

particular interest is the number of correct and incorrect decisions made on the first 

step. In the case of the 250 trial run, 121 correct decisions were made, while 129 in-

correct decisions were made. In the case of the 1000 trial run, 504 correct decisions 

were made, while 496 incorrect decisions were made. 

The reasons why the secondtest had more correct decisions than incorrect deci-

sion on the first step are unknown; it is possible that, given enough trials, correct de-

cisions will always outnumber incorrect decisions. It is also possible that the fact that 

correct decisions outnumbered incorrect decisions on the second test was a chance 

event, and that correct decisions will in general not outnumber incorrect decisions. 

For the moment, assume that correct decisions will eventually always outnumber in-

correct decisions, and that the proportion of correct decisions is very close to 0.5, as 

is the case in the second test. 
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Recall that in the discussion on the single-step experiment, it was stated that the 

list of words at an address contains a record of the last p decisions made by the learn-

ing system, where p equals the number of words per address. It was argued that as n 

increased, the reliability of the feedback decreased, meaning that correct decisions 

are less likely to be made. Therefore, as the proportion of correct decisions ap-

proaches 0.5, p must be made larger, large enough to contain a statistically significant 

sample of decisions. In the case of the second run of the multi-step experiment, the 

proportion is 0.504, too close to 0.5 for 30 words per address to be able to contain a 

statistically significant sample - it is quite possible that a group of 30 consecutive de-

cisions will contain more incorrect than correct decisions. If 250 words per address 

were stored, we could expect about 126 correct and 124 incorrect decisions to be 

made. This would bias the output, perhaps enough to make convergence to the 

correct result possible. Unfortunately, due to the method used to implement ESPS, 

storing 250 words per address results in unmanageably large processes. Testing this 

hypothesis would require a reimplementation with bit sums rather than word lists. 

Figure 5.11 illustrates the results of the tests. Figure 5.11(a) shows the cumula-

tive proportion of correct decisions at each trial. The first test (250 trials) is plotted 

with the dotted line, the second (1000 trials) with the solid line. Figure 5.11(b) shows 

the proportion of correct guesses over the last 30 guesses at each trial. Since each ac-

tual location contains 30 words, this gives an indication of the sample ESPS worked 

with to generate the next guess. 

5.3. Conclusions 

To summarise the results, ESPS has successfully solved the single-step learning 

problem, thus demonstrating its ability to generate new solutions and do structural 

credit assignment. Its performance compares favourably to that of another reinforce-
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Figure 5.11. Correct/Incorrect Test Results. 
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ment learning system, the Associative Search Network (Barto, Sutton, and Brouwer, 

1981). ESPS has not solved the multi-step learning problem, and so has not demon-

strated the ability to do temporal credit assignment. 

The reasons for ESPS failure to solve the multi-step problem are not clear. 

ESPS is lacking a theory which can explain why it performs as it does. At the mo-

ment, adjustments such as changing the number of words per address are made on the 

basis of the effects of past adjustments that were found to work. The reasons why the 

adjustments work are unknown - all that is known is that they cause the intended 

results. 

A theory of learning in ESPS could answer the following questions: 

(1) What is the effect of different f functions? Why does the binomial function 

work while the linear one does not? 

(2) Is learning in ESPS general, or does it just work for this particular combination 

of problem and f function? For example, can it cope with multimodl prob-

lems? 

(3) Should the mechanisms of expectation and generation be separated, as with 

ASE/ACE (Barto, Sutton, and Anderson, 1983) and Holland's Classifier system 

(Holland, 1986)? Having them combined as in ESPS makes the range of values 

taken by reinforcement important. If reinforcement never reaches a high 

enough value, expectations will always be low, and thus generated solutions will 

vary considerably from step to step. 

(4) Should expectations be calculated differently? The failure to solve the multi-

step problem is due in part to the wide variations in the value of expectation for 

the second step, thus providing confusing feedback for the first step. The varia-

tions in expectation are caused by the manner in which it is calculated - the ex-
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pectation for a word depends on the probable value of each bit and its actual 

value. It may be that expectations should depend only on the probable value of 

each bit. 



CHAPTER 6 

Discussion 

6.1. Summary 

Chapter 1 introduced reinforcement learning problems, which are those prob-

lems characterised by an environment which offers indirect and infrequent reinforce-

ment. Two types of learning systems were introduced: supervised and reinforcement 

systems. Supervised systems require an environment which offers direct and fre-

quent reinforcement. In effect, the environment has to know how to solve the prob-

lem. Reinforcement systems do not require an "intelligent" environment, needing 

only a rating of their performance rather than explicit solutions. 

Chapter 2 surveyed supervised and reinforcement learning systems, and esta-

blished that supervised systems, while capable of memorising <situation,action> 

pairs and performing generalisation, cannot solve reinforcement problems. Chapter 2 

argued that reinforcement learning systems must overcome the problems of credit as-

signment and solution generation; and showed how each of the reinforcement sys-

tems covered did so. 

Chapter 3 discussed SPS, a supervised system which is a model of the cerebel-

lum. Its properties and its realisation with neuron-like components was discussed. 

Chapter 4 presented ESPS, an extension of SPS which can solve reinforcement prob-

lems. That is, it can generate new solutions and perform credit assignment. The abil-

ity to generate solutions was added by making reading non-deterministic. Credit as-

signment was added by introducing the idea of expectation and by extending the no-

tion of feedback to include the expectations of succeeding steps. Physiological 
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justification for these changes was presented. Non-deterministic reading was justified 

by assuming that neurons in the cerebellum are imperfect (they were assumed to 

work perfectly in SPS). The extended notion of feedback required redefining the role 

of climbing fibres, and by postulating that the expectations generated during reading 

could be broadcast by interneurons, perhaps by a path that left the cerebellum and re-

turned via the climbing fibres. 

Chapter 5 presented the results of experimentation with ESPS. ESPS was tested 

on two experiments, one designed to test its ability to generate new solutions and do 

structural credit assignment (the single-step experiment), the other designed to test its 

ability to do temporal credit assignment (the multi-step experiment). ESPS solve the 

single-step problem, but did not solve the multi-step problem. In discussing its per-

formance on the single-step problem, the concepts of correct and incorrect decisions 

were introduced. These concepts were used to explain why an increased number of 

words per address were required as m (the size of the target word) increased. They 

were also used in explaining ESPS's failure to solve the multi-step problem. It was 

postulated that ESPS could solve the multi-step problem if the number of words per 

address were increased to approximately 250. 

In addition, ESPS was tested on two f functions (binomial and linear), and was 

found to be sensitive to the particular f function used. It could solve problems using 

the binomial f function, but not with the linear function. ESPS was also tested on an 

experiment similar to one performed with the Associative Search Network (Barto, 

Sutton, and Brouwer, 1981). Its performance was found to be comparable to ASN's. 

6.2. Conclusions 

Solving reinforcement problems is important, and difficult. Important, because 

it breaks the reliance on an environment which is "smarter" than the learning system. 
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Difficult, because it requires translating a "low quality" feedback signal which only 

indirectly specifies correct behaviour into a set of rules producing the correct 

behaviour. 

A reinforcement learning system must be able to correctly assign credit and gen-

erate new solutions. Because reinforcement is infrequent, each step in a solution is 

not rated. Therefore, the reinforcement learning system needs a scheme which can 

correctly assign ratings, or credit, to each step of the problem. Because the reinforce-

ment is indirect, providing only a rating of the overall behaviour of the system, it can-

not be used directly to correct the solutions generated by the learning system. The 

learning system must be able to generate new solutions and judge the effects of those 

solutions. 

ESPS is interesting not only because it can solve a reinforcement learning prob-

lem, but also because it is based on a model of the cerebellum, SPS. Because ESPS 

is based on a model of the cerebellum, and because the changes made to SPS were 

physiologically plausible, it suggests that the cerebellum may be capable of solving 

reinforcement learning problems. 

The conclusions that can be drawn frQm this thesis are: 

(1) The credit assignment problem has structural and temporal forms. When a 

solution is produced as the combined results of several portions of a system, the 

credit, or rating, given to the solution must be properly assigned to each portion. 

This is a structural credit assignment problem. When a solution is composed of 

several steps, the credit given to the solution must be properly assigned to each 

step. This is a temporal credit assignment problem. 

(2) It is possible for ESPS to solve a reinforcement learning problem. Its success in 

the single-step problem shows that ESPS can solve the structural credit assign-
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ment problem, and its performance was comparable to that of ASN (Barto, Sut-

ton, and Brouwer, 1981). It did not succeed in solving the multi-step problem, 

which is a problem of temporal credit assignment, but there is evidence to sug-

gest that this failure is due to storing too few words at each actual location, rath-

er than a some qualitative shortcoming. 

(3) The ability of ESPS to solve a problem is dependent on the particular ffunction 

used. The experimental results showed that, while able to solve the single-step 

problem using the binomial f function, fB, ESPS was unable to solve the prob-

lem under the same conditions using the linear f function, fL. The results are 

not conclusive, however, and it would be premature to state that ESPS could 

never solve the single-step problem using fL. We can conclude that the perfor-

mance of ESPS is sensitive to the particular function used. 

(4) The ability of ESPS to solve a problem is dependent on the number of words 

stored per address. The experimental results showed that a certain minimum 

number of words per address is required before ESPS can converge on the 

correct result in the single-step problem. Fuithermore, the results of the multi-

step tests suggest that ESPS could solve the multi-step test if the number of 

words per address were increased to a value of approximately 250. Unfor-

tunately, the current implementation makes testing that hypothesis impractical. 

6.3. Future Work 

Future work includes a reimplementation of ESPS using bit sums at actual loca-

tions instead of lists of words. With this reimplementation, it would be possible to 

test the hypothesis that the multi-step problem could be solved by having the 

equivalent of 250 words per address. 
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At the present, ESPS can only solve a unimodal, single-step -reinforcement 

learning problem. To cope with infrequent reinforcement it must be able to solve the 

multi-step problem. Furthermore, both the single- and multi-step problems are uni-

modal. Dealing with multimodal problems is significant, as can be seen by the 

amount of effort devoted to solving such problems in supervised systems. ESPS's 

use of a probabilistic function to compute output means theoretically that any local 

minimum can be escaped (unless the probabilities are 1 or 0). However, the time to 

escape these minima and find the global minimum may be impractically large. 

At the moment, questions regarding the rate of convergence can only be 

answered through experimentation. Developing a mathematical model of ESPS 

would help in answering this question, as well as others concerning its ability to solve 

multimodal problems, and the effects of various f functions. 

The tests devised so far do not test many of the capabilities of ESPS inherited 

from SPS. SPS has the ability to generalise, producing actions for situations which 

have not been previously seen. The actions produced are a kind of average of simi-

lar, previously seen, situations. This is an important capability in problem domains 

where performing similar actions in similar situations is a reasonable strategy. Nei-

ther the single- and multi-step problem test this capability. 

Finally, for ESPS to be applied to real-world problems, values from the world 

must be translated into the n-bit words used by ESPS. Real-world values are often 

real-value quantities, such as joint positions and velocities, or perhaps vectors of 

reals, such as an image bitmap. Each value will have a measure of similarity defined 

for it. The translation process is difficult because it must maintain the similarities 

that existed, in spite of these values being converted into n-bit vectors in which Ham-

ming distance is the measure of similarity. Some preliminary work has been done in 
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this area (Schack, 1986). 
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