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ABSTRACT 

In recent years the attention focused on UHF indoor wireless communication systems has 

dramatically increased. Consequently there is a growing demand for simple, cost effective, and accurate 

indoor channel characterization methods. The recent introduction of indoor frequency domain 

measurement systems has made possible accurate channel characterization, but the systems are complex 

and expensive. 

This thesis shows that it is possible to calculate wideband response parameters, specifically the root 

mean square delay spread ç, with knowledge of the indoor channel's frequency response magnitude 

spectrum only. Application of this result makes possible a simple, inexpensive, and accurate wideband 

channel characterization system using equipment commonly found in an PP research facility. The 

apparent frequency dependent nature of r. is also discussed. 

111 



PREFACE 

To aid in the study of UHF indoor communications channel characterization, 12,000 frequency 

domain measurements were taken in 1991. This author uses some of the data to measure the channel's 

wideband response and make conclusions with respect to the channel's minimum phase properties and 

frequency dependent nature. These results, as well as possible industry applications, are presented in 

Chapters Four through Six of this thesis; the necessary background is provided in the first three chapters. 

A brief summary of each chapter follows. 

Chapter One introduces the indoor communications channel and the parameters used to characterize 

its wideband response. 

Chapter Two describes the frequency domain measurement system and the experimental indoor 

channel. The treatment of the data and post-processing issues such as data windowing are also discussed. 

A theoretical background is presented in Chapter Three. Topics covered include the RMS delay 

spread, the z-transform, system causality, and minimum phase systems. 

Chapter Four examines the causality of the experimental channel. The results of this chapter are used 

to verify the measurement system and provide a basis for the discussions in Chapter Five. 

Chapter Five investigates the accuracy of the EMS delay spread estimates. Environmental influences 

on the indoor channel are also discussed. 

The results are summarized and concluded in Chapter Six and potential future research projects are 

suggested. 
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I 

CHAPTER ONE 

Introduction 

In recent years the attention focused on indoor wireless communication systems has dramatically 

increased. This increase can be largely attributed to the advance in popularity and availability of indoor 

services such as wireless LANs and cordless telephones. 

A necessary step in the development cycle of an indoor communications product is the 

characterization of its target channel. Channel parameters such as coherence bandwidth, excess delay, 

and root mean square (RMS) delay spread are often required. These parameters are obtained by 

measuring the wideband response of the channel. 

1.1 History of Indoor Wideband Measurements 

Prior to 1984 very little indoor channel characterization research had been conducted. 

Devasirvatham was the first to characterize the indoor channel using wideband measurements 

[Devasirvatham, 1984]; Bultitude extended Devasirvatham's research in 1987 [Bultitude, 1987]. During 

the middle to late 1980's almost all indoor wideband measurements were made exclusively in the time 

domain. It wasn't until Pahiavan and Howard introduced a frequency domain measurement system in 

1989 that such systems started gaining notoriety [Pahlavan and Howard, 1989]. Molkdar reported that all 

wideband measurements prior to 1991 had been conducted in the time domain [Molkdar, 1991]. 

Although Molkdar's claim is incorrect, it does underscore the rarity of frequency domain measurements 

during that time period. In 1991 Morrison unveiled an indoor frequency domain measurement system 
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capable of both narrowband and wideband measurements [Morrison]. It seems probable that the 

popularity of frequency domain measurement systems will continue to increase. 

When measuring the indoor channel's frequency response, researchers have assumed that both its 

magnitude and phase are required to accurately express the channel's wideband characteristics. This 

thesis shows that it is possible to calculate one of the most popular wideband response parameters, namely 

the RMS delay spread ç, by measuring only the magnitude of the channel's frequency response. Some 

researchers have reported a relationship between z and the test signal's path length [Devasirvathani, 

1986; Zaghloul et al., 1990] while others have not [Rappaport, 1989; Saleb and Valenzuela, 1987]. This 

phenomenon remains unexplained to date. A relationship between signaling frequency and ç has also 

been noted [Morrison, pg. 83; Zaghloul et al., 1991] but is still unexplained. Causes of the apparent 

frequency dependent nature of z are explored in this thesis. 

1.2 Indoor Channel Characterization 

The indoor environment is a fading multipath channel. The scattering and reflective nature of the 

environment causes multiple propagation paths between transmitter and receiver. Associated with each 

path is a difference in path length and a corresponding propagation delay. One characteristic of a 

multipath channel is the time spread of a transmitter's signal; when measured at the receiver the time 

spread is called the excess delay. 

In addition to creating an excess delay, the multipath components give rise to signal fading, i.e., a 

fade in the magnitude of the channel's frequency response. This occurs when the phases of the individual 

paths add destructively. A small variation in the path difference can cause a substantial phase difference 

since 
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phase difference path difference 

2,r 2 

where 2 is the signal's wavelength. For example, a 1 GHz signal shifts 1800 when its path difference is 

1.67 m. 

In general, the indoor channel changes with time. Its response to a signal is therefore a function of its 

time dependent multipath components. The impulse response, i.e., the channel's response to a very short 

pulse, is given by the following expression [Proakis, pg. 704]. 

N—I 

ç 1) = Y, a (t)e'°"°4 r— ; (t)] (1.2) 
n=O 

where h( ç t) is the impulse response at delay z• and time instant t, 

a (t) is the amplitude of the nth path, 

On (1) is the phase of the nth path, 

ç (1) is the propagation delay of the nth path, 

and N is the number of paths. 

The multipath intensity profile is the square of the impulse response's magnitude; it is the relative power 

of the multipath components. 

1.2.1 Wideband Response Parameters 

Two sinusoids with a frequency separation greater than a channel's coherence bandwidth are affected 

differently by the channel. The coherence bandwidth B0 is inversely proportional to the channel's RMS 

delay spread r. . In practice, the constant of proportionality is close to unity so that 
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(1.3) 

Wideband channel measurements are of interest when the system's bandwidth exceeds B. 

Of the wideband response parameters, the RMS delay spread is used most frequently to characterize a 

channel. z is the standard deviation of the multipath intensity profile; it is an important parameter as 

it is used in determining the maximum signaling bandwidth for a given error rate [Jakes, pp. 236-240]. 

When the channel is stationary, the following equations define ç [Morrison, pp. 8-9]. 

cms - 

112 

where t is the arrival time of the (ii + 1)st path, 

a is the envelope of the (n + 1)st path, 

and N is the number of multipath components. 

The mean excess delay rm is 

= 

a n 

(1.4) 

(1.5) 

Indoor channel frequency domain measurement systems have recently become available. Using such 

a system, r. is calculated by transforming the frequency domain data into the time domain to obtain the 

impulse response; the impulse response is then used in Equations (1.4) and (1.5). Both the magnitude and 
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phase of the transfer function are required to calculate the impulse response. Currently it is assumed that 

in order to calculate z, the frequency domain measurement system must record both the magnitude and 

phase of the frequency response. The following chapters show that for the indoor channel, r may be 

calculated with knowledge of the (measured) transfer function's magnitude only. 

1.2.2 Thesis Outline 

This thesis is comprised of six chapters. Chapters Two and Three provide necessary background 

information; Chapters Four and Five describe and analyze experimental results; a summary and 

conclusions are presented in Chapter Six. A brief summary of Chapters Two through Six follows. 

Chapter Two describes the frequency domain measurement system and the experimental indoor 

channel. The treatment of the data and post-processing issues such as data windowing are also discussed. 

A theoretical background is presented in Chapter Three. Topics covered include the RMS delay 

spread, the z-transform, system cansality, and minimum phase systems. 

Chapter Four examines the causality of the experimental channel. The results of this chapter are used 

to verify the measurement system and provide a basis for the discussions in Chapter Five. 

Chapter Five investigates the accuracy of the RMS delay spread estimates. Environmental influences 

on the indoor channel are also discussed. 

The results are summarized and concluded in Chapter Six and potential future research projects are 

suggested. 
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CHAPTER TWO 

The Measurement System and Experimental Data 

This chapter describes the frequency domain measurement system and the data obtained through its 

use. The system and data were used by Gerald Morrison for his Master of Science thesis. A detailed 

description of the system is given in Chapter Two of Morrison's thesis [Morrison, pp. 18-48]. 

2.1 The Frequency Domain Measurement System 

Morrison constructed a frequency domain measurement system using a network analyzer with an S-

parameter test set, an amplifier, cables, two antennas, and a personal computer. This basic configuration 

is shown in Figure 2.1. 

The HP8753A Vector Network Analyzer is capable of measuring both the magnitude and phase of a 

linear network's transfer function. Wideband measurements from 300 kHz to 3 GHz are possible. The 

indoor HF propagation channel's transfer function is measured by placing the transmit and receive 

antennas somewhere in the indoor environment. The network analyzer sweeps the channel by 

transmitting a sine wave of increasing frequency and measuring the received response. The starting 

frequency f, the stopping frequency fN_1, and the frequency separation between successive samples 

4f, are all determined by the user. For example, to obtain a transfer function with bandwidth N - Af, 

N = (fN_1 - f0) / 4f samples are required. The channel's transfer function H(f) is 

H(f)=X(f)b(f-f0-n.Lf), f ≤f≤f (2.1) 
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where X(f) is the channel's frequency response to the (n-I-1)st sample and 

10, 
1 n=O 

n#O 

PC 

HP 8753A 
Vector 

Network Analyzer 

HP 85046A 

S-Parameter Kit 

12m 

1.8m > 
Fig. 2.1: Measurement System Configuration 

44m 

2.2 Data Collection 

(2.2) 

An experimental channel was constructed by using the frequency domain measurement system inside 

a modem office building. The transmit and receive antennas were placed in a hallway with an 

unobstructed line of sight (LOS) between them. A solid wall completely closed off one side of the 

hallway; the other side was partially blocked with portable office partitions. The antennas were setup 

approximately one metre from the solid wall. This experimental channel (hereafter referred to as such) is 

diagrammed in Figure 2.2. 
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Various frequency response measurements were taken focusing primarily on two criteria: the distance 

between the antennas and the centre of frequency of the sweep. To ensure channel stationarity the 

measurements were taken during building quiet times. 

2.2.1 Distance-Oriented Measurements 

Distance-oriented measurements were performed to determine the experimental channel's transfer 

function at various antenna separations. The measurements were in two, 200 MHz bands centred at 1000 

MHz and 1600 Mhz. Data were collected for transmitter-receiver separations of 0.5 in to 30 in in 0.5 in 

increments. At each separation, ten frequency responses which contained 255 uniformly spaced points 

each were collected and averaged. The frequency resolution of the samples was therefore 784 kHz; a LOS 

path was maintained throughout the data collection process. 
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2.2.2 Frequency-Oriented Measurements 

The frequency-oriented measurements were performed twice - first using a LOS path and then using 

an obstructed (NLOS) path. An obstruction was created by placing a bookshelf between the two antennas. 

A total of fifty data sets (25 LOS and 25 NLOS) were collected for transmitter-receiver separations of 11 

in to 12 in in 4 cm increments. At each separation, ten frequency responses which contained 2401 

uniformly spaced points each were collected and averaged. The frequency sweep was from 1000 MHz to 

2500 MHz thus providing a frequency resolution of 625 kHz per sample. 

In order to analyze the data it is necessary to take its inverse discrete Fourier transform (see Section 

2.3). Since it is not practical to do so for large data sets, the data were processed 256 points at a time. 

After the first 256 points were processed, a sliding window was moved by 32 points and the next 256 

points were processed, and so on, for all 2401 points. The resulting bandwidth of each data set was 

therefore 160 MHz; the frequency centre of the nth data set was 1080 MHz + (n —1) . 160 MHz. In some 

cases, time domain data with the same frequency centre were averaged across all twenty-five LOS or 

NLOS data sets. This was done to effectively remove any distance-oriented influence and highlight any 

frequency-oriented influence. The treatment and analysis of the data are detailed in Chapters Four and 

Five. 

2.3 Data Post-Processing 

If frequency domain data analysis is required the data may be used directly, i.e., it may not be 

necessary to post-process the data. In order to obtain the experimental channel's EMS delay spread, 

however, it is necessary to transform the data into the time domain. The time domain equivalent to the 

transfer function is the impulse response, which is obtained from the transfer function via the inverse 
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discrete Fourier transform (]DFT). Efficient fast Fourier transform (F11) algorithms are available and 

can be used to compute the JDFT. 

In order to ensure that the FFT algorithms produce acceptable results, care must be taken to safeguard 

against aliasing and/or leakage. Aliasing can occur if the resolution of the sampled data is not 

sufficiently granular; leakage can occur if an inappropriate data windowing fimction is used. 

2.3.1 Time Domain Aliasing 

Aliasing is commonly associated with sampled time domain data that have been transformed into the 

frequency domain. Lithe time domain sampling rate is not sufficiently fast then after transformation into 

the frequency domain, high frequency components are aliased to appear as lower frequency components. 

The sampling theorem makes explicit the relationship between the time domain sampling rate r (where 

Y, has units samples/s) and the Nyquist or critical frequency f. The critical frequency is the frequency 

at which aliasing begins. The sampling theorem states that 

r=2f (2.3) 

If the signal x(t) being sampled is bandlimited to contain no frequency components greater than fb 

then no aliasing will occur provided that 

It ≥ 2fb (2.4) 

where X(f) =0, If I> fb 

and X(f) is the Fourier transform of x(t). 
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The data described in Section 2.2 were collected in the frequency domain. Associated with frequency 

domain data collection is the frequency domain sampling rate Yf' where Yf has units samples/Hz. For 

frequency domain sampling, Equation (2.3) becomes 

Yf = 2t (2.5) 

where t is the critical time. 

Since it is the channel's transfer function that is being sampled, the corresponding time domain 

representation is the impulse response. In this case, t is the RMS delay spread of the channel. If Lf is 

the separation between the frequency domain samples, then to avoid time domain aliasing 

≥ 2 , 

where Yf = Tq7. 

(2.6) 

The RMS delay spread of the experimental channel is less than 100 ns, hence, 41 should be less 

than 5 MHz to avoid aliasing. The frequency separation of the data was well within this bound. 

2.3.2 Data Windowing 

The data collected by the frequency domain measurement system were bandliinited between f0 and 

fN-1. Hence the measured transfer function H(f) can be described as 

H(f) = 1X(f), f=f 
0, elsewhere (2.7) 
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where X(f) is the channel's frequency response to the (n+1)st sample, 

f=f0+n.4f, n=0,l,...,N—1, 

and N is the number of samples. 

Equivalently, H(f) can be interpreted as a windowed portion of X(j'), i.e., 

where 

H(f) = 

Wlect (f ) = f 1, fo≤f≤fN—1 
0, elsewhere 

(2.8) 

(2.9) 

is the rectangular window function. When transformed to the time domain, the impulse response h(n) 

becomes 

h(n) = x(t)* Wrect (t) (2.10) 

where the asterisk denotes complex convolution and the inverse Fourier transform of JJ' (f) is the 

rectangular leakage function Wrt (t) given by 

sin( t) 

Wrt(t)= sin(  t) 

where tis periodic in2ir 

and h(n) spans one bin, i.e., 2nn/N≤t < 2,z(n+1)/N, n =0,l,...,N—l. 

(2.11) 
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Ideally, Wr (t) would be a Dirac delta pulse so that h(n) = x(t). However, Wr (I) is a modified 

sinc function and hence convolving x(t) with Wrt (t) results in power from adjacent bins leaking into 

h(n); for example, h(n) will contain some aliased power from h(n + 1). The rectangular leakage 

function is shown in Figure 2.3. 

The design of a window function that has a corresponding well behaved leakage function has been the 

focus of many research endeavors; the three term Blackman-Harris window [Harris, 1978] is a result of 

such research. The Blackman-Harris leakage function Wbh (t) is constructed by adding weighted shifts of 

W rect (t) as follows (see Figure 2.4). 

Wbh (t) = a0w(t) + a1 -jw (t +.) + w(t -*)]+.{w (t + N) +w(t 4,r)1 (2.12) 
2 rect N 2 rect r)] 

a0 = 0. 42323, 

a1 —0.49755, 

and a2 = 0.07922. 

The Blackman-Harris window function Wbh (f) (Figure 2.5) is the Fourier transform of Wbh (t), i.e., 

Wbh(f)=aO —a1 co2)+a2 cos(), n =O,1,...,N-1 (2.13) 

Choosing a particular window function is essentially a tradeoff between making the resolving 

bandwidth (i.e., the width of the mainlobe 6 dB below its peak) of the leakage function as narrow as 

possible versus making the sidelobes of the leakage function fall off as rapidly as possible [Press et al., pp. 

441-444]. A wide mainlobe causes loss of resolution in the time domain whereas large sidelobes cause 

leakage. The Blackman-Harris window is thought to employ a reasonable tradeoff. The log magnitude of 

the rectangular and Blackman-Harris leakage functions are compared in Figure 2.6. 
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CHAPTER THREE 

Theoretical Background 

A channel's RMS delay spread is a characterization of its multipath environment; it is a function of 

the channel's impulse response. The impulse response is obtainable with knowledge of the channel's 

transfer function. In general, both the magnitude and phase of the transfer function must be known. 

However, if the channel is minimum phase it is possible to calculate its impulse response, accurate to 

within a constant time shift, with knowledge of the transfer function's magnitude spectrum only. The 

constant shift in time does not affect ç,. The calculation of ç under general and minimum phase 

conditions is discussed in this chapter. 

3.1 EMS Delay Spread 

When discrete measurements of a channel's transfer function are available, its impulse response may 

be calculated via the IDFT, i.e., 

N-i 

h(n) o ≤ n ≤ N—i (3.1) 
N k=O 

where N is the number of frequency-domain samples, 

H(e) is the frequency response at (k z\f + f0) Hz, 

if is the frequency separation between H(ebOk) and H(e.'), 

fo is the frequency of the first sample H(e'°'°), 



CHAPTER THREE: Theoretical Background 17 

h(n) is the impulse response at time n7', 

and 7: = (N. 4f) is the time separation between h(n) and h(n + 1). 

If the channel is causal then h(n) =0 for n <0. Due to the periodic nature of the IDFT, however, 

the cansility criterion is equivalent to h(n) =0 for N / 2:!9 n ≤ N—i. The RMS delay spread of a caucal 

channel becomes [from Equations (1.4) and (1.5)]: 

T. 

and 

n=O 

T. 

N/2-1 

I'(fl)I 

N/2—I - 

(n - a)7:Ih(n)12 
n=O 

112 

112 

(3.2) 

(3.3) 

where the (a+i)st sample is the first arrival. 

Conditions under which ç may be calculated with knowledge of only IH(e1°')I are discussed in 

Subsection 3.4.2. 

3.2 The z-Transform 

The z-transform H(z) of the impulse response of a discrete-time, linear, shift-invariant system is 

defined as 
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Go 

H(z) = (3.4) 

where z is a complex number. For z = e1°', i.e., points on the unit circle of the z-plane, 

'C 

H(e'') = (3.5) 

which is the discrete Fourier transform of h(n). 

When h(n) is a discrete, stable, and causal sequence of finite-length N, H(z) is a N-i degree 

polynomial in z1 with all poles at the origin. For H(e101) to exist, the region of convergence of H(z) 

must include the unit circle. To see that the region of convergence is the exterior of a circle whose radius 

is less than unity, suppose that 

h(n)z nj <cc 

' kl>kl then 

h(n)z° < h(n)z, O<n≤ N—i 

and thus 

jh(n)f° < cc, Izi > IziI 
n=O 

Since h(n) is stable 

(3.6) 

(3.7) 

(3.8) 



CHAPTER THREE: Theoretical Background 19 

Ih(n)I <cc (3.9) 

and hence Equation (3.6) is true when Izi I ≥ 1, i.e., the region of convergence is a circle of radius less 

than one. 

To summarize, the z-transform of a discrete, stable, and causal sequence of finite-length N has a 

region of convergence that is the exterior of a circle with radius less than one; its N-i poles are all at the 

origin while the N-i zeros may be located anywhere. A stable system is causal if and only if the poles of 

its z-transform are all inside the unit circle. 

3.3 Causal Systems 

A system is causal if and only if its impulse response h(n) is zero for n <0. However, it is not 

necessary to obtain h(n) to determine whether or not a system is causal. The following shows that the 

imaginary part of H(e -) is the Hilbert transform of the real part of H(e1-) if and only if the system is 

stable and causal. 

A conjugate symmetric sequence {h (n)} is a sequence for which {h (n)} = {h: (—n)}; a 

conjugate antisymmetric sequence {ha (n)} has the property that {ha (n)} = {—h (—n)}. Any 

sequence {h(n)} can be expressed as the sum of a conjugate symmetric sequence and a conjugate 

antisymmetric sequence, i.e., 

where 

h(fl)=hs(fl)+ha(fl) (3.10) 

h(n) =+[hn+h*_n1  
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and 

ha(fl) [h(n)_h(_n)] (3.12) 

{h (n)} and {ha (n)} are related to H(e)o)) by the identities 

h3(n) HR (e10)) (3.13) 

ha(fl) jH1(eb0) (3.14) 

where HR (e1' ) is the real part of H(e'°'), 

H1 (e') is the imaginary part of H(e1t2)), 

and <> denotes a Fourier transform pair. 

If (and only 11) h(n) is causal, then 1i (n) and ha (n) are related such that 

where 

ha(fl) =h3(n)sgn(n) (3.15) 

—1, n<O 
sgn(n)={i n>O (3.16) 
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H1(e°) = lJ1[H(eio)] (3.18) 

where 'I'[.] denotes the Hilbert transform. 

Equation (3.18) suggests that it is possible to determine whether or not a system is causal by 

comparing the imaginary part of its transfer function against the Hubert transform of the real part of its 

transfer function. The system is causal if and only if Equation (3.18) is satisfied. 

3.4 Minimum Phase Systems 

A stable and causal system is minimum phase if and only if the zeros of its z-transform are all inside 

the unit circle. Recall that (Section 3.2) if h(n) is a discrete, stable, and causal sequence of finite-length 

N, then H(z) contains N-i poles at the origin and N-i zeros, all of which are not necessarily inside the 

unit circle. 

A zero of H(z) may be reflected to its conjugate reciprocal location without changing the magnitude 

of the system's z-transform. The conjugate reciprocal of z0 is 1 / z, i.e., a zero located at z = z0 willbe O 

located at z = 1 / z after it has been reflected. Since every zero is in one of two possible locations (either 

inside or outside the unit circle), a system with a given magnitude response IH(z)I has 2 N1 possible 

phase curves arg[H(z)]. To see that this is true, consider a stable and causal system H(z) that has all 

of its zeros inside the unit circle except for a zero at z = liz0, I zo 1< 1. H(z) can be expressed as 

H(z) = H (z)(z' —z0) (3.19) 
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where ll (z) contains all the zeros of H(z) except the zero at z = liz0, i.e., .H (z) is minimum 

phase. By multiplying the numerator and denominator of the right hand side of Equation (3.19) by 

1— z0 *z-1 , H(z) becomes 

where 

is minimum phase and 

is al/pass since 

H(z) = H2(Z)Hap (Z) (3.20) 

H2 (Z) = H1(z)(l—zz') (3.21) 

H., (z) 
- 

- * -1 
l—z0z 

IH,P(elm )12 -  r  e10' Z0  ir  e10  1 
- [i—ze'j[i—z0ej 

l—z0e112' —z0e'° +z0 2 
1zej0) — Zoe 3t + z O 12 

O 

=1 

(3.22) 

(3.23) 

H2 (z) differs from H(z) only in that the zero of H(z) at z = 1 / z0 is reflected to z = z in H2 (z), 

but 

IH2 (z)t = IH(z)I (3.24) 

arg[H2(z)J # arg[H(z)] (3.25) 
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in general. This shows that a stable and causal system with an impulse response of finite-length N has, in 

general, 2N-1 different phase curves for a given magnitude spectrum. 

It is of interest to note [Robinson and Treitel, pg. 59; Oppenheim and Schafer, pg. 352] that the 

phase-lag spectrum of a system with all of its zeros inside the unit circle is a minimum with respect to the 

phase-lag spectra of the 2j'f1 —1 other members of that set (where the impulse response of the system is a 

sequence of length 1V). This suggests the reason for the term minimum phase, although minimum phase 

lag would be a more precise description. Similarly, a system with all of its zeros outside the unit circle 

has a maximum phase-lag spectrum and is therefore called maximum phase. 

3.4.1 Minimum Delay Sequences 

The total energy C of a sequence {h(n)} is defined as 

to 
6 I:lh(n)12 (3.26) 

Consider a stable, causal system with an impulse response of finite length N. In general, there are 21 

different sequences of length N whose z-transform magnitude spectra are identical. These 2N1 

sequences are said to form a suite [Robinson and Treitel, pg. 114]. By Parseval's Theorem, the total 

energy of each sequence in the suite is identical, i.e., 

N-i ir 

&; = Ik()l2 10,12N-1_ 1 

n=O 

(3.27) 
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The partial energy e(m) of a sequence {h(n)} is the energy contributed by the first m+1 samples in 

the sequence, i.e., 

5(m)= Ih(n)I2, m= 0,1,...,N-1 (3.28) 

A minimum delay sequence can therefore be defined as a sequence in a suite whose partial energy is never 

less than the partial energy of any sequence in the suite. Hence, 

s(m)≥s1(m), j=Ø,1,••,2N_1_1; m=0,1,...,N-1 

where e(rn) is the partial energy of the minimum delay sequence 
and (m) is the partial energy of the ith sequence in the suite. 

An interesting property of minimum phase systems is that their impulse response is a minimum delay 

sequence. For example, consider a minimum phase system with z-transform H(z) where 

(3.29) 

H(z) = Q(z)(1—z0z 1), Izol <1 (3.30) 

where Q(z) is the z-transform of another minimum phase system 

and z0 is a zero of H(z). 
Let IJ (z) be the z-transform of a non-minimum phase system that has a zero at z = 1 / z instead of at 
Z = Z0, i.e., 

I1(z) = Q(z)(z 1 — z) (3.31) 
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The corresponding impulse responses are: 

h(n) = q(n)*[6(n)_ z08(n _1)J 

and 

hi (n) = q(n)*{_z8(n)+S(n_1)] 

where q(n) is the IDFT of Q(z). Consider their partial energies e(m) and &' (m), where 

e(m) = Z h(n)1 

and 

n=O 

= - q (n - 1)q(n) - q(n - 1)q* (n) + IzoI2 q(n - 1)12 
n=O n=O n=O n=O 

e, (m) = Ihi(n)I2 
n=O 

m m m m 
2 2 2 

= Izol q(n) —z0 q* (n-1)q(n) —z0  q(n —1)q * (n) + q(n-1) 

The difference in their partial energies is 

e(m) - --I (M) IzoI = ( 2) q(n) 2 + (i 12 - i) q(n - 1)12 1—  
,7=o n=o 

= (1— z02)q(m)2 

since Izol <1 and q(m) 2 ≥ 0. Hence, 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.36) 
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e(m)≥e1(m), m=O,l,...,N-1 (3.37) 

or equivalently, the impulse response of a minimum phase system is a minimum delay sequence. 

Similarly, it can be shown that the impulse response of a maximum phase system is a maximum delay 

sequence, i.e., a sequence for which 

s(m) ≤ 6i (M), i = —1; m = O,l,...,N-1 (3.38) 

3.4.2 The RMS Delay Spread of a Minimum Phase Channel 

A channel's RMS delay spread is a function of its impulse response. If the channel is minimum phase 

it is possible to determine the transfer function, accurate to within a linear phase shift and denoted as 

!J(eiU)), with knowledge of IH(e'°')I only. The corresponding impulse response h(n) is calculated via 

the IDFT of H(e'°1) and is accurate to within a constant time shift. 

A constant time shift does not change the difference between the arrival time of the nth path and the 

arrival time of the first path [see Equations (3.2) and (3.3)], nor does it change the envelope of the nth 

path relative to the first path. Hence rm. may be calculated using h(n). 

Consider H(z) in polar form, i.e., 

H(z) = IH(z)IeiahhI] (339) 

The complex natural logarithm of H(z) is [Oppenheim and Schafer, pp. 345-346] 

H(z) = ln[H(z)] = 1nIH(z)I +jarg[H(z)] (3.40) 



CHAPTER THREE: Theoretical Background 27 

If ft(z) is the z-transform of Equation (3.18) implies that 

arg[H(e3a)] = 'J[1nIH(e'' )] (3.41) 

if and only if h(n) is causal and stable. Furthermore, lnIH(z)t diverges when H(z) = 0 so H(z) 

cannot contain zeros (or poles) in its region of convergence. Hence h(n) is causal and stable if and only 

if H(z) is minimum phase. 

Upon closer inspection of Equation (3.41), however, it is evident that arg[H(et2)] is accurate only 

to within a linear phase shift. To illustrate this point, consider two minimum phase systems with transfer 

functions G, (e") and G2 (e"). Suppose that 

and 

Then 

Since both systems are causal, 

Equation (3.41) suggests that 

g1(n)>O, n=0 

g2 (n) = g1 (n - n0), no >0 

G2(eJ0) = e103?10G1(e10)) 

g1(n)=0, n<O 

g2(n)=0, n<no 

(3.42) 

(3.43) 

(3.44) 

(3.45) 
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arg[G1(e'°')] = 'P[InIG, (e'°')I] (3.46) 

and 

arg[G2 (e'°')] = i'[iG2 (e' )I] (3.47) 

However, since 

G2 (e1°')( = IG1 (e12)I (3.48) 

the linear phase shift of —con0 in G2 (e'°') is lost [Equation (3.47)]. Hence, Equation (3.41) is 

completely correct if and only if H(e') has zero phase shift. Equation (3.41) is corrected by simply 

adding a term to account for a linear phase shift of —Wn0, i.e., 

where, for completeness, 

arg[H(e'°')] = T[hijH(ei-)j] —  con0 (3.49) 

h(n—n0)>O, n=n0 

h(n—n0)=O, n<no 
(3.50) 

Since a constant time shift in the impulse response does not affect r, Equation (3.41) may be used 

in its calculation provided, of course, that the channel is minimum phase; specifically, 

(3.51) 
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v. is calculated by using 1(n) [i.e., the IDFT of 1(e'°')] in Equations (3.2) and (3.3) with a set to 

zero. 
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CHAPTER FOUR 

System Causality 

A physically realizable system operating in real time must be causal. Hence, in order to assert the 

validity of the frequency domain measurement system, it is prudent to examine the (measured) transfer 

function of the experimental channel vis a vis causality. The results of this chapter form the basis of the 

investigation into the minimum phase properties of the experimental channel (Chapter Five). 

4.1 Statistical Curve Comparisons 

It was shown in Section 3.3 that the imaginary part of a system's transfer function is the Hilbert 

transform of the real part of its transfer function if and only if the system is caiisl. Since both H1 (e'°) 

and HR (e'") are experimentally available, it is possible to statistically compare H1 (e'2') and 

11'[HR (e' )]. A straightforward method is to consider the correlation between the curves H1 (e'°') 

versus co and 'P[HR (ei01)] versus 0.), and the difference in their means. If the curves are highly 

correlated and their means are not significantly different, then {'{H (eia))]} is a good estimate of 

{H1 (ei2))}, i.e., the channel is causal. 

The linear correlation coefficient, often denoted simply as r, is a value between -1 and 1 that 

indicates the degree of linear correlation between two equally sized data sets {x} and {y}. When I r  is 

close to unity a high degree of correlation exists; when jrj is close to zero the data sets are uncorrelated. 

The square of the correlation coefficient, the coefficient of determination, is the proportion of the total 

variation of {y} which is accounted for by its relationship with {x} [Freund and Walpole, pg. 443]. For 
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example, an r value of 0.90 indicates that 81% of the variation of {y} is accounted for by its relationship 

with {x}. 

It is possible that {H1 (e°)} and {'J.'[HR (e1°')]} could be highly correlated (i.e., r2 close to 

unity) but have significantly different means. In this situation {'P[HR (e " )]} is not a good estimate of 

{H1 (e°')}. The Student's t-test for significantly different means tests the null hypothesis that two data 

sets do not have significantly different means [Press et al., pp. 482-485]. The t-statistic at is a number 

between zero and one that is used to accept or reject the null hypothesis. The null hypothesis is rejected 

with (1— a1 )l00% confidence. It is common to accept the null hypothesis unless it can be rejected with 

at least 95% confidence. Hence, it is assumed that two data sets have significantly different means if and 

only if at ≤ 0.05. The following sections use the coefficient of determination and the t-statistic in 

analysis of the channel's causality (i.e., the measurement system's validity). 

4.2 Channel Causality Testing 

Various measurements of the experimental channel's transfer function were used to analyze the 

channel's causality. For each data set, {P[HR (e°' )]} was computed and the coefficient of 

determination and t-statistic of {H1 (e°')} and {'F[HR (e°')]} were examined. The results for the 

distance-oriented measurements are presented in Subsection 4.2.1; the results for the frequency-oriented 

measurements are discussed in Subsection 4.2.2. 

4.2.1 Causality for Distance-Oriented Measurements 

The graph in Figure 4.1 shows a1 and r2 for the distance-oriented data sets {H1 (e°)} and 

{'r[HR (e" )]} centred at 1000 MHz with a bandwidth of 200 MHz. at > 0.05 for antenna separations 

of approximately 4 m to 30 m; hence, the null hypothesis that the means of {H1 ( e101)} and 
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{11{R (ei0))]} are not significantly different is accepted over this range. r2 is extremely close to unity 

throughout the aforementioned range; this indicates a very high degree of correlation between 

{H1 (e°)} and {'T'[HR (eia)]}. It is therefore concluded that the channel is causal for antenna 

separations of 4 in to 30 in and a frequency centre of 1000 MHz. 
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Fig. 4.1: 1000 MHz Distance-Oriented Data Set Comparison 

30 

To explain the apparent non-causality of the channel for antenna separations less than 4 in, consider 

the impulse response of the channel for an antenna separation of 0.5 in (Figure 4.2). The reason for the 

apparent non-causality is made clear in this graph - a significant portion of the first arrival is in negative 

time. This apparent physical impossibility is explainable upon investigation of the impulse response 

calculation. The impulse response was not measured, rather, it was calculated via the IDFT of the transfer 

function H(ei2)). Recall (Subsection 2.3.2) that it is necessary to window H(e'°') before taldng the 

IDFT. The window is applied to H(eb0) via a multiplication; this is equivalent to a time domain 

convolution with h(n), which smears the impulse response. The impulse response is smeared across the 
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resolving bandwidth of the Blackman-Harris leakage function - approximately 2.3 bins (see Figure 2.6). 

Since the bandwidth of the impulse response is 200 MHz, the time domain bin resolution is 

2.3. (1/200 MHz) = 11.5 ns. Hence, when the transmit and receive antennas are separated by less than 

3.45 m, some of the first arrival will be smeared into negative time. Figure 4.3 shows the impulse 

response for an antenna separation of 15 m. The precursor that appears at approximately -200 ns is 

explained below. 
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The graph in Figure 4.4 shows at and r2 for the distance-oriented data sets centred at 1600 MHz 

with a bandwidth of 200 MHz. The results for the 1600 MHz case are similar to those for the 1000 MHz 

case in that the channel appears causal for antenna separations of approximately 4 m to 30 m. However, 

there is clearly less correlation between {H1 (e)0))} and {J![HR (e10)]} over this interval. The reason 

for the 1600 MHz channel appearing "less cansal" than the 1000 MHz channel is due to the precursor at 

I —200 us. Figures 4.3 and 4.5 illustrate this phenomenon. In the 1000 MHz case, the relative power of 

the precursor is 28 dB less than that of the first arrival. The precursor is almost small enough to blend in 

with the noise and hence does not significantly alter the causality of the channel. In the 1600 MHz case, 

however, the precursor is only 8 dB below the relative power of the first arrival and contributes 

significantly to the overall power of the impulse response. This makes the 1600 MHz channel appear to 

be less causal than the 1000 MHz channel. 
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Fig. 4.5: 1600 MHz Impulse Response for 15 m Antenna Separation 

The precursor is a result of crosstalk between the transmit and receive cables; it is not a multipath 

component that has been allased into negative time due to the periodic nature of the IDFT. The network 

analyzer is calibrated to measure the time it takes the test signal to travel from the transmit antenna to the 

receive antenna, hence the time it takes for the signal to travel through the cables is not included. When 

crosstalk occurs close to the transmit and receive terminals, the received signal (due to the crosstalk) will 

appear to arrive in negative time. Since the total cable length is 57.8 m (see Figure 2. 1), the precursor 

will occur at approximately -193 ns. To verify the assumption of crosstalk, the frequency domain 

sampling rate was doubled to extend the time domain response from -1250 ns to +1250 ns. If the 

precursor had been a result of an aliased multipath component it would have appeared at approximately 

1050 ns in the over sampled impulse response. However, the precursor still appeared at approximately 

—200 ns. The crosstalk is more prevalent at 1600 MHz than at 1000 MHz, which gives rise to a larger 

precursor at 1600 MHz. 
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4.2.2 Causality for Frequency-Oriented Measurements 

Figure 4.6 shows at and r2 averaged over the data sets corresponding to an 11 m to 12 m LOS 

antenna separation, a centre of frequency sweep from 1080 MHz to 2420 MHz, and a bandwidth of 160 

Iv1Iiz. The results displayed in Figure 4.6 indicate that the channel is indeed causal over the 

aforementioned range. The data sets {H1 (e'')} and {J![HR (e'°' )]} are highly correlated (r2 1), 

however, the assertion that their means do not significantly differ is weaker than for the distance-oriented 

data sets. But a1 is still well within the 95% confidence interval and therefore the mill hypothesis that 

their means are not significantly different is accepted. 

Figure 4.7 shows a1 and r2 averaged as described above, but for a NLOS antenna separation. The 

results are consistent with a1 and r2 for the LOS data. This indicates that the causality of the indoor 

channel is not related to the sight line of the antennas. 

For completeness, sample impulse responses for the LOS and NLOS cases are shown in Figures 4.8 

and 4.9, respectively. In both graphs the antenna separation is 12 m and the frequency centre is 1680 

MHz. It is of interest to note that the first arrival in the NLOS case is not the strongest. 
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CHAPTER FIVE 

Channel Characterization Analysis 

The results of the experimental channel's characterization are presented and analyzed in this chapter. 

Section 5.1 explores the difference between the channel's true RMS delay spread and the estimations made 

under minimum phase assumptions. Section 3.2 introduces environmental influences that make 

frequency dependent. 

5.1 Analysis of the RMS Delay Spread 

If a system is causal, the imaginary part of its transfer function is the Hubert transform of the real 

part of its transfer function (Section 3.3). Furthermore, if the system is minimum phase it is possible to 

determine the phase of its transfer function (with linear phase shift ambiguity) with knowledge of its 

magnitude spectrum only (Subsection 3.4.2). The impulse response (with constant time shift ambiguity) 

can be calculated via the inverse Fourier transform. 

Under the assumption of a minimum phase channel, the impulse response h(n) was calculated using 

only the magnitude of the experimental channel's frequency response. Impulse response data were 

collected using the distance-oriented and frequency-oriented measurements described in Section 2.2. 

Using each data set, the true and estimated RMS delay spreads (ç and respectively) were 

calculated using the appropriate impulse response (h(n) or h(n), respectively). To aid in the 

explanation of the RMS delay spread results, the zeros of the chaiñiel's z-transform were calculated. As 

expected, there is a strong correlation between the percentage of zeros inside the unit circle and the 

difference between z and 
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5.1.1 RMS Delay Spread Results for Distance-Oriented Measurements 

Figure 5.1 shows plots of h(n) and h(n) for the distance-oriented data with an antenna separation 

of 15 m, a centre of frequency of 1000 MHz, and a bandwidth of 200 MHz. In the region of high SNR, 

h(n —n0)h(n) (5.1) 

where no is the first arrival of h(n). Obviously, h(n) is not a good estimate of h(n) outside this 

region. Note that the precursor located at t —200 us (Subsection 4.2. 1) is not present in h(n) since the 

calculation of h(n) assumes channel causality. Figure 5.2 shows h(n) and h(n - no) in the region of 

high SNR (assumed to be from no to no + 200 ns). The results are excellent, indicating that the 1000 

MHz channel (with an antenna separation of 15 m) is nearly minimum phase. Similar results were 

obtained for the 1000 MHz channel for antenna separations of 4 m to 30 m. 

To eliminate the effects of noise, z was calculated using the impulse response g(n), where 

10, 

h(n) n0≤n≤n0+200ns 
g(n)= 

elsewhere 

Similarly, was calculated using (n), where 

k (n) I(n) 0≤n≤200ns = 
t u, elsewhere 

(5.2) 

(5.3) 

Figure 5.3 shows z and versus antenna separation for the 1000 MHz channel. At each 

measurement the percentage of zeros inside the unit circle is shown. To calculate the location of the 
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zeros, the members of {h(n)) were used as z-transform coefficients in the region of high SNR. The 

location of the zeros demonstrates that the channel is nearly minimum phase. The reason that the 1000 

MHz channel is not entirely minimum phase is likely due to the slight non-causality caused by the 

precursor. 

Figures 5.4 and 5.5 show h(n) and its corresponding estimate for an antenna separation of 15 m, a 

centre of frequency of 1600 MHz, and a bandwidth of 200 MHz. Similar results were obtained for 

antenna separations of 4 m to 30 m. h(n) for the 1600 MHz channel is a poorer estimate of h(n) than 

is 1(n) for the 1000 MHz channel. This is likely due to the much larger precursor present in the 1600 

MHz data. Slightly poorer results are also evident in the comparison of ç and versus distance 

(Figure 5.6). This channel appears not as close to minimum phase as the 1000 MHz channel. 
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5.7 and 5.9). Hence, the discrepancy between the 1680 MHz and 1420 MHz channels can only be 

attributed to a difference in minimum phase properties - not in a significant difference in causality. 

Figure 5.11 shows ç and versus frequency for the LOS channel averaged over antenna separations 

of 11 in to 12 in. A decrease in the percentage of zeros inside the unit circle seems to result in an increase 

in c1• 
Figure 5.12 shows h(n) and h(n) for a 160 MHz bandwidth NLOS sample centred at 1680 MHz 

with an antenna separation of 12 in. Figure 5.13 shows the corresponding h(n) and h(n —n0) in the 

region of high SNR. There is a significant discrepancy between the percentage of zeros inside the unit 

circle for the LOS and NLOS channels (Figures 5.11 and 5.14). The discrepancy is due to the fact that 

the impulse response energy of the LOS channel is more concentrated at the first arrival than is the energy 

of the NLOS channel. Recall that a channel is closer to minimum phase when the energy of h(n) is 

concentrated at n = no (Subsection 3.4.1). The fact that the NLOS channel is less minimum phase than 

the LOS channel is reflected in the poorer estimate of its RMS delay spread. 
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5.2 Environmental Influences on Channel Characteristics 

The data used for this thesis were collected entirely in the frequency domain. During each 

measurement channel stationarity was maintained, i.e., the channel did not physically change during a 

frequency sweep. Many researchers believe that the channel's multipath behavior does not change if the 

channel is stationary. This section gives an example of a stationary indoor communications channel 

(namely, the experimental channel used for the aforementioned data collection) whose multipath 

characteristics are dependent on the signaling frequency. 

The explanation of the channel's frequency dependence requires an understanding of Fraunhofer 

difi1action and diffraction gratings. These subjects are typically associated with light waves and the study 

of optics, but the same principles also apply to electromagnetic (EM) waves. Given that the reader is 

likely somewhat familiar with diffraction vis a v/s light waves and the study of optics, and that material on 

this subject is available in many undergraduate physics textbooks, the relevant concepts presented here are 

from the field of optics. 

5.2.1 Fraunhofer Diffraction and Diffraction Gratings 

Qualitatively speaking, diffraction is the flaring out of light as it emerges from the confines of a 

narrow slit. There are two general cases of diffraction: Fresnel diffraction and Fraunhofer diffraction. 

Fresnel diffraction occurs when the light source and/or the screen on which the diffraction pattern is 

displayed are a finite distance away from the diflacting aperture. The light waves that enter and/or leave 

the aperture are not parallel. Figure 5.15 illustrates Fresnel diffraction [Halliday and Resnick, pg. 743]. 
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A special case of Fresnel diffraction, Fraunhofer diffraction, occurs when both the light source and 

screen are an infinite distance from the aperture. In this case the light waves entering and leaving the 

aperture are parallel. Fraunhofer diffraction is illustrated in Figure 5.16. The criterion for Fraunhofer 

diffraction is (see Figure 5.17) [Fowles. pg. 113] 

--+—A<<2 
2(D1 D2) 

where J) is the horizontal distance from the source to the plane containing the aperture, 

is the horizontal distance from the screen to the plane containing the aperture, 

A is the width of the aperture, 

and Z is the wavelength of the light. 

(5.4) 
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If Equation (5.4) is not satisfied the diffraction is of the Fresnel type. 

A multiple slit aperture is called a diffraction grating. A diffraction grating consisting of three 

identical apertures of width b and separation h is shown in Figure 5.18. For Fraunhofer diffraction, the 

light intensity I at point P is [Fowles, pp. 122-123] 

ii sin fl)2(  sin Ny"12 

- tNsinyJ 

where I is the intensity for 0 = 0, i.e., no diffraction, 

fl= sin 0, 

y = sin 0, 

and N is the number of apertures. 

(5.5) 
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Equation (5.5) is used in Subsection 5.2.2 to show how the diffraction of EM waves can alter a stationary 

channel. 

5.2.2 Diffraction Gratings and the Experimental Channel 

The experimental channel is described in Section 2.2. The solid wall (Figure 2.2) contains metal 

studs approximately two inches wide and sixteen inches apart. This wall acts as a diffraction grating for 

the EM waves. The antennas were approximately one metre from the wall; hence, over the frequency 

band used (1 GHz to 2.5 GHz) the diffraction is of the Fraunhofer type, i.e., Equation (5.4) is satisfied. 

The physical parameters are: 

D1 = D 2 =lm, 

A = 0.05cm, 

and 2=c/f 

where C3x108m/s 
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and lGHz≤f≤2.5GHz. 

Equation (5.4) is satisfied since (++1.)(0.05)2 = 0.0025 <<  min (A) = 0.12. 

The Fraunhofer diffiaction due to the diffraction grating is indeed significant in the experimental 

channel. Figure 5.19 plots the experimental channel's III [Equation (5.5)] versus frequency for 

diffraction focused at the receiver. It is assumed that the hallway is 30 in long and that the transmitter is 

located in the centre (i.e., 15 in from either end of the hallway) which results in N =74 apertures. Since 

the antennas are one metre from the wall, 0 = 85° (see Figure 5.18) for a 12 in separation. The 

diffraction is very significant at 1480 MHz and 2220 MHz. 
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Fig. 5.19: Il lo vs. Frequency for 12 m Antenna Separation 

In effect, a significant diffiaction is a new multipath component. An extra multipath component may 

change the partial energy of a channel's impulse response. For example, if a channel is minimum phase 

without the extra multipath component, it may be non-minimum phase when the extra multipath 

component is present. A change in the channel's impulse response will likely result in a change in z.. 

The apparent frequency dependent behavior of T. (see Figures 5.11 and 5.14) cannot be directly 

linked to the experimental channel's diffraction grating focused at the receiver. However, the diffraction 
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grating is likely one environmental factor that contributes to the apparent frequency dependent nature of 

r. Many more such environmental factors may exist. 
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CHAPTER SIX 

Conclusions 

This thesis has examined wideband response parameters for the UHF indoor communications 

channel. The previous chapters have shown that some wideband parameters - specifically 'ç - may be 

calculated with knowledge of the channel's frequency response magnitude spectrum only. Reasons for the 

apparent frequency dependency of z were also discussed. 

6.1 Practical Use of the Results 

To this author's knowledge, all frequency domain measurement systems in use today are similar to the 

one described in Chapter Two. This type of system has advantages over traditional time domain systems, 

such as the ability to perform both narrowband and wideband measurements and the improved temporal 

resolution of the impulse response [Morrison, pp. 100-102]. The potential disadvantages, however, are 

not insignificant. Because cables must run between both antennas and the network analyzer, the system is 

not practical to use unless both antennas are on the same floor of the building. This virtually precludes 

the system from being used to measure the outdoor channel or the outdoor-to-indoor channel. In addition, 

the network analyzer is an expensive piece of equipment that many RF research facilities do not have at 

their disposal; a network analyzer can cost up to $250,000. The results of this thesis suggest that a much 

cheaper and simpler alternate frequency domain measurement system exists. The alternate system enables 

the user to exploit the advantages of the frequency domain measurement systems (such as the improved 

temporal resolution), while eliminating some of the disadvantages. 
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It has been established that the phase spectrum of the indoor channel's frequency response need not be 

measured in order to obtain r. Therefore, ç may be obtained via a device that measures the 

channel's frequency response magnitude spectrum only. A measurement system consisting of a spectrum 

analyzer and a signal generator would suffice. The use of a spectrum analyzer would eliminate the cable 

requirements as well as the high cost of a network analyzer. It is common for an RF lab to have a 

spectrum analyzer; they retail for approximately $15,000. A simple signal generator can be constructed 

with minimal effort and expense (several thousand dollars). 

Few researchers have reported finding the frequency dependent nature of ç; none have attempted 

to explain it. It was shown in Chapter Five that the diThactiou grating created by metal studs in a wall 

may contribute to the frequency dependent nature of v. This frequency dependency cannot be entirely 

attributed to reflections caused by the diffraction grating; the diffraction grating may only be the tip of the 

iceberg in an environment full of frequency dependent reflectors. The results contained in this thesis 

show only that the indoor channel is frequency dependent. 

6.2 Further Research 

Many questions about the indoor communications channel remain unanswered and demand further 

research. Some of these topics have been highlighted in this thesis. 

The fact that the indoor channel appears to be very close to minimum phase is no doubt a surprise to 

many researchers. This result should be verified by repeating the experiment in many different types of 

buildings. It would be useful to see if the (near) minimum phase property holds for large antenna 

separations or for channels that span more than one floor of the building. Data should be collected for the 

outdoor and outdoor-to-indoor channels to see if the outdoor channel exhibits minimum phase behavior. 
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No attempt was made in this thesis to justify the apparent dependency of z on antenna separation. 

Some researchers have reported observing such a dependency, while others have not (Section 1.1). 

Complete channel characterization requires the understanding of and ability to measure the frequency and 

path length dependent nature of ç. This area requires further research. 
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