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Abstract

Updates are important database operations, but there has not yet been a uniform logical
framework that accounts for them. This paper presents an approach to deal with updates in
the deductive and object-oriented database setting. It incorporates temporal information
into update rules, so that different versions of objects may be created at different time
points and can be identified by the temporal information. The proposed update language
has a simple and clear Herbrand-like declarative semantics, which can be computed by a

bottom-up evaluation using a temporal stratification.

1 Introduction

Deductive and object-oriented databases are two important extensions of traditional database
technology. Deductive databases extend the expressive power of traditional databases by means
of deduction and recursion. Object-oriented databases extend the modelling power of the tra-
ditional databases by using concepts such as object identity, complex objects, classes, and
inheritance. The integration of deductive and object-oriented databases has received consid-

erable attention over the past few years and several deductive and object-oriented database




languages have been proposed [AK89, Abi90, AGI1, Mai86, CW89, KW89, KL89, KLW90].

The theory of deductive databases without updates is well established and a declarative
semantics is characterized as one of its most important features. Similar declarative semantics
have also been given object-oriented database languages without updates.

Updates are important database operations, how to incorporate them into deduction has
been the focus of active research during the last few years and various approaches have been
proposed [Abi88, Bry90, dMS88, KM90, KLS92, Man89, NK88]. However, only a few of them
take object-orientation into account. Until now, there has been no uniform logical frame-
work that accounts for database updates. The major difficulty is that updates require control
features that deviate from a pure declarative semantics.

Because of this, several deductive database languages, including DLP [Man89] and LDL
[NT89], directly provide explicit procedural update constructs and resort to dynamic logic to
give procedural semantics to the update part of the languages.

Recently, Kramer et al. [KLS92] presented an update language for deductive and object-
oriented databases based on object versioning. For a version v of an object, an update on
v creates a new version of the object represented by ins(v), mod(v), or del(v) depending on
the type of updates (insert, modify, or delete). Every version corresponds to a certain time
step of the entire update process. The version of an object therefore represents the history of
the updates on the object. For example, the version ins(del(mod(ins(0)))) indicates that the
object o first experienced insertion, then modification, deletion and finally insertion, and this
version may then be used by other parts of the update program to generate new versions. At

the end of the program, the last version of an object represents the final updated objects. In













an empty body. For syntactic clarity positive (temporal) terms in the head of an update rule
are indicated with a + and negative ones with a —.

As usual, we require that rules be safe in the sense that all variables which occur in the
head also occur in the body [U1I88].

A program P consists of two sets P = (Rn, Ry), where Ry is the set of normal rules and
Ry the set of update rules.

A query has the form ?- Ty, ...,T,, where T3,...,T}, are temporal object terms, negated
temporal object terms, or arithmetic comparison expressions.

The language introduced so far can be considered as a restricted form of first order logic
augmented with temporal information. Classes correspond to unary predicates and attributes
to binary predicates. For reasons of simplicity, we treat all attributes as multi-valued so that
we do not have to consider consistency problems with respect to functionality of attributes
[AH88]. Also, we do not consider object creation, schema and inheritance they are the topic

of a separate paper [Liu92].

3 Illustrative Examples

Before giving formal semantics, we present several examples in this section. First, let us look

at several update facts. At time 1, insert an object tom, into the extensional class employee,

and assign 3000 and shoe to the extensional attributes salary and works_in respectively.
+tom : employee(salary — 3000, works_in — shoe)@1.

At time 3, modify the value of the extensional attribute works.in of the object tom, from shoe

to toy.




+tom : employee(works_in — toy)@3.
At time 4, delete the value of the extensional attribute salary of the object tom
—tom : employee(salary — 3000)@4.
Delete the object tom, at the time point 5, from the extensional class employee
—tom : employee@b.
Notice that the deletion of the object tom from the extensional class employee also deletes all
values of the attributes defined on the class employee, such as salary.

Now let us look at several update rules. At some time point 7', give each employee a 10%
salary increase and those in a managerial position an extra 200 !. The new values in the
database at time T are calculated from the values existing in the database at the preceeding
time Tp. The object salary : update indicates the time at which the update should occur and
is injected either by some other rule or externally by a user interface.

+E : employee(salary — S2)QT <« salary : updateQT,
T=Ty+1,
E : employee(salary — Sy, works_in — D)QTy,

D : dept(manager — E)QTy,
Sp = 8y * 1.1+ 200.

+E : employee(salary — S;)QT < salary : updateQT,
T= TO + 11
E : employee(salary — Sy, works_in — D)QTy,
=D : dept(manager — E)QTy,
Sz = S] x1.1.

Afterwards (one time point later) all employees who make more than their bosses are fired.

—FE : employee@T < salary : updateQTy,
T= TO + 11
E : employee(boss — B, salary — S;)@Tp,
B : employee(salary — S3)QTy,

!This example is from [KLS92]




S1 > S,.
The following are two normal rules which are used to define the attribute boss of the class

employee, the class highPaid Empl.

E : employee(boss - B) « E : employee(works_in = D),
D : dept(manager — B),
B#E.

E : highPaidEmpl < E : employee(salary — S),
S > 3000.

Based on the rules above, we add the following update facts to make them a complete
program which will be used as a running example through out this paper.
+toy : dept(manager — henry)@1.
+henry : employee(salary — 2800, works_in — toy)@1.

+tom : employee(salary — 3000, works_in — toy)@3.
+salary : update@4,

4 Semantics

Let P be a program. As in traditional logic programming, we are interested in Herbrand-like
interpretations.

Let P be a program. The Base Bp of P is the set of all possible ground temporal object
terms formed from the class symbols and attribute symbols in P, time points in 7 and object
identifiers in O together with all such terms preceeded by + and —. So, for the example
program all of tom : employeeQl1, +tom : employee@1 and —tom : employee@1 are part of
the base. We will say that a term such as +tom : employee@1 is true (w.r.t. the interpretation

I) iff it is a member of 1.




A (Herbrand) interpretation I of a program P is a subset of the base Bp. The set I[t] is
the set I restricted to the time point t. More precisely: I{t] = {B : BQt € I}. This can be
treated as an interpretation of the normal rules at the time t.

We treat complex object descriptors as follows: if o : p(a; — oy, ..., @&y — 0,)@t € I where
n 2> 1, then it is synonymous with o : p@t € I and 0 : p(a; — 0;)@ € I,1 < j < n. In
other words, o : p(a; — o0y, ...,a, = 0,)Q@t stands for the conjunction of o : p@t, o0 : p(a; =
01)Qt, ...,0: p(a, = 0,)@t. The truth value of arithmetic comparison expressions are defined
in the standard way.

The truth of normal rules is defined in the usual way as follows. A normal rule is true iff all
ground instances of the rule A < Ly, ..., L, are true. That is, if all ground temporal instances
L,QT, ..., L,QT are true then AQT is true.

The following two constraints on models give the semantics of updates. The positive update
constraint holds iff for every ground term AQt¢ whenever +A@t is true and — AQt is false then
AQt is true. The frame update constraint holds iff for every ground term AQt whenever — AQt
is false and there exists ¢; < ¢ such that for all ¢; where t; < t3 < t, AQt; is true then AQ¢ is
true. (The frame update constraint can be simplified in the case that 7T is the positive integers
to: the frame update constraint holds iff for every ground term A@t¢ whenever — A@t is false
and AQ(t — 1) is true then AQ@t is true.)

Let P be a program. An interpretations I is a model of P iff every rule in P is true and
the two update constraints hold.

It is easily verified that for a model M each of the projections M([t] is a model (in the usual

sense) of the normal rules in the database.




The update rules are worthy of some comment. In standard cases they conform to intuitions
~about a database. If +AQt is true then AQ@¢ is to be added to the database. If neither —AQ¢
nor 4+ AQ@t¢ is true then the truth or falsity of A@t remains unchanged. In the case when AQt
is false then — AQt leaves the database undisturbed. Because we will seek minimal models as
the preferred ones a deletion —A@t functions by removing the necessity for AQ¢ to be true.
The singular case when both +AQt and - AQ@t are true has been resolved arbitrarily to delete
AQt.

It is possible to state these update constraints as if they were encoded in a constructive
rule (this constructive form will be used in the next section for a monotone mapping which
leads to a least fixpoint which is a minimal model): A@¢ must be true if there is no deletion
—AQt, since the last addition + A@ty. To be more precise: AQt must be true if there is some
+AQ@tg,t > to and no other additions since (+A@¢q,¢ > ¢; > ¢p) and no other deletions at the
same time or since (—A@ty,t > t2 > tp). In the language described in [LC93] it is possible to
write such update rules directly in the language.

The following interpretation M broken into the sequence of point interpretations M[0], ...,

M]6], ... can be verified as a model of the example program in the last section.

M[0] = {}

M[1] = {+henry : employee(salary — 2800, works_in - toy),
henry : employee(salary = 2800, works_in — toy),
+toy : dept(manager — henry),
toy : dept(manager — henry)}

M|2] = {henry : employee(salary = 2800, works_in — toy),
toy : dept(manager — henry)}

M|3] = {henry : employee(salary — 2800, works_in — toy),
+tom : employee(salary — 3000, works_in — toy, boss — henry),
tom : employee(salary — 3000, works_in — toy, boss — henry),
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+salary : update,
salary : update,
toy : dept(manager — henry),
tom : highPaid Empl}
M[4] = {+tom : employee(salary — 3300),
tom : employee(salary — 3300, works_in — toy, boss — henry),
+henry : employee(salary — 3280),
henry : employee(salary — 3280, works_in — toy),
toy : dept(manager — henry),
tom : highPaid Empl, henry : highPaid Empl}

M|5] = {henry : employee(salary — 3280, works_in — toy),
—tom : employee,
toy : dept(manager — henry), henry : highPaid Empl}

M([6] = {henry : employee(salary —+ 3280, works_in — toy),
toy : dept(manager — henry), henry : highPaidEmpl}

A program P may have an infinite numbers of models. By making proper restrictions on
the program similar to those in traditional logic programs, we can guarantee that the program
has a model. One distinguished minimal and supported model can be chosen as the intended

semantics of the program. We discuss this in the next section.

5 Bottom-Up Computation

The computation of a model of a logic program is usually done bottom-up by repeatedly ap-
plying a monotone mapping until a least fixpoint is reached. In the presence of negation, and
in our case additions and deletions, it is not always possible to construct such a mapping. A
solution to this problems can be achieved by constructing a local stratification on the program
[Prz88]. The aim of such stratifications is to partition the base into strata; bottom-up com-
putation then is done stratum by stratum. The results of lower strata are the input to the

respective next higher stratum. After having processed all strata, a fixpoint of the program is
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reached.

First we define a mapping Tp on the program which we will show under an appropriate
local stratification will give a least fixpoint. The mapping is the same as the one traditionally
given for logic programs plus extra terms to account for the update rules.

Tp(I) = {AQt : AQt < L,Q¢,...L,Qt is a ground instance of a normal rule
and each L;@t, 1 < i< n,is truew.r.t. 1 } U

{FQt : FQt « L,Qt,,...L,Qt, is a ground instance of an update rule
and each L;@t;,1 <i<n,istruewrt. I } U
{AQt : AQt is a ground term and
there is some +AQ@ty true w.r.t. to I, t > tg, and
there is no term +AQ@¢; true w.r.t. I, t > t; > tg, and
there is no term —AQ@t, true w.r.t. I,t >ty > o }.

It is easily verified that any fixpoint of Tp is a model in the sense defined above.

Given this mapping we now wish to construct a local stratification to ensure that a suitable
monotonic sequence is available to arrive at a least fixpoint. A local stratification is defined
here as a countable sequence of disjoint subsets of Bp, Hy, Hy, ... which satisfy the following
conditions:

1. For each ground instance of a normal rule A < By, ...B,, ~Cy, ..., °Cy,.
AQt € H; implies that
a) for each ¢, 1 < i < n that B;Q@t € Hy, for some k <!
b) for each 4, 1 <1 < m that C;Qt € Hy for some k < I
2. For each ground instance of an update rule FQt <« B,@t,,...B,Qt,, -C;Q@sy, ..., ~C,,Q@s,,

F@t € H; implies that
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a) for each ¢, 1 < i < n that B;Q@t; € Hy, for some k < [

b) for each 4, 1 < i < m that C;@s; € Hy, for some k < [

3. For each ground term AQt¢ € Hj, then there is some m, < [ such that +AQt € Hy,, and

there is some m_ < [ such that +AQT € H,,_.

Note that the stratification requires that all updated terms AQT follow their updating
terms +AQT, and —AQT in the stratification.

Given such a local stratification it is easily verified that the mapping Tp is monotonic over
the appropriately restricted lattices used in the constructions of [Prz88] and [L10o87]. Thus if
there is such a stratification a minimal perfect model of P can be constructed.

In general it is not possible to easily decide whether a program has a local stratification.
However in the current context if 7 is the integers then two simple restrictions on P guarantee
that a local stratification exists. It is built on a (finite) stratification of the normal rules and
then a further constraint that the update rules are causal. A stratification on the normal rules
is defined to be a (finite) ordering > on class attribute pairs such that for any ground instance
of a normal rule:

A< Ly, ..., L,
where A = 01 : p1(a; — 02) then L; = o3 : p2(ag — 04) implies that (p1,a1) >n (P2, a2) and
L; = —o3 : pa(az — o4) implies that (p1,a1) >N (p2, a2).

Given such a finite ordering it is possible to separate all ground (non-temporal) terms into
a finite series of strata Ny, ..., Ni.

Each time point t then generates a sequence of strata H;g, Hy 1, ..., Hy x Where

H;o = { all ground terms + AQt, —AQt} and H;; = { ground terms AQ¢ where 4 € H;}.
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The entire local stratification is the sequence Hy g, Hy 1, Hy g, ... Hyy, Hyp, Hy 1, ... Hap,
... This leads to a bottom-up computation where the database is evaluated at all points prior
to t. The update terms +AQt and —AQt¢ are then computed and finally the update rules are

used to compute the remaining terms AQt at time ¢.

6 Conclusion

The primary intention of this research is to present an update language for deductive and
object-oriented databases with a clear declarative semantics. Such an objective is achieved by
separating normal rules from update rules and by introducing temporal information in update
rules. The result of this investigation sets the formal foundation for practical implementations
of update operations in both deductive and object-oriented temporal databases and traditional
snapshot databases.

For snapshot databases, the update rules can be simplified into the form L « L., ..., Ly,
n > 0 where L is either a normal object term preceded by a + or —, Ly, ..., L,, are normal object
terms, negated normal object terms, or arithmetic comparison expressions. This simplified
form generalizes traditional database update operations. We can translate this rule into the
following explicit update rule LQT <= T = T+ 1, L1 @Ty, ..., L,QT,. In this way, we could use
the database state M|[t] to perform the intended update operation and obtain a new database
state Mt + 1]. Similarly, a query could be made only at the current time and thus could
be simplified into the form ?- Ly,..., L, where each L;, ¢ = 1,...,n is a normal object term,
a negated normal object term, or an arithmetic comparison expression. Used in this way,

temporal information would have no meaning within the database itself. It would just be
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used to express the semantics of updates in the database. This is the way most database
systems are constructed. Note that even though the traditional database updates do not have
well-defined semantics, they are well implemented. In many database systems, timestamps
have been extensively used to enforce concurrency control [UlI88]. The proposed approach

formalizes and provides a clear logical account for such an underlying mechanism.
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