
THE UNIVERSITY OF CALGARY

Reinforcement Learning in Neural Nets

by

Brian Schack

A THESIS

SUBMIYFED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA
OCTOBER, 1988

© Brian Schack 1988

1+I National Library Bibliotheque nationale
of Canada du Canada

Canadian Theses Service Service des theses canadiennes

Ottawa, Canada
K1 0N4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in any
form or format, making this thesis available to in-
terested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor substan-
tial extracts from it may be printed or otherwise
reproduced without his/her permission.

L'auteur a accordé une licence irrevocable et
non exclusive permettant a la Bibliothèque na-
tionale du Canada de reproduire, prêter, dis-
tribuer ou vendre des copies de sa these de
quelque manière et sous quelque forme que ce
soit pour mettre des exemplaires de cette these
a la disposition des personnes intêressées.

L'auteur conserve la propriété du droit d'auteur
qui protege sa these. Ni la these ni des extraits
substantiels de celle-ci ne doivent être imprimés
ou autrement reproduits sans son autorisation.

ISBN 0-315-50381-5

'I,,

Canacta

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of

Graduate Studies for acceptance, a thesis entitled, "Reinforcement Learning in Neur-

al Nets" submitted by Brian Schack in partial fulfillment of the requirements for the

degree of Master of Science.

October 24, 1988

/

S. B. Hyne,' Dean
Faculty of Graduate Studies

rvisor,
Dr. Brian Unger
Department of C1omput'r Science

ii

Dr. Brian Gaines
Department of Computer Science

Dr. Bruce MacDonald
Department of Computer Science

Dr. Jçfy Ells
Depatment of Psychology

Abstract

This thesis describes a learning system called Extended Self-Propagating Search

(ESPS). ESPS is an extension of Self-Propagating Search (SPS), a model of the

cerebellum. The extensions enable ESPS to solve reinforcement learning problems, a

class of problems unsolvable by SPS. Reinforcement learning problems are charac-

terised by an environment that rates the actions of the learning system through a rein-

forcement signal. The best solution is the one which receives maximum reinforce-

ment. Solving reinforcement learning problems requires being able to internally gen-

erate new solutions, and to determine which portions of a solution are responsible for

the reinforcement received. These abilities were added by making data retrieval

non-deterministic, and by introducing expectation, which expresses ESPS's expecta-

tion of future reinforcement. A mechanism for associating expectations with indivi-

dual steps in a solution and for manipulating those expectations was developed. The

changes made to SPS were, like SPS itself, physiologically plausible.

ESPS has been implemented on a network of processors running in parallel,

communicating via the Jade interprocess communications facility. ESPS was tested

on two problems - the single-step problem and the multi-step problem, which differ in

the frequency of reinforcment. It has successfully solved the single-step problem. Its

results are compared to a similar test performed on the Associative Search Network

of Barto, Sutton, and Brouwer. ESPS has not solved the multi-step problem. The

reasons for this failure are discussed, as is a possible remedy.

His

Acknowledgements

I could not have completed this thesis without the guiding hand (and foot, some-

times) of Bruce MacDonald. He displayed unflagging enthusiasm in spite of my poor

initial attempts, promptly returning draft chapters heavily commented with his dis-

tinctive "handwriting". And while we may have at times disagreed on his com-

ments, it was his willingness to take the time to read my work, in spite of being under

no obligation to do so, which was most important. For this I am truly grateful.

I would like to thank my supervisor, Brian Unger, for his patience and helpful

comments.

I would like to thank the office and support staff for their help, especially in

these last hectic months where everything that could go wrong did go wrong. Larry

Mellon, Dave Mason, and Earl Locken should be thanked for their rapid responses to

my numerous letters about Jipc and ditroff. Bev Frangos was especially helpful in

maintaining a stable working environment for me while the rest of the department

was being shifted hither and yon. I shall never forget her offer of help during one

deep dark day in August when tbl was living up to its horrid reputation.

Anja Haman, Rosanna Heise, and Konrad Slind are to be commended for their

bravery in reading early drafts of my thesis.

Most importantly, I would like to thank my friends and family. Had it not been

for their company and support, it would not have been possible to survive these last

four years, let alone enjoy them as I have. First, to my friends, thanks for the too

many games of frisbee, the too many hikes, the too many conversations having noth-

ing to do with computer science, and in general the too many fun ways of not doing a

iv

thesis. Charles Herr and Anja Haman should be singled out as particularly good peo-

ple with whom not to work on a thesis. I just hope I can waste as much of your time,

and in such an enjoyable manner, as you did of mine. I'll have some big shoes to fill.

My family has given me tremendous support over the last four years. They

were always there when I needed them. Thank you all.

V

Table of Contents

Approval Page

Abstract

Acknowledgements iv

Table of Contents vi

Chapter 1. Introduction 1

1.1. Learning Systems 1

1.2. Supervised Systems 3

1.3. Reinforcement Systems 7

1.4. The Experiments 10

1.5. Thesis Overview 10

Chapter 2. Supervised and Reinforcement Learning Systems 12

2.1. Supervised Systems 12

2.1.1. Linear Associative Networks 13

2.1.2. Perceptrons 15

2.1.3. Hopfield Nets 18

vi

2.1.4. Cerebellar Model Articulation Controller 20

2.1.5. srs 23

2.1.6. Summary 25

2.2. Reinforcement Learning Systems 27

2.2.1. Credit Assignment 29

2.2.2. Solution Generation 29

2.2.3. Holland's Classifier System 30

2.2.4. Simulated Annealing 33

2.2.5. Stochastic Learning Automata 35

2.2.6. Adaptive Threshold Systems 38

2.2.7. Associative Search Network 40

2.2.8. Summary 43

Chapter 3. Self-Propagating Search 45

3.1. Description of SPS 45

3.1.1. Writing 47

3.1.2. Reading 48

3.2. Properties of SPS 50

3.2.1. Reading at a Similar Address 50

3.2.2. Rehearsal 52

3.2.3. Recall Certainty 52

3.2.4. The Best Match Problem 53

3.3. Realisation of SPS with Neuron-like Components 54

3.3.1. Address Decoder Neurons 55

Vii

3.3.2. Storage Locations 57

3.3.3. Output 58

3.4. SPS as a Cerebellar Model 59

3.5. Conclusions 60

Chapter 4. Extended Self-Propagating Search 61

4.1. Operating Procedure 61

4.1.1. Coping With Large Situation Spaces 62

4.2. Changes to SPS 63

4.2.1. Non-Deterministic Reading 65

4.2.2. Expectations 68

4.2.2.1. Calculating Expectations 69

4.2.2.2. Feedback Scheme 70

4.3. Physiological Justification 75

4.3.1. Non-Deterministic Reading 75

4.3.2. Global Access to Environmental Feedback 77

4.3.3. Global Access to Expectations 77

Chapter 5. Experimental Results 79

5.1. Structure of ESPS Implementation 79

5.1.1. Structure of Distributed Implementation 81

5,1.2. Jipc Implementation 82

5.1.3. Implementation Details 85

5.2. Experiments 87

viii

5.2. 1. The Single-Step Experiment 87

5.2.1.1. Single-Step Experiment Results 90

5.2.1.2. Discussion of Single-Step Experiment 92

5.2.1.3. Comparison to ASN 95

5.2.1.4. Performance with Linear Rule 98

5.2.2. The Multi-Step Experiment 99

5.3. Conclusions 102

Chapter 6. Discussion 106

6.1. Summary 106

6.2. Conclusions 107

6.3. Future Work 109

ix

CHAPTER 1

Introduction

This thesis outlines a learning system developed by Pentti Kanerva (1984) that

models the human cerebellum, extends the system's learning power, and applies the

extended model to problems unlearnable by the original model. The original model

is Kanerva's (1984) Self-Propagating Search (SPS), and the extension is called Ex-

tended Self-Propagating Search (ESPS). Extending SPS involved devising a scheme

for internally generating solutions, a scheme for evaluating the effects of a solution,

and a scheme for applying the results of the evaluation to generate a new solution.

The particular schemes devised were designed to maintain the physiological plausi-

bility of ESPS as a cerebellar model.

1.1. Learning Systems

SPS and ESPS are learning systems. The aim of a learning system is to learn to

solve a certain task (i.e., to achieve a certain goal). Example tasks include games

such as checkers, chess, and blackjack (the aim being to win), as well as controlling

physical systems like robot arms (the aim being, for example, to move the end effec-

tor to a certain point in space). An example of a physical learning problem is the

pole-cart problem (Barto, Sutton, and Anderson, 1983). In the pole-cart problem, a

learning system is presented with a two-dimensional cart which can roll between

fixed barriers. Motion is produced by applying forces to either end of the cart. On

the cart is a pole, hinged at the bottom. The task is to keep the pole balanced by

moving the cart (figure 1.1). The learning system is given information at each step

on the current angle and angular velocity of the pole, and the position and velocity of

1

2

the cart. These together constitute the current situation.

Tasks such as the pole-cart problem are complicated enough that they require

multi-step solutions. That is, the physical system will start in a certain situation, and

on the basis of the current situation, the learning system chooses an action. The ac-

tion is performed, which results in a new situation, and the learning system* chooses a

new action to perform. This process is repeated until a goal is reached, or in the case

of the pole-cart problem, until the pole falls over or the cart touches the barriers.

Therefore, the aim of a learning system is to learn a set of <situation,action> pairs

that together will solve the task. This paradigm views learning systems as simple

production systems, and is the paradigm used by SPS, ESPS, and all the learning sys-

tems reviewed in chapter 2, with the exception of Holland's classifier system (1101-

)0
Figure 1.1. The Pole-Cart Problem.

3

land, 1986) and simulated annealing (Kirkpatrick, Gelatt, and Vecchi, 1983).

Implicit in this formulation of the problem is the assumption that all the infor-

mation necessary to differentiate two situations must be in situation. This is because

the choice of an action is made exclusively on the basis of the current situation. No

other information comes into play.

SPS belongs to a class of learning systems called supervised systems, while

ESPS belongs to a class of learning systems called reinforcement systems (Barto, Sut-

ton, and Anderson, 1983). Both supervised and reinforcement systems learn

<situation,action> pairs; they differ in how much help they require to learn those

pairs, as will be explained in the next two sections.

1.2. Supervised Systems

Supervised systems are found mainly in the field of pattern recognition

(Kohonen, 1984, Anderson, 1983, Hopfield, 1982, Albus, 1975, Kanerva, 1984). Pat-

tern recognition problems are characterised by an environment which offers "high

quality" feedback: when the learning system produces an incorrect result, the en-

vironment gives an immediate and clear indication of the error and how to correct it.

Figure 1.2 illustrates the inputs to and outputs from a supervised system. It

takes as input the current situation, and produces as output an action. If the action is

incorrect, the environment supplies the correct action (or the difference between the

system's action and the correct action). The line marked "r/w" is a read/write signal.

In normal operation, it is set to "r". Upon presentation of a situation, the system will

produce an action. When the read/write signal is set to "w", the system will pair the

current situation with the action supplied by the environment.

4

situation

nw

action
(write)

Supervised
System

Figure 1.2. Supervised System.

Thus the basic function of a supervised system is to store <situation, action>

pairs. After storage of a <situation, action> pair, presentation of situation will pro-

duce action.

•As will be seen later, only a subset of pairs need be given to many supervised

systems, as they can successfully interpolate the rest. Nevertheless, the environment

must supply some correct <situation,action> pairs. The learning system is not capa-

ble of deriving those pairs independently. So essentially the problem must already

have been solved, and pairs needed to solve the problem must be supplied to the

learning system by the environment. In other words, it requires an environment

which is "smarter" than the learning system is.

It is not necessary to talk of supervised systems as storing <situation,action>

pairs - there are several alternative and equivalent ways of viewing this process, each

appropriate to some particular task. One, which was alluded to in the first paragraph

of this section, is to view a supervised system as a pattern recognition sysiem. In-

5

stead of <situation,action> pairs, we have <pattern,class> pairs (i.e., a pattern and its

classification). After storage of a <pattern,class> pair, presentation of pattern will

produce class (i.e., pattern will be classified). A supervised system can also be

viewed as a random access memory. The situation is an address into the memory,

and the action is the data stored at that address. Thus, instead of <situation,action>

pairs, we have <address,data> pairs. This view is particularly well illustrated by

figure 1.2. Finally, a supervised system can also be viewed as learning a function.

The situation then becomes the input to the function, and the action consists of the

output of the function. Thus we have <input,output> pairs.

That a supervised system can be viewed as a random access memory suggests

that constructing a supervised system is trivial. However, a discussion of the further

demands usually made on a supervised system will dispel that notion.

• First, supervised systems are often expected to recognise novel patterns, classi-

fying them on the basis of similar, stored patterns. That is, assume that the super-

vised system has learned a set of pairs, (<P0, CO>,. . . , <p5j,, , Csjm>,. .. , < p,, ca >),

and is presented with a novel pattern, p. 'fPSI,fl is the stored pattern most similar top,

then the supervised system should return c.

Classifying novel patterns in this way is equivalent to solving the best match

problem (Minsky and Papert, 1969, Kanerva, 1984). The conclusion of Minsky and

Papert on the ability of a regular random-access memory to solve the best match

problem is pessimistic. They concluded that a memory of size bc2bP is needed, where

b is the number of bits needed to represent a pattern and bc is the number of bits

needed to represent a class. That is, 2" locations are needed (one for each possible

pattern), and at each location bc bits are needed to store the 'class designation. The

memory is primed such that location p contains Csjm, where pj .. is the most similar

6

pattern top. When this is the case, classification can be done by reading at p.

Even disregarding the time needed to prime memory, consideration of typical

patterns will quickly reveal this scheme as impractical. Consider, for example, when

images are used as patterns. Images are typically on the order of hundreds of

thousands of bits in size. Even when the image size is l0xl0, with one bit per pixel,

the pattern size would be 100 bits, and 2100 (10 °) memory locations would be re-

quired.

Thus, solving the best match problem poses many difficulties. However, once a

supervised system can solve the best match problem, many useful abilities naturally

emerge. We have, seen already that classifying novel situations becomes possible

when a system can solve the best match problem. It is also possible to deal with

noisy input patterns. The system simply finds the stored pattern, pgj,, most similar to

the input pattern, and returns the class stored with that pattern, c. This pro-

cedure is unsuccessful when the input pattern, is sufficiently corrupted that its

best match, p,im, is different than the uncorrupted original pattern, Pgood. However,

when given no information on the corruption that has occurred, as is the case "here,

the learning system cannot be expected to recreate a badly corrupted pattern. The

best we can expect is for it to return its best guess as to the original pattern, and that

guess is based on similarity to stored patterns.

If we view the supervised system as storing ,situation, action> pairs, we can see

how it deals with novel situations. In a novel situation (a situation that has not been

stored), the system will return the action stored with the most similar recorded situa-

tion. For tasks with continuous domains (i.e., performing two similar actions in a si-

tuation will produce similarly good results), this is a useful property.

7

Because reinforcement learning systems often work in domains where these

abilities are important, supervised systems are often used as the basis for reinforce-

ment learning systems (e.g., see Widrow, Gupta, and Maitra, 1973). This is true of

ESPS as well, which uses SPS, a supervised system.

SPS, and other supervised systems, are presented and compared in chapter 2. A

complete treatment of SPS and its characteristics is given in chapter 3.

1.3. Reinforcement Systems

In contrast to supervised systems, reinforcement systems require only "low

quality" information from the environment. They derive the correct action for a

given situation on the basis of a feedback or reinforcement signal produced by the en-

vironment during execution (figure 1.3). The feedback signal provides a rating of the

quality of the solution produced by the learning system. Feedback comes infrequent-

ly, so that each step of a solution is not rated, and when it comes it only gives a gen-

situation

reinforcement

Reinforcement
System

Figure 1.3. Reinforcement Learning System.

8

eral indication of the overall behaviour of the system. It is not detailed enough to be

used directly to correct the solution. In other words, the feedback signal tells the sys-

tern how good its solution is, but not why. A task is correctly solved when reinforce-

ment is maximised. Figure 1.4 illustrates the process of feedback in a reinforcement

problem. In this figure, s—i situations are encountered and s—i actions produced be-

fore feedback from the environment is received. In this particular case, the task is not

finished, so the learning system continues to produce actions in response to situations.

The next episode of reinforcement may not arrive for many more steps.

The crucial aspect of reinforcement systems is that they can derive the correct

<situation,action> pairs on the basis of a signal that can be plausibly supplied by the

environment. There is no longer a need for an environment which is "smarter" than

the learning system. In other words, it is not necessary for some external entity to

have already solved the problem, with the learning system just memorising pairs sup-

plied from outside.

Returning to our example of the pole-cart problem, it can be formulated as a•

reinforcement problem by introducing a reinforcement signal which is 0 as long as

the arm has not tipped past a certain angle and the cart has not reached either end of

the, track. When either of these is out of range, the reinforcement signal becomes - 1.

Reinforcement

sit
act act2 act. i, sits act

sits+1

Figure 1.4. Operation of Reinforcement System.

9

Under this feedback scheme, the system devised by. Barto, Sutton, and Anderson

(1983) successfully solved the pole-cart problem.

This reinforcement signal is simple, and it is easy to see how this information

could be measured and supplied to the learning system. The behaviour implied by

this reinforcement signal, however, is complicated, and the difficulty lies in

transforming the simple reinforcement signal into the proper, complicated, behaviour.

In order to use the indirect and infrequent reinforcement supplied by the en-

vironment, two main problems must be solved (Holland, 1986):

(1) Generating new solutions. Because the environment does not directly supply

the learning system with correct steps in the solution, the learning system must

be able to generate new solutions on its own and test their effectiveness. New

solutions are generally based on old solutions, and the amount they are changed

is a function of the goodness of the old solution.

(2) Assigning credit. Because reinforcement is infrequent, not all steps in a solu-

tion will receive direct reinforcement from the environment. Furthermore, those

steps receiving direct reinforcement are receiving a rating of the effects of many

actions, and therefore cannot interpret the reinforcement as a rating of only their

behaviour. The system must be able to correctly evaluate the effects of a step

on the overall solution.

The particular methods used by previous reinforcement learning systems to gen-

erate solutions and assign credit will be discussed in chapter 2. ESPS will be covered

in chapter 4.

10

1.4. The Experiments

Two problems were presented to ESPS that were unsolvable by SPS. In the

first, called the single-step problem, ESPS's task is to guess an n-bit number, the tar-

get, where the feedback is the similarity between its guess and the target. ESPS has

successfully solved the single-step problem for n up to 128. ESPS has also been test-

ed on an experiment where there are two target words. That is, there are two pairs,

<identfier1, target 1> and <ident(fier2, target 2>, where the goal is to produce target1

when identfier1 is presented. The value of n was 8 for this experiment. This is simi-

lar to an experiment performed in Bartc, Sutton and Brouwer (1981), except that n

was 9 for their experiment. The performance of ESPS was comparable to that of Bar-

to, Sutton, and Brouwer's system.

The second problem, called the multi-step problem, is an extension of the first.

In this experiment, several target words are presented, and ESPS guesses each in turn.

Feedback is a single value that comes at the end of the series of guesses, and is calcu-

lated from the similarity between each guess and its corresponding target. This ex-

periment was designed to test ESPS's ability to solve problems where reinforcement

is not available after each step. ESPS has not been able to solve the multi-step prob-

lem. Discussion of this is in chapter 5.

1.5. Thesis Overview

Chapter 2 is a survey of supervised and reinforcement learning systems.

Chapter 3 describes SPS in detail. It covers the architecture of SPS and the method

by which it stores and retrieves data. Its unusual architecture, and its storage and re-

trieval methods have many implications for its behaviour, which are discussed at

length. We will see that SPS is a supervised system, capable of memorisation and of

solving a simple version of the best match problem. It is not capable of solving rein-

11

forcement problems. We will also see how SPS can be implemented by simple

neuron-like elements. The chapter concludes with a discussion of the cerebellum,

that part of the brain modelled by SPS.

Chapter 4 describes ESPS. This chapter describes the changes made to SPS, es-

tablishes that these changes give ESPS the power of a reinforcement learning system,

and provides a physiological justification for the changes.

Chapter 5 describes the implementation of ESPS and the results of experiments

performed with ESPS. Two experiments were run, the first being a single-step learn-

ing problem, the second a multi-step learning problem. The purpose of the first ex-

periment is to establish that ESPS can correctly generate and test new solutions, dis-

covering an optimal solution on the basis of indirect feedback. The second experi-

ment extends the problem to a multi-step problem, testing ESPS 's ability to assign

credit correctly to steps which receive no direct reinforcement.

Chapter 6 summarises the thesis, gives conclusions, and discusses future work.

CHAPTER 2

Supervised and Reinforcement Learning Systems

This chapter reviews supervised and reinforcement learning systems and

discusses their capabilities and limitations. It will be shown that supervised systems

cannot solve reinforcement problems. The problems of solution generation and credit

assignment are then discussed. The chapter is concluded with a review of reinforce-

ment learning systems, discussing how each approaches the problems of solution

generation and credit assignment.

2.1. Supervised Systems

This section presents short summaries of several supervised systems, all

neuron-based. First discussed are two early classic models - linear associatiye net-

works .(Anderson, 1983, Jordon, 1986), and the perceptron (Rosenblatt, 1962, Cohen

and Feigenbaum, 1982). These represent the first attempts at neuron-based models,

and were the basis for much of the work done in the 1960's on such systems. Interest,

waned when Minsky and Papert (1969) proved that such systems were able only to

solve a limited class of problems, and the there were many interesting problems out-

side of this class. A simple example of such a problem is the XOR problem, dis-

cussed in section 2.1.2.

Discussed next is the Hopfield net (Hopfield, 1982), a relatively recent model

which uses a quite different approach from perceptron-like models. This model has

formed the basis for a new class of models, such as Boltzmann machines (Ackley,

Hinton, and Sejnowski, 1985), which are more powerful than percepirons.

12

13

This section closes with a discussion of two closely related models of the cere-

bellum - the Cerebellar Model Articulation Controller (Albus, 1975), and SPS (Kan-

erva, 1984).

It will be shown that, in addition to being able to memorise <input,output>

pairs, each of these systems can generalise. That is, if <input,output> has been

stored, then presentation of input', a word similar to input, will produce output, or

something close to it, even if input' has not been seen before.

Of particular interest in the discussion will be the ability of the various networks

to associate, arbitrary outputs with similar inputs. It will be seen that CMAC and

SPS, due to a recoding of the input, have an increased ability to associate arbitrary

outputs with similar inputs. In other words, they have an increased ability to discrim-

inate among similar inputs.

2.1.1. Linear Associative Networks

A linear associative network consists of a number of components (hereafter

called neurons), that together learn <input,output> pairs (Anderson, 1983, Jordon,

1986). Inputs and outputs are vectors of reals. The input vector, x, is distributed to

each neuron. Each neuron calculates one element of the output vector, y. There are

no connections between neurons. A linear associative network is shown in figure 2..

Each neuron operates in the same way, so the rest of this discussion will focus

on a single neuron. A neuron with three inputs is shown in figure 2.2.

Each neuron has a vector of weights, w, one weight for each element in the in-

put vector. Output y of the neuron is:

Y = zwixi= wx

14

X2

xn

Figure 2.1. Linear Associative Network.

Weights are learned by supplying an input along with its associated output, and

applying a weight update rule. There are several rules for updating weights. Shown

here will be the Widrow/Hoff rule (Rumelhart, Hinton, and Williams, 1986). The

Widrow/Hoff rule is

LWi - 1(yD- WX)X

That is, the correction applied is proportional to the difference between the desired

output (YD) and the actual output (wx). For this reason it is also called the delta rule.

This rule will allow a network to learn a set of pairs

{<xo,yo>,<xi,yi>,. . . <xn ,Yn>) if all x are linearly independent. (A set of vec-

tors is linearly independent if none of its elements is a linear combination of the oth-

ers.)

15

X3

Figure 2.2. Linear Associative Network Neuron.

Linear associative networks can generalise. If <input,outpu:> has been stored,

presentation of input' will produce output', something similar to output. The simi-

larity between output and output' depends on the similarity between input and input'

and the values of the weights. If input and input' are linearly separable, output and

output' can be arbitrarily different. As the difference between input and input' ap-

proaches 0, so too does the difference between output and output'.

2.1.2. Perceptrons

Perceptions (Rosenblatt, 1962, Cohen and Feigenbaum, 1982), are much like

linear associative networks, consisting of a number of neurons, each of which calcu-

lates some function of an input vector. Once again, each neuron operates in the same

way, so the discussion will focus on the behaviour of a single neuron. A neuron with

three inputs is shown in figure 2.3. Perceptions differ in that the inputs can only be 0

or 1, and the output is a thresholded linear function of input. That is, output is:

X3

.16

Figure 2.3. Perceptron Neuron.

11 ifwx≥T
= otherwise

where T is a threshold, usually 0. Perceptrons are usually thought of as pattern

classifiers, dividing input into two classes. Members of one class must be linearly in-

dependent of members of the other class for the perceptron to be able to classify them

correctly.

Weights are updated using the Widrow/Hoff rule. That is,

Awi = 1(T—wx)x

Note that the correction is made with respect,to the unthresholded sum (wx), not to

the actual output of the perceptron.

There is a theorem, called the perceptron convergence theorem (Rosenblatt,

1962), that establishes that if a set of weights exist which can classify the input set

(i.e., the inputs are linearly, independent), then the perceptron will converge to the

correct set of weights using this learning rule.

17

Unfortunately, for many problems the input set is not linearly independent. For

example, the XOR function cannot be performed by a perceptron as described above.

It can be done with a two layer perceptron (see figure 2.4), but the Widrow/Eloff rule

only works on single layer perceptrons.

With a two layer perceptron, the middle layer is not directly affected by either

the input or the output (the perceptron in figure 2.4 is a hybrid, with two inputs to the

middle layer coming directly from the input, and one coming from another neuron).

Thus it is difficult to decide how middle layer weights should be changed. This is a

manifestation of the credit assignment problem. This problem has been tackled by

Boltzmann machines (Ackley, Hinton, and Sejnowski, 1985), and the generalised del-

ta rule (Rumelhart, Hinton, and Williams, 1986). These systems will be discussed

briefly in the section on reinforcement learning systems.

Generalisation in perceptrons differs from linear associative networks, due to

the use of a threshold in the output rule. It is possible that output will be pioduced

Figure 2.4. Two Layer Perceptron Solution of XOR Problem.

18

given input' (unlike a linear associative network, which would produce output', dif-

ferent than output). However, once the sum produced by input' crosses the thres-

hold, input' will not produce output. The change in output as input' becomes more

different from input is a sudden one (unlike a linear associative network, where the

change is gradual).

2.1.3. Hopfield Nets

A Hopfield net consists of a number of neurons with arbitrary connections

between neurons (figure 2.5). Each connection has associated with it a weight, w,

and each neuron has a threshold, T. Each neuron I can be in one of two states, x1 =0

or xi = 1. The state of the entire net is given by the vector x of individual neuron

Figure 2.5. Hopfield Net.

'19

states. Hopfield nets differ from the other supervised systems presented hete in that

there are no explicit input and output neurons. Some arbitrary subset of the neurons

are designated as input neurons, and all the rest are designated as output neurons.

Output is generated for a given input by "clamping" the input neurons to their

proper values and allowing the rest of the net to run freely, with unclamped neurons

(i.e., output neurons) updating their states asynchronously, in any order, according to

the following rule:

Xi =

1 ifw11x>T1
joi

0 otherwise

where Ti is the threshold of neuron i, usually assumed to be 0. Thus, neuron i sets it-

self to 1 if its input exceeds its threshold, otherwise it sets itself to 0.

Th6 state of the net and the weights between neurons determine a measure of the

state of the system called energy. Energy, E, is calculated as follows:

E =
i:Aj

where wij is the weight between from neuron j -to neuron i. Connections are assumed

to be symmetric, so that wy = w1. The update rule performs a gradient descent in en-

ergy space. Each update monotonically decreases E. The descent stops when a local

energy minimum is reached. These local energy minima are attractors that represent

outputs. When the net is started near one of these energy "wells", the update rule

will cause the net to descend, and remain, in that well. The state of the output neu-

rons when that well is reached is the output.

Energy minima are created by adjusting the weights, T, between neurons. To

store a set of states, x1,x2,. . . , x,. each weight is set using the following formula:

20

wj =

with wii = 0. A given state, xS, represents the desired state of the entire network -

both the state of the input neurons and of the output neurons. This rule increases the

weights between two neurons i and j for a given state xS if 4 = x, decreasing it when

$ # x. Thus, if i and j are usually on together, wij will be positive, and so i being on

will increase the chances that j will be on. Similarly, if i and j usually have different

values, wij will be negative, and so i being on will increase the chances that j will be

off (and vice versa).

If < input,output> has been stored and the net is presented with input ', output

can be produced if input ' is close enough to input. If not, the net will converge on

another well, and the similarity between output' and output depends on the similari-

ties between the two wells.

2.1.4. Cerebellar Model Articulation Controller

The Cerebellar Model Articulation Controller (Albus, 1971, Albus, 1975), or

CMAC for short, was developed as a model of the cerebellum. Input to CMAC is a

vector of n R -ary values, x. To facilitate the discussion of CMAC and its comparison

to other systems, we assume that R is 2. Output is a vector of m reals, y.

CMAC consists of a network of neurons, each receiving the same input, with

each neuron computing one component of the output. In this sense it resembles

linear associative networks and single layer networks of perceptrons. It differs in that

a recoding stage is placed between the input pattern and the neurons. Also, the neu-

rons in CMAC are hybrids of linear associative neurons and perceptrons in that inputs

to CMAC neurons are binary values, as with perceptrons, while the output of a neu-

ron is an unthresholded weighted sum of its inputs, as with linear associative neurons.

CMAC is illustrated in figure 2.6. Since each neuron operates in the same way, the

21

Figure 2.6. CMAC.

following discussion will deal with the properties of a single neuron. One neuron is

shown in figure 2.7.

The recoding stage increases the ability of the network to produce arbitrary

classifications. For example, consider the extreme case, where an n to 2' recoder is

placed between the input and the weights. For each input pattern, x, one line leading

to a weight (4) becomes 1, all others remain at 0. By setting that one weight (wk)

appropriately, the desired response can be produced. Each possible input pattern has

its own weight which is adjusted independently of all others. Thus, any arbitrary

classification is possible. This includes the XOR problem.

It is useful to note that a standard random access memory (RAM) in a computer

has an n to 2n recoder. An n bit address will select one of the memory locations,

22

Figure 2.7. One Neuron of CMAC.

retrieving the data stored in the selected location when reading, and storing data at

the selected location when writing. The address of RAM is equivalent to the input

pattern, x, of CMAC; the data stored in RAM or retrieved from RAM is equivalent to

the output, y, of CMAC. Thus, in RAM we have <address,data> pairs, as opposed to

<input,output> pairs. This comparison was alluded to in section 1.2.

There are several difficulties with using n to 2' decoder. First, for an input pat-

tern of size n, 2' weights are needed. For any reasonable number of inputs, the

number of weights needed is impractically large. Second, no generalisation can take

place between input patterns. Because the response for each input pattern is deter-

mined independently, producing the correct classification for one input does not mean

that the correct classification will be produced for a similar novel input.

23

CMAC's approach is to use an n to lOOn recoder. Also, instead of mapping

onto one weight, each input pattern x is mapped onto a subset of approximately 1%

of the lOOn weights. The mapping is performed such that similar input patterns are

mapped onto a similar subset of weights, and dissimilar input patterns are mapped

onto disjoint subsets of weights. Output from CMAC is thus produced by mapping

the input onto a subset of the lOOn weights and summing those weights. That is, out-

put is:

lOOn

y=
i=l

where 4 = 1 if x is mapped onto 4, and 0 otherwise.

The weight update rule is similar to the Widrow/Hoff rule. It is:

where YD is the desired output, y is the actual output of CMAC, and C is the number

of weights which contributed to the answer. The total correction, rKyD—y), is thus

distributed equally among contributing weights.

Generalisation in CMAC is possible because the recoding step ensures that simi-

lar inputs will be given similar encodings, thus producing similar outputs. If input

and input' are sufficiently different, the encodings produced will be completely dif-

ferent, and so the results produced by the system can be arbitrarily different. As input

and input' become more similar, the encodings will also become more similar, and so

output will become more similar to output'. At some point, output will equal out-

put'. This does not necessarily occur when input equals input'.

2.1.5. SPS

Note: the description of SPS in this section differs slightly from that given in

chapter 3, the difference relating to the way data is stored in memory locations. The

24

variation described here was mentioned briefly in Kanerva (1984), and analysed by

Chou (1987) and Keeler (1987). It is presented because it more closely resembles the

other systems described in. this chapter, thus facilitating its comparison to those sys-

tems.

SPS (Kanerva, 1984) is quite similar in structure to CMAC. Inputs are n bit

words, outputs m bit words. Like CMAC, it performs a recoding of the input, from

an n bit input onto a subset of c locations, n < c < 2n. Each neuron receives the

same input, and calculates one bit of the output. For this reason discussion will cen-

tre on the behaviour of a single neuron. Such a neuron is illustrated in figure 2.8.

Much like CMAC, the c locations of SPS are a subset of the possible 21 loca-

tions determined by the input. These c locations are called actual locations. Each

2

n — c
Recoder

4

X2

2.8. One Neuron of SPS.

25

actual location has associated with it an n bit identifier, chosen randomly, called its

address.

When reading, all real locations whose address differs from the input by less

than r bits (i.e., the Hamming distance between the two is less than r) respond. The

weights of all responding addresses are added together to form a sum. This data is

then formed into the archetype, which constitutes the output of SPS. The archetype

is set to 0 if the bit sum is less than 1/2, where 1 is the number of responding ad-

dresses, and set to 1 otherwise. Mathematically,

1 ifw1x ≥ 1/2

0 otherwise

where% = 1 if x maps onto 4, and otherwise.

When writing, all real locations within r bits of the input take part in writing.

For responding address k, Wk is incremented by 1 if the desired output is 1, otherwise

it is decremented. That is,

11 ifYD -1

AWk =1-i otherwise
Unlike CMAC, weights are updated by a fixed amount (1 or —1), not an amount pro-

portional to the difference between the desired and actual output.

The mechanism for generalisation in SPS is similar to CMAC. Generalisation

occurs because the recoding step ensures that similar inputs will be given similar en-

codings, thus producing similar outputs.

2.1.6. Summary

Supervised systems can memorise <input,output> pairs. Of particular interest

here is SPS. The recoding stage of SPS (and CMAC) increases its ability to memor-

26

ise arbitrary classifications, compared to other related systems. Like the other super-

vised systems reviewed, SPS has the ability to generalise. Finally, it is proposed as a

model of the cerebellum, which makes SPS interesting not only as a learning system,

but also as a system which can be used to study the brain.

As a supervised system, though, SPS is limited as to the problems it can solve.

It requires an environment which possesses as much knowledge about the task as SPS

is expected to learn. In other words, the environment must be able to solve the prob-

lem already. Reinforcement systems do not suffer from this limitation. They can

deal with an environment which does not possess (explicit) knowledge about the task

to be learned. All that is required is a rating of the solution produced by the learning

system. In many problems, such as the pole-cart problem, this rating is easily and

plausibly supplied.

From the standpoint of the human brain learning physical tasks, it seems that the

brain must be able to do reinforcement learning. First, learning of some sort takes

place because performance improves with practise. If no learning took place, perfor-

mance levels would remain constant. Second, the learning is reinforcement learning,

since the brain is only given general feedback on the quality of its performance. It is

not told by some external source which muscle movements were incorrect, and, more

importantly, what the correct movements are.

Therefore, we can conclude that the brain does reinforcement learning. This

does not necessarily imply that the cerebellum, that part of the brain modelled by

SPS, is The place where reinforcement learning takes place. Nevertheless, if a cere-

bellar model such as SPS could be made into a reinforcement learning system, and if

this could be done in a physiologically plausible way, this would suggest that the

cerebellum is capable of reinforcement learning.

27

Before describing ESPS, an extension of SPS which solves reinforcement learn-

ing problems, we first look at previous approaches to reinforcement learning.

2.2. Reinforcement Learning Systems

This section begins by discussing the problems of credit assignment and solu-

tion generation, two problems that a reinforcement learning system must overcome.

Several reinforcement learning systems and their approaches to these two problems

are then discussed. The systems discussed are: Holland's classifier system (Holland,

1986), simulated annealing (Kirkpatrick, Gelatt, and Vecchi, 1983), stochastic learn-

ing automata (Narendra and Thathachar, 1974), adaptive threshold systems (Widrow,

Gupta, and Maitra, 1973), and the associative search network (Barto, Sutton, and

Brouwer, 1981).

Before discussing these systems, a word should be mentioned about three im-

portant systems which will not be discussed in detail: Samuel's checker player

(Samuel, 1963, Cohen and Feigenbaum, 1982), Boltzmann machines (Ackley, Hin-

ton, and Sejnowsld, 1985), and the generalised delta rule (Rumelhart, Hinton, and

Williams, 1986).

Samuel's checker player is a classic early attempt at machine learning. The goal

was to develop a program that learned to play checkers based on playing experience.

Samuel had to deal with the problems of credit assignment and generating new solu-

tions. However, his approach included creating a " smart" environment which would

supply the checker player with good moves. The checker player would then adjust its

performance on the basis of the difference between its move and the supplied move.

The supplied moves came in the form of book moves (moves taken from a book

of play between two master checker players) or a "performance standard"- a move

generated by doing a deeper look-ahead search.

28

The key is that the environment supplies the checker player with "high quality"

information. Samuel's checker player cannot operate in the environment shown in

figure 1.3 and so it is not included in the survey of reinforcement learning systems.

The other two systems, Boltzmann machines and the generalised delta rule, are

two neuron-based systems which have been developed recently. These systems were

developed to address the problem of properly adjusting weights in multi-layer neural

networks.

Recall that the Widrow/Hoff rule could only find the proper weights in single

layer networks. This task was easily solved because each weight is directly deter-

mined by the desired input and output. In a two-layer network, this is not the case, as

there are weights not directly connected to the input or the output. The effectiveness

of a choice of values for these weights can be judged only by the effect they have on

the overall behaviour of the network. Thus this is an instance of the credit assign-

ment problem. Credit must be properly assigned to segments of a " solution", where

the solution is the set of weights in the network.

Both Boltzmann machines and the generalised delta rule (also called back pro-

pagation) have developed a weight update rule which can be successfully applied to

multi-layer networks. Both work to optimise an internally generated error signal

measuring the difference between their behaviour and the desired behaviour as given

by the environment. Like Samuel's checker player, however, they are not included in

the review of reinforcement learning systems because they cannot operate in the en-

vironment shown in figure 1.3. Both require explicit <situation,action> pairs, not a

simple reinforcement signal.

The following two sections define the problems of credit assignment and solu-

tion generation. This will be followed by a review of several reinforcement systems,

29

and concluded by a summary of their approaches to credit assignment and solution

generation.

2.2.1. Credit Assignment

The credit assignment problem appears in various guises. A classic example of

the problem is in the game of chess. When a move in chess leads directly to a win,

that move is good. This is less true of earlier moves. Did those moves contribute to

the winning situation at the end of the game, or was the game won in spite of those

earlier moves? This is a temporal form of the problem. Credit has to be assigned to

different steps over time.

The credit assignment problem also occurs in a structural form. If the results of

various components of a system are combined together to form a solution, failure or

success of that solution can depend on any or all of the components. Discovering

which components are important and which are not is a credit assignment problem.

Those components which play a large role in the solution should be given

corresponding weight. Boltzmann machines and the generalised delta rule both deal

with structural credit assignment.

2.2.2. Solution Generation

Figure 1.3 makes it clear that a reinforcement learning system is not supplied

with the action to be performed in a situation. It must therefore be able to generate

its own solutions.

The size of the solution space makes a random search for new solutions imprac-

tical. Instead, reinforcement systems create new solutions based on existing solu-

tions. How this is done varies considerably.

30

Some systems maintain, for each situation, one action. In some systems, if that

action leads to success, it is reinforced - it will take more negative reinforcement in

the future to change the action. Others make small changes to the action, measure its

effect, and accept the change if it improves the solution or satisfies some either cri-

terion. This means that ratings must be maintained on the goodness of the old solu-

tion. These ratings are produced via credit assignment.

Other systems maintain a probability distribution for each situation. One of a

number of actions is possible for that situation, with a probability of being selected

determined by the distribution. Changing a solution means altering the distribution.

Most systems make the change on the basis of the difference between expected and

actual reinforcement, which means that, as above, ratings must be maintained.

The choice of representation and update policy determines what kinds of prob-

lems are solvable. For example, a system which maintains one action per situation

and updates that action by testing small changes and accepting any that improve its

performance is performing a gradient descent in action space. Such a system must

deal with the problem of getting trapped in local minima.

2.2.3. Holland's Classifier System

Holland's classifier system (Holland, 1986) is a rule-based system, where rules

are in the form of <pattern,action> pairs called classifiers. All activity takes place on

a global message list, a set of messages originating from the environment and from

classifiers. The pattern portion of a classifier is a template which can match any one

of a set of messages. If a matching message is found on the global message list, then

the action portion of the classifier, which is itself a message, is added to a new global

message list (subject to restrictions mentioned in the next paragraph). Thisprocess is

shown in figure 2.9(a), where patiernk of classifier k matches message), causing

31

action/a to be placed on the new global message list. Adding an action to the new

Global Message List
message

Rule Base
<pattern1 ,action >

messagej <patternk

message

Environmental
Messages

New
Message

List

,acuon/>

<patternm , action,,>

(a) Matching Procedure

New Message List
actionk

Global
Message

List

(b) Constructing New Global Message List

Figure 2.9. Holland's Classifier System.

32

message list can have effects on the environment. After all classifiers have been

checked against all messages on the global message list, the old list is removed, and a

new one is created from the new global message list and any new messages originat-

ing from the environment (figure 2.9(b)). This process is then repeated.

Each classifier has a rating (called "strength" by Holland). In order to place a

message on the message list, a classifier has .to bid for the privilege - the highest

bidders get their messages placed on the message list. A winning bidder has the

amount of its bid subtracted from its strength. The bid strength of a matching

classifier C at time t is

Bid (C, t) = cR (C)Strength (C, t)

where c is a constant less than 1 (e.g., 1/16), and R (C) is a measure of the specificity

of C - the more specific C is, the greater the value of R (C) (one classifier is more

specific than another if the set of messages with which it matches is smaller than the

other's). The strength of C becomes

Strength(C,t+l) = Strength (C,t)—Bid(C,t)

A classifier can regain strength if its message is matched by later classifiers who

successfully bid. The amount of strength it regains depends on the bid strengths of

the later classifiers and the number of other messages matched by those later

classifiers. That is, if k messages are matched by a later classifier C', and C's mes-

sage is among those k messages, then

Strength (C, t+2) = Strength (C,t+1)+Bid(C',t+1)/k

Classifiers that lead directly to environmental reinforcement receive that reinforce-

ment. -

Thud, Holland's classifier system deals with credit assignment through the use

of strengths and the process of bidding. Those classifiers which are useful will gain

33

strength, either directly by receiving reinforcement from the environment, or indirect-

ly by having its message matched by other useful classifiers.

New classifiers are generated using the genetic algorithm. A subset of existing

classifiers are chosen according to their strengths - the higher the strength, the more

likely the classifier will be chosen. The classifiers in the subset are paired off, and

genetic operators are applied to the pairs, producing new classifiers.

The newly produced classifiers replace the weakest classifiers. If these new

classifiers are useful, they will gain strength and so will likely not be replaced in the

future. If they are not useful, they will not gain strength, and so will likely be re-

placed in the future.

So, the genetic algorithm produces new classifiers on the basis of the best old

classifiers. These new classifiers replace the weakest old classifiers. The changes

produced are based on a probabilistic procedure, both in how the candidate classifiers

are chosen, and how they are combined.

2.2.4. Simulated Annealing

Simulated Annealing (Kirkpatrick, Gelatt, and Vecchi, 1983) is a method for

solving problems of combinatorial optimisation. The goal in combinatorial optimisa-

tion is to find the minimum of a function of the configuration of a system of very

many independent components. A configuration can be viewed as a solution to a

problem.

The function to be minimised (called the cost function) measures the "good-

ness" of the given configuration - the lower the cost, the better the solution. Total

distance in the travelling salesman problem is an example of such a function.

34

If we view the cost function as a reinforcement signal from the environment, we

see that minimising cost is equivalent to maximising reinforcement. Since the cost

function is simple to calculate and thus plausibly supplied by the environment, this

qualifies as a reinforcement learning problem.

Simulated annealing is based on the ideas of statistical thermodynamics (Nash,

1974), and so much of the terminology is borrowed from that discipline. Ergo, we

speak not of "cost" but of "energy". A given configuration has an energy, E, given

by the cost function. The goal of simulated annealing is to find the minimum energy

configuration. The system starts with an arbitrarily picked configuration, which will

have some energy. The configuration is given a small random change, which will

change the energy of the configuration by &E. This change is accepted immediately

if the change lowers the energy of the configuration. If the change raises the energy,

then it is accepted with probability

_AE

P(AR)=e kbT

where kb is Boltzmann's constant. This is the process by which new solutions are

generated. One can view simulated annealing as a hill climbing search with noise,

where the amount of noise is determined by T.

The T parameter represents the temperature of the system, another concept bor-

rowed from statistical thermodynamics. The system is started out at a high tempera-

ture, which means that nearly all changes will be accepted. This effectively random-

ises the system. The temperature is then lowered according to a fixed schedule. As T

is lowered, statistical thermodynamics tells us that the probability of being in a low

energy state increases. The reason for not starting with T low is that at low tempera-

tures the time to make transitions out of sub-optimal energy minima is high. The

hope is that' by starting at a high temperature and slowly lowering it, T will pass

35

through a value for which transitions to the global minimum are easy enough for it to

occur within a reasonable time, but for which transitions out of the global minimum

are difficult enough that the system stays in the global minimum.

The process of slowly lowering T in a physical system is called annealing. Thus

this process of lowering the T parameter is called simulated annealing.

Simulated annealing does not deal with temporal problems, except those which

have a fixed time span, such as the variation of the travelling salesman problem tack-

led in Kirkpatrick, Gelatt, and Vecchi (1983). In this variation, a solution always re-

quires c steps; where c is the number of cities. The entire solution can be represented

by a single configuration. The credit assignment problem is thus structural. The

simulated annealing system maintains a record of the overall goodness of a solution

(via E), but does not try to assign credit to individual parts of a solution. However,

when changes to a part of the solution increase E (i.e., result in a poorer solution), the

probability of their acceptance decreases with the increase in E. It is through this

mechanism that properly selected portions of a solution are maintained.

2.2.5. Stochastic Learning Automata

Structurally, stochastic learning automata are very simple. Input from the en-

vironment consists of a single reinforcement signal, with 0 signifying positive rein-

forcement, and 1 negative reinforcement. Since the automaton has no input other

than the reinforcement signal, there is no concept of a current situation. To solve a

problem which requires different responses in different situations would require one

automata per situation.

Output consists of one of p actions, (x1, . . . , as,. The automaton maintains an

internal probability vector p, with one probability per action, which governs the

choice of the next action. That is, action ak is selected with probability Pk. The en-

36

vironment is random. That is, for a given output, cLk, it produces a penalty with pro-

bability Ck, where c is a vector of penalty probabilities. The vector c has one proba-

bility per input action. Note that the environment's response is dependent only on the

current action - it does not depend on previous actions. Environments can be station-

ary, in which case c does not change over time, or nonstationary, in which case c

does change. For this discussion, a stationary environment is assumed.

The goal is to modify p such that reinforcement is maximised. A stochastic

learning automata and its environment are illustrated in figure 2.10.

Many learning schemes have been tried. All are based on the idea that when ac-

tion al is chosen at time t and positive reinforcement is received, then p(t) (i.e., pi at

time t) should be increased and all other components of decreased. Similarly, when

negative reinforcement is received, then pi(t) should be decreased and all others in-

Environment

action
Stochastic Automaton reinforcement

Figure 2.10. Stochastic Learning Automaton.

37

creased. Some schemes, such as the one discussed below, do not update p under cer-

tain conditions.

The vector p represents the learning automaton's current solution to the prob-

lem. By adjusting individual action probabilities, the solution is changed. This is

how new solutions are generated. The same mechanism deals with the credit assign-

ment problem - no ratings are kept of solutions; rather, ratings are maintained in-

directly, by increasing the probabilities of actions which lead to reward and decreas-

ing all others. Note that the credit assignment problem here is structural, as rein-

forcement is received after every step.

The simplest learning scheme is called linear reward-inaction. When action aj

is performed and positive reinforcement is received, then all other probabilities are

updated by

p(t+l) = p(t)—ap(t)

where 0 < a < 1. The action probability for action i is updated by

p1(t+1) = p(t)+ I ap(t).
j#i

The "inaction" part of the name comes into play when negative reinforcement is re-

ceived. In this case, nothing is done top.

The performance of this scheme is c-optimal. To understance what e-optimality

is, optimality should first be defined. An optimal scheme is one which, as time goes

to infinity, chooses action c1 with probability 1, where action c1 produces the greatest

positive reinforcement. An c-optimal scheme can be made as close to optimal as

desired by proper choice of parameters. That is, the expected value of reinforcement

can be made arbitrarily close to c1.

38

2.2.6. Adaptive Threshold Systems

Adaptive threshold. systems (Widrow, Gupta, and Maitra, 1973) are based on

linear threshold systems, namely perceptrons. Unlike perceptions, adaptive threshold

systems do not require <input,output> pairs to be explicitly supplied.

Feedback consists of a simple on/off signal - the system can receive either re-

ward or punishment. When it receives reward it updates its weights so as to decrease

the difference between the output of the system (y) and the unthresholded output

(wx). The Widrow/Hoff rule is used, giving:

/w =1(y—wx)x1

This increases the chances that y Will be produced in the future, given the input x.

That is, changes in the weights produced by other updates will be less likely to

change the output of the system when x is encountered in the future. In this sense,

the pair <x,y> has a rating associated with it. The more extreme the output, the

higher the rating. An output near the threshold indicates a low rating.

When it receives punishment it updates its weights so as to decrease the differ-

ence between the inverse of the output of the system (i.e., 1—y) and the unthresholded

output. Once again, the Widrow/Hoff rule is used, but the desired output is the oppo-

site of what was actually produced. That is:

tXw1 = T((1—y)—wx)x1

Since outputs are either 1 or 0, the desired output will be 1—y, where y is the actual

output.

This decreases the chances that y will be produced in the future, given x. If the

unthresholded output was near the threshold, it is possible that the weight change will

place wx on the other side of the threshold, and thus change y. This is the mechanism

by which new solutions are generated. If the output is incorrect, a pair will receive

39

negative reinforcement. If this process continues long enough, the output, y, of the

pair will change value. Pairs which begin with the output near the threshold will re-

quire less negative reinforcement to change output than pairs which have an output

far from the threshold.

Because it is based on perceptrons, an adaptive threshold system cannot learn

anything that a perceptron cannot. Therefore, inputs must form a linearly indepen-

dent set.

In Widrow, Gupta and Maitra (1973), the adaptive threshold system is applied to

the game of blackjack. Input to the system is the current situation, which is com-

posed of the value of the upturned dealer's card, the current total of the system's

hand, and whether aces are high or low. The action produced in a given situation is

whether to draw another card ("hit") or stay with the current cards ("stick"). The

decision to stick is final.. One cannot draw another card after deciding to stick.

Learning proceeds as follows. One hand is played, which the player either wins

or loses. This is done without any reinforcement taking place. The hand is then re-

played exactly, except this time the reinforcement is set appropriately (reward for

winning the hand, punishment for losing the hand) and weights are updated for each

<situation,action> pair encountered in playing that hand. Because reinforcement is

determined by the outcome of the hand, rather than the merit of each decision, some

incorrect decisions will be rewarded (if the hand is won in spite of those decisions),

and some correct decisions will be punished (if the hand is lost in spite of those deci-

sions). Thus, while reinforcement is received on each step, it is not reliable.

The system asymptotically approached the optimal strategy (called the Thorp

optimal strategy). Under the Thorp optimal strategy, a player can expect to win

49.5% of all games. Results of the adaptive threshold system varied, depending on

40

the value chosen for the learning parameter, il , with the best result being about a 48%

winning rate (achieved after approximately 10,000 games). The initial winning rate,

before any learning had been done, was about 22%.

As mentioned before, because it is based on perceptrons, the adaptive threshold

element can only properly classify linearly separable sets. Thus, the key to the suc-

cess of this system in the domain of blackjack was an encoding scheme that translat-

ed inputs into a linearly independent set.

2.2.7. Associative Search Network

The associative search network (Barto, Sutton, and Brouwer, 1981), or ASN for

short, is a system based on single-layer perceptron networks. Input to the system

consists of a vector x of reals, output is a vector y of l's and 0's. ASN also receives a

feedback signal, z, from the environment. An ASN and its environment are shown in

figure 2.11.

feedback
z

input
X ASN output

Y
Environment

Figure 2.11. Associative Search Network and Environment.

41

If y has m elements, then ASN will have m+1 neurons; the first m neurons pro-

duce y, and the m+lst neuron produces a prediction of reinforcement used by the oth-

er m neurons. An ASN is shown in figure 2.12. Each neuron (with the exception of

the predictor) operates similarly, so the following discussion will focus on a single

neuron.

More specifically, output y from a neuron at time t is

Ii if w(t)x(t)+NOISE > 0
Y(t)

where NOISE is a normally distributed random variable. This output function is

identical to a perceptron's except for the inclusion of noise. The addition of noise

means that the weighted sum wx determines the probability of an output, rather than

the output itself. This means that at any time, any output is possible, with the proba-

bility of a given output being dependent on the weighted sum - the more extreme the

value of the sum, the less likely it is that this neuron will give a result different from

that of a regular perceptron. This is the mechanism by which new solutions are gen-

erated.

These neurons also differ from regular perceptrons in that they receive rein-

forcement from the environment, in the form of a single real value, z. The reinforce-

ment is used in the weight update rule, which is

w1(t+1) = w1(t)+1[z (t)—p (t-1)][y (t-1)—y (t-2)]x(t-1)

Note that the reinforcement, z, for an action at time t-1 comes at time t. The value

p (t-1) is the output from the predictor neuron, and represents its prediction of z (t).

The change in wi then, depends on three things: the difference between expected

and actual reinforcement (z (t)—p (t-1)), the change in output (y (t-1)—y (t-2)), and

the actual input (x(t-1)) When any of these is 0, so too is the change in w.

42

Figure 2.12. Associative Search Network.

The reinforcement predictor neuron has its own set of weights, output rule, and

weight update rule. The output of the neuron is

p(t) — wPx
where wP is the vector of weights for the predictor. The weight update rule is

wf(t+1) = wf (t)+'fl"[z (t)—p (t-1)Jx(t--1)

where 11' determines the rate of learning for the predictor. This is the familiar

Widrow/Hoff rule, where z (t) is the desired output and p (t-1) is the actual output.

ASN does not deal with multi-step problems, so only structural credit assign-

ment is dealt with. Credit assignment is accomplished through the combination of

expectation, as maintained by the predictor neuron, and the strengths of the weights

43

.of the output neurons. The expectations are used to decide whether to reward or pun-

ish a neuron, and the strengths of the weights of the output neurons are adjusted to

reflect the reward or punishment. Rewarded neurons will have their weights

strengthened, and punished neurons will have their weights weakened.

While ASN doesn't deal with a temporal form of credit assignment, an exten-

sion of ASN called ASE/ACE (Barto, Sutton, and Anderson, 1983), does. ASE/ACE

(Associative Search Element/Adaptive Critic Element) resembles ASN, with an ex-

panded role for the predictor neuron. Essential to ASE/ACE's ability to deal with

temporal credit assignment is the use of expectations of reinforcement of subsequent

steps in determining the reinforcement given to the output neurons for the current

step. By taking into account future expectations, it can assign credit to steps which

receive no credit directly. This is closely related to the scheme used by Holland's

classifier, in which classifiers are strengthened if they lead to environmental rein-

forcement or if they lead to other useful classifiers.

2.2.8. Summary

To be a reinforcement system, we have seen that a system must be able to deal

with the problems of credit assignment and generating solutions. Dealing with the

credit assignment problem means maintaining a rating system, either implicitly or ex-

plicitly. It is interesting to note that the only two systems reviewed which handle the

temporal credit assignment problem (i.e., Holland's classifier system and ASE/ACE)

are the only ones to maintain an explicit rating system.

The rating system plays a part in the generation of new solutions. In the systems

reviewed, new solutions are generated on the basis of old solutions, the variation in

the new solution being dependent on the rating of the old solution.

44

The next chapter describes SPS in detail. This is a prelude to chapter 4, which

describes ESPS, an extension of ESPS that can solve reinforcement learning prob-

lems.

CHAPTER 3

Self-Propagating Search

This chapter describes Pentti Kanerva's (Kanerva, 1984) Self-Propagating

Search (SPS). The architecture of SPS is given, and its method of reading and writ-

ing data is described. The properties which come about because of its architecture

are described. In particular, it is shown how SPS can solve a limited version of the

best match problem. Finally, the cerebellum and two theories thereof which are relat-

ed to SPS are discussed.

In addition to Kanerva (1984), SPS has been described and analysed in Chou

(1987) and Keeler (1987). Specifically, Chou and Keeler analyse the memory capaci-

ty of SPS (which they call Sparse Distributed Memory, or SDM). To my knowledge,

SPS has not been applied to any problems.

3.1. Description of SPS

SPS is a supervised learning system based on neuron-like components, designed

to solve the best match problem. It was described briefly in chapter 2.

Addresses in SPS are n-bit binary numbers, where n is typically large (> 100).

Data (also called words) are rn-bit binary numbers. For the remainder of this chapter

and the next, assume for simplicity that n = m.

SPS is based on the properties of n-dimensional binary metric spaces, where the

distance metric is Hamming distance. The Hamming distance between two words is

the number of bits at which the two words differ. Therefore, the Hamming distance

45

46

between 100 and 100 is 0*, the distance between 100 and 101 is 1, and the distance

between 100 and 011 is 3.

In a normal random-access memory with n-bit addresses, there are 2' locations

in memory, one for each possible address. The word "location" refers to a physical

location in memory. Locations have a label, called their address. In a normal

random-access memory, locations are selected by broadcasting an address. The loca-

tion whose address matches the broadcast address responds.

For the size of n dealt with by SPS, having 2' actual addresses is impractical.

Therefore, in SPS only a small subset of all potential 2' locations actually exist.

These locations are called actual locations. Since only a small subset of all poteniial

locations exist, each actual location serves many addresses. The addresses it serves

are determined by the address of the actual location (these are randomly assigned),

and by a memory-wide constant called the read/write circle size (r for short). An ac-

tual location responds to all addresses within r bits of its address. A further differ-

ence between SPS and standard random-access memories is that in SPS, several data

words are stored at each actual location (standard random-access memories store only

one).

Figure 3.1 shows a memory in which n 4 (i.e., there are 2?z = 16 total ad-

dresses), r = 1, where there are 5 actual locations, and where each location stores 2

words: When an address is presented, each actual location checks if the presented ad-

dress is within r bits of its own address, if it is, then it responds. For example, when

the address 0000 is presented, two actual locations respond: 0000, which is 0 bits

away, and 1000, which is 1 bit away. The locations 0101, 1011, and 0110 do not

respond because they are all more than r bits away.

*Equivent phrases are "the distance between them is 0 bits" and "they are 0 bits apart".

47

actual
location data

flCiAh 0011
0001

0101 01010101

1011 0111
1110

0110 0010
0101

1000 1110
0000

r=1

Figure 3.1. Example Memory.

3.1.1. Writing

To write a word w at an address a means adding w to the list of words at each of

the actual locations within r bits of a. When writing, the oldest word in the list is re-

placed by the word being written.

Figure 3.2 shows the operation of writing a word, w = 1001, at an address,

a = 0001. For figure 3.2 we assume that we start with the same situation as in figure

3.1. When w is written at a, two addresses respond (0000 and 0101 - these are

highlighted in the diagram). Therefore w is added to the head of the list at each of

these locations (we assume that the head of the list is at the top). The oldest member

of each list is lost. This means that at location 0000, 0001 is lost, and at location

0101, 0010 is lost. The state of the memory after writing is shown in figure 3.2.

48

actual
location

0000

data

1001
0011
1001
1101
0111
1110
0010
0101
1110
0000

0101

1011

0110

1000

r=1

Figure 3.2. Writing to Memory.

3.1.2. Reading

To read at an address a, we gather together the lists at the responding actual lo-

cations and form what is called the archetype. The archetype is a "representative" of

the words in the list, and is formed by a bitwise application of the majority rule. That

is, if there are more l's than 0's in a given bit location, the archetype has a 1 at that

location. If 0's are more populous, the archetype has a 0. Anothei way to look at it is

by considering bit sums. The bits at each bit position are summed. If, in a given po-

sition, the sum is greater than half the number of summands, then the archetype has a

1 at that position, otherwise it has a 0.

Figure 3.3 shows a read at a = 0001, the same location at which w was written.

Once again, r = 1. While we shouldn't necessarily expect to read back w, we should

read back something quite similar to w. More precisely, what we read back now

should not be farther from w than if we had read before writing w.

49

(a) Memory.

actual
location data

0000 1001
0011
1001
1101
0111
1110
0010
0101
1110
0000

0101

1011

0110

1000

r=1

b3 b2 b1 b0
1 0 0 1

pooled data 0 0 1 1
1 0 0 1
1 1 0. 1

bit sums

archetype

(b) Formation of Archetype.

3 1 1 4 l's
1 3 3 0 0's
1 0 0 1

Figure 3.3. Reading from Memory.

In any case, the address a = 0001 once again cause 0000 and 0101 to respond.

The lists from each of them are gathered together and the archetype is fOrmed (figure

3.3(b)). As an example, let's detail the calculation of the left-most bit of the arche-

type (b3). Counting the number of l's and 0's in b3 of the accumulated words gives

us a total of three l's and one 0. Since l's are more populous than 0's, b3 of the ar-

chetype is 1. The same procedure is performed for b2, b1, and b0, giving us an ar-

chetype of 1001, which was what was written previously.

50

3.2. Properties of SPS

In each of the following examples of properties of SPS, assume that we start

with the memory in figure 3.2 and figure 3.3(a).

3.2.1. Reading at a Similar Address

Suppose that a word, w, has been written at an address, a, and that reading at a

produces w. Reading at an address, a', very similar to a will produce a word very

similar to w, since most of the locations responding to a' will be the same ones which

respond to a. This property is useful when dealing with noisy input data (i.e. cor-

rupted addresses). It is also useful for handling novel situations, if those novel situa-

tions are similar to ones stored before, and if it is acceptable to perform similar ac-

tions in similar situations.

The effect of reading at an address close to a = 0001, which we'll call a', and

whose value is 0000, is shown in figure 3.4.

Reading at a' causes two locations to respond. One of these locations (0000)

also responds to a. The archetype is 1011 (the calculation of the archetype is shown

in figure 3.4(b)), which is similar to what is produced (1001) when reading at a.

(Note that when the number of l's equal the number of 0's in a bit position, the ar-

chetype is 1). Thus, by moving away from the original write address, a, the original

data is no longer recovered, but something close to it is. As a' becomes more dif-

ferent from a, the less likely it is that the original data is recovered. The reason for

this is that, as a' moves away from a, fewer responding locations contain copies of

the original data. The fewer copies there are, the less they influence the archetype,

and the less likely it is that the archetype will resemble them.

51

actual
location data

0000 1001
0011
1001
1101
0111
1110
0010
0101
1110
•0000

0101

1011

0110

1000

r=1

(a) Reading at a' = 0000.

b3 b2 b1 b0
1 0 0 1.

pooled data 0 0 1 1
1 1 1 0
0 0 0 0

bit sums 2 1 2 2 l's
2 3 2 2 0's

archetype 1 0 1 1

(b) Formation of Archetype

Figure 3.4. Reading at a Similar Address.

Now, further assume that another word, w1, has been written at an address, a1,

which is similar to a. Then, if a' moves from a to a1, the archetype will gradually

change from w to w1, as the influence of w in the formation of the archetype wanes

and the influence of w1 waxes.

From a practical standpoint, this is useful for "filling in" missing parts of the

task being learned. If SPS encounters a situation similar to other situations at which

actions have been stored, the action returned will be a kind of average of the actions

stored with those various situations. Note that this averaging is not explicitly per-

formed. Rather, it is a natural emergent property of the storage and recall scheme of

52

SPS. The exact result returned depends on how many copies of each action are used

to form the archetype, and this in turn depends on the distance from the new situation

to each of the previous situations.

3.2.2. Rehearsal

If a word, w, is written more than once at an address, a, the lists at each of the

responding addresses contain more and more copies of w. Therefore, the chances of

recalling w increase, both when reading at a and at addresses near a. Human perfor-

mance improves with practise, and the same is true of SPS. When a word is written

many times, it is more likely to be recalled correctly, and more easily recalled at ad-

dresses near the write address. A word written many times will have more influence

in the formation of the archetype, and thus we can move farther away from the origi-

nal write address before we are unable to read the original data.

3.2.3. Recall Certainty

• Assume that we read from a completely randomised memory: the archetype will

be formed from a random collection of words. We can therefore expect the bit sums

to be near the norm (1/2, where us the number of words in the pooled data). This is a

simple consequence of the words forming a binomial distribution. Furthermore, the

probability that the bit sums are near the norm increases as l grows. Similarly, the

chances of a bit sum being 0 or l rapidly diminish as 1 grows. For example, the

chances of a bit sum being l (i.e., all ones) when 1 = 50 is approximately 1 in 1015 .

Therefore, if a bit sum is equal to 1, this strongly indicates that a 1 was actually writ-

ten there. Thus, bit sums can be used not only to form the archetype, but also to give

an indication of the certainty of the archetype. This property was mentioned briefly

in Kanerva (1984), but not pursued any further. One of the main problems in

53

developing ESPS was discovering how to calculate and manipulate these certainties

(this is covered in chapter 4).

3.2.4. The Best Match Problem

We've seen that if a word is written many times, recall of the word is easier, and

in fact the word can be recalled even when reading at an address other than the origi-

nal write address. This is the basis of solving the best match problem. SPS has found

the data stored with the address that best matches the read address. Or, looking at it

in terms of <pattern, class > pairs, SPS has found the class paired with the most simi-

lar stored pattern.

SPS can only solve a limited version of the best match problem. The form of

the best match problem which SPS can solve was given in chapter 1 and will be

reiterated here.

Assume that the set of pairs { <a 0,d0>,. . . , <a,4 dk> } have been stored in

memory, and that we wantS to find the best match of an address a. Then, if a o through

ak are sufficiently different from one another, and if a is sufficiently similar to some

a1 in the set of pairs, then reading at a will return d7. The definition of " sufficiently

similar" depends on the configuration of the memory, the composition of the data set,

and the value of a.

We are now in a position to understand why these restrictions are made on the

best match problem. First, the condition that a0 through ak be sufficiently different is

necessary to ensure that interference doesn't destroy the data stored. If any two of

the addresses are sufficiently similar, then the data written at one will be overwritten

by the data written at the other.

54

Second, the condition that a be sufficiently similar to some a1 is necessary to

correctly retrieve d1. For example, if a is different enough from a1 that none of the

actual locations at which d1 was stored respond to a, SPS will not retrieve d1, eccept

by blind chance.

There are other reasons why SPS solves only a limited form of the best match

problem. When many words are written into memory, old words are lost, overwritten

by newer words. Therefore, if the data set is larger than the capacity of SPS, it will

not produce correct answers in some cases. Similarly, older words that have not been

completely lost will be more difficult to recall than newer words, since they will be

more likely to have had some copies of themselves overwritten by younger words.

This means that there is an implicit bias or weight given to younger words. If the true

best match is an old word, a younger word may be recalled instead because of this

bias.

3.3. Realisation of SPS with Neuron-like Components

The architecture for SPS, as realised with neuron-like components, is shown in

figure 3.5. The meaning and function of each of the components will be explained

shortly.

SPS has memory locations (these are the actual locations), which respond selec-

tively to read and write addresses (three of these are shown in figure 3.5). At each lo-

cation, data is stored, and SPS must be able to add to the data stored at a location, and

read the data stored at a location.. To read, data from all responding locations must be

pooled together and the archetype formed. These requirements are easily met with

neuron-lik6 components.

55

Input bit I

Y, t
I
L

Address

location

Figure 3.5. SPS Architecture. Adapted from Kanerva (1984).

Bit location
(a cbunter)

Selec4 line

Ackkess
decder

3.3.1. Address Decoder Neurons

Each actual location has an address decoder neuron (three are shown in figure

3.5). This neuron responds to an address when the address is within r bits of the actu-

allocation's address. The address decoder neuron has n inputs, one for each bit of

the address. These inputs can take on the values 0 or 1. On each input line there is

an unchanging weight which has a value of either —1 or 1. The input on each line is

multiplied by the weight on that line, and the n products formed are added together.

56

This sum is compared to a fixed threshold, and the result of this comparison (0 or 1),

determines whether the neuron responds to the address or not.

An example address decoder is shown in figure 3.6. For this example, n =3.

The weights, wo,w1, and w2, on the input lines are +1,_i, and —1, respectively.

Figure 3.7 shows the output of the neuron for all possible inputs, and thresholds

(I) varying from T =2 down to T = —2. We see that when T =2, the neuron reponds

to no address. When T is lowered to 1, the neuron responds to one address, 100. This

is the address of the actual location. When T is lowered again, to O, we see that the

neuron responds to four addresses: 100, 000, 101, and 110. These addresses are all

within 1 bit of 100 (its address). Thus, when T = 0, the value of r is effectively 1,

since this neuron responds to all addresses within 1 bit of 100. Lowering the thres-

Weights
(-1 or +1)

xo (+1)

Inputs
(0orl) l

X2

Wi

(-1)

W2

(-1)

Figure 3.6. Address decoder neuron.

Output
(0orl)

57

Input
XO X X2

o 0 0
o o 1
o 1 0
o 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Output
T=2 T=1 T=O T=-1 T=-2
o o 1 1 1
o 0 0 1 1
o 0 0 1 1
o 0 0 0 1
o 1 1 1 1
o 0 1 1 1
o o 1 1 1
o 0 0 1

Figure 3.7. Behaviour of address decoder neuron.

d (100,Input)

1
2
2
3
0
1
1
2

hold again to T = —1 effectively, increases the value of r to 2, so that this neuron

responds to seven addresses - all those within 2 bits of 100. These results are detailed

in figure 3.7.

3.3.2. Storage Locations

Previously, each actual location was described as having a list of words.

Managing a queue is a difficult task for a neuron, or group of neurons. Therefore, a

slight amendment is made to the model. Instead of storing words in a list, where

writing a word inserts the new word at the head of the list and removes the oldest

from the end of the list, bit sums are stored. A bit sum will be stored at a modifiable

weight between the output of the address decoder neuron and the input of an output

neuron (see figure 3.5). At each location there are n counters, one for each bit. When

a word is stored, counter k is incremented when bit bk is 1, decremented otherwise.

Since the storage capacity of a counter cannot be infinite, upper and lower limits exist

on the counter. Incrementing a counter at its upper limits has no effect, as does de-

crementing a counter at its lower limit.

58

3.3.3. Output

When reading, the bit sums at each responding location are added up and thres-

holded. The only difficulty is in deciding the value of the threshold, since for a given

read address, the number of responding addresses vary. Kanerva (1984) suggests us-

ing the mean bit sum over all the data stored for the threshold. He doesn't elaborate

further, and it is difficult to imagine how this could be accomplished with neuron-like

components.

An alternative scheme is used by Keeler (1987) and Chou (1987), where the

threshold is fixed at 0, and counters are assumed to be capable of assuming positive

and negative values (Kanerva assumed a lower limit of 0 for the counters). If the to-

tal sum is less than 0, the output will be 0, otherwise it will be 1. If this scheme is to

be implemented with real neurons, however, it runs into trouble. Counters will be,

modifiable weights between neurons, and according to this scheme must be able to

assume positive and negative values. However, Kanerva (1984) states that, as far as

is known, weights do not change from excitatory to inhibitory (i.e., from positive to

negative values).

A possible scheme would be to fix the threshold at some value, k, where k is cal-

culated from the average number of responding addresses (when n is large, it will not

vary by a large amount), and the expected bit sum in each location. If we assume that

uncorrelated data is stored (i.e., l's and 0's will be equally likely), then the expected

bit sum would be the average of the upper and lower limits of the counter. Testing

would confirm or refute this scheme.

The architecture for three actual locations is shown in figure 3.5. It is important

to note that when reading or writing, the only locations that take part in the operation

are those whose address decoders respond. Note also that address decoders share ad-

59

dress lines, and storage locations share input and output lines.

3.4. SPS as a Cerebellar Model

SPS is presented in Kanerva (1984) as a modal of the cerebellar cortex, the ela-

borately folded outer layer of the cerebellum (Llinás, 1975). The cerebellum is inti-

mately involved in motor control. Evidence of this is outlined in Arshaysky et al.

(1986), where five observations are listed on the role of the cerebellum in motor con-

trol. They are:

(1) Removal of the cerebellum or its partial destruction results in motor distur-

bances. Movements are clumsy and slow.

(2) Cerebellar output signals reach all motor centres of the nervous system.

(3) The cerebellum receives signals from all motor centres as well as from the

proprioceptors (a proprioceptor is a sensory receptor that responds to an internal

stimulus, such as a muscle's position or tension).

(4) Stimulation of the cerebellum evokes various motor responses.

(5) The activity of cerebellar neurons is correlated with movements.

Kanerva's theory is similar to theories of the cerebellum put forward by Marr

(1969) and Albus (1971). In particular, Albus developed a model of the cerebellar

cortex called CMAC (Albus, 1979). CMAC was discussed in chapter 2. It has been

used successfully to learn inverse dynamics equations for a robot arm, given a simple

feedback system that generates approximations to desired trajectories, and a planning

system that determines trajectories (Miller, Glanz, and Kraft, 1987). The addition of

CMAC allows the arm to more precisely track trajectories. This is especially useful

when arm speeds are high, since in such situations the feedback controller has

difficulty following the trajectory. Given that the cerebellum is involved in cordina-

60

tion, this adds credence to CMAC (and therefore to SPS as well) as a model of the

cerebellum.

However, the cerebellar theory proposed by Marr has of late fallen out of favour

(Pellionisz, 1984), mostly due to lack of experimental results showing that synaptic

change takes place at the connection between axons of neurons called parallel fibres

and dendrites of neurons called Purkinje cells. Critical to the theories of Marr,

Albus, and Kanerva is the modification of the strength of this connection in response

to errors in its output compared to desired output. The state of Marr's theory is dis-

cussed by Pellionisz (1984). In spite of this evidence against these theories, however,

the results are not conclusive, with one major school of experimentation still using

Marr's theory as its foundation. For this reason I have continued to consider SPS a

cerebellar model, and that, by extension, ESPS is as well.

3.5. Conclusions

In this chapter, we've seen how SPS can memorise <address,data> pairs. The

manner in which it does so gives it several useful properties, including the ability to

solve a restricted form of the best match problem. The specific scheme used by SPS

can be implemented with neuron-like units, where these units and the way they are

connected correspond to structures found in the cortex of the cerebellum.

However, as pointed out in chapter 1, the ability to memorise <address,data>

pairs, even coupled with the ability to solve the best match problem, is insufficient

when the learning system must solve a task within an environment that offers low-

quality feedback. To deal with such an environment, the learning system must be

able to generate and test its own solutions, and assign credit to steps in the solution.

The changes made to SPS to produce ESPS, a learning system which has these abili-

ties, are described in the next chapter.

CHAPTER 4

Extended Self-Propagating Search

We saw in chapter 2 that SPS is a supervised system, and as such is incapable of

solving reinforcement problems. This chapter describes ESPS, an extension of SPS,

which can solve reinforcement problems. The changes made to ESPS enable it both

to generate new solutions and assign credit to steps in the solution. As established in

chapter 2, these are necessary qualities for reinforcement learning systems.

This chapter starts with an overview of the operating procedure of ESPS. This

gives the reader a framework into which the details, explained in later sections, can

be fitted. Next, the changes and additions made to SPS are presented, and it is argued

that these changes make ESPS a reinforcement learning system. Finally, physiologi-

cal justification is provided for the changes made to SPS.

In this and subsequent chapters, it is assumed that properties of SPS also apply

to ESPS, unless otherwise noted. Therefore, when talking about some property of

SPS and ESPS, reference will be made only to SPS, with the understanding that these

properties apply to ESPS also. When a property is unique to ESPS, then only ESPS

will be referred to.

4.1. Operating Procedure

This section describes the operating procedure of ESPS. The operating pro-

cedure is a short sequence of steps which are repeated until the goal is reached. Dur-

ing each iteration, ESPS decides on the action to be performed in the current situa-

tion, which is then executed. Reinforcement from the environment, if any, is re-

61

62

ceived, and memory is updated according to the reinforcement.

So, each iteration of the operating procedure consists of the following two steps:

(1) Action Generation and Execution

(2) Reinforcement and Memory Updating

These steps are discussed in detail later in the chapter. The rest of this section

discusses the properties of SPS, and how they overcome the problems posed by the

size of the situation space.

4.1.1. Coping With Large Situation Spaces

For a problem of reasonable complexity, the number of possible situations is

very large. This has two implications. First, not all situations can have their own

"slot" in memory - ESPS, or any system, is restricted to storing some subset of possi-

ble situations. Second, there must be some mechanism for generalisation. This is

due both to the size of situation space, as it would take too long to derive the 'correct

action for each situation, and the restriction to a subset of situations, since actions for

situations which have no "slot" must be induced from other known

<situation, action> pairs.

SPS can handle the subset restriction. We saw in chapter 3 that for SPS to store

items in an n-dimensional address space, it only needed a randomly chosen subset of

addresses, rather than all 2' addresses.

As explained in chapter 3, generalisation is a natural emergent property of the

storage scheme. If action a is written at situation s, then reading at a situation close

to s (call it s') will return an action close to a (call it a'). The implication of this pro-

perty is that ESPS does not have to store an action for each situation. Situations not

directly written to will be automatically "filled in" with an action that is some aver-

63

age of nearby actions. This lessens the amount of work ESPS has to do, and means

that it can produce good results in novel situations - assuming that it wants to do

similar things in similar situations. This assumption is made, and is a critical deter-

minant of the types of problems ESPS can solve. ESPS cannot solve a problem in

which two situations which have similar representations have radically different ac-

tions associated with them. In order for two situations to have different actions asso-

ciated with them, they must be given dissimilar representations.

4.2. Changes to SPS

Functionally, ESPS must be able to do two things that SPS cannot. First, it must

be able to generate new solutions. This is accomplished by changing SPS's deter-

ministic reading process to a non-deterministic one. Making reading non-

deterministic means that ESPS is not restricted to only producing actions it has

recorded, but is capable of generating new ones.

The second requirement is that ESPS properly assign credit to steps in the solu-

tion. This is done through expectations and an extended concept of reinforcement.

In ESPS, each <situation,action> pair has associated with it a number which is its ex-

pectation of future reinforcement if action is executed in situation. Reinforcement, in

turn, can come not only from the environment, but also from the expectations of fu-

ture steps.

Expectations are updated according to the reinforcement received. When rein-

forcement is different than what is predicted by the expectation, then the expectation

stored with the <situation,action> pair is updated to make it better fit reality. The

goal of this process is for each <situation,action> pair to have associated with it an

accurate prediction of future reinforcement. To implement such a scheme, ESPS

must be able to associate an expectation with each pair, and be able to manipulate

64

those expectations. The changes made to SPS to produce ESPS are summarised in

figure 4.1.

Extensions to SPS

Requirement Extension Physiological
Justification

Generating new
solutions

•

Non-deterministic reading
function). The f functions

k11

ti

(
tested are:

Imperfect neurons.

fB(k,l)— 21

and

fL(k,l)=k/1

Instead of maintaining an explicit
action, probabilities of actions are
stored. The probabilities are
manipulated by changing the bit
sums (k).

Credit Assignment
•

Storage and manipulation of
expectation, and an extended notion
of feedback. Expectations are
calculated according to

bkpk+(l—bk)(l—pk)
E= k4

Global access to
expectations and
feedback through
climbing fibres.

n

When feedback for an action
exceeds its expectation, that action is
made more probable by
manipulating the bit sums (k). The
notion of feedback is extended to
include not only environmental
feedback, but also the expectations
of subsequent steps.

Figure 4.1. Extensions to SPS.

65

4.2.1. Non-Deterministic Reading

Non-deterministic reading is a bit-wise process - calculation of each bit of the

archetype is done independently of the others, as was the case with SPS. Therefore,

the following discussion refers only to the calculation of a single bit of the archetype,

with the assumption that this process is applied to all bits of the archetype. Further, it

is assumed that the pooled data contains 1 words, and so 1 bits are being used to form

each bit of the archetype, and that k of them are l's (and therefore i—k are 0's). The

value k will be referred to as the bit sum since it is equivalent to the sum of the 1 bits.

The value of a given bit of the archetype is determined by applying a function f,

to the bit sum, k. The value of the function is the probability that the output bit will

be set to 1 for a given k. A probability of 0 means that the archetype will be 0 at that

bit position, while aprobability of 1 means that the archetype will be 1. Values near

0 or 1 mean that the archetype will be, with high probability, 0 or 1, respectively. A

value of 0.5 means that the archetype will be 0 or 1 with equal probability.

The probability returned by the f function indicates ESPS's certainty of its

answer. When the probability is at or near 0 or 1, certainty is high. When the proba-

bility is at 0.5, uncertainty is at its maximum.

The f function is defined to be monotonically increasing with k:

f(k 1,i)≤f(k2,l) iff k1≤k2

This means that to increase the probability that the given bit is 1, the bit sum (k)

should be increased. This is done by writing a 1. To increase the probability that the

bit is 0, k should be decreased, which is done by writing a 0. This provides a simple

mechanism for positively or negatively reinforcing a result - if reading results in a

value v for a bit b, then to positively reinforce b (i.e. make it more likely to occur in

the future), v should be written. Similarly, to negatively reinforce b (i.e. make it less

•66

likely to occur in the future), the inverse of v (denoted v) should be written.

Non-deterministic reading provides a method of controlling the search done by

ESPS for the correct solution. When search is to be limited, as is the case when a

good action is found, 0's or l's, as appropriate, should predominate in each bit of the

pooled data. When search is to be unconstrained, 0's and l's should occur so as to

make f return 0.5.

The f function has two arguments, k (the bit sum), and 1 (the number of words in

the pooled data). I have not been able to find a "best" f function, nor is it clear that

such a function exists. Two certainty functions were tested, one based on the binomi-

al distribution (fB), the other a simple linear rule (ft). The first, fB, was chosen arbi-

trarily, on the basis of intuition. I have not been able to justify its use (other than that

it works). The second, fL, was chosen in response to my inability to justify fB. That

is, it was chosen to answer this question: if I cannot prove there is a "best" function,

or justify the choice of fB, does this mean that ESPS will work with any function

which satisfies the condition of monotonicity?

The first certainty function is:

fB(k,l) -

k

LJ i=O _ i=O

' i=o

21

This function expresses the probability of there being k or fewer l's in a randomly

chosen set of 1 l's and 0's. When k = l,fB(k,l) = 1, when k = LlI2j,fB(k,l)= 0.5, and

when k = 0, fB (k, 1) = The last value, fB (0, 1), is therefore not 0, as might be ex-
21

pected, but does tend towards 0 as the sample size, 1, tends to infinity. A graph of fB

for 1 = 25 is shown in figure 4.2(a).

67

20 0 5 10 15
k

(a) Behaviour of fB(k,l) for 1 = 25.

1

.75 -

fL(k,25) .5—

.25 -

0
I I I I

0

(b) Behaviour of fL(k,l) for 1 = 25.

Figure 4.2. Behaviour of fB and fL.

5 10 15 20

25

25

68

The second certainty function is:

fL(k,l)=k/l

Its behaviour for 1 = 25 is shown in figure 4.2(b)., This function was chosen to test'

the sensitivity of ESPS to different f functions. The results of using each function are

discussed in chapter 5.

The function used by SPS (the majority rule) can be recast as an f function. The

function is:

1i if k≥l/2

fM(k,1) HLo otherwise
Since the probabilities returned by fm are 0 and 1, f is a deterministic step function.

4.2.2. Expectations

As mentioned in section 4.2, credit assignment is done through the use of expec-

tations and an extended definition of reinforcement. If the <situation,action> pair p

has stored with it a number which accurately reflects future reinforcement, then pairs

leading to p need not wait for environmental reinforcement. By examining the ex-

pectation associated with p, they can immediately determine the value of their action.

Expectations are learned, so they must be updated when expected reinforcement

does not match actual reinforcement. The goal is for expectations to accurately

predict actual reinforcement, thereby making rewards and punishment based on those

expectations correct.

Expectations are stored via the bit sums. A <situation,action> pair whose ex-

pectations for future reinforcement are high will be stored such that the f function

will return a value near 0 or 1. That is, it will be stored such that it will be recalled

with high certainty. Aside from recording expectation, this has the effect that action

will be recalled with little change when situation is encountered in the future. This is

69

a desirable effect. When expectations are high, the search for better solutions should

be narrowed, as the current one already leads to high reinforcement. When expecta-

tions are low, the search for better solutions should be wide-ranging, since the ones

already found did not lead to high reinforcement.

Because the functions of search and storage of expectation are combined into a

single mechanism, the range of values that reinforcement can take are important. If

reinforcement does not reach a high enough value, then actions will not be stored

with high enough certainty. So, even if an action maximises available reinforcement,

it will not be recalled with high certainty, and ESPS will continue to search for a

better solution, one which does not exist.

This is in contrast to ASN and ASE/ACE, where certainties are stored via the

weights in the output neurons, while expectations are stored in the predictor neuron.

Under the ASN and ASE/ACE scheme, certainties and expectations can be manipu-

lated independently, and thus there is no restriction on the values that reinforcement

can take as there is in ESPS. This flexibility is bought at the cost of an extra com-

ponent. Combining the two functions together as in ESPS creates a simpler solution,

and one more easily justified on physiological terms.

As a final point, note that ESPS cannot represent an expectation of negative

reinforcement for a given action. Actions which lead to negative reinforcement can

be made less likely to occur only by making other actions more likely to occur.

4.2.2.1. Calculating Expectations

Expectation is a measure that applies to an entire word. However, the probabili-

ties returned by the f function are defined only for individual bits. Therefore, it is

necessary to be able to take individual bit probabilities and calculate the expectation

for the entire word.

70

Expectations are calculated according to the following formula:

bp+(l—b)(1—p)

E= 1
n

where E is expectation, P3 15 the probability that bit j will be 1, (l—p3) is the probabil-

ity that bit j will be 0, and l, is the actual value given to bit j. For each bit, the pro-

bability of the bit taking on its actual value is calculated (this is bp+(l—b3)(1—p)).

The average of these probabilities becomes the expectation.

Note that the calculation of E is unusual in that it is dependent on the actual

values given individual bits. One might expect E to be just the average of the bit pro-

babilities. However, it was felt that E should be a measure of the expectation of rein-

forcement for the actual word produced, rather than of the most probable. TI all of

the Pj were 0.9 (i.e., each bit is likely to be 1), yet the resulting word was all 0's, then

E would be 0. 1, because ESPS's expectation of reinforcement for that particular

word, on the basis of the bit probabilities, should be low. This function has the pro-

perty that the most probable word produces the highest expectation, while the least

probable produces the lowest expectation.

As with the f functions, I have no proof that this method of calculating is op-

timal. It may be that other methods of calculating E are better. However, only this

particular one has been tested.

4.2.2.2. Feedback Scheme

To cope with the infrequent feedback offered by the environment, ESPS extends

the concept of feedback. Feedback, instead of just originating from the environment,

can also originate internally, in the form of the expectations of other steps. If an ac-

tion, a, has a high expectation for future reinforcement, other actions which'lead to a

71

should also be given high expectations. The ultimate source of these high expecta-

tions is the environment. Steps which lead directly to environmental feedback have

their expectations set according to that feedback. All other steps receive this feed-

back indirectly through other step's expectations.

The feedback scheme will first be illustrated from the point of view of a bit loca-

tion (recall figure 3.5). This is done to make clearer the relationship between ESPS

and the systems in chapter 3. Thus, for the purposes of this explanation, we assume

that bit sums are stored, rather than a list of words.

Recall that when the address line for a bit location is active, the value contained

in the bit location, w, is placed on the output line, as are the values contained in all

other activated locations on that line. The f function is applied, producing an output,

y. If feedback exceeds expected feedback, then w should be updated so as to increase

the probability of generating y in the future. Thus, if y = 1, then w should be incre-

mented, and if y = 0, w should be decremented.

The feedback rule thus is:

w (t+1) = w(t)+greater (F (t+1),E(t))(2y (t)-1)

where w(t) is the value in the bit location at time t, F(t+1) is the feedback at time

t+1, E(t) is expectation at time t, greater(x,y) is 1 when x≥y, -1 otherwise, and y(t)

is the output at time t. Note that the feedback for an action at time t is received at

time t+1. Also, the value of F(t+1) is the value of environmental feedback when en-

vironmental feedback is present, otherwise it is the expectation of the next step.

Figure 4.3 shows how the expectation of a single <situation,action> pair

(<sit 1 ,act1>) is updated according to the expectation of the subsequent pair

(<sit2,act2>). Figure 4.3(a) shows act1 being performed in response to encountering

sit1. The process of reading act 1 generates an expectation of reinforcement, e1. Ex-

72

act1
sit >- sit2

(a) After Execution of

act act2

sit , >- sit2 - sit3 -

(b) After Execution of act2.

Figure 4.3. Updating Expectations.

ecuting act1 in situation sit1 leads to sit. The value e1 is not updated (becoming

eç) until the feedback of the next step is received. Since this is a reinforcement prob-

lem, feedback is not received on every step, which is the case here. However,

<sit 2,act 2> has associated with it an expectation of future reinforcement, e 2. (figure

4.3(b)). Once e2 is available, e1 can be updated. If el>e2, this means that the ex-

pectation of the first pair is too high - act1 led to a situation which was worse than

expected. The value e1 should be lowered. If e1 < e 2, this means that the expectation

of the first pair is too low - act1 led to a situation which was better than expected.

The value e1 should be lowered. -

Note that the process of updating e1 changes the probability that act1 will be

produced in the future. If e1 is increased, reading will become more deterministic,

increasing the chances of producing act1 in the future. This is desirable, since e1 is

increased only if act leads to a situation which is better than expected. The opposite

is true when e1 is decreased. The probability of producing act1 is decreased, which

is desirable, since act1 led to less reinforcement than expected.

73

From the point of view of the storage scheme actually used by ESPS, the feed-

back rule slightly more complicated. The difference, as explained in chapter 3, is that

SPS (and therefore ESPS), stores explicit words, instead of n bit sums. Thus, instead

of having a weight w for each bit, there is a list of bits, where the length of the list is

the number of words stored per address. Figure 4.4(a) shows an actual location at

which z words are stored. Bit b of each of these words is highlighted.

Bit b of the output (yb(t)) is determined by adding together bit b from each word

at each responding address, then applying the f function. If feedback exceeds expect-

ed feedback, then this bit sum should be updated so as to increase the probability of

generating Yb in the future. Thus, if yb(t) = 1, then the bit sum should be increased,

address

word1

word2

word2 —2

word2 —1

word2

Actual Location

10...i...00

11,...o...01

01...o...00

00... 1... 10

01...o....10

(a) Before Reinforcement

Actual Location

address

wordl

word2

word3

word2 —1

word2

(b) After Reinforcement

11...i...10

10 ... 00

11...0...01

01...o...00

1... 10

Figure 4.4. Feedback in ESPS.

74

and if yb(t) = 0, then the bit sum should be decreased.

To increase the bit sum for bit-b, a 1 is written at bit b in each responding actual

location. To decrease the bit sum, a 0 is written. This is shown in. figure 4.4(b).

Note that writing a 1 does not guarantee that the bit sum will increase, nor does writ-

ing a 0 guarantee that the bit sum will decrease. Writing adds a new bit to the list,

displacing the oldest. If the new bit and the oldest bit have the same value, the bit

sum will be the same. On the other hand, if the new bit and oldest bit have different

values, writing will change the bit sum by two (this is the case in figure 4.4(b)).

Overall, assuming random data, the average change will be 1.

If we now examine the process from the standpoint of an entire word, the pro-

cess of reinforcement becomes quite simple. If reading produced y and positive rein-

forcement is called for, then y is written. If negative reinforcement is called for, then

y is written, where y is y with every bit flipped.

ESPS's feedback scheme is analogous to Holland's approach to credit assign-

ment, where classifiers which lead to other useful classifiers will have their strengths

increased. It is also closely related to the scheme used by ASE/ACE, where the ele-

ment responsible for predicting feedback (ACE) updates its predictions on the basis

of environmental feedback and on the predictions of subsequent steps.

The concept of expectation also appears in Andreae's work on Multiple Context

Learning Systems (MCLS's) (Andreae, 1972, Andreae, 1977, Andreae and Mac-

Donald, 1987). Expectations have a slightly different meaning in MCLS's, reflecting

the probability of an action leading to a goal state (goal states receive reinforcement),

rather than the expected reinforcement received if that action is executed. Expecta-

tions are highest for those actions which are part of the shortest path to the goal. That

is, the "best" solution in an MCLS is the shortest one which leads to reinforcement

75

(called "reward" by Andreae).

Expectations are updated via a process termed "leakback", in which the expec-

tations of future steps are propagated backwards through previous steps and recalcu-

lated with Howard's policy iteration method (Howard, 1966). Because of the struc-

ture of the memory of MCLS, it is possible to perform this process without requiring

the system to execute in the environment. That is, it can update expectations inter-

nally. Also, because expectations are stored separately, they can be updated without

affecting the stored solutions with which they are associated. The accuracy of the

leakback process depends on the accuracy of its internal model of the environment -

the generated expectations will be meaningful if the internal model is accurate.

ESPS is meant to retain the physiological plausibility of SPS. Therefore, the

changes made to ESPS must be justified not only on a functional basis, but also on a

physiological basis. The next section provides that justification.

4.3. Physiological Justification

Three things must be justified:

(1) A mechanism for non-deterministic reading.

(2) Having global access to environmental feedback.

(3) Having global access to expectations.

4.3.1. Non-Deterministic Reading

The premise of non-deterministic reading is that successive reads at a given ad-

dress will return different results. The justification for such a process in the cerebel-

lum is the assumption that neurons are imperfect. In Kanerva (1984), the comparison

between a bit sum and its threshold is postulated to be performed through the com-

bined actions of three neurons - Purkinje cells, basket cells, and stellate cells. The

76

Purkinje cell is responsible for forming the bit sum and performing the comparisons,

while the basket and stellate cells adjust the threshold of the Purkinje cell, if these

neurons are perfect, then the comparison between the sum and the threshold will be

performed correctly each time, and so reading will be deterministic.

However, it seems more reasonable to assume that neurons are imperfect, so that

the comparison is not always correct. That neurons are not perfect (i.e. that they are

not deterministic) is a well-established fact. In Sejnowski (1986, pg. 378), he states:

the responses of single neurons in cortex often vary from trial to trial ... Therefore,
in many experiments the spike train is averaged over a number of responses
(typically 10) to obtain a post-stimulus time histogram. The histogram represents
the probability of a spike occurring during a brief interval as a function of time
following the stimulus.

(emphasis mine).

Given that neurons are imperfect, and that the neurons in question (Purkinje

cells, basket cells, and stellate cells) perform a thresholded weighted sum, it seems

reasonable to assume that the probability of error increases as the value of the sum

approaches the threshold. That is, when the bit sum is near the threshold, the pres-

ence of noise could easily shift the result from one value to another. When the bit

sum is far from the threshold, the presence of noise will have less of an effect.

This is the behaviour produced by the f functions. When the bit sum equals the

threshold, l's and 0's are equally possible. As the bit sum moves away from the

threshold, one value is produced with increasing probability.

Thus, by assuming imperfect neurons, we can see how the cerebellum can pro-

duce different outputs in identical situations. Moreover, the variation in outputs

depends on the bit sums - the more extreme the bit sums, the less the variation in out-

put.

77

4.3.2. Global Access to Environmental Feedback

There are two possible explanations here: one is a chemical mechanism, where-

by some chemical change prompted by environmental feedback changes the charac-

teristics of storage. While possible, it would be slow, especially considering the rela-

tively high speed at which the cerebellum operates (Blomfield and Marr, 1970).

The second possibility is that interneurons of some sort signal the presence and

strength of feedback. There are neurons, called climbing fibres, that originate outside

of the cerebellum which synapse with all Purkinje cells (Purkinje cells are the cells

which store the bit sums). These climbing fibres have a powerful excitatory. effect on

the Purkinje cells they synapse with. The theory postulated here is that when a Purk-

inje cell takes part in the producing an output, it may have a period of eligibility in

which its weights can be updated. The update is performed on the basis of the feed-

back received through the climbing fibres during that time. This explanation is par-

ticularly appealing because it neatly accounts for the function of climbing fibres,

which were previously postulated to supply the correct action, when the cerebellum

was considered a supervised system.

4.3.3. Global Access to Expectations

Once again, the same two possibilities apply. The chemical mechanism would

work the same here as for environmental feedback. The interneuron mechanism

would require an interneuron which distributes the signal from a Purkinje cell (where

the expectation would be generated) to all other Purkinje cells. There is no neuron of

this type in the cerebellum. There are interneurons that synapse with Purkinje cells

which could distribute its signal locally, but not globally. So one is forced to con-

clude that either only local expectations are available, or that the expectations gen-

erated by Purkinje cells are propagated by a more circuitous route, out of the cortex

78

and then back in again, perhaps by climbing fibres.

CHAPTER 5

Experimental Results

This chapter describes the implementation of ESPS, both as it is implemented

on a single processor, and as it is implemented as a distributed system over many pro-

cessors. Also described in this chapter are the experiments that were run on ESPS,

and the results of those experiments. The chapter concludes with a discussion of the

experimental results.

5.1. Structure of ESPS Implementation

ESPS consists of a set of c actual locations, each containing a list of p rn-bit

words. Addresses are n bits long. ESPS is implemented by a c element array, where

each array element contains 1 n-bit word (the address) and p rn-bit words (the words

stored at that location). This is shown in figure 5.1.

Writing the word w at address a consists of adding w to the lists at all respond-

ing actual locations. Adding w to the list at a responding address means shifting all

words to the right (thus losing the rightmost, and oldest, word), and placing w in the

leftmost slot.

Responding locations are all those actual locations whose addresses are within r

bits of a (r is the read/write circle ' size). Finding the responding addresses means

comparing each actual address with a. Thus every element of the c element array

must be checked. This is true for writing and for reading.

Reading at a requires maintaining a count, 1, of the number of words used to

form the archetype. This will be a product of the number of responding addresses

79

80

actual
locations

1

2

C

address word word2 wordy

Figure 5.1. Structure of ESPS.

and the number of words per address (p). Also needed is an array of m counters, one

per bit of the archetype. This array is initially set to 0's. For each word in the list of

each responding address, counter k is incremented if bit k of that word is 1.

After all responding addresses have been checked, the archetype is formed. For-

mation of the archetype depends on the f function used. The deterministic step func-

tion used by SPS (fM) compares each counter to the value 1/2. If counter b is less

than 1/2, then bit b of the archetype is 0, otherwise it is 1.

The binomial f function (fB) sets bit b of the archetype to 1 with the following

probability

81

[z/dJ [l/dJ

i=O 1=0
fB(k,l) -

lld[l/d] 1Id

where k is the value of counter b. Due to the limitatkns of floating point numbers on

the computers, the values k and 1 were divided by a constant, d, in the calculation of

fB. This prevents floating point overflows from occurring when calculating 21. It is

possible that the division by d qualitatively changes the performance of ESPS - the

properties of fB will change, having a steeper slope in the central section. Neverthe-

less, the basic properties of fB remain - it remains non-linear, with a rapid change in

value as k passes through the value 1/2 (see figure 4.2).

The linear f function (f) sets bit b of the archetype to 1 with probability k/I.

5.1.1. Structure of Distributed Implementation

A typical memory configuration has 10,000 actual locations, with anywhere

from 10 to 90 words per address. A write involves looking at each actual address to

see if responds to the write address. If it does, all the words are shifted one place, and

the new word added. A read also involves looking at each actual address. Those that

respond have their data pooled together. With a large memory, these are time-

consuming operations. However, ESPS is easily distributed over several processors,

with a nearly m times speedup, where mis the number of processors.

Consider a memory with one processor per actual location. To write word w at

address a, one need only send a copy of w and a to each processor. Each processor

compares a with the address of its actual location, and if the difference is less than r

bits, writes w. This distributed approach is feasible because each processor can act

independently of the others.

82

Reading is slightly more complicated than writing, as the data from all respond-

ing addresses must be gathered together. Each processor generates a vector of m

counters, as well as recording how many words were gathered to form the vector.

The vectors from all processors are added up, as are the word counts. These totals

are then used to form the archetype.

In general, where P processors are available, each processor can be assigned c/P

addresses. The description in the previous paragraphs assumed P = c, and the previ-

ous section assumed P = 1.

5.1.2. Jipc Implementation

Memory was distributed via Jipc, the Jade interprocess communications facility

(Unger, Dewar, Cleary, and Birtwistle, 1986). Jipc is a synchronous message-passing

system. Two processes communicate using a send/receive/reply sequence.

For example, assume that process P1 wants to send information to process P2.

Process P1 would create its message, placing it in its message buffer. It then sends

the message buffer to process P2 Until P2 receives the message and replies to it, Pi

is blocked; it cannot do anything.

Process P2 cannot access the message until it does a receive. If P1 has not al-

ready sent the message and P2 does a receive, then P2 will be blocked until the mes-

sage is sent.

Once P2 has received the message, it is free to do whatever processing it likes,

with Pi blocked the whole time. The data sent by p I is accessible in P2's message

buffer. Once P2 replies top 1 p i will become unblocked and both will continue on.

ESPS is implemented as a set of P+l Jipc processes on P processors. There are

P server processes, one per machine, each containing c/P addresses. In addition,

83

there is one controller process which is responsible for organising the activity of the

server processes. This is shown in figure 5.2.

When ESPS is started up, it is the controller prncess which is created. The con-

troller process reads a file which determines the memory configuration. This file

gives the size of addresses (n), the size of words (m), the number of words per actual

location, the number of actual locations (c), and the read/write circle size (r). Having

read this file, the controller then creates the server processes, using another

machine1

machine2

machinep

Figure 5.2 Distributed Implementation of ESPS.

84

configuration file to determine the machines on which these processes can be created.

The memory is divided equally among all servers.

The servers initialise their own memories to random values, then do a receive

from the controller, awaiting instructions. The instructions of interest here are writ-

ing data at an address and reading the data at an address.

Jipc buffers can contain typed data items, such as integers, floating point

numbers, strings, and byte blocks (a byte block is an array of bytes). Furthermore, a

buffer can contain several pieces of data at once, so it could contain an integer fol-

lowed by two floating point numbers, for example. In the case of ESPS, messages

from the controller start with an integer giving the instruction (write or read). Fol-

lowing this is the information necessary for the, instruction.

When the instruction is write, the buffer will have two byte blocks, one contain-

ing the address, and one containing the data. Upon receipt of the message, the server

process copies the data from the buffer and immediately replies. This frees the con-

troller to send the write instruction to the other servers. After replying, the server

then performs the write.

When the instruction is read, the buffer will have one byte block, namely the

address. Like the write, the address is copied from the buffer and the server immedi-

ately replies. It then performs the read, creating two pieces of data. The first is an in-

teger indicating the number of words which were read (1). The second is an array of

m integers containing the bit sums. Once the server has finished its read, it places 1

and the array into the buffer, and sends it to the controller.

From the controller's point of view a read operation consists of sending all

servers the read instruction along with the address, then performing a receive from

each server in turn. The controller has its own 1 value and bit sum array, both initial-

85

ised to 0. As each server replies, the controller updates its 1 value and bit sum array

by adding to them the information the server sends. After all servers have sent their

information, then the controller forms the archetype.

5.1.3. Implementation Details

The code for ESPS and the test routines comprises about 2000 lines of C code,

and is broken down as follows.

The code for distributed reading and writing is contained in three files, sps.c,

jipc_sps.c, and jipc_sps_server.c. The file sps.c contains code for allocating and ini-

tialising memory, reading from and writing to that memory, and code for the various

f functions. A system using ESPS, but only needing a single processor implementa-

tion, would directly use the routines in this file.

A system needing a multi-processor implementation would call the routines in

jipc_sps.c. To a calling program, the routines in this file are identical to those in

sps.c, except that the routine names have a jipc_ prepended to them. Therefore, it is

a simple matter to change a system from a single- to a multi-processor implementa-

tion. One merely needs to change the names of the routines, and recompile with the

routines in jipc_sps.c.

The routines in this file take care of creating and destroying jipc server

processes on other machines, and creating and gathering messages. The actual work

of reading and writing is done in the jipc server processes. The code for the server

process is contained in jipcspsserver.c. This file contains the code for a stand-

alone process. The server continually performs a loop in which it waits for a com-

mand, performs the command, then waits for the next command. The server uses the

routines in sps.c to perform the actual acts of reading and writing.

86

The files, their contents, and their sizes are shown in figure 5.3. In addition, two

files containing useful routines are used in ESPS. They are bit_stuff.c and

probability.c. The first file contains routines for setting and reading individual bits

in bit strings (bit strings are represented as character arrays). Also included in the file

are routines for printing out and reading in bit strings, useful for debugging. The

second file contains routines for generating random numbers.

The file testk.c contains code to perform the single- and multi-step tests. The

parameters given to testk are contained in a file specifying word size, address size,

number of actual locations, words per address, read/write circle size, number of trials,

and the number of steps per trial.

EPS Code Details
File Contents Lenth

sps.c Code . for allocating and
initialising memory, reading
from and writing to memory,
on a single processor.

622 lines

jipc_sps.c Code for allocating and
initialising memory, reading
from and writing to memory,
on many processors.

344 lines

jipc_sps_server.c Code for server process. 180 lines
bit_stuff.c Bit string manipulation

routines.
258 lines

probability.c Random number generation. 113 lines
testk.c Code for tests. 290 lines

Figure 5.3. ESPS Code Details.

87

When run, it creates the necessary processes and perform the test, dumping the

results to a file with suffix .trace. In this file are the start and end time, and the

results of each step in each trial, giving the expectation, the reinforcement, and

whether the action or its inverse was written.

Typical runs involved up to four Sun Microsystem workstations, depending on

availability. Run times varied, depending on the test length, the number of steps per

trial, the size of the addresses, the size of the words, the number of actual locations,

the number of words per location, the number of machines used, and the load on each

machine. For example, a run involving 2500 trials, two steps per trial, 128-bit ad-

dresses and words, 10,000 actual locations, 50 words per location, and four Suns

takes 7.5 hours. A run involving 100 trials, one step per trial, 128-bit addresses, 8-bit

words, 10,000 actual locations, 10 words per location, and four Suns takes5 minutes.

5.2. Experiments

Two experiments were run, the first being a single-step learning problem, the

second a multi-step learning problem. The purpose of the first experiment is to estab-

lish that ESPS can correctly generate and test new solutions, discovering an optimal

solution on the basis of indirect feedback. It also establishes that ESPS can do struc-

tural credit assignment.

The second experiment extends the problem to a multi-step problem, where

reinforcement is only received after the last step. This tests ESPS 's ability to do tem-

poral credit assignment.

5.2.1. The Single-Step Experiment

In the single-step experiment, ESPS's task is to converge on a randomly chosen

n-bit word, called the target word. It does not know what the word is, and its only

88

feedback is the Hamming distance from its guess to the target. The situation is illus-

trated in figure 5.4. This is an instance of structural credit assignment because the

feedback is indirect. Knowing the distance between a guess and the target does not

give a direct indication of how the guess can be improved.

Before going on to discuss the algorithm, a word should be said about the prob-

lem. A programmer faced with solving the single-step problem and allowed to use

any means at his disposal would not choose to solve the problem using ESPS. It is

easy enough to devise an algorithm which would solve it in m steps, where m is the

number of bits in the target word. The algorithm would start with a random word,

and test each bit in turn. Bit k would be set to 1 and the feedback would be noted,

then set to 0 and the feedback noted. It would be then set to the value for which it re-

ceived the most feedback.

Environment

F = 1.0—d(g,t)/m

ESPS

guess
(g)

read(g, E)
write(g) if F≥E
writeg) if F<E

reinforcement
-: (F)

Figure 5.4. Single-Step Experiment.

89

Such a solution suffers from several drawbacks. First, it cannot generalise its

results from one solution to other similar problems. The ability to generalise is a na-

tural emergent property of SPS. Second, it works only on unimodal problems - those

problems with no local minima. The algorithm works by making small changes in

the solution and testing the effects of those changes. It is effectively doing a gradient

descent. Were the problem multimodal, it could conceivably get trapped in a local

minimum.

The reason for testing ESPS on a unimodal problem was to try the simplest

problem possible which was an instance of reinforcement learning. Further experi-

mentation will test its abilities on multimodal problems.

As shown in figure 5.4, the environment continually receives guesses (g) from

ESPS, and produces feedback (F), according to the formula

F = 1.0—d(g,t)Im

where t is the target word, and d(g, t) is the Hamming distance between g and t.

ESPS continually reads from memory, producing a guess and the expectation (E) for

that guess. When it receives the feedback for that guess, it updates its memory, writ-

ing g when feedback exceeds expectations, writing g when expectations exceed

feedback.

In the test programs, the roles of Environment and ESPS are both played by the

test program. That is, the environment and ESPS are not separate processes. The al-

gorithm used in the single-step is illustrated in the pseudo-code below.

90

repeat
begin
read(g, E)
F := 1.0 - d(g,t)/m
if F >= E then
write(g)

else
write(g)

end

Some tests used the binomial scheme to generate expectations, others used the linear

scheme.

5.2.1.1. Single-Step Experiment Results

ESPS was tested on a series of values for m, ranging from 8 up to 128. All tests,

with one exception, used a memory with 128-bit addresses, 10,000 locations, and a

read/write circle of 49 bits. The exception occurred for m = 128, where, due to time

considerations, an extremely small memory was used (1 actual location), with a

read/write circle of 128 bits. The tests and their results are summarised in figure 5.5.

For a given test, the number of trials to convergence is defined to be the first trial for

Word Size
(m)

Words Per
Address (p)

Test
Runs

Average Trials
To Convergence

Standard
Deviation

8 5 10 >200 -

8 10 10 68.0 47.896
8 15 10 28.4 11.74

16 20 10 107.7 40.93
32 30 10 219.1 80.97
64 50 1 471 -

128 90 1 3626 -

Figure 5.5. Single-Step Experiment Results.

91

which it and all subsequent guesses are correct.

As can be seen from the data in figure 5.5, several tests were run, varying both

the word size (m) and the number of words per address (p). FOr most configurations

10 runs were made, although once again due to time considerations, only 1 run was

made for m = 64 and m = 128. No standard deviation was calculated for the first test

(m = 8 and p = 5), as it never succeeded in converging (a limit of 200 was placed on

the number of trials in a test run form = 8)..

There are three salient points to note about the data, which will be discussed in

detail in the next section. First, the number of trials needed to converge grew as m

increased (a trial consists of a guess, the reinforcement given to that guess, and the

adjustment of expectation through storage of the guess or its inverse). Also, the

number of words per address that were required grew also, from 10 for m =8 to 90

for m = 128. Finally, for constant m, as p increased the number of trials required for

convergence decreased, as did the standard deviation.

To give a feel for the behaviour of ESPS on the single-step test, figure 5.6 shows

a graph of expectation (E), feedback (F) and distance (d(g,t)) for a run with m = 128.

For the most part, ESPS steadily improves its performance, although at times its per-

formance decreases, as it follows unproductive leads. The main point is that ESPS

does not suddenly "stumble" upon the correct answer. This is perhaps not surprising

in light of the fact that there are 2128 possible guesses, and only one is correct.

ESPS successfully completed the single-step experiment for m ranging from 8 to

128. When m was 128, it converged to the correct result in 3626 trials.

92 -

E (solid) .6
and

F (dotted) 4

128

—96

- 64 d(g,t)
(dashed)

—32

0

1000 2000 3000 4000 5000
Trial Number

Figure 5.6. Single-Step Experiment Results for n = 128.

5.2.1.2. Discussion of Single-Step Experiment

The first point to be discussed is the increase in the trials to convergence as m

increases. This is due to the increase in difficulty of the problem as m increases - the

search space doubles for every increase in m of 1, so that the search space for

m = 128 is 264 times as large as for m =64 for example. The results show an approx-

imate doubling in convergence time for every doubling in m, with the exception of

m = 128. The reasons for this exception are not clear but may be related to the

number of words per address used in the m = 128 experiment. In the previous experi-

ments, the number of words per address (p) was approximately the same as m. In the

case of m = 128 though, p was quite a bit less. The tests run with m = 8 show the in-

crease in performance as p increases, so the same could be expected if p was in-

creased for m = 128. The effects of changing the number of words per address (p)

93

are discussed next.

To understand why the number of words per address must increase as m in-

creases, the concepts of correct and incorrect decisions must be defined. These con-

cepts are defined relative to a single, arbitrarily chosen bit in the guess. A decision is

defined to be the choice of storing either the guess or its inverse. In terms of a single

bit, then, a decision is the choice of storing either the bit or its inverse. The decision

is correct when the bit stored is the correct value (equal to the target). The decision is

incorrect when the bit stored is the wrong value (the inverse of the target).

The list of words at an address contains a record of the last p decisions made by

the learning system involving that address, where p equals the number of words per

address. If the number of correct decisions exceeds the number of incorrect deci-

sions, then the probability of generating a correct guess is greater than 0.5 (assuming

that the f function is the binomial or linear function). Furthermore, correct guesses

are more likely to be stored as is (i.e., correctly), since a correct guess for a given bit

will increase the chance that the entire guess is close to the target. Similarly, if the

number of incorrect decisions is greater, then the probability of generating a correct

guess is less than 0.5. Incorrect guesses increase the likelihood that the inverse will

be stored (i.e., the correct decision is made), since an incorrect guess for a given bit

will decrease the chance that the entire guess is close to the target. ESPS thus works

to increase the population of correct guesses among the list of the last p decisions.

The reason why the number of words per address needed to be increased is due

to the decrease in the reliability of the feedback for a given bit as m increases. That

is, as m increases, the influence a single bit has on the the guess decreases, and there-

fore the influence of that bit on the feedback also decreases. The feedback received is

thus less reliable as an indicator of whether that particular bit was correct or not. Be-

94

cause of this, correct decisions are less likely to be made. More decisions must be

made and recorded before it becomes clear which is the correct value for a given bit.

Recording more decisions means increasing the number of words per address.

The final point to discuss concerns the increase in performance as p increases

for constant m. Three tests were run for m = 8, with p assuming values of 5, 10, and

15 (see figure 5.5). To test the change in performance, an hypothesis test was per-

formed on the data.

Let us define test0 to be the test where p = 10, and test1 the test where p = 15.

The hypothesis tested, H, is that there is an increase in performance from testo to

test1 that is statistically significant. That is, the mean of test0 (.t0) is less than the

mean of test1 (L). The risk of type-I error we are willing to accept is a = 0.05.

The hypothesis test to be run on the data requires that they be samples from a

normally distributed population. However, because of the size of the samples, this

cannot be established statistically. Instead, we will appeal to the central limit

theorem, which tells us that a variable which is the sum of many statistically indepen-

dent factors tends to be normally distributed.. In the case of the operation of ESPS,

the value of the variable (trials to convergence) is dependent on the the initial values

given to each memory location, the target, and the particular pertubations of the

guesses produced by the f function. I therefore assumed that the distribution of the

number of trials to convergence is normal. Even if the distribution is not normal, it

has been established that " violation of the assumption of normality has almost no

practical consequences in using the t-test" (Glass and Hopkins, 1984, pg. 237).

An unpaired directional t-test was run on the data. The result of the test was that

po < iii with probability > 0.95. So the hypothesis is accepted, and we can conclude

with reasonable certainty that the performance of test1 is greater than that of test0.

95

The explanation for the increase in performance lies in the size of p. The larger

p is, the greater the base of old decisions on which to make the current decision. As-

suming that correct decisions will be stored more frequently than incorrect decisions,

a larger p will increase the chances that, for a given sequence of decisions, correct de-

cisions will outnumber incorrect decisions.

These tests point out the shortcomings of storing a list of words at an actual lo-

cation, instead of bit sums. When m = 128, 90 words were stored at each address, re-

quiring 90x128 = 11520 bits per actual location. If bit sums were stored, it would

only take 128x8 = 1024 bits, assuming 8 bits per bit sum (having 8 bits per bit sum

would allow sums ranging from 0 to 255). Thus, bit sums use less storage space as

soon as the number of words per address exceeds 8. Also, they are easier and quicker

to work with. Writing would involve only incrementing and decrementing sums,

rather than shifting every member of the list. Reading would no longer involve exa-

mining each bit of each word to create the bit sums, since those bit sums already ex-

ist. The current implementation was written assuming few words per address would

be stored (around 4), and so lists of words rather than bit sums were used. Also, the

theory of SPS was developed by Kanerva (1984) assuming word lists, so to ensure

that the performance of the implementation kept as close as possible to that of the

theory, word lists were used in the implementation.

5.2.1.3. Comparison to ASN

Tests were run on ESPS to compare its performance to the Associative Search

Network (ASN), as described in Barto, Sutton and Brouwer (1981). Their experiment

involved the presentation of two <situation,action> pairs (or more accurately, two

<identifier, target> pairs). One identifier would be presented, and ASN would gen-

erate a guess. Feedback was the inner product of the guess and the target (output of

96

6.

-2.

-4

f1IJftftfLl' ,-VII • I I [nr JrJr{

Chance for X1

Chance for X2

0. 100. 200. 3 00. 400.

Tjmi Stsp6

ae

Figure 5.7. ASN Results (from Barto, Sutton, and Brouwer, 1981).

ASN is a vector of l's and 0's, the target is a vector of l's and - l's). This is essen-

tially equivalent to Hamming distance. This step was repeated 10 times for one

identifier, then 10 for the other, etc. Their experiment was designed to establish two

results. First, that it is possible to derive the correct result using only indirect feed-

back. Second, that it could be done with an associative network. Their results are

summarised in figure 5.7.

The values X' and X2 are the target vectors. The line indicated "Chance for

X1" is the expected payoff for a random guess of X1 's value. The size of X is 9.

A similar test was performed with ESPS, but with m = 8. That is, the target

words were slightly smaller than that used for the ASN (the implementation of ESPS

restricts words to be multiples of 8). The results of the test are shown in figure 5.8.

97

1

.8

.6

F

.4

.2

Chance

0

0 30 60 90 120 150
Trial Number

Figure 5.8. ESPS Results on ASN Test.

The expected feedback for a random guess is indicated by the dashed line labelled

"Chance". Feedback for the first target word is indicated by the solid line; that for

the second target word is indicated by the dotted line. Because ESPS converged fas-

ter than the ASN, only 150 trials are shown. Execution time was approximately 30

minutes when run on 3 Suns.

The experiments show that ESPS converges faster than the ASN. This is in part

due to SPS's storage scheme. Given two arbitrary <situation,action> pairs, it is un-

likely that they will have any actual locations in common because of the recoding

stage between the inputs and the weights. The result of this is that learning one pair

does not interfere with learning the other. In contrast, the ASN has no such recoding

stage, and so there is interference between pairs. Because the pairs were linearly in-

dependent, there existed a set of weights that enabled them both to be eventually

learned. However, learning was slowed by the interference between them.

98

5.2.1.4. Performance with Linear Rule

Tests were performed with ESPS using the linear f function. Performance of

ESPS form = 8 and 10 words per address is shown in figure 5.9.

Figure 5.9 shows that ESPS did not converge on the target word. This is not to

say that guesses were completely random. After about 50 trials, feedback was con-

sistently greater than 0.5 (the expected value if guesses were random), averaging

about 0.7. Therefore, some learning was taking place. However, it failed to progress

any further. It seems that the expectation generated by the linear rule is too pessimis-

tic - this causes guesses to be wider-ranging than necessary. That is, the expectation

associated with a guess is too low an estimate of the goodness of the guess. When

the comparison is made to the feedback to decide whether to reward or punish the

guess, bad guesses are rewarded unnecessarily. These bad guesses are written to

E (solid)
and

F (dotted)

0

0 20 40 60
Trial Number

80

Figure 5.9. ESPS Performance with Linear f Function.

100

99

memory (a guess for which feedback exceeds expectation is written to memory as is).

The effect is an increase in noise, negatively affecting the generation of the next

guess. Tests with more words per address (50) met with the same problem.

5.2.2. The Multi-Step Experiment

The multi-step experiment was designed to test ESPS's ability to solve a task in

which reinforcement is not given on each step.

In the multi-step experiment, the environment chooses a series of target words,

t1 to t8. ESPS guesses each word in the sequence, with feedback coming at the end

of the series of guesses. Feedback is calculated using the following formula:

d(g1,t1)
1.0

i=1

g

That is feedback is inversely proportional to the total distance between guesses and

their corresponding target words.

The feedback scheme for the multi-step experiment is more complicated be-

cause only the last step receives environmental feedback. Steps which don't receive

environmental feedback examine thô expected feedback of the following step to up-

date their own expectations. When their expectations exceed that predicted by the

following step, then their expectations are lowered. When their expectations are ex-

ceeded by that predicted by the following step, then their own expectations are raised.

The pseudo-code for the multi-step experiment is rather difficult to illustrate,

since the expectation for one step cannot be updated until the next one is read and its

expectation calculated. It is more easily illustrated from the point of view of a bit lo-

cation. The rule is:

100

w(t+l) = w(t)+greater (F (t + 1), E (t)) (2y (t)— 1)

Where w(t) is the value in the bit location at time t, E(t) is the expectation at time t,

and greater (x,y) is 1 when x≥y, -1 otherwise. F(t+1) is a feedback signal that for

the last step is the environmental feedback, and for all other steps is the expectation

of the next step. Feedback for an action at time t is received at time t+1.

ESPS has not successfully completed the multi-step experiment. A test in which

m = 8 is shown in figure 5.10. Each trial consisted of two steps. In the first step, an

8-bit guess was generated along with its expectation. The second step also generated

an 8-bit guess and an expectation. This second expectation was the feedback for the

first. The environmental feedback was the feedback used by the second step. Ad-

dresses were 128 bits long, there were 100 words per address, 10,000 actual loca-

tions, a read/write circle of 49 bits, and the binomial f function was used. Run time

was 6 hours on 3 Suns. The graph shows the expectations generated on the first and

E1 (solid) .6—
E2 (dotted)

and
F(dashed) .4-

0 50 100 150
Trial Number

200 250

Figure 5.10. Multi-Step Experiment Results..

101

second steps (the solid and dotted lines, respectively), as well as the environmental

feedback (the dashed line).

Figure 5.10 shows ESPS's inability to converge on the correct sequence of

guesses. The problem lies with the widely-varying values for expectation generated

on the second step. The first step relies on these values for adjusting its expectations.

Such widely-varying values would send it confusing signals, making correct adjust-

ments more difficult. Nevertheless, if correct decisions are more common than in-

correct decisions, it should be possible to eventually converge on the correct answer.

Two tests were run in which correct and incorrect decisions were recorded.

Both had the same memory configuration (8-bit words, 128-bit addresses, 10000 ac-

tual locations, 30 words per address, and a read/write circle size of 49 bits). The first

test ran for 250 trials, the second for 1000. Both were two-step multi-step tests. Of

particular interest is the number of correct and incorrect decisions made on the first

step. In the case of the 250 trial run, 121 correct decisions were made, while 129 in-

correct decisions were made. In the case of the 1000 trial run, 504 correct decisions

were made, while 496 incorrect decisions were made.

The reasons why the secondtest had more correct decisions than incorrect deci-

sion on the first step are unknown; it is possible that, given enough trials, correct de-

cisions will always outnumber incorrect decisions. It is also possible that the fact that

correct decisions outnumbered incorrect decisions on the second test was a chance

event, and that correct decisions will in general not outnumber incorrect decisions.

For the moment, assume that correct decisions will eventually always outnumber in-

correct decisions, and that the proportion of correct decisions is very close to 0.5, as

is the case in the second test.

102

Recall that in the discussion on the single-step experiment, it was stated that the

list of words at an address contains a record of the last p decisions made by the learn-

ing system, where p equals the number of words per address. It was argued that as n

increased, the reliability of the feedback decreased, meaning that correct decisions

are less likely to be made. Therefore, as the proportion of correct decisions ap-

proaches 0.5, p must be made larger, large enough to contain a statistically significant

sample of decisions. In the case of the second run of the multi-step experiment, the

proportion is 0.504, too close to 0.5 for 30 words per address to be able to contain a

statistically significant sample - it is quite possible that a group of 30 consecutive de-

cisions will contain more incorrect than correct decisions. If 250 words per address

were stored, we could expect about 126 correct and 124 incorrect decisions to be

made. This would bias the output, perhaps enough to make convergence to the

correct result possible. Unfortunately, due to the method used to implement ESPS,

storing 250 words per address results in unmanageably large processes. Testing this

hypothesis would require a reimplementation with bit sums rather than word lists.

Figure 5.11 illustrates the results of the tests. Figure 5.11(a) shows the cumula-

tive proportion of correct decisions at each trial. The first test (250 trials) is plotted

with the dotted line, the second (1000 trials) with the solid line. Figure 5.11(b) shows

the proportion of correct guesses over the last 30 guesses at each trial. Since each ac-

tual location contains 30 words, this gives an indication of the sample ESPS worked

with to generate the next guess.

5.3. Conclusions

To summarise the results, ESPS has successfully solved the single-step learning

problem, thus demonstrating its ability to generate new solutions and do structural

credit assignment. Its performance compares favourably to that of another reinforce-

103

.0 -

.6—
Proportion
Correct

.4

0

0
I I

200 400 600 800 1000
Trial Number

(a) Cumulative Proportion of Correct Guesses.

.6—
Proportion
Correct

.4-

0 200 400 600
Trial Number

800 1000

(b) Proportion Correct Over Previous Thirty Guesses.

Figure 5.11. Correct/Incorrect Test Results.

104

ment learning system, the Associative Search Network (Barto, Sutton, and Brouwer,

1981). ESPS has not solved the multi-step learning problem, and so has not demon-

strated the ability to do temporal credit assignment.

The reasons for ESPS failure to solve the multi-step problem are not clear.

ESPS is lacking a theory which can explain why it performs as it does. At the mo-

ment, adjustments such as changing the number of words per address are made on the

basis of the effects of past adjustments that were found to work. The reasons why the

adjustments work are unknown - all that is known is that they cause the intended

results.

A theory of learning in ESPS could answer the following questions:

(1) What is the effect of different f functions? Why does the binomial function

work while the linear one does not?

(2) Is learning in ESPS general, or does it just work for this particular combination

of problem and f function? For example, can it cope with multimodl prob-

lems?

(3) Should the mechanisms of expectation and generation be separated, as with

ASE/ACE (Barto, Sutton, and Anderson, 1983) and Holland's Classifier system

(Holland, 1986)? Having them combined as in ESPS makes the range of values

taken by reinforcement important. If reinforcement never reaches a high

enough value, expectations will always be low, and thus generated solutions will

vary considerably from step to step.

(4) Should expectations be calculated differently? The failure to solve the multi-

step problem is due in part to the wide variations in the value of expectation for

the second step, thus providing confusing feedback for the first step. The varia-

tions in expectation are caused by the manner in which it is calculated - the ex-

105

pectation for a word depends on the probable value of each bit and its actual

value. It may be that expectations should depend only on the probable value of

each bit.

CHAPTER 6

Discussion

6.1. Summary

Chapter 1 introduced reinforcement learning problems, which are those prob-

lems characterised by an environment which offers indirect and infrequent reinforce-

ment. Two types of learning systems were introduced: supervised and reinforcement

systems. Supervised systems require an environment which offers direct and fre-

quent reinforcement. In effect, the environment has to know how to solve the prob-

lem. Reinforcement systems do not require an "intelligent" environment, needing

only a rating of their performance rather than explicit solutions.

Chapter 2 surveyed supervised and reinforcement learning systems, and esta-

blished that supervised systems, while capable of memorising <situation,action>

pairs and performing generalisation, cannot solve reinforcement problems. Chapter 2

argued that reinforcement learning systems must overcome the problems of credit as-

signment and solution generation; and showed how each of the reinforcement sys-

tems covered did so.

Chapter 3 discussed SPS, a supervised system which is a model of the cerebel-

lum. Its properties and its realisation with neuron-like components was discussed.

Chapter 4 presented ESPS, an extension of SPS which can solve reinforcement prob-

lems. That is, it can generate new solutions and perform credit assignment. The abil-

ity to generate solutions was added by making reading non-deterministic. Credit as-

signment was added by introducing the idea of expectation and by extending the no-

tion of feedback to include the expectations of succeeding steps. Physiological

106

107

justification for these changes was presented. Non-deterministic reading was justified

by assuming that neurons in the cerebellum are imperfect (they were assumed to

work perfectly in SPS). The extended notion of feedback required redefining the role

of climbing fibres, and by postulating that the expectations generated during reading

could be broadcast by interneurons, perhaps by a path that left the cerebellum and re-

turned via the climbing fibres.

Chapter 5 presented the results of experimentation with ESPS. ESPS was tested

on two experiments, one designed to test its ability to generate new solutions and do

structural credit assignment (the single-step experiment), the other designed to test its

ability to do temporal credit assignment (the multi-step experiment). ESPS solve the

single-step problem, but did not solve the multi-step problem. In discussing its per-

formance on the single-step problem, the concepts of correct and incorrect decisions

were introduced. These concepts were used to explain why an increased number of

words per address were required as m (the size of the target word) increased. They

were also used in explaining ESPS's failure to solve the multi-step problem. It was

postulated that ESPS could solve the multi-step problem if the number of words per

address were increased to approximately 250.

In addition, ESPS was tested on two f functions (binomial and linear), and was

found to be sensitive to the particular f function used. It could solve problems using

the binomial f function, but not with the linear function. ESPS was also tested on an

experiment similar to one performed with the Associative Search Network (Barto,

Sutton, and Brouwer, 1981). Its performance was found to be comparable to ASN's.

6.2. Conclusions

Solving reinforcement problems is important, and difficult. Important, because

it breaks the reliance on an environment which is "smarter" than the learning system.

108

Difficult, because it requires translating a "low quality" feedback signal which only

indirectly specifies correct behaviour into a set of rules producing the correct

behaviour.

A reinforcement learning system must be able to correctly assign credit and gen-

erate new solutions. Because reinforcement is infrequent, each step in a solution is

not rated. Therefore, the reinforcement learning system needs a scheme which can

correctly assign ratings, or credit, to each step of the problem. Because the reinforce-

ment is indirect, providing only a rating of the overall behaviour of the system, it can-

not be used directly to correct the solutions generated by the learning system. The

learning system must be able to generate new solutions and judge the effects of those

solutions.

ESPS is interesting not only because it can solve a reinforcement learning prob-

lem, but also because it is based on a model of the cerebellum, SPS. Because ESPS

is based on a model of the cerebellum, and because the changes made to SPS were

physiologically plausible, it suggests that the cerebellum may be capable of solving

reinforcement learning problems.

The conclusions that can be drawn frQm this thesis are:

(1) The credit assignment problem has structural and temporal forms. When a

solution is produced as the combined results of several portions of a system, the

credit, or rating, given to the solution must be properly assigned to each portion.

This is a structural credit assignment problem. When a solution is composed of

several steps, the credit given to the solution must be properly assigned to each

step. This is a temporal credit assignment problem.

(2) It is possible for ESPS to solve a reinforcement learning problem. Its success in

the single-step problem shows that ESPS can solve the structural credit assign-

109

ment problem, and its performance was comparable to that of ASN (Barto, Sut-

ton, and Brouwer, 1981). It did not succeed in solving the multi-step problem,

which is a problem of temporal credit assignment, but there is evidence to sug-

gest that this failure is due to storing too few words at each actual location, rath-

er than a some qualitative shortcoming.

(3) The ability of ESPS to solve a problem is dependent on the particular ffunction

used. The experimental results showed that, while able to solve the single-step

problem using the binomial f function, fB, ESPS was unable to solve the prob-

lem under the same conditions using the linear f function, fL. The results are

not conclusive, however, and it would be premature to state that ESPS could

never solve the single-step problem using fL. We can conclude that the perfor-

mance of ESPS is sensitive to the particular function used.

(4) The ability of ESPS to solve a problem is dependent on the number of words

stored per address. The experimental results showed that a certain minimum

number of words per address is required before ESPS can converge on the

correct result in the single-step problem. Fuithermore, the results of the multi-

step tests suggest that ESPS could solve the multi-step test if the number of

words per address were increased to a value of approximately 250. Unfor-

tunately, the current implementation makes testing that hypothesis impractical.

6.3. Future Work

Future work includes a reimplementation of ESPS using bit sums at actual loca-

tions instead of lists of words. With this reimplementation, it would be possible to

test the hypothesis that the multi-step problem could be solved by having the

equivalent of 250 words per address.

110

At the present, ESPS can only solve a unimodal, single-step -reinforcement

learning problem. To cope with infrequent reinforcement it must be able to solve the

multi-step problem. Furthermore, both the single- and multi-step problems are uni-

modal. Dealing with multimodal problems is significant, as can be seen by the

amount of effort devoted to solving such problems in supervised systems. ESPS's

use of a probabilistic function to compute output means theoretically that any local

minimum can be escaped (unless the probabilities are 1 or 0). However, the time to

escape these minima and find the global minimum may be impractically large.

At the moment, questions regarding the rate of convergence can only be

answered through experimentation. Developing a mathematical model of ESPS

would help in answering this question, as well as others concerning its ability to solve

multimodal problems, and the effects of various f functions.

The tests devised so far do not test many of the capabilities of ESPS inherited

from SPS. SPS has the ability to generalise, producing actions for situations which

have not been previously seen. The actions produced are a kind of average of simi-

lar, previously seen, situations. This is an important capability in problem domains

where performing similar actions in similar situations is a reasonable strategy. Nei-

ther the single- and multi-step problem test this capability.

Finally, for ESPS to be applied to real-world problems, values from the world

must be translated into the n-bit words used by ESPS. Real-world values are often

real-value quantities, such as joint positions and velocities, or perhaps vectors of

reals, such as an image bitmap. Each value will have a measure of similarity defined

for it. The translation process is difficult because it must maintain the similarities

that existed, in spite of these values being converted into n-bit vectors in which Ham-

ming distance is the measure of similarity. Some preliminary work has been done in

III

this area (Schack, 1986).

References

Ackley, D.H., Hinton, G.E., and Sejnowski, T.J. (1985). A learning algorithm for

Boltzmann Machines. Cognitive Science, 9, 147-169.

Albus, J. (1971). A theory of cerebellar function. Mathematical Biosciences, 10, 25- S

61.

Albus, J. (1975). A new approach to manipulator control: the cerebellar model articu-

lation controller (CMAC). Journal of Dynamic Systems, Measurement, and Control,

97, 220-227.

Anderson, J.A. (1983). Cognitive and psychological computation with neural models.

IEEE Transactions on Systems, Man, and Cybernetics, smc-13, 799-815.

Andreae, J.H. (1972). Man-Machine Studies. Progress Report no. UC-DSE/1(1972)

to the Defence Scientific Establishment. Department of Electrical and Electronic En-

gineering, University of Canterbury, Christchurch, New Zealand. (This report is also

available from the N.T.I.S., 5285 Port Royal Rd, Springfield, Virginia 22161).

Andreae, J.H. (1977). Thinking with the Teachable Machine. Academic Press.

Andreae, J.H., and MacDOnald, B.A. (1987). Expert control for a robot body.

Research Report no. 87/286/34, Department of Computer Science, University of Cal-

gary.

112

113

Arshaysky, Y.I., Gelfand, I.M., and Orlovsky, G.N. (1986). Cerebellum and Rhythm-

ical Movements. Springer-Verlag: Berlin, Heidelberg.

Barto, A.G., Sutton, R.S., and Brouwer, P.S. (1981). Associative Search Network: A

reinforcement learning associative memory. Biological Cybernetics, 40, 201-211.

Barto, A.G., Sutton, R.S., and Anderson, C.W. (1983). Neuronlike adaptive elements

that can solve difficult learning control problems. IEEE Transactions on Systems,

Man, and Cybernetics, smc-13, 834-846.

Blomfield, S., and Marr, D. (1970). How the cerebellum may be used. Nature, 227,

1224-1228.

Chou, P.A. (1987), The capacity of the Kanerva associative memory is exponential.

To be published in Collected papers of IEEE conference of Neural Information Pro-

cessing Systems, Denver, Colorado, November, American Institute of Physics..

Cohen, P.R., and Feigenbaum, E.A. (1982). The Handbook of Artificial Intelligence,

Volume 3. Los Altos, California: William Kaufmann, Inc.

Glass, G.V., and Hopkins, K.D. (1984). Statistical Methods in Education and

Psychology. Second edition, Prentice-Hall: Englewood Cliffs, New Jersey.

Holland, J.H. (1986). Escaping brittleness: The possibilities of general-purpose learn-

ing algorithms applied to parallel rule-based systems. In Michalski, R.S., Carbonell,

J.G., and Mitchell, T.M. (Editors), Machine Learning, (volume II, pp. 593-623). Los

Altos, California: Morgan Kaufmann.

114

Hopfield, J.J. (1982). Neural networks and physical systems with emergent collective

computational abilities. Proceedings of the National Academy of Sciences, USA, 79,

2554-2558.

Howard, R.A. (1966). Dynamic Programming and Markov Processes. MIT Press.

Jordon, M.I. (1986). An introduction to linear algebra in parallel distributed process-

ing. In Parallel Distributed Processing: Explorations in the Microstructure of Cog-

nition, Vol. 1, D.E. Rumelhart, J.L. McClelland, (Editors), Bradford: Cambridge,

MA.

Kanerva, P. (1984). Self-propagating search: A unified theory of memory, (doctoral

dissertation, Stanford University), University Microfilms, 1984.

Keeler, J.D. (1987). Information capacity of outer-product neural networks. Physics

Letters A, Volume 124, number 1,2, 53-58.

Kirkpatrick, S., Gelatt, C.D. Jr., and Vecchi, M.P. (1983). Optimization by simulated

annealing. Science, 220, 671-680.

Kohonen, T. (1984). Self Organization and Associative Memory. Berlin: Springer-

Verlag.

Llinás, R.R. (1975). The cortex of the cerebellum. Scientific American, 232(1), 56-

71.

Marr, D. (1969). A theory of cerebellar cortex. The Journal of Physiology, 202, 437-

470.

115

Miller, W. Thomas Ill, Glanz, F.H., Kraft, L.G. 111(1987). Application of a general

learning algorithm to the control of robotic manipulators. The International Journal

of Robotics Research, Volume 6, Number 2, 84-98.

Minsky, M., and Papert, S. (1969). Perceptrons. Cambridge, MA: MIT Press.

Narendra, K.S., and Thathachar, M.A.L. (1974). Learning automata - a survey. IEEE

Transactions on Systems, Man, and Cybernetics, 4, 323-334.

Nash, L.K. (1974). Elements of Statistical The rmodynamiOs, (second edition),

Addison-Wesley: Reading, MA.

Pellionisz, A.J. (1984). David Marr: A theory of the cerebellar cortex. In Brain

Theory, G. Palm, A. Aertsen, (Editors), Springer-Verlag: Berlin, Heidelberg.

Rosenblatt, F. (1962). Principles of Neurodynamics. Washington, D.C.: Spartan.

Rumelhart, D.E., Hinton, G.E., and Williams, R.J. (1986). Learning internal represen-

tations by error propagation. In Parallel Distributed Processing: Explorations in the

Microstructure of Cognition, Vol. 1, D.E. Rumelhart, J.L. McClelland, (Editors),

Bradford: Cambridge, MA.

Samuel, A.L. (1963). Some studies in machine learning using the game of checkers.

In Feigenbaum, E.A. and Feldman, J. (Editors) Computers and Thought, (pp. 71-105).

New York: McGraw-Hill.

Schack, B. (1986). Self-Propagating Search: A Study. (final report for CPSC 601.69,

University of Calgary).

116

Sejnowski, T. (1986). Open questions about computations in cerebral cortex. In

Parallel Distributed Processing: Explorations in the Microstructure of Cognition,

Vol. 2, J.L. McClelland, D.E. Rumeihart, (Editors), Bradford: Cambridge, MA.

Unger, B.W., Dewar, A., Cleary, J., and Birtwist1e, G.M. (1986). A distributed

software prototyping and simulation environment: Jade. Proceedings of the Confer-

ence on Intelligent Simulation Environments, 17 (1), San Diego, 63-71, SCS Simula-

tion Series.

Widrow, B., Gupta, N.K., and Maitra, S. (1973). Punish/reward: Learning with a cri-

tic in adaptive threshold systems. IEEE Transactions on Systems, Man, and Cyber-

netics, 3, 455-465.

