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ABSTRACT  

The development of the program CANDSN for designing and 

adjusting horizontal survey networks using interactive computer 

graphics is presented in this thesis. The design mode uses an 

iterative approach for the solution of the first, second, and 

third order problems. The adjustment mode includes a complete 

analysis of the observations and the results. 

The method of least squares is used for the computations. 

Sequential adjustment expressions are presented that enable the 

rapid updating of a previous solution when adding or deleting 

observations or paramaters. Special techniques for saving compu-

tation time and computer memory are employed. These include 

sequential formation of the normal equations, elimination of the 

orientation unknowns, efficient matrix inversion and storage algo-

rithms, and reuse of the inverse of the normal equations during 

iteration. 

The program employs graphical input and output techniques 

that make it easy to use. This is achieved through the use of a 

graphics terminal, a digitising tablet, and a flatbed plotter. The 

program has been implemented on a PDP-11/23 mini-computer and is 

written as a collection of FORTRAN subroutines. 

Experience with the program has shown it to be a powerful 

tool with applications in the fields of geodetic, engineering, and 

cadastral surveys; as well, it is useful in the teaching of network 

design. 
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Chapter 1 

INTRODUCTION  

In any engineering project, the design stage is critical 

to the successful completion of the project. Surveying Engineering 

is no exception. The design of a survey network, the subject of this 

research, involves deciding where the stations must be placed and 

what observations ( including their accuracies) must be made in order 

to satisfy the accuracy requirements for the survey. Anderson [ 1982] 

introduces the concept of total optimisation of the design of a 

survey project. Included in this concept is the simultaneous optimi-

sation of accuracy, sensitivity, reliability, and logistics including 

manpower, equipment availability, the time frame of the project, and 

costs. In his conclusions, he points out that the model for such a 

simultaneous optimisation is yet to be formulated. He does, however, 

outline a sequential model in which each component is optimised 

separately, but not independently of the other components. 

The research reported in this thesis is aimed at implementing 

an efficient program for designing survey networks for optimum accura-

cy that could be easily extended to include other design criteria. 

This is the accuracy component of Anderson's total optimisation model. 

The technique of least- squares preanalysis was chosen at the start of 

the project as the method to use for the accuracy design as it is 
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widely accepted by the surveying community. Preanalysis ( called cova-

riance analysis in mathematics) is the simulation of the propagation 

of uncertainties in the observations to uncertainties in the results. 

The mathematical basis and equations for this are presented in Chapter 

2. Alternative approaches to the preanalysis of a network and the 

reasons for the approach chosen are presented in the remaining sections 

of this chapter. 

1.1 Design Types  

When designing a survey network to meet a given set of speci-

fications, three different types of design problems may occur [ Grafa-

rend, 1974; Vanicek and Krakiwsky, 1982]. In all the problems, the 

accuracy specification is given in terms of the desired covariance 

matrix of the coordinates (Cr) or a subset of it. In the first-order  

design problem, the covariance matrix of the observables ( Cf,) is 

assumed known. The problem is to find what geometric combination of 

observables ( design matrix A) will yield the desired results. In the 

second-order design problem, the design matrix A is known and the 

required accuracy of the observables (C,) is determined. If both A 

and C2, are unknown the problem is referred to as being a third-order  

design problem. 

The first-order design problem corresponds to a situation where 

there is no choice of instrumentation for the survey. If the only 

equipment available is, say, a 12 theodolite and an AGA112 EDM, the 

only variable in the design is the configuration of the network. The 
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second-order design problem is the reverse situation. The configura-

tion is fixed but there is a choice of instrumentation. An example of 

this situation would be a monitoring survey for a dam. There are typi-

cally only a few stable points available that can be occupied, and 

the locations of the target points on the dam will be specified by 

the engineer so that the best results may be obtained from the deforma-

tion model. 

The first and second-order design problems are subsets of the 

third-order design problem. For this reason, the program developed 

for this research was configured to solve the third-order problem. The 

first and second-order problems can be solved by simply not allowing 

the C. or A matrices to change. 

1.2 Design Methods  

There are several approaches to the calculation of the optimal 

design. The approaches and their advantages and disadvantages are 

presented here. The approach chosen for this research and the reasons 

for its choice are given in this section. 

The first possibility for the solution is the direct mathema-

tical approach. With this approach the unknowns, C and or A, are 

solved for directly as a function of C using constraint and condition 

equations [Schmitt, 1981]. This technique has been applied to the 

solution of the second-order design problem [ Grafarend, 1981; Koch, 

1981] but is not without its problems. The C matrix that results 

from the computations is generally singular and occasionally has 
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negative variances in it. A singularCmatrix is in direct conflict 

with reality. Survey observations are from the real world and as such 

have finite positive variances. In addition, they are generally 

uncorrelated and where correlations do exist, they are small. If 

the negative variances in the computed C, matrix are interpreted as 

indicating that the observation does not add to the accuracy of the 

network {Schaffrin, 1981] and these observations are deleted from the 

design, the network may break into several individual networks with 

single ties between them. This conflict with good surveying practice 

casts considerable doubt on the pure mathematical approach. 

The alternative to the direct solution is the iterative 

(trial and error) solution shown in Figure 1.1. Using this method, 

the user enters an initial design for the network based on a combi-

nation of practical experience, intuition, and common sense. The 

C, matrix for this design is then computed and the differences bet-

ween it and the desired C< are analyzed. On the basis of the analysis 

and the user's knowledge of error propagation in surveying networks, 

the design is updated and a new C> computed and analyzed. This 

process continues until the design is acceptable. This process will 

not generally yield an exact optimum design ( in the mathematical sense) 

but the design will be a reasonable compromise. This is particularly 

true when we consider that the range of variances on surveying obser-

vables is not continuous but consists of only several discrete possi-

bilities. As an example, the electronic distance measuring instruments 

in use today have accuracies of 1mm + 1ppm, 5mm + 2ppm, 5mm + 5ppm, 
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or 15mm + 3ppm. If the exact optimum solution specifies the use of 

a 10mm + 6ppm instrument, a 5mm + 5ppm instrument would be used 

anyway as the specified instrument does not exist. 

There are two approaches to the iterative solution. The 

first of these is the batch approach. With this method, the computa-

tion and analysis of the trial C matrix is submitted as a batch job 

on the computer and the results presented in the form of a printout. 

The results may also be plotted on an offline plotter. The disad-

vantage of this approach is the time delay between the submission 

of the batch job and the receipt of the results. This delay can be 

as long as a day. This interruption of the design process is a 

significant hindrance to an efficient design as the designer loses 

track of what has been done. 

The alternative to the batch approach is to use an interactive 

approach. Using this method, the computations are done in real time 

and the results presented pictorially using a graphics terminal. This 

fast presentation of the results allows the user to maintain his 

concentration on the problem. The user does not have to wait until 

tomorrow to see the results of a change he made today. In addition, 

the pictorial representation of the results is an invaluable aid in 

their interpretation ( see Section 6.2 for examples). 

It should also be noted that a graphics terminal is not only 

an output device, but also a very powerful and useful input device. 

With a graphics terminal, commands may be entered using -the cursor 

and a menu and stations can be identified quickly and naturally by 
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pointing to them with a light- pen or the cursor. Not only do features 

like these make a program easier to use, but the number of user errors 

tends to decrease markedly. 

1.3 Program CANDSN  

Program CANDSN ( Computer Aided Network DeSigN) was written as a 

result of the research reported in this thesis. It uses the iterative 

approach to solve the third-order design problem using interactive 

computer graphics. The idea originated with E.J. Krakiwsky at the 

University of New Brunswick, and Nickerson t1977J did a feasibility 

study on this technique concluding that it was a viable, simple, and 

useful tool. 

Nickerson developed specialised equations for the various 

cases of addition or deletion of observables and stations. A unified 

approach has been developed in this thesis that uses only one sequential 

update equation for all network modifications. This approach is 

developed in Sections 2.2 and 2.3. 

One of the objectives of the research was to implement the 

design on a small computer. It was felt that by making use of a 

smaller, and therefore less expensive, computer the use of the 

software package by smaller survey companies would be more likely. 

Special techniques had to be employed that would permit the rapid 

solution of large problems with such a small machine. These techniques 

are presented in Chapter 3. The result of the use of these methods is 
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that the program is theoretically capable of solving any size problem. 

The limits to the size of problem that can be solved with CANDSN and 

the reasons for the limits are presented in Section 6.1.4. A discus-

sion of the hardware configuration assembled is presented in Chapter 

5 along with a description of the programming techniques. 

Two of Nickerson's key recommendations were that the inclusion 

of weighted stations ( stations with apriori covariance information on 

their coordinates) in the network being designed be possible, and that 

the program also have the ability to perform the final adjustment of 

the network once the observations have been made. Both of these 

recommendations have been implemented. The first of these is accomp-

lished by the unified approach developed in Sections 2.2 and 2.3. The 

second recommendation was implemented by simply using the complete 

set of least squares adjustment equations presented in Section 2.1. 

In addition, most of the information entered at the design stage is 

also needed for the adjustment. Accordingly, program CANDSN has been 

written with network adjustment as one of its options. Once a network 

has been adjusted, the results of the adjustment must be analyzed. The 

tools used in this analysis are presented in Chapter 4. 

No program will receive extensive use unless it is " user 

friendly". This implies that it must be easy to use, easy to learn, 

and handle bad data gracefully. CANDSN has been carefullydesignedand 

written with these considerations in mind. Section 6.1 discusses 

these concepts further and explains how they are implemented in CANDSN. 

This is followed in Section 6.2 by some examples of network designs 
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done with the CANDSN software package. 



Chapter 2 

MATHEMATICAL BASIS  

A well designed survey network is normally overdetermined, 

that is, there are more observations made than are necessary to unique-

ly determine the coordinates of the unknown points. The advantages of 

having an overdetermined network include; ( a) an increase in the 

accuracy of the results; ( b) the ability to statistically analyse 

the observations for blunders; and ( c) the possibility of deleting 

bad observations without having to return to the field to collect more 

data. 

An overdetermined network leads to an inconsistent set of 

equations. There are an infinite number of possible solutions to 

such a set of equations. The method of least squares is presented 

in the next section as the solution to an overdetermined set of 

linear equations. This is followed by a presentation of the mathema-

tical models used for the survey observation types that are included 

in CANDSN and the application of the method of least squares to the 

solution of an overdetermined set of non-linear equations. 

The last section of this chapter shows a reformulation of the 

least squares equations for sequential updating of the solution. This 

is essential for CANDSN as it allows the efficient updating of a trial 

solution during the design stage. It is in this section that the 

unified update approach used in CANDSN is presented. 
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2.1 The Method of Least Squares  

The least squares method is a standard mathematical tool used 

for the solution of a set of overdetermined linear equations. It 

gives a solution that is an unbiased minimum variance estimate of the 

unknown parameters [ Hamilton, 1964]. The solution is also a maximum 

likelihood estimate if the observations have a symmetric unimodal dist-

ribution [Aoki, 1967]. The least squares adjustment equations will be 

presented here without proof or derivation. Readers interested in the 

derivation are referred to any of the many books and papers on the 

subject, eg. [Mikhail, 1976; and Vanicek and Krakiwsky, 1982]. 

The least squares equations used in CANDSN are given below. 

The linear mathematical model is: 

Ax + B.c. + c = 0, (2.1) 

where x is the vector of unknown paramaters, 

.e. is the vector of observations, 

is a vector of constants, 

A is the first design matrix, and 

B is the second design matrix. 

The solution is 

= [AT (BC BTYlA + Cx1] 1[AT (BC BT) 1w] 

where C is the covariance matrix of the observations, 

C is the apriori weight matrix of the unknowns, and 

indicates a least squares estimate. 

(2.2) 
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The covariance matrix of the estimated paramaters is 

C = N1 = [AT(BCBT) A + Cx ]• 

If the scale of C(ci) is not known then the covariance matrix 

is given by 

,.2 - 1 
Cci0 N 

where 30 is the estimated variance factor and is given by 

Equation 2.9. The adjusted observations (2.) are given by 

where A = _C P. BT (BC 2,BT) 1 ( AA + w) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

and is referred to as the vector of residuals. The covariance matrix 

of £. is given by the difference of two covariance matrices 

CA = C CA 9 

where the covariance matrix of the estimated residuals ( C) is 

given by the expression 

CA = CB ( BC BT) [I - ACAT (BC BT) I BC E. 

The estimated variance factor is given by 

2 - ATc' + ATC' 
eo - x  

v + n 

(2.7) 

(2.8) 

(2.9) 
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where v is the number of degrees of freedom (= n - u), 

m is the number of equations, 

u is the number of unknowns, and 

is the number of paramaters with apriori variances and 

covariances. 

At this point, a brief discussion of the computed values is 

appropriate. The vector R is the estimate of the unknown paramaters 

and needs no further elaboration. The matrix C ( or C) is the cova-

riance matrix of R and fully describes the accuracy and interdepen-

dence of the paramaters. It reflects both the accuracy of the obser-

vations and the effect of the geometry of the network on the accuracy 

of X. This matrix is essential to both the design of a network and 

the analysis of the results of an adjustment. Interpretion of the 

contents of C^ will be discussed in Section 4.3. An examination of 

Equation 2.3 shows that no observed values are required for the 

computation of C. It is strictly a function of the design matrices, 

the observational accuracies,nd the apriori accuracies of the unknown 

paramaters. The first two are the variable elements in the third-

order design problem, while one of them is known in the first and 

second-order design problems. Thus it is possible to compute the C 

matrix before conducting a survey. This is the basis of preanalysis. 

The vector £ is the estimate of the true value of the obser-

vation. The observations, £, have random errors associated with them. 

The residual vector, r, is the estimate of the random errors. The 

analysis of the observations ( Section 4.2) uses this vector to test 
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the correctness of the vector of observations (-a). The associated 

covariance matrix CA is also required fQr the analysis. 

2.2 Mathematical Models  

A math model is an equation defining the functional relation-

ship between the observables () and the unknowns (x). The general 

form ofa math model is f(x,) = 0. The model is formulated on the 

basis of physical and geometric laws and must have the following 

properties: 

a) It must fully describe the geometry of the network; 

b) All observations must be used; 

c) The equations must not be linearly dependent; and 

d) The unknown paramaters must not be linearly dependent. 

There are eight math models used in CANDSN. They are all 

formulated on the conformal mapping plane and have the special form 

f(x) - t = 0. The first four models deal with the standard surveying 

observations. The distance model is 

E(N - N) 2 + (E. 3 - E. 1)2j½ - S ij = 0 , (2.10) 

where N is the unknown northing, 

E is the unknown easting, and 

S ii is the distance between points i and j. 

The azimuth model is 

/N 3  3 1 ) = 0, 

\E. - E 1.\/ 
(2.11) 
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where c j is the azimuth from i to i. 

The angle model is 

- N.\ 
.tYivi (  r.. 

\ E - EJ 

where 0ijk is the angle from j to k at i. 

Finally, the direction model is 

_1/N. - 

tan _____ 

0ijk = (2.12) 

- d = 0, (2.13) 

where d ii is the direction from i to j, and 

c is the orientation unknown. 

The newly introduced paramater 1 simply transforms a direc-

tion to an azimuth. One orientation unknown is introduced for each 

round of directions or one for each round of adjusted directions 

resulting from the station adjustment of a set of direction observa-

tions. The elimination of this nuisance paramater is presented in 

Section 3.2. 

The fifth and sixth math models used in CANDSN are the coor-

dinate difference models. They are used to allow the inclusion of 

e.g., satellite translocation or intertial survey results in the 

network. The models are 

(N - N) - AN ij  = 0, (2.14) 
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and 

(E - E) - AE ij  = 0 , (2.15) 

where AN ii is the difference in the northings of points i and j 

and AE ij is the difference in the eastings of points i and j. 

The last math models used in CANDSN are the coordinate obser-

vation models. They have two different applications. They may be 

used to include stations established by, e.g., satellite point 

positioning methods or previously determined in a separate network 

adjustment. They are also used as part of the unified approach for 

the addition and deletion of weighted stations as shown in Section 

2.3. The models are simply 

and 

- = 0. 

E i - = 0. 

(2.16) 

(2.17) 

The C2, matrix for the first four observation types listed 

is normally a diagonal matrix. If angles are computed from observed 

directions, there will be strong correlations between calculated 

angles at a common station. For this reason, the observed directions 

should be used as the observables and the elimination procedure 

presented in Section 3.2 used to eliminate the orientation unknowns. 

CANDSN does not allow the use of correlated angles. The last two 

observation types have a fully populated C2, matrix associated with 

them. The correlations are significant and cannot be neglected. The 
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full C, matrix is used in CANDSN for these observations. 

2.2.1 Linearisation and Iteration 

The first four models presented ( Eqns. 2.10 to 2.13) are 

non-linear while the least squares method shown earlier is for 

solving sets of linear equations. A Taylor's series expansion is 

used to linearise the math models in order to overcome this problem. 

Applying Taylor's series expansion to the problem at hand and neglec-

ting the second-order terms, we get [ Pope, 1974]. 

and 

A = ax 

f(x, £) 
B=   

w = f(x, £) 

X°; £0 

x0, £0 

where x0 is the initial approximation to x, and 

is the observed value of £. 

(2.18) 

(2.19) 

(2.20) 

Noting that for all the math models, B = -I, the least squares equa-

tions become the following: 



and 

T 1 -- T 1 
6=_[ACA+C1 {AC 91 wl 

-1 T 1 -1 -1 
C2=N = {ACA+C J 

= A6 + w 

r 2 T, C" = C _ ACA 

T "T 1  

2 rCr+ôC 6 
Cr 0 =  

18 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

where 6 is the vector of corrections to x0, the initial approximations 

to X. 

In this linearisation, the second and higher-order terms of the 

Taylor's series expansion have been nelected. The effect of this is 

that the solution must be iterated. This is accomplished by repeating 

the solution replacing x° with the last 2 until the solution has con-

verged. The test for convergence is 

<i for all i (2.27) 

where E is some small quantity chosen by the user. The convergence 

criteria Ei should be chosen carefully. If it is too large, the 

results will be inaccurate, while if it is too small, an excessive 
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number of iterations will be performed. This value typically ranges 

from 1 cm for large geodetic networks to 0.1 mm for precise engineer-

ing surveys. 

In addition to the convergence criteria, a maximum number of 

iterations should also be specified. This protects against infinite 

loops in the event of too small an c or an unstable network. [ Mikhail 

19Z6] gives several alternate forms of convergence criteria. 

2.3 Sequential Techniques  

Using the iterative design method, the changes to be made 

between trial solutions are usually small in number. The least squares 

equations given earlier are transformed in this section into a set of 

sequential adjustment equations that allow the efficient updating of 

a design or adjustment, given a small number of changes. 

The development starts with the partitioning of A, Ce,, and w 

into old and new information. This results in 

and 

IA2-

A1 
A* -  

[C 0 
= 

9' [0 C 

[Wi 

w* = I 
Lw2 

£2] 

(2.28) 

(2.29) 

(2.30) 
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The subscript 1 in Equations 2.28 to 2.30 denotes original information 

while 2 denotes the new information. No subscript indicates the total 

solution. 

Placing Equations 2.28 to 2.30 into Equation 2.21 and expand-

ing gives 

-1 T 1 
-[N1 + A2CA2] [u1 + A2Cw2J 

T ' 1 T 1 1 T -1 
= -[ N1 + A2CA2] u1 - [N1 + A2CA2] [A2Cw2 , (2.31) 

where 

and 

1976 

and 

N = A T A 

U = A TC w 

Applying the matrix identities [ Krakiwsky, 1981; Mikhail, 

-1 T-1 -1 T T 1 
(S + TR T] = S-ST[R+TST]TS 

-1 T -1 1 T 1 T 
[S + TR 1] TR = ST[R+TSTI -

to Equation 2.31 gives the following sequential expressions 

and 

- ç'AT[± c 1 + A2N14 ' ] [A261 + w2] 
2 

-1 1 T 1T1 -1 
C = N1 - N1 A2[± C, + A2 N,A2] A2 N, 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2 .37) 
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The '+' sign in Equations 2.36 and 2.37 corresponds to the addition 

of data while the "-" sign corresponds to the deletion of data. 

The efficiency of using the sequential expressions is shown 

by examining the sizes of the inversions [Krakiwsky, 1981] . If the 

problem was solved by starting from scratch using Equation 2.21 a u 

by u matrix would have to be inverted where u is the number of unknown 

paramaters. This is independent of the number of observations added 

(or deleted). Using the sequential approach ( Eqn. 2.36), the only 

new inverse is of an n2 by n2 matrix where n2 is the number of obser-

vations added ( or deleted) at a time. 

The point of expansion (x°) for Equation 2.36 as written is 

the same point of expansion that was used in the original solution 

for 6,. The term A21 + w2 is a linear approximation to f2-( X0 + 

given w2 evaluated as f2(x°, £). The alternative to this approach is 

to use the current adjusted value of x as the point of expansion. 

This implies that 61 is zero and w2 is calculated using the non-linear 

equation 

W2 = f2( 1, £) (2.38) 

Using this alternative approach, the update does not have to be itera-

ted. The correction to the paramaters due to the addition of one ob-

servation is small enough that the non-linear component can be neglec-

ted. This would not be true if the w2 term was large as may be the 

case when using the original point of expansion. The use of the cur-

rent best estimate (x1) as the point of expansion has the added 
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advantage of simplifying the programming. A record of the original 

point of expansion does not have to be kept. 

The equations just developed are used in CANDSN for all 

updates to the network. This is the heart of the unified approach 

used. In his development, Nickerson [ 1977] set up different update 

equations for adding and deleting observations, nuisance parameters, 

and weighted stations. These are all accomplished by the use of the 

appropriate math model and Equations 2.36 to 2.38 in CANDSN. The 

steps involved in deleting a weighted station from a network using 

both methods are shown next as a comparison of the two approaches. 

Using the unified approach, the steps are 

1. Add false Cx' to station being deleted. The C 1 used 

is the identity matrix. This step is necessary to keep 

the C^ matrix non-singular during the next stages. 

2. Using the coordinate observation math models ( Eqns. 2.16 

and 2.17) and Equation 2.36 remove the original apriori 

covariance matrix. 

3. Using the observation math models ( Eqns. 2.10 to 2.15) 

and Equation 2.36 remove all the observations connecting 

the station being deleted to the network. 

4. Now that all connections between the network and the 

station being deleted have been removed, only the false 

C;' matrix added in Step 1 remains. The final step is 

to simply eliminate the rows and columns of C^ that 

corresponded to the deleted station. 
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The equation given by Nickerson for this is 

where 

= D + DAJ[C J, - A2DA} ' A22D 

D = Q - QN12 [N2 + NT -1 N12Q 

(2.39) 

(2.40) 

The matrix Q in Equation 2.40 is the submatrix of the existing C 

corresponding to the stations being kept. The Al 2 and A22 matrices 

are the portions of A2 corresponding to the stations being kept and 

deleted, respectively. The N matrices are given by 

and 

N12 = AI2C'Al2 

1 
N2 = C- + 4C 2, 'A2 

X2 

(2.41) 

(2.42) 

Examination of these two alternatives shows them to be of 

equal efficiency. The inverses that need to be computed are the same 

size in each method. The advantages of the method used in CANDSN are 

that there are no large intermediate products that need to be computed 

and no specialised computation routines are required. The same update 

routine is used for all types of updates. 

The unified approach also makes it possible to change the 

point of reference to the network. This has particular application to 

engineering networks where it is common practice to choose one point 

and arbitrarily consider its assigned coordinates to be known and 
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errorless. The choice of the fixed point has an effect on the point 

accuracy of the other stations. A discussion of point accuracy is 

given in Section 4.3.1. Using the update equations, it is possible to 

change the fixed station and investigate the effects of the change. 

This is done by using the coordinate observation math model to change 

an unknown station to a weighted station using a very small variance 

on the "observed" coordinates and then releasing the previously fixed 

station. The effect of this approach is the same as using an S-trans-

form [ Baarda, 1973] although the mathematics are very different. 



Chapter 3 

SPACE AND TIME SAVING TECHNIQUES  

The techniques used in CANDSN to fit a large least squares 

problem onto a small computer are described in this chapter. In 

the selection of techniques, only those that would also have a high 

enough execution speed that the user would not have to wait excessive-

ly long for results were considered. The techniques described illus-

trate methods of efficient storage and inversion of matrices. The 

first section deals with the elimination of the largest matrix used 

in the least square method, A, and the remaining sections deal with 

the efficient solution of linear systems of equations. This includes 

a description of the storage technique used in CANDSN for the normal 

equation matrix. 

3.1 Sequential Formation of the Normal Equations  

The design matrix A is the largest matrix in the set of least 

squares equations. It has one row per observation and one column per 

unknown. The matrix is also very sparse. There are, at most, six of 

the u elements per row that are not zero. In this section, a simple 

technique for the total elimination of this matrix is presented. 

If we partition the A matrix into rows ([ ai] denotes the i'th 

row of A), 

(3.1) 
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the diagonal C2, matrix into its individual elements 

C 

C2,1 0 0 

o C2,2., 

o 0 C2, 

and the w vector into its individual elements 

w= 

Wi 

W2 

Wn 

and substitute these into the equations for N and u we get 

and 

(3.2) 

(3.3) 

1 
N = [a1] T C2, [ a1] + [a2]T c' [a2] + •.. + [an]T C;' [ an] 

(3.4) 

-1 
U = [all T C w1 + [a2]T c1 w2 + . + [a]T c'w (3.5) 

From these equations it is apparent that N and u can be formed sequen-

tially ( by summation) one observation at a time and that no matrix A 

or vector w are needed. A further saving in space and execution time 

can be realised if only the non- zero elements of each row of the mat-

rix A are used in the computations. 

This technique is valid only if the C2, matrix is a diagonal 

matrix. Frequently this is not the case. The elimination of the 

orientation unknowns ( Section 3.2) creates a block diagonal C2, matrix, 

and coordinate-difference observations and coordinate observations 
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do not generally have diagonal Ck matrices. In this case, the A 

matrix is partitioned into blocks of rows corresponding to the 

block diagonal structure of the C, matrix. 

The equation for r given in Chapter 2 is 

(3.7) 

but using the technique just outlined, there is no A matrix or w 

vector available for the computation of r. This difficulty may be 

overcome by noting that 

and 

f () - = 0 

= £. + r. 

Substituting Equation 3.7 into Equation 3.6 we get 

or 

= £ - 

Note that Equation 3.10 is exact while Equation 3.6 is actually 

a linear approximation. 

(3.8) 

(3.8) 

(3.9) 

(3.10) 

3.2 Elimination of Orientation Unknowns  

The mathematical model for direction observations ( Eqn. 2.13) 

introduced a new unknown, 0, for each round of directions. There are 

two coordinate unknowns and, typically, one orientation unknown per 
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station in a survey network. The time required to compute the 

3 
inverse, or Cholesky root, of a matrix is proportional to u so the 

elimination of the orientation unknowns will reduce the execution 
3 3 

time by a factor of 2 I 3 or almost 30%. 

The orientation unknowns can be eliminated as follows 

[Steeves, 1974]. Partition the (S vector into 61 corresponding to the 

coordinate unknowns and (S2 corresponding to the orientation unknowns. 

The A matrix is similarly partitioned. This leads to the equation 

[Al A2] C,-1 [Al A2] 

which, when expanded, becomes 

FAC1A1 4C 'A2 

T 1 
[A2C Al A2C A2 

+ [Al A2] T C, w = 0 (3.11) 

Lo] 

i1 [Ac ;'w1 I i +  = 0. (3.12) 

[62] [A2c91  w] 

Applying the identify [ Fadeev and Fadeeva, 1963] that if 

then 

IA Blixi [U 

I H 1•1 
[C Dj[yj 

= 0, (3.13) 

[D - CA -1 B]y + v - CA -1u = 0, (3.14) 

to Equation 3.12. we get 

61 T -1 T 
= -[AIQA1] [A1Qw] 

where 

(3.15) 
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where 
- 1. 1 - T 1 -1 T 1 

Q = {C - C A2 [A2C2, A2] A2C P. I-

Equation 3.15 is identical in form to the least squares 
-1 

equations given previously with the new matrix Q replacing C 91 

Noting that A2 consists entirely of partial columns of negative 

ones and C 91 is a diagonal matrix, the computation of Q is simply 

(1. . = p. . - p. .*p. .*Z 
'1,3 1,3 1,1 3,3 

where q1. ,J . is the ( i, ) element of Q, 

Z = -( Pkk) -1 

k=1 

-1 
and p1 ,3 . . is the ( i, i) element of C, 

(3.16) 

(3.17) 

(3.18) 

The computation of r using Equation 3.10 requires the adjus-

ted value of the orientation unknown. Steeves [ 1974] shows that it 

may be computed after the adjustment and the residuals computed 

as follows 

1. Compute an initial approximation % from Equation 3.10 

letting c≥ = 0; 

2. Multiply rrb by _ {p11*Z, p22*Z, ... , pnn *z] to get ; 

3. Subtract 0 from each element of r to get r. 
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3.3 Matrix Inversion  

All the matrices requiring inversion when using the method 

of least squares as described in Chapter 2 are symmetric. With 

one exception they are also positive definite. The exception is the 

-1 
term [± C + A2N1 A2J in Equations 2.36 and 2.37. This matrix 

is positive definite when adding data and is negative definite when 

deleting data. Special algorithms have been developed that take 

advantage of the symmetry of matrices to economize on both the sto-

rage space required and the computational effort required for their 

inversion. The remainder of this section discusses the Cholesky, 

block Cholesky, and U- ID algorithms used in CANDSN. 

3.3.1 Cholesky Factorisation 

A positive definite matrix, A, can be factored into the pro-

duct of the transpose of an upper triangular matrix and itself 

[Burden et al, 1978], namely 

R T R = Q. 

The algorithm for the computation of R is the following 

For j = 1 to n 

For k = 1 to j - 1 

rkJ = [ k,j - E rik*rij] / rk ,k 

End k 

(3.19) 
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gives 

i - i 

End j. 

2 

q , 

½ 

Substituting Equation 3.19 into the least squares solution 

-1 
= -N u 

= (RTR)'q = -R 1Ru (3.20) 

Since the matrix R is triangular , the equations 

d=R- Tu (3.21) 

and 

= -R 'd (3.22) 

can be solved directly with no explicit inverse computations. The 

algorithms are the following 

and 

For k = 1 to n 

d  = [ Uk - : rik*uij / rk ,k 

End k 

Fork = n to 1 by -1 
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= _dk / rk ,k 

For i = 1 to k - 1 

= kr ,k 

End  

End k. 

These are referred to, respectively, as the forward and backward 

solutions. The inverse of the normal equations, when required, is 

computed from 

N' = (R R) ' R) = R 'R. (3.23) 

The algorithm for this is the following: 

For k = 1 to n 

rkk = 1 / rk ,k 

For i = 1 to k - 1 

r i,k = r 

End i 

For j = k + 1 to N 

k,j 0 

For i = 1 to k 

r. .= r. + r *r. 
1,3 1, k,j i,k 

End i 

End j. 
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Examination of these algorithms shows that it is possible to 

-1 I' 

overwrite N with R, R with N , u with d, and d with (S. The result 

is that no matrices other than N and u are required for the solution. 

It is also possible to store only the upper triangular elements of N 

in a vector [ Dongarra et al 1979]. This realises a space saving of 

just under 50% of that required to store the full N matrix. 

It is also apparent that it is not necessary that N 1be 

computed on every iteration. Only the Cholesky root, R, and the 

forward and backward solutions are needed. This results in a saving 

in computation time of approximately 50%. 

3.3.2 Block Cholesky 

The block Cholesky method is simply the application of the 

Cholesky algorithm to a matrix that has been partitioned such that 

all the on- diagonal blocks are square. The individual elements in 

the Cholesky expressions are now submatrices and the calculations 

involve matrix rather than scalar algebra. In the evaluation, the 

scalar division operation is replaced by the matrix inversion and 

multiplication operations. Since the only inverses are of blocks 

that are on the diagonal, the Cholesky algorithm can be used to 

compute the inverses. This is possible, because, by definition, all 

on-diagonal submatrices of a positive definite matrix are themselves 

positive definite. The square root operation required in the compu-

tation of R is replaced by the Cholesky decomposition. Examination 
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of Equation 3.19 will reveal that R is in fact the square root of Q. 

The block Cholesky method is used in CANDSN for the initial 

inversion of N when operating in the design mode and for the compu-

tation of 6 as well when operating in the adjustment mode. The nor-

mal equation matrix is partitioned into 10 by 10 blocks ( referred to 

as " panels") and stored in a FORTRAN direct access file. During com-

putations no more than three of these panels are held in core at any 

one time. The use of a direct access file allows the efficient read-

ing and updating of any panel 

The major advantage of this technique is that the size of the 

problem to be solved is not dependent on the memory available on the 

computer. The only limit is that imposed by the space available on 

disk for file storage. This technique has been used for the itera-

tive solution of a set of 82 000 normal equations for the readjust-

ment of the Maritime Geodetic Network [ Knight and Mepham, 1978; 

Nickerson 1981]. 

3.3.3 U-D Factorisation 

The Cholesky method is only valid for positive definite mat-

rices. This is a result of the square root operation required in 

the computation of R. If the matrix is negative definite, the square 

root is of a negative number. As mentioned at the beginning of this 

section, the deletion of observations requires the inverse of a 

matrix that is negative definite. An algorithm for the inversion of 

a symmetric definite matrix is therefore needed. The U-D 
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factorisation algorithm was chosen for this as it only requires 

that the matrix be symmetric definite. It is also referred to as 

"Cholesky without square roots" [ Lawson and Hanson, 1974]. 

A symmetric non-singular matrix Q may be factored into an 

upper triangular matrix U with all diagonal elements equal to one 

and a diagonal matrix D such that 

Q = UTDU 

or 

(3.24) 

Q' = (UTDU) 1 = U 1D 1U T (3.25) 

The algorithm for the factorisation, in place, is the following: 

For i = 1 to n - 1 

=qi ,n " 

End i 

For j = n - 1 to 1 

n 

q=q- 2 

k = j + 1 

For k = j + 1 to n 

t= * 
k j,k qk,k 

End k 

For i = 1 to u - 1 

For k = j + 1 ton 

= - 

End k 

= I 
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End i 

End j, 

where t is a work vector of at least n - 1 elements. This factor-

isation puts the off diagonal elements of U over the original 

elements of Q and the diagonal elements of D over the original 

diagonal elements of Q. There is no need to save the diagonal ele-

ments of U as they are always one. The algorithm for computing, in 

place, Q1 from the factorisation just given is the following: 

For i = n - 1 to 1 

For j n to i + 1 

s  

For k = i + •1 to j - 1 

S - q i - s - * 

End k 

q. . s - q. 
1,3 1,3 

End j 

End i 

For i = 1 to n 

qi,i = 1 / 

End i 

For i = n to 2 

For j = n to i + 1 

S =0 

For k = 1 to i - 1 

S = S + k,k*q * ,j ',, 'k,i 
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End k 

q. . = S + 'i. .*q. 
1,3 ,3 1,1 

End j 

For j = 1 to i - 1 

q. . = q. . + q •*q. 
1,1 1,1 3,1 3,3 

End j 

End i 

For j = 2 to n 

= q.*q 

End j. 

The U-D technique can also be -used to solve a set of linear 

equations using backward and forward solutions similar to those given 

for the Cholesky method. It can also be adapted to operate on panel 

matricies as with Block Cholesky. It was not chosen for the inversion 

of the full normals nor for the solution of the adjustment equation 

because of the necessity of the work vector t. It is used throughout 

CANDSN for all other matrix inversions. 

-1 
3.4 Reuse of N During Iteration  

Computationally, the most time consuming aspect of a least 

squares adjustment is the calculation of the inverse, or Cholesky root, 

of the normal equations. The proposal made by Knight [ 1978] was -to 

reuse the original Cholesky root for all iterations. The rationale is 

that N is a function of only A and C. A is a function of the updated 

coordinates but the effect of the changes in coordinates, S, is a 
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second order one. C does not change between iterations. 

The change in A due to is 

M = A2 - A1 , (3.24) 

where 

and 

A 

11 

+ 

(3.25) 

(3.26) 

Since 3 is generally small., M can be expressed as a differential 

change of the form 

r Df 
M= 

x (ax 

£ 

(3.27) 

(3.28) 

A' is a three dimensional matrix of size n by u by u. The 

terms in it are second derivatives of the math models given in Section 

2.2. The second derivatives of the coordinate difference and coordinate 

observation models ( Eqns. 2.14 to 2.17) are all zero. There is no 

effect on A due to S for these models. 

The second derivatives of the distance model ( Eqn. 2.10) with 
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respect to the occupied station are 

and 

where 

6f\ (N - N) 1 

;(;=   - 

(N - N) • (E - E1) 

DEj  ( DNi ) 

S = {( N - N) + (E - E) 2J½ 

(3.29) 

(3.30) 

(3.31) 

The derivatives with respect to the sighted station are identical in 

form. The derivatives of the azimuth model ( Eqn. 2.11) with respect to 

the occupied station are 

and 

 I 

2 

\ 

(E - E) 1 

S s2 

(3.32) 

(3.33) 

The derivatives with respect to the sighted station and the derivatives 

of the direction and angle models have the same form. 

Examination of these equations show that all the terms in A' 

will vary inversely as either the distance or the square of the distance 

between the stations. The result of this is that the M matrix will 

generally have all negligably small numbers and therefore the N matrix 
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will not change appreciably during iteration. This procedure will 

fail if there are very short lines ( as in the case of eccentric 

observations) included in the adjustment. The iteration scheme 

described next shows how this is taken into consideration. 

-1 
It should be noted that while the N can be reused, the same 

does not hold true for the u vector. It must be recomputed for every 

iteration. 

The iterative procedure used in CANDSN is shown in Figure 3.1. 

The outer loop shown is there to guard against M having a significant 

effect. Using this procedure, the best estimates of x will always 

have been used to form the N matrix for the last iteration. With this 

method, a network which requires three iterations to converge will 

require only two inverses resulting in a saving of approximately 25 

to 30% of the execution time. 



Figure 3.1 

Iteration Reusing N 
-1 
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Chapter 4 

ANALYSIS OF RESULTS  

The results of an adjustment or design must be analysed to 

ensure that they are correct and that the accuracy specifications 

have been met. The analysis of the results is at least as important 

as the observing and adjusting of the data and the same care and 

attention should be paid to it. It is only after a thorough analysis 

that they can be accepted as correct. Before applying the tests 

some general concepts are needed. 

4.1 Concepts  

The choice of the least squares method for the computation of 

the results is based on three assumptions. These are; ( a) the obser-

vations are from a population with a normal distribution, ( b) the 

accuracies ( variances) of the observations are known or the relative 

accuracies of the observations are known, and ( c) the mathematical 

model is correct, i.e. there are no unmodelled systematic or gross 

errors in the data. These three assumptions must be verified before 

the results can be accepted as correct. 

The suitability of the network for the purpose it was estab-

lished must also be examined. This requires an analysis of the accuracy 

of the results. The accuracy of the results can be expressed in 

several ways. The most useful is the relative accuracy between pairs 

of observation points. This may be given in terms of the relative 

confidence region or in terms of the accuracies of the computed distance 
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and azimuth between pairs of stations ( Section 4.3.2). The accuracy 

can also be expressed in terms of the point confidence regions. 

The following section presents statistical tests and their 

application to the analysis of the observations. It should be fully 

understood that statistics is a blunt tool; The tests presented here 

will not give a clear yes-no answer to the hypothesis that the 

assumption being tested is valid. The testing is all done at some 

confidence level 1 - c. If c. equals 0.05, the confidence level is 

95%. This allows us to say, for example, that we are 95% confident 

the observation is a blunder if it fails the test given in Section 

4.2.2. Note that in this case, about 5% of the observations rejected 

are not blunders. The chance of rejecting good data is decreased by 

decreasing c. but this also increases the chances of accepting bad data. 

The choice of the confidence level to use in statistical testing must 

be made after careful consideration. 

The results of the various statistical tests are interdependent. 

The first test presented is the chi-square goodness of fit test to 

ensure that the observations are each from a normal distribution. If 

this test fails then, theoretically, the second test for the detection 

of outliers can not be done as it requires that the distribution is 

known ( i.e. normal). The problem is that the presence of outliers is 

one possible cause for the failure of the first test. All the tests 

should always be carried out and the results analysed together using 

not oinly the test results, but also a full understanding of the data 

being tested. 
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4.2 Assessment of the Observations  

The tests presented in this section are used to verify that 

the three assumptions mentioned in the previous section have been met. 

The tests are presented without proof or derivation. Readers interest-

ed in probing deeper into these tests are referred to [Vanicek and 

Krakiwsky, 1982]. The purpose of the test, the computation of the 

test, and the interpretation of the test are presented for each test 

described. 

2 
4.2.1 x Goodness of Fit Test 

This test is used to verify that the observations are from a 

normal distribution. The standardised and pooled residuals ( see 

Section 4.2.2) are grouped into histogram cells and the statistic y 

computed from 

c (E 
i_  

y 
i=1 

(4.1) 

where c is the number of cells, 

is the observed . frequency in cell i, and 

E i is the expected frequency for cell i. 

The expected frequency is the area under the normal curve within the 

boundaries of the histogram cell. There must be at least five cells 

each with a minimum expected frequency of five for this test to be 

valid [ Blank, 1980]. The expected frequencies of the first and last 

cells should include the left and right tails under the normal curve 
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respectively. 

The test is 

2 
y<x C- 1, 1-a 

if the variance factor a'31 is known, or 

2 

(4.2) 

y < Xc_2 ,i_ (4.3) 

2 A2 2 
if ao is unknown and the estimated variance factor ao used. 

is the abscissa value from the chi-square distribution with v degrees 

of freedom at the l-c confidence level. 

This test can fail for any of the following reasons: 

1. The observations are not normally distributed; 

2. There may be systematic or gross errors remaining in the 

data; or 

3. The wrong variances ( and covariances) were assigned to 

some or all of the observations. 

If the test passes, we can conclude, at the l-c confidence level, that 

the observations are normally distributed. 

4.2.2 Detection of Outliers 

The purpose of this test is to detect any observations that are 

blunders. This test requires that the distribution of the observations 

is known. The paramaters of the distribution may have been estimated. 

The statistic y is 
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(4.4) 

which is simply the standardised residual . The standard deviations of 

the residuals, a" , are the square roots of the diagonal elements of C". 
r 

This matrix is not generally computed, as it is much too large (n by n) 

to compute. The usual ( incorrect) practice is to replace a", with the 

standard deviation of the observation, a , but ,a better approximation 

aç 
n u a0 

2 
a0 

½ 
a] 

(4.5) ab is given by Pope [ 1976] for adjustments of models of the form 

f(x) - = 0. This approximation can only be used if the apriori var-
2 2 

iance factor, a0, is known. If is not known the a must be used. 

An observation is rejected ifri 

r. 
< 

a 
< n11 c 

' 2 

for the case of variance factor known, or 

-T < 
V,( 1 C 

'2 

(4.6) 

(4.7) 

if the variance factor was estimated. In these tests n (1-01) is the 
2 

abscissa value of the standard normal distribution and T is 
a. 

the abscissa value of the tau distribution [ Pope, 1976  with v (=n - u) 

degrees of freedom. 
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An observation may be rejected for any of the following reasons: 

1. The observation is a blunder; 

2. The observation is not from a normally distributed 

population; or 

3. The wrong ( too small) standard deviation was assigned to 

the observation. 

The test can be done either " in context" or " out of context". 

[Vanicek and Krakiwsky, 1982]. In context testing has a wider accep-

tance range than out of context; that is, for a given set of data, 

fewer observations would be rejected using in context testing than when 

using out of context testing. In context testing implies that the 

observation being examined is a part of a sample taken from the popu-

lation while with out of context testing, the observation is treated as 

being a sample of one. The reason for the wider acceptance range when 

using in context testing is that the probability of one of the sample 

values being far from the mean increases with the sample size. The 

test just presented is for out of context testing. To convert is to an 

in context test, simply replace c with o/n where n is the number of 

observations being tested in the context of each other. 

4.2.3 Test of the Variance Factor 

This test is used to verify that the scale of the C matrix was 
2 

in fact a0. The test is 
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CYO 2 < < x 2 
a - , (4.8) 

2 
where ao is the apriori variance factor, 

o is the estimated variance factor, 

v is the degrees of freedom of the adjustment, and 
2 2 
X is the abscissa value of the X distribution. 

This test may fail for any of the following reasons: 

1. The apriori variance factor was incorrect; 

2. The observations were not normally distributed; 

3. There may be systematic or gross errors in the observations; 

4. An incorrect math model was used; or 

5. The observations were correlated but the correlations 

were neglected. 

The last two causes of failure listed are not normally encoun-

tered in least squares adjustment of survey networks. The math models 

used are well defined and the observations are uncorrelated or very 

weakly correlated, with the exception of coordinate-difference and 

coordinate observations. The correlations of the coordinate-difference 

and coordinate observations are not normally neglected. 

4.3 Assessment of the Paramaters  

The covariance matrix of the results, C, fully describes the 

accuracy of the coordinates determined from a least square adjustment. 

It is difficult, if not impossible, to interpret the contents of the 
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C matrix directly in any meaningful way. For this reason, the accu-

racy of an adjustment or design is analysed using quantities computed 

from the C matrix. The confidence ellipse is the most important of 

these derived quantities. 

The confidence region is an elliptically shaped area centered 

on the estimated paramaters. The confidence ellipse is the outer boun-

dary of the confidence region. The paramaters of the confidence 

ellipse ( Figure 4.1) are the semi-major axis ( a), the semi-minor axis 

(b), and the azimuth of the semi-major axis ( 0). 

Figure 4.1 

Confidence Ellipse 

For horizontal networks, there is a 39% probability that the 

true coordinates of the station lie within the boundaries of the 
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standard confidence ellipse. This is not a suitable confidence level 

for most work. The confidence level can be increase to 1 - a by 

multiplying the axes a and b by an expansion factor f 

where 

f = (x 1 )½ 

if the apriori variance factor ( y) is known, and 

f=(2F )½ 
2,, 1- 

(4.9) 

(4.10) 

if the variance factor was estimated. The " 2" in Equations 4.9 and 

4.10 is the dimensionality of the problem and would be equal to one 

and three for vertical and three dimensional networks, respectively. 

The distribution used in Equation 4.10 is the Fisher distribution with 

two and v degrees of freedom. It degenerates to the X distribution 

as the degrees of freedom of the adjustment () approaches infinity. 

4.3.1 Point Confidence Ellipses 

Point ellipses are used to indicate the accuracy with which 

the coordinates of the stations have been determined. Sometimes the 

term absolute is used but it is a misnomer. The point ellipses show 

the accuracy with which the position has been determined relative to 

the coordinate system implied by the network [Vanicek and Krakiwsky, 

1982]. If there are fixed ( known and errorless) stations in the net-

work, they define the coordinate system of the computed positions and 

the point ellipses simply reflect the accuracy of the computed posi-

tions relative to the fixed stations. 
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The paramaters of the point ellipse are [ Richardus, 1974]. 

2 2 2 2 
a = ½ 2 { (aN + G2E) + [' N GE) + 4GNE]½} 

2 2 2 22 
b = ½ 1 (aN + GE) - [(aN - GE) + G:E1½}½ 

-1 
e = ½ an ( -'('NE  

2 2 

\ G - GN 

, 

, 

2 
where aN is the variance of the northing, 

is the variance of the easting, and 

aNE is the covariance between the northing and easting, 

all taken from the C^ matrix. The calculation of e frequently causes 

problems. e is a clockwise angle from north while the arctan function 

on most computers returns the counter-clockwise angle from east. To 

obtain the correct e subtract the value calculated using Equation 

4.13 from 900 and use the FORTRAN ATAN2 function ( or its equivalent) 

when evaluating equation 4.13. 

4.3.2 Relative Confidence Ellipses 

Relative confidence ellipses are used to indicate the accuracy 

that one station has been determined to, relative to another station. 

This is a generally more useful measure of the accuracy of a network. 

The Canadian government uses the ratio of the semi-major axis and the 

distance between the stations to classify a network as first, second 

or third order [ Energy, Mines and Resources, 1978]. 

The relative ellipse is calculated using the covariance matrix 
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of the coordinate differences computed from the adjusted coordinates. 

The covariance law is applied to the C^ matrix to get C, as 

where 

C=GCGT 

G 
[-1 0 1 0 

Lo -1 0 
, 

and C is the 4 by 4 submatrix of C corresponding to the two 

stations of interest. 

The computed C,,̂  matrix that results is 

(4.14) 

(4.15) 

r 2 

C Ax A= a or 2 (4.16) 

NEE AE j 
2 - 

aN 2aNlN2 2 + a N a N1E1 - aN lE2 - aElN2 + aN2E2 

2 2 

aN lEl - aNlE2 - Cr 1N2 + aNEaEl - 2aElE2 + 

The paramaters of the relative ellipse are computed using Equations 4.11 

2 2 2 2 
to 4.13 replacing aN with a, aE with aE and 'NE with aENE. 

Two other values that are often useful are the accuracy of a 

distance or azimuth computed from the adjusted coordinates. The 

variance of a computed distance is [ Richardus, 1974] 
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2 2 2 2 2 
as = cr AN coz c. + ANA9 ci. c.O4 ci + a AO in ci. 

and the variance of the computed azimuth is 

10 

2 1 2 2 2 2 
ci - -- (a,s..Lvi ci. + ao4 ci. + °LE04 ci.) 

(4.17) 

(4.18) 

where s is the computed distance, and 

ci. is the computed azimuth between the stations. 

The analysis equations presented in this chapter have all been 

included in CANDSN, making it a complete package for the design, adjust-

ment, and analysis of a network. The tests presented in Section 4.2 

are only applicable to the results of an adjustment while the accuracy 

representation presented in Section 4.3 is applicable to the analysis 

of both the design and adjustment of a network. 



Chapter 5 

HARDWARE AND SOFTWARE  

The hardware components and program libraries used for CANDSN 

are presented in this chapter. The first section is a discussion of 

the hardware, its features, and its limitations. The hardware is 

split into two principal groupings ( Figure 5.1). The first group 

is the computer and its peripherals, while the graphics devices are 
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GRAPHICS 
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Figure 5.1 

Hardware Components for CANDSN 

in the second group. Section 5.2 consists of a discussion of the 

program libraries used. All extensions to the ANSI FORTRAN standard 

used are described with an explanation of how to revise the programs 

for use on computers without these extensions. 
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5.1 Hardware  

The computer used for the implementation of CANDSN is a Digital 

Equipment Corporation ( DEC) PDP 11/23. The 11/23 is a 16 bit mini-

computer with a direct addressing capability of 64K bytes. The compu-

ter used for CANDSN uses the DEC MMII option to expand the memory 

to 192K bytes. Only 54K bytes are available for program code and 

128K bytes for data storage. The remaining portion of memory and 

address space is used by the operating system and peripherals. The 

KEF 11 floating point option provides 32 and 64 bit floating point 

arithmetic. Without this option, floating point arithmetic is still 

possible but must be done with software resulting in a much slower 

execution time and a slightly larger program. The operating system 

is RT-11. This is the smallest operating system offered by DEC that 

will allow both program development and execution. 

This combination of CPU and processing options is the minimum 

that can be used for CANDSN. Installation of the program on a smaller 

computer could only be accomplished if the limits described in Section 

6.1.4 were to be drastically reduced and the program totally restruc-

tured. If a computer with a slower execution speed was used, the time 

delay between the issuance of a command and the presentation of the 

results would become annoying. Installation of CANDSN on a faster 

or bigger computer ( e.g. 'a VAX 750) would enhance the utility of the 

program considerably and allow further extensions to its capabilities 
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and the size of problems that could be solved. 

There are four peripheral devices of the 11/23 that are used by 

CANDSN. The first of these is a VT100 video terminal configured as 

the operator's console for the 11/23. It is used to issue the commands 

to the operating system to start the program ( see Appendix I) and as 

an output device for large amounts of text. The graphics device 

described later in this section does not have a good text presentation 

ability. For this reason s long listings such as lists of all stations 

and their coordinates are sent to the VT100. 

The second peripheral is the RLO2 disk system. This is a 

mountable single platter hard disk with a 10 Megabyte capacity. All 

the system programs and the CANDSN program are kept on this disk. 

It is also used for all permanent and temporary files created by and 

for CANDSN. The third peripheral used is a standard nine-track tape 

drive. It is only used for the checkpoint files described in Section 

6.1 This is not an essential item of equipment as the files can 

also be placed on the hard disk. On single disk system, the tape 

drive is essential as a backup device. 

The last peripheral is a printer. The printer used in the 

current configuration is a DEC LA100. This is a dot matrix character 

printer with a speed of 240 cps ( characters per second). Experience 

with a 30 cps printer has shown that it is not suitable. All printing 

in CANDSN is done online and the use of a slow printer introduces 

delays of up to 30 minutes. 
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The Princeton Electronic Products ( PEP) 8500M intelligent 

graphics terminal is the heart of the CANDSN hardware. The 8500M has 

four components ( Figure 5.2). The display processor uses a local 

microprocessor and special purpose hardware to generate the graphics 

image. It also controls all input to and output from the terminal. 

The image memory stores the graphics image and generates the video 

signal for the monitor. The memory is an analogue memory and cannot 

be written to, except via the display processor. It is not possible 

to read the contents of the image memory. The keyboard is a standard 

typewriter style keyboard with the addition of several special function 

keys and a joystick for graphics use. The monitor is a high resolution 

monochrome video display tube. It provides for 32 grey levels in the 

display and has a resolution of approximately 1024 by 1024 pixels. 

One feature of the 8500M essential to CANDSN is the ability to 

erase selected lines on the screen. This allows the pages of the menu 

(Section 6.1.1) to change without disturbing the rest of the image. 

Lines connecting stations can also be immediately deleted when obser-

vations are removed, thus maintaining a current picture of the network 

at all times. This process is too slow to use if large areas of the 

screen need to be cleared. In these cases, it is faster to clear and 

redraw the entire screen. This disadvantage could be overcome if a 

terminal using a frame buffer system was used [ Newman and Sproull, 

1979]. 

There are three peripherals connected to the 8500M. The most 

important of these is the Summagraphics digitising tablet. The tablet 
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is 0.91 by 1.22 m ( 36" by 48") with a resolution of 0.15 mm. It 

is used to allow coordinate input directly from a map or plan and 

can also be used to enter menu commands. The tablet, while not 

essential to CANDSN, greatly enhances and simplifies the design of 

a network using CANDSN. 

A second graphics monitor is also connected to the 850aM. 

It is usefuLwhen demonstrating the design process to large groups 

such as classes. It also is convenient when using the digitising 

tablet as it can be placed directly behind the tablet so that the 

design can be viewed without turning around. Up to four of these 

monitors can be connected to the graphics terminal. 

The final peripheral to the graphics terminal is a Tektronix 

4634 hard copy unit. This unit produces a paper copy of whatever is 

showing on the graphics monitor. It is convenient for keeping a 

record of intermediate design stages but the image quality is not 

sufficient to use for final results. The image is reduced to 15 cm 

by 20 cm ( 6" by 8") and most fine detail is lost. It is also 

expensive to use, costing approximately $0.50 for each copy. 

The final hardware item in the configuration is the DataTech 

DT3454 flatbed plotter. This is a four pen plotter with a drawing 

area of 0.86 m by 1.37 m ( 34" by 54"). The plotter has an accuracy of 

0.1 mm over the entire plotting range. The plotter is used to plot 

the final results of a design or adjustment at any scale with confi-

dence regions and design accuracies shown. The plotter is connected 

directly to the PDP 11/23. 
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These hardware components were assembled by the Division of 

Surveying Engineering over a period of three years for this and other 

projects. They have proven satisfactory for this project, but are 

certainly not the only devices that could be used for CANDSN. The 

range of computer and graphics hardware available is growing rapidly. 

Anybody interested in installing CANDSN would be well advised to 

shop around to see what is currently available and assemble their 

own hardware configuration. 

5.2 Software  

All the routines written for CANDSN are written in FORTRAN with 

the exception of the 8500M - 11/23 interface which was written in 

MACRO- 11. Three extensions to the ANSI FORTRAN standards were used 

in the programming. The first of these is the use of the VIRTUAL 

data type. This is a DEC extension which enables the use of memory 

beyond the 16 bit addressing range of the PDP-11. To install CANDSN 

on a computer without the VIRTUAL data type, simply replace the word 

VIRTUAL in the data declaration statements with the word DIMENSION. 

The second extension is the use of the BYTE data type. This 

is used in two ways. The first is for the storage of character data. 

The replacement for byte data on another computer, would probably 

be to declare it as CHARACTER*1 but this is highly dependent upon the 

manufacturer's implementation of FORTRAN. The second use of single 

byte data in CANDSN is for the storage of large tables of small integers. 
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The easiest replacement for this on another computer is to simply 

declare the tables as INTEGER if there is sufficient memory. 

The third extension is the use of ASCIZ character strings. 

These are character strings that are terminated with a null byte. 

All the character string manipulation routines use this data type. 

Note that the strings are not declared as ASCIZ but as arrays of 

BYTE data with one extra element for the null byte. 

In addition to these extensions, several of the DEC library 

routines are used. They are all. character string manipulation 

routines with the exception of subroutines DATE and TIME, which are 

used to get the current date and time from the operating system. 

These routines are listed in Appendix II and will have to be replaced 

by the appropriate routines for the computer system being used. 

The CANDSN software package consists of 143 subroutines grouped 

into eight libraries. A list of the subroutines and their purpose is 

given in Appendix II. The listings of the individual routines are not 

included in this thesis but are in External Appendix I. This large 

number of routines is a result of the initial decision to write CANDSN 

with a modular structure. This was essntial as segments of the program 

must overlay each other in memory in order to fit as large a program as 

CANDSN into the approximately 54K bytes available for program storage 

on the PDP 11/23. 

Of the eight libraries, six were written as a part of CANDSN. 

The graphics utility libraries for the 8500M and the DT3454 were 

provided by the manufacturers, Princeton Electronic Products and 
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DataTechnology Ltd. respectively, and are not included in the external 

appendix as they are copyrighted. Modifications to these libraries 

have been minor and consisted mostly of changes to take advantage of 

special features of the PDP 11/23. The six libraries written for 

CANDSN are presented in the rest of this chapter. 

5.2.1 Application Library 

The application routines are those routines including the main 

programs that were written to perform functions specific to CANDSN. 

They are all special purpose routines that use the routines in the 

other seven libraries to perform their function. Each menu page has 

an application routine associated with it that may call other 

application routines. 

5.2.2 Panel Matrix Library 

The collection of subroutines that are used to manipulate 

the panel matrices described in Section 3.3.2 are in this library. 

They include routines to compute the Cholesky root and inverse of a 

matrix, to compute the forward and backward solutions, and to multiply 

two panel matrices. Also included are utilities to print the contents 

of a panel file, read and write records, and initialise a new panel file. 

The library is intended to be a complete package that could easily be 

used in any application requiring the solution of large sets of linear 

equations. All routines in the library have names that end with PNL. 
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5.2.3 Station File Library 

All the information pertaining to a single station with the 

exception of its covariance information is stored in a direct access 

file referred to as the station file. This includes its name, coor-

dinates, elevation, gravity information, and status. A set of linked 

list pointers is also kept to allow the sequential processing of the 

data by both name and sequence number. All the routines used to 

store, retrieve, and maintain the data in this file are in the station 

file library. All routines in the library have names that end with 

STE. 

5.2.4 Observation File Library 

All observation data with the exception of coordinate and 

coordinate-difference observations are kept in a direct access obser-

vation file. Coordinate and coordinate-difference observations are 

maintained in special files because their covariance matrices are 

fully populated, and are processed with special application routines. 

The observation file is currently set up for distances, azimuths, 

directions, and angles, but can be easily extended to include any 

other uncorrelated observation types. The observation file library 

contains all the routines used to store, retrieve, and maintain the 

records contained in the observation file. All routines in the 

library have names that end with OBF. 
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5.2.5 Menu Library 

The routines in the menu library are used to control all 

aspects of menu processing. This includes menu display, decoding 

meno commands, storing and retrieving response values and printing 

the menu pages for use on the digitiser. Included in this library 

is subroutine GET.RSP which is the sole routine through which input 

is received from the 8500M whether it be a menu command, a digitised 

point, or a text string. The routines in this library are heavily 

dependent on the routines in the 8500M library. 

5.2.6 Utilities Library 

The utilities library contains all the general purpose 

utility routines. These include routines for matrix manipulation, 

string manipulation, sorting, statistical analysis, and the myriad 

other things that need doing in a program the size of CANDSN. 

All the libraries, with the exception of the application 

library, have been written as general purpose libraries. The 

intention is that they can be used in any other application program 

that needs them. 



Chapter 6 

CANDSN  

Program CANDSN ( Computer Aided Network DeSigN) was written 

to implement the components of survey network design and adjustment 

discussed in the previous chapters. The features of the program 

are presented in the first section of this chapter. This is followed 

by a presentation of the results of some sample networks designed 

and adjusted with CANDSN. 

6.1 Features of CANDSN  

The primary consideration in the design of the program was that 

it be " user friendly" ( Section 5.2). One of the implications of this 

is that erroneous input must be processed in a reasonable manner. In 

the case of CANDSN, the program tries to correct the error itself and 

informs the user of what it has done. If this is not possible, it will 

give an error message and ignore the bad input. All the commands have 

an escape option that will allow the user to cancel what has been done. 

This is particularly useful if the user has inadvertently chosen the 

wrong menu page. In addition to the escape clause, the user initiates 

any action only after all options and input data are displayed on the 

screen. 

Typing has been kept to a minimum. All commands are entered 

using graphical digitising from the menu. For those commands that 

have only a few possible responses, the program cycles through the 

possible responses, displaying them on the screen one at a time. 
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The user keeps selecting the menu command until the correct response 

is displayed. Wherever possible, default values are provided for the 

responses. Once the default has been changed by the user, that 

value becomes the default until changed again by the user. All 

text input is checked for validity. If a numeric value must be entered, 

but character data is received, the program erases the input from the 

screen, prints a message explaining that the input must be numeric 

and re-enters the input mode. 

The user is prompted for all input. The two input prompts are 

the graphics cursor and the blinking text cursor. If the program is 

not waiting for input, no cursor is displayed on the screen and input 

is disabled. The input modes ( graphics and text) can be switched at 

any time by the user by simply hitting the return key. Note that 

due to a restriction of the 8500M terminal, digitiser tablet input 

is only possible when in the text mode. 

The program is designed to be self-teaching. An experienced 

user should be able to quickly use the full power of the program, by 

simply using it for a short period of time. All the features are 

displayed on the screen and the user can choose any of them. The 

command for each feature is self-explanatory. 

6.1.1 Menu Driven 

The program is completely menu driven. The only commands that need 

to be entered at the computer console are those used to start the program 

(see Appendix I). The menu is divided into pages ( Figure 6.1) with a 
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OBSERVATION ADDITION AND DELETION 

ADDITION OR DELETION * 1310 ADDITION 

OBSERVATION TYPE * 1320 DIRECTION 

STATION NAMES: OCCUPIED * 1331 
SIGHTED * 1332 
BACKSIGHT * 1333 

ANGULAR STD. DEV. * 1341 2.00 

DISTANCE STD. DEV. A mm * 1342 5.0 
B ppm * 1343 5.0 

ANGULAR OBSERVED VALUE DEG * 1351 
MIN * 1352 
SEC * 1353 

DISTANCE OBSERVED VALUE M * 1354 

HEIGHT OF: INSTRUMENT M * 1361 0.000 
TARGET M * 1362 0.000 
BACKSIGHT M * 1363 0.000 

CENTERING ACC: INSTRUMENT mm * 1371 1.0 
TARGET mm * 1372 1.0 
BACKSIGHT mm * 1373 1.0 

ROUND NUMBER * 1380 1 

PROCESS REQUEST. * 1391 

REQUEST THAT NAMES BE TYPED. * 1395 

FINISHED I CANCEL REQUEST. * 1399 

Figure 6.1 

Typical Menu Page 
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specific function ( i.e. add/delete observations) assigned to each 

page. The first page is a master page used to control the selection 

of function pages. Each function page shows all the data required 

to execute the function. The data is grouped according to its 

natural relationships. 

The data may be changed by simply moving the graphics cursor 

to the item to be changed and pressing the enter key. The user is then 

prompted for the new data value or the next value in the sequence is 

displayed. Grouped data may be changed as a group or individually. 

If the group is to be changed, the cursor is positioned over the menu 

text line and the user is prompted for the data values, one at a time, 

for the entire group. If only one value is to be changed, the cursor 

is placed on the value to be changed, and the user is prompted for 

only the single value. 

The currently active menu page is always displayed on the 

right third of the screen. This is changed by the program whenever 

appropriate. At the user's option, all, some, or none of the menu 

pages may be used from the digitiser tablet. These pages are usually 

mounted during the initial setup stage of the program. They can, 

however, be mounted at any time the user wants. The only restriction 

on the use of the digitiser tablet is that only selections on the 

currently active page ( as displayed on the screen) may be made. Any 

other menu selection will be considered as an invalid response. 
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6.1.2 Graphical Input 

Wherever possible, CANDSN allows the use of graphical input. 

This input may be from either the graphics terminal or from the 

digitising tablet. Note that to use graphical input from the termi-

nal, it must be in graphics mode, while it must be in text mode to 

use the digitising tablet. Positive feedback is used to indicate 

the successful digitising of a point. On the terminal, the cursor 

is erased as soon as a point is digitised while the digitising 

tablet beeps to indicate a successful point selection. 

The use of graphical input for menu command selection has 

already been discussed. It is also used for station identification 

and coordinate input. As an example, when station identification is 

required, it is not necessary that the name of the station be typed. 

All that is necessary is that the cursor be moved close to the 

station required, on the screen, and the " enter" key pressed. The 

program will then find the station closest to the graphics cursor 

and use it. 

During station addition, the coordinates of the digitised 

point are used as the approximate coordinates of the station. This 

method should not be used for entering the coordinates of known 

stations. The resolution of the digitser tablet is only 0.12 mm 

which corresponds to an inaccuracy of 6.35 metres, if digitising 

from a 1:50,000 map. Add to this the pointing error of the user and it 

is possible to be out by up to 50 metres causing unacceptable errors 
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and distortions in the results. 

6.1.3 The Checkpoint Function 

Frequently, the design of a network takes place over a long 

period of time. Changes to an already designed network may become 

necessary, or it may not be possible to complete the design in one 

run of the program. The use of CANDSN to adjust a network that was 

originally designed on it will be a common occurrence. 

To facilitate these operations, CANDSN has a checkpoint 

feature. The save command dumps all the current information to a 

file. The device and file name are specified by the user. The 

possible devices are magnetic tape, hard disk ( RLO2), or floppy disk 

(RXO2). Of these, the magnetic tape is the preferred device. The 

RLO2 disk is not a secure device for long term storage as it has no 

restrictions on its access. The RXO2 floppy disk is a small device 

and would not have enough room for a large network. 

The restore command is used to read the information from the 

checkpoint file. This places CANDSN into exactly the same condition 

it was in when the save command was executed, with the sole exception 

of items mounted on the digitiser tablet. Since there is no guarantee 

that the map and menu will be mounted in exactly the same place as 

they were when the save command was used, the current digitiser posi-

tion information is maintained. 

The checkpoint operations can also be used during a CANDSN run. 

If during a design, one possible solution is found, it can be saved 
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before further changes are made in an effort to find a better solution. 

This way, if no better solution can be found, the original solution 

can be easily restored without having to undo the new modifications. 

6.1.4 Program Limits 

There were two factors which made it necessary to limit the 

size of the networks that could be designed and adjusted with CANDSN. 

The most critical of these was the memory available on the PDP 11/23. 

In the interest of speed of execution, some information contained in 

the observation and station files is also maintained in core in the 

form of tables. The size of these tables is limited by the available 

core memory. The same is true of some work matrices and vectors used 

in the evaluation of the sequential update expressions. The second 

factor is the FORTRAN requirement that a maximum size for a direct 

access file be declared when the file is created. 

The limits, established in CANDSN are: 

a. A maximum of 100 stations may be in the network at any 

one time. There is no limit on the numbers of unknown, 

weighted, or fixed stations so long as the total does 

not exceed 100. 

b. A maximum of 1000 observations may be in the network 

at any one time. 

c. A maximum of 20 directions may be in a single round. 

These limits are all established in the main program. If the limits 

are changed, no subroutines will require changes. The limit on the 
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number of observations can be easily increased. It was established only 

because of the requirement that the maximum size of a direct access file 

be declared when the file is created. To increase the maximum, simply 

change the value of MXNOBS in the main program. This will have no 

effect on the memory requirements for CANDSN. 

The other two limits can only be increased if there is more 

core memory available for the program. The matrices and tables whose 

dimensions are functions of these limits are clearly identified in the 

main program. 

6.2 Examples of Results  

Three examples of networks designed using CANDSN are presented 

in this section. They illustrate the use of CANDSN in three different 

fields of surveying. These examples were set up to illustrate the 

propagation of error in survey networks and to demonstrate some of the 

capabilities of CANDSN. 

6.2.1 Lot Survey 

The first example is a lot survey ( Figure 6.2) in which two 

existing points 1500 metres apart are used to control the survey. 

Station 3 is positioned by interlining between stations 1 and 2 and 

measuring a distance to station 1. From here a traverse is run to 

position the corners of the lot. Stations 1 and 2 are not shown in 

Figures 6.2 and 6.3. The plotting area on the graphics terminal was 

purposely set so that only the region including stations 3 to 7 were 
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visible. If it had been set to include stations 1 and 2 the other 

stations would have been much too crowded. The last example illus-

trates this "windowing" process further. 

Examining Figure 6.2 we notice that the station ellipses are all 

oriented at a slant to line 3 - 4. This is unexpected in a survey with 

all right angles. Further examination shows that the major axis of all 

the station ellipses is roughly perpendicular to the line drawn from 

station 1 to the unknown station. This indicates an uncertainty in the 

azimuth control. In an attempt to correct this, the angle 1 - 3 - 4 

was removed and angle 2 - 3 - 4 substituted. The results of using the 

longer backsight for the initial angle are shown in Figure 6.3. This 

simple change in procedure resulted in a decrease of the semi-major 

axis of the station ellipse of point 6 from 7 cm to 5.9 cm and a 

greater uniformity in the size of the station ellipses. Station 8 was 

also added to the network when the angle at 3 was changed. The ellipse 

at 8 is too large indicating that further work is required to get the 

revised network to meet the specifications. 

6.2.2 Geodetic Netwo'k 

An example of a small scale geodetic network is shown in Figure 

6.4. The initial solution was done considering only station 1 as 

known. Inspection of the resulting confidence regions shows a definite 

lack of azimuth control. This is typified by the major axes of the 

station ellipse being perpendicular to the line from the unknown 

station to the fixed station and the major axes of the relative ellipses 

being perpendicular to the line between the two unknown stations. This 
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is the typical pattern of error propagation these days with current 

EDM equipment having the accuracies it does. 

To illustrate the improvement that can result by " closing" on 

a known station, the network was updated by adding station 4 as a 

fixed station. The observations and accuracies used in the original 

solution were not changed. The new observations connecting station 4 to 

the network have the same accuracies as those in the rest of the 

network. The results are shown in Figure 6.5. The improvement is 

dramatic. The largest semi-major axis has been reduced to 1.1 cm 

from 5.8 cm and the ellipses are approaching a circular shape. 

6.2.3 Deformation Survey 

The last example is of a typical deformation, or monitoring, 

survey. The station to be monitored is station X in the center of the 

network. Stations A, B, C, and D form a local network used to monitor 

the station of interest and stations 1, 2, 3, and 4 form a regional 

network used to monitor the local network. The regional network is 3 

kilometres across while the local network is only 200 metres across. 

Figure 6.6 illustrates the problem of overcrowding encountered when 

trying to display the entire network. The station of interest, X, is 

totally obscured by the ellipses plotted at the center of the network. 

A much clearer plot of the local network and station X is shown in 

Figure 6.7. This was achieved by windowing the plot so that only a 

portion of it was displayed on the screen. The figures for this example 

were produced on the Tektronix 4634 hard copy unit to illustrate the 
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• quality of the plots produced on this device compared to those produced 

on a flatbed plotter ( Figures 6.2 to 6.5). 



Chapter 7 

CONCLUSIONS AND RECOMMENDATIONS  

The aims for this research, as set out in the introduction to 

this thesis, have been met. CANDSN is a powerful and flexible tool that 

can be used to design and adjust horizontal networks quickly and easily. 

It has been installed on a small computer thus making possible its use 

by small survey firms without access to main-frame computer systems. 

The use of computer graphics as an input and output technique is 

both quick and simple to learn and provides a wealth of information 

about the results that would be impossible to extract from a printed 

output. The example of the large network in Section 6.2.3 illustrates 

this. From a printed listing it would be impossible to see that the 

primary weakness in the net is a rotation about the single fixed point 

while from the plot of the networks and ellipses it is obvious. 

The sequential expressions developed in Section 2.3 allow the 

rapid updating of the solution. Without these, the presentation of 

results would be much too slow and the delays would be a source of 

irritation for the user. With the space and time saving techniques 

presented in Chapter 3 the installation of CANDSN on a small computer 

would not have been possible. 

The hardware configuration described in Chapter 5 has proven to 

be satisfactory. The graphics terminal is slow in its presentation and 

erasure of text information. This is particularly evident during 

changes of the menu page. This could be overcome by replacing the ter-

minal with one employing a frame buffer system. The use of a colour 
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graphics system would be a nice enhancement in that different colours 

could be used for the design circles and the confidence ellipses 

and the various observation types, making the interpretation of the 

results much easier. 

The computer used has been stretched to its outer limits. The 

size of the core memory was the principal limiting factor on CANDSN. 

The installation of CANDSN on a larger, faster computer such as a VAX 

750 would, greatly enhance its capabilities. The size of network that 

could be processed and the speed of processing would be greatly in-

creased. It would be possible, for example, to design and adjust net-

works of several hundred stations. 

If CANDSN were installed on a larger computer, there are several 

extensions that should be incorporated. Among them are the following: 

1. Extend the program to include one-dimensional and three-

dimensional networks. This would make it a general purpose 

survey adjustment package. 

2. Incorporate sensitivity and reliability testing into the 

program. This will make it a much more powerful tool for 

use in the design and analysis of engineering and deforma-

tion syrveys. 

3. Add terrain to mapping plane reduction of observations to 

the program. This will make it much easier to use when 

adjusting networks by further automating the processing of 

the data. 
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4. The statistical testing should be extended to include 

comparison of independent solutions and a more detailed 

analysis of the results. The testing procedures now used 

are those generally in use by the surveying community. The 

additional testing would be primarily aimed at research 

applications of CANDSN. 

5. The use of criterion matrices to represent the required po-

sitional and relative accuracies should be investigated and 

included in CANDSN. This would be useful when designing to 

relative accuracy specifications as compared to point accu-

racy specifications. 

6. The application of the sequential equations to free network 

adjustments should be investigated. This will be very 

useful in the analysis of deformation networks. 

7. A coordinate geometry ( COGO) package should be linked to 

CANDSN to facilitate further computations using the results 

of a network adjustment computed with CANDSN. 

8. Further alternatives to typing of information when using 

CANDSN should be investigated and implemented. An example 

of this would be the use of a valuator algorithm for the 

input of numeric data using graphical methods. This would 

make CANDSN easier to use. 



85 

REFERENCES  

Anderson, E.G., 1982; Towards Total Optimization of Surveying and 
Mapping Systems; Proceedings of Meeting of F.I.G. Study 
Group SB ( Survey Control Networks); Aalborg, Denmark; 
October, 1982. 

Aoki, M., 1967; Optimization of Stochastic Systems; Academic 
Press; New York. 

Baarda, W., 1973; S-Transformations and Criterion Matrices; 
Netherlands Geodetic Commission, Publications on Geodesy, 
New Series 5 ( 1); Delft, Netherlands. 

Blank, L..T., 1980; Statistical Procedures for Engineering, Management, 
and Science; McGraw Hill, New York. 

Burden, R.L., Faires, J.D., Reynolds, A.C., 1978; Numerical Analysis; 
Prindle, Weber and Schmidt, Boston. 

Dongarra, J.J., Moler, C.B., Bunch, J.R., Stewart, G.W., 1979; LINPACK 
Users Guide; Society for Industrial and Applied Mathematics; 
Philadelphia. 

Energy, Mines and Resources, 1978; Specifications and Recommendations 
for Control Surveys and Survey Markers; Surveys and Mapping 
Branch; Ottawa, Ontario. 

Fadeev, D.K., and Fadeeva, V.N., 1963; Computational Methods of Linear 
Algebra; W.H. Freeman; San Francisco. 

Grafarend, E.W., 1974; Optimization of Geodetic Networks; Proceedings 
of the International Symposium on Problems Related to the 
Redefinition of North American Geodetic Networks; The Canadian 
Surveyor, Vol . 28, No. 5, December 1974. 

Grafarend, E.W., 1981; Optimization of Geodetic Networks; Proceedings 
of International Symposium on Geodetic Networks and Computa-
tions; Munich, West Germany; August 1981. 

Hamilton, W.C., 1964; Statistics in Physical Science; The Ronald Press 
Company., New York. 

Knight, W., 1978; A Program Package for Large Systems of Normal Equa-
tions of Least Squares Adjustment; Report to Surveys and 
Mapping Division, Land Registration and Information Service; 
Summerside, P.E.I. 



86 

Knight, W., Mepham, M.P., 1978; Report on Computer Programs for 
Solving Large Systems of Normal Equations; Proceedings of 
Second International Symposium on Problems Related to the 
Redefinition of North American Geodetic Networks; Arlington, 
Virginia; April 1978. 

Koch, K.R., 1981; Otpimisation of the Configuration of Geodetic 
Networks; Proceedings of International Symposium on Geodetic 
Networks and Computations, Munich, West Germany; August, 1981. 

Krakiwsky, E.J., 1981; A synthesis of Recent Advances in the Method 
of Least Squares; Publication 10003; Division of Surveying 
Engineering, University of Calgary, Calgary, Alberta. 

Lawson, C.L., and Hanson, R.J., 1974; Solving Least Squares Problems; 
Prentice-Hall Series in Automatic Computations; Prentice-Hall, 
New Jersey. 

Mikhail, 1976; Observations and Least Squares; IEP, New York. 

Newman, W.M., and Sproull, R.W., 1979; Principles of Interactive 
Computer Graphics; McGraw-Hill, Toronto. 

Nickerson, B.G., 1977; Horizontal Network Design Using Interactive 
Computer Graphics; M.Sc.E. Thesis; Department of Surveying 
Engineering; University of New Brunswick; Fredericton, 
New Brunswick. 

Nickerson, B.G.,, 1981; LEAP-LRIS Ellipsoidal Adjustment Package System 
Overview; Surveys and Mapping Division, Land Registration and 
Information Service; Summerside, P.E.I. 

Pope, A.J., 1974; Two Approaches to Non- Linear Least Squares Adjust-
ments; Canadian Surveyor; Vol. 28, No. 5. 

Pope, A.J., 1976; The Statistics of Residuals and the Detection of 
Outliers; NOAA Technical Report NOS 65 NGS1; U.S. Department 
of Commerce; Rockville, U.S.A. 

Schaffrin, B., 1981; Some Considerations on the Optimal Design of 
Geodetic Networks; Proceedings of International Symposium on 
Geodetic Networks and Computations; Munich, West Germany; 
August, 1981. 

Schmitt, G., 1981; Optimal Design of Geodetic Networks; Invited Review 
Paper; Proceedings of International Symposium on Geodetic 
Networks and Computations; Munich, West Germany; August 1981. 



87 

Steeves, P.A., 1974; Least Squares Adjustment of Horizontal Control 
on a Mapping Plane; M.Sc.E. Thesis; Department of Surveying 
Engineering, University of New Brunswick; Fredericton, New 
Brunswick. 

Vanicek, P., and Krakiwsky, E.J., 1982; Geodesy: The Concepts; 
North-Holland Publishing, Amsterdam. 



APPENDIX I 

STARTING CANDSN 
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This appendix explains how to start CANDSN on the Division of 

Surveying Engineering PDP 11/23 computer system. It is not intended to 

be an instruction manual on the use of the PDP 11/23. 

Before starting CANDSN, the Princeton terminal must be connected 

to the PDP. The cables are located behind the hard-copy unit. Plug 

the Princeton cable into one end of the short adaptor cable and the 

PDP cable into the other end. The GANDALF modem ( blue box) is not used. 

The communication speed switches located behind the door of the Prince-

ton controller should be set to 4800. The Princeton terminal should 

now be turned on using the key switch located in the top right of the 

Princeton keyboard. 

Once the terminal has warmed up ( 30 to 60 seconds), the digitis-

ing tablet should be set up. The four button cursor should be plugged 

into the front of the controller. Set the controller to point digitis-

ing by pressing the " point" button in. It should lock in. If any 

other buttons are locked in, release them. Now press the " clear" button 

momentarily. 

You are now ready to start CANDSN. If the logout program is 

running, stop it by pressing and holding the " CTRL" key while typing 

"c" twice. ( DO NOT PRESS " BREAK". If you do press the " BREAK" key, 

find someone who knows how to cold start the computer. The " BREAK key 

stops the operating system.) To start the program, enter the command 

R CANDSN. 

There are two possible results of this. One is that the program starts 

running and the second is that one of the following error messages will 
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appear: 

a) Not enough memory, or 

b) CANDSN.SAV not found. 

If the first message appears, it means that the wrong monitor is being 

used. To correct this, enter the command 

BOOT RT11SJ 

and answer yes to the question "Are you sure?". Once the monitor prompt 

(a period) appears, try the R CANDSN command again. The second error 

message indicates that the wrong disk is loaded. If this happens get 

someone to show you how to change disks. 



APPENDIX II 

ROUTINES USED 

IN CANDSN 



This appendix is a list of the name of the routines used in 

CANDSN with a short description of what each routine does. The 

listing is broken down into 9 groups according to their use and source. 
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11.1 Application Routines  

CPTVAR - Compute the variance of an observation. 

FORMA Form the A design matrix and w vector in compact form for 

a single observation. 

OBS - Control the addition and deletion of observations. 

OBSAD - Add an observation. 

OBSDL - Delete an observation. 

OBSDRW - Draw or erase an observation. 

OBSDS - Display an observation record on the menu page. 

OBSRC - Get the values for an observation record from the menu page. 

PLINET - Plot the network. 

PRTDAT - Print the network data. 

PRTRES - Print the results. 

RSTDAT - Restore the network from a checkpoint file. 

SAVDAT - Save the network data on a checkpoint file. 

SETUP - Setup the terminal and digitising tablet. 

SOLVE - Adjust the network. 

STAT - Control the addition and deletion of stations. 

STATAD - Add a station. 

STATDL - Delete a station. 

STATDS - Display a station record on the menu page. 

STATRC - Get the values for a station record fromthe menu page. 

STNPLT - Plot a station on the terminal. 
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11.2 Panel Matrix Routines  

CHRPNL - Compute the Cholesky root of a matrix stored in a panel 

matrix file. 

CLSPNL - Close a panel matrix file. 

CPSPNL - Delete a set of rows and columns of a matrix stored in a 

panel matrix file. 

CPYPNL - Copy the contents of one panel matrix file to another. Also 

used to add and subtract two panel matrices. 

DLCPNL - Delete a set of columns of a matrix stored in a panel matrix 

file. 

DLRPNL - Delete a set of rows of a matrix stored in a panel matrix 

file. 

DMPPNL - Dump a panel matrix file to a sequential file for storage. 

ERRPNL - Print error messages for the panel matrix routines. 

EXTPNL - Extract a submatrix from a panel matrix. 

GETPNL - Read one panel from the panel matrix file. 

INTPNL - Initialise a panel matrix file to zero. 

INVPNL - Compute the inverse of a panel matrix from the Cholesky 

root. 

MPYPNL - Multiply two panel matrices. 

OPNPNL - Open an existing panel matrix file. 

PRTPNL - Print the contents of a panel matrix file. 

RSTPNL - Restore a panel matrix from a sequential file created by 

DMPPNL. 

STMPNL - Add a sparse matrix to the panel matrix. 
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WRTPNL - Write a panel to the panel matrix file. 

ZROPNL - Set a panel matrix to zero. 

11.3 Station File Routines  

DLTSTF - Delete a record from the station file. 

DMPSTF - Dump the station file to a sequential file for saving. 

GETSTF - Read a record from the station file. 

INTSTF - Initialise the station file. 

MTRSTF - Return the record number of the next free record in the 

station file. 

RSTSTF - Restore the station file from the save file created by 

DMPSTF. 

IJPDSTF - Update the coordinates of the stations in the station file. 

WRTSTF - Write a record to the station file. 

11.4 Observation File Routines  

BLKOBF - Return the sequence numbers of all observations of a speci-

fied type involving a specified station. 

DLTOBF - Delete a record from the observation file. 

DMPOBF - Dump the observation file to a sequential file for saving. 

GETOBF - Get a record from the observation file. 

INTOBF - Initialise the observation file. 

MTROBF - Return the record number of the next available observation 

file record. 

PRTOBF - Print the contents of the observation file. 
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RSTOBF - Restore the observation file from the save file created by 

DMPOBF. 

WRTOBF - Write a record to the observation file. 

11.5 Menu Processing Routines  

DGIDZN - Transform digitiser coordinates to screen coordinates. 

DGMNLD - Load menu on digitiser tablet. 

FRCHNG - Control menu page changes on the graphics screen. 

FROG - Change menu pages on the screen. 

GETRSP - Control all input from the graphics terminal 

GTRSVL - Return the current value of a menu option. 

IDZNSL - Identify what screen zone the cursor was in and what menu 

item was selected. 

MNULD - Load the menu file from disk. 

MSGDSP - Display a message on the screen. 

SETRSP - Assign a value to one of the menu options. 

TXTERS - Erase selected portions of the screen. 

11.6 General Purpose Utility Routines  

CLRSTR - Set a character string to all blanks. 

DEGRAD - Convert degrees, minutes and seconds to radians. 

IBLOC - Find the position of an integer in a sorted list of virtual 

integers. 

INSIDE - Logical function to determine whether or not a point is 

located within the drawing area. 
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LJSTFY - Left justify a character string. 

LVECPY - Copy a vector of any type except virtual 

QUERY - Ask a yes/no question on the VT100. 

RADEG - Convert radians to degrees, minutes and seconds. 

RJSTFY - Right justify a character string. 

UPPER - Convert a character string to all upper case. 

11.7 Matrix Manipulation Routines  

DOOT - Dot product of two double precision vectors. 

DLTFIL Copy upper triangle of a double precision matrix to the 

lower triangle. 

DMXMUL - Double precision matrix multiplication. 

DPODI - Determinant and/or inverse of a double precision matrix from 

the Cholesky root. 

DPOFA - Cholesky root of a double precision matrix. 

DUDDI - Determinant and/or inverse of a double precision matrix 

from the U-D factor. 

DUDFA - U- D factorisation of a double precision matrix. 

DUTIN - Inverse of an upper triangular double precision matrix. 

VDDOT - Dot product of two virtual double precision vectors. 

VDLTFL - Copy upper triangle of a virtual double precision matrix to 

the lower triangle. 

VDMXML - Virtual double precision matrix multiplication. 

VDPODI - Determinant and/or inverse of a virtual double precision 

matrix from the Cholesky root. 
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VDPOFA - Cholesky root of a virtual double precision matrix. 

VDUDDI - Determinant and/or inverse of a virtual double precision 

matrix from the U- D factor. 

VDUDFA - U-D factorisation of a virtual double precision matrix. 

VDUTIN - Inverse of an upper triangular virtual double precision 

matrix. 

11.8 Digital Library Routines  

CONCAT -• Concatenate two character strings. 

DATE - Return current date as a character string. 

GETSTR - Read a character string from a file. 

GTLIN - Print a question and return the answer as a character string. 

GTIM - Return current time as an integer value. 

INDEX - Return the location of a substring in a character string. 

ISCOP.IP - Compare two character strings. 

LEN - Return the length of a character string. 

PUTSTR - Write a character string to a file. 

SCOPY - Copy one character string to another. 

STRPAD - Pad a character string with blanks. 

TIME - Return the current time as a character string. 

TRIM - Remove trailing blanks from a character string. 
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11.9 Princeton Library Routines  

PABCRD - Return the current cursor position. 

PABSUC Draw a line or move to a position specified in screen 

coordinates. 

PCNTL - Issue control commands to the terminal. 

PGRDAT - Convert response string to screen coordinates. 

PGRREQ - Put the terminal into graphics mode. 

PGS - Set grey scale ( line intensity). 

PREAD - Read a response string from the terminal. 

PRELVC - Relative draw or move to a position specified in screen 

coordinates. 

PTABLT - Enable or disable the digitising tablet. 

PTBDAT - Decode the digitising tablet response string. 

PTEXT - Print a text string on the graphics terminal. 

PTXMVA - Move to an absolute position specified in terms of the text 

row and column numbers. 

PXMITB - Buffer transmissions to the terminal. 

PXMITC - Do not buffer transmissions to the terminal. 

VABSVC - Draw a line or move to a position specified in user coordi-

nates. 

VCRCL - Draw a circle. 

VDATCV - Convert screen coordinates to user coordinates. 

VELLPS - Draw an ellipse. 

VSWIND - Define a window on the screen. 

VVWIND - Define a viewport. 
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In addition there are 56 routines used by these routines. 

They are not called directly from CANDSN and so are not listed here. 


