Jipc Timings

David W. Hankinson

Introduction

This paper presents empirical data on the performance of Jade’s inter-process communication facility
(Jipc) and compares this with the performance of the Unixt TCP protocol. Its primary use is in the evalua-
tion of Jipc performance compared with another protocol residing on the same implementation environ-
ment. This paper is of interest because it presents the user with data that compares the two distinct sys-
tems’ performance with respect to each other, both when they are within their respective design criteria and
when those inherent design limits have been purposefully transgressed.

The Jipc Message Passing Protocol

The Jipc kernel is based on a blocking send message passing protocol. This means that when process
A sends a message to process B, A is in a blocked state until B responds to the message A initially sent.

send/receive send/receive

Process intended Process

A connection B

The diagram above depicts the flow of messages to and from the Jipc device driver running in the
Unix kernel (labeled Jipc Kernel). The two circles represent two processes that are to communicate with
each other through Jipc. Sending a message runs clockwise. Replying to a message, and to get a reply,
runs counter-clockwise. Thus to send a message from process A to process B, a total of 4 copies of the
message buffer can occur. These are from A to the Kemel, from Kernel to B, from B back to the Kernel
and finally from the Kemel back to A, in this order. Furthermore, with each transmission of a message
from A to B, an implied connect occurs. This means that A is not directly connected to B in the Unix ker-
nel, though A would have B’s address by way of the initialization routines. When the message is
transferred, connection is established. After B receives A’s message, if A is to continue to execute, a reply
must occur which effectively breaks the implied connection between the two processes.

The above only applies when Jipc is running in the Unix domain. For the Jade 68000-based worksta-
tion, there is no Unix. The multi-tasking kernel itself runs Jipc. The overhead may not be the same as in
the Unix kernel due to a totally different implementation.

T UNIX is a Trademark of Bell Laboratories.

The TCP Message Passing Protocol

TCP is implemented on top of IP, which is the lowest level of networking in the Unix kemel. Com-
munication between processes is established using system calls. TCP’s protocol is based on streams.
Hence, after communication is established, large amounts of data may be reliably transferred to the waiting
process through standard system calls. Internally, within TCP, the only backwards communication
between the two co-operating processes is the acknowledgment of the last broadcast packet. This is
required as a reliability measure for TCP. TCP hides this from the user, as it is a higher level functioning
layer. Within the Unix kernel a stream of TCP data is broken down into packets and transmitted. The TCP
layer takes care of reforming the packets into the stream at the receiving end. TCP preforms all reliability
checks as it is built over top of IP which does not have any transmission checking built in.

A Comparison between TCP and Jipc

The most dramatic difference in the two IPC systems is the protocol and the way that Jipc must send
acknowledgements to its sender if that process is to continue execution. Typically then, the performance of
the systems is quite different, as shown in the performance graph below.

Performance Graph

time (ms)

2500
0 number of messages

On the ordinate one has the number of messages transferred. For Jipc this means a single
J_sendlj_receivelj_reply sequence. For TCP this translates approximately into the system call write. Both
of these are kernel entries, although the only real communication Jipc has with the Unix kernel is through
the j_ioctl call to the Jipc device driver, residing in the Unix kemel. Time is on the abscissa. Time units
are not relevant, though they are linear.

_3.

Jipc messages vary in size (from 0 to 350 bytes). The message transmission mechanism is optimized
for the range of message sizes available. Therefore the performance line for Jipc is really a family of lines
but one may assume that they are one. TCP also has an optimum size for transmission of data (somewhere
in the range of 1k, or multiples of 1k). For the purposes of this paper, I have selected the message size to
be that of a single 32-bit integer (4 bytes). This is uniform for both protocols. The number of messages
transferred between the processes is 10000.

When Jipc sends a message, there is an implied connection established between the sender and the
receiver. If a null size message is sent then the time to send this is roughly the overhead for a Jipc mes-
sage. A formula may be derived that represents the time it takes for Jipc to send a message.

t=n(ci+cy) ey

This linear equation, expresses the time for n Jipc messages to reach their destination. The constant
¢ is the overhead time for Jipc, derived through null-sized message transfers. The constant ¢ is the byte
transfer overhead for differing size messages. The variable n is the number of messages that are sent.
Empirically, ¢, was found to be in the order of 20ms, for the monitored version of Jipc. When using the
unmonitored library 10ms is the norm.,

TCP has a different formula.
t=cin+cCoy (2)

Formula (2) is the time it takes for TCP to send for n messages. The constant m is the number of connects
initiated. The constants ¢ and ¢ have the same meaning for both ipc systems, as mentioned above.

The performance graph clearly shows the performance lines for Jipc crossing with the one for TCP.
This point is where TCP becomes more efficient in sending larger amounts of data. Recall that TCP has a
much higher initial overhead. The third line on the performance graph, TCP’s cost curve, demonstrates the
increase in efficiency over time with the larger number of messages sent. Once the TCP connection has
been established, a larger amount of data can be moved over a given time frame, as opposed to Jipc. This
performance line begins where TCP’s performance line originates and runs downward, linearly to the point
directly below the crossover between Jipc and TCP then asymptotically to the x-axis.

The crossover point is where TCP will beat Jipc in the number of messages transferred over a given
time frame. For this experiment, this number is roughly 2500 messages (monitored). For the unmonitored
version, expect twice that (5000 messages). This was calculated by the average time in which TCP sent
10000 messages and Jipc doing the same. The times were extrapolated and then a message transfer cross-
over point was calculated by the average time difference.

Results
Test conditions are:
1) Unloaded machine.
2) 10000 message transfers.
3) Average of the results obtained from 3 trials of each test.

Jipc Timing Results
From To Jipc | Jipce | TCP | TCPt
vax vax* 145.0 | 83.5 | 190.0 | 880.0

vax vax 48384 | 3025 | 186.7 | 866.3
vax sun 4427 | 3104 | 149.0 | 894.0
sun vax 457.0 | 3228 | 32.0 | 680.0

sun sun* 158.8 | 60.5 82.0 | 716.0
vax corvus 357.5 | 2255 - -
sun corvus 367.2 | 244.6 - -
corvus | sun 497.0 | 279.0 - -
corvus | vax 499.2 | 301.0 - -
corvus | corvus* | 208.0 | 113.0 - -
COrvus | corvus 503.9 | 3412 - -

Legend
Note: All times are in seconds.
T denotes TCP emulating Jipc (where nP = m in formula (2)).
e denotes unmonitored Jipc timings.
* denotes that the sending/receiving machines are the same.

Interpretation of the Results

To properly interpret the results, the protocols where discussed in the above sections. The timings
here present three areas for comparison:

1) Jipc communication between various machines under Jipc.
2) TCP communication between Unix machines (m in equation (2) is 1).

3) TCP communication as above, however, emulating the implied connect as Jipc does (m equals n as
above).

Each set of data represents the time it takes to send 10000 messages from one machine to the next.
In certain cases the target machine is itself. Each has the Real time given in seconds. For Unix and the
Jade workstation, these times are subjective since events such as context switches (involuntary) and page
faults are not taken into account. All timings were done when each machine was as unloaded as possible.

The above results show a wide range of deviation from each other. Clearly the Corvus workstation
timings may not be used in comparison with TCP, simply because no Unix kernel is present within. Those
timings are included as a performance indicator.

Conclusions

Each ipc system is designed for different needs. For TCP the results show that it works well when a
large number of bytes are to be transmitted between processes. TCP, it seems, does not work well when
trying to emulate Jipc. TCP is good for large data transfers to a single process. Jipc is not as time efficient
when a large number of messages are sent. Expect an order of magnitude in difference between TCP and
Jipc when a large amount of data is transferred. The design of Jipc though, was not as a TCP type protocol,
but rather in the use of distributed systems where very few block transfers are done. For a small number of
messages, Jipc is clearly superior. In contrast to TCP, where the initial overhead is high, Jipc’s overhead is
much smaller when very little is sent. Jipc is also very good for sending a large number of small messages
to different processes. Really, each system is designed for different needs.

Appendix 1 - TCP Benchmarking programs

@ ~Joy T x WN

MNNMNOMNNMNNNREREPEPR R PP B R
AU WNRPOoOW®Jda s WN RO W

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

File tcpserve.c

/* tcpserve - Server program for TCP domain timings.

#include <sys/ioctl.h>
#include <sys/file.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>
#include <errno.h>

#define MYPORT 12345
tdefine die(s) (perror(s),exit(-1))

extern errno;
/* Accept stuff along descriptor f. */

doit (£f)

{ auto x; register n;
while ((n=read(f, (char *)&x,sizeof x))>0);
close(f);

}

main ()
{ struct sockaddr_in name,addr; int addrlen,ns,s;
if ((s=socket (AF_INET,SOCK_ STREAM, 0))<0)
die("tcpserve (socket)");
name.sin_ family=AF INET;
name.sin addr.s_addr=INADDR ANY;
name.sin port=htons (MYPORT) ;
if ((bind(s, (char *)&name,sizeof (name)))<0)
die("tcpserve (bind)");
if (listen{(s,5)<0)
die ("tcpserve (backlog)");
for (;7)
{ addrlen=sizeof (addr);
if ((ns=accept (s, (char *)&addr, &addrlen,0))<0)
{ if (errno!=EINTR)
die ("tcpserve (accept)"™);
continue;
}
doit (ns);
}

*/

0 3o Uk WD

e e e e el
0 Joy Ul WN P O W

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

File tcptalk.c

/* tcptalk - Talk program for TCP domain timings. */

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>

#define MYPORT 12345
#define die(s) (perror(s),exit(-1))

quit(a,b)
{ _doprnt(a,&b,_iob+2);
exit (-1);

}

main (argc,argv)
char **argv;
{ struct sockaddr_in sin; struct hostent *machine; char *msin; int s;
if (argc<3)
quit ("Usage: %s host transfers\n", *argv);
msin= *++argv;
if ((s=socket (AF_INET, SOCK_STREAM, 0))<0)
die("tcptalk (socket)");
if (! (machine=(struct hostent *)gethostbyname (msin)))
quit ("Unknown host (%s)\n",msin);
bzero ((char *)&sin,sizeof (sin));
beopy (machine->h_addr, (char *)&sin.sin_addr,machine->h length);
sin.sin_family=AF_ INET;
sin.sin port=htons (MYPORT) ;
if (connect(s,&sin,sizeof (sin))<0)
die("tcptalk {(connect)"™);
{ register i; auto x;
i=atoi (*++argv);
do
(void)write (s, (char *)&x,sizeof x);
while (--1i>0);
}
close(s);
return 0;

W ~J O W

el el el el el
o ~Jo b WN F O o

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

File tcpslow.c

/* tcpslow - Talk program for TCP emulating jipc. */

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>

#define MYPORT 12345
#define die(s) (perror(s),exit(-1))

quit (a,b)

{ _doprnt(a,&b,_iob+2);
exit (-1);

}

main(argc,argv)
char **argv;
{ struct sockaddr_in sin; struct hostent *machine; char *msin; int s;
if (argc<3)
quit ("Usage: %s host transfers\n", *argv);
msin= *++argv;
if (! (machine=(struct hostent *)gethostbyname (msin)))
quit ("Unknown host (%s)\n",msin);

/* To emulate jipc we must open (connect) each time a transfer
is to occur. This involves all the setup of the Unix
tcp domain sockets.

*/

{ register i=atoi(*t+argv); auto x;
do
{ if ((s=socket (AF_INET, SOCK_STREAM, 0)) <0)
die("tcpslow (socket)");
bzero((char *)&sin,sizeof (sin));
beopy (machine->h_addr, (char *)é&sin.sin_addr,machine->h length);
sin.sin_family=AF INET;
sin.sin_port=htons (MYPORT) ;
if (connect (s, &sin,sizeof (sin))<0)
die("tcpslow (connect)");
(void)write (s, &x,sizeof (x));
close(s);
} while (--1i>0);
}

return 0;

Appendix 2 - Jipc Benchmarking Programs

File v_serve.c

1

2 /* vserve - vax/suna server */

3

4 #include <jipc.h>

5

6 /* Simply loop forever replying null to any messages sent this way. */
7

8 main ()

9 { j_enter_ system(123,"server");

10 for (;7)

11 j_reply null(j_receive any());
12 }

=
w

W 2o U W

NNV DN BB P PR s
OB WNROWOW®IAG D WNKFE O ©

File v_talk.c

/* talk- Unix talking process.

This process assumes that the timings come from yet another unix
process (time) which will be its parent.

*/
#include <jipc.h>

/* Find the "server" process and transfer messages of size int.
Machine on which to look for "server" is first argument.
Number of messages transferred is second argument.

*/

main(argc,argv)
char **argv;

{ J_process_id t; register i;
j_enter_system(123,"talker");
t=j_search_machine (*++argv, "server");
j_puti(12345);
i=atoi (*++argv) ;
do

j_send(t);
while (--i>0);
return 0;

- 10 -

File cv_serve.c

1

2 /* cv_serve - Server for the corvus workstation. */
3

4 #include <jipc.h>

5

6 /* Indefinite loop of j_receive_any and j_reply null. */
7

8 doit ()

9 { j_initialize();

10 for (;;)

11 j_reply null(j_receive_any());

12 }

13

14 /* Create a process whose name is "server" and whose body is
15 the above function - Required for the corwvus.

16 x/

17

18 main()

19 { j_process_id dude;

20 j_initialize();

21 dude=j_create process_shared("server",doit,0);
22 }

23

O ~J O U W

[y
[JNe]

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

- 11 -

File cv_talk.c

/* cv_talk - Corvus talk process.

Since the corvus does not have Unix, the ck_real time() function

is used to preform the actual timings on itself.

This program simply finds the "server" process on the machine
specified as the first argument, and begins transmission of
4-byte messages, with the limit specified in the second argument.

*/

#include <jipc.h>

main(argc, argv)

{

char **argv;
j_process_id t; register i,time;
j_initialize();
Jj_leave_system();
j_enter_system(123,"talker");
t=3j_search_machine (*++argv, "server");
j_puti(12345);
i=atoi (*++argv) ;
time=ck_real time();
do

j_send(t);
while (--1i>0);

printf("elapsed real time = %d\n", (ck_real time()-time)/100);

return 0;

