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Abstract 

Financial market price fluctuations have been explained, both theoretically and 

empirically, as the consequence of stochastic processes. However, there exists simple 

nonlinear deterministic [chaotic] systems that are also capable of generating random 

looking output and can fool many tests of whiteness. 

Chaotic and stochastic systems are fundamentally different and require different 

methods of analysis. Here, two state-of-the-art tests of nonlinearity and of chaotic 

dynamics are applied to thirteen various commodity and currency spot-month futures 

series. Results indicate evidence of nonlinearity in five series and of chaos in three. This 

is consistent with an underlying chaotic process generating price changes. 
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1 

Chapter 1 

INTRODUCTION 

Until recently all analyses of financial market price changes have assumed that 

observed fluctuations are dominated by stochastic processes. Some influences are known, 

such as economic growth paths or time to maturity of futures contracts, but once these 

effects are removed the remaining fluctuations appear random and have been explained 

using linear stochastic methods. There has been, however, a growing interest in a new 

field of study which may offer an alternative explanation for this apparently random price 

behavior. It may be the case that the noise in asset markets is the deterministic result from 

inherent nonlinearities. 

In asset markets, prices change to bring supply and demand into equilibrium. This 

implies some feedback mechanism which returns prices back to equilibrium after 

circumstances change. When corrections are linear, feedback is simply proportional to the 

amount that prices are out of equilibrium. In this case market fluctuations would be 

stochastic since linear processes cannot generate random looking output. There is, 

however, no theoretical reason why corrections of this nature must be linear. Financial 

markets are composed of individual buyers and sellers, each with individual motivations 

and reactions. It is merely a simplification that we assume the aggregate response from all 

market participants is a linear function. Once nonlinear correction is introduced it is 

possible to explain market fluctuations in a deterministic structure. In particular, chaos 

theory shows how simple deterministic nonlinear difference equations can generate time 

paths with incredibly complex but random looking behavior. Hence, an alternative 

explanation for the nature of asset markets. 
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Two attributes of chaotic time paths are random looking but bounded fluctuations 

and sensitive dependence on initial conditions. A time path generated under a chaotic 

system will never return to the same value but nevertheless remain dispersed in a bounded 

region. Upon visual inspection it is easy to see how one could conclude that stochastic 

unforecastable shocks are present. Sensitive dependence on initial conditions refers to the 

case where two time paths that begin infinitely close diverge from each other rather than 

converge, yet both are guided by the same system. For this reason long term forecasting 

is impossible but perhaps short term trading rules exist -- depending on the speed of 

divergence. 

Chaos was first discovered in 1892 by the French mathematician Henri Poincar 

(1892) while studying the dynamics of three celestial bodies with mutual gravitational 

attractions -- e.g., 2 planets and a star. He was able to show that complicated orbits were 

possible from various initial points. Other early pioneering attempts were made but the 

concepts were not appreciated in other fields for two reasons: early mathematical papers 

were difficult to read by researchers from other sciences and the proofs were not strong 

enough to be considered applicable to other sciences. It was not until the early 1960's 

when the meteorologist Edward Lorenz (1963) "rediscovered" chaos that interest was 

generated in fields other than mathematics. He was developing weather forecasting 

models when he noticed that small changes in initial conditions lead to large changes in 

solution values. Interest was still slow at first but gained momentum. Over the past 

fifteen years, though, proliferation has increased throughout the entire spectrum of the 

sciences at an amazing rate. It has been argued {Rasband (1990)} that chaos theory is the 

most broad based revolution, in the world view of science, in the twentieth century. This 

growth has been lubricated by the increasing availability of high powered computers. 

Researchers in all fields can now find chaotic solutions to problems of great practical 

importance -- such as stimulating heart cells [Glass et al. (1983)], or designing nonlinear 

optical devices [Hopf et al. (1982)]. Interest in economics and finance is quite natural, 
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the chance to explain random looking market fluctuations using deterministic methods 

cannot be overlooked. 

Some key contributions were necessary before empirical work could be conducted. 

In 1981 Floris Takens discovered that the attractor from the underlying n-dimensional 

system with one observable could be reconstructed using only the observable. Then in 

1982 Grassberger and Procaccia used this to find dimension estimates of the underlying 

unknown system. Detecting existence of an underlying system, however, did not become 

a statistic until 1987 when Brock, Dechert, and Scheinkman devised the BDS statistic 

which tests the null of whiteness. The BDS statistic can be used to test for residual 

nonlinear structure after any linear structure has been filtered out. Nonlinearity is 

consistent with chaotic behavior but it is not a necessary condition so further testing is 

required 

Lyapunov exponents are used to measure exponential diversion (positive 

Lyapunov exponent) or conversion (negative Lyapunov exponent) of two time paths with 

similar initial positions. In 1985 Wolf, Swift, Swinney, and Vastano devised an algorithm 

that estimates Lyapunov exponents directly from the data. However, Brock and Sayers 

(1988) found the results from this algorithm disappointing when applied to economic data. 

They claimed that Lyapunov exponents could not be defined using the Wolf et al. (1985) 

algorithm when stochastic noise is present. All the tests designed thus far, except for the 

BDS statistic, were intended for use on experimental data. Special problems had to be 

addressed when testing economic data. In particular, economic time series are not 

generated by purely deterministic systems and are shorter than those required to make 

suitable estimates. An empirical survey conducted by Ramsey, Sayers, and Rothman 

(1990) showed that no legitimate claims of chaos had yet been found, based on the weak 

inference methods of the day. 
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The year 1992 marked the emergence of a new generation of Lyapunov exponent 

estimators. These are nonparametric nonlinear least squares estimators built into a neural 

net environment. Unlike the Wolf et al. (1985) algorithm the regression method 

accommodates noise and the results refer to the noisy system, rather than the hypothetical 

underlying system that the direct method tries to estimate. Two versions are available: the 

Nychka, Elmer, Gallant, and McCaffrey (1992) algorithm and the Gencay and Dechert 

(1992) algorithm. However, the most versatile of these is that of Nychka et al. (1992). 

According to Barnett et al (1993), the Nychka et al (1992) approach is the only credible 

candidate for testing chaos. Other than this study, the only other research -- known to this 

author -- which used the Nychka et al (1992) Lyapunov exponent estimator on economic 

data was that of Barnett et al. (1993). In that study successful detection of chaos was 

claimed for the CE index M4 monetary aggregate. 

Here, thirteen various commodity and currency spot-month futures series are 

considered. They include the Australian dollar, the British pound, the Canadian dollar, 

crude oil, copper, the Deutschemark, gold, heating oil, unleaded gas, the Japanese yen, 

platinum, the Swiss franc, and silver. The two methods of inference used to test for 

nonlineariaties and chaos are the BDS test and the Nychka et al (1992) algorithm. Results 

indicate successful detection of chaos in the Australian dollar, copper, and the Japanese 

yen. 

This thesis begins on the theoretical side where both stochastic and chaotic 

theories are discussed. Chapter 2 starts with an outline of the stochastic models which 

best describe futures markets. Then chaos is defined as it applies to economics and a 

specific example is given to show how chaotic dynamics can be achieved. Next, I traverse 

into the empirical side where both the BDS statistic and the regression type Lyapunov 

exponent estimates are described. The data and special problems regarding financial data 

are discussed in chapter 4. Finally, in chapter 5, prefiliering and empirical investigation of 

the chosen financial time series is addressed. 
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Chapter 2 

FAIR GAMES, SUBMARTINGALES. AND CHAOS 

2.1 Jntroduction  

Until recently empirical evidence has confirmed the notion that asset price 

movements follow a linear but stochastic process. There is, however, no theoretical 

reason why market behavior is inherently linear. Previous results have shown that market 

prices are independently distributed in a linear structure but have not shown nonlinear 

independence. Some nonlinear models have the ability to generate similar random looking 

behavior which is not detectable by traditional linear methods. Thus, offering an 

alternative explanation to random looking price changes. 

The next section explains the stochastic models most representative of futures 

behavior. First the fair game model is described which leads to the submartingale model. 

The submartingale model closely represents futures behavior since it allows for prices to 

increase over time and for time varying volatility. In section 2.3 a precise description of 

chaotic behavior is given. Analysis proceeds "in general", using vector notation. Then in 

section 2.4 a particular univariate model is used to show a method how chaos can be 

achieved. The next section, 2.5, gives a diagrammatical representation of the events 

described in section 2.4. 

2.2 Fair Games and Submartingales  

Futures contracts are financial instruments pertaining to the sale of some asset, 

where the price is agreed on today but actual delivery takes place at some future period. 

This implies a forecast of the future price of the good in question. One determinant of 

today's price of a future contract price is the expectation of how the price of the 

underlying asset will change. 
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Markets are efficient in the sense that based on today's expectations given all 

known relevant information, at [where at includes all information j ≥ 01, it is not 

possible to make abnormal profits. This refers to returns made in excess of that amount 

necessary to cover all opportunity costs [which include information retrieval costs, transfer 

costs, etc.]. 

Since buying decisions are made in terms of expected returns, the actual abnormal 

profit or loss next period is 

nt+1 = 

where 

xt+1—xi  
R1+1 = 

xt 

and 

E(R+1I) = 
xt 

are the actual and expected rates of return given prices x, x, and information set 

.The expected abnormal profit or loss next period would be 

E (n+1I) = E (R+1I ))V I 
= 

=0 

Hence, knowing all relevant information today does not lead to abnormal profit. In terms 

of probabilities [assuming the distribution is symmetric about the mean] 

P(n +1 >o)=P(n +1 <o)-o.5 

which means that fl i is a fair game with respect to the information set Q, . This is 

known as the fair game model where the average return of an asset is equal to its 

expected return. 
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A submartingale is a fair game where prices are expected to increase at a rate 

equal to the opportunity cost of the asset. 

• Notice that the fair game model in terms of returns still gives 

E(fl+1I1) 0 

The submartingale model, which has grown in popularity since Mandelbrot (1966) or 

Samuelson (1965), only requires independence of successive price changes which allows 

for changes in volatility of futures prices. 

One implication of the submartingale theory is that price changes, beyond 

opportunity costs, are serially uncorrelated and appear random. Since price changes 

respond to new information which arrives randomly, future price changes will move in an 

unpredictable manner. 

2.3 Chaos  

Economists have, until recently, had little success explaining the random looking 

but bounded fluctuations of economic time series using deterministic methods. Only four 

types of nonlinear dynamical behavior were considered, monotonic convergent, monotonic 

divergent, periodic convergent, and periodic divergent. Each would converge to or 

diverge from some point or limit cycle so could not represent economic fluctuations. 

Physical scientists, however, have recently revived interest in nonlinear dynamics and in 

particular chaos theory. 

Before the precise meaning of chaos can be given, as it applies to economics, a few 

preliminary definitions are necessary. 
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Definition:  

F' (xe) is the kthi iteration of the C1 system [differentiable once] 

F(X1):I' —jn, jn 

for all X E In and all integers k and 1, if 

1) F'(X)=F(F( ... F(X) ... )), ktimes. 

2) F°(X1)=X1 

3) Fk(F1(X)) = F1(X) 

where I is an n-dimensional subset of R'. 

Using this method we can choose any system F and any initial point X0 E I and 

follow the discrete iterative process generated by F. Notice that the initial point X0 is 

drawn from the continuous interval I but the iterations F' (x0) are discrete. 

Definition:  

When an initial state X0 is given then the flow 

IFk (x0)}° 

is the trajectory of X0 under the function F. 

The iterative process generated by F follows a time path or sequence IF, (x0 )}° 

which is known as the trajectory of the initial point X0 driven by the system F. 

Definition:  

X is a periodic (fixed) point of F with period k if Fc (x1) = X. The point X is 

then known as a period k point or alternately a k period point 

Here, the iterative process of F   (xe) always returns back to the point X after k 

iterations. Since all points between X and F   (x1) are also period k points the resulting 

sequence is known as a period k cycle or alternately a kperiod cycle. 
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Definition:  

If X is a periodic point of F then X is asymptotically stable if there exists some 

neighborhood U of X such that for all X0 € U 

Ern F''(X0)=X 
l400 

The limit of the trajectory [as 1 goes to infinity] of any initial point X0 in the 

interval I is some k period cycle. 

Definition:  

The set of all initial states whose trajectory asymptotically approaches the stable 

periodic point X, is known as the basin of attraction of X. This means that there is some 

subset of I whose trajectory under the system F converges to the stable k-period cycle. 

Definition: 

The set I is positive invariant with respect to the trajectory IF, (x0 )}°O if for 

each X0 c= I, Fk (xe) € I for all k. When this holds for k e (_oo, co) the trajectory is 

invariant. 

This condition gives the values generated by the trajectory of X0 both an upper 

limit and a lower limit. 

Definition:  

If the limit lim F'<1 (x0) does not exist for any k or any X0 E I, but the trajectory 

{F (XO )1OO is positive invariant in I then X is aperiodic. 

The function F generates some trajectory of X0 that never converges to a periodic 

cycle but stays within an upper and a lower bound. In this case the trajectory appears 

random even though it is generated by a deterministic system. 
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Definition:  

The set I'is dense inhifI1_cI and for any X0 I',XEI, 'and e>O there 

exists k such that 

In other words j1 is dense in I if for any point, X0, originating in 11 we can find a 

sequence of points that start at X0 and converge to X. When denseness is applied to 

periodic points in I under the function F, structure is implied for the sequence {F1 (x )}, 
and values in the range of F encompass all the infinite points of I. For any element, X, in 

the range of F, one can retrace the deterministic sequence of points which converge to it. 

Comparing this to a stochastic sequence, we find that random points are identified by their 

probability of occurrence in some distribution, not by their place in a deterministic 

sequence. 

Definition:  

F is topologically transitive if for any pair of sets 11,12 C I there exists k>O such 

that pk(J1)fl12 Ø. 

This means that, as k increases, the function F" (x1) will take on infinitely many 

values within the set I. Over time, the value of F(X) can move from any point in Ito any 

other point in I. This condition is required to ensure that the function F maps I back into 

itself, without decomposing into positive invariant subsets of I. Essentially, it is the same 

as the ergotic character of economic time series. 
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Definition:  

F: I -> I has sensitive dependence on initial conditions if for all arbitrarily close 

initial points X, X E I where - X0 = s there exists 5 > E and k>O such that 

IF k (XO') — F k(X ≥ s. 

Given two initial points that are arbitrarily close to each other, their respective 

trajectories under the map F will diverge at some rate characteristic of  until, for all 

practical purposes, they are uncorrelated. Since initial conditions are not known exactly, 

serious doubts are introduced as to the accuracy of long term forecasting. 

Definition: [Devaney (1989)] 

The set I is a strange (chaotic) attractor under F: I -p I if 

1) periodic points are dense in I, 

2) F is topologically transitive, and 

3) F has sensitive dependence on initial conditions. 

This is the definition of chaos -- in a conservative system since I --> I. A 

deterministic function F that maps the set I back into itself and results in an aperiodic but 

bounded trajectory with sensitive dependence on initial conditions. The set I is known as 

a strange [chaotic] attractor and the function F is known as chaotic. 

Economic models that incorporate either stable aperiodic or chaotic motion do 

closely replicate actual economic data, but without a stochastic component. Since the first 

two conditions of chaos are not empirically verifiable given economic time series we have 

to identify chaos by searching for its sensitive dependence on initial conditions property --

following Ruelle (1989). 
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2.4 Route to Chaos  

Consider the system 

X11 = F(A,X), F:R1' XI'S - c R' 

where A is a p-dimensional parameter set, X is an n-dimensional set of variables, and 

changes in A lead to changes in the periodicity of the function F. Here, A is known as a 

set of tuning parameters. 

To make the following ideas clear, it would be easier to use a specific form of F 

and use it to walk through this particular route to chaos. I will use the one dimensional 

logistic map 

x+1 =f(a,xt)=axt(1— xt), f:(0,4)x(0,1)-4(0,1) 

which has one variable x and one tuning parameter a. Since the maximum of the function 

f is a/4, 0<a<4 is required to ensure that  is mapped from (0,1) back into (0, 1). 
To find the periodic points of this system, Xt+k is equated with x. Period one 

[k=1] gives 

x= ax, (i— x) 

where the two roots are 1-1/a and 0. 

Once the periodic points are found, they can be tested for stability. Discrete one 

dimensional systems are stable if 

and unstable if 

In this particular case 

At the period one point, x=0, the system is stable for all values a E (0, 1), and at 

x,, = 1-1/a the system is stable for all values a (1, 3). This means that in state space [the 

state of x at time t or, alternately, variable x plotted against timed the trajectory will 
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converge to 0 for all values a E (0,1) and will converge to some unique point in I for all 

values a E (1,3). In either case the trajectory is monotonic. 

Now consider the second iteration of the logistic equation 

f2(x1)= axf+l(1Txl+1) 

where the periodic points are 

Xt = 2(x1) 

where the four roots are 0, 1-1/a, and (a+1±.J(a-3)(a+1))/2a. The first two share 

the same stability properties as the period one points but the latter two are stable in the 

interval 

a e (3, 3.4495) 

As a increases past three the trajectory bifurcates from being monotonic to a stable two 

period cycle. If this analysis is continued to f' (xe) we will find that as the value of a 

passes through 3.4495, the two period cycle bifurcates into a 4 period cycle. 

Increasing the tuning parameter a from 0 up, leads to a stable periodic point 

doubling effect on the trajectory Jfk (X0 )J'kO that follows Sarkovskiits ordering: 

1<222 -2 -2  

-2.9 -2•7 -<2.5-<2•3 -... 

-<9-<7-.<5-<3 

for all 1, where a -< b indicates a precedes b. In reverse order, this is all the odds, 

increasing in value, except 1, then 2 times the odds, then 22 times the odds, and continues 

until all the natural numbers are used up except for 1 and the powers of 2, which are listed 

in a decreasing sequence. Figure 2.1 shows all possible bifurcations as the parameter a is 

tuned between 2.7 and 4. 
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The range over which a is stable between critical bifurcation values decreases as a 

increases until the 2°° cycle, which materializes [for the logistic map] at approximately 

3.5699. Feigenbaum (1978) showed that convergence to 2°° is a universal feature of 

unimodal maps and that the interval over which a cycle remains stable converges at the 

geometric rate of 

lim 1ap_ap_i4.6692 
p-.400Lap +1 — a r ) 

where a is some critical bifurcation value of a 

Sarkovskii's theorem (1980) states that if f: I ---> I is a continuous mapping with a 

period Ic trajectory and 1 -< k in Sarkovskii's ordering, then f also has a trajectory of 

period 1. This theorem has consequences for economic modeling, since higher periodic 

points imply the existence of lower ones then if no 2 period cycle can be found in some 

dynamic model, then there are no other periodic points. Alternately, if a period three cycle 

can be detected then cycles exist of every possible periodicity. 

The celebrated Li and Yorke (1975) result which states that period 3 implies chaos 

refers to the infinite cycles within Sarkovskii's ordering. These cycles are aperiodic since 

they never repeat themselves but they are not chaotic since they are stable and lack the 

sensitive dependence of initial conditions property of chaos. For each periodic point 

= )t1 (x1) where k=1,2,.. .,5,3 there exists a basin of attraction from which trajectories 

converge to x. This means that points infinitely close to the period 2°° trajectory can be 

found such that long term forecasting is feasible. This is an important note since many 

economic models have been developed that claim chaotic behavior based on this result for a survey see Boidrin and Woodford (1990). For empirical purposes, an aperiodical 

cycle does not necessarily imply the presence of sensitive dependence on initial conditions. 
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Once a increases past the interval where 3 period cycles are generated all the 

[natural] periodic points become unstable and the trajectory once again behaves in an 

aperiodic manor. However, this time the trajectory f has sensitive dependence on initial 

conditions and is chaotic. 

Period doubling is a sufficient but not a necessary route to chaos. Yet, it lends 

itself well to economic modeling. Simple models are tuned into a chaotic regime, giving 

complicated but random looking fluctuations that fool many empirical tests. 

2.5 Diagramniaticai Representation  

Another method used to illustrate the route to chaos is the following 

diagrammatical approach. Consider the phase space graph where all values of xt are on 

the horizontal axis and all values of Xt+k are on the vertical axis. The two lines Xt+k = Xt 

and f  (Xt) are plotted in this space, where Xt+k = x turns out to be a 450 line [since 

Xt,Xt+k El] and fk(xj) is the value off" evaluated at each xt El. Points where these 

lines intersect are periodic points since at their intersection, P (x1) = Xj+k = X. 
Now consider only x, Xt+1, and f (Xt), as represented in figure 2.2. Choose some 

arbitrary x0 on the xt axis. The first iterate is found at the height of the curve 

evaluated at x0. This value becomes x1 on the vertical axis. To obtain the second iterate, 

x1 has to be transferred to the xt axis so the function (x) can be applied again. This is 

done by moving x1 horizontally to the 450 line where x 1 = x. Directly below this axis 

transfer point is where x1 lies on the xt axis. The height of (x) at x1 then becomes the 

next iterate in the series Ixt }°,. To find the behavior of the entire series this algorithm 

can be repeated for all time, t. 
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Earlier it was stated that the periodic point, 1k (x1), is stable if ID fk (X ')J <1 and 

unstable if D fk (X ,)l >1. This can easily be shown by using phase diagrams. Figure 2.3 

shows a stable periodic point. The slope of (xt), [D f(x, )] is greater than -1 and less 

than 1 when it crosses the 45° line. Each time an iteration is transferred to the horizontal 

axis the axis transfer point gets closer to the intersection of f (x) and x 1 = xi,. If (xt) is 

unstable as in figure 2.4 then after each iteration the axis transfer point is moved farther 

away from the intersection of (x) and x4.1 = x. 

Figures 2.5 and 2.6 give phase and state space representations of the logistic map 

at a = 0.8 and x0 = 0.5. Figure 2.5 has the relevant interval I on both the horizontal and 

the vertical axis and Figure 2.6 has I on the vertical axis and time on the horizontal axis. 

Notice that the only fixed point is at = xt =0. However, since the interval I -- (0,1) 

in this case -- is open the 0 endpoint cannot be included as a possible initial point which 

leads to chaos. The next two figures, 2.7 and 2.8, show what happens to f (x) and 12 (XI 

when the parameter a is increased to 2.6. There are now two fixed points, 0 is unstable 

and point A is stable. The slope, in absolute value, of both (x) and f2 (xe) as they pass 

through Xt+k = xt at point A is less than one. From Figure 2.8 we see that the trajectory 

approaches some positive unique value between 0 and 1. Figures 2.9 and 2.10 picture the 

results after a is increased to 3.3. Point A, in Figure 2.9, where f(x), J' (x,), and 

Xt+k = x intersect has become unstable for both f (x) and f2 (xe). However, points B and 

D have become stable for f2 (x1) indicating a period 2 cycle. The asymptotically stable 

cycle in this case is the box BCDE. In Figure 2.10 the upper and lower limits correspond 

to points C and D of Figure 2.9, respectively. In Figures 2.11 and 2.12 the parameter a 

has been increased to 3.52 giving a period 4 cycle. The line 12 (x1) has become unstable at 

all points of intersection with the 45° line , but following Sarkovskii?s ordering, f 4 (x1) has 

become stable at points A, B, C, and D. A period 3 cycle is shown in Figures 2.13 and 

2.14. Between the period one cycle and the period 3 cycle, all other possible period k 
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cycles have had their cycles bifurcated into and out of stability. Beyond the period 3 cycle 

the slope of P (x1) becomes unstable, for all k, at all points of intersection with the 450 

line. The trajectory [f (x )} becomes chaotic. 
To demonstrate sensitive dependence on initial conditions of the chaos pictured in 

figures 2.15 and 2.16, figure 2.17 has two overlapping trajectories, both with a = 3.9, as 

before, but one with initial condition x0 = 0.5 and the other x0 = 0.5001. Notice that the 

trajectories overlap for the first 20 or so iterations, begin to diverge, and eventually 

become incomparable. Long run forecasting is feasible only if the initial condition x0 is 

known with precise accuracy. 

It is easy to see how one could conclude by linear testing that the system is linear 

but disturbed by random shocks. However, such complex dynamics come from a very 

simple yet very deterministic system. 

2.6 Conclusion  

Chaotic dynamics show how simple nonlinear difference equations can yield 

deterministic time paths that mimic the output of stochastic systems. Thus, offering an 

alternative explanation for the behavior of asset prices. This chapter began with some 

traditional beliefs regarding price changes, then showed how these changes can be 

replicated using nonlinear dynamics. We now know that it is possible to mimic stochastic 

looking systems using chaos theory. To make the connection complete we now have to 

find chaotic dynamics in actual time series. 
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Figure 2.1 Bifurcation Diagram for the Logistic Equation 
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Figure 2.2 Dynamic Process 
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Figure 2.5 Phase Diagram for the Logistic Equation, Period 1 Cycle 
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Figure 2.7 Phase Diagram for the Logistic Equation, Period 1 Cycle 
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Figure 2.8 State Diagram for the Logistic Equation, Period 1 Cycle 
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Figure 2.9 Phase Diagram for the Logistic Equation, Period 2 Cycle 
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Figure 2.11 Phase Diagram for the Logistic Equation, Period 4 Cycle 
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Figure 2.13 Phase Diagram for the Logistic Equation, Period 3 Cycle 
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Figure 2.15 Phase Diagram for the Logistic Equation, Chaos 
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Figure 2.17 Sensitive Dependence on Initial Conditions, Logistic Equation 
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Chapter 3 

TESTING METHODOLOGY 

3.1 Introduction  

One of the most important contributions for the empirical analyses of nonlinear 

dynamics was that of Floris Takens in 1981. He found that for nonlinear dynamical 

systems with one observable, the entire underlying attractor can be rebuilt using only the 

observed variable. In the study of financial time series it is important to expose the 

underlying system -- if there is one -- which drives the series, and to reveal its various 

properties. If it can be established that the underlying system is chaotic then price changes 

can be explained as a deterministic outcome. 

Section 3.2 explores, more formally, how the underlying attractor can be revealed. 

Then in section 3.3 it is shown how this information can be used to find the dimension of 

the underlying attractor. This knowledge is then, in section 3.4, used to derive a statistic 

which tests for nonlinear dependence, known as the BDS statistic [Brock, Dechert, and 

Sheinkman (1987)]. Since nonlinearity is a necessary but not a sufficient condition for 

chaos, more information is required to conclude chaos. We cannot empirically test finite 

systems for denseness or topological transitivity, so we follow Ruelle (1989), and rely on 

sensitive dependence on initial conditions as a testable condition for chaos. A measure of 

sensitive dependence, known as the dominant Lyapunov exponent, is outlined in section 

3.5. Then section 3.6 shows how to empirically quantify this measure from a given time 

series. 
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3.2 Phase Space Embedding 

All that we have available to us is the observed time series 

The true unknown dynamical system 

' 

is seen through the observation function 

x1=h(Y), h:R—R. 

The observed time series {xt } can be embedded into a series of rn-dimensional 

vectors 
)T 

giving the series 

{'t} m• 

where each Xt is known as an in-history of the series {x }. For example, the set of 3-

histories for the series {x1,. . . , x6 } would be 
X3 

X4 =(x4,x3,x2)T 

X5 =(x5,x4,x3)T 

X6 =(x6,x5,x4)T 
N 

The number of rn-histories in the series {X i }t.m s T N - (rn —1). 

Generically, the trajectory X may be written as 

X =F(X1_1),F:Rm -* Rm (1) 
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Also, if the basin of attraction is a compact set [closed and bounded] and m ≥ 2n + 1, then 

X can be written in terms of Yt_m+i. 

= H(Yt_m+i) = (h(Gm-1 (Yt-m+,)), h(Gm-2(y t_.+l )),. ',h(Yt_m+i )). 

Notice that 

Xt+i = H(Y + ) = H(G(Yt_m+i )) 

and from (1) and (2) 

(2) 

H(G(Yg_m+i )) = F(H(Yg_m+i )) 

Assuming that H is a homeomorphism [continuous bijection with a continuous 

inverse], F and G are topologically equivalent and share many dynamic properties. This 

result [Takens (1981)] allows us to use the series of rn-histories to analyze the true 

underlying dynamics of the observed series. If the elements of the true series [r} are on 

an attractor then the geometric object created by plotting the xt 's in rn-dimensional phase 

space is congruent to, the true attractor. Theiler (1990) also notes that as long as m>-n the 

reconstructed object almost always has the same dimension as the true attractor. 

Figures 3.1 and 3.2 show the distribution of 2000 numbers produced by a standard 

random number generator and 2000 consecutive chaotic iterations from the logistic 

equation. For the logistic map the parameter a and initial value x0 are the same as in 

figure 2.16 from the previous chapter. When these observations are embedded in 2-

dimensional phase space the portraits 3.3 and 3.4 are produced. Notice that the series of 

randomly generated numbers cloud all available space when embedded in 2-space but the 

logistic iterations fall on the shape of their respective function. 
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3.3 Correlation Integral  

If all the points JY, } are on an attractor then any two points of the series {x } are 

spatially correlated. Rather than being plotted randomly in phase space, the rn-histories 

show a clustering effect. The probability that the distance between any two points X and 

X is less than some arbitrary small radius (s) of an rn-dimensional ball centered on one of 

the points [i.e., JjXt - is greater if clustering exists than if the points were plotted 

randomly -- as seen in Figures 3.1 through 3.4. The correlation integral for t # s is 

Cm(s, T)  number of distances less than s  

total number of distances 

1 H(& —IIx1 — xI) 

= T(T-1) m≤t<s≤N 11(8 Ik —xXII) 

where T is the total number of rn-histories. and H is the Heaviside function. 

11 if z>0 

1  0 otherwise. 

The result Cm (,T) is independent of any two norms [Brock (19 86)] so we 

may use any convenient form. The type most often used is the max-norm which is more 

convenient for computer applications. 

llx1—XII = Max ke[om_i] {Ix:+k - xS+kl} 

where H is Euclidean distance. Using this norm the correlation integral may be written as 

since 

2  H(e - 
T(T —1) >_im≤t<s≤N [[ ki+k - X3+k I) 

H(s —Ii —x311) = IE1H(e k+k X3+kj) 

i.e., if any IXt+k —Xs+kl ≥ s then H(.) = 0. 
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C(rn, e, T) is interpreted as the proportion of T rn-histories that are within s of each other. 

Many authors have used the form 

Cm (S,T) =m1 6_11IYt -x511) 

but Grassberger (1982) shows that the inclusion of t=s is unjustified and may lead to 

wrong conclusions when testing finite time series. 

Grassberger and Procaccia (1982) have shown that the relationship 

C(rn,E,T)=kea (3) 

holds, where k is some constant and a is a dimension measure of the attractor. Taking 

logs of (3) gives 

lnC(rn,e,T)=lnk+cXln 

or 

In  lnC(m,e,T)  

In E Ins 

As s gets smaller and T gets larger a becomes 

D(m)=lirn Jim lnC(m,e,T)  
s_OT400 ins 

which is the correlation dimension. The correlation dimension of the true attractor is 

D— Jim D(m). 
M-400 

Let the dimension of a particular attractor be D. For rn<D, b (m) increases as rn 

increases but levels off for in ≥ i5. However, if there is no clustering then the probability 

that two points being within e of each other decreases as rn increases so )5(m) increases 

endlessly with rn. For finite data sets we cannot find D(m) so we must be content with 

D(rn,s,T) 1flC(ifl,E,T)  
In  

where T is large and 8 is close to zero. 
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The correlation dimension can be used to detect the presence of an attractor. Plot 

the correlation dimension of a series for various 's against m, if the slope of the lines 

level off at some point then an attractor is detected, otherwise the series is white noise. 

This method has been used in the literature [Frank, Gencay, and Stengos (1988)] but is 

not a statistic. 

3.4 BUS Statistic  

To deal with finite data samples Brock, Dechert, and Scheinkman (1987) devised a 

statistic which tests the null hypothesis of independent and identically distributed [ild] 

observations of a time series. C(m,e,T) has two possibilities. If the rn-histories are lid 

then for all m they will be embedded randomly in rn-space. However, if the points are not 

lid, then as m increases the points will arrange themselves on the attractor which will take 

shape at the correlation dimension of the true attractor. In this case, as in increases the 

probability that the points are within e of each other decreases until the correlation 

dimension is reached, after which it levels off. Data not arranged in rn-histories appears 

random so the value C(1,s,T)m would be close to the value C(m,e,T) given lid 

observations. For a stochastic series the statistic 

C(m,,T)— C(1,,T)m 
2 IT 

asymptotically [as T - 00  follows a normal distribution with zero mean and 

sample variance [Brock, Hsieh, and Lebaron (1991)]. Where 

= 4(Km +2y' Ktm1 C +(m _1)2 C2m _m2KC2(m_1)CTW ) 

C = E[H( —Ixt —x.c)] 

K = E[H(S _1X _.xsl)H(s _Xs _.xrl)J 

and B is the expectations operator. 
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Consistent estimators for C and K are: 

ô=C(1,e,T) 

6  
1≤1<s<r≤T H(s - Ixi - x8 I) H( - I; - Xr I). 

T(T—l)(T-2) 

The BDS test may be written as 

W(m,.,T)=: 
ff[C(m,,T)— C(l,E,T)mll 

aw 

T- 00 

 > N(O,1). 

Rejection of the null implies that the data is either linear deterministic, nonlinear 

deterministic [chaotic], or nonlinear stochastic, [Hseih, 1991]. 

As m increases both C(m,e,T) and C(1,e,T)m decrease until the correlation 

dimension of the attractor is reached, if there is one, beyond which C(m,s,T) levels off 

and C(1,E,T)m continues to decline. 

3.5 Lyapunov Exponents. 

The main characteristic of chaotic motion is its sensitivity to initial conditions. 

Lyapunov exponents are used to quantify this concept, thus differentiating between 

regular or nonregular motion of an attractor. Since G maps the interval I back into itself 

divergence of trajectories cannot go beyond the interval I. In general, chaotic motion 

must then consist of exponential stretching and shrinking along various axes and then 

folding of the attractor by 1' 4 = G(Y). Two points which are initially close together may 

get closer as in regular motion or they could be stretched far apart from each other. This 

Stretching determines the attractors sensitivity to initial conditions. Picture an n-
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dimensional sphere, stretching and contracting along its various axes distorts it into an n-

dimensional ellipsoid. After t iterations a two dimensional circle 

Y0 +e 0 

Y 

becomes 

Gt (YO +8 10) 

which is folded over itself t times. yj gives the amount of stretching( u1 >O) or 

contracting( yj <0) per period. 

At time T 

6iT = s0e 

which can be written as 

IL1T 

SiT 

(4) 

(5) 
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The absolute value iT 

£jØ 
is used since stretching or shrinking can occur in either direction 

along an axes. 

Now consider the linear system 

= q-,1 

whose solution at time T is 

ir q1T210 =e1 7jT 

Looking back at (4) it is clear that 

lnqjT = u1T. 

Substituting this into (4) gives: 

or 
(-'10) 

or q1T = 

Substituting this into (5) gives 

which can be written as 

eio 

1 T-1 
jJ 1nq1. 

yj is interpreted as the time average of the log of the absolute value of the slope value q. 

The i th Lyapunov exponent of the system G(Y) is 

LE=lim 1 —IT—' 
T—>oo T t=O 

which is the limit of ji1 as T goes to infinity. 
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More formally, a linear approximation of 

ET (61T ,"'nT) 

is 

ST jT(y0)50 

where jT(y0) is the Jacobian of the system GT(), evaluated at YO. Recall that 

G  (.) = G(G(. G(.) ... )), T times. 

By the chain rule 

dGT_l 

Y—yo 

dG 

Y=Yo dy 

_dG dG 19G 

T-2 

= 

= IT'() 
dilagonalizing gives 

Y=Yo 

(6) 

where At is the diagonal matrix of eigenvalues 1,"•,n] of j(y1) and P is the 

associated matrix of eigenvectorS. 

Also 

Taking logs of (6) gives 

4= 
0 

lnJ(Yt) =In p+lnAt — In P=1n4. 

In HJ(Y) = V T ' in (Y) 

=In4 
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The i th Lyapunov exponent becomes 

LEI =iirn'injAi,4 

which is a time average for the absolute value of the ith eigenvalue from the system G(•). 

From the multiplicative ergotic theory [Eckman and Ruelle (1985)] this limit exists for 

most initial conditions 1'0. 

The usual explanation of eigenvalues for discrete systems also applies here. 

1 LEI <0 (contraction) 

l.>1 = LEI >O (expansion) 

Since the attractor requires n dimensions there are n Lyapunov exponents. These 

can be listed in descending order, i.e., LEI ≥ LE, ≥• ≥ LE, which is called the Lyapunov 

spectrum. The signs of the spectrum are (+,. •, +, 0'...' 0,—,• . , -). Various forms of 

underlying attractors can be explained as follows: 

attractor contracts to a stationary point. 

(0'...' 0,—,.. • , -) contracts in directions indicated by (-) 's and is 

stationary periodic in directions indicated by (0)'s. 

(+,. • ,+,0,. •,0,—,. •,-) presence of stretching indicated by (+)'s. 

The sum of all Lyapunov exponents is interpreted as follows: 

>0 = G(.) is expansionary 

LEI 0 => G(.) is conservative 

<0 => G(.) is dissipative 

Chaotic attractors are presented here as conservative systems that include 

stretching, shrinking, and folding. Therefore, the Lyapunov spectrum would include at 

least one positive element but the sum of all elements would be zero. 
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3.6 Estimating The Largest Lyapunov Exponent  

Earlier in this chapter it was shown that the series of rn-histories 

= F(X11),F:Rm --> Rm 

is congruent to the true series 

(1) 

Y =G(Y 1),G:R—R' 

as long as rn ≥ 2n + 1. As rn increases between n and 2n+1 the n largest Lyapunov 

exponents of  are the same as those of G, while the remaining rn-n exponents diverge to 

00 Gencay and Dechert (1992)1. Since n is unknown we cannot test whether the true 

attractor is dissipative or explosive but we can reveal the sign and magnitude of the largest 

Lyapunov exponent, which is a test for chaos. 

Equation (1) may be written more generally as 

( XL 

Xt_L XL_L 

XI-+L.1 j 

which reduces to 

+ 
0 

\O) 

where rn is the length of the embedding, L is the number of lags between observations and 

{et } is a sequence of zero mean, unknown constant variance, independent random shocks. 

The estimate f is derived by fitting the equation 

o) = q + j1 I3iii ( + TX) 

by nonlinear least squares [Nychka et al (1992), Gencay and Dechert (1992)1 

2 
Z(o) = ',+1(1 _(x_1o)) 

where 0 = (q,, /3 ,co, y) is the parameter vector. 
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f consists of k activation units 

exp(—u)  

1+ exp(—u) 

each with its respective unit weight f3, E R, and input weights o. and 

Once f is found we can build P and the largest Lyapunov exponent becomes 

LE i =!TlT 1=0 nvTAtvI 

where v is a fixed rn-by-i vector of norm 1 [v = (1,0,.. .0)T] and A Rm. 

3.7 Conclusion  / 
We now have the tools with which we can test for chaos. The BDS test, which is 

an application of the correlation integral, is used as a test of whiteness and the dominant 

Lyapunov exponent is used as a test of chaos. When analyzing the underlying system we 

have to show both existence and stability, where stability refers to the convergence or 

divergence of nearby trajectories. Here, the BDS test is used to show existence and the 

value of the dominant Lyapunov exponent is used to show stability. 

The next issue of concern is data quality. In order to be able to explain a data set 

using chaotic dynamics, we require at least that the data be chaotic looking. 
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Chapter 4 

DATA  

4.1 Introduction  

When testing for nonlinearities, and in particular for chaotic nonlinearities, data 

quality and quantity is very important. Tests developed in the physical sciences require 

large amounts of noiseless data. Much of the power of these tests is lost when analyzing 

finite and noisy economic time series. The problem with noise is that it clouds the 

underlying attractor, making it difficult to detect, and it imposes large measurement errors 

making forecasting impossible. If enough noise is present the underlying attractor might 

be completely dispersed and undetectable. Economic time series are aggregated over 

markets and over market participants. Both of these operations introduce noise into the 

data. There is little we can do about aggregation over participants but for aggregation 

over markets we can minimize noise by considering only individual markets. However, 

each individual asset is a compliment to some goods and a substitute for others, so is 

therefore inseparable from other assets. 

Data frequency is also a concern. Financial data is available in tick by tick 

intervals. However, this frequency is too short since the series becomes dependent upon 

micromarket structures such as the sequential executions of limit orders as market prices 

pass through the respective limit prices. Frequencies must be decreased to average out 

these artificial dependencies. Since data sets have to be as large as possible, when the data 

is extended further back in time, other influences become stronger such as nonstationarity 

or conditional heteroscedasticity. 

Section 4.2 describes the data chosen for this study and section 4.3 gives some 

summary statistics about each series. 
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4.2 Data and Sources  

Relative to other economic time series, financial data has greater abundance and 

quality. For this study testing was conducted using weekly observations on spot-month 

futures prices of thirteen various commodities and currencies. They include the Australian 

dollar, the British pound, the Canadian dollar, crude oil, copper, the Deutschemark, gold, 

heating oil, unleaded gas, the Japanese yen, platinum, the Swiss franc, and silver. All the 

currencies are traded on the International Monetary Market at Chicago, copper, gold, and 

silver are traded on the New York Commodities Exchange, and crude oil, heating oil, 

platinum, and unleaded gas are traded on the New York Mercantile Exchange. Each 

series was collected by Tick Data Incorporated. 

The sample period and number of observations for each series is shown in Table 

4.1. They range from January 13/1987, to June 2/1993, [330 observations] in the case of 

the Australian dollar from July 2/1971, to June 2/1993, [1140 observations] in the case of 

silver. A graphical representation of each series is provided in figures 4.1 to 4.13. 

4.3 $ummary Statistics  

Tests of normality in distribution of the data include mean, standard deviation, 

skewness, and excess kurtosis. The results of each are outlined in the last four columns of 

Table 4.1. Measures of mean and standard deviation are derived from logged differences 

of the raw data. A distribution's form is given by its skewness and excess kurtosis. 

Skewness refers to the proportion of observations which fall on either side of the mean. If 

the value of skewness is negative (positive) then more observations fall on the lower 

(higher) side of the mean. When the distribution is higher, narrower, with fatter tails than 

the normal distribution it is knbwn to have excess kurtosis. A measure of zero means that 

the curve is normal. Notice that all the series tested have excess kurtosis and all are 

skewed to one side or the other except perhaps unleaded gas. 
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4.4 Conclusion  

Quality data is crucial when testing for nonlinearities and chaos. Test results do 

not depend on whether chaotic output appears random but whether random looking data 

appears chaotic, upon close inspection. If a time series is found to be chaotic then it must 

also be consistent with chaotic structure. For this to happen we need data as noise free 

and as chaotic looking as possible. To reduce noise in time series we can only choose data 

as disaggregated as possible with an appropriate frequency such that the chaotic signal is 

detectable. 

Known dependencies, such as nonstationarity or conditional heteroscedasticity, 

that interfere with the chaotic signal must be filtered out. The next chapter shows various 

prefiltering techniques so that the data can be tested for nonlinearity and chaos. 



Table 4.1 Summary Statistics For Weekly Futures Prices (Logged Differences) 

Series # Ohs. Sample Period Mean S.Dev. Excess Kurtosis Skewness 

-Australian Dollar 330 01/13/87 - 06/02/93 .014 (.073) 1.329 4.625 (.268) -1.307 (.134) 

British Pound 955 02/13/75 - 06/02/93 -.043 (.054) 1.660 3.558 (.158) -.364 (.079) 

Canadian Dollar 854 01/17/77 - 06/02/93 -.026 (.021) .628 3.424 (.167) -.438 (.084) 

Crude Oil 530 03/30/83 - 06/02/93 -.072 (.207) 4.767 8.834 (.212) -.806 (.106) 

Copper 905 08/22/72 - 12/27/89 .079 (.136) 4.078 2.640 (.162) -.107 (.081) 

Deutschemark 955 02/13/75 - 06/02/93 .038 (.053) 1.633 1.713 (.158) .092 (.079) 

Gold 961 01/02/75-06/02/93 .079(.098) 3.046 13.855 (.158) .221(.079) 

Heating Oil 734 03/06/79 - 06/02/93 -.009 (.170) 4.616 3.726 (.180) -.469 (.090) 

Unleaded Gas 439 12/03/84 - 06/02/93 -.045 (.248) 5.199 3.076 (.233) -.070 (.117) 

Japanese Yen 865 11/03/76 - 06/02/93 .117 (.053) 1.573 2.362 (.166) .453 (.083) 

Platinum 1072 08/22/72 - 06/02/93 .085 (.133) 4.345 4.409 (.149) -.237 (.075) 

Swiss Franc 955 02/13/75 - 06/02/93 .056 (.061) 1.896 1.234 (.158) .322 (.079) 

Silver 1140 07/29/71 - 06/02/93 .079 (.145) 4.894 10.457 (.145) -.659 (.072) 

Note: Numbers in parentheses are standard errors. 
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Figure 4.1 Australian Dollar 
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Note: Logged nearby futures prices, weekly data from 1/13/87 to 6/2/93, 330 observations. 

Figure 4.2 British Pound 
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Note: Logged nearby futures prices, weekly data from 2/13/75 to 6/2/93, 955 observations. 

Figure 4.3 Canadian Dollar 
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Note: Logged nearby futures prices, weekly data from 1/17/77 to 6/2/93, 854 observations. 
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Figure 4.4 Crude Oil 
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Note: Logged nearby futures prices, weekly data from 3/30/83 to 6/2/93,530 observations. 

Figure 4.5 Copper 
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Note: Logged nearby futures prthes, weekly data from 8/22/72 to 12/27/89, 905 observations. 

Figure 4.6 Deutschemark 
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Note: Logged nearby futures prices, weekly data from 2/13/7 to 6/2/93, 955 observations. 
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Figure 4.7 Gold 

7 

6.3 - 

5.6 

4.9 

4.2 - 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 

Note: Logged nearby futures prices, weekly data from 1/2/75 to 6/2/93, 961 observations. 

Figure 4.8 Heating Oil 
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• Note: Logged nearby futures prices, weekly data from 3/6/79 to 6/2/93, 734 observations. 

Figure 4.9 Unleaded Gasoline 
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Note: Logged nearby futures prices, weekly data from 12/3/84 to 6/2/93, 439 observations. 
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Figure 4.10 Japanese Yen 
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Note: Logged nearby futures prices, weekly data from 11/3/76 to 6/2/93, 865 observations. 

Figure 4.11 Platinum 
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Note: Logged nearby futures prices, weekly data from 8/22/72 to 6/2/933 1072 observations. 

Figure 4.12 Swiss Franc 
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Note: Logged nearby futures prices, weekly data from 2/13/75 to 6/2/93, 955 observations. 
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Figure 4.13 Silver 
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Note: Logged nearby futures prices, weekly data from 7/29/71 to 6/2/93, 1140 Observations. 
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Chapter 5 

EMPIRICAL TESTING 

5.1 Introduction  

This chapter confronts theoretical chaos with the facts. If the underlying system of 

a series is linear then the residuals from the best fit linear model are white noise. Chaotic 

nonlinearities cannot be detected by linear methods so if chaos is present then its effects 

will be hidden in the residuals of the best fit linear model. Economists are now armed with 

two highly reputable tests of nonlinearity and chaos: the BDS test and the Lyapunov 

exponent estimator of Nychka et al. (1992). For each series the best fit linear model is 

formed then the residuals are tested for the existence of nonlinearities and for chaos. 

Before conducting nonlinear dynamical analysis the data must be rendered 

stationary, linearized, and purged of conditional heteroscedasticity. In section 5.1 

augmented Dickey-Fuller unit root tests are used to check stationarity. The data is then 

linearized by lagging the stationary series enough times to remove autocorrelation. This 

procedure is outlined in section 5.3. Conditional heteroscedasticity refers to variances that 

change over time. Section 5.4 describes a test for conditional heteroscedasticity and a 

method of removing it from the data. Once each series is linearly filtered we can conduct 

tests of nonlinearity and chaos. Results from these tests are given in sections 5.5 and 5.6 

respectively. 

5.2 Preliminary Analysis of the Data  

Before we test for chaotic nonlinearities, we must first remove all linear 

dependencies and render each series stationary. A series is stationary if its mean and 

variance are constant but finite through time and the covariance between any two values 

depends only on the distance between them, not on time itself. In other words all 
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observations are independently and identically distributed. More formally, a series Ixt } is 

stationary if for all t 

E(x)= 

1 
cov(x1 , = - - = 2< oo for s=O 

7 for s# O 

Many economic time series are not stationary but can be easily rendered so. 

There are two types of underlying trends and a different procedure is used to 

detrend each. 

The first type 

Xt+i = a + x + e1 

E(x +i)=a+x 

is known as a difference stationary process. Shocks to this type of system have a 

permanent affect on the time series. Notice that the expectation of x 1 is a function of x. 

In this case {x } is detrended simply by taking first differences, = a + e. 

The second form 

xt = a+bt+e 

E(xt)=a+bt 

is known as a trend stationary process. Shocks have a temporary effect since expected 

values are not functions of their own past values. The series {x } is detrended by 
regressing it on both a constant and a time trend, then obtaining the residuals {et}. 

One test used to determine which method should be used to render the series 

stationary, which is the one used in this study, is the augmented Dickey-Fuller test (ADF) 

-- Dickey and Fuller (1981) 

Mnx1= a0 + alt +a2 In x,_i+>1cjA in xt_j +e 
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where J j1=1cjA In x_1 corrects for autocorrelation in the series {A in xt land alt 

removes trend stationary processes. Natural logs are used so the series fAin xt} is 

represented in terms of growth rates rather than differences. If a2 =0 then Ixt } follows a 

difference stationary process and has to be differenced to become stationary. We test the 

null that a2 =0 [difference stationary process] against the alternative that a2 is negative 

[trend stationary process]. If the null cannot be rejected the series is differenced and 

tested again. This process continues until the null cannot be rejected. 

A series is integrated of order d -- 1(d) -- if it has to be differenced d times to 

become stationary, it is then known to have d unit roots. Most economic and financial 

time series have only a single unit root -- see Nelson and Plosser (1982). 

Results of the Augmented Dickey-Fuller tests on the futures data is presented in 

Table 5.1. In all cases we cannot reject the null of a difference stationary process in levels 

but reject it in first differences indicating a single unit root. Hence, we first difference the, 

logarithms to render the series stationary, this is consistent with the evidence reported in 

Nelson and Plosser (1982). 

5.3 Linearizing the Data 

Now that the trend has been detected we start by describing the data in a linear 

framework. In particular we use the following autoregression (AR) model. 

The residuals, fe }, from a correctly specified AR model have zero correlation 

with each other. Otherwise they follow a pattern indicating some left out influence. The 

autocorrelation coefficient between et and et, is 

Ps - cov(e1,e1.. 5) 

- ae 

Since í = 0 if and only if cov(et et_) =0, we can use p5 to detect autocorrelation. 
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As s varies, values of p also vary, giving the sequence {p}0 which is known 

as the autocorrelation function. This provides a measure of how much correlation exists 

for a group of residuals of size k. For a white noise process p5 is approximately zero for 

all s # 0. Box and Pierce (1970) showed that and for sufficiently high k the Q-statistic 

Q=Nr i13s2 

follows a chi-square distribution with k degrees of freedom -- x2 (k) -- and can be used to 

test the joint null hypothesis that all k autocorrelation coefficients are zero. Recall that N 

is the length of the series {et }. This test uses the null of Q =0 where the residuals are 
uncorrelated against the alternative Q> 0 where patterns exist between residuals. In 

order to consider the series free of autocorrelation A in xt has to be regressed on enough 

lags to yield the Q-statistic insignificant. 

The first two columns of Table 5.2 show the optimal number of AR lags based on 

the Q-statistic and their respective values. All series except for crude oil, gold, the 

Japanese yen, and silver require only one lag to remove autocorrelation. For the 

remaining series, crude oil requires 4 lags, gold requires 10 lags, the Japanese yen requires 

2 lags, and silver requires 8 lags. In each case we cannot reject the null of no 

autocorrelation given a 5% critical value of 35.173. Tests of excess kurtosis and 

skewness were applied to the residuals of the optimal AR model. Notice that all series still 

have excess kurtosis and all are skewed except for unleaded gas. 

5.4 Heteroscedasticit'  

Financial time series are usually studied as homoscedastic processes. Engle 

(1982), however, suggested the autoregressive conditional heteroscédasticity [ARCH] 

model as an alternative to the usual time series process -- this is consistent with 

Mandeibrot's (1963) observation that asset markets are characterized by time varying 
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volatility. Before using ARCH type models, one can test for ARCH effects by regressing 

.s2 A2 ei on e_1 as in 

e2 =b0+b1ê 1+ 1 

The statistic NR 2, where N is the number of observations and R2 is the coefficient of 

determination from the above regression, is distributed as a chi square with one degree of 

freedom, x2 (1). If the null of b1 =0 is rejected then the series {e } increases (decreases) 
over time causing the variance of the original series, {xt }, to increase (decrease) over 

time. 

The third column of table 5.2 presents results for ARCH effects in the optimal AR 

model. Clearly, all series except for the Australian dollar, the Canadian dollar, and the 

Japanese yen have significant ARCH effects. 

Given the evidence of significant ARCH effects the model used to correct for time 

varying variances is Bollerslev's (1986) generalized autoregressive conditional 

heteroscedasticity [GARCH] model. This is a generalization of Engel's (1982) ARCH 

model and has the variance as a function of past squared residuals as well as of past values 

of itself. The GARCH(1,k) model is 

etII_i N (O,ht) 

1 c 2 ' ,, 
- W() L=i ae_ L1=1 I-'j 'It-) 

where the last equation is known as the variance equation. GARCH models are useful in 

correcting for conditional heieroscedasticity while still preserving any nonlinear 

deterministic structure [Lamareux and Lastrapes (199O). The most common specification 

used to capture the time varying variances is the GARCH( 1,1) process [see Engle and 

Bollerslev (1986) or Hseih (1985)] When the only dependence is linear, the standardized 

residuals from a properly specified GARCH model are white noise and follow a standard 

normal distribution with mean 0 and variance cy 2 However, if other nonlinear 

dependencies exist, they may be hidden in the GARCH residuals. 
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In the first three columns of table 5.3 are the estimated values of the parameters, 

w0, a1, and 13k, and their respective t-ratios. In each case the t-ratio for the parameter f3 

is significant and in each case except for the Australian dollar, the t-ratio for a1 is 

significant. 

Column 4 and 6 show both the Q-statistic and the ARCH test results for the 

standardized residuals of the GARCH model. Notice that in each case we cannot reject 

the nulls of no autocorrelation and no ARCH effects. The lag structure of the 

autocorrelation was the same as in the previous AR model. Tests of normality on the 

standardized residuals show excess kurtosis and skewness in all cases. 

5.5 BDS Results  

The BDS statistic was calculated using the BDS program provided by W. Davis 

Dechert. Tests are the same as outlined in the previous chapter for both the AR and 

GARCH residuals and for embedding dimensions 2 to 5 and epsilon of 0.5, 1, 1.5, and 2 

standard deviations of the data. Brock (1986) showed that the asymptotic distribution of 

the BDS test statistic is unaltered by using residuals rather than raw data in linear models. 

It is to be noted that when testing finite data sets the power of the BDS test weakens if 

epsilon is too small or too large. If epsilon is too small then there are not enough data 

points in C(m,s,T) to accurately compare with C(1,,T)m and if epsilon is too large then 

almost all points are in C(,n,e,T) making it approximately equal to C(1,S,T)m. 

Results, from the BDS tests are shown in Table 5.4. Hsieh (199 1) found, through 

Monte Carlo testing, that the BDS critical values for GARCH standardized residuals are 

biased upwards so his critical values were used for these residuals in this study. 

In all cases except for the Australian dollar the null of independent and identically 

distributed residuals is rejected for the AR model. In the case of the Australian dollar we 

also reject the null for the GARCH standardized residuals. For gold, heating oil, platinum, 

the Swiss franc, and silver, we reject the null for all standardized residuals from the 
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GARCH model indicating conditional heteroscedasticity as the only explanation for non-

iid residuals from the AR model. Further results refer only to the GARCH standardized 

residuals. The null is rejected at epsilon equal to 0.5 for the British pound, Canadian 

dollar, crude oil, Deutschemark, and the Japanese yen indicating nonlinear influences. In 

the case of the Japanese yen the null is also rejected for epsilon equaling 1 and in the case 

of crude oil, and unleaded gas the null is rejected for epsilon equaling 2. For copper the 

null is rejected for all values of epsilon. 

Results from the BDS tests applied to the AR residuals indicate strong nonlinear 

dependence. However, when applied to the GARCH(1,1) standardized residuals, the 

results show that much of the nonlinear dependence is explained by conditional 

heteroscedasticity. Unknown nonlinear dependence remains for the British pound, the 

Canadian dollar, crude oil, copper, and the Japanese yen. 

Now that nonlinearities have been found in the data we may go to the next step 

and test for chaotic nonlinearities. If positivity of the largest Lyapunov exponent for some 

embedding dimension of the GARCH standardized residuals is found then we can say that 

the nonlinearity found is chaotic. 

5.6 Dominant Lvapunov Exponent Results  

The dominant Lyapunov exponent was estimated using LENNS, a program written 

by Nychka et al. (1992) and provided by A. Ronald Gallant. In particular, LENNS 
A 

estimates the parameters of f from Chapter 3 by nonlinear least squares in a neural net 

framework. For each triple, (L,m,k), the program fits the model with 200 different initial 

conditions, then polishes the best 20 with a more stringent convergence criterion. Recall 

that L is the time delay, m is the dimension of the embedding, and k is the number of 

parameter units in f . 
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Presently there are two methods of Lyapunov exponent estimation. The direct 

method [e.g. Wolf et al. (1985)] is sensitive to the degree of noise in the data [see Brock 

and Sayers (1988)] while the regression method accommodates noise. Results from the 

regression method refer to the noisy series rather than the hypothetical underlying system 

which the direct method tries to estimate. According to Barnett et al. (1993) the Nychka 

et al. (1992) approach, which is a version of the direct method, is the only credible 

candidate for testing chaos. The various forms of f tested here include embedding 

dimensions from 1 to 10, lags from 1 to 3, and parameter units from 1 to 3. The best fits 

are chosen by minimizing the Bayesian Information Criterion [BIC] see Schwartz 

(1978) -- on the residuals of j-. Due to the large amount of calculations required, the 

LENNS program is limited to 500 or so data points. For series longer than 500 

observations the test is applied to both the first 500 observations and the last 500 

observations. 

Results from the LENNS test are displayed in Table 5.5. The estimated point 

values of the best fit dominant Lyapunov exponent and the respective triple, (L,m,k), are 

given in columns 2, 3, and 4. BIC values [minimized over all triples] are displayed in 

columns 5, 6, and 7. Notice that sensitive dependence on initial conditions, indicated by 

positivity of the dominant Lyapunov exponent, is found for the Australian dollar, copper, 

and the Japanese yen. 

5.7 Conclusion  

This chapter began with 13 financial time series of unknown processes and ended 

in chaos. In sections 5.2, 5.3, and 5.4 the data was made stationary, linearized, and was 

properly adjusted for time varying variances. Each series was transformed such that they 

were chaotic looking. They were bounded from above, below, and fluctuated in a random 

looking manner between these two extremes. After nonlinear analysis we find the BDS 

test rejects the null of independent and identical distribution for all the AR residuals except 
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for the Australian dollar. In the standardized residuals of the GARCH(1, 1) process, 

nonlinear dependence was found for only the British pound, the Canadian dollar, crude oil, 

copper, and the Japanese yen. When the Nychka et al. (1992) Lyapunov exponent 

estimator was applied to these residuals, evidence of sensitive dependence on initial 

conditions was found in the Australian dollar, the Japanese yen, and copper. Conflicting 

results in the case of the Australian dollar indicates limited robustness across inference 

methods -- also found in Barnett et al. (1993). 

These findings have important consequences for financial economics. They offer 

an alternative explanation for the behavior of futures prices and they offer potential for 

short run trading rules. 



Table 5.1 Augmented Diçkey-Fuller Unit Root Tests on Logged Weekly Futures Prices 

A In x = a0 + alt + a2 In x_1 + cLi in + et 

Series Levels First Duff. Crit. (10%  

Australian Dollar -2.42 *..677 -3.13 

British Pound -1.92 *..596 -3.12 

Canadian Dollar -1.87 *..692 -3.12 

Crude Oil -2.54 *.546 -3.12 

Copper -2.50 *..5.24 -3.12 

Deutschemark -1.65 *..,503 -3.12 

Gold -1.71 *..474 -3.12 

Heating Oil -2.85 *..6.53 -3.12 

Unleaded Gas -2.73 *..513 -3.13 

Japanese Yen -2.15 *479 -3.12 

Platinum -1.79 *..531 -3.12 

Swiss Franc -2.20 *..525 -3.12 

Silver -2.15 *..589 -3.12 

Note: An asterisk indicates significance at thô 10% level. 



Table 5.2 Summary Statistics for the Optimal Autoregressive Model Residuals Under the Q(23) Test Statistic 

Alnx = b0 b Al 1 nx1_ +e, etII _1 -' N(0,'y0) 

Series AR Lag 0-statistic ARCH test Excess Kurtosis Skewness 

Australian Dollar 1 14.715 .071 4.729 (.268) -1.320 (134) 

British Pound 1 22.053 *12.369 3.609 (.158) -.362(.079) 

Canadian Dollar 1 24.317 3.404 3.447 (167) -.447 (.084) 

Crude Oil 4 33.517 *12.004 8.551 (.213) -.749(.107) 

Copper 1 30.343 *8.316 2.628 (.162) -.107(.081) 

Deutschemark 1 19.403 *31.924 1.685 (.158) .100 (.079) 

Gold 10 31.053 *158025 12.834 (.158) .152(.079) 

Heating Oil 1 30.609 *58.959 3.408 (.180) -.398(.090) 

Unleaded Gas 1 34.084 *13.231 3.115 (.233) -.061(.117) 

Japanese Yen 2 29.200 3.335 2.5 17 (166) .457 (.083) 

Platinum 1 24.256 *56.168 4.370 (.149)' -.241 (.075) 

Swiss Frank 1 17.811 *22.210 1.203 (158) .331 (.079) 

Silver 8 33.963 *34953 8.352 (145) -.594 (.073) 

Note: Numbers in Parentheses are standard errors. The Q-statistic is distributed as 2(23) on the null of no autocorrelation and the 

ARCH test is distributed as 2(1) on the null of a stationary variance. An asterisk next to a test statistic indicates significance at the 
5% critical level which is 35.173 in the case of the Q-statistic and 3.842 in the case of the ARCH statistic. 



Table 5.3 GARCH(1,1) Parameter Estimates and Residual Diagnostics 

A in x1 = b0 + 1bA in X1... + e, e1111_1 N(0,h1), l = w0 + aie?_i +18ik_i 

Series Wo 1i Q-statistic ARCH Excess Kurtosis Skewness 

Australian Dollar .061 (0.7) .011 (0.9) .956 (17.4) 14.158 .170 4.893 (.268) -1.355 (.134) 

British Pound .150 (2.9) .123 (4.6) .831 (23.7) 18.468 1.246 2.566 (.158) -.320 (.079) 

Canadian Dollar .093 (3.3) .161 (3.8) .615 (6.6) 24.021 .197 3.925 (.167) -.754 (.084) 

Crude Oil .231(l.6) .226 (4.3) .802 (20.6) 27.489 .269 3.392 (213) -.584 (.107) 

Copper .499 (3.2) .093 (4.3) .877 (33.7) 20.678 2.734 1.110 (.123) .107 (.081) 

Deutschemark .164 (3.4) .153 (5.2) .793 (21.8) 22.672 .116 .981 (.158) .167 (.079) 

Gold .238 (3.3) .198 (6.4) .790 (28.2) 33.096 .093 1.693 (.158) -.166 (.079) 

Heating Oil 1.189 (4.0) .312 (6.3) .666 (16.4) 21.332 .623 2.369 (.181) -.305 (.091) 

Unleaded Gas 2.580 (3.0) .213 (4.0) .700 (11.2) 30.283 .164 1.427 (.233) -.212 (.177) 

Japanese Yen .048 (3.5) .025 (2.9) .957 (86.9) 27.474 .310 3.492 (.166) .631 (.083) 

Platinum .423 (3.0) .095 (5.4) .881 (44.6) 25.816 .477 1.456 (.149) .161 (.045) 

Swiss Franc .025(l.8) .070 (5.0) .927 (67.0) 24.549 .598 1.083 (158) .391 (.079) 

Silver .379 (3.4) .121 (6.2) .865 (45.5) 27.012 .032 1.618 (.145) .188 (.023) 

Note: Numbers in parentheses next to the GARCH(1, 1) parameter estimates are t-ratios and next to excess kurtosis and skewness 
values are standard errors. The Q-statistic is distributed as X2(23) on the null of no autocorrelation and the ARCH test is distributed 

as 2(1) on the null of a stationary variance. An asterisk next to a test statistic indicates significance at the 5% critical level which 
is 35.173 in the case of the Q-statistic and 3.842 in the case of the ARCH statistic. 



Table 5.4 BDS Results for AR Residuals and GARCH(1,1) Standardized Residuals for Weekly Futures Prices 

(Dimensions 2 Through 5 and e Equaling 0.5, 1, 1.5, and 2 Standard Deviations) 

B. GARCH AR, GARCH AR GARCH AR, GARCH 

Australian Dollar 

2 0.216 -0.179 0.318 -0.194 0.444 -0.582 0.808 -0.910 

3 0.332 -0.174 0.042 -0.452 0.183 -0.626 0.678 -0.422 

4 0.709 0.089 0.074 -0.344 0.041 -0.726 0.542 -0.384 

5 1.054 0.323 0.158 -0.202 -0.011 -0.706 0.393 -0.410 

British Pound 

2 *4.124 0.132 *3625 -0.574 *3.762 -0.536 *4.301 0.009 

3 *6613 0.888 *5.284 -0.534 *4.972 -0.966 *5.371 -0.565 

4 *9.824 *2.222 *6.607 -0.308 *5.989 -0.832 *6.022 -0.681 

5 *13.879 *3739 *7.971 0.131 *6.894 -0.472 *6.641 -0.447 

Canadian Dollar 

2 *5260 1.248 *5.261 1.393 *4.929 0.879 *4.040 0.170 

3 *6.669 1.449 *6319 1.274 *5.583 0.596 *4315 -0.135 

4 *9.628 *2.596 *7.650 1.678 *6.173 0.784 *4659 0.134 

5 *11.853 *3.046 *8.756 1.911 *6.476 0.711 *4.702 -0.042 



Table 5.4 (cont'd) 

= 0.5 

m 

2 *7.565 -0.001 *9503 

3 *10265 0.465 *11066 

4 *12450 0.295 *11900 

5 *16005 0.787 *13370 

2 *3675 *4663 *3962 

3 *5820 -1.515 *6.267 

4 *7560 -1.035 *7979 

5 *9356 -1.071 *9070 

2 *6.293 1.145 *5802 

3 *8.499 1.190 *7465 

4 *12309 2.390 *9530 

5 *15385 *3055 *11033 

AR GARCH AR GARCH  

Crude Oil 

-0.567 

-0.568 

-0.860 

-0.648 

Copper 

*-2.070 

*-2.146 

*4857 

*4845 

Deutschemark 

0.687 

0.515 

1.263 

1.432 

AR GARCH 

*10099 

*11.139 

*11799 

*12859 

*4215 

*6534 

*8217 

*9200 

*6214 

*7871 

*9031 

*9940 

-1.081 

-1.169 

*4449 

*-1.263 

*...2037 

*..2156 

*4974 

*..2001 

0.504 

0.399 

0.952 

1.146 

iB: GARCH 

*7679 

*8680 

*9482 

*10635 

*4.119 

*6188 

*7592 

*8637 

*6175 

*7984 

*8783 

.*9408 

-1.050 

*4420 

*4596 

*4464 

*4636 

*4766 

*4699 

*4753 

0.242 

0.032 

0.423 

0.701 



Table 5.4 (cont'd) 

fl3. AR GARCH AR 

2 *8290 -0.198 *8.894 

3 *10383 -0.299 *10251 

4 *13.403 0.652 *12177 

5 *16.590 0.991 *13.858 

2 *9301 0.816 *9554 

3 *11431 1.224 *11417 

4 *13478 1.205 *12694 

5 *16185 0.552 *14089 

2 *4086 -0.411 *5023 

3 *5195 0.187 *6257 

4 *5627 0.094 *6630 

5 *6673 0.186 *7302 

GARCH  

Gold 

-0.236 

-0.281 

0.439 

0.718 

Heating Oil  

0.156 

0.425 

0.355 

-0.009 

Unleaded Gas 

-0.441 

-0.272 

-0.662 

-0.794 

AR GARCH 

*8327 

*9491 

* 10.837 

*11673 

*10098 

*11892 

* 12.988 

*13859 

*4978 

*6347 

*6653 

*7094 

-0.234 

-0.486 

0.176 

0.378 

-0.253 

-0.017 

0.006 

-0.168 

-0.473 

-0.359 

-0.691 

-0.823 

AR, GARCH 

*6244 

*7619 

*9049 

*9594 

*9803 

*11.162 

*11968 

*12548 

*4323 

*5457 

*5704 

*6007 

-0.147 

-0.325 

0.027 

0.077 

-0.523 

0.003 

0.244 

0.262 

-0.640 

-0.676 

-1.072 

*4241 



Table 5.4 (cont'd) 

8=1.5 

AR GARCH AR GARCH AR GARCH AR GARCH 

Japanese Yen  

2 *3.914 *2.234 *3254 1.577 *2.615 0.849 *2.158 0.687 

3 *6.471 *3.336 *4733 *2.141 *3.852 1.332 *3.179 1.007 

4 *7147 *3433 *5735 *2.474 *4.634 1.685 *3.748 1.217 

5 *8268 *3.942 *6.678 *2879 *5295 2.141 *4.238 1.606 

Platinum  

2 *7•57Ø 1.312 *8681 1.244 *9496 1.115 *9.486 0.648 

3 *9.137 1.755 *9.877 1.475 *10508 1.421 *10584 0.989 

4 *10.860 2.139 *10.707 1.655 *11.295 1.423 *11.517 1.180 

5 *12.107 1.506 *11.373 1.389 *11.541 1.148 *11.622 0.996 

Swiss Franc  

2 *4057 0.178 *4.571 0.781 *4.769 1.085 *5.048 1.630 

3 *5.742 0.397 *6.385 1.014 *6.453 1.136 *6.418 1.350 

4 *7.883 0.870 *8.194 1.566 *8029 1.720 *7.700 1.766 

5 *10623 1.260 *9773 1.831 *8.901 1.902 *8.327 1.844 



Table 5.4 (cont'd) 

8=2 

M AR GARCH AR GARCH AR GARCH AR GARCH 

Silver 

2 *10867 1.384 *11039 1.445 *11188 1.252 *11196 0.667 

3 *13578 1.101 *13354 1.083 *13176 0.876 *13068 0.582 

4 *16791 1332 *15535 1.354 *14697 1.205 *14162 0.913 

5 *o4fl 1.246 *17595 1.026 *15748 0.941 *14740 0.909 

Note: An asterisk indicates significance at the 5% critical level. The standard normal critical values were used in the case of the AR 

residuals and Hsieh's (199 1) table Xffl of simulated BDS critical values was used in the case of the GARCH standardized residuals. 



Table 5.4 (cont'd) 

5% Critical Values for the BDS Test 

m s=O.5 8=1 s=1.5 E=2 N(O,1) 

2.5% critical point  

2 -161 -1.52 -1.52 -1.49 -1.96 

3 -1.65 -1.29 -1.29 -1.29 -1.96 

4 -1.63 -1.17 -1.17 -1.12 -1.96 

5 -1.94 -1.11 -1.00 -0.99 -1.96 

97.5% critical point 

2 2.11 1.96 1.85 1.88 1.96 

3 2.34 2.14 2.01 2.00 1.96 

4 2.49 2.25 2.17 2.14 1.96 

5 2.90 2.40 2.28 2.22 1.96 



Table 5.5 Dominant Lyapunov Exponent Point Estimates for the GARCH(1,1) Standardized Residuals of Weekly Futures Prices 

Dominant Lyapunov Exponent Point Estimate Value of Minimized BIC  

Series # Obs. First 500 Last 500 All Obs. First 500 Last 500 All Obs.  

Australian Dollar 330 0.043 (3,7,2) 1.3717 

British Pound 955 -0.484 (1,4,2) -0.003 (3,7,2) 1.428 1.421 

Canadian dollar 854 -0.114(2,5,2) -0.014(1,10,2) 1.4118 1.3975 

Crude Oil 530 -0.319 (1,6,2) 1.4166 

Copper 905 0.057 (2,10,2) -3.939(1,1,1) 1.4355 1.4412 

Deutschemark 955 -5.519 (1,1,1) -0.941 (3,2,1) 1.4397 1.4372 

Gold 961 -0.019 (3,7,2) -1.301 (3,2,1) 1.4377 1.4376 

Heating Oil 734 -0.025 (3,7,2) -0.124 (2,6,2) 1.4366 1.4312 

Unleaded Gas 439 -4.952 (1,1,1) 1.4432 

Japanese Yen 865 0.019 (3,9,2) 0.023 (3,8,2) 1.4099 1.4095 

Platinum 1072 -3.485 (1,1,1) -0.680 (2,3,1) 1.4382 1.4407 

Swiss Franc 955 -0.22 (3,5,1) -1.096(2,2,1) 1.4323 1.4375 

Silver 1140 -10.767(2,1,1) -0.416(3,4,1) 1.4258 1.4276 

Note: In parentheses beside each dominant Lyapunov exponent is the best fit parameter triple (L,m,k) chosen by minimizing the 
BIC information criterion over all triples [L from 1 to 3, m from 1 to 10, and k from ito 3], where L is the time delay parameter, 
m is the dimension of the embedding, and k is the number of parameter units in the nonlinear regression. 
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Figure 5.1 Estimated Largest Lyapunov Exponent for Each Triple (L,m,k) for the Australian 
Dollar, All Observations 
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Figure 5.2.A Estimated Largest Lyapunov Exponent for Each Triple (L,m,k) for the British 
Pound, First 500 Observations 
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Figure 5.2.B Estimated Largest Lyapunov Exponent for Each Triple (L,m,k) for the British 
Pound, Last 500 Observations 
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Figure 5.3.A Estimated Largest Lyapunov Exponent for Each Triple (L,m,k) for the Canadian 
Dollar, First 500 Observations 
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Figure 5.3.B Estimated Largest Lyapunov Exponent for Each Triple (L,m,k) for the Canadian 
Dollar, Last 500 Observations 
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Figure 5.4 Estimated Largest Lyapunov Exponent for Each Triple (L,m,k) for Crude Oil, All 
Observations 
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Figure 5.5.A Estimated Largest Lyapunov Exponent for Each Triple (L,m,k) for Copper, First 
500 Observations 
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Figure 5.S.B Estimated Largest Lyapunov Exponent for Each Triple (L,m,k) for Copper, Last 
500 Observations 

1.54 

1.52 

1.5 

1.48 

1.46 

1.44 

1.42 

0 

23 

-4 

m 

("cn 
mm 

-4 

0 

-o 

0 

m 

(m,k) for each L 

-4 

N N N0000 

'- S 

m 
00 1-1 0 1-1 

' - S S 

cm 
C\C\ 

'-S 

'-4 Nm 

0 BIC,L=1 0 BIC,L=2 6 BIC,L=3 - - 0- - LB,L=1 - - 0 - LB,L=2 - - - LB,L=3 

-2 

-3 

-5 

-6 

L
y
a
p
u
n
o
v
 E
xp
on
en
t(
LE
) 



Figure 56.A Estimated Largest Lyapunov Exponent for Each Triple (L,m,k) for the 
Deutschemark, First 500 Observations 
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Figure 5.6.B Estimated Largest Lyapunov Exponent for Each Triple (L,m,k) for the 
Deutschemark, Last 500 Observations 
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Figure 5.7.A Estimated Largest Lyapunov Exponent for Each Triple (L,m,k) for Gold, First 500 
Observations 
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Figure 5.7.B Estimated Largest Lyapunov Exponent for Each Triple (L,m,k) for Gold, Last 500 
Observations 
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Figure 5.8.A Estimated Largest Lyapunov Exponent for Each Triple (L,m,k) for Heating Oil, 
First 500 Observations 
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Figure 5.8.B Estimated Largest Lyapunov Exponent for Each Triple (L,m,k) for Heating Oil, 
Last 500 Observations 
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Figure 5.9 Estimated Largest Lyapunov Exponent for Each Triple (L,m,k) for Unleaded Gas, All 
Observations - 
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Figure 5.10.A Estimated Largest Lyapunov Exponent for Each Triple (L,m,k) for the Japanese 
Yen, First 500 Observations 
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Figure 5.10.B Estimated Largest Lyapunov Exponent for Each Triple (L,m,k) for the Japanese 
Yen, Last 500 Observations 
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Figure 5.11.A Estimated Largest Lyapunov Exponent for Each Triple (L,m,k) for Platinum, 
First 500 Observations 
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Figure 5.11.B Estimated Largest Lyapunov Exponent for Each Triple (L,m,k) for Platinum, 
Last 500 Observations 
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Figure 5.12.A Estimated Largest Lyapunov Exponent for Each Triple (L,m,k) for the Swiss 
Franc, First 500 Observations 
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Figure 5.12.B Estimated Largest Lyapunov Exponent for Each Triple (L,m,k) for the Swiss 
Franc, Last 500 Observations 
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Figure 5.13.A Estimated Largest Lyapunov Exponent for Each Triple (L,m,k) for Silver, First 
500 Observations 

1.54 

1.51 

1.48 

1.45 

1.42 

—4 

cn 

(m,k) for each L 

—4 

N N N0000 
cn 
00 

—4 

O\C\ 

0 

-3 

-6 

- -12 

0 BIC,L=1  0 BIC,L=2 6 BIC,L=3 - - 13 - - LB,L=1 - - 0 - LE,L=2 - - - - LB,L=3 

L
y
a
p
u
n
o
v
 E
xp
on
en
t(
LE
) 



Figure 5.13.13 Estimated Largest Lyapunov Exponent for Each Triple (L,m,k) for Silver, Last 
500 Observations 
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Chapter 6 

CONCLUSION 

This thesis has presented some general concepts from the study of chaotic 

dynamics and has shown that they are applicable, both theoretically and empirically, to the 

interpretation of asset price changes. Chapter 2 began by outlining the traditional models 

that best explain asset price behavior. The fair game model shows that the average return 

of an asset is equal to its expected return. When this model is supplemented with the 

submartingale approach, prices are expected to increase at a rate equal to the opportunity 

cost of the underlying asset. The main characteristic of submartingale theory is that price 

changes, beyond opportunity costs, are serially uncorrelated and appear random. 

Another explanation of random looking price changes has come from the study of 

nonlinear dynamics. In particular, using nonlinear chaotic dynamics we can show how 

simple nonlinear difference equations can yield deterministic time paths that mimic the 

output of stochastic systems. A precise definition of chaos was given, then a specific 

example, the logistic equation, was used to show how chaotic dynamics can be generated. 

Loosely speaking, a chaotic function is one which maps some interval back into itself and 

generates an aperiodic time path that has sensitive dependence on initial conditions. 

If chaotic structure can be shown to exist in actual asset market time series then 

the traditional explanations of market behavior will be called into question. For this to 

happen we need good tests of nonlinearity and of chaos. Using the technique of phase 

space embedding [Takens (198 1)] we can rebuild the underlying attractor [if it exists] of 

the actual driving mechanism and test it for various qualities. Using this knowledge we 

can find the BDS statistic which provides a diagnostic test for the presence of nonlinear 

structure. However, nonlinearity is a necessary but not a sufficient condition of chaos so 

we need to go further and test for sensitive dependence on initial conditions. Positivity of 

the dominant Lyapunov exponent is used as a measure of sensitive dependence. Chapter 3 
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describes the derivation of both the BDS statistic and the dominant Lyapunov exponent 

estimate. When applying these empirical tests on actual time series, data quality is 

extremely important. In order for chaos to be found, the data has to be at least chaotic 

looking, with all the known dependencies filtered out. Chapter 4 explores these problems 

and analyzes the data chosen for this study. 

In Chapter 5 various data filtering techniques are outlined. The augmented 

Dickey-Fuller test is used to check for stationarity. Then the Q-statistic and the ARCH 

test is used to check for serial correlation and for conditional heteroscedasticity, 

respectively. Logged differences are then fit to a GARCH [general autoregressive 

conditional heteroscedasticity] model which adjusts both serial correlation and conditional 

heteroscedasticity, again based on the Q-statistic and the ARCH test. Traditionally, 

researchers would stop here and assume that the remaining fluctuations are stochastic. 

However, for this study, we go further and test the residual fluctuations for hidden 

nonlinear dependencies. Results include evidence of nonlinearity in the British pound, the 

Canadian dollar, crude oil, copper, and the Japanese yen, based on the BDS test. 

Evidence of chaos was found in the Australian dollar, copper, and the Japanese yen, based 

on the Nychka et at. dominant Lyapunov exponent estimator. Contradictory evidence in 

the case of the Australian dollar indicates limited robustness across inference methods. 

The true source of price changes may be some combination of both random and chaotic 

elements. However, the amount of noise present has a strong negative impact on the 

results of nonlinear testing. 

The presence of chaotic nonlinearities implies the existence of deterministic trading 

rules. However, the ability to take advantage of these rules depends on both the 

approximation of initial conditions, which are obscured by noise, and the degree of 

sensitive dependence on initial conditions. 
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Chaos theory applied to economics is still at the conception stage. Current 

research is primarily focused on whether chaos exists at all in economic data. Many 

studies have found evidence of nonlinearities and very recent studies have found evidence 

of chaotic nonlinearities. Many questions remain to be addressed, both theoretical and 

empirical. 

Theoretical considerations suggest two directions of future research. One is to 

build financial models that encompass nonlinear chaotic solutions. The other direction is 

to analyze the dynamics when agents take advantage of short term deterministic trading 

rules. This is a case where the solution becomes exogenous to the system. As computer 

hardware and software improve we will be able to identify more precisely the nature of the 

nonlinearities. Empirical considerations would question the source of the nonlinearities 

and identify both the structure and the prediction horizon. 
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