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Abstract 

The problem addressed here is to determine, theoretically, the control that a driver 

might supply to a vehicle to follow a predefined path. The solution method involves 

determination of the control by optimal control techniques sufficiently general to be 

applicable to a wide range of dynamic control problems. While optimal control has been 

applied in the past to linear and simple nonlinear vehicle models, the problem of the 

general solution for both linear and nonlinear problems has not been adequately analyzed. 

Here, numerical optimization techniques are adapted for use with linear and nonlinear 

vehicle models and cost functions. Two approaches are used. The first involves repre-

sentation of the control as a series of pulses. The second uses a feedback controller 

which utilizes the vehicle's anticipated error as the input signal to the controller. The 

controls produced are compared with results from a test vehicle using a driver. The 

results indicate that the optimization using the controller produces an only slightly 

inferior cost function value, but the control showed a better correspondence with that 

produced by the driver. While the steering control inputs differ from one type to another, 

the trajectory following capabilities are about equal, indicating that there may be more 

than one way of driving through a manoeuvre successfully. The optimal control 

techniques produce the same general form of steering input as the driver. More detailed 

testing using a more accurate vehicle, and driver modelling and testing must be done to 

confirm this correspondence, and to clarify any dissimilarities. 
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1 Introduction 

1.1 Vehicle Dynamics 

Vehicle dynamics is the study of motion and control of conveyances used on 

land. Given the history of engineering as a whole, major work in the field is fairly 

recent, corresponding to the development of motorized vehicles. 

Initial models of vehicle motion were quite simple, typically consisting of linear 

models with linear tire characteristics [1,2,3]. Control systems theory existed to 

describe the motion and control of linear control systems, providing very useful infor-

mation about the vehicle's response characteristics and stability from simple models. 

From this type of analysis such standard vehicle dynamics terms as 'understeer' and 

'oversteer' were coined. 

Despite their effectiveness on the simpler level, linear models could not describe 

the behavior of vehicles in which nonlinearities of the system occurred significantly. 

In general, information on the stability, controllability, or exact motion of nonlinear 

systems is very difficult to find. However, it is possible to solve for the motion of a 

vehicle using numerical methods. With the arrival of the digital computer, numerical 

solutions to the equations of motion became feasible. 

The topic of this thesis is the control of vehicles, or, more specifically, simu-

lation of the control applied by a human driver. The ability, to simulate driver behav-

ior is of great consequence to the simulation, design, and control of road vehicles, and 

the design of roadways. 

Simulating the driver is useful in computer assisted design of vehicles. For 

example, a car manufacturer may wish to change some aspect of the tire or suspension 

geometry. Physically testing the vehicle can be a long and expensive process. Com-

puter simulations could be done to test the motion of the vehicle, but if the driver is 

not also simulated, tests have limited validity. 
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Another way of using driver simulation is in the design of roadways. For 

instance, the length of merge lanes or the curvature of corners should be designed for 

a certain limit of the driver's ability. Simulation allows consistent, unbiased limits to 

be maintained. A standard method of roadway design can then be implemented. 

A third example is the use of simulation methods to produce control systems 

capable of driving real vehicles, such as on automated highways. The control of the 

vehicle is complex, particularly in the event of an emergency. A controller capable of 

optimal control would be essential to the safety of these highways. 

Some recent attempts to approximate the driver's control inputs will be 

expanded on here, using optimal control and complex control systems produced by 

the use of optimization methods. The goal is to expand on past techniques to produce 

a reasonable approximation Of human behavior when piloting a vehicle. To measure 

the success of these methods, the controls will be compared to tests done using a real 

vehicle and driver. 

1.2 Past Use of Optimal Control in Vehicle Dynamics 

The majority of work done to simulate the control inputs of drivers has been in 

deriving feedback controllers for the steering of vehicles. The controller is often 

designed as a model of the human, and is not so concerned with steering for a particu-

lar manoeuvre; therefore its description will be brief, as the use of controllers in this 

thesis will be primarily in producing a near optimal control for a unique manoeuvre. 

Driver models can generally be divided into three main categories: the quasi-

linear model, the predictive model, and the optimal control model [4]. The quasi-

linear models [5-8] represent the driver with a frequency-dependent gain and phase, 

based largely upon previously known physiological information. The predictive 

models [9,10] follow along the same line as the quasi-linear models, but assume that 

the driver can preview the road ahead of its present position. The third type of model, 

the optimal control model, is based upon Kalman's optimal control theories [4,11]. 

There are many other models which combine elements of all of the above [12-14]. 
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For example, MacAdam [14] utilizes a combination of 'cross-over' model (as derived 

from the quasi-linear model) with an optimal preview control which has a transport 

delay built into the controller. The general weakness of these models is that they are 

only designed to follow straight or almost straight line paths. 

A model which does not easily fit the above categories is that of Hayhoe [15], 

who used neurophysiological theory about human motor control to produce a cerebel-

lar model of the driver. Hayhoe used an optimization procedure to change various 

coefficients in a small simulated cerebellar network. The model was capable of 

driving through relatively straight manoeuvres and 90° corners. 

Unlike controllers, optimal control has seldom been used for vehicles. Optimal 

control differs from the controllers in that the control is produced by the use of an 

algorithm, often iterative in nature, and does not use a controller in the standard sense 

of the word. It often involves complex mathematics requiring exact solutions, diffi-

cult or impossible to find, or lengthy numerical solutions to trajectory-oriented prob-

lems. The effort required to arrive at these solutions is rewarded by high-quality 

results. Optimal control has probably proved itself most useful in the areas of 

aeronautical and aerospace design. 

Some of the earliest work was done by Zanten and Krauter [16,17] and covered 

the optimal control of a tractor-semitrailer truck with emphasis on braking. The 

results were achieved by variational methods. Work in the area of general optimal 

control with vehicles has been done by E.C. Mikulcik and his associates. This paper 

is based on work begun by E.C. Mikulcilc using optimal control in the path tracking 

problem for automobiles. In his early work, he was assisted by H. Hatwal, who used 

linear optimal control to determine the steering inputs required to drive a linear 

vehicle model through an obstacle avoidance manoeuvre. He also employed a varia-

tional approach which allowed for the use of nonlinear vehicles with well-behaved 

nonlinear equations of motion [18]. In a subsequent paper [19], the ability to control 

tractive as well as steering control inputs was included. The primary disadvantage of 
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the variational method was that its algorithm required complex and tedious manipula-

tions of the equations of motion, often rendering both complex equations of motion 

and, in particular, complex manoeuvre trajectories unusable. 

1.3 Thesis Review 

The main goal of this thesis is to develop numerical procedures to determine a 

control which, when applied to its intended vehicle, allows the vehicle to follow the 

intended trajectory with reasonable precision. The ideal control is one in which the 

vehicle follows the trajectory while reasonably representing the control that a driver 

might have in a similar situation. The desired control is calculated using optimal con-

trol methods. Chapter 2 discusses the motivation for using optimal control and why. 

aspects of it may be likened to the driver's determination of the actual control. 

Chapters 3 and 4 describe the exact methods of formulating and solving the opti-

mal control problem. The procedure is generally as follows: for a particular manoeu-

vre, a cost function is set up. The cost is an integral with respect to time, which 

increases with deviation of the vehicle from the desired path and increase of steering 

input. A steering input must be determined which minimizes the value of the cost 

function. The vehicle goes through a manoeuvre with a specified steering input, and 

from this is determined the cost function value. The steering input is then changed in 

the hope of minimizing the cost; the manoeuvre is run again and the new cost calcu-

lated. This procedure continues until the cost can be decreased no more. This is then 

considered the optimal steering input. It should be noted that a change in vehicle or 

manoeuvre will require this procedure to be repeated and a new steering input found. 

Because numerical methods are used, the steering must be represented appropri-

ately. This is discussed in chapter 3, first with steering represented as a series of 

stepped inputs, the optimization procedure determining the height of the steps; 

secondly, the control is produced by a feedback controller. This is an identical proce-

dure to the first, except that instead of determining step sizes, now the parameters of 

the controller are determined. The controller is very simple and has no access to 

information as to the cost value. 
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Chapter 4 describes the minimization procedures used to find the optimal con-

trol, a variety of standard and unusual descent techniques. As well, a method is pres-

ented for determining the gradient of the cost function numerically. 

In order to determine the degree to which optimal control mirrors human driving 

patterns, tests were done on a real vehicle being driven through two types of manoeu-

vres. Details of the vehicle and the manoeuvres are given in chapter 5. The results of 

these tests are presented in chapter 6. A discussion and comparison of the test results 

and the optimal control is given in chapter 7. From the conclusions in chapter 8 it 

becomes apparent that: 

1) the optimal control is capable of producing a steering input which will guide 

the vehicle through the manoeuvres 

2) the two ways of representing the optimal control (as a series of pulses and as 

a controller) produce steering inputs which, while similar, are not exact; both 

prove able to follow the trajectories equally well 

3) the controls produced by optimal control compare favorably with the controls 

supplied by the driver. 



6 

2 Optimal Control Used for Driver Modelling 

The equations of motion for a vehicle may be written as 

=a(x,u,t) (2.1) 

where x is the state vector for the vehicle, u is the control vector, and t is time. A cost 

function may be written 

f.•f 
J=J g(x,u,t)dt (2.2) 

to 

where g (x, u, r) is any function desired and is a measure of performance. There will be a 
control u which will minimize the cost J. This is referred to as the optimal control. 

The intention is to apply the concepts of optimal control to the driving of a vehicle 

to determine if the optimal control is similar to the control applied by a driver. This 

section will discuss optimal control and the motivation .for using it to simulate a driver. 

2.1 Optimal Control 

One of the most often used methods for emulating the inputs of a driver is to 

construct a mathematical model of the driver. For simple or slow manoeuvres this is 

not difficult, but for faster, more complex manoeuvres the situation changes. The 

human control system is extremely complicated, capable not only of viewing the 

desired trajectory ahead of the vehicle, but of bringing to the situation information 

about past experience which affects interpretation of any control inputs given at that 

moment. A controller that merely reacts to the present state of the vehicle does not do 

justice to the complexity of the human. 

It is precisely man's complexity that may justify the belief that he is capable of 

near-optimal control. He is able to drive fairly efficiently through a manoeuvre, 

keeping to the path he wishes to follow while not expending much more energy than 
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necessary. We could say that the human is capable of balancing errors in tracking and 

expenditure of energy. Of course, there are limits; as the speed of response required 

by a manoeuvre increases, the ability to respond appropriately decreases. 

If we accept the idea that the driver uses a near-optimal control, the theory of 

optimal control may provide the tools necessary to. simulate it. It will be optimal in 

the sense that it will minimize or maximize a cost function. If this cost function can 

be made to reflect the same performance measure as that of the driver, then the 

theoretical optimal control should be the same as the actual driver's control. 

Given a system of equations describing the vehicle's motion (equation 2. 1), the 

control, u, which minimizes the cost function 

J =Jg(x,u,t)dt 
to 

should be the same as the control of the driver if our performance measure, g (x, u, t) is 

the same as that of the driver. Of course, there are performance limits on the control 

that the driver provides, accounted for in the cost function or in the form of' 

constraints. For the purposes of this thesis we will consider this measure to be quite 

simple, concerned only with tracking accuracy and amount of steering input. 

Undoubtedly, the driver's real performance measure is more complex than is indicated 

by this cost function. 

(2.3) 
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3 Representation of an Optimal Control 

When the term 'optimization' is used with respect to control systems, it usually 

refers to the existence of the control or controls u which, when applied to a system, 

either minimizes or maximizes a cost function J. For complex systems (those with 

nonlinear equations of motion), determining an exact solution to the minimization 

problem is difficult or impossible, so one must resort to numerical methods. There are 

two distinctions to the solution method: the representation of the control, and how to 

minimize using that representation. The former will be dealt with in this chapter. 

3.1 Segmented Optimal Control 

A standard method of approximating a continuous control function is to 

represent it as a series of pulses defined by their magnitude, the time of their initi-

ation, and their final time. If the initial and final times are not variable, then finding 

an optimal control means merely determining the magnitudes of the various pulses. 

As the number of pulses increases, the approximation of the continuous control 

improves. 

Implementing this method in an optimal control problem is straightforward and 

leaves much room for variations of technique, allowing for higher accuracy with less 

computational effort. For instance, if there is a time when the rate of change in 

control value is small, then there may be fewer pulses per unit time. At times when 

the control's rate of change is large, there may be many. Another alternative is to 

smooth the function so that the optimal control is continuous, but its derivatives are 

not. Also, interpolation functions may be employed to give a smooth first or second 

derivative. Simple pulses will be used exclusively here. 

3.2 Controllers Designed Using Optimal Procedures 

Complex control systems have some type of controller which receives a signal 

and has a control value as its output. Often the output state of the system is fed back 

to the input of the controller, where it is subtracted from a signal containing the 
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desired trajectory. This signal is then used to calculate the output control. A feedback 

controller can be used to drive a vehicle along a specified trajectory. In the simplest 

case,, the error signal input into the controller is the distance between the desired 

trajectory and the actual position. The controller, for which the output is the steering 

angle, is proportional, the error signal being multiplied by a constant and the resulting 

value output as the control. The gain of the proportional control must, of course, be 

determined. More complex controllers require that more than one parameter be deter-

mined. 

The parameters defining the controller can be determined using an optimization 

procedure similar to that used for finding an opiim1 control. Suppose we are given a 

manoeuvre which the vehicle must negotiate and a cost function which sums the 

tracking error over the interval of time required to complete the manoeuvre. The 

controller has a set of parameters which affect how the vehicle is steered. The optimi-

zation procedure changes the values of the parameters affecting the controller in a 

manner which decreases the cost function. The changes continue until a set of 

parameter values is found; any change in these values causes the cost function to 

increase. Hence this controller is oprimi7ed for this manoeuvre for the cost function 

used. The controller so produced will be referred to as an opiinil controller. 

In general, the control produced by an optimized controller is not the optimal 

control u. However, as the complexity of the controller increases, control will likely 

be closer to optimal. As the optimization procedures used here do not require 

linearity, any imaginable control structure is possible, though some controllers will be 

superior to others. 

Because a vehicle requires a certain amount of time to respond to a control 

input, the control produced by a single proportional controller taking its error from the 

current position alone is very poor. A variation is to take the expected error at some 

distance inthe future as the input signal. This is referred to as 'preview control'. As 

an example, the error may be calculated by projecting the present direction of travel to 

a point some distance ahead, determining the distance from this point to the desired 

trajectory, and using the distance between these values as the input to the controller. 
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The controller then produces a control for the time that the error is expected to occur. 

Usually, utilizing the future error greatly improves the quality of the control. The 

controller employed here senses the error at several distances in the future. Each error 

is then multiplied by a separate constant and the values summed. 

One of the primary advantages of the optimized controller is that only a small 

number of parameters need be optimi7ed. An optimized controller using only a few 

parameters may produce a control which is equivalent to an optimal control solution 

having hundreds of segments. Not only is the solution found sooner, but computer 

memory requirements are significantly reduced. Also, as will be shown later, the 

optimized controller generally produces a control that is more like the driver than does 

the optimal control. 

3.3 Combining  Optimal Control, Controllers and Parameter 

Optimization 

Optimal control is very flexible, with many variations possible. Different 

techniques may be used simultaneously. Because both the optimal control and 

optimized controllers depend only on parameters, they may both be used in the same 

opnmi72tlon. For example, an optimized controller may be used to determine the 

steering, while optimal control defines the use of tractive forces. 

One further application which could be helpful when designing a vehicle is to 

optimize the vehicle's parameters while finding the optimal control. For example, to 

find the position of the center of gravity of a vehicle to allow it to travel through a 

certain manoeuvre at maximum possible speed, it is only a matter of including the 

position of the center of gravity as a parameter to be optimized along with the control 

values. The possible applications of optimization are limited mostly by the user's 

ingenuity. 
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4 Numerical Optimization Methods 

The previous chapter discussed how the control u(t) can be represented as a series 

of discrete numerical values u(k&) or can be the output of a controller. In order to find 

the control which is optimal using these representations, appropriate numerical optimi-

zation techniques must be employed. In this chapter, numerical methods will be 

discussed which will minimize the cost function J where J =f(u(t)) or J f(u(k&)). 

A number of methods for the numerical solution of optimal control problems were 

originally considered, and computer programs were constructed using the more 

promising methods. The advantages and disadvantages of these and for vehicle dynamics 

problems are presented below. These methods form the basis of the numerical results 

outlined later. 

4.1 Gradient Optimization 

A common method of minimizing a function is to utilize the gradient of the cost 

function, &J/au. Such gradient methods use the information contained in the gradient 

to estimate the direction to search for the minimum and its distance. The simplest 

way of performing a gradient optimization is to invoke an iterative approach where, at 

the beginning of each iteration, the gradient of the cost function in terms of the 

discrete control values, aJ/u(k&) k = 1,2,.. .,N, is determined. The second part of 

the iteration involves finding the minimum in the direction of the gradient, i.e. doing a 

line minimization. These two procedures continue until an appropriate stopping 

criterion is fulfilled. The minimum should be located at this point. 

The above approach is seldom used without modification. The problem is that 

the minimum is not always located in the direction of the gradient. If line minimi-

zation has just been performed, the new gradient of the cost function will be perpen-

dicular to the direction of the last gradient and, as such, will not generally lead to the 

minimum. However, as more iterations are performed, information can be gained as 

to the nature of the cost function's topology. Many methods have been devised which 
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take advantage of this information to change the direction of the line minimization 

and make it more optimal. Typical examples of good algorithms are the Fletcher-

Reeves conjugate gradient or the Davidson-Fletcher-Powell variable metric methods. 

The line minimizations are done in the direction of the gradient, but only require 

cost function values. Typically the minimum will first be bracketed, then the 

minimum inside the bracket found by a form of bisection. Finding the gradient is not 

so simple. For nonlinear functions a numerical approximation is usually necessary, 

often quite a complex procedure taking almost as long to compute as it takes to 

perform the line minimization. 

If calculating the gradient is not possible or too difficult, there are some methods 

related to those above which gain information about the cost function's topology by 

performing line minimizations in N directions, rather than performing. any gradient 

calculations., A good example of this type of method is Powell's direction set method 

for multidimensions [20]. However, it is not recommended because of its inefficiency 

in terms of number of function evaluations and their high accuracy requirements. If 

accuracy is not a high priority, then the method will work quite well. 

4.2 Rosen's Technique for Gradient Estimation 

The previous section describes gradient optimization algorithms. This section 

deals with the accurate approximation of the gradient for use with optimal control. 

For complex systems, this is not a small matter. Estimating the gradient of the cost 

function aJ/Uk can be done by changing each Uk by some small amount Au and 

determine the new value of the cost function. The gradient then becomes 

ai --- _ J(uk+ Auk) —J(uk) 
(4.1) 

This works well provided that the integration used to calculate J is sufficiently 

accurate. In many cases the integration is too long and an alternative method must be 
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used. 

A method devised by Rosen circumvents the accuracy problem by breaking up 

an integration into small sections corresponding to the control segments. The cost 

function value is then approximated by the values of the states and controls at these 

points. Through a series of mathematical manipulations, it is possible to determine 

the states solely as functions of the control values. The method follows. 

The system given is in the form 

(t) = a(x(t), u(t)) (4.2) 

and we wish to find the minimum of a cost function which has the form 

J = h(x(t)) + fg(x(t), u(è))dt. (4.3) 

Rosen begins by using the simplest approximating difference equation 

x(t + &) = x(t) + a(x(t), u(t)) .&. (4.4) 

Assuming that the control is changed and the state observed at t =0, At, 2&, ... , N& 
we can define : = k& and the difference equations become 

x((k + 1)&) = x(k&) + a(x(k&), u(k&)) At (4.5) 

or, more simply, 

x(k +1) = x(k) + a(x(k), u(k)) &. (4.6) 
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The performance measure may be written as 

N-I 

g(x(k),u(k)). 
k=O 

(4.7) 

Rosen's method assumes the use of an approximating difference equation. It is 

also possible to integrate the equations so that equation (4.6) becomes 

t+L%t 

x(t + &) =5 a(x(t), u(t))dt (4.8) 

where the integration can be done numerically. Although this involves more compu-

tational work, the accuracy of solution should be better. By integrating numerically, 

the problem of differentiating the state equations can be avoided. 

For either Rosen's method or this variation, the remainder of the derivation will 

show the state at discrete times as 

x(k +1) = aD(x(k), u(k)). (4.9) 

The state equations are now linearized about a previous (ith) state-control history 

(x )(0),x(1), . ..,x(i)( );u 1(0),u°(1), - ..,u(N— 1)), the ith control history being 

known and in particular, the 0th being supplied as the initial guess by the user. 

Assuming that a is an analytic function, the (1+ 1)st trajectory is expanded in a Taylor 

series about the ith trajectory, and eliminating terms higher than first order, we have 

x + 1(k +1) = x(k +1) + DaD (x(k), u(i) (k))] [x 1 + 1kk) - x(k)] 
L ax 

DaD +(x(k), u(i) (k))] [0+1)(k) - 0)(k)] 
- au (4.10) 



15 

and, knowing that aD(x(k), u(k)) is equivalent to x(k + 1)' this equation may be 
rewritten as 

aD 
X('+ (k +1) = I ax (x(k), + 1)(k)k) 

aaD 
+ - (x(k), u(L + 

- au 

+aD(x(k), u(k)) 

J & 1 
u(k)) xkk) ax J 

a 
[aD 

L ---- (x(k), u(0(k))] u(k)DU  

We can further simplify this to become 

x (k + 1) = A(k)x' 1(k) + B(k)u 1(k) + c(k) (4.12) 

where A, B, and c are matrices which depend upon and u which are the previous 

iterations state and control histories and, hence, are known. 

Equation (4.12) is now linearized about the ith state-control history. However, 

the state values for each step are functions of both the state value of the previous step, 

and the control values that were applied during that step. It is therefore possible to 

rewrite equation (4.12) and eliminate x + '(k) to produce the following: 
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x'(0) Dg D? ... 

x''(1) D D 

x + 1)(2) D D 

_x + 

or 

where 

and 

+ 

D D' 11 
... DL .ji' 1(N —1)... 

(i+1) —DU+X11 

XH(0) 

XH(1) 

XH(2) 

x(N) 

(4.13) 

(4.14) 

XH(k +1) = A(k)xH(k)+ c(k), xH(0) x0 (4.15) 

A(k)A(k-1). A(l + 1)B(l), fork > 1 

B(I), fork =1. (4.16) 

0, fork <l 

Now the cost function will be written 

N-I 

g(U) 
k=O 

(4.17) 

Finding the gradient of the cost function with respect to the control function values is 

now fairly straightforward. 
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Rosen's method is extremely flexible. It is a routine matter to use a third or 

higher order in the cost function. It is also possible to have the cost as one of the 

states, and its derivative with respect to the controls calculated as a matter of course in 

the regular calculations. The effectiveness of the method can be improved by under-

standing the techniques involved and liberally rearranging the basic structure. 

4.3 Downhill Simplex Technique 

The downhill simplex method, attributed to Nelder and Mead [20,21], is a 

method of finding a minimum without finding a gradient or performing any line 

minimizations. Its greatest advantages are that it is very robust, i.e. it does not require 

great accuracy in the cost function evaluations, and it is not easily 'fooled' by local 

minima or an irregular cost function's topology. It will often find a good or global 

minimum among many local minima. 

The basis of the technique is creating a simplex, an N dimensional geometric 

figure defined by N +1 distinct points. Each point corresponds to a control vector u 

with an associated cost. One iteration in the simplex method requires one to: 

1) take the point with the highest cost function value and reflect it through the 

hyperplane defined by the other points. If this is lower than the second highest 

cost value then this iteration is finished. If the new cost is lower than the 

previous lowest, go to step 2). If it is higher or equal to the second highest, then 

reject this point and go to step 3). 

2) repeat the reflection in the previous step, but increase the distance of the 

reflection. This reflection and expansion causes an increase in the volume of the 

simplex. If this is an improvement, then accept this as the new point. 

Otherwise, accept the choice in 1) above as the new point. This iteration is 

finished. 
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3) (because a reflection will not reduce the cost function value:) move the high 

point toward the reflection hyperplane but do not pass through the hyperplane. 

This will reduce the volume of the simplex. If this does not reduce the cost, go 

to the next step. 

4) (because all else has failed:) contract all of the points along their vertices 

toward the point with the lowest cost. 

The iterations continue until an appropriate stopping criteria is satisfied. In 

practice, this procedure will solve problems where the cost function is fairly 'rough' 

much faster and more accurately than the gradient methods. This may be partly due to 

the step being taken relative to the other points whose value is known. If the simplex 

is still relatively large, then small irregularities in the surface are not likely to be 

noticed. Gradient methods often assume that the cost function has a smooth parabolic 

surface, and when this is not so, results may be unpredictable. For problems where 

using the gradient is not an asset, this technique is highly recommended. 

4.4 Simulated Annealing and Heuristic Methods 

Perhaps the simplest way of finding a minimum of a function is to randomly 

take control values and see what cost function values are produced. Given enough 

time, this method may find very good minima, but the procedure is very inefficient. It 

is generally referred to as an heuristic or random method. It is mentioned here 

because it has the advantage that it may be less susceptible to the effects of local 

minima. Though they are too inefficient for general work, methods such as these may 

occasionally be useful when a very good minimum is desired no matter what the cost 

in computing time. 

A variation on the theme is to make a change to one variable and then determine 

whether or not to accept this change. If accepted, it will be used for all following cost 

function evaluations until it is changed again. Simulated annealing, which has 

recently gained popularity, employs a strategy which will accept all changes that 

decrease the cost but occasionally will accept changes that increase it. At the 
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beginning of the minimization, changes with a fairly large increase in cost will be 

accepted. At the end, virtually no increases will be accepted. This strategy may allow 

the technique to get out of local minima with a high cost and find a much better 

minimum. 

Though the procedure works, it typically takes twice as long to run as more 

conventional techniques. Also, the resulting minimum is usually close to the global 

minimum. To overcome inefficiency, it is usually desirable to get into the vicinity of 

the desired minimum and then employ another, more efficient technique to finish the 

minimization. 

4.5 Constrained Optimization 

It is occasionally advantageous to utilize state and control constraint in an 

optimization. Dealing with vehicles, there are limitations on the control values (e.g. 

the steering wheel can only be turned a set angle) and often on the state values (e.g. 

the vehicle must not go off the road). While constraints are not considered in the 

vehicle simulations performed here, the topic is of sufficient importance to deserve 

mention. 

The simplest and perhaps most often used method of employing constraints is to 

• include them in the cost function and weight them very heavily. This has several 

advantages. Implementation requires that only the cost function be changed. The 

method of optimization may not need to be changed, regardless of constraints. If the 

optimization method allows for nonlinear cost functions, nonlinear constraints may be 

used. A primary disadvantage is that by adding the constraints to the cost function, 

the minimization procedure will have effects of the constrained cost thrown in unless 

it is done carefully. Another disadvantage is the possible extra time required to 

minimize these equations, in contrast to more direct methods. 

An alternative method for linear equality and inequality constraints, attributable 

to Rosen, is known as gradient projection. The method requires that the minimization 

begin within an N dimensional hypercube for which the surfaces are made up of the 
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constraints. The line minimization is performed by traveling in the direction of the 

gradient until a constraint is encountered. If the gradient at this point indicates that 

the minimum is between this point and the starting point, a typical line minimization 

is performed. If not, the point on the surface of the constraint is taken as the 

beginning of the next line minimization. A projection matrix ensures that the 

direction of the next line minimization is along the surface of the constraints in the 

direction of the maximum component of the gradient. A common way of imple-

menting this method is to linearize the equations and use these values until a 

minimum is found. The system equations are then relinearized about the new control 

history. 

Rosen's method for approximating the gradient was designed for use with 

projected gradient minimization, which also allows easy determination of the gradient 

in terms of the control values. Implementing both control and state constraints is 

therefore straightforward. In practice, this combination of methods works well for 

systems that are not extremely nonlinear. In the case of the nonlinear vehicle, conver-

gence problems have been encountered if the same linearized equations are used for 

an entire minimization. An alternative is to relinearize at each cost function or 

gradient evaluation. The problem then is that the state constraints may have moved 

due to the nonlinearities in the system. In general, Rosen's gradient projection is not 

the method of choice for complex systems, but for some problems it may be advanta-

geous. 
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5 The Test Vehicle and Manoeuvres 

In the past, optimal control and oplimi7ed controllers have been applied mainly as a 

means of performing the tracking task with little regard for what a real driver would do. 

Here these methods are used to model the efforts of a real driver, so their effectiveness 

should be graded by comparing the real driver to the model driver using a test vehicle. In 

order to achieve this, results produced by a real vehicle will be compared later to the 

numerical optimization results. In this section, descriptions are given of the tests and the 

test vehicle. 

5.1 The Vehicle and Equations of Motion Used 

The chassis of the test vehicle was a 1986 Tecno Polaris go-kart. Its dimensions 

and weights are listed below. 

mass = 132 kg 

1=15kg/rn2 

11= 0.62 m 

1r0.40rn 

t1=1.0Orn 

tr 1.lOm 

The moment of inertia, I, is only an approximation, found by estimating the radius of 

gyration. The tires were 1988 Vega RT bias ply kart tires. Their cornering stiffnesses 

were estimated by the static tests described in Appendix 3. The coefficients of 

friction were estimated based on the maximum cornering speed of the 90° manoeuvre 

attempted. A maximum lateral acceleration of about 15 rn/s2 was observed for the 

most severe cornering manoeuvre, so a coefficient of friction of 1.5 was assumed. 

The tire results are listed below. 
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c1 = 23,000 N/rad 

Cr=81,000N/Tt2d 

L1= 1.5 

= 1.5 

The engine on the kart was a 100cc two stroke direct drive (i.e. no clutch). The rear 

axle was solid with one disk brake attached to it. There were no brakes on the front 

wheels. The kart chassis contained no conventional suspension elements; therefore 

the front and rear wheels had essentially no vertical travel relative to the chassis. 

The equations of motion are derived in Appendix 1 and are presented below. 

X =± =x2c0sx5—x4sinx5 

= 2=xx4—(Ffr+Ffl) sin u)/m 

'=.t3=x2sinx5+x  cos x5  

y -X = -X6X2+ ((Ffr+Ffl) cos  +Fn.+Fri)Im 

-X5 X6 

(Tfl 
t+Ffl)lfCOSU(Frr+F l)lr+(Ffl Ffr)1 SiflU II 
2 

where x and  are the axes of the coordinate system attached to the vehicle, X and Y 

the axes of the fixed coordinate system and 0 is the rotational angle of the vehicle's 

coordinate system relative to the fixed. The tire force equations were simplified from 

[23] and are given by 

IcI≤3.O (5.2) 
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or 

F=F OC f, IaI>3.O (5.3) 
UaI) 

with 

where the slip angles are calculated from 

X+X6i 
afr = U - tall +t 

(X2 x6 1/2) 

(  x4+.6i 
aft =U tail xz—x6ti/2J 

arr tan_1I  x4 - x6l \\ 

x2+x6tr/2J 
= __i(X2 X4 X6l 

(5.4) 

(5.5) 

Under these conditions, the front tires will saturate at 0.051 radians and the rear tires 

will saturate at 0.023 radians. An increase in slip angles above these values will not 

change the lateral tire forces. The lateral force versus slip angle curves are shown in 

Figure 5.1. 

The only control input is considered to be steering as the throttle was only used 

to maintain the vehicle's speed and was not varied. 
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Figure 5.1: Lateral Force versus Slip Angle for the Tire Model 



25 

5.2 The Manoeuvres and Conditions 

Two manoeuvres were attempted, the obstacle avoidance manoeuvre and the 90° 

corner, chosen because of their differences. In the first, the amount of yaw and 

steering necessary to complete it is very small; this tends to be a straight manoeuvre. 

In contrast, the second manoeuvre requires large amounts of yaw and larger steering 

inputs. 

The obstacle avoidance manoeuvre, more generally called the lane change 
manoeuvre, involves following a path defined by the error function 

XI/C2 
2c1 (• 

X3 des .ed _ ç J e 2dt. (5.6) 

where x and x3 are, respectively, the X and Y of the fixed coordinate system. This 

manoeuvre has been discussed extensively in past optimal control papers [18,19]. For 

the tests, c1 = 1.00 and c2= 4.50. The lane change started at x1(t0) = —15.0 m and 

x3(t0) = 1.0 m and ended at x1(t1) = 10.0 m where x3(tf) = —1.0 m. 

The corner manoeuvre consisted of three parts: a 10 in straight entrance, a 90° 

arc of 10 m radius, and a 10 m straight exit. The 10 m straight entrance was present to 

allow the driver or optimal control to 'set up' for the corner. 

All tests were done on a relatively smooth and dusty asphalt surface. The lines 

of the desired trajectory were marked in chalk on the pavement. Markers were set up 

at the beginning and end of the manoeuvre and used as a reference for initiating 

instrument recording by an observer, who recorded the duration of the manoeuvre 

with a stopwatch. Each test run began by 'scrubbing' the tires to warm them up, 

although full operating temperature for the type of tire was never achieved. The 
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manoeuvre was run, the kart stopped, and the data downloaded to a computer for 

processing. Comments of the driver and observer about tracking quality and driving 

irregularities were recorded. All driving was done by the author. 

The two desired quantities were the vehicle speed, measured by an optical 

switch reading from a slotted disk attached to the rear axle, and the steer angle, 

measured using a shaft encoder attached to the steering shaft. The data was recorded 

using a microprocessor-based data acquisition system, designed and built as a part of 

this project, and attached to the kart frame. A button on the steering wheel initiated 

data collection. The data was sampled at roughly 100 Hz. (For a more complete 

description of the instrumentation system, see Appendix 2.) 



27 

6 Results of Simulations 

Below are the computed optimization results using the optimal control and optimal 

controllers described in chapters 3 and 4. Four manoeuvres were performed in all, two 

approximating slow and fast lane changes, and two approximating slow and fast corners. 

The graphs associated with these manoeuvres are presented in more detail in the next sec-

tion. 

6.1 Optimal Control 

The dimensionless cost function J to be minimized was 

[Re (errortrackjflg)2 + R (u )j dt 
to 

(6.1) 

where errorfrflg is the minimum distance from the vehicle's center of gravity to the 

desired trajectory, u is the steer angle, and coefficients Re and R are 1 m 2s' and 1 

rad 2s', respectively. The optimal control is represented by a 100 pulse evenly seg-

mented control. The gradient was calculated using the modified Rosen's technique. 

The minimization was done using the Fletcher-Reeves-Polak-Ribiere minimization as 

implemented in Press [20] with only the line minimization calling routine modified. 

The accuracy tolerance is 1.0 x 10. The cost associated with each manoeuvre is 

slow lane change 0.002645 

fast lane change 0.001746 

slow corner 0.023482 

fast corner 0.093202 

The value of the fast lane change is lower than that of the slower manoeuvre because 

less time is required to complete it, though the tracking and steering are similar. The 

tracking error and steering for the fast corner are significantly higher than for the slow 

corner. 
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The initial control history was set to a small constant value (0.001 to 0.0001 

radians) for all manoeuvres except the fast corner manoeuvre, in which the initial 

control history was 0.045 radians. Although the smaller initial values were not 

absolutely necessary, they did seem to reduce the optimization time. The larger value 

for the fast corner was necessary because the cost function for this manoeuvre appears 

to have many local minima. In one case where a small initial control was given, the 

minimum consisted of turning the front wheels perpendicular to the direction of travel 

(1.57 radians) and maintaining this value until the vehicle had almost come to a stop. 

One of the chief drawbacks of this method is its tendency to find very undesirable 

minima. 

6.2 Optimal Controller 

Decisions as to the form and degree of complexity of the optimal controller were 

fairly arbitrarily made in order to represent a reasonably realistic and typical situation, 

balanced between extremes. The cost function was the same as the one used for the 

optimal control. The controller consisted of six parts, each of which took an antici-

pated future error (as shown in Figure 6.1) and multiplied it by a parameter to be 

changed by the opHmi7ation algorithm. These values were summed to produce the 

steering, hence 

u = c1error(0.10) + c2error(0.25) + c3error (0.50) + c4error(0.75) + 

c5error(1.00)+c6(1.50) (6.2) 

where error(t) is the anticipated error at time t in the future. This anticipated error, 

also shown in Figure 6. 1, is calculated by first determining the vehicle's position 

traveling in a straight line at the present speed and direction for t seconds. The error 

is then the distance between this future position and the desired trajectory at this point. 
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Direction of Vehicle Travel 

Error 6 

Error 5 

Error 4 

Error 3 

Error 2 

Error 1 

Figure 6.1: Error Inputs to the 

Optimal Controller 
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The downhill simplex technique was used to optimize. The initial values of the 

controller parameters were chosen by a random number generator which produced 

uniform random deviates between -1.0 and 1.0. This proved to be an easy method of 

getting a wide range of control parameter sets. The final values are shown in Table 

6. 1, and the costs are shown below. 

slow lane change 

fast lane change 

slow corner 

fast corner 

0.003088 

0.001911 

0.030574 

0.102688 

slow lane fast lane slow corner fast corner 

Cl -0.1671796 -0.8303345 0.0209960 -0.0863910 

c2 -0.1169495 0.7073845 -0.0258471 -0.0784005 

c3 0.4070435 -0.0806202 0.0608595 0.1852392 

c4 0.0998517 -0.0429414 0.1970839 0.1605817 

c5 -0.1593351 0.0351648 -0.1041405 -0.1579004 

C6 0.0211886 -0.0077323 0.0002157 0.0198238 

Table 6.1. The Controller Parameter Values for the Optimal Controller. 

6.3 The Optimal Driver: Optimization Based upon the Driver's 

Results 

With the two preceding optimal methods, no regard was taken for the results of 

the test driver. In particular, the effect of steering on the cost function was given 

purely by the steering variance from zero steer angle. An alternative to this is to mea-

sure the effect of the steering on the cost relative to the steering produced by the test 
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driver, so the control produced by the optimization might display a steering form 

closer to the driver's. This may give an indication of the resultant movements of the 

vehicle if they are not available. 

The third set of results computed is identical to the optimal control program used 

above, except for a change to the cost function, now 

= fl,"If 
+ R, (u - Uöjjver)2.1 dt (6.3) 

where Uh.jver is the control produced by the driver of the test vehicle. The coefficient 

R is 1 m 2s' and R3 is 10 rad 2s'. The method will be referred to as the "optimal 

driver", an appropriate name, if not entirely accurate. 
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7 Comparison of Results 

This section compares and comments on the numerical results produced by optimal 

control techniques with the experimental ones produced by a driver, for four different 

manoeuvres. Steering, which is the control, is the main source of comparison, to 

determine if the steering results are generally similar, and if the optimal control exceeds 

the driver's capabilities. Movement resulting from the control is also examined; the 

vehicle must accurately perform the manoeuvre, and in a manner which is physically 

possible and probable for the driver. 

The complete presentation shows that for all the results it is generally the case that 

1) the calculated results are realistic for the manoeuvres and similar to what might 

be expected of the driver and, in the case of the steering controls, are close to the 

measured control inputs. 

2) the state values produced by the numerical methods are similar, but not identical. 

The path-tracking through the manoeuvres was very good in each case, so it is 

apparent that different control and state histories can be used for the same path. 

Variations in the numerically produced controls are due not only to differences in 

optimization techniques; different initial control histories used for starting the optimi-

zation will often produce different final control histories. This suggests that either thic 

cost function has many local minima, or that the global minimum is so indistinct that the 

numerical techniques are not capable of locating exactly the point of the minimum. 

7.1 The Slow Lane Change Manoeuvre 

The slow lane change manoeuvre was performed at about 7 mIs, at which speed 

the driver could comfortably follow the prescribed path. The numerical and exper-

imental results are presented in Figures 7.1.1 to 7.1.10. The results from the optimal 

control, optimal controller and optimal driver are presented in each plot. The 
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experimental results are included in Figures 7.1.1 and 7.1.4, which represent the 

steering and forward speed. All of the figures show that the state values are realistic 

for a driver. Figure 7.1.2 reveals that the computed tracking is excellent. 

The simplest way of following the prescribed path in a lane change is to steer in 

the direction of the lane, then in the opposite direction from the half-way point until 

the manoeuvre is complete. The driver's results, and all three sets of numerical results 

generally conform to this pattern. 

A notable feature is that the peak values of steering inputs of the test results are 

larger than those of all of the optimization techniques. The experimental steering 

inputs (see Figure 7.1.1) are about -0.067 radians at the first peak and 0.081 radians at 

the second peak, while the optimal control has maxima of about -0.046 and 0.042 

radians. However, both steering inputs are of the same form with the peaks and zero 

value crossovers occurring at similar times. There are some small oscillations at the 

beginning of the manoeuvre for the driver inputs, but these could be attributed to 

roughness on the road surface or disturbances from the driver. These oscillations of 

steer angle are small in magnitude and include the effect of the driver pushing the 

'start record' button which was located on the steering wheel. 

The difference in steering input magnitudes between the experimental and 

computer simulations is evident in all of the manoeuvres. This should not occur in 

slow manoeuvres, where the steering angles should be the same for a vehicle 

regardless of the tire characteristics. Optimal control results were obtained for several 

different combinations of tire characteristics, revealing that large changes in the tires 

appear to have minimal effects on the steering for this manoeuvre. The discrepancies 

are most likely due to effects caused by the front steering geometry not considered in 

the numerical vehicle model. 

The path-following accuracy can be seen in Figures 7.1.2 and 7.1.3. The largest 

tracking error is about 0.045 meters, which represents 2.3% of the 2.0 meters of lateral 

travel, accurate enough to be acceptable as an approximation of the driver's efforts to 

follow the path. The oscillations in tracking accuracy in Figure 7.1.3 are positional 
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errors created by 'cutting the corners' on the manoeuvre, and do not reflect a 

rotational oscillation, which would signal the onset of an instability. In Figure 7.1.4, 

the numerical optimization techniques maintain a steady speed, while the driver's 

speed varies by 1.0 m/s. 

The front and rear slip angles are shown in Figures 7.1.5 and 7.1.6. Values 

plotted are the average of both the right and left slip angles. The variance in the slip 

angles among the three types of optimization suggests that various slip angle histories 

can produce very similar tracking characteristics, a result not originally anticipated. 

Figures 7.1.8 and 7.1.9 show the lateral and rotational velocities of the vehicle, 

which share the general form of the steering inputs shown in Figure 7.1.1. In past 

optimal control study [18,19], this was found to be the case for all vehicles, provided 

the manoeuvre is not too aggressive relative to their capabilities. The rotational 

positions (Figure 7.1.7) are the integration of the rotational velocity. The rough 

contours of the rotational velocity are smoothed by the integration. 

Figure 7.1.10 is a plot indicating the understeer/oversteer coefficient. The 

coefficient roughly indicates the effects of nonlinearities in the side force character-

istics of tires as a function of slip angle; the understeer or oversteer will change as the 

vehicle's state changes. For a more detailed description of this coefficient, see 

Appendix 4. A coefficient of zero indicates a neutral steering vehicle. A +1.0 

indicates a vehicle with the front cornering stiffness of zero and a non-zero rear 

cornering stiffness, the extreme of an understeering vehicle. A value of -1.0 is given 

to a vehicle with a rear cornering stiffness of zero and a non-zero front cornering 

stiffness, the extreme oversteering vehicle. The vehicle model used has a 'base' 

coefficient (based on the cornering stiffness when the slip angles are all zero) of about 

+0.55, indicating understeer. 

The coefficient remains near its base value. Generally, a tire can be considered 

to have linear characteristics up to 1/3 of the slip angle at which the tire saturates (i.e. 

the side-force reaches its maximum value). Hence, the linear range for the test 

vehicle's tires can be expected to be up to about 0.017 radians for the front tires and 
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0.008 radians for the rear. For this manoeuvre, the slip angles are within this range. 

This and the lack of change in the understeer/oversteer coefficient suggests that this 

manoeuvre is not a good indicator of the vehicle's handling characteristics in any 

other than the linear range of the tires. 
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7.2 The Fast Lane Change Manoeuvre 

The fast lane change manoeuvre was performed at about 12 mIs and represents 

the highest speed at which the driver was able to drive through the lane change and 

still maintain adequate tracking accuracy. The plotted results from the fast lane 

change manoeuvre are shown in Figures 7.2.1 to 7.2.10. Although the velocity is 

higher here (12 m/s as opposed to 7 m/s,) most of the results produced by the optimal 

control and controller are similar to those for the slower manoeuvre. The tracking 

shown in Figure 7.1.2 is excellent. 

The steering input by the driver has first and second peak values of about -0.06 

radians and 0.09 radians, while the optimal control has values of -0.047 and 0.05 

radians. These values are only slightly higher than those of the slow lane change. 

The accuracy of the path following is very good, with the exception of the 

optimal driver. Because the optimal driver attempts to mimic the inputs of the driver, 

it will try to reproduce the large steer angles of the driver. The tracking error for the 

optimal driver is large by the end of the manoeuvre (0.15 meters) and the vehicle is 

rotated 0.05 radians away from the rotational position of the trajectory. This indicates 

that the vehicle may be in the process of going out of control, although the driver 

experienced no such difficulties. 

Despite the increase in speed from 7 m/s to 12 m/s, the slip angles stay in the 

linear range and the understeer/oversteer coefficient remains at about the base value, 

+0.55. Though this is the fastest the driver was capable of travelling through the 

experimental manoeuvre, the vehicle seems to have roughly the same control charac-

teristics as in the slower manoeuvre. Also similar is that the tires remain in the linear 

range; the coefficient therefore provides no indication of the vehicle's handling 

characteristics at the limits of the tires' adhesion. It actually shows more about the 

limits of the driver's abilities. 
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7.3 The Slow Corner Manoeuvre 

The slow 90 corner manoeuvre was performed at about 9 m/s. At this speed 

the driver could comfortably follow the prescribed path. The results from the slow 

manoeuvre are plotted in Figures 7.3.1 to 7.3.10 and reflect realistic values. A 

frequent tendency of the steering input is a gradual rise in steering value until the 

corner is entered. At this point, the steering input reaches a plateau lasting until the 

end of the corner. The input then gradually declines to a zero steer angle as the 

vehicle straightens out. The actual steering is often somewhat rough, with numerous 

local oscillations, which are sometimes driver corrections applied to minimize the 

error. 

The steering values are shown in Figure 7.3.1. As with the lane change 

manoeuvres, the steering values produced by the driver are larger than the numerical 

simulation results: 0.23 radians peak for the driver, while the largest value for the 

optimal control is 0.12 radians. The ratio of these values is generally consistent with 

those of the lane change manoeuvre. For the optimized driver, the front slip angles 

(Figure 7.3.5) of the front tire peak briefly at 0.086 radians. This seems to be an 

attempt to improve the cost function value by conforming to the driver's steering 

input at the expense of tracking accuracy. The front tires saturate at a slip angle of 

about 0.05 radians. Because the lateral forces remain the same at slip angles higher 

than this, any steering which keeps the slip angles above this value has no additional 

effect on the vehicle's movement. 

The effect of this brief period of operation in a saturated state is shown in Figure 

7.3.10. At this time, the understeer/oversteer coefficient goes to +1.0, indicating that 

the vehicle is understeering to an extreme; This also happens at the beginning of the 

manoeuvre. At all other times the coefficient for the optimized driver remains very 

close to the base value of +0.55 and the tires remain in the linear operating zone. For 

the other two optimization techniques, the tires remain in the linear zone for the entire 

manoeuvre, so the coefficients remain at the base value. 
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The vehicle's speed is about 9 rn/s on a 10.0 rn radius curve. A lateral acceler-

ation of about 8.1 rn/s2 would be required to follow the corner exactly. Based on the 

tire coefficient of friction of 1.5, a maximum lateral acceleration of about 15 rn/s2 is 

possible. This indicates that the vehicle is not close to the limits of its performance. 
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7.4 The Fast Corner Manoeuvre 

The graphs associated with the fast 90 manoeuvre are presented in Figures 7.4.1 

to 7.4.10. This is the fastest that the driver could enter the corner and still manage to 

exit the manoeuvre with little tracking error. The steering is still of the basic form 

seen in the slow corner except here there are large oscillations at the beginning and 

end of the manoeuvre. 

Generally, the extremes of behavior found in the computed results coincide well 

with observations of experimental results. The computed path following shown in 

Figures 7.4.2 and 7.4.3 indicates that the path following is not as good as with the 

slower manoeuvre. Further, the slip angle results shown in Figures 7.4.5 and 7.4.6 

indicate that at times during the manoeuvres the front tires saturate, and therefore the 

vehicle has reached a performance limit. 

Unlike the lane change manoeuvres, where the speed was limited by the driver's 

abilities, these results indicate a manoeuvre where the speed is limited by the 

vehicle's limits of adhesion. The vehicle enters the corner at 13 rn/s and leaves at 

around 12 rn/s which, if the vehicle were to follow the curve exactly, would represent 
lateral accelerations from 16.9 rn/s2 down to 14.4 rn/s2 so the vehicle is near or at the 

limits of adhesion laterally. This is consistent with the driver's feeling that the limits 

of the tires' adhesion had been reached. With a tire coefficient of friction of 1.5 and a 

maximum lateral acceleration of about 15 mIs2, 16.9 rn/s2 is above the vehicle's 

maximum of 15.0 rn/s2. The vehicle does not follow the curve exactly, but instead 

follows a path that has a larger radius of curvature. 

The intensity of this manoeuvre is visible on most graphs at the beginning and 

end of the manoeuvres, while the steering itself has fewer fluctuations. For the 

steering angles in Figure 7.4.1, all of the numerical techniques show oscillations at the 

beginning of the manoeuvre, very large with the optimal control. The driver, on the 

other hand, shows no oscillations at the beginning, but large, probably corrective, 

oscillations at the end. 
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The slip angle plots in Figures 74.5 and 7.4.6 reveal the reason for the strong 

setup at the beginning of the manoeuvre. The front slip angle values are past the 

0.051 radian value at which the front tires saturate. Once the vehicle has entered the 

corner, its ability to be controlled by steering input is limited. It must therefore enter 

the corner in a state which allows it to exit properly without much assistance in the 

way of steering input. 

The effects on the handling of the vehicle are shown in the understeer/oversteer 

graph, Figure 7.4.10. After some initial oscillations in the front steering angle, the 

vehicle briefly has an understeer/oversteer coefficient of +1.0, indicating  the extreme 

case of understeer. When the corner is past, in order for the vehicle to initiate a 

straight line of travel and stop all rotation, the front steer angle is reduced, which in 

turn reduces the front tire slip angle. This has the effect of increasing the cornering 

stiffness of the front tires; for a brief period, the rear tires are at the very low cornering 

stiffnesses corresponding to high slip angles. At this point the vehicle temporarily 

becomes almost a neutral steering vehicle, but soon returns to its base operating 

coefficient. 
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8 Conclusions Regarding the Use of Optimization Techniques in Vehicle 

Dynamics 

The goal of this thesis is to improve upon the formulation and solution techniques 

for optimal control methods in simulating the control of a human driver. Success is mea-

sured by the degree of similarity between the optimal control results and the experimental 

test results, in terms of the form of the control and the accuracy of the vehicle's motion. 

In general, the form of the driver's inputs and those computed using the optimization 

methods agree, the motion which results from the numerically produced control values is 

suitable for the manoeuvre, and it is physically possible and probable for the driver. 

While the numerical results show many similarities to the driver's results, there 

remains much research to be done to confirm the nature and extent of the similarities. 

This thesis reveals a general agreement between numerical and experimental results. 

Future research in this area must take into account: 

1) Variations among drivers, and the effect of different vehicles and road conditions 

on them. For these tests, only one driver was used and relatively few tests were 

performed. 

2) The vehicle model, which is only a crude approximation of the actual test vehicle 

and road conditions. In this case, the tire characteristics were largely approximated. 

These characteristics also change with road conditions and tire temperatures. The 

magnitude of the errors is difficult to estimate. 

Even when these points are not taken into account, a reasonable correlation between the 

optimal control results and the driver's results can be achieved, all the more impressive in 

light of the simple costfunction used. 

Two forms of optimal techniques have been outlined here; optimal control and opti-

mal controllers. For the type of path following problem examined in this thesis, both 

techniques can be recommended. For other situations, the deciding factor that 

distinguishes these techniques is the complexity of the problem. For example, the path 
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may be defined by the wide outer limits of a track, or by a set of pylons to be avoided. 

To find a good solution to this problem using a controller would require a much higher 

degree of complexity than that of the controller used in this thesis. Optimal control 

would likely be preferred, as it is more adaptable to constraints or non-uniform problems. 

However, an important advantage to using an optimal controller is that if it is powerful 

enough, the controller needs no modification to suit different problems; therefore, solu-

tion time for each problem is much shorter than it would be using optimal control. 

One of the most important observations about the optimization results relates to the 

differences in steering input between the three optimization methods. Despite differences 

in steering input values, the tracking is extremely good, which suggests that there may be 

many ways of steering through a manoeuvre to produce acceptable tracking. If this is 

true, then care must be taken in any future studies not to rely too heavily on a single 

steering control history as an indicator of vehicle control or performance characteristics. 

This work is an attempt at applying optimization methods to the simulation of the 

driver. Effective simulation, as demonstrated here, allows for improved methods of sim-

ulation, design, and control of road vehicles. The future holds further study in this area, 

both to strengthen the correlation between driver and optimal control methods, and to 

develop tools to utilize the methods in vehicle and roadway design. 



83 

References 

1. Whitcomb, D.W. and W.F. Miiken, Jr., "Design Implications of a General Theory of 

Automobile Stability and Control', Proc. I. Mech. E. (A.D.), 1956 

2. Ellis J.R., "Oversteer and Understeer", Automobile Engineer, May, 1963 

3. Ellis, J.R., Vehicle Dynamics, Ellis, 1989 

4. Legouis, T., Laneville, P., Bourassa, P. and Payre, C., "Vehicle/Pilot System Analysis: 

A New Approach Using Optimal Control With Delay", Vehicle System Dynamics, 

16(1987), pp. 279-295 

5. McRuer, D.T. and Klein, R., "Mathematical Models of Human Pilot Behavior", 

N.A.T.O. A GARDo graph, No. 188, 1974 

6. Weir, D.H. and McRuer, D.T., 'Dynamics of Driver Vehicle Steering Control", 

Automatica, Vol. 6, 1970, pp. 87-98 

7. Garrot, W.R. et al., "Closed Loop Automobile Maneuvers Using Describing Function 

Models", SAE paper no. 820306 

8. McLean, J.R. and Hoffman, E.D., "The Effect of Restricted Preview on Driver 

Steering Control and Performance", Human Factors, vol. 15, no. 4, August, 73, pp. - 

367-378 

9. Kondo, M. and Ajimine, A., "Driver Sight Point and Dynamics of the Driver-Vehicle 

System Related to it", SAE paper no. 680104 

10. Yoshimoto, K., "Simulation of Man-Automobile System by the Driver's Steering 

Model With Predictability", Bulletin of J.S.M.E., 12(51), 1969, pp. 495-500 

11. Thomas. R.E., "Development of New Techniques for Analysis of Human Controller 

Dynamics", USAF, MRL, TDR-62-65, 1962 



84 

12. MacAdam, C.C., "Applications of and Optimal Preview Control for Simulation of 

Closed-Loop Automobile Driving", IEEE Transactions of Systems, Man, and 

Cybernetics, Vol SMC-1 1, No 6, June 1981, pp. 393-399 

13. Delp, P., Crossman, E.R.F.W. and Szostak, H., "Estimation of Automobile-Driver 

Describing Function From Highway Tests Using the Double Steering Wheel", 

Seventh Conference on Manual Control, pp. 223-236 

14. Carson, J.M. and Wierwille, W.W., 'Development of a Strategy Model of the Driver 

in Lane Keeping", Vehicle System Dynamics, 7 (1978), pp. 233-253 

15. Hayhoe, G.F., "A Driver Model Based on the Cerebellar Model Articulation 

Controller", Vehicle System Dynamics, 8 (1979), pp. 49-72 

16. Van Zanten, A.T., "Optimal Control of the Tractor-Semitrailer Truck", Ph.D. Thesis, 

Cornell University, Ithaca, 1974 

17. Van Zanten,A.T. and A.I. Krauter, "Optimal Control of the Tractor-Semitrailer 

Truck", Vehicle System Dynamics, 7 (1978), pp. 203-231 

18. 1-latwal, H. and Mikulcik E.C., "An Optimal Control Approach to the Path Tracking 

Problem for an Automobile", Transactions of the CSME, Vol 10, No. 4, 1986, pp. 

233-241 

19. Hatwal, H. and Mikulcik E.C., "Some Inverse Solutions to an Automobile Path 

Tracking Problem with Input Control of Steering and Brakes", Vehicle.System 

Dynamics, 15 (1986), pp 61-71 

20. Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T., Numerical 

Recipes in C, Cambridge University Press, 1988, pp. 290-352 

21. Nelder, J.A. and Mead,R., Computer Journal, 1965, vol 7, p.308 

22. Kirk, D.E., Optimal Control Theory, Prentice-Hall, 1970, pp. 371-409 



85 

23. Radt Jr., H.S. and W.F. Miliken Jr., "Non-Dimensionalizing Tyre Data for Vehicle 

Simulation", Road Vehicle Handling, Institution of Mechanical Engineers 

Conference Publications, 1983, pp. 229-240 

24. Moore, D.F., The Friction of Pneumatic Tyres, Elsevier Scientific Publishing 

Company, 1975 



86 

Appendix 1: The Derivation of the Equations of Motion Used 

The equations used in this thesis to model the test vehicle's motion are quite simple 

and are equivalent to those used in other studies [3,18,19]. They allow for three degrees 

of freedom: two directional relative to the plane of travel, and one rotational about the 

vertical axis. The objective in choosing a simple model was to minimize computation 

while retaining sufficient complexity to allow for realism in the movements. 

The base equations to describe the accelerations of the vehicle are 

= 

Ië=ZT9 

(A1.1) 

where m is mass 

I is the moment of inertia about the vertical axis through the center of gravity 

F and F are the longitudinal and lateral forces and 

T9 is torque about the vertical axis. 

The x and  are measured relative to a coordinate system attached to the vehicle's center 

of gravity. The rotational angle, e, is the rotation of the vehicle's coordinate system 
relative to the fixed reference, XY. The coordinate systems are shown in Figure A1.1. 

The velocity components of the vehicle are, 

K =±cos9— sin9 

Y=.2sin8+9cos9 

where X and Y are the axes on the fixed coordinate system. 

'(A 1.2) 
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The equations may be written in state-space format with 

X =x =x2cosx5—x4sinx5 

I 

Y —X3 =x2sinx5+x4cosx5 (A1.3) 

—X4 = —x6x2+1 F 

=x5 =x6 

The motion of the vehicle is found by integrating the state equations given the initial state 

vector, x0. The forces still remain to be defined. 

Neglecting aerodynamic forces, the tires are the only mechanisms for generating 

force on the vehicle. The tire model considers only forces which act perpendicular to the 

plane of rotation of the tire; therefore rolling resistance and other tractive forces are 

neglected. The tire forces generated are 

Z FY =(Ffr+Ffl) cos U +(Frr+Fri) (A1.4) 

where u is the steer angle. The tire forces longitudinally are 

FX=—(Ffr+Ffl)sinu . (A1.5) 

The torque about the vertical axis relative to the center of gravity of the vehicle is 

TO=(Ffr+Ffl)lfCOS_.(F+F 1)l+(Ffr +Ffl)LSiriS (A1.6) 
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The tire forces were calculated from the equations given by Ra± and Miliken [23] and 

used in [18] and [19]. The forms of these equations are presented in Section 5 of this 

thesis. 
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Appendix 2: Description of the Test Instrumentation Used for Vehicle 

Testing 

In the experimental work's early planning stages, it was decided that a computer 

controlled instrumentation system would be required. The design goals identified were 

that the system must be light, compact and rugged, and that due to the electrically noisy 

environment created by the engine, the equipment must be designed and shielded 

correctly. Financial restrictions, and a general inability to find a commercially available 

system exactly suited to the need, led to the decision to design and build it. 

The variables to be measured were the vehicle's speed and the steer angle. Also 

needed was some method for indicating the beginning of the manoeuvre. Jack Dyck, of 

Valmet Automation (Canada) Ltd., designed an instrumentation card based upon specifi-

cations given by the author. The printed circuit board for the instrumentation was built 

and assembled by the author. Valmet Automation provided the microprocessor, a Hitachi 

HD64180 based CPU card approximately 10 cm X 16 cm. It had an input/output bus 

with 19-bit address space and 8-bit data bus. A backplane board attached the instrumen-

tation card to the CPU card. 

The instrumentation card was equipped with the following: 

1) Hewlett-Packard HCI'L-2000 Quadrature Decoder/Counter Interface IC: This 

chip was used for determining steering angle. It is the standard interface chip for 

Hewlett-Packard shaft encoders. A HP BEDS-5000 shaft encoder was attached to 

the steering column and measured steering wheel angle. The shaft encoder has a 

resolution of 500 counts per revolution. 

2) Intel 8254 Programmable Interval Timer: Used in conjunction with an optical 

switch and slotted disk attached to the rear axle, this determined the rotational 

velocity of the rear wheels. 
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3) ADC 1210 Analog to Digital Converter: This 12 bit analog to digital converter 

was not used in these tests, but was intended for use in future experiments, most 

likely with strain gauges or accelerometers. 

5) Digital Input: Eight digital input lines were available for use; only one was used 

in. testing. It was attached to a switch to be activated when initiating the collection 

of data. The switch was mounted on the steering wheel. 

Data collection commenced at the beginning of each manoeuvre when the driver 

depressed the switch mounted to the steering wheel. The data was collected at a rate of 

100 samples per second for a period of about 10 seconds, after which the vehicle was 

stopped and the data transferred from the on-board computer to the floppy disk of a 

portable computer. 
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Appendix 3: A Method for Estimating the Cornering Stiffness of a Tire 

A fundamental operating characteristic of pneumatic tires is cornering stiffness, 
defined as the change in lateral force generated by the tire with change in slip angle, the 

slip angle being the angle between the plane of the rotation of the tire and its direction of 

travel. The cornering stiffness may be determined experimentally using an apparatus 

which holds a tire on a moving surface and measures the forces generated by the tire. 

However, these tire-testers were too expensive to be built for this project, and existing 

ones are usually too large for kart tires. Because tire data was otherwise not available, an 

inexpensive method for estimating a tire's cornering stiffness was devised. The method 

employs a mathematical tire model similar to the taut string models and beam models [3]. 

Rubber is a visco-elastic material with some unusual frictional properties [24]. On 

the molecular level, its long polymer chains do not appear to slide over a surface as with 

most materials; instead, the ends of the molecules will attach to the surface. If a force is 

applied, a molecule will stretch and not detach from a particular point, unless the 

molecule chain or the contact breaks. This has the effect on a rolling tire that as the tire 

surface enters the contact patch, the rubber molecules will attach to the road unstretched. 

This will create a boundary condition for calculation of the forces in the contact patch, 

namely that all forces are zero at the beginning. For low cornering forces, the bonds 

between the road and the tire surface will not break at any point in the contact patch. The 

lateral forces produced will increase in an approximately linear manner until the end of 

the contact patch, where the molecular bonds break as the tire leaves the road surface. 

The deflection caused by the stretching of the molecules is assumed to be very small 

compared to deflections of the tire which are due to the elasticity of the tire body. 

A tire is shown rolling on a surface in Figure A3.1, where the rotation angle of the 

axle a =0 is zero. In Figure A3.2, the tire is shown with its axle rotated at an angle of a 

about the vertical axis. The coordinate system x' y' is attached to the axle and will also 

rotate about the vertical axis. As this model is concerned with predicting the tire charac-

teristics near a =0, this angle will be assumed to be very small. 
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Because there is no slip in the contact patch, the twisting of the contact area of the tire 

relative to the axle creates a moment about the vertical axis. The tire body is considered 

to have a torsional stiffness of K. 

A strip along the contact patch has the area w 1 where w is its width and 1 the 

length where both are measured relative to the rotating axis. The shear stress in the y' 

direction is 

.ty = 

where ,r,,, is the maximum shear stress, found at the rear of the contact patch. If the axle 

is rotated an angle a about the vertical axis, summing the moment about the center of the 

tire would, neglecting dynamic effects, give 

ZM=O (A3.2) 

so 

O=Kaa—f 2 X 'I) LM 

Performing the integration and solving for a gives 

___TM(,2)W  

12  
a= 

Kot 

In equilibrium, the force in the y' direction, F., is obtained from 

(A3.3) 

(A3.4) 
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from which 

FY, =JI _x'Jw' 
_j\\ 

Fy#=tmw 1. 

(A3.5) 

(A3.6) 

As mentioned earlier, the cornering stiffness is the change in lateral force produced by a 

change in the slip angle. Therefore, combining equations A3.4 and A3.6 gives the 

cornering stiffness 

6K 
C 
cxl 

(A3.7) 

Equation A3.7 shows that for small slip angles, the cornering stiffness depends 

UpOfl Ka, the torsional stiffness of the tire, and 1, the length of the contact patch. To 

measure these values for the experimental tires, a small test apparatus was constructed, 

consisting mainly of a yoke which rigidly held the axle but did not touch the tire body. A 

down-force equal to the static load from the test vehicle was applied to the yoke through 

a thrust bearing which allowed free rotation of the yoke about the vertical axis. An epoxy 

based adhesive held the contact patch of the tire to a rigid surface, first ensuring that the 

desired vertical loading was applied before the adhesive could set. Torque was applied to 

the yoke using a torque wrench attached to the bottom of the thrust bearing. Dial gauges 

were used to measure the yoke's rotational deflection. Using these torque and deflection 

measurements, the torsional stiffness, K was determined to be 310 Nm for the front and 
1200 Nm for the rear , after the tire was removed, the contact patch length was found by 
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measuring the length of the epoxy contact area. The patch length was 0.08 m for the 

front and 0.09 m for the rear. Therefore, the front and rear cornering stiffnesses were 

estimated to be 23000 N and 81000 N, respectively. 
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Appendix 4: A Coefficient of Understeer/Oversteer as an Indicator of a 

Vehicle's Control Characteristics 

Understeer and oversteer are commonly used to describe a vehicle's dynamic 

characteristics. The formal definition of understeer is that the slope of the plot of steady-

state lateral acceleration versus steer angle is positive. A negative value indicates an 

oversteer and an infinite slope indicates neutral steer. As an example, an understeer 

vehicle will have to increase its steer angle in order to travel at a higher speed through a 

circle of a certain radius. The driver will likely feel that the vehicle's front end tends to 

lose its grip, while the rear tires adhere very well. The oversteer vehicle will have a 

decrease in steer angle as speed increases. The vehicle will feel as if the rear tires have 

insufficient grip, so the vehicle wants to 'spin out'. 

For a planar linear vehicle model of the type discussed in Appendix 1, understeer, 

oversteer and neutral steer vehicles have the following properties [2,3]. 

C/if < cl understeer 

C/i1 = Crir neutral steer 

c/i1> Crl oversteer 

(A4.1) 

where If and 1, are the distances from the center of gravity to the front and rear axles, and 

c1 and cr are the front and rear cornering stiffnesses, respectively. The cornering stiffness 
is defined by the change in lateral force for a change in tire slip angle. A planar linear 

vehicle will maintain the same degree of understeer or oversteer at all times. This is not 

likely to be the case for vehicles with nonlinear tire characteristics. 
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A simple method of showing any changes to the degree of understeer or oversteer 

for nonlinear vehicles is useful. While equation A4.1 is exact only for linear vehicles, the 

type of steer be approximated by this equation. The method of representing this graphi-

cally shown below will be referred to as the coefficient of understeer/oversteer C,0. 

if 

Cili<Crlr 

c111> Crir 

= Crir 

cf1f—cl 
U/0 r - 

CLr 

Cj Crlr 

u/o_  CI" 7 

C,0 = 0 

(A4.2) 

The coefficient may take on any value between 1.0 and -1.0. A value of 0.0 indicates a 

neutral steering vehicle. As the coefficient approaches 1.0 the understeer becomes more 

severe. The oversteer becomes more extreme as the value approaches -1.0. 

This is a simple method of approximating a vehicle's instantaneous control charac-

teristics. It does not, however, indicate how the vehicle operates over the entire operating 

range or how close it might be to reaching its limits of controllability. For example, it 

does not necessarily indicate the proximity to side-force saturation of the tire; if a vehicle 

is very close to saturating both front and rear tires, then the understeer/oversteer coeffi-

cient will mean very little, as the response from the tires at that moment will also be very 

small. 


