Exploring Monte Carlo Simulation Strategies for Geoscience Applications

J. A. Rod Blais^{1,2}, R. Grebenitcharsky¹ & Z. Zhang¹ ¹Dept. of Geomatics Engineering ²Pacific Institute for the Mathematical Sciences University of Calgary, Calgary, Alberta T2N 1N4 <u>blais@ucalgary.ca rgrebenitcharsky@gmail.com zzhang@ucalgary.ca</u> <u>www.ucalgary.ca/~blais</u>

Introduction

- Stochastic simulations are widely used in geoscience!
- Monte Carlo estimates are often needed for definite integrals
- Pseudorandom sequences imply quadrature computations
- Quasirandom sequences can optimize the pseudorandom results
- Chaotic random sequences offer challenging new strategies
- Numerical experimentation generally required for analysis
- Expected error bounds need confirmation and clarification
- Geodetic and other potential applications abound
- Investigations are continuing ...

Randomness

- In mathematics, only processes can be random!
- In simple terms, random most often means nondeterministic
- In physics, random usually means noncomputable or unpredictable
- In practice, there are various ways to simulate random sequences
- Pseudorandom sequences are commonly generated using some linear congruential model applied recursively, such as x_n ≡ c ⊙ x_{n-1} modulo π (for large prime π and constant c) or lagged Fibonacci congruential sequence, such as x_n ≡ x_{n-p} ⊙ x_{n-q} modulo π (for large primes π and p, q) in which ⊙ usually stands for ordinary multiplication
- Quasirandom sequences are regularized pseudorandom sequences

Chaos & Chaotic Randomness

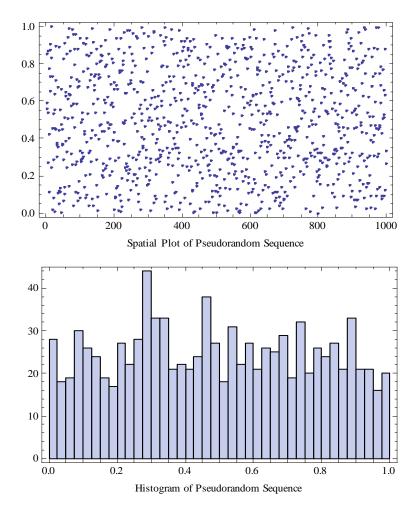
- Chaos refers to unstable dynamical nonlinear systems which are especially sensitive to their initial conditions
- Chaotic maps can be erratic, mixing / ergodic and thus 'random'
- Several families of chaotic processes may be used to simulate random processes using specific choices of parameters
- The logistic map generated by $x_n = 4 x_{n-1} (1-x_{n-1})$, n = 1, 2, ...,for some seed x_0 , over the interval (0, 1), exhibits randomness with an approximate density

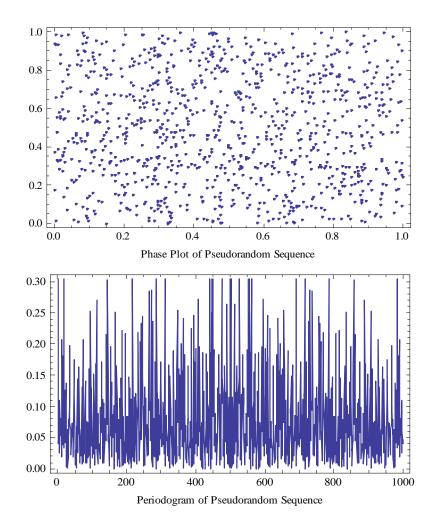
 $\rho(\mathbf{x}) = 1 / \pi [\mathbf{x} (1 - \mathbf{x})]^{1/2}$

which needs to be taken into account in Monte Carlo applications

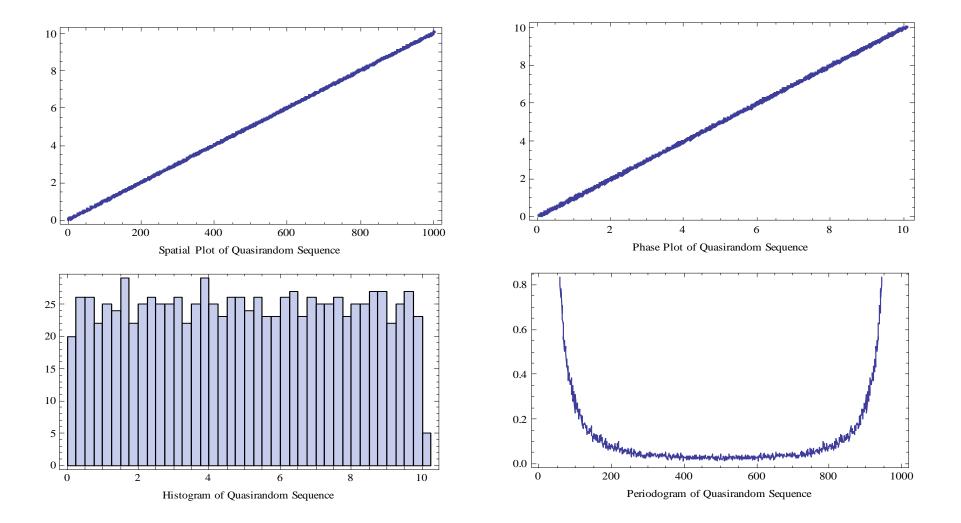
• Other strategies using higher-order Chebychev polynomials are sometimes used in practice [Umeno, 2000]

Pseudorandom Sequences

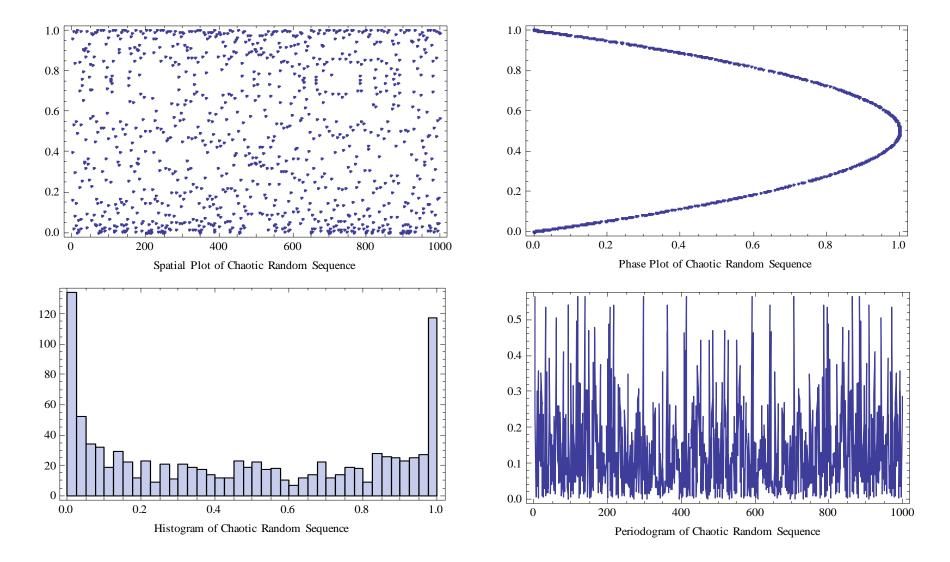




Quasirandom Sequences



Chaotic Random Sequences



Monte Carlo Simulations

Numerical Recipes state:

$$\int_{V} \mathbf{f} \, \mathbf{dV} \approx \mathbf{V} \left\langle \mathbf{f} \right\rangle \pm \sqrt{\left(\left\langle \mathbf{f}^{2} \right\rangle - \left\langle \mathbf{f} \right\rangle^{2}\right) / \mathbf{N}}$$

implying a variance O(1/N)

However, more recently,

Random Number Generators	Variance of Error
Standard Arithmetical Pseudorandom Numbers	V(N) = O(1/N)
Quasirandom Numbers (General, spatial dim. s)	$V(N) = O((\ln N)^{2s}/N^2)$
Superefficient Chaotic Monte Carlo*	$V(N) = O(1/N^2)$
Chaotic Monte Carlo (General)	V(N) = O(1/N)

* Under the 'superefficiency condition' implied by the dynamical correlation for large N, see e.g. [Umeno, 2000, 1999, 1998]

Numerical Experimentation

PMC / QMC / CMC	N = 10	$N = 10^2$	$N = 10^3$	$N = 10^4$
$\int_0^1 e^x dx$	1.56693421	1.63679860	1.70388586	1.71894429
	1.56693421	1.71939163	1.71994453	1.71812988
≅ 1.718281828459045	1.67154678	1.73855363	1.76401394	1.72791977
$\int_0^1 \int_0^1 e^{xy} dx dy$	1.23409990	1.31809139	1.31787793	1.31790578
$\int_0 \int_0^\infty C \mathrm{d} \mathrm{A} \mathrm{d} \mathrm{y}$	1.23409990	1.31785979	1.31789668	1.31790120
≅ 1.317902151454404	1.21656321	1.27903348	1.34063983	1.31179521
$\int_0^1 \int_0^1 \int_0^1 e^{xyz} dx dy dz$	1.14046759	1.14625944	1.14650287	
$\int_0 \int_0 \int_0 e^{-\alpha x \alpha y \alpha z}$	1.14046759	1.14649963	1.14649879	
≅ 1.146499072528643	0.99503764	1.14428655		

Analysis of Simulations

Pseudorandom Approach:

- Using Mathematica 6 random number generator
- Very good results in general

Quasirandom Approach:

- Using Mathematica 6 random number generator
- With equal partition into 10 subintervals per dimension
- Best results in general

Chaotic Random Approach:

- Using Logistic Map with corresponding density correction
- Results generally comparable to pseudorandom results

Geodetic Application

Inverse Problem: Recovery of ocean bathymetry from gravity data

- 1. Computation of gravity disturbance at sea level using local water depth Simplification: attraction of prism below grid point only.
- 2. With simulated surface gravity disturbance, estimate ocean depth using Simulated Annealing (SA) with pseudorandom, quasirandom and chaotic random numbers.

	10 iter'ns	10 ² iter'ns	10 ³ iter'ns	10 ⁴ iter'ns	Required no. of iterations for 1 σ
РМС	2136.802	2192.537	2224.223	2222.018	1880
QMC	2138.915	2206.914	2220.626	2220.981	7450
СМС	2061.340	2181.327	2219.515	2222.320	6299

3. Example of depth estimates vs 2221.384 ± 0.170 m & no. of iter'ns for 1 σ :

Pseudorandom – 100 iterations

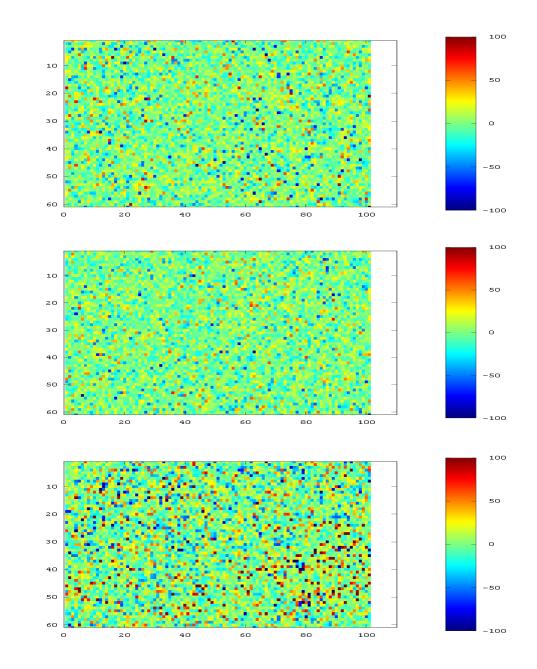
Number of	Min	Max	Mean	Std
Samples	(m)	(m)	(m)	(m)
6161	-121.687	106.544	-0.768	20.926

Quasirandom – 100 iterations

Number of	Min	Max	Mean	Std
Samples	(m)	(m)	(m)	(m)
6161	-106.478	72.487	-0.909	18.535

Chaotic random – 100 iterations

Number of	Min	Max	Mean	Std
Samples	(m)	(m)	(m)	(m)
6161	-332.100	260.758	1.675	32.295



Concluding Remarks

- Pseudorandom numbers and Monte Carlo simulations are very useful!
- Quasirandom Monte Carlo approaches appear most optimal and adaptive
- Chaotic random numbers using Logistic Map seem somewhat deficient
- Chaotic Monte Carlo limited experimentation shows no better than O(N⁻¹)
- More research is clearly warranted for O(N⁻²) error behavior ...
- Geodetic and other geoscience MC applications are very promising
- Uncertainty modeling in nonlinear and/or nonGaussian contexts require MCs
- Research and computational experimentation are continuing for gravity terrain corrections, geopotential downward continuation & uncertainty characterization