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Introduction
• Stochastic simulations are widely used in geoscience!

• Monte Carlo estimates are often needed for definite integrals

• Pseudorandom sequences imply quadrature computations

• Quasirandom sequences can optimize the pseudorandom results

• Chaotic random sequences offer challenging new strategies

• Numerical experimentation generally required for analysis

• Expected error bounds need confirmation and clarification

• Geodetic and other potential applications abound

• Investigations are continuing …



Randomness
• In mathematics, only processes can be random!

• In simple terms, random most often means nondeterministic

• In physics, random usually means noncomputable or unpredictable

• In practice, there are various ways to simulate random sequences

• Pseudorandom sequences are commonly generated using some
linear congruential model applied recursively, such as

xn ≡ c xn-1 modulo π (for large prime π and constant c)
or lagged Fibonacci congruential sequence, such as

xn ≡ xn-p xn-q modulo π (for large primes π and p, q)
in which  usually stands for ordinary multiplication

• Quasirandom sequences are regularized pseudorandom sequences



Chaos & Chaotic Randomness
• Chaos refers to unstable dynamical nonlinear systems which are 

especially sensitive to their initial conditions

• Chaotic maps can be erratic, mixing / ergodic and thus ‘random’

• Several families of chaotic processes may be used to simulate   
random processes using specific choices of parameters

• The logistic map generated by  xn = 4 xn-1 (1-xn-1),  n = 1, 2, …,
for some seed x0, over the interval (0, 1), exhibits randomness 
with an approximate density 

ρ(x) = 1 / π [x (1 – x)]1/2

which needs to be taken into account in Monte Carlo applications

• Other strategies using higher-order Chebychev polynomials are
sometimes used in practice [Umeno, 2000]



Pseudorandom Sequences
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Quasirandom Sequences

0 200 400 600 800 1000
0

2

4

6

8

10

Spatial Plot of Quasirandom Sequence

0 2 4 6 8 10
0

2

4

6

8

10

Phase Plot of Quasirandom Sequence

0 2 4 6 8 10
0

5

10

15

20

25

Histogram of Quasirandom Sequence

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

Periodogram of Quasirandom Sequence



Chaotic Random Sequences

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

Spatial Plot of Chaotic Random Sequence

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Phase Plot of Chaotic Random Sequence

0 200 400 600 800 1000
0.0

0.1

0.2

0.3

0.4

0.5

Periodogram of Chaotic Random Sequence

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

120

Histogram of Chaotic Random Sequence



Monte Carlo Simulations

Numerical Recipes state:

implying a variance O(1/N)     

However, more recently,

Chaotic Monte Carlo (General)
Superefficient Chaotic Monte Carlo*
Quasirandom Numbers (General, spatial dim. s )
Standard Arithmetical Pseudorandom Numbers

Variance of ErrorRandom Number Generators
V(N) O(1/N)=

2s 2V(N) O((ln N) /N )=
2V(N) O(1/N )=

V(N) O(1/N)=

*  Under the ‘superefficiency condition’ implied by the dynamical correlation for large N,
see e.g.  [Umeno, 2000, 1999, 1998]                
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1.144286550.99503764
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1.727919771.764013941.738553631.67154678

1.718129881.719944531.719391631.56693421
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≅ 1.718281828459045
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Numerical Experimentation



Analysis of Simulations

Pseudorandom Approach:

• Using Mathematica 6 random number generator

• Very good results in general

Quasirandom Approach:

• Using Mathematica 6 random number generator

• With equal partition into 10 subintervals per dimension

• Best results in general

Chaotic Random Approach:

• Using Logistic Map with corresponding density correction

• Results generally comparable to pseudorandom results



Geodetic Application

Inverse Problem: Recovery of ocean bathymetry from gravity data

1. Computation of gravity disturbance at sea level using local water depth
Simplification: attraction of prism below grid point only.

2. With simulated surface gravity disturbance, estimate ocean depth using 
Simulated Annealing (SA) with pseudorandom, quasirandom and chaotic 
random numbers.

3. Example of depth estimates vs 2221.384 ± 0.170 m & no. of iter’ns for 1 σ:

62992222.3202219.5152181.3272061.340CMC

74502220.9812220.6262206.9142138.915QMC

18802222.0182224.2232192.5372136.802PMC

Required no. of
iterations for 1 σ

104 iter’ns103 iter’ns102 iter’ns10 iter’ns



20.926-0.768106.544-121.6876161

Std
(m)

Mean  
(m)

Max 
(m)

Min  
(m)
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Samples

Pseudorandom – 100 iterations

Quasirandom – 100 iterations

Chaotic random – 100 iterations

32.295 1.675260.758-332.1006161

Std
(m)
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(m)
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Number of 
Samples
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Min  
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Number of 
Samples



Concluding Remarks

• Pseudorandom numbers and Monte Carlo simulations are very useful!

• Quasirandom Monte Carlo approaches appear most optimal and adaptive

• Chaotic random numbers using Logistic Map seem somewhat deficient

• Chaotic Monte Carlo limited experimentation shows no better than O(N-1)

• More research is clearly warranted for O(N-2) error behavior …

• Geodetic and other geoscience MC applications are very promising

• Uncertainty modeling in nonlinear and/or nonGaussian contexts require MCs 

• Research and computational experimentation are continuing for gravity terrain  
corrections, geopotential downward continuation & uncertainty characterization


