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ABSTRACT 

The main goal of this thesis is to develop' analytical techniques for assessing 

power system security as far as static voltage stability is concerned and also for the 

planning of new volt-ampere-reactive (VAR) facilities to enhance security from voltage 

collapse. 

A method of computing a practical voltage stability index, which serves to 

determine the voltage stability or otherwise of an operating point, is presented. 

Simulation of a process that may lead to system voltage collapse is presented. 

The simulation is concerned with the action of the load-tap-changing (LTC) 

transformer following a system disturbance. 

A new method of determining the voltage stability limit or critical state of a 

general multimachine power system is presented. In this method, the search for the 

stability limit is formulated as an optimization problem. The method accommodates 

device constraints or limitations in system equipment. A security index which may 

serve as a measure of the. security of a given operating condition from voltage 

instability is defined. 

A new method of planning shunt VAR compensation facilities is presented. The 

novel feature of this method is that the location and size of shunt VAR facilities are 

determined for the dual purpose of (i) achieving an acceptable system voltage profile, 

and (ii) achieving a specified degree of system security against voltage collapse. The 

'U 



objective is a1soto minimize the total cost of the VAR installation. 
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CHAPTER 1 

INTRODUCTION 

1.1 BACKGROUND 

Electric power systems are an integral part of all industrially developed 

societies. The electricity generated and transmitted by these power systems has 

proven to be a most convenient, flexible, clean, safe, efficient, and useful form of 

energy. At the present time, a lack of electricity is newsworthy. Electricity is so 

vital in the lives of people that its unavailability causes inconvenience, loss of pro-

duction, and danger to many individuals, including those who are hospitalized. A 

prolonged blackout could lead to social disorder, and even national tragedy [1]. 

The blackout problem of an electric power system has traditionally been asso-

ciated with the steady state and transient stability problems. Steady state and tran-

sient instability are the phenomena involved in connection with the loss of a major 

portion of a grid due to the inability of certain generators to maintain synchronism 

in the face of small and large disturbances respectively [2]. These types of insta-

bility are, generally speaking, well understood today. System stability is being 

preserved to a greater extent than ever by the advent of faster and more effective 

stabilizers [3], and more reliable protection systems [4]. 

1 
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In recent years a category of instability, usually termed voltage instability or 

collapse, has been responsible for several major blackouts world-wide. There have 

been reported cases of voltage instability phenomena in France [5], Belgium [6], 

the United States [7], Japan [8], and recently in the Ontario Hydro system in 

Canada [9]. 

As frequency is a critical parameter in the balance between real (MW) genera-

tion and real (MW) load throughout the power system, so transmission voltage lev-

els reflect the balance between the supply and demand of reactive power. While 

frequency is uniform throughout the power system, voltage levels can vary 

markedly across a transmission network, designed to operate at a particular voltage 

level. As a result, it is generally accepted that the voltage instability problem, 

which is associated with the inability of a power system to maintain bus voltage 

magnitudes, is due to a deficit of reactive power at certain buses in the network 

[10,11]. The actual process of collapse may therefore be triggered by some form 

of disturbance, resulting in significant changes in the reactive power balance in the 

system. 

The operating environment of many present-day power systems substantially 

increases the vulnerability of the system to reactive deficit problems and therefore 

difficulties in maintaining system voltage profiles. Several factors have contributed 

to this situation. There is increasing difficulty in obtaining power plant sites in the 

- vicinity of major power consumers. Also, the exploitation of hydro power 

resources has proceeded spectacularly to a point where remote, large generation 



3 

plants have been developed [1]. As a result, electrical power is often transported 

through high capacity lines over long distances from generation to consumer. 

Furthermore, the strengthening of transmission networks has been curtailed in gen-

eral by high costs, and in particular cases by the difficulty of acquiring right-of-

way [12]. This has resulted in increased loading and exploitation of the older cir-

cuits. 

Other factors include the relative decrease in the reactive power outputs of 

generating units, and shifts in power flow patterns associated with changing fuel 

costs and generator availability [12]. 

Literature on voltage collapse problems reveals that system voltage collapse 

can take several forms [13,14]. In some cases, phase angle and frequency 

remaineI constant while voltage continued to decay to a critical value causing pro-

tection equipment to react and effectively dismantle the network. This form of 

voltage collapse is associated with the instability of the slow secondary voltage 

control equipment (load-tap-changing (LTC) transformer, capacitor switching, and 

load shedding). It occurs when the system does not have enough capacity to sup-

ply the load. Because the collapse process occurs over a relatively long period of 

time (several seconds to several minutes), it is generally referred to as being static 

rather than dynamic. In other cases, frequency and angle swings accompany the 

voltage decay. This dynamic mechanism of voltage collapse is related to the tran-

sient stability of post-contingency conditions [15,16]. 
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The incidents of voltage collapse are of serious concern to the electric utility 

-industry, which is actively pursuing the development of computer-aided procedures 

to avert the process or minimize its effect. 

Procedures that are being considered include: 

(i) Procedure to determine the voltage stability or otherwise of a given or anti-

cipated operating condition. 

(ii) Procedure to assess the margin of an operating condition to voltage col-

lapse. 

(iii) Control methods to move the system to a more secure operating condition if 

security is in jeopardy. 

(iv) Planning network reinforcement for improved security to collapse. 

In response to these concerns, research efforts are made today in many coun-

tries to clarify voltage instability or collapse, , and to develop new planning criteria 

and on-line security monitoring and control tools that may help in averting 

blackouts [5-45]. 

1.2 LITERATURE SURVEY 

In the literature, the static and dynamic mechanisms of voltage collapse have 

been studied separately. This is because of the time scale separation between the 

dynamic changes in frequency and those in voltage due to the secondary voltage 

control equipment. 
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This thesis is concerned with the static mechanism of voltage collapse. Exist-

ing literature may be categorized on the basis of the concerns listed in Section 1.1 

above. Literature on the dynamic mechanism is just beginning to emerge [38,43]. 

1.2.1 Voltage Stability Conditions 

Some work has been reported on defining and establishing voltage stability 

criteria, i.e., criteria that may be used to determine whether or not an operating 

condition is stable from voltage stability viewpoint. These voltage stability criteria 

are based on the natural cause-effect relationships that exists at load buses in the 

power system under normal (stable) conditions. Also, some of the criteria are 

based on the qualitative study of the simple two-bus power system. 

In [40], Concordia defined voltage instability as being manifested by the fact 

that when the load impedance decreases (i.e., more load is added), the resulting 

voltage decrease is so large that the load power consumption does not increase, or 

even decreases. This stability criterion was applied to and demonstrated for the 

simple two-bus system. However, it is not readily applicable to a practical system 

since loads are generally not of the impedance type. 

In [22] and [42], it is suggested that an operating condition is stable from the 

voltage viewpoint if every load bus voltage increases when a source voltage 

increases or when a shunt capacitor is switched in at a load bus. Mathematical 

conditions are derived based on this definition. The mathematical conditions 

require that for voltage stability the reduced Jacobian matrix of the load flow 
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equations must be nearly equal to an M-matrix. A matrix with non-positive off-

diagonal elements is referred to as an M-matrix if it is non-singular, and elements 

of its inverse are all nonnegative. Unfortunately, it is apparent that this condition 

may not be sufficient. 

As noted in [25], transformer taps are a major contributing factor in system 

voltage collapse. In [8,30,37], voltage instability is characterized in association 

with the slow tap-changing transformer dynamics. Stability conditions are derived-

in terms of allowable transformer taps settings using eigenvalue analysis. These 

methods requiring eigenvalue analyses are not easily applicable in practice. 

In [32] Borremans et. al. proposed a criterion for voltage stability of a given 

operating condition. The criterion states that for an operating point, voltage stabil-

ity is ascertained when at that operating point, an elementary increase of reactive 

demand is met by a finite increase in reactive power generation. Analytical com-

putation of an index, which is defined on the basis of this criterion, for the simple 

two-bus system was presented in the paper. In order to generalize this criterion to 

a general power network the paper suggested the use of two load flow computa-

tions. Even though this criterion seems quite practicable, the generalization requir-

ing two load flow computations may be quite time consuming for most power sys-

tems. 
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1.2.2 Proximity Indicators 

A number of indices have been proposed to assess the proximity of a operat-

ing condition to voltage collapse. Some of the proposed indices are based on the 

observation by several investigators that the Jacobian matrix of the load flow equa-

tions is singular at the voltage stability limit or the collapse point [13,34]. 

Tamura et. al. [13] were one of the first to observe a relation between the 

singularity of the Jacobian matrix and static voltage stability limit. Kwatny et. al. 

[34] studied the stability limit problem as a static divergence or bifurcation charac-

terized by the disappearance of an equilibrium point. Beyond this point, solutions 

to the load flow equations cannot be obtained. 

In [14], Thanuchit et. al. suggested the use of the minimum singular value of 

the Jacobian matrix of the load flow equations as a security index, and derived 

static control strategies based on this index. Kessel et. al. [31] developed a voltage 

stability index based on the feasibility of solution to the load flow equations at 

each bus. In [33], Jarjis et. al. used a generalized eigenvalue approach to deter-

mine supporting hyperplanes of the feasibility region. The method serves to indi-

cate the stability margin of an operating point. 

One common drawback of all these methods is that the operating constraints 

on system equipment (e.g. MW and MYAR limits of system generating units) are 

not taken into consideration. As noted by Edwin et. al. (discussion to [31]), pro-

duction capabilities of generating units are important considerations, moreso since 

voltage collapse is considered to be a reactive power problem. 
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In [18], Venikov et. al. suggested the use of repeated load flow computations, 

as power injections are increased, to determine the voltage stability limit. Having 

determined the stability limit, the margin to collapse is then available. However, 

besides being computationally very demanding, this approach may be inadequate 

due to the unreliable behaviour of the Newton-Raphson method of load flow 

analysis in the vicinity of the voltage stability limit. This behaviour is linked to 

the singularity of the Jacobian at the voltage stability limit, and the existence of 

close multiple load flow solutions around that limit. 

Flatabo et. al. [26] suggested the use of a combination of load flow analysis 

and sensitivity parameters in order to reduce the computation time and circumvent 

the numerical ill-conditioning known to occur as the voltage stability limit is 

approached. Another possible short-cut to the repeated load flow calculations is 

the quadratic extrapolation method proposed in [32]. These methods are inherently 

approximate and may yield unrealistic results: 

Another approximate method is suggested by Barbier et. al. [25] to evaluate 

the condition at the voltage stability limit. Other approximate methods have been 

suggested which are derived from the study of the simple two-bus power system. 

Details of these may be found in [32,44]. Again, these methods being approxi-

mate, may yield unrealistic results. 
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1.2.3 Control Strategies 

In comparison to the subject on proximity indicators, not much has appeared 

in the literature as regards control strategies to improve system security against vol-

tage collapse. As noted previously, Tiranuchit et. al. [14] suggested control stra-

tegies using the minimum singular value of the Jacobian of the load flow equations 

as an index. In [45], Kirschen et. al. suggested a method of rescheduling genera-

tors' MW power output to correct voltage violations using linear programming. 

Methods such as LTC transformer tap blocking and generator MW output 

rescheduling are also suggested in [25]. 

It is noted in [34], that a control strategy should identify the weakest or criti-

cal bus in a transmission system. Knowledge of this is useful since the collapse 

process may be initiated from this critical bus. The critical bus may be the most 

effective location to apply emergency countermeasures (for example, load shed-

ding) in order to save the rest of the system. 

Kessel et. al. [31] proposed a method of identifying the system critical bus 

based on certain indices which measure the proximity of the load at each bus to the 

feasibility limit. Again, these indices do not take the limits of system equipment 

into consideration and may therefore yield unrealistic results. 

1.2.4 Planning Network Reinforcement 

As mentioned previously, the problem of voltage collapse is usually precipi-

tated by reactive power deficiency. It is therefore apparent that the security of the 
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power system against collapse may be improved at the planning stages by locating 

adequate shunt VAR compensation equipment at key buses in the network. 

Much work has been reported in the literature on the problem of planning 

shunt VAR facilities for maintaining voltage magnitudes within specified limits. 

Some of this work is reported in references [46] to [55]. However, as noted by 

many investigators [19,28], voltage magnitudes alone is not a good enough indica-

tor of the proximity of an operating condition to collapse. Therefore, shunt VAR 

sources need to be planned for purposes of voltage collapse prevention as well as 

voltage magnitude considerations, 

In [8] and [14], methods are presented for identifying the most beneficial loca-

tions to install shunt capacitors for the purpose of improvIng system security as far 

as voltage collapse is concerned. It is clear that just identifying the best location is 

not sufficient. The size and locations of VARs needed to meet a minimum 

specified security requirement, while minimizing costs, should be determined. 

1.3 OBJECTIVES AND CONTRIBUTIONS OF THE THESIS 

1.3.1 Objectives of Thesis 

As already pointed out, most of the work and methods related to assessing the 

margin of an operating condition to the collapse point do not take the operational 

limits of system equipment into consideration. In particular, the MW and MVAR 

production capabilities of system generators, and the limits of transformer tap set-
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tings are of importance since the problem of voltage collapse is usually a reactive 

power problem. 

The main objectives of this thesis are as follows: 

(i) To develop a method of assessing the margin of an operating condition to 

voltage collapse, taking into consideration the operational limits of system 

equipment. 

(ii) To develop a method of identifying electrically weak buses in a transmis-

sion system. As mentioned previously, knowledge of the system's weakness 

is essential for effective control purposes. 

(iii) To develop a method of planning shunt VAR sources (static capacitors and 

inductors , synchronous condensers) for purposes of strengthening the net-

work thereby improving security as far as voltage collapse is concerned. 

1.3.2 Contributions of Thesis 

The main contributions of this thesis may be summarized as follows: 

(i) The voltage stability conditions proposed in [32] is generalized for applica-

tion to practical size power systems. 

(ii) A method of determining the voltage stability limit of a general power sys-

tem accurately and directly is proposed. The methodology takes the opera-

tional limits of system equipment into account, and its applications illus-

trated by examples. A security margin to collapse is subsequently defined. 
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(iii) Two methods of identifying the system's weakest bus are proposed. 

(iv) A method of planning shunt VAR compensation facilities for improved 

(specified) system voltage security is proposed. 

1.4 SUMMARY OF THESIS CHAPTERS 

In Chapter 2, an analysis of a simple two-bus power system is presented in 

order to provide an insight into the problem of voltage instability. A method to 

determine the voltage stability condition proposed in [32] for a practical size power 

system is presented. The method uses sensitivity parameters computed at the given 

operating point. It does not require repeated load flow computations Application of 

the method to a 28-bus network is given. 

Simulation of a process that may lead to voltage collapse is presented. The 

simulation study is concerned with the action of the LTC transformer following a 

system disturbance. It also takes into account the load-voltage characteristics of 

the exponential type. 

In Chapter 3, a method is presented to determine the voltage stability limit or 

critical point of a multimachine power system. The problem is formulated as a 

nonlinear optimization problem. With this formulation, the limits on system equip-

ments are taken into consideration. The formulation also accommodates considera-

tion of the system's load-voltage characteristics. The solution of the optimization 

problem using the sequential quadratic programming algorithm is discussed. A 

security margin which may serve as a measure of the system's security from 
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collapse is defined. Results of applications of the method to two example systems 

are presented and discussed. 

In Chapter 4, two methods to identify the system's weakest spot are 

presented. The methods take advantage of the approach described in Chapter 3 for 

determining the voltage stability limit. The first method is based on the voltage 

change at each bus as the system condition changes from an initial point to Sthe 

voltage stability limit. The other method is based on sensitivity information com-

puted at the voltage stability limit. The two methods give practically identical 

results when applied to three example systems. 

In Chapter 5, a new method of planning VAR compensation facilities for the 

purpose of improving system voltage profile and security is presented. The objec-

tive is also to minimize the total cost of the VAR installation. The problem is for-

ñiulated as a mixed-integer nonlinear programming (MINP) problem. A two-stage 

algorithm to obtain a near-optimal solution is presented. An algorithm to consider 

contingency situations is also presented. Results of application of the method are 

presented and discussed. 

In Chapter 6, the main conclusions on the work reported in the thesis are 

given together with some suggestions for further research in this area. 



CHAPTER 2 

POWER SYSTEMS VOLTAGE INSTABILITY 

2.1 INTRODUCTION 

The phenomena of voltage instability or collapse may take several forms. It 

is characterized by progressive falling bus voltages, and it has occurred in connec-

tion with several major blackouts throughout the world. The main problem arises 

because of inability of the network to meet a demand for reactive power, required 

to sustain satisfactory voltage levels. The collapse process may be aggravated by 

the load-voltage characteristics. For example, the induction machine loads, which 

often cnstitute 60-70 peicent of the total system loads [57], have the characteris-

tics that, below a certain voltage level, the reactive demand increases as supply 

voltage decreases. This causes a further decrease in voltage. 

As mentioned in Chapter 1, this thesis is concerned with the static aspect of 

voltage collapse. This form of voltage instability is associated with the instability 

of the slow secondary voltage control equipment (load tap-changing (LTC) 

transformer, capacitor switching, load shedding). Owing to its slow nature, this 

process is classed as being static. Within this context, it is desirable to know, 

amongst other things, whether a proposed operating condition is stable from the 

voltage stability viewpoint. In other words, given a projected system state, 

14 
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identified, e.g., in terms of a solution to the load flow equations, it is desirable to 

know whether the systems voltage controllers would function in a stable mode. 

In the next section, an analysis of a simple power system is presented in order 

to give insight into the problem of voltage instability and collapse. In section 2.3, 

a brief review of some of the methods proposed to assess the voltage stability of a 

power system is given. In section 2.4, the evaluation of a voltage stability condi-

tion is presented. Simulation of a process that may lead to system voltage collapse 

is presented in section 2.5. 

2.2 ANALYSIS OF VOLTAGE INSTABILITY -A SIMPLE EXAMPLE 

In order to provide insight into the problem of voltage instability considered, a 

simple power system will be examined first. The condition for voltage stability 

will be derived. 

Figure 2.1 shows the simple system including an impedance load, 

ZR = ZR 11, supplied by a constant voltage source, V1, through a transmission 

line of impedance 2j = ZL and a LTC transformer of turns ratio t 1. It is 

assumed that the LTC transformer is used to regulate the voltage at the receiving 

end. 

Letting 

Zr 
Z=--=z /0, 

ZR - 
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it can be shown that, 

v= 
R [(r2 + Z cos 0)2 + (Z sin 0)211/2 

tV1 
(2.1) 

where, VR is the magnitude of the receiving end voltage. 

Normal operation of the LTC transformer involves turns ratio adjustment 

corresponding to a change in VR. If VR drops, t is decreased, thereby raising VR. 

Thus At <0 requires EtVR > 0 for stable operation. However, if At <0 results 

in EVR <0, the receiving end voltage will be reduced further, indicating voltage 

collapse. Therefore, for voltage-stable operation of this system, a necessary condi-

tion is, that, 

WR 
<0 

dt 

Combining equations (1) and (2) we find the corresponding condition, 

Hence for voltage stability, 

z 

IZRf 

(2.2) 

(2.3) 

(2.4) 

Assuming for example that the operating value of r is equal to 1 (the nominal 
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value), equation (2.4) reduces to 

IZLI 
<1 

JZRI 
(2.5) 

For normal stable operation I ZR I > J ZL I . However, it may turn out that 

I Z I < I Z I due to a system disturbance causing line outage (increasing source 

impedance), or due to excessive real and/or reactive power pickup at the load end 

(decreasing IZR I 

Figure 2.2 shows the variation of VR against MVA demand SR , at constant 

power factor. Point A (where VR = Vet) represents the critical system state. 

V 1t) is considered the stable operating region, satis-The upper segment (VR > 

tying equation (2.5). The broken line is a similar plot for a higher sending end 

.voltage V1 . It can be seen that in the stable region, increasing the sending end 

voltage increases the receiving end voltage whereas, in the unstable region, increas-

ing the sending end voltage actually reduces the receiving end voltage. It should 

also be observed that for an initial operating point in the unstable region, a load 

shedding action (reducing MVA load or increasing ZR ) causes further reduction 

in the receiving end voltage. 

The critical point corresponds to the condition I Z I = I Z I which is the 

condition under which the maximum available power is obtained at the receiving 
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end. This power is 

sR=PJnax+jQr=+ eJ4 v2 
4-0   ZL 

_ 

(2.6) 

The corresponding load voltage, which is the minimum stable voltage at the load 

terminal, is 

fjcrit 
- 

• 

2 cos (4-0 ) V1 
(2.7) 

It will be useful to know not only that the system is operating on the stable 

portion of the curve but also how close it is to the the voltage stability limit or crit-

ical point. 

2.3 REVIEW OF POWER SYSTEMS VOLTAGE STABILITY 

CONDITIONS 

Several conditions for the voltage stability of an operating point have been 

proposed. Venikov [42] suggested a criterion using the model for a simple system 

where power is transmitted from one bus through a transmission line to the load 

bus. The receiving end voltage is stable from voltage standpoint if the voltage at 

the receiving end, VR , increases as the sending end voltage V1 increases, i.e., 
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Abe et. al. [22] generalized this idea to multigénerator multiload systems and 

deduced that the power system is stable from the voltage stability viewpoint if the 

voltage at every load bus increases when any of the source voltages increases, or 

when a static capacitor is switched on at a load bus. It is then shown that for this 

condition to hold, the reduced Jacobian matrix of the load flow equations should be 

nearly equal to an M-matrix. A matrix B with non-positive off-diagonal elements 

is an M-matrix if B is non-singular, and elements of B 1 are all nonnegative. 

In [8], Abe et, al. included the dynamics of the load tap changers with the 

power flow equations. Stability of an operating point is analysed. Stability condi-

tions are derived based on the eigenvalues of the set of linearized dynamic system 

equations. 

In [30] Liu et. al. studied system voltage stability via linearized dynamical 

equations of the LTC transformer taps and steady state decoupled reactive power 

equations. A set of conditions for voltage stability is derived for a hyperbox of tap 

settings and load bus voltages, using eigenvalue analysis. 

Medanic et. al. [37] proposed an approach to modeling, analysis and design of 

slow distributed voltage control schemes. A nonlinear discrete type dynamical 

model governed by the LTC transformer taps as control tools is studied. Condi-

tions are derived to predict when the LTC based scheme may be poorly coordi-
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nated and not be able to maintain voltages. 

Tamura et. al. [13] suggested that voltage instability is related to the multiple 

power flow solutions. It was noted in [13] that close multiple voltage solution 

pairs are likely to occur under heavy loading conditions, and that the individual 

solutions of the pair have different features from the standpoint of stability. When 

there is a pair of multiple power flow solutions where one is stable while the other 

is unstable, the effect of voltage control that is beneficial to the stable solution may 

be detrimental to the unstable solution. 

Kwatny et. al. [34] suggested that bifurcation theory may provide an appropri-

ate tool for the analysis of multiple power flow solutions. They have studied vol-

tage instability along this line. It is shown in [34] that an equilibrium point is 

stable if it is strictly causal and stable in the sense of Liapunov. 

The above methods are of theoretical interest and not easily applicable in 

practice.. 

In [32], Borremans et. al. proposed a criterion for the voltage stability of a 

given operating condition. The criterion states that for an operating point, voltage 

stability is ascertained when at that operating point an elementary increase of reac-

tive power demand is matched by a finite increase of reactive power generation. If 

an index VS (voltage stability) is defined, 
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vs= 
dQG 1'R° 

dQR 

where QG is the sum of the generated reactive powers, and PR and QR are 

the real and reactive demands, Borremans stability condition may be stated, 

VS>O (2.8) 

The paper [32] discusses analytical computations of the index, VS, for a simple 

two-bus power network. Borresman et al. suggest that with a power flow analysis 

program, it is possible to evaluate the VS indexes for all load buses in a practical 

size power network. First, 'a power flow analysis gives QG for the base case. 

Then a reactive power variation, zQLj, is imposed at a gi1en bus i (or similar 

simultaneous variations at load buses in an area). A second power flow analysis 

gives the change 'G corresponding of the reactive power generated by the gen-

erators, the synchronous condensers (taking into account their physical limitations), 

shunt capacitors and line charging. The ratio AQLi AQG can then be evaluated. 

Borremans approach appears attractive because it is conce,tually simple, and prac-

tical in its implementation. However, the method requires two power flow solu-

tions and may be quite time consuming for most power systems. 

In the next section, a new method is presented for computing the VS indexes 

at all buses (and areas) in a power network. The method requires one power flow 

analysis. Sensitivity analysis is then performed around the solution point to corn-
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pute the VS indexes and hence determine the stability or otherwise of the that solu-

tion point. 

2.4 EVALUATION OF SYSTEM VOLTAGE STABILITY INDEXES 

The method discussed in this section may be considered a generalization and 

extension of the approach proposed by Borreinans et. al. [32]. 

Under a steady , state condition, a power balance is maintained in the network, 

i.e., at an equilibrium point, the total power supply must equal the total load 

demand plus the total transmission losses. This applies for both the real and reac-

tive components of power. 

The reactive power balance may be expressed, 

GT = : QLj  
ie jL 

(2.9) 

where• QGT is the sum of all reactive sources, including, generatini units, syn-

chronous condensers, static shunt capacitors and line charging, Qu is the reactive 

power demand at bus i, q is the total reactive losses, and is the set of all 

load buses. 

Consider a small change in the reactive demand at bus i , 1QLj. For a 

stable steady state condition to be maintained, it is required that, 
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GT = AQLi + Lq 

From equation (2.10), we have, 

AQLj 

GT j0i 

1  

In the limit, as the changes becomes arbitrarily small, we have, 

aQL 1 

VSi=aQGT  1+ ag 

aQL 

(2.10) 

(2.11) 

(2.12) 

where VS1 is the voltage stability index for bus i . For voltage stability, it is 

required that, 

VS >0 J,  - iEJL (2.13) 

From equation (2.12), it appears that VS may be computed if Dq  is 
DQU 

available. The evaluation of Dq will be discussed later. 
aQLI 

tem. 

The voltage stability index can also be defined for a region or a complete sys-

For a region R, with JR as the set of load buses, let 
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R = >QL 
1 E '1R 

An expression similar to equation (2.10) may be written with respect to this region, 

AQGT = AQR .+ Eq 

A voltage stability index may then be defined for this region, 

AQR 

GT Aq 1+ 

Again, a stable operating condition requires that 

(2.14) 

VSR > 0 (2.15) 

In order to evaluate VSR , the ratio Lq //XQR is required. 

The change in the total reactive losses due to changes in reactive demands may be 

expressed, 

Aq = :   
(2.16) 

Assuming equal small increment in the reactive demands, LQLi at all load 

buses in the region, we have, 
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AQR 

n R 

where nR is the number of load buses in the region. 

Combining equations (2.16) and (2.17), 

AQR 'R iEJR Li 

Combining equations (2.18) and (2.14), we have, 

1 

VSR=  

'R iGJR aQL 

(2.17) 

(2.18) 

(2.19) 

It is apparent from equations (2.12) and (2.19) that in order to evaluate the the vol-

tage stability index, the gradient of the reactive loss with respect to the reactive 

demand (real demand remaining constant) is required. 

The losses in the network, p + jq, equal the algebraic sum of all powers 

into the network [58], i.e., 

NN 
=p +jq = 

i=lj=1 1i J 

where 

N is the number of buses 

(2.20) 
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Vi  is the complex bus voltage at bus i 

Y. = G, + fB is the (if )th element of the bus admittance matrix.' 

The system reactive loss can therefore be expressed, 

q= 
2j 

NN 
=- V1V.B..cos(. —6) 

i=lj=l 

where r is the complex conjugate of T . 

(2.21) 

From equation (2.21), the change in the reactive losses with respect to the system 

voltages .may be expressed, 

N—la N—la 

= Avi  il + i1 .5f 
:ti 

where the Nth bus is assumed to be the slack bus. 

(2.22) 

The power injection equations for each bus in the network may be expressed, 

N 
Pi = V.V.Y..cos(a. -) 

j=1 

N 
= ViVjYjfsin(61 -  
j=l 

where is the angle of the admittance 

(2.23) 
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The sensitivity of the real injections, P, and the reactive injections, Q1, around 

a given operating point may be expressed by the following matrix equation, 

(2.24) 

where 

Equation (2.24) is the well-known matrix equation used in the Newton-Raphson 

method of load flow analysis. The matrix, 

as av 

aQaQ 

as av 

is the Jacobian matrix. By inverting the Jacobian matrix, the equivalent inverse 

relation [59] 
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(2.25) 

is obtained. From equation (2.25) the sensitivity of the respective bus voltage 

magnitudes and angle with respect to active and reactive demand is obtained, i.e., 

ay. 
 aQ AQj 

jEJR U 

as 
ASi 

=  jefR 'i Uf' 

Combining equations' (2.22) and (2.27), 

i = 1, 2,  

N—li vi 
, 

. I avi . aQLJ + a& aQUJ I LJ [  

N—i (2.27) 

(2.28) 

In summary, the terms   and aq at the operating point are calculated 
av as 

using equation (2.21). The terms involving av as and are calculated from 

the inverted Jacobian (equation (2.25)). The loss gradient defined by equation 

(2.18) can thus be expressed as 
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ay. 
Aq 1 . N_l1_  +-i-

= 'R : I ay. aQLJ aQLJ j R • =1 L 
(2.29) 

Having evaluated the gradient of the the reactive losses with respect to the 

reactive loads, the voltage stability (VS) indexes in equations (2.12) and (2.19) can 

be determined. Results of applications of this method are shown in the next sec-

tion. 

2.4.1 Applications 

The voltage stability indexes, VS, have been evaluated for two example sys-

tems using the method presented above. The first system is the simple two-bus 

system shown in figure 2.1. The second system is a 28-bus network [29] which 

includes six generating units and thirty-two transmission lines. Data for the second 

system is given in Appendix Ill. 

2-Bus System 

For the two bus example, the voltage stability index VSR is evaluated for 

each operating point as the MVA load is increased (load impedance ZR reduced). 

Figure 2.3 shows a plot of VSR against the receiving end power. VSR is positive 

for the stable operating region, zero at the voltage stability limit, and negative in 

the unstable region. The value of the index at the respective operating points is as 

expected. 



31 

20 40 SO 0 

MVA 

140 

Figure 2.3: Voltage Stability Index Versus MVA Load 
(2-Bus System) 
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28-Bus System 

Using the method proposed in reference [60], two voltage solutions are deter-

mined for the specified load conditions in the 28-bus system. The voltage stability 

indices VS were computed at each load bus using the method presented above. 

The system voltage stability index VSR has also been determined for each operat-

ing condition. Tables 2.1 and 2.2 show the two solutions and their respective vol-

tage stability indexes. 

It will be observed that for solution one, VS > 0 for all system load buses. 

Also, the system voltage stability index VSR1 > 0. This means that solution 1 is 

a 'voltage stable solution'. On the other hand, solution 2 represents an unstable 

operating condition from a voltage viewpoint since VS <0 for most of the load 

buses. Also, the system voltage stability index VSR2 is negative. It is interest-

ing to 'note that solution 2 with bus voltages that approach normal operating levels 

is unstable. 

Although the VSR indexes could be used to determine whether or not an 

operating point is voltage stable, it may not be appropriate or satisfactory in assess-

ing the margin of the operating point from the collapse point. This is because as 

the system load increases, system generators reach their VAR limits at different 

points causing discontinuities in the magnitude of the index. The problem of 

evaluating the margin of an operating point from the stability limit is addressed in 

Chapter 3. 
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Table 2.1: Solution One - 28-Bus Network 

Bus 

Bus Voltage 
- 

Mag. Ang * Q 
VS. 
J Lj 

1 1.0500 0.0 - - 

2 0.9830 -48.8 1.955 0.338 
3 0.9782 -52.7 1.894 0.346 
4 0.9817 -51.3 1.812 0.356 
5 0.9800 -55.7 1.870 0.349 
6 0.9971 -22.7 0.456 0.687 
7 0.9914 -14.6 0.485 0.673 
8 0.9967 -21.8 0.505. 0.664 
9 0.9971 -11.1 0.357 0.737 
10 0.9732 -36.4 1.404 0.416 
11 0.9800 -39.0 1.584 0.387 
12 0.9975 -25.7 . 0.396 0.716 
13 0.9818 -17.7 0.747 0.572 
14 0.9773 -26.5 1.124 0.471 
15 0.9675 -33.8' 1.423 0.413 
16 0.9643 -31.8 1.421 0.413 
17 1.0010 -11.5 0.461 0.685 
18 0.9923 -13.6 0.481 0.675 
19 0.9999 -6.0 0.368 0.731 
20 0.9637 -48.9 1.953 0.339 
21 0.9606 -44.0 1.876 0.348 
22 0.9606 -45.8 1.943 0.339 
23 0.9621 -42.0 1.897 0.345 
24 1.0500 -8.3 - - 

25 1.0500 6.3 - - 

26 1.0500 -22.7 - - 

27 1.0500 -19.5 - - 

28 1.0500 -29.8 - - 

VSR i54 

* in degrees 
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Table 2.2: Solution Two - 28-Bus Network 

Bus 

Bus Voltage 
- 

* 
Mag. Ang 

Dq 
vs J. aQ . 

Li, 

1 1.0500 0.0 - - 

2 0.8582 -54.7 -3.579 -0.388 
3 0.8534 -59.8 -3.526 -0.396 
4 0.8620 -58.0 -3.437 -0.410 
5 0.8500 -63.7 -3.668 -0.375 
6 0.9800 -23.5 -0.300 1.428 
7 0.9763 -15.2 -0.231 1.300 
8 0.9782 -22.5 -0.312 1.454 
9 0.9876 -11.6 -0.100 1.111 
10 0.8985 -39.5 -2.159 -0.863 
11 0.8900 -42.6 -2.592 -0.628 
12 0.9822 -27.1 -0.303 1.435 
13 0.9538 -18.4 -0.647 2.831 
14 0.9272 -28.6 -1.410 -2.441 
15 0.8945 -36.7 -2.289 -0.776 
16 0.8952 -34.2 -2.034 -0.967 
17 0.9857 -12.0 -0.281 1.390 
18 0.9776 -14.1 -0.220 1.282 
19 0.9911 -6.4 -0.075 1.081 
20 0.8481 -54.9 -3.471 -0.405 
21 0.8554 -48.8 -3.160 -0.463 
22 0.8500 -51.1 -3.257 -0.443 
23 0.8587 -46.4 -3.061 -0.485 
24 1.0500 -8.9 - - 

25 1.0500 5.9 - - 

26 1.0500 -24.2 - - 

27 1.0500 -21.8 - - 

28 1.0190 -32.7 - - 

VSR2= -1.215 

* in degrees 
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2.5 SIMULATION STUDY 

In this section, the simulation of a process that may lead to voltage collapse in 

a transmission system is presented. This simulation focuses on the action of the 

LTC transformer taps following a system disturbance. Load-voltage character of 

the exponential type has also been incorporated. Modeling of the load and the 

transformer tap action is therefore an important part of the simulation study. The 

respective models will be discussed next. 

2.5.1 LTC Transformer Tap Model 

An LTC transformer is a control tool used to maintain local voltages within 

desirable limits. It is activated when the controlled bus voltage deviates from 

allowable limits. 

Let the nominal tap position of the LTC in the line connecting buses i and 

j (controlling bus i ) be denoted by . Let the corresponding nominal volIj 

tage at bus i be VIP, and the allowable voltage deviation be AV, . When the 

operating condition in the system changes, each LTC transformer in the system-

will change its tap position if necessary to maintain the local voltage within the 

given limits; The change will take the form of one or more discrete equal-valued 

changes in tap position, separated by the duration of the LTC transformer duty 

cycle. 
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Based on this operation, the sloW dynamics associated with the changes in the 

tap positions may be expressed as the following discrete equation [37]: 

, (k+1) = ,J - d1 f (V1 - Vi) 
,J i i 

(2.30) 

where k is the step count and is the stepsize in the change of the tap posi-

tion during one operating cycle of the LTC transformer. f (V1 - Vi) is the con-

trol function governing the operation of the LTC transformer and is given by, 

1 if V - VI > LV1 for t ≥ tdi 

f (V1 - Vi) = 0 if V - V1? ≤ for t :5 tdi 

—1 if V - VI <—AVe for t ≥ 

where t is time, and tdi is the duty cycle of the LTC controlling bus I 

(2.31) 

Thus if lvi - V9  ≤ AV or t <tdj no LTC tap action results. If 

1V1 - Vj'l > 0 for a period greater than the transformer duty cycle time , tdi  , the 

tap ratio is changed according to equation (2.30). 

2.5.2 Load Model 

For this study, a general static load model is used in which the MVA load at 

a particular bus is an exponential function of the bus voltage. The load 
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characteristics are given by, 

(2.32) 

(2.33) 

where P0 and Q01 are the prescribed active and reactive loads at rated (nomi-

nal) voltage, pi and qi are constants which reflect the dependence of active and 

reactive demand on voltage at bus i. 

2.5.3 Steps in the Simulation 

A computer program has been developed to simulate the action of the LTC 

transformer following a system fault. The main steps in the simulation algorithm 

are, 

STEP 1: Solve the system load flow equations for the initial (base case) condi-

tion. 

STEP 2: Initiate disturbance and solve load flow equations with taps fixed at 

pre-disturbance positions. 

STEP 3: Increase time, t. 
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STEP 4: Change tap positions using equation (2.30) 

STEP 5: Solve the load flow equations with taps fixed at positions determined in 

STEP 4. 

STEP 6: If the time t is greater than maximum time, STOP, otherwise, return to 

STEP 2. 

In solving the load flow equations, the load voltage characteristics are taken 

into consideration. 

2.5.4 Results of Simulation 

The rn simulation study was performed on a representative system shown in 

figure 2.4. The system represents a load area with local generation available to 

serve a portion of the load. The load area is thereby dependent on transfer of 

power over a transmission system. 

The purpose of the LTC transformer T is to maintain the (low) secondary 

• voltage, VR , within ±1% of nominal value. The tap controller is set to operate 

only when the secondary voltage, VR, exceeds the prescribed allowed range and 

remains in this range for a period longer than td 1 = 10 seconds 
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V1 V2 12 V3 

YC I 

Figure 2.4: System Studied for Simulation 

n 
1 

LOAD. 

The system load is represented as shown in equations (2.32) and (2.33). In 

this study, the real and reactive power voltage exponents are assumed equal, i.e., 

k =pi =qi 

Three different values of k are considered. 

The disturbance chosen was to trip the local generator (by opening of breaker 

A). The time domain responses illustrating the effect of the disturbance and subse-

quent action by the LTC transformer with YC = 0, and Yc = 3.0 per unit are 

shown in figures 2.5 and 2.6. Time domain responses are obtained for values of 

load exponents k of 0.6, 0.8 and 1.0. 
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Figure 2.5a shows the time response of the voltage at bus 2, V2 . Figure 

2.5b shows the time response of the total system MVA demand. The total MVA 

demand is the sum of the load MVA and the MVA losses. 

Immediately following the disturbance at time, t = 20 seconds, excessive 

voltage decline results in reduction in load and in the total system demand. The 

LTC starts operating to increase VR . As VR increases, the MVA load at the 

bus increases. Hence more power is drawn through the already heavily loaded 

transmission line. The increasing total system demand (figure 2,sb) results in 

further decline in the receiving end voltage V2 (figure 2.5a). However, the LTC 

continues to operate to increase the secondary voltage, VR, resulting in further 

increase in system demand and decrease in V2 . In this example, the process con-

tinues until the LTC runs through its boosting tap range. It may however happen, 

in some other instance, that the increased system demand exceeds the maximum 

transmissible power of the network, resulting in system voltage collapse. 

It is apparent from figure 2.5 that less voltage dependent loads (loads with 

smaller k) result in larger increase in the system demand and greater decline in 

he receiving' end voltage V2 as the LTC operates to raise VR . Such stiff loads 

may therefore make the system more susceptible to imminent voltage collapse. 

The effect of capacitive compensation is investigated by assuming now that 

= 3.0 per unit, and repeating the simulation study. Figure 2.6a and 2.6b 

show the time domain responses of the receiving end voltage V2 and the total 
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demand for the same disturbance, initiated at t = 20 seconds. 

From figure 2.6 it may be observed that after three tap downs, the LTC 

transformer is able to bring the load voltage VR to the desired range. The LTC 

action ceases, and a steady equilibrium of the tap is maintained from time t = 50 

seconds. It is therefore apparent that the addition of VAR compensating equipment 

improves the security of the system against voltage collapse. 

2.6 CONCLUSIONS 

In order to provide insight into the voltage collapse problem, a simple 2-bus 

power system has been analysed. Stability conditions are derived for the simple 

system based on the action of the at-load LTC transformer. 

A method to determine a practical voltage stability index for a network of 

realistic size has been presented. The method may be incorporated into a Newton-

Raphson load flow analysis program to assess the voltage stability or otherwise at a 

particular operating point. 

A simulation study has been presented to demonstrate a process that may lead 

to system voltage collapse. Using a simple but typical example system, time 

domain responses of receiving end voltage and total system demand following a 

disturbance indicate that loads which are less voltage dependent may be more 

severe from voltage stability standpoint Also, results for the example system show 

that VAR compensation may be an effective way to improve the system security 
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against collapse. 



CHAPTER 3 

DETERMINATION OF VOLTAGE STABILITY LIMIT IN 

MULTIMACHINE POWER SYSTEMS 

3.1 INTRODUCTION 

In order to prevent the occurrence of voltage instability in an electric power 

system, it is of interest to determine the systems' voltage stability limits (or critical 

states) for normal as well as contingency conditions. Knowing the critical states, 

indications of systems security from voltage collapse are available. 

In [18], Venikov proposed the use of the convergence in the Newton-Raphson 

(NR) load flow calculations to estimate the stability limit. An initial (stable) 

operating condition is changed by increasing the demand (vector) in finite steps 

along a specified trajectory. At each step the system state is determined by the 

corresponding load flow solution. The process is continued up to the point where 

the NR method diverges, or the modified NR method "suspends". Besides being 

computationally intensive, this method may be inadequate due to the unreliable 

behavior of the NR —based load flow solution methods in the vicinity of the vol-

tage stability limit This behavior has been linked to the singularity of the Jaco-

bian matrix at the voltage stability limit and the existence of close multiple load 

flow solution around that limit [13]. 

45 
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To reduce the computational requirement and circumvent the numerical ill-

conditioning likely to occur with the repeated load flow method near the voltage 

stability limit, Flatabo et. al. [26] proposed the use of a combination of load flows 

and sensitivity parameters. Boresman et. al. [32] proposed a quadratic extrapola-

tion method as a possible short cut to the repeated load flow approach. These 

methods are inherently approximate and may yield unrealistic results. 

The methods of Jarjis et. al. [33], Mercede et. al [15], and Liu et. al. [30] 

characterise the voltage stability region using different approaches. One common 

drawback of all these method is that the operational limits of system components, 

e.g., transformer tap settings and generator MW and MVAR limits, are not taken 

into consideration. For example, it is well known that when a generator reaches its 

VAR limit, the terminal voltage can no longer be maintained at constant value. As 

a result, the system performance pattern changes. It therefore seems inadequate to 

evaluate the margin of an operating point to the critical point without taking the 

operational limits of system components, particularly the generator VAR limits, 

into account. More often than not the voltage collapse problem may be considered 

to be a reactive power problem. It is to be expected that ignoring generator capa-

bility limits would yield larger but unrealistic voltage stability, regions. 

Kessel et. al [31] developed a voltage stability index based on the feasibility 

of solution of the power flow equations for each node. In [14], Tiranuchit et. al. 

proposed the use of the minimum singular value of the Jacobian matrix of the 

power flow equations as a global voltage stability index. Again, these methods 
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ignore the generator limits. The indices may not therefore represent the condition 

of the network close to and at the critical point. 

In this chapter, a new method of determining the critical state directly and 

• accurately is proposed. The operational limits of system equipment (e.g MW and 

MYAR limits of generators, and transformer tap settings) are taken into account. 

Knowing the critical state, a voltage seciiHty margin is defined which may serve as 

a measure of the security of a given operating condition from voltage instability or 

collapse. 

3.2 SIMPLE NETWORK 

For, the simple two-bus network (figure 2. 1), the condition for stability of the 

receiving end voltage was shown in Chapter 2 of this thesis to be (equation (2.5)) 

where 

ZR = ZR is the load impedance, and 

ZL = ZL & is the impedance of the transmission line. 

The critical point corresponds to the condition when IZLI = IZR I. This is the 

condition under which the maximum available power is obtained at the receiving 

end. The unstable condition, IZL 1> ZR 1 , might occur due to system distur-
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bance causing line outage (increasing source impedance), or due to excessive real 

and/or reactive power pickup at the load end (decreasing IZR I 

The load MVA at the critical point may be expressed as (equation (2.6)), 

—max_  eJ  V ? 

R4 cos2() ZL 

The corresponding load voltage, which is the minimum stable voltage at the load 

terminal, may be expressed (equation (2.7)) 

v -•R •_••_S ,f(  (t1  ) 
Fcrii -   

2cos() V1 

The theory used to analyse the simple network may be extended to the mul-

tinode case with ideal voltage sources [611. The above results cannot however be 

applied simply to multimachine power system networks owing to the fact that syn-

chronous generators are not ideal voltage sources. The voltage angles at the 

sources depend on the real power delivered by the machines. Moreover, when a 

machine field current reaches its upper limit, the automatic voltage regulator 

(AVR) becomes inoperative and the machine model has to be modified. Also, the 

load demand is normally given in terms of MW and MVAR rather than impedance. 
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In the next section, the general problem formulation associated with the pro-

posed method is presented. Also presented are modifications to the general formu-

lation to take into consideration the voltage dependence of system loads. For this 

purpose, exponential static load/voltage characteristics are assumed. 

3.3 GENERAL FORMULATION 

Consider a power system with N buses. Let buses 1 to M be load buses and 

buses M + 1 to N be generator buses. It is assumed that the slack bus is the Nt1 

bus. In the steady state, the system is described by the power flow equations, i.e. 

N 

= j1 cos (6 - S. - 

N 
VV1 Y sin  (8.1i I—c5.-4..) 

j1 

where 

(3.1) 

i=1,  ,N-1 (3.2) 

and Qj are the net real and reactive power entering bus i 

V /6 is the ith bus complex voltage, 

Y1 /4 is the (i, f )th entry of the network bus admittance matrix. 

The apparent power demand (MVA) at a load bus i is determined as, 
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where 

Si = (P2 + Q,2)112 NN 
= v2 V- Vk 'ij 1'ik 
j  

COS(8k - + - 

L 1'2' 

The total system MVA demand is therefore 

STOTAL = : s 
ie JL 

(3.3) 

(3.4) 

As noted in the previous section, the critical point corresponds to the maximum 

load power, i.e., the state when the network delivers maximum MVA power, sub-

ject to a given load distribution, to the load points. This can be expressed, 

Sj A9 = maximum ( S) 

For a given network, the maximum total load depends on the distribution and 

power factors of the initial MVA loads, and on the expected (given) pattern of 

increase from the initial values. It also depends on the capabilities of the genera-

tors. Hence for the multimachine system, the value of S cr"'cal is subject to TOTAL 

constraints which may be enumerated as follows; 
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(a) Distribution Constraints: These constraints describe and enforce the pattern 

(or direction) of increase of the MVA demand vector S , where 

sT=[sl,52  ISM ] (3.5) 

In the proposed method of analysis, it is required that the distribution pat-

tern of the MVA demand be specified. A vector has been introduced for. 

this purpose. Pi is a per unit value representing the relative increase in the 

load at bus i with respect to the corresponding system total load increase, i.e., 

C' new - c initial r: 
£J -J +pjL.SToT,dI 

where 

4nitial is the initial known MVA demand at bus i , and 

(3.6) 

Sn'w is the new MVA demand at this bus after an increase AS,,ITAL in 

the total MVA load of the system. 

From equation (3.6), a load distribution constraint equation is written for bus i 

as 

01 s - s = sjtial - initial 

jEJL 

Letting 
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ci = :cinitial - c. initial 

we have 

13i •: s - s=c. 
J EJL (3.7) 

(b) MW and WAR limits on Generators: To determine the system critical state 

exactly, it is necessary to take the power production capabilities of the system 

generating units into consideration. These constraints limit the MW and 

WAR outputs from systems generators to their respective specified limits. 

The constraints are specified as follows, 

pmin p. pfllX 

Qmm ≤ ≤ i=M+1,•,N—l. (3.8) 

(c) Generator MW Participation: As the load increases, the MW output of each 

generating unit is increased from the base point to Itpcipatet in the load 

change. For this purpose, the participation factors of the generating units 

need to be specified in a vector f, where yo is the specified participation 

factor of generator i. 

The total system demand PD is expressed as 
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where 

P = P.+P D j losses' 

P losses is the system total MW loss. 

(3.9) 

The participation of generating unit i, AP for an increase in total system 

demand, EPD, may be expressed as 

Let 

and 

where 

Api = IyPAP 

APi = P - pflitial 

AB - P - Dinitial 
D_LD 'D 

(3.10) 

PD and are the initial total system MW demand and 

initial MW output of generator i respectively. 

We obtain, from equation (3.10), 
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Ii = - yp initial - + pflitial =  

i =M+1,•• ,N-1 

and 

≤ YiO 

where 

when 

when 

pmin pmax 

= pIT1aX 

P Min and p•max are the minimum and maximum MW limits of gen-

erating unit 1. 

The participation factors may be chosen to reflect economic consideration [62]. 

This is shown in Appendix I. 

(d) Specified Power Factor of Incremental MVA Load: The power factor of the 

load increase at each load bus may be assumed to remain constant at a 

specified value. This optional constraint set which allows control with the 

power factor of the load increase is enforced by the following requirement, 

where 

Si is the WA load increase at bus I 
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AP is the MW load increase at bus i 

pf is the power factor of load increase at bus i 

Putting 

=P. - pflitia1 

and 

1sSi = Si - Snzt:al, 

constraint equations may be written for each load bus as 

-  pf  S = -p1 S1initia1 + p initial 

Setting 

K1 = —pf1 51nitia1 + p1nitia1, 

we have, 

P—pf1S=K, 1GJL (3.12) 

In some reports on voltage collapse problems [19,26,30], only the reactive 

component of the load increased while the MW component remained constant. 

Such situations might be studied using the method that is proposed here by 

setting the power factors pf (equation (3.12)) to zero. 

(e) Limits on Controlled Voltages and LTC Transformer taps. 
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In summary, the problem of determining the voltage stability limit of a gen-

eral multimachine power network is formulated as an optimization problem, i.e., 

maximize 

[Total MVA demand] 

subject to: 

(a) distribution constraints at load buses 

(b) WAR and MW limits on generators 

(c) generators' MW participation 

(d) specified power factor of (incremental) MVA demand 

(e) limits on controlled voltages and LTC transformer taps 

The variables of this optimization problem are voltage angles at all buses 

except the slack bus, voltage magnitudes at all buses, LTC transformer taps, and 

generator participation factors. The voltage magnitude at a generator bus is 

allowed to vary within specified limits if the generator VAR limit is not exceeded. 

Also, a tap-changer controlled voltage is allowed to vary within specified limits if 

the tap setting is not at its limit. 

It should be noted that other constraints such as power transfer capability of 

certain lines may be included in this formulation. 

In mathematical terms, the formulation may be expressed as the following 

non-linearly constrained optimization problem, NCP1; 
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minimize 

subject to: 

(1) Pi ST(V. 6, t, - Si , I t, = C 

(2) Q min ≤ Q (V, 8,t, ) ≤ i = M + 1, , N - 1 

(3) pmlfl P (, 6, t, ) pIflaX = M + 1, 

(4) f1 (V, 8, t, ) = 0 i = M + 1,  

(5) P1 (V, 6, t, y) + K 6, t,y) =0 ZEJL 

(6)y≤'yj1 i=M+1, ,N-1 

(7) V/ ≤ v ≤ v1" € 

i=1, •••n 

e iL 

(3.13) 

where 
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vT=[v 1, ,VNI 

tT = [t 1,   

 '''N-11 

JC is the set of voltage—controlled buses 

is the number of LTC transformers. 

The solution of this optimization problem 'is the system state at the critical 

point (stability limit) and the corresponding value of the total MVA load. It should 

be noted that for a given network, the system critical state thus obtained is particu-

lar to the initial load MW and MVAR distribution, the choice of the load MVA 

distribution vector fi, the generating unit participation factors as specified in. 

, MW and MVAR production limits, and the distribution and size of. VAR com-

pensation facilities. It should be noted also that the above formulation treats the 

load MVA as being independent of the bus voltage. In Section 3.4 below, a 

modification to the above formulation is proposed which takes the voltage depen-

dence of the loads into consideration. This will allow a study of the effects of the 

load-voltage characteristics on the voltage stability : limit. 
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3.4 EXTENSION OF BASIC FORMULATION TO INCLUDE VOLTAGE 

DEPENDENCE OF LOADS 

A general static load model in which the MVA loading at a particular bus i is 

a function of the per unit bus voltage, V, is given as [63] 

"Li = PoiP. 
(3.14) 

(3.15) 

where P0 and Q0j are the prescribed active and reactive loads at rated (nominal) 

voltage, p and qj are constants which reflect the load-voltage characteristics at 

bus i. PLj and QLj are the MW and WAR demands at bus i. 

The power flow equations at load nodes are now written., 

p. N 
g = V + V .V .Y.. cos (8 - - 4) = 0 

j=1 

q. N 
h. = Q V. I + I Viv Y. . sin (6 - 8.  - 4) = 0, 

j=1 

LEJL. 

(3.16) 

(3.17) 

In order to include the voltage dependence of the loads in the determination of 
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the voltage stability limit, equations (3.16) and (3.17) are included as constraints in, 

the NCPJ. It should be noted that P01 and Q01 are allowed to increase accord-

ing to a prescribed pattern governed by the vector mentioned above. P and 

QOi are therefore treated as variables in the optimization problem. The problem 

of determining the critical point including the voltage dependence of the loads may 

thus be formulated as a non-linear optimization problem, (NCP2): 

minimize 

= Si (1', a'!' t )] 
JEJL 

subject to: 

(1) 

E JL 

(2) Qm ≤ Q1 (, 8, t, , ,, ) ≤ Qmax i = M + 1, --- ,N - 1 

(3) pmlfl P1 (V, 6, t, , , , P/" I = M + 1,... ,N - 1    

(4)f1(V, 6,t, PO, ,)=O i=M+1,••,N-1 

(5) P(V, 6,t,, , g2)+K1Q(V, '!'' 

(3.18) 
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(6) 

(7) h (jr, ' ! 4 = 0 

(8) 'i . ≤?i0 

(9) V[ :5 

(10) tjtmrl ≤ ≤ 

where 

DT_rD 0 • p 
L0 ''oM 

rn • • • 

''oM 

i r= JL 

iEJL 

i=M+1, ,N-1 

i E JC 

i=1, •• ,n 

Again, the solution to this optimization problem is the system critical state. 

3.5 SECURITY MARGIN 

Having determined the system critical state, a security or stability margin, SM, 

can be defined as 
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where 

S limit - sjnitil 

JEJL jEJ, 

SM=  
s limit 

jejL 

SJzmit is the MVA demand at bus j at the critical point, and 

(3.19) 

SJ" 1 is the MVA demand at bus j at the initial operating condition. 

-This index gives an explicit indication of the distance to voltage collapse in 

terms of uncontrollable variables, namely, the system load. As noted -by several 

investigators [17,26], a measure in terms of load power margin may be the best 

indication of system security from collapse. For a stable (feasible) initial operating 

condition, SM takes on value between 0 and 1. SM = 0 occur at the voltage stabil-

ity limit. A negative, value of SM means no acceptable operating point exists for 

the specified initial system load. 

3.6 SOLUTION METHOD 

Without loss of generality, the nonlinear programming problems NCP1 and 

NCP2 may be stated compactly as follows: 

minimize 
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f(!) 

subject to: 

(1) g(x)=O, f = l, ... m 

(2) g(x)≥O, j=me+l. .... m 

(3) x1 ≤x≤x' 

where 

x is an n—dimensional vector of variables, 

(3.20) 

X1 and are the lower and upper limits on x respectively, and 

all functions are continuously differentiable. 

Numerous methods and software packages exist today for solving this class of 

optimization problem [64]. In this thesis, the nonlinear programming problems are 

solved using the sequential quadratic programming (SQP) algorithm [65]. Software 

routines developed by the Numerical Algorithms Group (NAG) based on the SQP 

algorithm are used [66]. The SQP algorithm outlined below follows the derivation 

in reference [65]. 

In order to establish the sufficient conditions for optimality, let 

(3.21) 

be the vector of the constraint functions that are active (i.e. binding or exactly 



satisfied) at the optimal point. The Lagrangian function may be defined as, 

where 

L(,?) = fç)Th() 

? is a vector of Lagrangian multipliers. 

(3.22) 

Taking the first derivative of L (,2) with respect to x and equating to 

zero, the stationary point of equation (3.22) may be obtained as the solution of 

where 

x is the optimal solution of problem (3.23) 

J (_*) is the Jacobian matrix of h at x" 

(3.23) 

Equation (3.23) is the first order Kuhn-Tucker optimality condition. When this 

condition holds, x is a minimum of the Lagrangian function within the sub-

space defined by the vectors of the active constraint gradients.. This property sug-

gests that x can be defined as a solution of a linearly constrained subproblem, 

whose objective is related to the Lagrangian function, and whose linear constraints 

are chosen so that minimization occurs only within the desired subspace. 

The property of the optimum is used to pose a simple subproblem with qua-

dratic objective function and linear constraints. This class of optimization prob-
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lems is called a quadratic program (QP). The objective function is a quadratic 

approximation of the Lagrangian function. The constraints are the linearized con-

straints of the original problem. 

The QP subproblem can now be defined as: 

minimize 

subject to: 

+ Vf (4)TAxk 

Vg()T& +g()=O, 

+ g) ≥ 0, 

≤A 

j= 1'...-Me 

j=m+i, m 

(3.24) 

where 

k is the iteration number 

is the value of x at the kt1 iteration 

B  is a positive definite quasi-Newton approximation of the Hessian of the 

augmented Lagrangian function of problem (3.23). 

B  is updated at each iteration using the Broyden-Fletcher-Goldfarb- Shanno for-

mula [65]. 
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The SQP algorithm to solve (3.23) generates a sequence 3• 

that converges to the optimal solution x . Each previous estimate is improved 

upon by taking a step CLk in a direction such that, 

k+1k + akk. (3.25) 

The scalar function CLk is determined by a line search procedure to produce a 

sufficient decrease in the augmented Lagrangian merit function. The direction of 

movement, A , is found by solving the QP subproblem (3.24). 

It should be noted that the constraint equations in problem (3.20) are the load 

flow equations, and the matrix of the linearized equations in problem (3.24) is the 

Jacobian matrix in the Newton-Raphson load flow solution method. However, 

because the constraint equations of problem (3.24) are not solved but handled by 

the Lagrangian method, the problem of singularity of the load flow Jacobian matrix 

at the voltage stability limit is avoided. 

The SQP -based algorithm may be summarized by the following steps: 

STEP 1: Check termination criteria, if xk satisfies the optimality conditions, the 

algorithm terminates with xk as solution. 

STEP 2: Solve the QP subproblem (3.24). 
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STEP 3: Update the estimate of the solution and go back to STEP 1. 

The QP problem (3.24) is solved using another iterative procedure, discussed in the 

next section. 

3.6.1 Solution of QP Subproblem 

Letting A4 = the iterative procedure to solve the QP subproblem gen-

erates a sequence of feasible iterates !r !2.....,z . Let denote the esti-

mate of the solution at the ith iteration. The next iterate is defined by 

!i+i =i +Pii 

where 

is an n—dimensional search direction, and 

Pi is a scalar step length. 

(3.26) 

At each iteration, only a subset of the constraint set in problem (3.27) , called 

the working set, is needed to evaluate the search direction. The working set con-

sists of load flow constraints that are binding, i.e., exactly satisfied at the current 

point. These constraints include, 

(a) MVAR generation at a limit 

(b) MW generation at a limit 
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(c) voltages at a limit 

(d) transformer taps at a limit 

(e) load distribution constraints. 

Let A denote the matrix of coefficients of the constraints in the current 

working set, i.e., the 1th iteration, with tj linearly independent rows. Under 

this condition , the QP subproblem (3.24) can be expressed as 

minimize 

subject to: 

Az = (3.27) 

Given a feasible point , the step j from z. to z is the solution of 

the n—dimensional problem, 

minimize 

(B z-  c) + +TBi 

subject to: 

=0 

The constraint equation 

(3.28) 
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A1 = 0 

implies that the step pi from a feasible point to any other feasible point must be 

orthogonal to the rows of A1. 

If is a matrix whose columns form a basis for the set of vectors orthogo-

nal to the rows of A1 , i.e., 

A1Z1 =O, 

then is a matrix of n rows and n—ti columns, and pi can be written, 

(j —Z1 P_Z , (3.29) 

for any (n—t1 )—dimensional vector 

The solution of problem (3.28) is obtained by computing the 

(n—t1 )—dimension vector pz which is the solution of the unconstrained problem: 

minimize (B + c)Z + 

The solution to problem (3.30) is given by, 

= —(ZTBZY1ZT(B + £) 

From equation (3.29), the search direction p, can be expressed as, 

(3.30) 
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pi = -Z.(ZTBZ.) 1ZT(Bz + c) 
£ i £ -i 

(3.31) 

The algorithm to solve problem (3.24) is based on developing a working set 

which is a prediction of the correct active set. The correct active set of the prob-

lem is not known a priori. Since the prediction of the active set could be wrong, 

the algorithm includes a procedure for testing whether the current prediction is 

correct, and altering it if it is not. 

The algorithm to solve the QP problem involves the following steps: 

STEP 1: Determine a feasible point of the QP problem. 

STEP 2: Test for convergence. If conditions for optimality are satisfied, STOP. 

STEP 3: If necessary, delete constraints from the current working set. This is 

done on the basis of the Lagrangian multiplier estimates. 

STEP 4: Compute a feasible search direction pi using equation (3.29). 

STEP 5: Compute a step length p. 

STEP 6: If necessary, add a constraint to the working set. If p is a step to the 

constraint r, constraint r is added to the next working set and the 

associated quantities are updated. 
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• STEP 7: Update estimate of solution (using equation (3.26)) and return to STEP 

2. 

An essential feature of the algorithm is that all iterates are feasible, i.e., if the 

initial point z. , is feasible, all subsequent iterates, z , are, also feasible. 

In STEP 1, an initial feasible point is found by solving the following linear 

programming problem: 

minimize 

subject to: 

F()=— Y, (_b) 

jEJV 

- ≥ % jEJV 

(3.32) 

where JV is the set of indices identifying constraints that are violated at z 

The function F () is a linear function, and is equal to the sum of infeasibilities at 

z . It should be noted that F (j) is zero at any feasible point. 

In STEP 2, a test for convergence is conducted. If the current solution 

satisfies the optimality conditions, the algorithm terminates. 

In STEP 3, a decision is taken whether to continue minimizing in the sub-

space defined by the current working set, or to modify the current working set. 

This is done on the basis of the Lagrangian multiplier estimates. The Lagrangian 

multiplier, T, corresponding to an inequality constraint j in the working set, is 
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said to be optimal if i1j ≤ 0 when the associated constraint is at the upper bound, 

or if i1j ≥ 0 when the associated constraint is at the lower bound. If a multiplier 

is non-optimal, the objective function can be reduced by deleting the corresponding 

constraint from the working set. 

In STEP 4, the feasible direction pi is computed. The step length along the 

feasible direction is computed in STEP 5. In order to retain feasibility, it is neces-

sary to ensure that the step length does not violate any constraint that is not in the 

working set. If I, + p, is feasible, p is taken as unity; otherwise, pi is set 

to the step along pi to the nearest constraint which is added to the working set in 

STEP 6. The estimate of the solution is updated in STEP 7. 

3.6.2 Overall Algorithm 

The overall algorithm to solve the nonlinear programming problem by the 

SQP method is summarized in the flowchart shown in figure 3.1. Equation (3.25) 

represents the outer loop. The inner loop corresponds to equation (3.26). 

The NAG routines used to solve the optimization problems require that the 

first derivatives of the problem functions (the objective function and the constraint 

functions) with respect to all the variables be provided. The evaluated derivatives 

for NCP1 are shown in Appendix II. 
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Figure 3.1: Flowchart of Basic SQP Algorithm 
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3.7 EXAMPLES OF APPLICATION OF THE PROPOSED METHOD 

The method proposed in this chapter has been applied to evaluate the voltage 

stability limit and security margin, SM, of two power systems: The ALP 14-bus 

network (figure 111.1 )[67] and a 28-bus network (figure 111.3) [29]. The ALP 14-

bus network includes two generators, three synchronous condensers and twenty 

transmission lines/transformers. The 28-bus network includes six generating units 

and thirty-two transmission lines. The data for these systems are shown in Appen-

dix III. 

In the two examples, the elements of the distribution vector, , are chosen 

to be 

5 njtia1 

1, Sj•nitial 
1i= 

f EJL 

(3.33) 

In practice, the elements of A should be chosen to correspond to the expected 

relative increase in the demands at each bus. This information may be obtained 

from the load forecasts. 

It should be noted that, 

Pi = 0 implies that the MVA demand at bus i remains unchanged in the scenario 
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to be investigated. 

For the given initial system demand, the system generation may be distri-

buted on the basis of economic allocation or dispatch. As the system load changes, 

the output of certain generating units must be changed, i.e., they must participate in 

the load change in order that the new load be served at the most economical 

operating point. It is shown in Appendix I that this may be achieved, approxi-

mately, by choosing the participation factors for each generating unit as follows 

[62]: 

where 

and 

N 1 

" 
j=M+l T7 

d2F (P1) 
=   

I 

dP 2 

F (P1) is the cost function of the generating unit i 

(3.34) 

In evaluating the systems security margins, it is assumed that the load power 

factors remain constant at the initial values specified by the initial bus loads. 
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3.7.1 System One: 14-Bus Network (Fig. Ill.!) 

For this network, the elements of the distribution vector, computed 

using equation (3.33) are shown in Table 3.1, and the participation factors of the 

generating units are shown in Table 3.2. 

Using multiple load flow computations, plots of variation of load bus voltages 

are obtained as the total MVA load (SToT) is increased. The corresponding 

bus MVA are increased according to 

Table 3.1 : Load Distribution Vector © 
Bus No. 13 

3 0.2666 
4 0.1735 
5 0.1321 
7 0.0 
9 0.0939 
10 0.0820 
11 0.0408 
12 0.1003 

• 13 0.0672 
14 0.0436 

Table 3.2: Generators Participation Factors (y) 

Unit No. yi 
2 0.4444 
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sin+1 = Sin + iTOTAL) 
(3.35) 

n=0,l,2, 

where ii is the step count and 1STOT4JJ is the step increase in the total MVA - 

load. At each increment in STQT.; , both open- and short-circuit (complementary) 

load flow solutions are obtained, i.e., multisolutions of the load flow equations are 

determined at each step [60]. Figures 3.2a and 3.2b show two such plots for buses 

3 and 12. As noted in [13], the open- and short-circuit solutions should coincide at 

the limit. However, as this limit is approached, the Newton-Raphson-based load 

flow solution method did not converge. The limit has been obtained by graphical 

extrapolation (shown in broken lines). It is this limit that will be determined 

directly by the proposed method. 

Table 3.3 shows the system condition at the limit obtained by the proposed 

method. The corresponding stability margin SM 1 is also shown.; It will be 

observed that the critical condition obtained by the proposed method corresponds 

to the limit of the curves, obtained by multiple load flow and extrapolation, in 

figure 3.2a and 3.2b. The optimization method requires much less computational 

effort than the multiple load flow method. The proposed method takes 1.716 CPU 

seconds for computations while  single load flow computation for the system takes 

0.429 CPU seconds. A good number of load' flow computations is required to plot 

the curves. Also, nonconvergence of load flow computations close to the critical 
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Table 3.3: System Condition At The Voltage Stability Limit 
(Load MVA Independent of Bus Voltage) 

Bus 
Bus Voltage Bus Power* 

- ** 
Mag. Ang. MW MVAR 

1 1.060 0.00 409.1 278.4 
2 0.9251 -7.3 70.0 50.0 
3 0.7629 -22.7 -111.3 -22.4 
4 0.7602 -20.6 -68.3 -28.2 
5 0.7850 -18.2 -56.2 -1.9 
6 0.7509 -39.8 0.0 24.0 
7 0.7535 -32.3 0.0 0.0 
8 0.8059 -32.3 0.0 24.0 
9 0.7214 -38.9 -34.9 -19.6 
10 0.6987 -42.0 -34.3 -6.9 
11 0.7040 -42.3 -15.9 -6.9 
12 0.6656 -48.5 -42.6 -1.9 
13 0.6949 -44.9 -27.8 -6.9 
14 0.6762 -44.2 -17.6 -5.9 

SM 1 =0.1535 

* -ye for loads 
** 

in degrees 
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point may be a problem. 

Next, an outage condition is considered. A heavily loaded line between buses 

14 and 15 (figure 111.1) is tripped and the proposed method is applied to determine 

the system critical state assuming the same A and same initial operating condition. 

Table 3.4 shows the system condition at the stability limit and the corresponding 

stability margin SM2. In this case, the stability margin is negative, which means 

that with. line 1-5 out, the network cannot sustain (or supply) the specified initial 

system demand. No steady state operating point exists under this condition and 

system collapse would occur. 

It should be observed from Tables 3.3 and 3.4 that the MW and MVAR limits 

on the generator and the synchronous condensers have been limitted to their 

respective maximum values. The importance of limiting the generator outputs to 

their specified production capabilities is demonstrated by recomputing the security 

margins for the base case and the outage condition considered previously with 

these limits ignored. Table 3.5 shows the system state at the critical point and the 

corresponding security margin, SM3 , for the base case (no outage condition) 

with the MW and MVAR limits on the generators and synchronous condensers 

ignored. It is apparent that SM3 (being greater than SM 1) gives a false indica-

tion of system security. Also, Table 3.6 shows the system state at the critical point 

for the contingency condition (line 1-5 out) with the MW and MVAR limits on the 

generator and synchronous condensers ignored. The corresponding SM4 (greater 
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Table 3.4: System Condition At The Stability Limit 
(With line outage) 

Bus 
Bus Voltage Bus Power* 

Mag; 
** 

Ang. MW MVAR 

1 1.060 0.0 307.6 188.9 
2 0.9070 -8.7 70.0 50.0 
3 0.7595 -23.6 -85.7 -17.3 
4 0.7352 -24.8 -52.6 -21.7 
5 0.7360 -24.7 -43.3 -1.5 
6 0.7577 -41.1 0.0 24.0 
7 0.7577 -34.4 0.0 0.0 
8 0.8099 -34.4 0.0 24.0 
9 0.7367 -39.5 -26.8 -15.1 
10 0.7198 -41.9 -26.4 -5.3 
11 0.7234 -42.5 -12.3 -5.3 
12 0.6962 -47.3 -32.8 -1.5 
13 0.7173 -44.7 -21.4 -5.3 
14 0.7035 -43.7 -13.6 -4.5 

SM2 = -0.0991 

* -ye for loads 
** 

in degrees 
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( 

Table 3.5: System Condition At The Voltage Stability Limit 
(Generators MW and MW Limits Ignored) 

Bus 
Bus Voltage Bus Power* 

Mag. Ang.** MW MVAR 

1 1.060 0.00 409.1 278.4 
2 1.045 -9.80 483.7 66.6 
3 0.6001 -45.90 -213.2 -43.0 
4 0.6616 -42.2 -130.8 -54.1 
5 0.6978 -37.9 -107.7 -3.6 
6 1,0700 -78.6 0. 359.9 
7 0.8337 -64.2 0. 0. 
8 1.0900 -64.2 0. 158.6 
9 0.7934 -73.9 -66.8 -37.6 
10 0.7952 -79.0 -65.6 -13.1 
11 0.8992 -80.2 -30.6 -13.1 
12 0.9354 -87.0 -81.7 -3.6 
13 0.9563 -83.3 -53.2 -13.1 
14 0.8087 -81.9 -33.7 -11.3 

SM3 = 0.5582 

* -ye for loads 
** 

in degrees 
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than SM2) also gives a false indication of system security. In fact the value of 

SM4 , being positive, shows quite incorrectly that the system can survive that 

outage condition. 

It is apparent that in order to obtain realistic security margins of a system to 

the collapse point, the system generating units' MW and MVAR production capa-

bilities must be taken into account. 

/ 

3.7.1.1 Effect of Voltage Dependence of Loads 

The results in section 3.7.1 were obtained assuming that the MVA loads are 

independent of their respective bus voltages. Referring to Section 3.4, equation 

(3.14) and (3,15) 

= q1 =4 0, 

in equations (3.17) and (3.18). However, it is known that most system loads have 

characteristics differ from the constant MVA type. Effects of the voltage depen-

dence of loads have been studied briefly by assuming that the static load charac-

teristics may be modelled as in equations (3.14) and (3.15). 

Table 3.7 shows the system critical state and the corresponding stability mar-

gin SM5 when p1 = qj = 2, iEJL. This situation corresponds to the constant 

impedance representation of the system loads. When compared with results in 

Table 3.3, it can be seen that the stability margin SM5 is higher in this case. 
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Table 3.6: System Condition At The Stability Limit 
(With line outage and Generator limits Ignored) 

Bus 
Bus Voltage Bus Power* 

Mag. 
** 

Ang. MW MVAR 

1 1.060 0.0 307.6 188.9 
2 1.045 -15.2 428.2 753.3 
3 0.6730 -47.5 -178.9 -36.1 
4 0.6819 -51.9 -109.8 -45.2 
5 0.6948 -52.6 -90.4 -3.0 
6 1.0700 -83.3 0. 303.2 
7 0.8662 -69.9 0. 0. 
8 1.0900 -69.9 0. 138.5 
9 0.8410 -77.7 -56.0 -31.5 
10 0.8444 -g2.0 -55.1 -11.0 
11 0.9303 -83.8 -25.6 -11.0 
12 0.9611 -90.0 -68.6 -3.0 
13 0.9780 -86.8 -44.6 -11.0 
14 0.8564 -84.7 -28.3 -9.5 

SM4 = 0.4735 

* -ye for loads 
** 

in degrees 
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Table 3.7: System Condition At Voltage Stability Limit 
(Impedance Load Representation) 

Bus 
Bus Voltage Bus Power* 

Mag. Ang.** MW MVAR 

1 1.060 0.0 402.0 271.6 
2 0.9285 -7.1 70.0 50.0 
3 0.7719 -21.9 -106.5 -21.5 
4 0.7648 -20.2 -66.2 -27.4 
5 0.7887 -17.9 -55.3 -1.9 
6 0.7524 -39.6 0.0 24.0 
7 0.7554 -32.0 0.0 0.0 
8 0.8077 -32.0 0.0 24.0 
9 0.7224 -38.7 -36.1 -20.3 
10 0.6993 -41.9 -34.8 -7.0 
11 0.7045 -42.2 -16.4 -7.0 
12 0,6770 -48.3 -42.7 -1.9 
13 0.6937 -44.8 -28.4 -7.0 
14 0.6771 -44.0 -17.6 -5.9 

SM5 = 0.2085 

* -ye for loads 
** 

in degrees 
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In general, let 

pi = q = ii (338) 

Figure 3.3 shows, a plot of SM against ii, n varying from 0 to 2. It will be 

observed that as n increases from zero, the corresponding stability margin 

increases. It should be observed that in this example the constant power represen-

tation of loads (loads independent of bus voltage) is the most severe load model 

from voltage stability viewpoint. 

3.7.2 System Two: 28-Bus Network (Figure 111.3) 

The elements of the distribution vector J and the generator participation 

vector are shown in Tables 3.8 and 3.9 respectively. 

Table 3.10 shows the the system critical state and the corresponding security 

margin SM6 obtained using the proposed method. 

It should be observed that, unlike the situation in the 14-bus example in sec-

tion 3.7.1, the system voltage magnitudes in this example approach normal operat-

ing values. Hence, as mentioned by several investigators, voltage magnitudes 

alone may not provide sufficient information to predict the security of power sys-

tems from collapse. 

Figure 3.4a and 3.4b shows the voltage variations at load buses 4 and 5 

obtained using multiple load flow computations. Again due to convergence prob-
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Table 3.8 : Load Distribution Vector () 

Bus No. 13* 

2 0.0681 
3 0.1180 
4 0.1695 
5 0.1705 
6 0.1667 
7 0.0573 
8 0.0652 
9 0.0272 
10 0.0530 
11 0.0386 
12 0.0659 

* only non-zero values shown 

Table 3.9: Generators Participation Factors () 

Unit No. 

24 0.1507 
26 0.1356 
27 0.2110 
28 0.2028 
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Table 3.10: System Condition at the Voltage Stability Limit: 28-Bus Network 

Bus 
Bus Voltage Bus Power 

Mag. Ang.** MW MVAR 

1 1.0500 0.0 1298.3 267.0 
2 0.9089 -52.2 -147.8 -50.9 
3 0.9050 -56.8 -270.0 -22.4 
4 0.9124 -55.2 -388.2 -26.5 
5 0.9045 -60.4 -391.3 -2.0 
6 0.9838 -23.4 -381.1 -34.6 
7 0.9808 -15.0 -131.4 -3.1 
8 0.9814 -22.4 -137.6 -59.1 
9 0.9896 -11.6 -62.0 -7.0 
10 0.9309 -338.2 -120.2 -18.0 
11 0.9275 -41.1 -76.4 -44.8 
12 0.9881 -25.7 -144.6 -53.0 
13 0.9660 -18.0 0.0 0.0 
14 0,9490 -273 0.0 0.0 
15 0.9280 -35.3 0.0 0.0 
16 0.9258 -33.2 0.0 0.0 
17 0.9916' -11.7 0.0 0.0 
18 0.9820 -14.0 0.0 0.0 
19 0.9936 -6.3 0.0 0.0 
20 0.8958 -52.4 0.0 0.0 
21 0.9003 -46.7 0.0 0.0 
22 0.8964 -48.9 0.0, ' 0.0 
23 0.9017 -44.5 0.0 0.0 
24 1.0500 -8.4 201.9 140.0 
25 1.0500 5.9 440.0 71.5 
26 1.0500 -22.1 58.8 40.2 
27 1.0500 -20.3 405.2 244.5 
28 1.0500 -31.2 166.7 200.0 

SM6 = 0.01863 

* -ye for loads 
** 

in degrees 
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lems of the load flow analysis method, the limits of the curves have been obtained 

by graphical extrapolation as shown by broken lines in the figures 3.4a and 3.4b. 

It should be noted that the critical condition obtained by the proposed method 

(Table 3.10) corresponds to the limits indicated in these curves. 

A contingency condition is considered next. The line between buses 14 and 

15 (figure ffl.3) is outaged and the proposed method is applied to determine the 

system critical state assuming fi and remain unchanged. Table 3.11 shows 

the system critical state for this situation computed using the proposed method. 

The corresponding security margin, SM7 , is less than the security margin asso-

ciated with the base case condition (i.e., SM7 <SM6). SM7 is negative, indi-

cating that the system voltages would collapse if the line between bus 14 and bus 

15 is outaged due to a disturbance. 

In general, as may be expected, the effect of line outages is to reduce the load 

supply capability of the network, and hence reduce the system security margin. 

3.7.2.1 Effect of Voltage Dependence of Loads: 28-Bus System 

In order to investigate the effect of the voltage dependence of the MVA load 

on the security margin , SM, in the 28-bus example system, we let 

n = pi =q 

Figure 3.5 shows a plot of the security margin, SM, against n,, which varies 
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Table 3.11: System Condition at the Voltage Stability Limit: 28-Bus Network 
(With Line Outage) 

Bus 
Bus Voltage Bus Power 

** 
Mag. Ang. MW MVAR 

1 
2 
3 
4 
5 
6 
7. 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

1.0500 
0.8997 
0.9009 
0.9215 
0.9172 
0.9910 
0.9833 
0.9927 
0.9939 
0.9277 
0.9301 
0.9902 
0.9602 
0.9632 
0.9270 
0.9207 
0.9896 
0.9843 
0.9953 
0.9047 
0.9050 
0.8895 
0.8891 
1.0500 
1.0500 
1.0500 
1.0500 
1.0500 

0.0 
-48.4 
-54.9 
-56.1 
-60.9 
-22.8 
-15.0 
-21.9 
-11.2 
-41.8 
-44.6 
-25.2 
-19.0 
-15.2 
-40.6 
-37.1 
-12.1 
-14.0 
-6.2 

-53.5 
-48.3 
-47.3 
-41.0 
-8.6 
6.0 

-20.8 
-8.3 

-35.9 

1118.7 
-138.0 
-252.3 
-362.7 
-365.6 
-356.0 
-122.8 
-128.5 
-57.9 

-112.3 
-71.4 

-132,3 
0.0 
0.0 
0.0 
0.0 
0.0 
.0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

213.0 
440.0 
68.8 

390.0 
181.6 

223.7 
-47.6 
-20.9 
-24.8 
-1.9 

-32.4 
-2.9 

-55.2 
-6.7 

-17.1 
-41.9 
-49.5 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

144.4 
68.1 
37.2 

203.5 
200.0 

SM1 = -0.0469 

* -ye for loads 
** 

in degrees 
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between 0 and 2. From figure 3.5; it is apparent that in this case, as in the 14-bus 

example, as the MVA loads become more voltage dependent the security margin, 

SM, tends to increase. 

3.8 CONCLUSIONS 

A methodology to determine the voltage stability limit of a multimachine 

power system has been described. The methodology formulates the problem as an 

optimization problem of maximizing the system total MI/A load. The resulting 

nonlinearly constrained optimization problem is solved using the sequential qua-

dratic programming algorithm. With this formulation, difficulties related to singu-

larity of the Jacobian matrix associated with the load flow equations, and conver-

gence of the load flow solution around 'the voltage stability limit, are avoided. The 

method accommodates device constraints and limitations in system controls (e.g. 

generator VAR limits and limits on transformer tap settings). 

A stability margin SM, which may serve as a measure of the security of the 

system as far as voltage collapse is concerned, is defined. This index 'gives an 

explicit indica ion of the distance to voltage collapse in terms of actual total system 

load. 

Modifications to the general formulation are presented taking into considera-

tion exponential voltage dependence of system loads (steady state). 

The computational requirements of the proposed method is about the same as 

that for the well-known optimal power flow computation for the economic dispatch 
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- of system generation. 

Results of application of the proposed method to two example networks are 

presented and discussed. 



CHAPTER 4 

IDENTIFYING STRONG AND WEAK SPOTS IN A POWER SYSTEM 

FROM VOLTAGE STABILITY VIEWPOINT 

4.1 INTRODUCTION 

As noted previously in this thesis, the problem of declining voltages under 

heavy loading conditions in a transmission system, and loss of voltage stability fol-

lowing a major system disturbance, have been experienced with greater frequency 

and severity in France [5], Belgium [6], Japan [8], the United States [7], and 

recently in the Ontario Hydro system in Canada [9]. 

Calvaer mentioned in [6] that a system may be voltage unstable if it includes 

at least one voltage unstable bus. It is also mentioned in [34] that the experience 

in France and Italy suggests that a practical control algorithm should identify criti-

cal buses in the network and maintain control on voltages at these buses in order to 

alleviate the vulnerability of the system to collapse. In addition, since voltage col-

lapse may originate from the system critical bus, this might be the best location to 

apply countermeasures, like switching operations or load shedding, in order to save 

the rest of the system. Load shedding is regarded as a last measure control action. 

The question is, how can the critical bus in a network be identified? 

96 
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The critical bus or the "weak" spot in a transmission system is, electrically, 

the most remote bus from point of constant voltage, (or point of controllable vol-

tage). For a simple radial system which includes a generating unit serving a 

number of load points along a transmission line (Figure 4.1), the critical bus is 

easily determined as the most remote bus from the generating unit in both electrical 

and physical terms. However, identifying the critical buses or areas in a practical 

size interconnected system is not so simple. 

In [31], Kessel et. al. proposed a method of identifying the critical bus in a 

network based on certain voltage stability indices. These indices assess the prox-

imity of load supply at each bus to the load flow feasibility limit. The bus with 

the largest index is said to be the critical bus in the network. One drawback of 

this method is that it fails to take into consideration the operating constraints of 

system equipment, for example the VAR limits of the generators. As mentioned 

before, this is an important consideration because, when a generator reaches its 

VAR limit, the terminal voltage can no longer be controlled. Under this condition, 

the machine model has to be modified resulting in a change in the system perfor-

mance pattern. 

Schlueter proposed a method in [41] to determine the weak areas in a 

transmission system. The method has been adapted from the literature on determin-

ing coherent groups of machines which are aggregated to form a dynamic 

equivalent for transient stability studies. A voltage control area is then defined as a 

set of PQ and PV buses that are "coherent" in terms of voltage deviations for 
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any set of real or reactive power disturbances. The voltage control areas identified 

using the coherency algorithm applied to the reactive power/voltage Jacobian 

matrix are believed to have weak boundaries in terms of transferring reactive 

power. 

In this chapter, two methods are proposed for identifying the weak spots in 

transmission systems. The methods are extensions of the approach proposed in 

Chapter 3 of this thesis for determining the static voltage stability limit in mul-

timachine power systems. The first method is based on the relative change in the 

bus voltages going from an initial operating state to the voltage stability limit. The 

second method is based on the sensitivity parameters computed at the voltage sta-

bility limit. 

4.1 METHOD ONE - RELATIVE VOLTAGE CHANGE METHOD 

Let Vnit and Omit be the voltage magnitudes at bus i at the initial 

operating state and the voltage stability limit respectively. The system state at the 

voltage stability limit is determined using the method proposed in Chapter 3 of this 

thesis. A voltage change index is defined for each load bus as 

vci= 

where 

nit - Vllmit 
V/  

V!imtt 
1 

G JL (4.1) 
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JL is the set of all load buses. 

As mentioned previously, the "weak' or critical bus in the network is the most 

(electrically) remote bus from the point of constant or controllable voltage. It is 

expected that the critical bus would be the worst affected (voltage- wise) because 

of a shortage of local VARs or VARs transferred or imported from a remote 

source. This is a typical scenario in reported cases of voltage collapse problems 

[11]. Based on this expectation, it is anticipated that for a specified operating 

regime, going from an initial operating point to the voltage stability limit, the criti-

cal bus would experience the largest voltage change (or drop), i.e., the largest 

index VC defined by equation (4.1) Therefore if bus k is the critical bus, then 

max {VC. } 
iEJL (4.2) 

Based on the index VC , the system buses may be arranged in order of "weak-

ness", the weakest bus corresponding to the one with the largest index. 

The voltage change index defined in equation (4.1) to identify the critical bus 

in a network may be extended to identify the weakest area in a power network. In 

this context, an area would consist of a set of connected buses in a geographical 

region. 

Let K be an area with nK connected load buses, where KESA , SA is 

the set of all areas. An index, AVCK, is defined for all areas in SA as 
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vcj 
AVCK = ieK  , KES 

A 
(4.3) 

AVCK is simply the average voltage change for the buses in area K . Again, it 

is expected that the weakest area would experience the largest average voltage 

change. Thus, if area J is the the weakest area, then 

AVCJ = max { AVCK } 
KESA (4.4) 

Using this index, areas in the system may be ordered on the basis of "weakness", 

the weakest area corresponding to the one with the largest index, AVCJ. 

4.3 METHOD TWO - SENSITIVITY METHOD 

This method of identifying the critical bus and weak areas in a power network 

is based on the sensitivity of the objective function, which is the total maximum 

load ST, that the system can supply stably for a given distribution vector fi 

(reference Chapter 3). 

As mentioned in Chapter 3, the vector fi specifies the direction of increase 

of the MVA demand vector. 13 , an element of fi, is an increase in the load at 

bus i expressed in per unit of the corresponding system total load increase. In a 

stable operating regime, an increase L431 , in Pi should result in an increase 

L\S1 in the MVA demand at bus i and consequently, an increase in the total 
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MVA load. Pi may be viewed as a mechanism for varying the MVA demand at 

bus i. 

The increase in the MVA demand at bus i , EiS, due to an increase Api 

is however dependent on the strength of the network at bus i . The sensitivity. 

parameters, 

DST 
S1 = a13 (4.5) 

therefore may be seen as measures of incremental effectiveness, of load supply at 

the respective buses. SI may thus be used as a "strength index" and interpreted 

as a measure of the capability of the network to supply additional power (real or 

reactive) to bus i 

It is apparent that the critical bus in the network will have the minimum 

strength index, i.e., if bus k is the critical bus in the network, then, 

min {SI.} 
iEJL 

(4.6) 

Again, using this index, the system buses may be ordered on the basis of "weak-

ness", the weakest bus corresponding to that with the smallest strength index. 

This definition of strength index may also be extended to identify weak areas 

in a network. For this purpose, an index ASIK is defined for each area as 
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Sli 

AS! = iEK  
K ' KESA (4.7) 

ASIK is the average strength index for the buses in the area. The weakest area 

is the area with the smallest average streiigth index. Thus if area J is the weak-

est area, then 

ASI= mm 
KESA 

(4.8) 

This index (ASI ) may be used to order the system areas on the basis of weak-

ness. 

It should be noted that this method of identifying the system critical bus and 

weak areas depends on the computation of the sensitivity parameter, SI1, 

at the voltage stability limit. Although the maximum total load ST depends on 

the choice of the distribution vector fi, the relationship is not explicit and makes 

the direct computation of the sensitivity parameters defined in equation (4.5) rather 

difficult. However, as shown in the next section, the Lagrange multipliers associ-

ated with binding constraints at the solution point of an optimization problem have 

- useful sensitivity interpretations. Of particular interest are the Lagrange multipliers 

associated with the elements of the vector fi in the optimization problem (3.13) to 

determine the system voltage stability limit. 
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It will be recalled that the elements of the vector A are specified and are not 

included as variables in the optimization problem. For the purpose of determining 

the sensitivity of the objective function with respect to the elements of fi, an 

additional constraint set, 

= jcpec, i E (4.9) 

must be included in the optimization problem (3.13). f3fP is the specified 

value of 

Next, it is shown how the Lagrange multipliers at the solution point are used 

to evaluate the required sensitivity parameters. 

4.3.1 Interpretation of The Lagrange Multipliers 

In order to provide an interpretation of the Lagrange multipliers [681, the 

optimization problem (3.13) including the constraint set (4.9) above is written in 

compact form as, 

minimize 

f(!) 

subject to, 

(4.10) 



104 

(1) c(x)=b f = 

(2) c(x)≥b. j=me+l.m 

(3) x1≤x ≤xU 

where 

x is an n—dimensional vector of variables, 

x1 and xt are the lower and upper limits on x respectively, and 

all functions are continuously differentiable. 

Let the t--dimension vector ô be the vector of constraints that are binding at the 

solution of the optimization problem (4.10), i.e., constraints that satisfy 

= j= 1,2,. . .,t  

The effect of a change in on the optimal value of the objective function, 

f (*) may be expressed as, 

af(x*) - ii af( *) dxi 
ai. a. . 

3 i—i 3 
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where 

*)T [_dx 
= g (X_ Z_] (4.12) 

Vf(* ) = g(x*) (4.13) 

The Kuhn-Tucker first order optimality condition [65] requires that, 

(*) =A*)T* 

where A (*) is the txn Jacobian matrix of C^ (x*) ,i.e., 

A*) = 176 1, ye2.....  ct] - 

(4.14) 

and X is the of vector Lagrange multipliers associated with the binding con-

straint set (4.11) at the solution point. 

Combining equations (4.12) and (4.14), we have, 

af( *) 
Eb. [_dx i. i 

* Tdx 
--- 

J 

J db. 
j=1 J 

From the j th constraint of equation (4.11), we have 

(4.15) 
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d(l;._.(x*)) dl;. , ac.(*) dx. 
J J  - J J  '-0 

dl;k thk i=1 

or 

vex _ *)Tdx k=j 
_(__ dbktO k#j 

Combining equations (4.15) and (4.16), we have, 

af( *) 

ab. J 

(4.16) 

(4.17) 

It is apparent from equation (4.17) that the Lagrange multipliers at the optimal 

point provide a relative measure of the sensitivity of the objective function to 

changes in the constraints, i.e., they indicate how tightly the constraints are bind-

ing. 

The above result is applied to the optimization problem (3.13) including the 

constraints set (4.9). Of particular interest are the Lagrange multipliers associated 

with the constraint set (4.9). Using equation (4.18), we have 

CIST 
sli = = i (4.18) 

where A. j is the Lagrange multiplier associated with the element Pi of the 

vector 
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4.3.2 Evaluating The Lagrange Multipliers 

The optimization problem (3.13) is solved using the Sequential Quadratic Pro-

gramming (SQP) algorithm which is discussed in Chapter 3 of this thesis. At each 

major iteration, k , of the SQP algorithm, estimates of the optimal solution 

and the Lagrange multipliers are computed; At the k th iteration, let Lk be 

the vector of constraints that are believed to be active at the optimal point x 

and A  be the corresponding Jacobian matrix; The first order Kuhn-Tucker 

optimality condition shown in equation (4.14) requires that at the optimal solution, 

the gradient of the objective function must equal a linear combination of the 

gradients of the active constraints. This condition suggests that the vector 

that solves the linear least-square problem 

minimize IlA— 112 
X k! &k2 (4.19) 

would provide an estimate Xk of the multipliers of the optimization problem. 

Let 

in the problem (4.19). The vector which is the vector of minimum Euclidean 

length that is the solution of the problem (4.19) isgiven as 
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=H (4.20) 

where the t xn matrix H+ is the pseudo-inverse of the n xt matrix H. 

The pseudo-inverse is written as 

= (HTH)1HT ; (4.21) 

however, it is not computed in this form. A convenient way of finding H+ is 

based on singular value decomposition. 

The real matrix H may be written as 

where 

H = UVT, (4.22) 

U is an n xn orthonormal matrix,. 

V is a txt orthonormal matrix, and 

is an nxt diagonal matrix 

=diag( 1,. . . 

with for all i. 

The pseudo-inverse of H is then evaluated as, 

H+=VUT 

where Q is a txn diagonal matrix 

(4.23) 
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= diag(co) 

with 

(4.24) 

As the SQP algorithm progresses, 4 converges to , and converges to 

A* SI can therefore be obtained using equation (4.18). 

4.4 NUMERICAL EXAMPLES 

Results of application of the proposed methods of identifying the system criti-

cal bus and weak areas to some example systems are presented in this section. 

The first system is a simple radial network which includes one generating unit and 

four load buses (Figure 4.1). By design, the critical bus in this network would be 

the physically most remote bus from the generating unit. The network is chosen for 

analysis in order to demonstrate the proposed methods. The second system is the 

AEP 14-bus network which includes two generating units, three synchronous con-

densers, and twenty transmission lines/transformers. The third system is a 20-bus 

network which includes six generating units and twenty-seven transmission 

lines/transformers. 

In evaluating the voltage stability limits for these examples, only the reactive 

demands are assumed to increase, i.e., MW demands remain constant. Also, for 
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each of the example systems, the elements of the distribution vector are 

chosen as, 

P Li  

(4.25) 

where 

"Li is the MW demand at bus i. 

4.4.1 Radial System 

Figure 4.1 shows a one line diagram of the four bus radial system. The Line 

data for this system are given in Table 4.1. 

Table 4.2 indicates the initial system state obtained by load flow analysis and 

the system state at the voltage stability limit evaluated using the optimization 

method described in Chapter 3. In Table 4.3 the calculated system strength 

•indices, i.e., VC's and SI's, for each of the load buses in the system are presented. 

By the design of this network, bus 4 is the critical bus in the network. As 

may be observed in Table 4.3, both the VC and the SI indices correctly pick bus 4 

as the critical bus in the system. System buses may be ordered on the basis of 

"weakness" (from the weakest to the strongest) using these indices as 

{•4, 3, 2}, (4.25) 
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V VT 

Figure 4.1: 4-Bus Radial Network' 

Table 4.1: Line and Transformer Data (Radial Network) 

Line 
No 

Line 
Conn. 

Impedance 
R X 

Charging 
T.U. 

1 
2 
3 

1-2 
2-3 
3-4 

0.010 0.060 
0.006 0,080 
0.020 0.120 

0.180 
0.140 
0.220 
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Table 4.2: Initial and Limitting System States (Radial Network) 

Bus 

Initial State Voltage Stability Limit 
Bus Voltage 

Mag Ang** 
Bus Power* 

MW MVAR 
Bus Voltage 

Mag Ang** 
Bus Power* 

MW MVAR 

1 
2 
3 
4 

1.050 0.0 
1.000 -8.0 
0.990 -15.3 
0.986 -21.9 

254.4 52.1 
-90.0 -30.0 
-65.0 -15.0 
-90.0 -15.0 

1.050 0.0 
0.865 -8.3 
0.723 -19.6 
0.597 -33.1 

268.9 285.4 
-90.0 -64.8 
-65.0 -40.1 
-90.0 -49.8 

* negative for loads 
** in degrees 

Table 4.3: Bus Strength Indices (Radial Network) 

Bus VC SI 

2 0.156 1.212 
3 0.369 0.672 
4 0.652 0.000 

which can be judged by the structure of this network to be the correct order. It 

should be noted that both indices (SI and VC ) provide the same ordering of the 

buses. 

4.4.2 14-Bus System. 

The bus and line data for this system are given in Appendix ifi. Table 4.4 

shows the system initial operating state and the state at the voltage stability limit 

computed using the optimization method described in Chapter 3. It should be 

noted that the VAR outputs of the generators and synchronOus condensers have 

been limitted to their respective specified maximum values. 
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Table 4.4: Initial and Limitting System States (14-Bus Network) 

Initial State Voltage Stability Limit 
Bus Bus Voltage Bus Power* Bus Voltage Bus Power* 

Mag Ang** MW MVAR Mag Ang** MW WAR 

1 1.060 0.0 338.7 85.0 1.060 0.0 366.9 290.5 
2 1.000 -6.6 40.0 50.0 0.921 -6.4 40.0 50.0 
3 0.911 -16.7 -94.2 -19.0 0.745 -18.9 -94.2 -38.3 
4 0.920 -15.5 -57.8 -23.9 0.750 -17.1 -57.8 -35.7 
5 0.932 -140 -47.6 -1.6 0.777 -15.1 -47.6 -11.4 
6 0.978 -25.3 0.0 24.0 0.713 -34.6 0.0 24.0 
7 0.963 -21.7 0.0 0.0 0.728 -27.5 0.0 0.0 
8 1.005 -21.7 0.0 24.0 0.782 -27.5 0.0 24.0 
9 0.953 -24.9 -29.5 -16.6 0.684 -33.6 -29.5 -22.6 
10 0.940 -26.4 -29.0 -5.8 0.656 -36.4 -29.0 -11.7 
11 0.946 -26.5 -13.5 -5.8 0.662 -36.6 -13.5 -8.6 
12 0.928 -29.3 -36.1 -1.6 0.615 -41.9 -36.1 -9.0 
13 0.944 -27.7 -23.5 -5.8 0.649 -38.9 -23.5 -10.6 
14 0.929 -27.4 -14.9 -5.0 0.631 -38.2 -14.9 -8.1 

* negative for loads 
*j degrees 

Table 4.5: Bus Strength Indices (14-Bus Network) 

Bus VC SI 

3 0.222 0.662 
4 0.227 0.597 
5 0.200 0.644 
7 0.327 0.337 
9 0.394 0.159 
10 0.433 0.091 
11 0.431 0.086 
12 0.511 -0.023 
13 0.457 0.034 
14 0.473 0.000 
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Table 4.5 shows the strength indices evaluated for each of the load buses. 

Using the VC indices, the system buses may be ordered on the basis of strength 

(weakest to strongest) as follows: 

{ 12, 14, 13, 10, 11, 9, 7, 4, 3,5 } (4.26) 

Also using 'the SI indices, the system buses are ordered as follows (weakest to 

strongest): 

{ 12, 14, 13, 11, 10, 9, 7, 4, 5, 3 } (4.27) 

It should be noted from (4.26) and (4.27) that both indices pick bus 12 as the criti-

cal bus in the network. It should also be noted that the indices produce the practi-

cally identical order of the system buses as far as "weakness" is concerned. The 

differences between the two sequences (4.26) and (4.27) are the positions for buses 

10 and 11 which are interchanged and positions for buses 4 and 5 that are also 

interchanged. The strength 'indices for the interchanged positions are quite close 

and within the tolerance of the computation. For example, VC 10 and VC 11 

differ by 0.002. 

Because of the additional constraint that 

13i=1' 

it follows that the last of the constraint set specified by equation (4.9) is an extra 
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(redundant) equation. It is therefore assigned a Lagrange multiplier value of zero 

since its inclusion in the constraint set does not affect the final value of the objec-

tive function. Consequently, in this example, X014 = 0.0 = SI 14 . As mentioned 

previously, the Lagrange multipliers give relative measures of the sensitivity of the 

objective function with respect to the constraint function. The Lagrange multipliers 

for the rest of the constraints specified by equation (4.9) are therefore relative to 

the preassigned zero value and may therefore be positive or negative. The result of 

this is that positive and negative values of the SI indices may result as happened 

in this example. 

For a given network, the weakest bus and bus ordering based on weakness 

determined above depend on the distribution and power, factors of the initial MVA 

load and on the expected (given) pattern of increase from the initial load as 

specified by the distribution vector A . Changes in these specified parameters will 

result in a different ordering of the buses. 

Next, the network is partitioned into three geographical areas as shown in Fig-

ure 4.2. Each area consists of connected buses. Table 4.6 shows the areas' strength 

indices ASI and AVC evaluated for each area. It should be observed that area A is 

picked by both the ASI and the AVC indices as the weakest area. The indices also 

produce identical ordering of the areas as far as weakness is concerned. 
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Figure 4.2: Areas of the ALP 14-Bus Network 
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Table 4.6: Area Strength Indices (14-Bus Network) 

Area AVCK ASIK 

A 0.222 0.662 
B 0.410 0.161 
C 0.362 0.254 

4.4.3 20-Bus System 

The data for this system is given in Appendix Ill. Table 4.7 shows the sys-

tem states at the initial operating point and at the voltage stability limit. In Table 

4.8 the system load buses strength indices SI and VC are shown. Based on the VC 

indices the system load buses are ordered from the weakest to the strongest as fol-

lows: 

{ 7, 12, 11, 10, 19, 9, 6, 18, 5, 17, 16, 4, 14, 15 -1 (4.28) 

Similar ordering based on the SI indices yields 

{ 7, 12, 11, 10, 9, 6, 19, 5, 18, 17, 16, 4, 14, 15 } (4.29) 

Again, it is obseiyed from (4.28) and (4.29) that both the VC and SI indices pick 

bus 7 as the critical (or weakest) bus in the network in terms of meeting a demand 

for reactive power. It is also apparent that these two indices produce practically 

identical ordering of the buses as far as weakness is concerned. The differences in 
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Figure 4.7: Initial and Limitting System States (20-Bus Network) 

Bus 
Initial State Voltage Stability Limit 

Bus Voltage 
Mag Ang** 

Bus Power* 

MW MVAR 
Bus Voltage 

Mag Ang** 
Bus Power* 
MW MVAR 

1 1.050 0.0 416.6 273.0 1.060 0.0 498.8 947.3 
2 1.020 3.4 384.0 45.1 1.020 3.1 384.0 600.0 
3 1.020 3.4 384.0 45.1 1.020 3.1 384.0 600.0 
4 1.011 1.3 0.0 0.0 0.956 1.4 0.0 0.0 
5 0.977 -4.6 0.0 0.0 0.800 -5.7 0.0 0.0 
6 0.962 -5.7 -153.0 -80.0 0.768 -7.4 -153.0 -156.7 
7 0.937 -9.4 -563.0 -430.0 0.653 -13.4 -563.0 -712.2 
8 1.020 -1.4 308.0 400.0 0.882 -1.5 308.0 400.0 
9 0.977 -5.2 0.0 0.0 0.778 -6.5 0.0 0.0 

10 0.953 -7.5 -174.0 -77.0 0.712 -10.2 -174.0 -164.2 
11 0.973 -7.1 0.0 0.0 0.722 -9.5 0.0 0.0 
12 0.947 -9.1 -715.0 -381.0 0.662 -13.0 -715.0 -739.3 
13 0.995 -7.1 410.0 600.0 0.738 -9.1: 410.0 600.0 
14 1.029 -1.5 0.0 0.0 0.982 -1.6 0.0 0.0 
15 1.031 -1.1 0.0 0.0 0.994 -1.1 0.0 0.0 
16 0.983 -4.7 0.0 0.0 0.833 -5.6 0.0 0.0 
17 0.978 -5.4 -171.0 -75.0 0.818 -6.5 -171.0 -160.7 
18 0.966 -5.6 0.0 0.0 0.782 -7.1 0.0 0.0 
19 0.958 -7.6 -142.0 -68.0 0.747 -9.8 -142.0 -139.2 
20 0.961 -7.7 51.0. 80.0 0.730 -10.1 51.0 80.0 

* negative for loads 
** in degrees 
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Table 4.8: Bus Strength Indices (20-Bus Network) 

Bus VC SI 

4 0.057 2.343 
5 0.221 0.011 
6 0.253 -0.489 
7 0.436 -4.078 
9 0.256 -0.791 
10 0.340 -2.379 
11 0.348 -2.602 
12 0.430 -2.936 
14 0.049 5.513 
15 0.037 5.882 
16 0.181 1.932 
17 0.196 1.783 
18 0.236 0.187 
19 0.282 0.0 

the above two sequences are in the fifth to ninth positions where the strength 

indices are quite close in magnitude. 

Next the network is partitioned into three geographical areas as shown in Fig-

ure 4.3, each area consisting of interconnected buses. Table 4.9 shows the strength 

indices ASI and AVC computed for each area in the network. It is noted that area 

A has been picked as the weakest area in the network by both indices ASI and 

Table 4.9: Area Strength Indices (20-Bus Network) 

Area AVCK ASIK 

A 0.367 -2.776 
B 0.163 2.550 
C 0.211 -0.204 
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AVC. That the area A is the weakest area in this case is not so surprising since, as 

may be observed from Table 4.8, the local generating units, 13 and 20, in this area 

are delivering their maximum VAR outputs, and additional VARs have to be tran-

sported from the remote source at bus 1. 

4.5 CONCLUSIONS 

In this chapter, two methods of identifying the critical or weakest bus, and the 

weakest area of a power system are proposed. The methods take advantage of the 

optimization method described in Chapter 3 to determine the system voltage sta-

bility limit accurately and directly, taking into consideration the limits on system 

VAR supply. These methods are expected to yield more realistic results than pre-

viously proposed methods, which do not consider equipment limitations. The com-

putational requirements for each of the two methods are comparable to those of the 

optimization method to determine the voltage stability limit. 

The methods have been applied to 3 example systems. For these examples, 

the two proposed methods produce practically identical results. 



CHAPTER 5 

VAR PLANNING FOR POWER SYSTEM SECURITY 

5.1 INTRODUCTION 

The purpose of distributed system VAR planning has primarily been to pro-

vide enough reactive power to correct unacceptable pre- and post-contingency vol-

tage levels. Numerous studies have been conducted in this area. Some of these 

studies are listed in references [46-55]. 

An objective in VAR planning is usually to minimize the investment cost of 

the reactive supply facilities required. However, as noted in Chapter 1 of this 

thesis, increased loading and exploitation of power transmission networks appears 

to have created a special voltage security problem, namely voltage instability or 

collapse [5-45]. System voltages might collapse if the network is unable to meet a 

given load demand. It is also noted by some investigators [10,14,16] that the ina-

bility to meet a load demand may be attributed to inadequate VAR support or 

transmission capability. Some work has been reported regarding identification of 

the most beneficial locations for VAR support, designed to enhance the system's 

security from voltage collapse [14,41]. 

In this chapter, an integrated method of identifying dispersed VAR supply is 

proposed for the dual purpose of maintaining voltage profiles within specified urn-

122 
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its, and increasing the security margin of anticipated operating conditions with 

respect to voltage collapse. The objective is to minimize the cost of the VAR sup-

ply required for a given security margin in the event of occurrence of any one of a 

set of specific contingencies. + 

5.2 SECURITY 

5.2.1. Concept 

In this section, the concept of voltage security as interpreted in this thesis will 

be discussed by examining a simple power system. 

Figure 5.1 shows a simple system including an impedance load = ZR 

supplied by a constant voltage source V1 through a transmission line of 

impedance. ZL = ZL / and a load tap changing (LTC) transformer of off-nominal 

turns ratio t:1. Figure 5.2 shows the variation of the receiving end voltage VR 

against the MVA demand SR, at constant power factor. The point ,A (where 

VR = R t) represents the system critical state. The voltage stability condition 

derived in Chapter 2 of this thesis, i.e., 

- <1, 
IZRI 

implies that the upper segment (VR > Vit) is the stable operating regime. 
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Figure 5.1: Simple System 
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For operation at a stable operating point, B, it is desirable that 

(i) the voltage magnitude VN be within a specified margin i.e. 

Vmln≤V max 
N NN 

and 

(ii) the operating point B lies a certain distance from the point corresponding to 

the critical state. This distance can be identified in terms of a security mar-

gin, SM, so that 

SM ≥ SM 

where SMhIPCC represents the minimum permissible margin. 

Power system operation is said to be secure if the system can sustain a disturbance 

without violating the operating limits (i) and (ii) above. The degree of security. 

that can be planned into a power system is limited by costs. Technical require-

ments are, also important considerations in deciding the values of VJfm, V1ylax 

and SM spec 

As has been noted [25,28], voltage magnitude alone may not be a reliable 

indication of how far an operating point is from the collapse point. Hence, satisfy-

ing the voltage magnitude constraint does not guarantee that the security margin 

requirement is satisfied. One way by which both the voltage magnitude and the 
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security margin, SM, may be modified to some extent is through reactive power 

(VAR) compensation. Electrically, the VAR compensation referred to in this dis-

cussion is provided by rotating or static components connected between a bus and 

ground. 

5.2.2 Effect of VAR Compensation 

Figure 5.3 shows the same simple system as before with a capacitor of admit-

tance jb at the receiving end. The capacitor constitutes (static) VAR compensation. 

-Figure 5.4 is a plot of the receiving end voltage against the WA demand 

with b = 0 and b = 0.25 pu. It is evident that installing a VAR source at the 

receiving end improves the operating voltage VN and also the security margin from 

SM° to SM!. 

For practical size power networks (more that just two buses), deciding on 

locations and amounts of VAR to install in order to meet the voltage level and 

security requirements while minimizing the VAR supply costs is not simple. The 

best locations for a possible set of reactive sources will depend on system structure 

and operating conditions. Also, load distribution, contingencies, and system control 

variables like the generator voltages and transformer taps, and their respective lim-

its, need to be taken into account. These aspects are included in the VAR supply 

planning methodology for a general multi-bus network proposed in this chapter. 
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Figure 5.3: Simple System with Compensation 
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Figure 5.4: At-Load Voltage Variations (with Compensation) 
(Load pf = 0.93) 
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5.3 SECURITY ASSESSMENT 

In order to determine whether or not the power system meets the voltage level 

and security requirements it is necessary to determine both the voltage magnitudes 

and the security margins for the operating conditions anticipated. 

The voltage ,magnitudes may be determined by solving the load flow equa-

tions for the system. The well-known Newton-Raphson solution algorithm is 

employed for this purpose. 

To evaluate the security margin, SM, it is necessary to determine the system 

critical condition (voltage stability limit). The method proposed in Chapter 3 of 

this thesis to determine the static voltage stability limit in multimachine power sys-

tems is used for this purpose. A security margin, SM, is subsequently defined for 

each of the anticipated contingency conditions in terms of actual power margin to 

collapse (equation 3.19). 

In the event that a voltage magnitude at an expected operating point is outside 

the specified limits, and/or SM is less than required, additional VAR injections 

may be considered. 

5.4 VAR SUPPLY - FORMULATION 

Consider the object in dispersed reactive power supply planning as that of 

minimizing the cost of the necessary VAR sources needed to achieve a bus voltage 

distribution within a specific range, and security margins at or above a specified 
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minimum value. This objective may be realized by formulating the problem as the 

following, optimization problem: 

minimize 

[Total cost of dispersed VAR supply] 

such that: 

(1) all voltages are within specified limits, and 

(2) the security margin (SM) is equal to or greater than some specified value. 

The mathematical modeling of the objective function and the associated constraints 

are discussed next. 

5.4.1 VAR Supply Costs 

The cost of VAR installation at a bus is considered to have two components, 

one fixed and one variable [52]. The fixed cost is independent of the number of 

the VARs installed. The variable cost is proportional to the size of the added 

VAR. The i—rh bus VAR cost can therefore be modeled as 

Cost =d.+sq+s. 
I ci ci ri q ri 

where 

(5.1) 
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Sci and Sri are unit costs of capacitive and inductive sources 

respectively, 

qci and q,. are the added capacitive and inductive VAR's 

d is the fixed VAR installation cost for bus i. 

The total cost of VAR expansion may then be modeled as 

Total Cost = Z (d + s q + s q ) a ici ci Sri ri z 
iEC (5.2) 

where aj is a 0 - 1 decision variable. a = 1 if the i th bus is selected for VAR 

installation, otherwise a = 0. C is the set of candidate buses consisting of buses 

to be considered for VAR injection. Based on engineering judgement, many of the 

system buses may be excluded from the candidate set. 

Physical and/or environmental considerations may limit the size of the VAR 

facility that may be installed at a bus. Therefore, the size is constrained by 

0 ≤ qci ≤ 

(5.3) 

o ≤ qTi :5 i aq 
ri 

5.4.2 Voltage Magnitude Constraint 

As mentioned above, the system voltages for an expected operating condition 

may be determined using the load flow equations. The goal of having the system 



131 

voltage magnitudes for a particular operating condition within specified limits may 

therefore be realized by including the load flow equations as constraints in the 

optimization problem. The new VAR sources should be included in the load flow 

equations. Bounds on the system voltage magnitudes and transformer taps are also 

included as constraints. The resulting constraint set can be expressed as 

PjV+P(VN,P1,t1V) = 0 

QN + Q1 (V *N, tN) - Ci + = 0, 

pfl 'Gj N 3N tN) ≤ p max 

Gf N N, tN) . Gj S j GJ 

Vmn≤N≤max 

!mn ≤N ≤max 

where 

VN is the vector of voltage magnitudes at normal operating condition 

SN is the vector of voltage angles at normal operating condition 

tN is the vector of tap settings at normal operating condition 

(5.4) 
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and QT are the specified MW and WAR demands at bus i, normal 

operating condition 

GJ and Gj are the MW and WAR outputs of generating unit j 

JL is the set of load buses 

JG is the get of generator buses. 

5.4.3 Security Margin Constraints 

In addition to having the system voltage magnitudes at the given operating 

point within specified limits, it is also required that the operating point be some 

safe margin away from collapse (the critical point). This margin is specified by 

SM in equation (3.19), i.e., 

SM ≥ SM spec (5.5) 

where SM spec is the specified minimum margin to the critical point, 

(0 < SMspec <1). 

Combining equation (3.19) with (5.5) we have, 
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5 1imit > 51initial +  SM spec  Pi I S initial 

1 - SM spec jEJL 
(5.6) 

It is assumed that the power factor of the MVA demand at bus i is constant 

at Pfi, i E 1L• Decomposing equation (5.6) into real and imaginary parts, and 

including generator MW and MVAR limits and the new VAR sources, the security 

margin constraints may be written as 

where 

P.(vL, SL ' t') ≥ c 

Q(L, BL' tL)_q. +q, ≥ 

°Gj (VL SL tL) ≤ max 

Q  Q max, J7fl :,gQGJ(,-l1,!L) :!g. Gj 

tmin  tmax 

ci = Pfi[S initial + 
SM spec 

1 - SMSPeC 
01 Z 5initia1 

JEJG 

d = (1 - pf 2)1/2 5initial + SM spec . sjnitial 

1 - SM spec 

(5.7) 
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vL is the vector of voltage magnitudes of the critical point 

is the vector of voltage angles at the critical point 

tL is the vector of tap settings at the critical point. 

5.4.4 Overall Problem Formulation 

The overall problem of VAR supply distribution may now be written as 

minimize 

(d +s ci .qci . +s ri qri )a. 
iC 

subject to: 

(i) a = 0 or 1 

(ii) 0 ≤ q ≤ a. q' 
ci ici 

max (iii) 0 ≤ qri ≤ aq ri 

(iv) Equation set (5.4) 

(v) Equation set (5.7). 

i€C 

(5.8) 
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This is a mixed-integer nonlinear programming (MW) problem. The only 

known solution method for this class of problems is the combinatorial program-

ming method. According to that method the problem is solved for all possible 

combinations of 0's and l's in the candidate set. The method is inefficient for 

problems of the size associated with practical power systems. A two-stage algo-

rithm to obtain a near-optimal solution has therefore been developed. 

5.5 A TWO-STAGE SOLUTION ALGORITHM 

A near-optimal solution may be obtained by decomposing the M[NP problem 

into two subproblems. The first subproblem installs VARs such that the variable 

component of the cost function is minimized. The second subproblem optimizes 

the fixed component of the cost function by minimizing the number of buses where 

VARs were installed according to the relation of the first subproblem. 

5.5.1 First Stage Solution 

The first-stage subproblem is established by fixing the values of the decision 

variables i E C ,'at 1. The resulting problem may be stated as follows: 

minimize 

• (Sd + Sri qi 
L ) 
EC 

such that: 
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(i) 0 ≤ ≤ q Tax CI C1 

(ii) 0 ≤ qri ≤ q IflX, i E C (5.9) 

(iii) Equation set (5.4) 

(iv) Equation set (5,7). 

This is a non-linear programming (NCP) problem. Efficient methods exist today 

for solving this class of problems even for large-scale systems [64]. 

The solution of the first stage is the minimum amount of VARs that needs to 

be installed in order to satisfy voltage levels and the security constraint. However, 

this solution does not necessarily correspond to minimum investment cost of the 

dispersed VAR supply because the number of VAR supply locations is not minim-

ized. The results obtained are passed on to the second-stage subproblem. 

5.5.2 Second Stage Solution 

The purpose of this stage is to minimize the number of VAR supply locations 

while maintaining system voltages within specified limits and maintaining a secu-

rity margin greater than (or equal to) SM spec, The equations for the second stage 

of the algorithm are obtained by linearizing the equations of M[NP around the 

solution point obtained in the first stage subproblem with some modifications. 

Bearing in mind that the problem of minimizing the number of locations where 

VARs are to be installed is equivalent to maximizing the number of locations 
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omitted for VAR installation in the candidate set, the second stage subproblem is 

formulated as follows: 

maximize 

d k - iq . - Sri 'ri 
ieC 

subject to: 

(i) k = 0 or 1, i€C 

(ii) H1AWV + NiWN + D&N = 0 

(iii) j.N + Li 'AVN + E&N + - Aqci  - qjkj + Aqri = 0, 

(iv) AP nun ≤ (H J-+NAVN +Dz ) ≤ max 

(v) AQ nun ≤ (J6N + LJAV' + EJ&N) :5 AQ max 
Gj 

(vi) F1 E%&' + GLVL +R&' ≥ 0 

(vii) ML%FI-' + szvL + T&L + qCik - qjkj - 1ci + ' ri 

(viii) zP(q" .≤ (F1L 8L +G1LW4 +R& l') AP max 
Gj 

jEJG 

(ix) AQ/I' ≤ (M  &5L + + TJ&L) Gf' JEJG 

G JL 

(5.10) 

eiL 
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(x) + ≤ jC1 C1 q X 

(xi) &jd ≥ 0 

(xii) k1 &7?ax + 'ri 
rl 

(xiii) &Iri ≥ 0 

where , the parameters of the sensitivity vectors H, N1,Di, ji L. E1, 

G, R1, M, S, T are as defined in section 5.5.3. The decision variable k1 (in 

the constraint set (i)) is a 0 - 1 variable, k1 is 0 if the i 1 bus remains a candi-

date for VAR installation, and is 1 if the ith bus is deleted as a candidate bus. It 

should be noted that when k1, is 1, Lq and Lq are zero (combining con-

straint set (x) and (xi)); also, VARs of size q (or q,. ) which was installed at 

the ith bus in the first stage is switched off (i.e. deleted). 

This class of optimization problems is known as mixed-integer linear pro-

gramming. Again, efficient solution methods exist today for solving this class of 

problems [64]. 

The procedure outlined not only maximizes the number of buses that are 

omitted as candidate buses, it also minimizes the VAR additions (Aq 1 and 

'Wri ) at the remaining candidate buses such that the goal regarding voltage level 

and security is still realized. The final VAR distribution is: 
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qfinal = q +Aq 
ci ci ci 

(5.11) 
qf.inal q+t 
ri ri q ri 

, 

ieC 

where q Ci and q , i E C', are the solutions of the first stage problem, and 

C is a subset of C . C is the set of buses for which k = 0, i € C , i.e., 

candidate buses where VARs are installed. Also, the final values of the voltages 

(magnitudes and angles) at the normal operating point may be obtained as, 

vNf _vN+vN 

fNN 

tNf ..N +&N 

(5.12) 

where VN, W'T, and tN are the solution of the first stage subproblem. Final 

values, 

values of 

vW,&"f, and Af 

qfnal and qilfl3l, 

are obtained in the same way. More accurate 

i e C, and the voltages and tap positions, may be 

obtained by setting aj = 1 , i € C' and solving subproblem 1 (first stage) again. 

The limits on the dependent and independent variables are set as follows: 

Variable Ax N 
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N Ai = (LWN, LS#,&N) 

l/Nmin = Nmin - yNrnax = Nmax -  VN 

&Nmin = tNmin _N 

Variable AJ 

L Ai = (AVL,AL,&L) 

Lmax = LJnax - vL 

&Nmax = tNmax - tN 

&Lmin = tLmin - =tLmax -  tL 

Variables 'Gi and E 
JG 

Ap max - p max - AD I n - 1) mm 
Gi Gi Gi ' ''  - 'Gi - ' Gi 

A/) max - ,- max - ,- 

Gi - Gi Gi 

Variables Aq and 

iqTTlaX = q laX_ q. 
ci ci ci 

LV)mfl = fl min 1) 
Gi Gi 

= 
max 

- qri ri 

5.5.3 Sensitivity Vectors 

As mentioned previously, the row sensitivity vectors Hi, N. Di,J, L , 

E1, F , Gi'R i,M1, S, T are obtained by linearizing the nonlinear equations for 
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the MW and MVAR injections at bus i around the solution obtained from the 

first stage subproblem. 

Assuming a system of n buses and r LTC transformers with bus 1 as the 

slack bus, the row vectors are evaluated as, 

H.-
i 

a&T' 'a' api JPi pi ap. 
N— __ I 

av11' avf 'av,11 

ap.1 ai'.1 
-  

1 2 trLi aQi aQi aQ. 

i - ao ' ao 

aQ aQ aQ. 
1 

av11' av "  ' vf' 

IaQ aQ1 aQ1 
E = [at ' at ' 

iEJLL) G 

(5.13) 

The elements of these vectors are evaluated as shown in Appendix II of this thesis. 

The sensitivity vectors F, R, M1, S, T are evaluated in the same way as 
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shown in equation (5.13) except that the linearization is performed around 

(V4 , &1', tL). 

5.5.4 Steps in the Digital Solution 

The steps in the digital solution of the VAR supply problem by the proposed 

two-stage algorithm is summarized in Figure 5.5. 

The first stage subproblem, which is a nonlinear optimization problem, is 

solved using a routine in the Numerical Algorithm Group software package [66] 

which solves that class of problems. The second-stage subproblem, which is a 

mixed-integer linear program, is solved using the APEXIV software package [69]. 

APEXW require that the output be supplied in the so-called MPS (Mathematical 

Programming System) standard form, 

5.6 CONSIDERATION OF CONTINGENCIES 

The previous analyses only consider a single system operating regime. It may 

be desirable to plan VAR support such that the system voltage levels and SM 

requirements remain satisfied in the event of any one of a collection of contingen-

cies occurring. In this section a method to achieve this preventive planning goal 

is described. The method is indicated by flow chart in Figure 5.6. 

Procedure A reads the base case data and data for the change cases. Pro-

cedure B assesses the voltage levels and SMs for all cases using the algorithm 
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\J 

SET a ja I , 

FOR ALL i IN C 

INDI 

SOLVE SUBPROBLEM 1 
(NLP PROBLEM) 

\/ 

SET INDI ziØ 

\/ YES 

FORM SENSITIVITY 
VECTORS AND THE 

MPS DATA FORMAT 

SOLVE SUBPROBLEM 2 
(MILP PROBLEM) 

\/ 

SET 1 

FOR ALL I IN C' 

PRINT RESULTS 

Figure 5.5: Flowchart of Basic Solution Method 

STOP 
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FIGURE 5.6: Flowchart of VAR Supprt Planning 
Considering Contingencies 

START 

V 

READ BASE CASE 
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FOR ALL CASES 
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V 

PLAN VMS 

FOR CASE, K 

PRINT RESULTS 
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described in section 5.3 of this Chapter. Procedure C checks if all cases meet the 

voltage level and SM requirements. If they do, the algorithm prints results and ter-

minates; otherwise it proceeds to D. Procedure D chooses the most severe con-

tingency case. This is done on the basis of the security margin index, SM. The 

most severe case is chosen to be the one with the smallest value of SM. In pro-

cedure E, VAR support is determined for this most severe case. The algorithm is 

repeated starting from procedure B. 

The final result is a VAR support plan to satisfy voltage level and security 

margin constraints ,for the selected system states. 

5.7 RESULTS 

The ,results of application of the proposed methods to the AEP 14-bus net-

work [67] are now presented. The 14-bus system has two generators, three syn-

chronous condensers, and twenty transmission lines/transformers. System data are 

shown in Appendix Ill of this thesis. 

The base case and five contingency cases are considered. The contingencies 

are as listed in Table 5.1. The required voltage level and security margin condition 

for all system states is shown in Table 5.2. 

Table 5.3 shows the computed security margins SM and voltage magnitudes 

for each of the system states using procedure B (Figure 5.6). It will be noted that 

some of the system states have margins (SM) that are lower than the required 

SMspec and that all the states have bus voltage magnitudes lower than the 
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Table 5. 1. Contingency List 

System States Line Outage 

(Base Case) 1 
.2 
3 
4 
5 
6 

1 - 2 (one of two lines) 
1-35 
2-4 
6 - 13 
9 - 14 

Table 5.2. Specified Security Limits 

Variable Limit 

vmin 
Vmai 

SMSPCC 

0.95 

1.05 

15% 

minimum required. VAR support is therefore considered for the network. 

State 3 with SM of -7.69% is the most severe operating state and is therefore 

selected for VAR support. It should be observed that since the SM is negative, no 

steady state operating point exists for this state for the specified initial conditions. 

Load flow analysis for this case is not convergent. The relevant parameters for 

VAR allocation are shown in Table 5.4. 

Table 5.5 presents the solution of the first stage subproblem. It may be 

observed that the voltage magnitudes are within specified limits and ,the SM value 
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Table 5.3. System Voltages and SM before VAR Allocation 

VOLTAGE MAGNITUDES 

Bus State 1 State 2 State 3 State 4 State 5 State 6 

1 1.0600 1.0600 - 1.0600 1.0600 1.0600 
2 1.0017 0.9267 - 0.9838 0.9936 0.9992 
3 0.9107 0.8255 - 0.8384 0.8959 0.9069 
4 0.9201 0.8390 - 0.8140 0.9014 0.9157 
5 0.9319 0.8564 - 0.8435 0.9171 0.9250 
6 0.9784 0.8871 - 0.8664 0.9593 0.9560 
7 0.9629 0.8730 - 0.8471 0.9292 0.9610 
8 1.0050 0.9190 - 0.8944 0.9727 1.0032 
9 0.9527 0.8581 - 0.8312 0.9118 0.9514 
10 0.9400 0.8439 - 0.8174 0.9019 0.9350 
11 0.9461 0.8509 - 0.8266 0.9164 0.9328 
12 0.9282 0.8505 - 0.8077 0.8602 0.8991 
13 0.9443 0.8486 - 0.8259 0.8162 0.9080 
14 0.9288 0.8313 - 0.8055 0.8466 0.8566 

SM 17.3% 7.6% -7,7% 6.2% 12.1% 14.8% 
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Table 5.4. VAR Support Parameters 

Parameter Values 

d 

Sci 

Sri 

Tax 

, max 
ri 
ieC 

10 units * 
* 

1 unit 

1 unit * 

75 MVAR 

75 MVAR 

C is set of all load buses 

* Fictitious monetary units 

is satisfied. However, 9 of the possible 10 locations have been identified for VAR 

installation. It is desirable to consider a reduced number of locations. The results 

of the first stage analysis are therefore passed on .to the second stage subproblem 

which minimizes the number, of locations. The results of the second stage analysis 

is shown in Table 5.6. It is apparent that the number of locations has been reduced 

from 9 to 2. However, -total MVAR installed has increased from 135.4 to 140.3, 

i.e., 3.4%. Total cost of the VAR support facilities are down from 225.4 to 160.4 

units, a cost reduction of. 28.8%. The system voltage limits and security require-

ments remain satisfied. The final system voltages and SM's after the VAR alloca-

tion are as shown in Table 5.7. 

The computations in the above example were performed on the CDC 860 

mainframe computer; The first stage subproblem required 30.9 CPU seconds and 

the second stage 7.5 CPU seconds. 
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Table 5.5. Results of Solution of First-Stage Subproblem 

Bus Voltage Mag. MVAR Allocated 
(all capacitive) 

3 0.9506 12.0 -
4 0.9688 30.5 
5 0.9675 15.4 
7 1.0256 0.0 
9 1.0497 

- 32.2 
10 1.0430 8.3 
11 1.0437 9.5 
12 1.0229 7.0 
13 1.0391 13.2 
14 1.0376 7.3 

SM = 15 % 

TOTAL WAR = 135.4 

TOTAL COST = 225.4 Units 



150 

Table 5.6. Results After Solution of Second Stage Subproblem 

Bus Voltage Mag. WAR Allocated 

3 0.95 12 0.0 
4 0.9833 70.3 
5 0.9677 0.0 
7 1.0103 0.0 
9 1.0500 70.0 
10 1.0343 0.0 
11. 1.0308 0.0 
12 1.0063 0.0 
13 1.0228 0.0 
14 1.0197 0.0 

SM = 15% 

TOTAL WAR = 140.3 

TOTAL COST = 160.4 Units 
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Table 5.7. System Voltages and SM after VAR Allocation 

VOLTAGE MAGNITUDES 

Bus State 1 State 2 State 3 State 4 State 5 State 6 

1 1.0600 1.0600 1.0600 1.0600 1.0600 1.0600 
2 1.0450 1.0446 1.0139 1.0450 1.0448 1.0289 
3 0.9943 0.9946 0.9512 0.9868 0.9950 0.9791 
4 1.0294 1.0303 0.9833 1.0192, 1.0310 1.0168 
5 1.0187 1.0191 0.9677 1.0091 1.0188 1.0001 
6 0.9995 1.0046 1.0508 1.0086 1.0674 1.0398 
7 0.9908 0.9965 1.0103 0.9882 1.0002 1.0007 
8 0.9842 0.9910 1.0200 0.9862 0.9928 0.9904 
9 1.0274 1.0329 1.0498 1.0258 1.0423 1.0499 
10 1.0064 1.0119 1.0343 1.0065 1.0306 1.0326 
11 0.9908 0.9962 1.0308 0.9953 1.0364 1.0247 
12 0.9548 0.9602 1.0063 0.9636 0.9872 0.9886 
13 0.9742 0.9795 1.0228 0.9819 0.9524 0.9967 
14 0.9853 0.9909 1.0197 0.9878 0.9834 0.9506 

SM 30.5% 33.1% 15% 22.5% 27.4% 28.3% 

5.8 CONCLUSIONS 

In this chapter, a new method of determining transmission system reactive 

power support is presented for maintaining satisfactory voltage levels and achieving 

a prescribed minimum power system pre- and post-contingency security from vol-

tage collapse. The security requirement is stated as a relative margin, defined in 

terms of actual and maximum or critical loads at the respective buses. VAR injec-

tions are considered in order to achieve satisfactory voltage levels and security 
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margins. The method minimizes the total investment cost of the VAR facilities 

assuming any one of a set of contingencies may occur. 

Results of application of the proposed method to the AEP 14-bus network 

have been presented. 



CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

6.1 INTRODUCTION 

In this thesis, certain aspects of power systems voltage instability or collapse 

problems have been discussed. Analytical techniques have been developed for 

assessing power system security as far as steady state voltage stability is con-

cerned, and also for the planning of new VAR sources for enhanced security. The 

main contributions of the work reported are summarized in this chapter together 

with suggestions for further work in this area. 

6.2 CONCLUSIONS 

A method of computing a practical voltage stability index has been presented. 

This index serves to determine the voltage stability or otherwise of a given operat-

ing point of a power system. The method can easily be incorporated in a load flow 

analysis program based on the Newton-Raphson method. 

Simulation of a process that may lead to system voltage collapse has been dis-

cussed and results presented. The simulation is concerned mainly with the action 

of the LTC transformer and it incorporates load-voltage characteristics of the 

exponential type. System performance following a disturbance is simulated. 

153 
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In the operation or planning of power systems, it is of interest to determine 

the voltage stability of an operating point as well as the margin to the collapse 

point or stability limit. In order to evaluate the margin of an operating point to 

collapse, it is necessary to determine the voltage stability limit. A new method to 

determine this directly, and accurately for a multimachine power system has been 

introduced. The methodology formulates the problem as one of maximizing the 

system total MVA load. The resulting nonlinearly constrained optimization prob-

lem is solved using a sequential quadratic programming algorithm. With this for-

mulation, difficulties related to singularity of the Jacobian matrix associated with 

the load flow equations and convergence of the load flow solution around the vol-

tage stability limit are avoided. The method accommodates device constraints and 

limitations in system controls (e.g, generator VAR limits and limits on transformer 

tap settings). Also, the system steady state load-voltage characteristics are taken 

into consideration. 

A stability margin SM is defined which may serve as a measure of the secu-

rity of the system- as far as voltage collapse is concerned. This index gives an 

explicit indication of the distance to voltage collapse in terms of actual total system 

load. 

• The critical or weakest bus in a power network is the bus most severely 

affected electrically because of a shortage of reactive power. A collapse of system 

voltages will likely originate from the critical bus. It is desirable therefore neces-

sary to identify the critical bus in the network and maintain control of the voltage 
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at this bus in order to alleviate the vulnerability of the entire system to collapse. 

Two methods of identifying the critical or weakest bus, and the weakest area, of a 

power system are proposed. Both methods incorporate the optimiation algorithm 

used to determine the system voltage stability limit accurately and directly, taking 

into account the limits on system VAR supply. These methods are expected to 

yield more realistic results than previously proposed methods which do not con-

sider equipment limitations. 

.The problems of voltage level and voltage collapse in a transmission system 

are closely linked with the inadequacy of VAR supply. These problems may be 

solved at the planning stage by installing VAR sources at key buses in the net-

work. A method has been introduced to determine transmission system VAR sup-

port for the dual purpose of: 

(i) maintaining satisfactory voltage levels, and 

(ii) achieving a prescribed minimum power system pre- and post-contingency 

security margin from voltage collapse. 

The method minimizes the total investment cost of the VAR facilities. 

6.3, RECOMMENDATION FOR FURTHER WORK 

The research work reported in this thesis provides a basis for further investi-

gations some of which are enumerated below. 
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(a) Methods need to be developed for identifying all possible single and multiple 

line outage, loss of generation contingencies, and changes in operating condi-

tions (unit commitment, generation dispatch, load level) that may cause vol-

tage collapse. The information will be useful in determining power transfer 

capability requirements from a system security standpoint. 

(b) The methods suggested in the thesis for identifying the weakest bus in a net-

work need to be developed further to identify the boundaries of a of an electr-

ically weak area. 

(c) Some research effort should be directed at the development of suitable 

preventive measures to maintain voltage controllability and reactive reserve in 

the local control areas subject to a range of operating conditions. These con-

trols would increase system security and reduce long term operating costs 

compared. 

(d) Finally, research is required to develop corrective measures that attempt to 

restore normal operation if a voltage collapse trend has been initiated inadver-

tently. Corrective control would attempt to limit or avert load shedding, 

islanding and local blackouts. 
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APPENDIX I 

GENERATOR PARTICIPATION FACTORS 

A primary objective in the control of power systems is to achieve minimmum 

operating cost. This goal is realized by the economic dispatch of generating units. 

The objective function in the resulting optimization problem is the total cost of 

supplying the load. Mathematically, the classic economic dispatch problem may be 

stated [62], 

minimize 

FT F. (P. 
i E 1G 

subject to: 

where 

is the cost function of generating unit i in $/hour 

Pi is the MW output of unit i 

PR is the total system MW load 

PL is the total system MW losses 
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JG is the set of generating units. 

Additional equality and inequality constraints may also apply. 

For a thermal plant the cost function, F (Ps) , is known explicitly. In 

hydro-thermal systems, equivalent cost functions may be assigned to the hydro 

units. The cost functions for each unit may be expressed as 

F. =a i i +bP. 
i i ii 

(1.2) 

Applying the necessary conditions to the Lagrangian of problem 1.1 for minimum 

cost operation, we obtain the coordination equations 

where 

? is the Lagrangian multiplier 

pni= 
1 
dPL 

dP 

is the penalty factor for unit i 

(1.3) 

The solution satisfying the coordination equations is the optimal dispatch of 

the system generating units (P ° i e for the specified bus loads. 

Next, assumming a load change, we investigate how much each generating 

unit needs to be moved (i.e "participate" in the load change) in order that the new 
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load be served in the most economic way. 

For purposes of determining the participation factors, it will be assumed that 

the penalty factors are approximately equal to 1 , [62], i.e., 

pn = 1, 

For a small change in power output of generationg unit i 

1 1 1 

Let PD be the total system MW demand, i.e., 

"D R 

Since total change in generation equals the change in total system demand, 

APD = A!'. =A,%  
£EJG ZEJG  

(1.4) 

(1.5) 

Combining equations (1.4) and (1.5), the participation factors , y° , for 
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each generating unit may be defined as, 

V  1' 

jG  "G Fi" 

(1.6) 



APPENDIX II 

DERIVATIVES OF PROBLEM FUNCTIONS 

In this appendix, the the evaluation of the first derivatives of the problem functions 

of the optimization problem NCP1 and NCP2 are shown. 

Power Injections P 'Si 

N 
P (V , 8 , t) = V1 V, Y. cos(61 - - p) 

j=l 

N 
Qi (! , , .) = V V Y. sin(81 — - '1) 

j=l 

s1Q:: ,8,t)=(P12 +Q12)112 

i * j 

ap 

= VVY1sin(81 - of - 
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api 
av = i  

i = j 

DQj 

aQi 

ay. 

= - V i Ii VYcos(8.  

= VYsin(3 - of - 

N 
V1VY.sin(8. Oj f •i 

ap. N 

ay. = j: VYcos(O 1 - of -  IN N ii I  + 2VY 1cos(4) 
1 =1 

JQ1 N 
= VV1Ycos(8 - - 

1 j=1 
jrAi 

Q. N 
-_ V Y, sin(0 - 0, - 4) + 2V Y sin(_$) 
1 j=l 

If bus i is connected to bus j by a load tap-changing (LTC) 

transformer k , with tap tk (tap on the i —side), the elements, ?&,, '11 

and Yjj of the bus admittance matrix are affected by tk as follows: 
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= G ii + fB1 = + ib )/tk 

}7jj = ?jj' + (s + 

F ii = + + l'11) 

where 

= (g + fb) is the primitive admittance of the transformer. 

The derivatives of the power injected at the buses i and j with respect 

to tk may be evaluated as follows: 

ap.e. f. 
= G. f.B..) - (f.G.. + e.B..) + 2V12G/t 

e. f. 
= __/—(eG ii _f1B ii ) - —J--(fGJ + eB..) 

aQ1 f e. 
j)tk = ___(eG.. —fiB..) + + eB..) - 2V.2B../t 

tk 

aQ. f. 
= ---1-(e - fB1) + ---(f G + e.B11) 
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The derivates of the MVA power S with respect to the variables may be 

evaluated as 

The derivatives of S with respect to the other variables may be evaluated 

in the same fashion as shown above. 

Objective Function 

Sj = (Pf +Qf )" 
C- S. 

JElL 

aST. as. 
V J 

ay. ay.' 
i=1,2,..,N 

The derivatives of ST with respect to the elements of 8 and ! may be 

evaluated in the same way. ST does not depend on the participation factors. 

Therefore, 

i=M+1,...N 
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Constraint Functions 

(1) PiST (, p,!' :) - Si (, , •, ) = C 

aci aS as 

avj - i av avg' EJL, j=1,.. 

The derivatives of C with respect to the elements of 8 and t is 

evaluated in the same manner. C does not depend on y ,i.e., 

ac 
iEJL, k=M+1,...,N 

(4) f1(i: ,!' ::) = iD .pjtia1._ p + pflitial = 

where 

D a1 

VI - 'iavj ; 

i =M+1, ,N-1 

N 
Pi 

j=M+1 

j=1,2,...N 

The derivatives of fi with respect to elements of 8 and are evaluated in 

the same manner. 
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af. 
_..L_p _piDnitial 

lyi 

(5) Pi (V, S,t, —pf1S(V, 6,t, = K1, 

aK ap. a; 
7avf. wj 

i=M+1.....N / 

iEJL, j= 1,2..... N 

The derivatives of K with respect to 8 and t are evaluated in the same 

manner. Again, the participation factors are not involved, i.e., 

aK1 

ZEJL, j=M+l,..N—1 



APPENDIX III 

DATA FOR EXAMPLE SYSTEMS 

Data for the three example systems used in this thesis are provided in this 

appendix. The first of the systems is the AEP 14-bus network [67], the second is a 

28-bus sample system given in reference [29], and the third is a 20-bus system 

given in reference [49]. 

14-Bus Network 

The AEP 14-bus network is as shown in Figure ffl.1. The system includes 

two generating units, three synchronous condensers, and twenty transmission 

lines/transformers. The bus data is shown in Table ifi. 1 and 111.2. Table 111.3 

shows the line/transformer data. Table ffl.4 shows the data for the generating unit 

cost functions. 
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Table 111.1. Initial Operating Condition of the 14-bus Network 

Bus 
No. 

Bus Voltage 
Mag. Ang. 

Bus Power* 
MW WAR 

Static 
Suscep. 

1 1.060 0.0 - - 

2 1.045 0.0 40.0 0.0 
3 1.000 0.0 -94.2 -19.0 
4 1.000 0.0 -57.8 -23.9 
5 1.000 0.0 -47.6 -1.6 
6 1.070 0.0 0.0 0.0 
7 1.000 0.0 0.0 0.0 
8 1.090 0.0 0.0 0.0 
9 1.000 0,0 -29.5 -16.6 0.19 
10 1.000 0.0 -29.5 -5.8 
11 1.000 0.0 -13.5 -5.8 
12 1.000 0.0 -36.1 -1.6 
13 1.000 0.0 -23.5 -5.8 
14 1.000 0.0 -14.9 -5.0 

* -ye for loads 

Table 111.2. Regulated Bus Data 

Bus 
No. 

WAR 
Min. 

Limits 
Max. 

MW 
Min. 

Limits 
Max. 

2 
6 
8 

-40.0 
-6.0 
-6.0 

50.0 
24.0 
24.0 

30.0 
.0.0 
0.0 

70.0 
0.0 
0.0 
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Table 111.3 Line and Transformer Data (14-Bus Network) 

Line 
No 

Line 
Conn. 

Impedance 
R X 

Charging 
p.u. 

LTC 
Tap 

1 1-2 0.01938 0.05917 0.0264 
2 1-5 0.05403 0.22304 0.0246 
3 2-3 0.04699 0.19797 0.0219 
4 2-4 0.05811 0.17632 0.0187 
5 2-5 0.05695 0.17388 0.0170 
6 3-4 0.06701 0.17103 0.0173 
7 4-5 0.01335 0.04211 0.0064 
8 4-7 0 0.20912 0 0.978 
9 4-9 0 0.55618 0 0.969 
10 5-6 A 0.25202 0 0.932 
11 6-11 0.09498 0.19890 0 
12 6-12 0.12291 0.25581 0 
13 6-13 0.06615 0.13027 0 
14 7-8 0 0.17615 0 
15 7-9 0 0.11001 0 
16 9-10 0.03181 0.08450 0 
17 9-14 0.12711 0.27038 0 
18 10-14 0.08205 0.19207 0 
19 12-13 0.22092 0.19988 0 
20 13-14 0.17093 0.34802 0 

Table 111.4. Cost of Generation* 

Unit(i) c b a 

1 0.0060 2.0 140 
2 0.0075 1.5 120 

* F. S S = a. I + b.P i I + c.P.2 /hour 
L 
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28-Bus Network 

The 28-bus network taken from reference [29] is shown in Figure ffl.2. The 

system includes six generating units, and thirty-two transmission lines. The bus 

data are shown in Tables 111.5 and 111.6. Table 111.7 shows the line data and Table 

111.8 the generating units cost functions. 



00 
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Table ffl.5. Initial Operating Condition of the 28-bus Network 

Bus 
No. 

Bus Voltage 
Mag. Ang. 

Bus Power* 

MW MVAR 
Static 
Suscep. 

1 1.050 0.0 - - 

2 1.000 0.0 -145.0 -50.0 1.2169 
3 1.000 0.0 -265.0 -22.0 1.4252 
4 1.000 0.0 -381.0 -26.0 2.0804 
5 1.000 0.0 -384.0 -2.0 1.6965 
6 1.000 0.0 -374.0 -34.0 1.5422 
7 1.000 0.0 -129.0 -3.0 
8 1.000 0.0 -135.0 -58.0 1.0042 
9 1.000 0.0 -60.8 -7.0 0.2080 
10 1.000 0.0 -118.0 -18.0 0.6476 
11 1.000 0.0 -75.0 -44.0 0.7768 
12 1.000 0.0 -139.0 -52.0 0.5868 
13 1.000 0.0 
14 1.000 0.0 
15 1.000 0.0 
16 1.000 0.0 
17 1.000 0.0 
18 1.000 0.0 
19 1.000 0.0 
20 1.000 0.0 
21 1.000 0.0 
22 1.000 0.0 
23 1.000 0.0 
24 1.050 0.0 191.0 - 

25 1.050 0.0 440.0 - 

26 1.050 0.0 49.0 - 

27 1.050 0.0 390.0 - 

28 1.050 0.0 152.0 -. 

* -ye for loads 
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Table ffl.6.: Regulated Bus Data (28-Bus Network) 

Bus 
No. 

MVAR 
Mm. 

Limits 
Max. 

MW 
Mm. 

Limits 
Max. 

24 -100.0 250.0 45.0 350.0 
25 -100.0 250.0 100.0 440.0 
26 -40.0 60.0 30.0 80.0 
27 -200.0 250.0 100.0 440.0 
28 -100.0 200.0 60.0 250.0 

Table 111.7. Cost of Generation* (28-Bus Network) 

Unit(i) ci b a1 

1 0.00176 7.081 1285.0 
24 0.00350 7.900 400.0 
25 0.00227 6.950 750.0 
26 0.00389 10.930 200.0 
27 0.00250 8.400 325.0 
28 0.00260 7.550 313.0 

* IF. = a1 + b1P1 + c1P12 /hour 
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Table 111.8. Line and Transformer Data (28-Bus Network) 

Line 
No 

Line 
Conn. 

Impedance 
R X 

Charging 
p.u. 

LTC 
Tap 

1 2-23 0.0140 0.0700 
2 3-22 0.0078 0.0390 
3 4-21 0.0058 0.0290 
4 5-20 0.0054 0.0270 
5 6-7 0.0070 0.0350 
6 7-17 0.0062 0.0310 
7 7-18 0.0010 0.0050 
8 8-18 0.0196 0.0980 
9 9-19 0.0280 0.1400 
10 10-16 0.0118 0.0590 
11 11-16 0.0294 0.1470 
12 12-13 0.0280 0.1400 
13 12-26 0.0258 01290 
14 13-15 0.0220 0.1100 
15 13-17 0.0062 0.0310 
16 14-15 0.0060 0.0300 
17 14-22 0.0296 0.1480 
18 14-23 0.0242 0.1210 
19 14-27 0.0070 0.0350 
20 14-1 0.0200 0.1000 
21 15-16 0.0068 0.0340 
22 15-21 0.0038 0.0190 
23 15-28 0.0112 0.0560 
24 16-17 0.0220 0.1100 
25 17-18 0.0054 0.0270 
26 17-24 0.0070 0.0350 
.27 17-1 0.0054 0.0270 
28 18-19 0.0072 0.0360 
29 19-25 0.0104 0.0520 
.30 20-21 0.0038 0.0190 
31 21-22 0.0076 0.0380 
32 21-23 0.0128 0.0640 



186 

20-Bus System 

The 20-bus network taken from reference [49] is shown in Figure ffl.3. The 

system includes six generating units, and twenty-seven transmission lines. The 

bus data are shown in Tables 111.9 and ffl.10. Table ffl.11 shows the line data. 

Table 111.9: Initial Operating Condition of the 20-bus Network 

Bus 
No, 

Bus Voltage 
Mag. Ang. 

Bus Power* 

MW MVAR 
Static 
Suscep. 

1 1.050 0.0 - - 

2 1.020 0.0 384.0 0.0 
3 1.020 0.0 384.0 0.0 
4 1.000 0.0 0.0 0.0 
5 1.000 0.0 0.0 0.0 
6 1.000 0.0 -153.0 -80.0 
7 1.000 0.0 -563.0 -430.0 
8 1.025 0.0 308.0 0.0 
9 1.000 0.0 0.0 0.0 
10 1.000 0.0 -174.0 -77.0 
11 1.000 0.0 0.0 0.0 
12 1.000 0.0 -715.0 -381.0 
13 1.020 0.0 410.0 0.0 
14 .1.000 0.0 0.0 0.0 
15 1.000 0.0 0.0 0.0 
16 1.000 0.0 0.0 0.0 
17 1.000 0.0 -171.0 -75.0 
18 1.000 0.0 0.0 0.0 
19 1.000 0.0 0.0 0.0 
20 1.020 0.0 51.0 0.0 

* -ye for loads 
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FIGURE 111.3: 20-BUS NETWORK 
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Table 111. 10.: Regulated Bus Data (20-Bus Network) 

Bus 
No. 

WAR 
Min. 

Limits 
Max. 

MW 
Mm. 

Limits 
Max. 

2 -100.0 600.0 150.0 750.0 
3 -100.0 600.0 150.0 750.0 
8 -100.0 400.0 175.0 550.0 

13 0.0 600.0 220.0 700.0 
20 0.0 80.0 15.0 100.0 
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Table M. 11. Line and Transformer Data (20-Bus Network) 

Line 
No 

Line 
Conn. 

Impedance 
R X 

Charging 
p.u. 

LTC 
Tap 

1 1-14 0.0015 0.0250 
2 1-15 0.0015 0.0080 
3 2-4 0.0015 0.0100 
4 3-4. 0.0015 0.0100 
5 4-5 0.0013 0.0230 7.00 
6 4-8 0.0010 0.0150 1.20 
7 5-6 0.0 0.0050 
8 5-9 0.0008 0.0100 0.95 
9 5-16 0.0030 0.0300 2.50 
10 6-7 0.0030 0.0270 0.30 
11 6-18 0.0010 0.0120 0.03 
12 7-10 0.0040 0.0420 0.10 
13 7-12 0.0003 0.0030 0.09 
14 7-20 0.0027 0.0220 0.30 
15 8-9 0.0020 0.0250 2.00 
16 8-11 0.0030 0.0300 2.50 -
17 9-10 0.0 0.0100 
18 10-12 '0.0025 0.0225 0.16 
19 11-12 0.0015 0.0100 
20 12-13 0.0015 0.0100 
21 14-16 0.0060 0.0540 0.09 
22 15-17 0.0030 0.0270 0.18 
23 16-17 0.0 .0.0100 
24 17-18 0.0035 0.0300 0.07 
25 17-19 0.0030 0.0250 0.06 
26 17-20 0.0060 0.0500 0.12 
27 19-20 0.0030 0.0250 0.06 


