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Abstract

Financial market price fluctuations have been explained, both theoretically and
empirically, as the consequence of stochastic processes. However, there exists simple
nonlinear deterministic [chaotic] systems that are also capable of generating random
looking output and can fool many tests of whiteness.

Chaotic and stochastic systems are fundamentally different and require different
methods of analysis. Here, two state-of-the-art tests of nonlinearity and of chaotic
dynamics are applied to thirteen various commodity and currency spot-month futures
series. Results indicate evidence of nonlinearity in five series and of chaos in three. This

is consistent with an underlying chaotic process generating price changes.
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Chapter 1
INTRODUCTION

Until recently all analyses of financial market price changes have assumed that
observed fluctuations are dominated by stochastic processes. Some influences are known,
such as economic growth paths or time to maturity of futures contracts, but once these
effects are removed the remaining fluctuations appear random and have been explained
using linear stochastic methods. There has been, however, a growing interest in a new
field of study which may offer an alternative explanation for this apparently random price
behavior. It may be the case that the noise in asset markets is the deterministic result from
inherent nonlinearities.

In asset markets, prices change to bring supply and demand into equilibrium. This
implies some feedback mechanism which returns prices back to equilibrium after
circumstances change. When corrections are linear, feedback is simply proportional to the
amount that prices are out of equilibrium. In this case market fluctuations would be
stochastic since linear processes cannot generate random looking output. There is,
however, no theoretical reason why corrections of this nature must be linear. Financial |
markets are composed of individual buyers and sellers, each with individual motivations
and reactions. It is merely a simplification that we assume the aggregate response from all
market participants is a linear function. Once nonlinear correction is introduced it is
possible to explain market fluctuations in a deterministic structure. In particular, chaos
theory shows how simple deterministic nonlinear difference equations can generate time
paths with incredibly complex but random looking behavior. Hence, an alternative

explanation for the nature of asset markets.
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Two attributes of chaotic time paths are random looking but bounded fluctuations
and sensitive dependence on initial conditions. A time path generated under a chaotic
system will never return to the same value but nevertheless remain dispersed in a bounded
region. Upon visual inspection it is easy to see how one could conclude that stochastic
unforecastable shocks are present. Sensitive dependence on initial conditions refers to the
case where two time paths that begin infinitely close diverge from each other rather than
converge, yet both are guided by the same system. For this reason long term forecasting
is impossible but perhaps short term trading rules exist -- depending on the speed of
divergence. |

Chaos was first discovered in 1892 by the French mathematician Henri Poincaré
(1892) while studying the dynamics of three celestial bodies with mutual gravitational
attractions -- e.g., 2 planets and a star. He was able to show that complicated orbits were
possible from various initial pointsl. Other early pioneering attempts were made but the
concepts were not appreciated in other fields for two reasons: early mathematical papers
were difficult to read by researchers from other sciences and the proofs were not strong
enough to be considered applicable to other sciences. It was not until the early 1960's
when the meteorologist Edward Lorenz (1963) "rediscovered" chaos that interest was
generated in fields other than mathematics. He was developing weather forecasting
models when he noticed that small changes in initial conditions lead to large changes in
solution values. Interest was still slow at first but gained momentum. Over the past
fifteen years, though, prolif;aration has increased throughout the entire spectrum of the
sciences at an amazing rate. It has been argued [Rasband (1990)] that chaos theory is the
most broad based revolution, in the world view of science, in the twentieth century. This
growth has been lubricated by the increasing availability of high powered computers.
Researchers in all fields can now find chaotic solutions to problems of great practical
importance -- such as stimulating heart cells [Glass et al. (1983)], or designing nonlinear

optical devices [Hopf et al. (1982)]. Interest in economics and finance is quite natural,



the chance to explain random looking market fluctuations using deterministic methods
cannot be overlooked.

Some key contributions were necessary before empirical work could be conducted.
In 1981 Floris Takens discovered that the attractor from the underlying n-dimensional
system with one observable could be reconstructed using only the observable. Then in
1982 Grassberger and Procaccia used this to find dimension estimates of the underlying
unknown system. Detecting existence of an underlying system, however, did not become
a statistic until 1987 when Brock, Dechert, and Scheinkman devised the BDS statistic
which tests the null of whiteness. The BDS statistic can be used to test for residual
nonlinear structure after any linear structure has been filtered out. Nonlinearity is
consistent with chaotic behavior but it is not a necessary condition so further testing is
required |

Lyapunov exponents are used to measure exponential diversion (positive
Lyapunov exponent) or conversion (negative Lyapunov exponent) of two time paths with
similar initial positions. In 1985 Wolf, Swift, Swinney, and Vastano devised an algorithm
that estimates Lyapunov exponents directly from the data. However, Brock and Sayers
(1988) found the results from this algorithm disappointing when applied to economic data.
They claimed that Lyapunov exponents could not be defined using the Wolf et al. (1985)
algorithm when stochastic noise is present. All the tests designed thus far, except for the
BDS statistic, were intended for use on experimental data. Special problems had to be
addressed when testing economic data. In particular, economic time series are not
generated by purely deterministic systems and are shorter than those required to make
suitable estimates. An empirical survey conducted by Ramsey, Sayers, and Rothman
(1990) showed that no legitimate claims of chaos had yet been found, based on the weak

inference methods of the day.
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The year 1992 marked the emergence of a new generation of Lyapunov exponent

estimators. These are nonparametric nonlinear least squares estimators built into a neural
net environment. Unlike the Wolf et al. (1985) algorithm the regression method
accommodates noise and the results refer to the noisy system, rather than the hypothetical
underlying system that the direct method tries to estimate. Two versions are available: the
Nychka, Ellner, Gallant, and McCaffrey (1992) algorithm and the Gencay and Dechert
(1992) algorithm. However, the most versatile of these is that of Nychka et al. (1992).
According to Barnett et al (1993), the Nychka et al (1992) approach is the only credible
candidate for testing chaos. Other than this study, the only other research -- known to this
author -- which used the Nychka et al (1992) Lyapunov exponent estimator on economic
data was that of Barnett et al. (1993). In that study successful detection of chaos was
claimed for the CE index M4 monetary aggregate.

:Here, thirteen various commodity and currency spot-month futures series are
considered. They include the Australian dollar, the British pound, the Canadian dollar,
crude oil, copper, the Deutschemark, gold, heating oil, unleaded gas, the Japanese yen,
platinum, the Swiss franc, and silver. The two methods of inference used to test for
nonlineariaties and chaos are the BDS test and the Nychka et al (1992) algorithm. Results
indicate successful detection of chaos in the Australian dollar, copper, and the Japanese
yen. |

This thesis begins on the theoretical side where both stochastic and chaotic
theories are discussed. Chapter 2 starts with an outline of the stochastic models which
best describe futures markets. Then chaos is defined as it applies to economics and a
specific example is given to show how chaotic dynamics can be achieved. Next, I traverse
into the empirical side where both the BDS statistic and the regression type Lyapunov
exponent estimates are described. The data and special problems regarding financial data
are discussed in chapter 4. Finally, in chapter 5, prefiltering and empirical investigation of

the chosen financial time series is addressed.



Chapter 2
FAIR GAMES. SUBMARTINGALES. AND CHAOS

2.1 Introduction

Until recently empirical evidence has confirmed the notion that asset price
movements follow a linear but stochastic process. There is, however, no theoretical
reason why market behavior is inherently linear. Previous results have shown that market
prices are independently distributed in a linear structure but have not shown nonlinear
independence. Some nonlinear models have the ability to generate similar random looking
behavior which is not detectable by traditional linear methods. Thus, offering an
alternative explanation to random looking price changes.

The next section explains the stochastic models most representative of futures
behavior. First the fair game model is described which leads to the submartingale model.
The submartingale model closely represents futures behavior since it allows for prices to
increase over time and for time varying volatility. In section 2.3 a precise description of
chaotic behavior is given. Analysis proceeds "in general”, using vector notation. Then in
section 2.4 a particular univariate model is used to show a method how chaos can be
achieved. The next section, 2.5, gives a diagrammatical representation of the events

described in section 2.4.

2.2 Fair Games and Submartingales

Futures contracts are financial instruments pertaining to the sale of some asset,
where the price is agreed on today but actual delivery takes place at some future period.
This implies a forecast of the future price of the good in question. One determinant of
today's price of a future contract price is the expectation of how the price of the

underlying asset will change.



Markets are efficient in the sense that based on today's expectations given all
known relevant information, Q, [where Q, includes all information €;_;, j= 0], it is not
possible to make abnormal profits. This refers to returns made in excess of that amount
necessary to cover all opportunity costs [which include information retrieval costs, transfer
costs, etc.].

Since buying decisions are made in terms of expected returns, the actual abnormal

profit or loss next period is

M,y =R —E, (Rt+1th)

where
Rt+1=x't+1x %
t
and
Elx.11Q,)—x
Et(Rt+1IQt)— t( t+1| t) t

are the actual and expected rates of return given prices ¥, X4, and information set

Q, . The expected abnormal profit or loss next period would be

Et(HtHIQt) = Et[(Rt+1 - Et(Rt+1|Qt))|gt]
=E, (RH'-IIQ‘I )"Et (Rz+1|91)
=0
Hence, knowing all relevant information today does not lead to abnormal profit. In terms

of probabilities [assuming the distribution is symmetric about the mean]
P(I1,,; > 0)=P(IL,,; <0)=0.5

which means that IT,.; is a fair game with respect to the information set Q,. Thisis

known as the fair game model where the average return of an asset is equal to its

expected return,



A submartingale is a fair game where prices are expected to increase at a rate
equal to the opportunity cost of the asset.
E, (xt+1th ) > X
- Notice that the fair game model in terms of returns still gives
E, (Ht+1|91) =0
The submartingale model, which has grown in popularity since Mandelbrot (1966) or
Samuelson (1965), only requires independence of successive price changes which allows
for changes in volatility of futures prices.
One implication of the submartingale theory is that price changes, beyond
opportunity costs, are serially uncorrelated and appear random. Since price changes

respond to new information which arrives randomly, future price changes will move in an

unpredictable manner.
2.3  Chaos

Economists have, until recently, had little success explaining the random looking
but bounded fluctuations of economic time series using deterministic methods. Only four
types of nonlinear dynamical behavior were considered, monotonic convergent, monotonic
divergent, periodic convergent, and periodic divergent. Each would converge to or
diverge from some point or limit cycle so could not represent economic fluctuations.
Physical scientists, however, have recently revived interest in nonlinear dynamics and in
particular chaos theory.

Before the precise meaning of chaos can be given, as it applies to economics, a few

preliminary definitions are necessary.



Definition:
F* (X,) is the k™ iteration of the C* system [differentiable once]
F(x,):I"—>r", I'cR",
for all X e I"" and all integers k and [, if
1y F&(x,)=F(F(..-F(X,)-)), k times.
2) F(X,)=X,
3) FHF'(x,))=F*"(x,)

where I is an n-dimensional subset of R".

Using this method we can choose any system F and any initial point X, el and
follow the discrete iterative process generated by F. Notice that the initial point X, is

drawn from the continuous interval I but the iterations F k (XO) are discrete.

Definition:

When an initial state X is given then the flow

{F(x,)}

is the trajectory of X, under the function F.

o0

k=0

0

_ The iterative process generated by F follows a time path or sequence {Fk (X, )}k—O

which is known as the trajectory of the initial point X driven by the system F.

Definition:
" X, is a periodic (fixed) point of F with period k if F*(X,)=X,. The point X, is

then known as a period k point or alternately a k period point

Here, the iterative process of F k(X,) always returns back to the point X, after £

iterations. Since all points between X, and F k(X,) are also period  points the resulting

sequence is known as a period k cycle or alternately a k period cycle.



Definition:
If X, is a periodic point of F then X, is asymptotically stable if there exists some

neighborhood U of X, such that for all X, €U

lim Fkl(Xo):Xt
[—00

The limit of the trajectory [as [ goes to infinity] of any initial point X in the

interval I is some & period cycle.

Definition:
The set of all initial states whose trajectory asymptotically approaches the stable

periodic point X, is known as the basin of attraction of X,. This means that there is some

subset of I whose trajectory under the system F converges to the stable k-period cycle.

Definition:
The set I is positive invariant with respect to the trajectory {Fk (X, )}k—O if for
each Xy el, F* (XO) e 1 for all k. When this holds for k € (—oo,00) the trajectory is

invariant.

This condition gives the values generated by the trajectory of X, both an upper

limit and a lower limit.

Definition:

If the limit llim FH (XO) does not exist for any k or any X; € I, but the trajectory
—300 '

o
{F" (X, )} 0 is positive invariant in I then X, is aperiodic.
n=
The function F generates some trajectory of X that never converges to a periodic

cycle but stays within an upper and a lower bound. In this case the trajectory appears

random even though it is generated by a deterministic system.
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Definition:

The set I' is dense in I'if I' < I and for any Xy e I', X, eI, and £ > 0 there
exists k such that le(XO) - X,l <E.

In other words I' is dense in I if for any point, X, originating in I we can find a
sequence of points that start at X, and converge to X,. When denseness is applied to
periodic points in I under the function F, structure is implied for the sequence {F k (x, )},
and values in the range of F encompass all the mﬁnite points of I. For any element, X,,in
the range of F, one can retrace the deterministic sequence of points which converge to it.
Comparing this to a stochastic sequence, we find that random points are identified by their
probability of occurrence in some distribution, not by their place in a deterministic

sequence.

Definition:
F is topologically transitive if for any pair of sets I 1 I? < I there exists x>0 such
that FE(I)N 12 2 2.
_'This means that, as & increases, the function F k (X,) will take on infinitely many
values within the set I. Over time, the value of F (X,) can move from any point in I to any
other point in I. This condition is required to ensure that the function F maps I back into

itself, without decomposing into positive invariant subsets of I. Essentially, it is the same

as the ergotic character of economic time series.
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Definition:
F:1I — I has sensitive dependence on initial conditions if for all arbitrarily close

initial points X(l),Xg eI where IX(I) —Xg i = ¢ there exists & > ¢ and k>0 such that
|F(x})-F(x3)| 2.
Given two initial points that are arbitrarily close to each other, their respective
trajectories under the map F will diverge at some rate characteristic of F until, for all

practical purposes, they are uncorrelated. Since initial conditions are not known exactly,

serious doubts are introduced as to the accuracy of long term forecasting.

Definition: [Devaney (1989)]
The set I is a strange (chaotic) attractor under F: I — I if
1) periodic points are dense in I,
2) F is topologically transitive, and
3) F has sensitive dependence on initial conditions.

This is the definition of chaos -- in a conservative system since I - I. A
deterministic function F that maps the set I back into itself and results in an aperiodic but
bounded trajectory with sensitive dependence on initial conditions. The set I is known as
a strange [chaotic] attractor and the function F is known as chaotic.

Economic models that incorporate either stable aperiodic or chaotic motion do
closely replicate actual economic data, but without a stochastic component. Since the first
two conditions of chaos are not empirically verifiable given economic time series we have
to identify chaos by searching for its sensitive dependence on initial conditions property -- |

following Ruelle (1989).
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2.4 Route to Cha

Consider the system
X, =F(A,X,), F:RPxI">I", I"cR"
where A is a p-dimensional parameter set, X, is an n-dimensional set of variables, and
changes in A lead to changes in the periodicity of the function F. Here, A is known as a
set of tuning parameters.

To make the following ideas.clear, it would be easier to use a specific form of F
and use it to walk through this particular route to chaos. I will use the one dimensional
logistic map

%y =Ha,x,) = ax,(1-x,), $(0,4)x(0,1) = (0,1)
which has one variable x and one tuning parameter a. Since the maximum of the function
 is a/4, O<a<4 is required to ensure that x is mapped from (0,1) back into (0,1).

To find the periodic points of this system, ¥, is equated with x,. Period one

[k=1] gives
X = axy (1-x, )
where the two roots are 1—1/a and 0.

Once the periodic points are found, they can be tested for stability. Discrete one

dimensional systems are stable if

D)Ck(xt) <1

and unstable if

D (x, ) > 1.

In this particular case
lDfl(xt)| = |a —2xt|
At the period one point, x;=0, the system is stable for all values a € (0,1), and at
x, =1—1/a the system is stable for all values a € (1,3). This means that in state space [the

state of x at time ¢ or, alternately, variable x plotted against time] the trajectory will
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converge to 0 for all values a € (0,1) and will converge to some unique point in 7 for all
values a € (1,3). In either case the trajectory is monotonic.

Now consider the second iteration of the logistic equation
? (xt) = 0% (1—_xt+1)
where the periodic points are
X = $ (xz )
where the four roots are 0, 1—1/a, and (a+1im ) / 2a. The first two share

the same stability properties as the period one points but the latter two are stable in the
interval

a € (3,3.4495)
As a increases past three the trajectory bifurcates from being monotonic to a stable two
period cycle. If this analysis is continued to 4(x,) we will find that as the value of a
passes through 3.4495, the two period cycle bifurcates into a 4 period cycle.

Increasing the tuning parameter @ from 0 up, leads to a stable periodic point

doubling effect on the trajectory {fk (xo )}k—o that follows Sarkovskii's ordering:

1<2<22<23<2% <.,
<2b.9<2l7 <2hs <2t3<..
<22.9<22.7<22.5<2% 3<..
<2:9<2-7<2:5<2-3<...
<9<7<5<3
for all [, where“ a < b indicates a precedes b. In reverse order, this is all the odds,
increasing in value, except 1, then 2 times the odds, then 22 times the odds, and continues
until all the natural numbers are used up except for 1 and the powers of 2, which are listed
in a decreasing sequence. Figure 2.1 shows all possible bifurcations as the parameter a is

tuned between 2.7 and 4.
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The range over which a is stable between critical bifurcation values decreases as a
increases until the 2°° cycle, which materializes [for the logistic map] at approximately
3.5699. Feigenbaum (1978) showed that convergence to 2°°is a universal feature of
unimodal maps and that the interval over which a cycle remains stable converges at the
geometric rate of
fim (fli——"i"—lj = 4.6692

P\ dpy1—dp

where a,, is some critical bifurcation value of a

Sarkovskii's theorem (1980) states that if {: I — I is a continuous mapping with a
period k trajectory and [ < k in Sarkovskii's ordering, then f also has a trajectory of
period . This theorem has consequences for economic modeling, since higher periodic
points imply the existence of lower ones then if no 2 period cycle can be found in some
dynamic model, then there are no other periodic points. Alternately, if a period three cycle
can be detected then cycles exist of every possible periodicity. |

The celebrated Li and Yorke (1975) result which states that period 3 implies chaos
refers to the infinite cycles within Sarkovskii's ordering. These cycles are aperiodic since
they never repeat themselves but they are not chaotic since they are stable and lack the
sensitive dependence of initial conditions property of chaos. For each periodic point
Xy = f* (x,) where k=1,2,...,5,3 there exists a basin of attraction from which trajectories

converge to x,. This means that points infinitely close to the period 2°° trajectory can be

found such that long term forecasting is feasible. This is an important note since many
economic models have been developed that claim chaotic behavior based on this result -
for a survey see Boldrin and Woodford (1990). For empirical purposes, an aperiodical

cycle does not necessarily imply the presence of sensitive dependence on initial conditions.
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Once g increases past the interval where 3 period cycles are generated all the
[natural] periodic points become unstable and the trajectory once again behaves in an
aperiodic manor. However, this time the trajectory f has sensitive dependence on initial
conditions and is chaotic.
Period doubling is a sufficient but not a necessary route to chaos. Yet, it lends
itself well to economic modeling. Simple models are tuned into a chaotic regime, giving

complicated but random looking fluctuations that fool many empirical tests.

2.5  Diagrammatical Representation
Another method used to illustrate the route to chaos is the following

diagrammatical approach. Consider the phase space graph where all values of x; are on
the horizontal axis and all values of x,,, are on the vertical axis. The two lines X, = %;
and $¥(x,) are plotted in this space, where x;,; = x, turns out to be a 45° line [since
X Xppp € I] and f* (x,) is the value of ¥ evaluated at each x, € I. Points where these
lines intersect are periodic points since at their intersection, fx (x,) =Xy = Xge

Now consider only x;, X, and §(x,), as represented in figure 2.2. Choose some
arbitrary x, on the x, axis. The first iterate is found at the height of the curve f(xt)
evaluated at xy. This value becomes x; on the vertical axis. To obtain the second iterate,
x; has to be transferred to the x, axis so the function Jc(x,) can be applied again. This is
done by moving x; horizontally to the 45° line where x,,; = x,. Directly below this axis

transfer point is where x; lies on the x, axis. The height of §(x,) at x; then becomes the

next iterate in the series {x, }:0. To find the behavior of the entire series this algorithm

can be repeated for all time, 7.
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Earlier it was stated that the periodic point, # (x,), is stable if |D fE (x, )| <land

unstable if lD f« (x, )| >1. This can easily be shown by using phase diagrams. Figure 2.3
shows a stable periodic point. The slope of )C(x,) , [D H(x, )], is greater than -1 and less

than 1 when it crosses the 45° line. Each time an iteration is transferred to the horizontal

axis the axis transfer point gets closer to the intersection of f(x,) and x,; = x,. I f(x,) is

unstable as in figure 2.4 then after each iteration the axis transfer point is moved farther

away from the intersection of {(x,) and x,,; = x,.
Figures 2.5 and 2.6 give phase and state space representations of the logistic map
at a=0.8 and x, = 0.5. Figure 2.5 has the relevant interval I on both the horizontal and

the vertical axis and Figure 2.6 has I on the vertical axis and time on the horizontal axis.

Notice that the only fixed point is at {(x,)=x, =0. However, since the interval I -- 0,1)

in this case - is open the 0 endpoint cannot be included as a possible initial point which

leads to chaos. The next two figures, 2.7 and 2.8, show what happens to f(xt) and (xt)
when the parameter a is increased to 2.6. There are now two fixed points, 0 is unstable
and point A is sgable. The slope, in absolute value, of both f(xt) and §2 (x,) as they pass
through x,,, = x, at point A is less than one. From Figure 2.8 we see that the trajectory
approaches some positive unique value between 0 and 1. Figures 2.9 and 2.10 picture the
results after a is increased to 3.3. Point A, in Figure 2.9, where (x, ), 2(x,), and

X,.; = X, intersect has become unstable for both §(x,) and 2(x,). However, points B and
D have become stable for > (x,) indicating a period 2 cycle. The asymptotically stable
cycle in this case is the box BCDE. In Figure 2.10 the upper and lower limits correspond

to points C and D of Figure 2.9, respectively. In Figures 2.11 and 2.12 the parameter @

has been increased to 3.52 giving a period 4 cycle. The line $ (x,) has become unstable at
all points of intersection with the 45° line , but following Sarkovskii's ordering, 4 (x,) has

become stable at points A, B, C, and D. A period 3 cycle is shown in Figures 2.13 and

2.14. Between the period one cycle and the period 3 cycle, all other possible period k
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cycles have had their cycles bifurcated into and out of stability. Beyond the period 3 cycle
the slope of §%(x,) becomes unstable, for all , at all points of intersection with the 45°

line. The trajectory {'_fk (x, )} becomes chaotic.

To demonstrate sensitive dependence on initial conditions of the chaos pictured in
figures 2.15 and 2.16, figure 2.17 has two overlapping trajectories, both with a=3.9, as

before, but one with initial condition x, = 0.5 and the other xy = 0.5001. Notice that the

trajectories overlap for the first 20 or so iterations, begin to diverge, and eventually
become incomparable. Long run forecasting is feasible only if the initial condition xg is
known with precise accuracy.

It is easy to see how one could conclude by linear testing that the system is linear
but disturbed by random shocks. However, such complex dynamics come from a very

simple yet very deterministic system.

2.6  Conclusion

Chaotic dynamics show how simple nonlinear difference equations can yield
deterministic time paths that mimic the output of stochastic systems. Thus, offering an
alternative explanation for the behavior of asset prices. This chapter began with some
traditional beliefs regarding price changes, then showed how these changes can be
replicated using nonlinear dynamics. We now know that it is possible to mimic stochastic
looking systems using chaos theory. To make the connection complete we now have to

find chaotic dynamics in actual time series.
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Figure 2.2 Dynamic Process
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Figure 2.5 Phase Diagram for the Logistic Equation, Period 1 Cycle
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Figure 2.7 Phase Diagram for the Logistic Equation, Period 1 Cycle
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Figure 2.13 Phase Diagram for the Logistic Equation, Period 3 Cycle
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Figure 2.17 Sensitive Dependence on Initial Conditions, Logistic Equation
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Chapter 3
TESTING METHODOLOGY

3.1  Introduction

One of the most important contributions for the empirical analyses of nonlinear
dynamics was that of Floris Takens in 1981. He found that for nonlinear dynamical
systems with one observable, the entire underlying attractor can be rebuilt using only the
observed variable. In the study of financial time series it is important to expose the
underlying system -- if there is one -- which drives the series, and to reveal its various
properties. If it can be established that the underlying system is chaotic then price changes
can be explained as a deterministic outcome.

Section 3.2 explores, more formally, how the underlying attractor can be revealed.
Then in section 3.3 it is shown how this information can be used to find the dimension of
the underlying atuaétor. This knowledge is then, in section 3.4, used to derive a statistic
which tests for nonlinear dependence, known as the BDS statistic [Brock, Dechert, and
Sheinkman (1987)]. Since nonlinearity is a necessary but not a sufficient condition for
chaos, more information is required to conclude chaos. We cannot empirically test finite
systems for denseness or topological transitivity, so we follow Ruelle (1989), and rely on
sensitive dependence on initial conditions as a testable condition for chaos. A measure of
sensitive dependence, known as the dominant Lyapunov exponent, is outlined in section
3.5. Then section 3.6 shows how to empirically quantify this measure from a given time

series.
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3.2  Phase Space Embeddin
All that we have available to us is the observed time series
{x,}t ;X € R.
The true unknown dynamical system
Y, =G(Y,),G:R" > R"
is seen through the observation function
x, =h(Y;), mR"—>R.
The observed time series {x, } can be embedded into a series of m-dimensional
Vectors
X, = (xt 2 Xe-15" s Xg—m+1 )T
giving the series
X3
where each X, is known as an m-history of the series {x; }ﬁl For example, the set of 3-
histories for the series {xp,* ~,x5} would be
X3 = (3.2 %1)"

X, =(x4,%3, 2)T

X5 = = (x5, x4, %3)"
Xg = (xg,%5,%4)"

The number of m-histories in the series { X, }f’:m is T=N-(m-1).
G;:ncrically, the trajectory X, may be written as

X, =F(X,_,),F:R" > R" (1)
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Also, if the basin of attraction is a compact set [closed and bounded] and m =2n+1, then

X, can be written in terms of ¥;_,,,,1.

X, = H(Y, 1) = (h(Gm_l (VA W7 (ciact AN RERN X A ))
Notice that
X1 = H(Yiopsz) = H(G (Vo) @
and from (1) and (2)
H(G(Y 1)) = F(H(Y, 1))
Assuming that H is a homeomorphism [continuous bijection with a continuous

inverse], F and G are topologically equivalent and share many dynamic properties. This

result [Takens (1981)] allows us to use the series of m-histories to analyze the frue

underlying dynamics of the observed series. If the elements of the true series {Yt} are on
an attractor then the geometric object created by plotting the x;'s in m-dimensional phase

space is congruent to the true attractor. Theiler (1990) also notes that as long as m>n the
reconstructed object almost always has the same dimension as the true attractor.

Figures 3.1 and 3.2 show the distribution of 2000 numbers produced by a standard
random number generator and 2000 consecutive chaotic iterations from the logistic
equation. For the logistic map the parameter a and initial value x, are the same as in
figure 2.16 from the previous chapter. When these observations are embedded in 2-
dimensional phase space the portraits 3.3 and 3.4 are produced. Notice that the series of
randomly generated numbers cloud all available space when embedded in 2-space but the

logistic iterations fall on the shape of their respective function.
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3.3 Correlation Integral

If all the points {Y,} are on an attractor then any two points of the series {Xt} are

spatially correlated. Rather than being plotted randomly in phase space, the m-histories

show a clustering effect. The probability that the distance between any two points X; and

X s is less than some arbitrary small radius (&) of an m-dimensional ball centered on one of

 the points [ie., |X, — X < €] s greater if clustering exists than if the points were plotted
randomly -- as seen in Figures 3.1 through 3.4. The correlation integral for t # s is

C,(eT)= number of distances less than €

total number of distances

1
2[;&3 H(S - “Xt - XS ")

T T(T-1)

2
- T(T-1) ZmSt<s$N H(g —“Xt - Xs")

¢

where T is the total number of m-histories. and H is the Heaviside function.

H(z)= 1 i z>0
“70 otherwise
The result C,, (€, T) is independent of any two norms [ [Brock (1986)] so we

may use any convenient form. The type most often used is the max-norm which is more
convenient for computer applications.
||X, - X|= mMaX gelo,m-1] {|x,+k - xs+k|}

where || is Euclidean distance. Using this norm the correlation integral may be written as

2 —
C(m7 87T) = T(T _ 1) ZmSt<SSN ZL:;H(E —Ixt+k - xs+k|)

since

)

:H(‘8 _"Xt - Xs") = ;:;H(S _Ixt+k — Xsak

iie., if any |x,,; — X 2 € then H()=0.
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C(m,e,T) is interpreted as the proportion of T m-histories that are within & of each other.

Many authors have used the form
1
Cl(e,T) =}72§: _ Hle-]x, - x])

but Grassberger (1982) shows that the inclusion of ¢=s is unjustified and may lead to
wrong conclusions when testing finite time series.
Grassberger and Procaccia (1982) have shown that the relationship
C(m,e,T) =ke® 3

holds, where k is some constant and ¢ is a dimension measure of the attractor. Taking

logs of (3) gives
nC(m,e,T)=hk+alne
or
=_lnk + In C(m,e,T).
Ine Ine

As € gets smaller and T gets larger ¢ becomes

D(m)=tm_im InC(m,e,T)
£—>0T—00 Ine

which is the correlation dimension. The correlation dimension of the true attractor is

D= lim D(m).

m—>00
Let the dimension of a particular attractor be D. For m<D, D(m) increases as m
increases but levels off for m > D . However, if there is no clustering then the probability
that two points being within € of each other decreases as increases so D(m) increases

endlessly with m. For finite data sets we cannot find D(ym) so we must be content with

_InC(m,&.,T)

D(m,e,T) e

where T is large and € is close to zero.
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The correlation dimension can be used to detect the presence of an attractor. Plot
the correlation dimension of a series for various € 's against m, if the slope of the lines
level off at some point then an attractor is detected, otherwise the series is white noise.
This method has been used in the literature [Frank, Gencay, and Stengos (1988)] but is

not a statistic.

3.4  BDS Statistic

To deal with finite data samples Brock, Dechert, and Scheinkman (1987) devised a
statistic which tests the null hypothesis of independent and identically distributed [iid]
observations of a time series. C(m,&,T) has two possibilities. If the m-histories are iid
then for all m they will be embedded randomly in m-space. However, if the points are not
iid, then as m increases the points will arrange themselves on the attractor which will take
shape at the correlation dimension of the true attractor. In this case, as m increases the
probability that the points are within £ of each other decreases until the correlation
dimension is reached, after which it levels off. Data not arranged in m-histories appears

random so the value C(1,,T)™ would be close to the value C(m, e,T) given iid

observations. For a stochastic series the statistic
C(m,e,T)-C(L,e,T)"

asymptotically [as T — o] follows a normal distribution with zero mean and O'VZV /T

sample variance [Brock, Hsieh, and Lebaron (1991)]. Where
0, =4(K™ +23 7 K"ICY 4 (m-1)C" —m2kC2mD)
¢ =E[H(e - |x, —x)]
K= E[H(s —|x, —xSI)H(e —Ixs —xrl)]

and E is the expectations operator.
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Consistent estimators for C and K are:

C=Cc@,e,T)

2 6
R =gy Dasresersr B8 = = Blle |z =)

The BDS test may be written as

JT[Cm,e,T)-CLe D" 750

Ow

W(m,e,T)= > N(0,1).

Rejection of the null implies that the data is either iinear deterministic, nonlinear
deterministic [chaotic]. or nonlinear stochastic, [Hseih, 1991].

As m increases both C(m,e,T) and C(1,&,T)™ decrease until the correlation
dimension of the attractor is reached, if there is one, beyond which C(m,&,T) levels off

and C(1,&,T)™ continues to decline.

3.5 Lyapunov Exponents

The main characteristic of chaotic motion is its sehsitivity to initial conditions.
Lyapunov exponents are used to quantify this concept, thus differentiating between
regular or nonregular motion of an attractor. Since G maps the interval I back into itself
divergence of trajectories cannot go beyond the interval I In general, chaotic motion
must then consist of exponential stretching and shrinking along various axes and then
folding of the attractor by Y, = G(Y, ). Two points which are initially close together may
get closer as in regular motion or they could be stretched far apart from each other. This

Stretching determines the attractors sensitivity to initial conditions. Picture an »-
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dimensional sphere, stretching and contracting along its various axes distorts it into an #-

dimensional ellipsoid. After ¢ iterations a two dimensional circle

Y0+8j0

Yo+€;p

becomes

which is folded over itself ¢ times. L; gives the amount of stretching( 1; >0) or

contracting( ;<0) per period.

Attime T
eir =Eiet" 4
which can be written as
1= %m &r )
€io
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Eir
€0

The absolute value

is used since stretching or shrinking can occur in either direction

along an axes.
Now consider the linear systefn
€irr1 = i€t
whose solution at time T is
&r =i €0 = e’ €io-
Looking back at (4) it is clear that
Ing" = uT.

Substituting this into (4) gives:

T &;
Er = Eioelnq‘ or In qiT = hl(—lL]

€io
or ¢q iT —fl
€io
Substituting this into (5) gives
_Llor
H; “"T.,lnlqi l
which can be written as
1 T
M= 240 Inlg;]

1; is interpreted as the time average of the log of the absolute value of the slope value g;.

The i™ Lyapunov exponent of the system G(Y,) is
. 1T .
LF,= g L7 blaf =1

which is the limit of y; as T goes to infinity.
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More formally, a linear approximation of

Er =(81T’""8n7')

er =171 (Y,)e,
where ¥ (YO) is the Jacobian of the system GT (), evaluated at ¥;. Recall that

GT()=G(G(-G()+)), T times.

By the chain rule
or| o™ 4
1 (¥y) = —= — el
aG" 1|Y=Y0 oG 2IY:Y0 K ly=y,
_Jd & L
aY Y =YT—1 aY Y=YT_2 aY Y=Y0
= 1(¥py ) H(¥7p ) 3(%,)
T-1
=T1.-,3(x%) | (6)
diagonalizing J (v,) gives
J(¥,)=PAP™

where A, is the diagonal matrix of eigenvalues [A;,i =1,---,n] of J (Y,) and P is the

associated matrix of eigenvectors.

My - O
A=
0 o Ay
Also
nJ(¥,)=lnP+In A, —In P=In A,.
Taking logs of (6) gives

T-1 T-1
n T, I() =%, n (%)

=Yool
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The i™ Lyapunov exponent becomes
. 1T
LE, = lim — pISLI
which is a time average for the absolute value of the it eigenvalue from the system G(-).

From the multiplicative ergotic theory [Eckman and Ruelle (1985)] thiS limit exists for

most initial conditions Yj.

The usual explanation of eigenvalues for discrete systems also applies here.

‘ I <1=LE; <0 (contraction)
>1=LE; >0 (expansion)

Since the attractor requires » dimensions there are # Lyapunov exponents. These
can be listed in descending order, i.e., LE; 2 LE, 2---2 LE, which is called the Lyapunov
spectrum. The signs of the spectrum are (+,++,+,0,°++,0,—,+++,—). Various forms of
underlying attractors can be explained as follows:

(—,-++,—) attractor contracts to a stationary point.
(0,+++,0,—,++,—) contracts in directions indicated by (~)'sand is
stationary periodic in directions indicated by (0)'s.

(+,-~,+,O,- -,0,— ,——) pre‘sence of stretching indicated by (+)'s.

The sum of all Lyapunov exponents is interpreted as follows:

>0=>G() is expansionary
Z?___l LE; 1=0=G() is conservative
<0=G(:) is dissipative

Chaotic attractors are presented here as conservative systems that include
stretéhing, shrinking, and folding. Therefore, the Lyapunov spectrum would include at

Jeast one positive element but the sum of all elements would be zero.
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3.6  Estimating The Largest L.yapunov Exponent
Earlier in this chapter it was shown that the series of m-histories
X, =F(X,;),F:R" - R" (1)
is congruent to the true series
Y, =G(Y,4),G:R" - R"
as long as m = 2n+1. As m increases between » and 2n+1 the n largest Lyapunov
exponents of F are the same as those of G, while the remaining m-n exponents diverge to
—oo [Gencay and Dechert (1992)]. Since # is unknown we cannot test whether the true
attractor is dissipative or explosive but we can reveal the sign and magnitude of the largest
Lyapunov exponent, which is a test for chaos.

Equation (1) may be written more generally as

X1 g xemt)) (@
XL X, N 0
Xt—mL+L Xt—mL+L 0

which reduces to

Xt =3[(xt—L:"':xt—mL)+et

where m is the length of the embedding, L is the number of lags between observations and

{e,} is a sequence of zero mean, unknown constant variance, independent random shocks.

The estimate 3— is derived by fitting the equation
" k
}(x,,8)=0¢ +2j=1 ﬁj‘l’(a’j +'YjTXt)
by nonlinear least squares [Nychka et al (1992), Gencay and Dechert (1992)]
N A 2
Z((')) = Zt:mL+1 (-x; —}(Xt—l’e)) s

where 6 = (g, 8,0, v ) is the parameter vector.
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{- consists of k activation units

_ exp(-u)
v ()= 1+exp(—u)

each with its respective unit weight B; € R, and input weights @; € R* and

Y =(71j’7/2j""’7mj)T‘

Once + is found we can build £ and the largest Lyapunov exponent becomes
n 1 T T A
LE;1 = 'meolnlv A,vl

where v is a fixed m-by-1 vector of norm 1 [v = (1,0, .,0)T], and AeR™

3.7 Conclusion )

We now have the tools with which we can test for chaos. The BDS test, which is
an application of the correlation integral, is used as a test of whiteness and the dominant
Lyapunov exponent is used as a test of chaos. When analyzing the underlying system we
have to show both existence and stability, where stability refers to the convergence or
divergence of nearby trajectories. Here, the BDS test is used to show existence and the
value of the dominant Lyapunov exponent is used to show stability.

The next issue of concern is data quality. In order to be able to explain a data set

using chaotic dynamics, we require at least that the data be chaotic looking.
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Figure 3.3 2000 Random Numbers
Embedded in 2-dimensional Phase Space
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Chapter 4
DATA

4.1 Introduction

When testing for nonlinearities, and in particular for chaotic nonlinearities, data
quality and quantity is very important. Tests developed in the physical sciences require
large amounts of noiseless data. Much of the power of these tests is lost when analyzing
finite and noisy economic time series. The problem with noise is that it clouds the
underlying attractor, making it difficult to detect, and it imposes large measurement errors
making forecasting impossible. If enough noise is present the underlying attractor might
be completely dispersed and undetectable. Economic time series are aggregated over
markets and over market participants. Both of these operations introduce noise into the
data. There is little we can do about aggregation over participants but for aggregation
over markets we can minimize noise by considering only individual markets. However,
each individual asset is a compliment to some goods and a substitute for others, so is
therefore inseparable from other assets.

Data frequency is also a concern. Financial data is available in tick by tick
intervals. However, this frequency is too short since the series becomes dependent upon
micromarket structures such as the sequential executions of limit orders as market prices
pass through the respective limit prices. Frequencies must be decreased to average out
these artificial dependencies. Since data sets have to be as large as possible, when the data
is extended further back in time, other influences become stronger such as nonstationarity
or conditional heteroscedasticity.

Section 4.2 describes the data chosen for this study and section 4.3 gives some

summary statistics about each series.
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4.2  Data and Sources

Relative to other economic time series, financial data has greater abundance and
quality. For this study testing was conducted using weekly observations on spot-month
futures prices of thirteen various commodities and currencies. They include the Australian
dollar, the British pound, the Canadian dollar, crude oil, copper, the Deutschemark, gold,
heating oil, unleaded gas, the Japanese yen, platinum, the Swiss franc, and silver. All the
currencies are traded on the International Monetary Market at Chicago, copper, gold, and
silver are traded on the New York Commodities Exchange, and crude oil, heating oil,
platinum, and unleaded gas are traded on the New York Mercantile Exchange. Each
series was collected by Tick Data Incorporated.

The sample period and number of observations for each series is shown in Table
4.1. They range from January 13/1987, to June 2/1993, [330 observations] in the case of
the Australian dollar from July 2/1971, to June 2/1993, [1140 observations] in the case of

silver. A graphical representation of each series is provided in figures 4.1 to 4.13.

4.3 ummary Statistic

Tests of normality in distribution of the data include mean, standard deviation,
skewness, and excess kurtosis. The results of each are outlined in the last four columns of
Table 4.1. Measures of mean and standard deviation are derived from logged differences
of the raw data. A distribution's form is given by its skewness and excess kurtosis.
Skewness refers to the proportion of observations which fall on either side of the mean. If
the value of skewness is negative (positive) then more observations fall on the lower
(higher) side of the mean. When the distribution is higher, narrower, with fatter tails than
the normal distribution it is known to have excess kurtosis. A measure of zero means that
the curve is normal. Notice that all the series tested have excess kurtosis and all are

skewed to one side or the other except perhaps unleaded gas.
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44  Conclusion

Quality data is crucial when testing for nonlinearities and chaos. Test results do
not depend on whether chaotic output appears random but whether random looking data
appears chaotic, upon close inspection. If a time series is found to be chaotic then it must
also be consistent with chaotic structure. For this to happén we need data as noise free
and as chaotic looking as possible. To reduce noise in time series we can only choose data
as disaggregated as possible with an appropriate frequency such that the chaotic signal is
detectable.

Known dependencies, such as nonstationarity or conditional heteroscedasticity,
that interfere with the chaotic signal must be filtered out. The next chapter shows various

prefiltering techniques so that the data can be tested for nonlinearity and chaos.



Series
‘Australian Dollar
British Pound
Canadian Dollar
Crude Oil
Copper
Deutschemark
Gold

Heating Oil
Unleaded Gas
Japanese Yen
Platinum

Swiss Franc

Silver

# Obs.

330
955
854
530
905
955
961
734
439
865
1072
955
1140

Sample Period
01/13/87 - 06/02/93

02/13/75 - 06/02/93
01/17/77 - 06/02/93
03/30/83 - 06/02/93
08/22/72 - 12/27/89
02/13/75 - 06/02/93
01/02/75 - 06/02/93
03/06/79 - 06/02/93
12/03/84 - 06/02/93
11/03/76 - 06/02/93
08/22/72 - 06/02/93
02/13/75 - 06/02/93
07/29/71 - 06/02/93

Note: Numbers in parentheses are standard errors.

Mean

014 (.073)
-.043 (.054)
-.026 (.021)
-072 (.207)
079 (.136)
.038 (.053)
079 (.098)
-.009 (.170)
-.045 (.248)
117 (.053)
085 (.133)
056 (.061)
079 (.145)

S.Dev.

1.329
1.660

628
4.767
4.078
1.633
3.046
4.616
5.199
1.573
4.345
1.896
4.894

Table 4.1 Summary Statistics For Weekly Futures Prices (Logged Differences)

Excess Kurtosis

4.625 (.268)
3.558 (.158)
3.424 (.167)
8.834 (.212)
2.640 (.162)
1.713 (.158)
13.855 (.158)
3.726 (.180)
3.076 (.233)
2.362 (.166)
4.409 (.149)
1.234 (.158)
10.457 (.145)

Skewness

-1.307 (.134)
-364 (.079)
- 438 (.084)
-.806 (.106)
-107 (.081)

092 (.079)
221 (.079)
- 469 (.090)
-070 (.117)
453 (.083)
- 237 (.075)
322 (.079)
-.659 (.072)

197
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Figure 4.1 Australian Dollar
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Note: Logged nearby futures prices, weekly data from 1/13/87 to 6/2/93, 330 observations.

Figure 4.2 British Pound
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Note: Logged nearby futures prices, weekly data from 2/13/75 to 6/2/93, 955 observations.

Figure 4.3 Canadian Dollar
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Note: Logged nearby futures prices, weekly data from 1/17/77 to 6/2/93, 854 observations.
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Figure 4.4 Crude Oil
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, Note: Logged nearby futures prices, weekly data from 3/30/83 to 6/2/93, 530 observations.

Figui'e 4.5 Copper
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Note: Logged nearby futures prices, weekly data from 8/22/72 to 12/27/89, 905 observations.

Figure 4.6 Deutschemark
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Note: Logged nearby futures prices, weekly data from 2/13/75 to 6/2/93, 955 observations.
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Figure 4.7 Gold
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Note: Logged nearby futures prices, weekly data from 1/2/75 to 6/2/93, 961 observations.

Figure 4.8 Heating Oil
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Note: Logged nearby futures prices, weekly data from 3/6/79 to 6/2/93, 734 observations.

Figure 4.9 Unleaded Gasoline

86 87 88 89 90 91 92 93

Note: Logged nearby futures prices, weekly data from 12/3/84 to 6/2/93, 439 observations.
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Figure 4.10 Japanese Yen
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Note: Logged nearby futures prices, weekly data from 11/3/76 to 6/2/93, 865 observations.

Figure 4.11 Platinum
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Note: Logged nearby futures prices, weekly data from 8/22/72 to 6/2/93; 1072 observations.

4

Figure 4.12 *Swiss Franc
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Note: Logged nearby futures prices, weekly data from 2/13/75 to 6/2/93, 955 observations.
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Figure 4.13 Silver '
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Note: Logged nearby futures prices, weekly data from 7/29/71 to 6/2/93, 1140 observations.



51
Chapter 5

EMPIRICAL TESTING

5.1 Introduction

This chapter confronts theoretical chaos with the facts. If the underlying system of
a series is linear then the residuals from the best fit linear model are white noise. Chaotic
nonlinearities cannot be detected by linear methods so if chaos is present then its effects
will be hidden in the residuals of the best fit linear model. Economists are now armed with
two highly reputable tests of nonlinearity and chaos: the BDS test and the Lyapunov
éxponent estimator of Nychka et al. (1992). For each series the best fit linear model is
formed then the residuals are tested for the existence of nonlinearities and for chaos.

Before conducting nonlinear dynamical analysis the data must be rendered
stationary, linearized, and purged of conditional heteroscedasticity. In section 5.1
augmented Dickey-Fuller unit root tests are used to check stationarity. The data is then
linearized by lagging the stationary series enough times to remove autocorrelation. This
procedure is outlined in section 5.3. Conditional heteroscedasticity refers to variances that
change over time. Section 5.4 describes a test for conditional heteroscedasticity and a
method of removing it from the data. Once each series is linearly filtered we can conduct
tests of nonlinearity and chaos. Results from these tests are given in sections 5.5 and 5.6

respectively.

.5.2 Preliminary Analysis of the Data

Before we test for chaotic nonlinearities, we must first remove all linear
dependencies and render each series stationary. A series is stationary if its mean and
variance are constant but finite through time and the covariance between any two values

depends only on the distance between them, not on time itself. In other words all
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observations are independently and identically distributed. More formally, a series {x, } is

stationary if for all ¢

E(x,)=)?

2 —_
cov(x,,x,_s)= E[(x, — %) — f)] = {‘; <ft(>): io; Os =0
s

Many economic time series are not stationary but can be easily rendered so.
There are two types of underlying trends and a different procedure is used to
detrend each.
The first type
‘ X =a+x +e
E(xq)=a+x
is known as a difference sutationary process. Shocks to this type of system have a
permanent affect on the time series. Notice that the expectation of x,; is a function of x;.
In this case {x, | is detrended simply by taking first differences, Ax, = a+e;.
The second form
x,=a+br+e
E(x, )=a+bt
is known as a trend stationary process. Shocks have a temporary effect since expected
values are not functions of their own past values. The series {x,}is detrended by

* regressing it on both a constant and a time trend, then obtaining the residuals {e,}.

One test used to determine which method should be used to render the series
stationary, which is the one used in this study, is the augmented Dickey-Fuller test (ADF)

-- Dickey and Fuller (1981)

I
Aln x, = a +a1t+a21nx,_1+zj=lch1nx,_j+e,
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where Zj=1 cjAlnx,_; corrects for autocorrelation in the series {Alnx,} and ot

removes trend stationary processes. Natural logs are used so the series {A In xt} is

represented in terms of growth rates rather than differences. If @, =0 then {x,} follows a

difference stationary process and has to be differenced to become stationary. We test the
null that a, =0 [difference stationary process] against the alternative that a, is negative
[trend stationary process]. If the null cannot be rejected the series is differenced and
tested again. This process continues until the null cannot be rejected.

A series is integrated of order d -- I(d) -- if it has to be differenced d times to
become stationary, it is then known to have d unit roots. Most economic and financial
time series have only a single unit root -- see Nelson and Plosser (1982).

Results of the Augmented Dickey-Fuller tests on the futures data is presented in
Table 5.1. In all cases we cannot reject the null of a difference stationary process in levels
but reject it in first differences indicating a single unit root. Hence, we first difference thg
logarithms to render the series stationary, this is consistent with the evidence reported in

Nelson and Plosser (1982).

5.3  Linearizing the Data

Now that the trend has been detected we start by describing the data in a linear

framework. In particular we use the following autoregression (AR) model.
Aln x, = by +Z‘j’.=1bjA Inx, ;+e
The residuals, {e, }, from a correctly specified AR model have zero correlation

with each other. Otherwise they follow a pattern indicating some left out influence. The

autocorrelation coefficient between e, and e,_; is

_covlees)

.=
0,0

€1—s

Since p, =0 if and only if cov(e,,e,_.) =0, we can use p, to detect autocorrelation.
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As s varies, values of p, also vary, giving the sequence { p, }I.::o which is known

as the autocorrelation function. This provides a measure of how much correlation exists

for a group of residuals of size k. For a white noise process p; is approximately zero for

all s # 0. Box and Pierce (1970) showed that and for sufficiently high k the Q-statistic
Q=NY" p;

follows a chi-square distribution with k degrees of freedom -- %2 (k) - and can be used to

test the joint null hypothesis that all k autocorrelation coefficients are zero. Recall that N

is the length of the series {e, }. This test uses the null of Q =0 where the residuals are

uncorrelated against the alternative Q >0 where patterns exist between residuals. In
order to consider the series free of autocorrelation Aln x, has to be regressed on enough
lags to yield the Q-statistic insignificant.

The first two columns of Table 5.2 show the optimal number of AR lags based on
the Q-statistic and their respective values. All series except for crude oil, gold, the
Japanese yen, and silver require only one lag to remove autocorrelation. For the
remaining series, crude oil requires 4 lags, gold requires 10 lags, the Japanese yen requires
2 lags, and silver requires 8 lags. In each case we cannot reject the null of no
autocorrelation given a 5% critical value of 35.173. Tests of excess kurtosis and
skewness were applied to the residuals of the optimal AR model. Notice that all series still

have excess kurtosis and all are skewed except for unleaded gas.

5.4 Heferogcedagticigx

Financial time series are usually studied as homoscedastic processes. Engle
(1982), however, suggested the autoregressive conditional heteroscedasticity [ARCH]
model as an alternative to the usual time series process -- this is consistent with

Mandelbrot's (1963) observation that asset markets are characterized by time varying
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volatility. Before using ARCH type models, one can test for ARCH effects by regressing

22 on &%, asin

a2 _ a2
é =by+bé_;+{,
The statistic NRZ, where N is the number of observations and R is the coefficient of

determination from the above regression, is distributed as a chi square with one degree of

freedom, xz (1). If the null of b, =0 is rejected then the series {¢,} increases (decreases)
over time causing the variance of the original series, {x, }, to increase (decrease) over
time.

The third column of table 5.2 presents results for ARCH effects in the optimal AR
model. Clearly, all series except for the Australian dollar, the Canadian dollar, and the
Japanese yen have significant ARCH effects.

Given the evidence of significant ARCH effects the model used to correct for time
varying variances is Bollerslev's (1986) generalized autoregressive conditional
heteroscedasticity [GARCH] model. This is a generalization of Engel's (1982) ARCH
model and has the variance as a function of past squared residuals as well as of past values

of itself. The GARCH(/,k) model is

Alnx, = b, +2;{=1bjA1nxt_j +e,, ell,_ ~N(0,h)

h, =wy+ Zf=laje,2_j + 23,=1 Bjh_;
where the last equation is known as the variance equation. GARCH models are useful in
correcting for conditional heteroscedasticity while still preserving any nonlinear
deterministic structure [Lamareux and Lastrapes (1990)]. The most common specification
used to capture the time varying variances is the GARCH(1,1) process [see Engle and
Bollerslev (1986) or Hseih (1985)] When the only dependence is linear, the standardized
residuals from a properly specified GARCH model are white noise and follow a standard
normal distribution with mean 0 and variance o%. However, if other nonlinear

dependencies exist, they may be hidden in the GARCH residuals.
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In the first three columns of table 5.3 are the estimated values of the parameters,

Wy, 0, and By, and their respective t-ratios. In each case the t-ratio for the parameter 3,
is significant and in each case except for the Australian dollar, the t-ratio for ¢, is
significant.

Column 4 and 6 show both the Q-statistic and the ARCH test results for the
standardized residuals of the GARCH model. Notice that in each case we cannot reject
the nulls of no autocorrelation and no ARCH effects. The lag structure of the
autocorrelation was the same as in the previous AR model. Tests of normality on the

standardized residuals show excess kurtosis and skewness in all cases.

5.5  BDS Results

The BDS statistic was calcuiated using the BDS program provided by W. Davis
Dechert. Tests are the same as outlined in the previous chapter for both the AR and
GARCH residuals and for embedding dimensions 2 to 5 and epsilon of 0.5, 1, 1.5, and 2
standard deviations of the data. Brock (1986) showed that the asymptotic distribution of
the BDS test statistic is unaltered by using residuals rather than raw data in linear models.
It is to be noted that when testing finite data sets the power of the BDS test weakens if
epsilon is too small or too large. If epsilon is too small then there are not enough data
points in C(m,&,T) to accurately compare with C(1,&,T)™ and if epsilon is too large then
almost all points are in C(m,€,T) making it approximately equal to C(1,&,T)".

Results from the BDS tests are shown in Table 5.4. Hsieh (1991) found, through
Monte Carlo festing, that the BDS critical values for GARCH standardized residuals are
biased upwards so his critical values were used for these residuals in this study.

In all cases except for the Australian dollar the null of independent and identically
distributed residuals is rejected for the AR model. In the case of the Australian dollar we
also reject the null for the GARCH standardized residuals. For gold, heating oil, platinum,

the Swiss franc, and silver, we reject the null for all standardized residuals from the
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GARCH model indicating conditional heteroscedasticity as the only explanation for non-
iid residuals from the AR model. Further results refer only to the GARCH standardized
residuals. The null is rejected at epsilon equal to 0.5 for the British pound, Canadian
dollar, crude oil, Deutschemark, and the Japanese yen indicating nonlinear influences. In
the case of the Japanese yen the null is also rejected for epsilon equaling 1 and in the case
of crude oil, and unleaded gas the null is rejected for epsilon equaling 2. For copper the
null is rejected for all values of epsilon.

Results from the BDS tests applied to the AR residuals indicate strong nonlinear
dependence. However, when applied to the GARCH(1,1) standardized residuals, the
results show that much of the nonlinear dependence is explained by conditional
heteroscedasticity. Unknown nonlinear dependence remains for the British pound, the
Canadian dollar, crude oil, copper, and the Japanese yen.

Now that nonlinearities have been found in the data we may go to the next step
and test for chaotic nonlinearities. If positivity of the largest Lyapunov exponent for some
embedding dimension of the GARCH standardized residuals is found then we can say that

the nonlinearity found is chaotic.

5.6 minant L nov Exponent Resul

The dominant Lyapunov exponent was estimated using LENNS, a program written
by Nychka et al. (1992) and provided by A. Ronald Gallant. In particular, LENNS
estimates the parameters of ;— from Chapter 3 by nonlinear least squares in a neural net
framework. For each triple, (L,m,k), the program fits the model with 200 different initial
conditions, then polishes the best 20 with a more stringent convergence criterion. Recall
that L is the time delay, m is the dimension of the embedding, and & is the number of

parameter units in .
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Presently there are two methods of Lyapunov exponent estimation. The direct
method [e.g. Wolf et al. (1985)] is sensitive to the degree of noise in the data [see Brock
and Sayers (1988)] while the regression method accommodates noise. Results from the
regression method refer to the noisy series rather than the hypothetical underlying system
which the direct method tries to estimate. According to Barnett et al. (1993) the Nychka
et al. (1992) approach, which is a version of the direct method, is the only credible
candidate for testing chaos. The various forms of AJL tested here include embedding
dimensions from 1 to 10, lags from 1 to 3, and parameter units from 1 to 3. The best fits
are chosen by minimizing the Bayesian Information Criterion [BIC] -- see Schwartz
(1978) -- on the residuals of ; Due to the large amount of calculations required, the
LENNS program is limited to 500 or so data points. For series longer than 500
observations the test is applied to both the first 500 observations and the last 500
observations.

Results from the LENNS test are displayed in Table 5.5. The estimated point
values of the best fit dominant Lyapunov exponent and the respective triple, (L,m,k), are
' given in columns 2, 3, and 4. BIC values [minimized over all triples] are displayed in
columns 5, 6, and 7. Notice that sensitive dependence on initial conditions, indicated by
positivity of the dominant Lyapunov exponent, is found for the Australian dollar, copper,

and the Japanese yen.

5.7  Conclusion

This chapter began with 13 financial time series of unknown processes and ended
in chaos. In sections 5.2, 5.3, and 5.4 the data was made stationary, linearized, and was
properly adjusted for time varying variances. Each series was transformed such that they
were chaotic looking. They were bounded from above, below, and fluctuated in a random
looking manner between these two extremes. After nonlinear analysis we find the BDS

test rejects the null of independent and identical distribution for all the AR residuals except
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for the Australian dollar. In the standardized residuals of the GARCH(1,1) process,
nonlinear dependence was found for only the British pound, the Canadian dollar, crude oil,
copper, and the Japanese yen. When the Nychka et al. (1992) Lyapunov exponent
estimator was applied to these residuals, evidence of sensitive dependence on initial
conditions was found in the Australian dollar, the Japanese yen, and copper. Conflicting
results in the case of the Australian dollar indicates limited robustness across inference
methods -- also found in Barnett et al. (1993).

These findings have important consequences for financial economics. They offer
an alternative explanation for the behavior of futures prices and they offer potential for

short run trading rules.



Table 5.1 Augmented Dickey-Fuller Unit Root Tests on Logged Weekly Futures Prices

Alnx, =ay+at+a, Inx +Z;=1CjA1nxt-j +e;

Series Levels First Diff. Crit. (10%)
Australian Dollar -2.42 *-6.77 -3.13
British Pound -1.92 *.5.96 -3.12
Canadian Dollar -1.87 *.6.92 -3.12
Crude Oil -2.54 *.5.46 -3.12
Copper -2.50 *.5.24 -3.12
Deutschemark -1.65 *.5.03 -3. 12
Gold -1.71 *-4.74 -3.12
Heating Oil -2.85 *-6.53 -3.12
Unleaded Gas -2.73 *-5.13 -3.13
Japanese Yen -2.15 *.4.79 -3.12
Platinum -1.79 *-5.31 -3.12
Swiss Franc | -2.20 *-5.25 ~ -3.12
Silver -2.15 *-5.89 -3.12

Note: An asterisk indicates significance at the 10% level.

'09



Table 5.2 Summary Statistics for the Optimal Autoregressive Model Residuals Under the Q(23) Test Statistic

Series
Australian Dollar
British Pound
Canadian Dollar
Crude Oil
Copper
Deutschemark
Gold

Heating Oil
Unleaded Gas
Japanese Yen
Platinum

Swiss Frank

Silver

Note: Numbers in Parentheses are standard errors. The Q-statistic is distributed as x2(23) on the null of no autocorrelation and the

AR Tag

1
1
1

1
8

14.715
22.053
24317
33.517
30.343
19.403
31.053
30.609
34.084
29.200
24.256
17.811
33.963

ARCH test
071
*12.369
3.404
*12.004
*8.316
*31.924
*158.025
*58.959
*13.231
3.335
*56.168
*22.210
*34.953

Alnx, =B, +Z§=lbjA1nxt_ ite, el ~N(0,y,)

Excess Kurtosis

4.729 (.268)
3.609 (.158)
3.447 (.167)
8.551 (.213)
2.628 (.162)
1.685 (.158)
12.834 (.158)
3.408 (.180)
3.115 (.233)
2.517 (.166)

4.370 (.149)

1.203 (.158)
8.352 (.145)

Skewness
-1.320 (.134)
-362 (.079)
-.447 (.084)
-749 (.107)
-.107 (.081)
.100 (.079)
152 (.079)
-398 (.090)
-.061 (.117)
457 (.083)
-.241 (.075)
331 (.079)
-.594 (.073)

ARCH test is distributed as x2(1) on the null of a stationary variance. An asterisk next to a test statistic indicates significance at the
5% critical level which is 35.173 in the case of the Q-statistic and 3.842 in the case of the ARCH statistic.

(o)}
—



Series

Australian Dollar

British Pound
Canadian Dollar
Crude Oil
Copper
Deutschemark
Gold

Heating Oil
Unleaded Gas
Japanese Yen
Platinum
Swiss Franc

Silver

Table 5.3 GARCH(1,1) Parameter Estimates and Residual Diagnostics

Alnx, =5y + Zj,=1bjAln X jte, & |It_1 ~N(0,h), h=wy+ aletz_l + Bl
ARCH Excess Kurtosis

¥o

061 (0.7)
150 (2.9)
093 (3.3)
231 (1.6)
499 (3.2)
164 (3.4)
238 (3.3)
1.189 (4.0)
2.580 (3.0)
048 (3.5)
423 (3.0)
025 (1.8)
379 (3.4)

o
011 (0.9)
123 (4.6)
161 (3.8)
226 (4.3)
093 (4.3)
153 (5.2)
198 (6.4)
312 (6.3)
213 (4.0)
025 (2.9)
095 (5.4)
070 (5.0)
121 (6.2)

By

956 (17.4)
831 (23.7)
615 (6.6)
.802 (20.6)
877 (33.7)
793 (21.8)
790 (28.2)
.666 (16.4)
700 (11.2)
957 (86.9)
881 (44.6)
927 (67.0)
865 (45.5)

Q-statistic

14.158
18.468
24.021
27.489
20.678
22.672
33.096
21.332
30.283
27474

25.816

24.549
27.012

170
1.246
197
269
2.734
116
.093
.623
.164
310
A4T7
598
.032

4.893 (.268)
2.566 (.158)
3.925 (.167)
3.392 (.213)
1.110 (.123)

981 (.158)
1.693 (.158)
2.369 (.181)
1.427 (:233)
3.492 (.166)
1.456 (.149)
1.083 (.158)
1.618 (.145)

Skewness

-1.355 (.134)
-320 (.079)
-754 (.084)
-.584 (.107)
.107 (.081)

.167 (.079)
-.166 (.079)
-305 (.091)
212 (177)

631 (.083)

161 (.045)

391 (.079)
.188 (.023)

Note: Numbers in parentheses next to the GARCH(1,1) parameter estimates are t-ratios and next to excess kurtosis and skewness
values are standard errors. The Q-statistic is distributed as x2(23) on the null of no autocorrelation and the ARCH test is distributed

as x2(1) on the null of a stationary variance. An asterisk next to a test statistic indicates significance at the 5% critical level which

is 35.173 in the case of the Q-statistic and 3.842 in the case of the ARCH statistic.

29



Table 5.4 BDS Results for AR Residuals and GARCH(1,1) Standardized Residuals for Weekly Futures Prices

wmoh~ W O N

. W N

(Dimensions 2 Through 5 and £ Equaling 0.5, 1, 1.5, and 2 Standard Deviations)

e=0.5
AR GARCH
0.216 -0.179
0.332 -0.174
0.709 0.089
1.054 0.323
*4,124 0.132
*6.613 0.888
*9.824 *2.222
*13.879 *3.739
*5.260 1.248
*6.669 1.449
*0.628 *2.596
*11.853  *3.046

e=1

AR GARCH
Australian Dollar

0.318 -0.194

0.042 -0.452

0.074 -0.344

0.158 -0.202

British Pound

*3.625 -0.574

*5.284 -0.534

*6.607 -0.308

*7.971 0.131
Canadian Dollar

*5.261 1.393

*6.319 1.274

*7.650 1.678

*8.756 1.911

e=15

AR  GARCH
0444  -0.582
0.183  -0.626
0.041  -0.726
-0.011  -0.706
#3762  -0.536
#4972 -0.966
#5989  -0.832
%6894  -0.472
4,929 0.879
*5.583 0.596
#6.173 0.784
*6.476 0.711

e=2

AR GARCH
0.808 -0.910
0.678 -0.422
0.542 -0.384
0.393 -0.410
*4.301 0.009
*5.371 -0.565
*6.022 -0.681
*6.641 -0.447
*4.040 0.170
*4.315 -0.135
*4.659 0.134
*4,702 -0.042

€9
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e=0.5

AR GARCH
*7.565 -0.001
*10.265 0.465
*12.450 0.295
*16.005 0.787
*¥3.675  *-1.663
*5.820 -1.515
*7.560 -1.035
*9.356 -1.071
#6.293 1.145
*8.499 1.190
*12.309 2.390
*15.385  *3.055

Table 5.4 (cont'd)

e=1
AR GARCH
Crude Oil
%9503  -0.567
#11.066  -0.568
¥11.900  -0.860
#13370  -0.648
Copper
#3962  *-2.070
#6267  *-2.146
#7979  #-1.857
%9070  *-1.845
Deutschemark
5802 0.687
#7.465 0.515
%9.530 1.263
#11.033 1.432

e=L5

AR GARCH
*10.099 -1.081
*11.139 -1.169
*11.799  *-1.449
*12.859  *-1.263
*4215  *-2.037
*6.534  *-2.156
*§217  *-1.974
*9200  *-2.001
*6.214 0.504
*7.871 0.399
*0.031 0.952
*9.940 1.146

e=2

AR GARCH
*7.679 -1.050
*8.680  *-1.420
#9.482  *-1.596
*10.635  *-1.464
*4.119  *-1.636
*6.188  *-1.766
*7.592  *-1.699
*8.637  *-1.753
*6.175 0.242
*7.984 0.032
*8.783 0.423
*9.408 0.701

¥9
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e=0.5

AR  GARCH
*8.290 -0.198
*10.383 -0.299
*13.403 0.652
*16.590 0.991
*9.301 0.816
*11.431 1.224
*13.478 1.205
*16.185 0.552
*4,086 -0.411
*5.195 0.187
*5.627 0.094
*6.673 0.186

e=1
AR GARCH
Gold
*8.894 -0.236
*10.251 -0.281
*12.177 0.439
*13.858 0.718
Heating Oil
*9.554 | 0.156
*11.417 0.425
*12.694 0.355
*14.089 -0.009
Unleaded Gas

*5.023 -0.441
*6.257 -0.272
*6.630 -0.662
*7.302 -0.794

Table 5.4 (cont'd)

=15

AR GARCH
*8.327 -0.234
*9.491 -0.486
*10.837 0.176
*11.673 0.378
*10.098 -0.253
*11.892 -0.017
*12.988 0.006
*#13.859 -0.168
*4.978 -0.473
*6.347 -0.359
*6.653 -0.691
*7.094 -0.823

e=2

AR GARCH
*6.244 ‘ -0.147
*7.619 -0.325
*9.049 0.027
*0,504 0.077
*0.803 -0.523
*11.162 0.003
*11.968 0.244
*12.548 0.262
*4,323 -0.640
*5.457 -0.676
*5.704 -1.072
*6.007  *-1.241

¢9
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e=0.5

AR GARCH
*3.914 *2.234
*6.471 *3.336
*7.147 *3.433
*8.268  #3.942
*7.570 1.312
*9.137 1.755
*10.860 2.139
*12.107 1.506
*4.057 0.178
*5.742 0.397
*7.883 0.870
*10.623 1.260

e=1

AR GARCH
Japanese Yen

*3.254 1.577

*4.733 *2.141

*5.735 *2.474

*6.678 *2.879

Platinum

*8.681 1.244

*0.877 1.475

*10.707 1.655

*11.373 1.389
Swiss Franc

*4.571 0.781

*6.385 1.014

*8.194 1.566

*9.773 1.831

Table 5.4 (cont'd)

e=15

AR GARCH
*2.615 0.849
*3.852 1.332
*4.634 1.685
*5.295 2.141
*9.496 1.115
*10.508 1.421
*11.295 1.423
*11.541 1.148
*4.769 1.085
*6.453 1.136
*8.029 1.720
*8.901 1.902

e=2

AR  GARCH
#2.158 0.687
*3.179 1.007
#3748 1.217
*4.238 1.606
*9.486 0.648
*10.584 0.989
*11.517 1.180
*11.622 0.996
*5.048 1.630
*6.418 1.350
*7.700 1.766
*8.327 1.844
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Table 5.4 (cont'd)

e=0.5 e=1 =15 e=2
m AR GARCH AR GARCH AR GARCH AR GARCH
Silver ,
2 *10.867 1.384 *11.039 1.445 *11.188 1.252 *11.196 0.667
3 *13.578 1.101 *13.354 1.083 *13.176 0.876 *13.068 0.582
4 *16.791 1.332 *15.535 1.354 *14.697 1.205 *14.162 0.913
5 *20.411 1.246 *17.595 1.026 *15.748 0.941 *14.740 0.909

Note: An asterisk indicates significance at the 5% critical level. The standard normal critical values were used in the case of the AR

residuals and Hsieh's (1991) table XIII of simulated BDS critical values was used in the case of the GARCH standardized residuals.
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-1:61
-1.65
-1.63
-1.94

2.11
2.34
2.49
2.90

Table 5.4 (cont'd)

59% Critical Values for the BDS Test

e=1

2.5% critical point

-1.52
-1.29
-1.17
-1.11

97.5% critical point

1.96
2.14
2.25
2.40

e=15

-1.52
-1.29
-1.17
-1.00

1.85
2.01
2.17
2.28

I
()

&

-1.49
-1.29
-1.12
-0.99

1.88
2.00
2.14
2.22

N(0,1)

-1.96
-1.96
-1.96
-1.96

1.96
1.96
1.96
1.96
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Table 5.5 Dominant Lyapunov Exponent Point Estimates for the GARCH(1,1) Standardized Residuals of Weekly Futures Prices

_ Dominant Lyapunov Exponent Point Estimate Value of Minimized BIC
Series # Obs. First 500 Last 500 All Obs. First 500 Last 500 All Obs.
Australian Dollar 330 0.043 (3,7,2) 1.3717
British Pound 955 -0.484 (1,4,2) -0.003 (3,7,2) 1.428 1.421
Canadian dollar 854 -0.114 (2,5,2)  -0.014 (1,10,2) 1.4118 1.3975
Crude Oil 530 -0.319 (1,6,2) 1.4166
Copper 905 0.057 (2,10,2) -3.939 (1,1,1) 1.4355 1.4412
Deutschemark 955 -5.519 (1,1,1) -0.941 (3,2,1) 1.4397 1.4372
Gold 961 -0.019 (3,7,2) -1.301 (3,2,1) 1.4377 1.4376
Heating Oil 734 -0.025 (3,7,2) -0.124 (2,6,2) 1.4366 14312
Unleaded Gas 439 ' -4.952 (1,1,1) 1.4432
Japanese Yen 865 0.019 (3,9,2) 0.023 (3,8,2) - 1.4099 1.4095
Platinum 1072 -3.485 (1,1,1) -0.680 (2,3,1) 1.4382 1.4407
Swiss Franc 955 | -0.22 (3,5,1) -1.096 (2,2,1) 1.4323 1.4375
Silver 1140  -10.767 (2,1,1) -0.416 (3,4,1) 1.4258 1.4276

Note: In parentheses beside each dominant Lyapunov exponent is the best fit parameter triple (L,m,k) chosen by minimizing the
BIC information criterion over all triples [ from 1 to 3, m from 1 to 10, and & from 1 to 3], where L is the time delay parameter,

m is the dimension of the embedding, and % is the number of parameter units in the nonlinear regression.
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Figure 5.1 Estimated Largest Lyapunov Exponent for Each Triple (L,m,k) for the Australian

Dollar, All Observations
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Figure 5.2.A Estimated Largest Lyapunov Exponent for Each Triple (L,m,k) for the British

Pound, First 500 Observations
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- Figure 5.2.B Estimated Largest Lyapunov Exponent for Each Triple (L,m,k) for the British

Pound, Last 500 Observations
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Figure 5.3.A Estimated Largest Lyapunov Exponent for Each Triple (L,m,k) for the Canadian
Dollar, First 500 Observations
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Figure 5.3.B Estimated Largest Lyapunov Exponent for Each Triple (L,m,k) for the Canadian

Dollar, Last 500 Observations
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Figure 5.4 Estimated Largest Lyapunov Exponent for Each Triple (L,m,k) for Crude Oil, All

Observations
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Figure 5.5.A Estimated Largest Lyapunov Exponent for Each Triple (L,m,K) for Copper, First

500 Observations
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Figure 5.5.B Estimated Largest Lyapunov Exponent for Each Triple (L,m,k) for Copper, Last

500 Observations
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Figure 5.6.A Estimated Largest Lyapunov Exponent for Each Triple (L,m,k) for the

Deutschemark, First 500 Observations
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Figure 5.6.B Estimated Largest Lyapunov Exponent for Each Triple (L,m,Kk) for the

Deutschemark, Last 500 Observations
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Figure 5.7.A Estimated Largest Lyapunov Exponent for Each Triple (L,m,k) for Gold, First 500

Observations

1.54 —+
A'\,’A:Q: ;'A:
A ,Ofa'8:§~%—,‘a N a
. - A o’ N A
O - S e .
VRN —Iﬁuo, o
re A =] >, [m}
1.51 —+ - A *
'A‘OID o ]
lllo ’ \D
B a
:0\ rs :
A ’ O A A
2 A \
Q ! A
P aadm A\
m1.48 f /\
L}
H
o y 2,
' A \ X
l:: \ \ A
1
& & \ [] A
8 )‘A X7 S =
145 —+ <
A
A
142 -+
A R N S I O T e T s T e s T R R T2 R T2 T 2 R =T =T = O S o oS- oY~ < i - e J o )Y o ) Y o) S e
vvvvvvvvvvvvvvvvvvvvvvvvvvv‘_(
N
(m,k) foreach L

—0o— BIC,L=1 —>— BIC,L=2 —*— BIC,L=3 - ~P-- LE]L~1

(10,2)

(10,3)

--9--1EBL=2 --A--LEL=3

Lyapunov Exponent(LE)

08



BIC

Estimated Largest Lyapunov Exponent for Each Triple (L,m,k) for Gold, Last 500

Figure 5.7.B
Observations
'0:.6\ A‘é:A’:g
. V%2 B, o
1.54 -+ e N o o o
,'A"zg o . A \r_'ll C]
ATY N
IIIO\ D ‘D D —"‘_1
.
- AN
S . D E
1.51 I ’Il" : f—
+ 2 g
5]
o
- 2.
/A R =
. A 43
1.4 A T2 3
(o}
.48 =
2,
g
4 —--_4 -1
k. '1
1.45
+ -5
A
142 - - -6
HHHNNNCQMMQ‘#Q‘WWW\O\O\OL\PL\OOOOOOO\O\O\OOO
\/vvvvvv-vvvvvvvvvvvvvvvvvvvvﬁH‘_.(
S’ N’ N’
(m,k) foreach L.

—&— BIC,L=1

—— BIC,L=2 —#— BIC,L=3 --0--LEL=1 -~-°¢ " LEL=2 -~ a-- LEL=3

I8



‘Figure 5.8.A Estimated Largest Lyapunov Exponent for Each Triple (L,m,k) for Heating Oil,

First 500 Observations
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Figure 5.8.B Estimated Largest Lyapunov Exponent for Each Triple (L,m,k) for Heating Oil,
Last 500 Observations

1.54

1.42

(m,k) foreach L

83

s-o-- LEL=2 --4-- LEL=3

=1

—0— BIC,L=1 —*— BIC,L=2 —2*— BIC,L=3 - ~P-- LEL



(gDisuodxyg aounded ]

Observations
A

(€°01)
(z'o1)
(1°01)
(€6)
(T'6)
(1°6)
(€°8)
(T'8)
(1°8)
(€L
(T'L)
(1)
- (€9)
R (T9

| \\v' (19

>l (€°6)
T (TS)

2 O 5] (16)

Figure 5.9 Estimated Largest Lyapunov Exponent for Each Triple (L,m,k) for Unleaded Gas, All
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Figure 5.10.A Estimated Largest Lyapunov Exponent for Each Triple (L,m,k) for thé Japanese

Yen, First 500 Observations
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Figure 5.10.B Estimated Largest Lyapunov Exponent for Each Triple (L,m,k) for the Japanese
Yen, Last 500 Observations
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Figure 5.11.A Estimated Largest Lyapunov Exponent for Each Triple (L,m,k) for Platinum,

First 500 Observations
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Figure 5.11.B Estimated Largest Lyapunov Exponent for Each Triple (L,m,k) for Platinum,

Last 500 Observations
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Figure 5.12.A Estimated Largest Lyapunov Exponent for Each Triple (L,m,k) for the Swiss

(gusuodxg Aounded

Franc, First 500 Observations
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Figure 5.12.B Estimated Largest Lyapunov Exponent for Each Triple (L,m,k) for the Swiss

Franc, Last 500 Observations
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Figure 5.13.A Estimated Largest Lyapunov Exponent for Each Triple.(L,m,k) for Silver, First
500 Observations
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Figure 5.13.B Estimated Largest Lyapunov Exponent for Each Triple (L,m,k) for Silver, Last

500 Observations
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Chapter 6
CONCLUSION

This thesis has presented some general concepts from the study of chaotic
dynamics and has shown that they are applicable, both theoretically and empirically, to the
interpretation of asset price changes. Chapter 2 began by outlining the traditional models
that best explain asset price behavior. The fair game model shows that the average return
of an asset is equal to its expected return. When this model is supplemented with the
submartingale approach, prices are expec;fed to increase at a rate equal to the opportunity
cost of the underlying asset. The main characteristic of submartingale theory is that price
changes, beyond opportunity costs, are serially uncorrelated and appear random.

Another explanation of random looking price changes has come from the study of
nonlinear dynamics. In particular, using nonlinear chaotic dynamics we can show how
simple nonlinear difference equations can yield deterministic time paths that mimic the
output of stochastic systems. A precise definition of chaos was given, then a specific
example, the logistic equation, was used to show how chaotic dynamics can be generated.
Loosely speaking, a chaotic function is one which maps some interval back into itself and
generates an aperiodic time path that has sensitive dependence on initial conditions.

If chaotic structure can be shown to exist in actual asset market time series then
the traditional explanations of market behavior will be called into question. For this to
happen we need good tests of nonlinearity and of chaos. Using the technique of phase
space embedding [Takens (1981)] we can rebuild the underlying attractor [if it exists] of
the actual driving mechanism and test it for various qualities. Using this knowledge we
can find the BDS statistic which provides a diagnostic test for the presence of nonlinear
structure. However, nonlinearity is a necessary but not a sufficient condition of chaos so
we need to go further and test for sensitive dependence on initial conditions. Positivity of

the dominant Lyapunov exponent is used as a measure of sensitive dependence. Chapter 3
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describes the derivation of both the BDS statistic and the dominant Lyapunov exponent
estimate. When applying these empirical tests on actual time series, data quality is
extremely important. In order for chaos to be found, the data has to be at least chaotic
looking, with all the known dependencies filtered out. Chapter 4 explores these problems
and analyzes the data chosen for this study.

In Chapter 5 various data filtering techniques are outlined. The augmented
Dickey-Fuller test is used to check for stationarity. Then the Q-statistic and the ARCH
test is used to check for serial correlation and for conditional heteroscedasticity,
respectively. Logged differences are then fit to a GARCH [general autoregressive
conditional heteroscedasticity] model which adjusts both serial correlation and conditional
heteroscedasticity, again based on the Q-statistic and the ARCH test. Traditionally,
researchers would stop here and assume that the remaining fluctuations are stochastic.
However, for this study, we go further and test the residual fluctuations for hidden
nonlinear dependencies. Results include evidence of nonlinearity in the British pound, the
Canadian dollar, crude oil, copper, and the Japanese yen, based on the BDS test.
Evidence of chaos was found in the Australian dollar, copper, and the Japanese yen, based
on the Nychka et al. dominant Lyapunov exponent estimator. Contradictory evidence in
the case of the Australian dollar indicates limited robustness across inference methods.
The true source of price changes may be some combination of both random and chaotic
elements. However, the amount of noise present has a strong negative impact on the
results of nonlinear testing.

The presence of chaotic nonlinearities implies the existence of deterministic trading
rules. However, the ability to take advantage of these rules depends on both the
approximation of initial cohditions, which are obscured by noise, and the degree of

sensitive dependence on initial conditions.
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Chaos theory applied to economics is still at the conception stage. Current
research is primarily focused on whether chaos exists at all in economic data. Many
studies have founq evidence of nonlinearities and very recent studies have found evidence
of chaotic nonlinearities. Many questions remain to be addressed, both theoretical and
empirical.ﬁ

Theoretical considerations suggest two directions of future research. One is to
build financial models that encompass nonlinear chaotic solutions. The other direction is
to analyze the dynamics when agents take advantage of short term deterministic trading
rules. This is a case where the solution becomes exogenous to the system. As computer
hardware and software improve we will be able to identify more precisely the nature of the
nonlinearities. Empirical considerations would question the source of the nonlinearities

and identify both the structure and the prediction horizon.
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