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ABSTRACT

The effects on postglacial rebound due to lateral variations in lithospheric thickness,
asthenospheric viscosity and thickness, density, and lower mantle viscosity have been
evaluated for Maxwell viscoelastic flat-earth models using the finite element method.
Vertical displacement relative to the present sea level, which is comparable to relative sea
level data (RSL) for the last 8 thousand years, is computed for both axisymmetric and
three dimensional non-axisymmetric earth models with disk loads. This is then extended
to a realistic three dimensional earth model] with a realistic deglaciation history for North
America. Vertical velocity, gravity, horizontal displacement and velocity are also
computed for some of the axisymmetric models.

The results show that lateral heterogeneities introduce additional spatial variations to
postglacial uplift of a laterally homogeneous reference earth model. The variations can
be detected by comparing RSL with predictions of a suite of reference models at sites
across a large area, excluding the inner peripheral area of former glacier margin because
vertical motion in the area is least sensitive to the earth properties whereas horizontal
motion is relatively more sensitive there. The effects of lateral variations in the
asthenosphere are more detectable than those in the lithosphere. The effects of the lower
mantle heterogeneities are significant for large ice loads with size comparable to the
Laurentide Ice Sheet, but negligible for small ice loads with size comparable to or smaller
than the Fennoscandia Ice Sheet. The effects of a low density continental root on RSL
and horizontal motions are small, but detectable with gravity. The lateral heterogeneities
under a formerly glaciated area affect the postglacial rebound more than those outside the
area.

In addition, a 3D spherical finite element model has been constructed and calibrated using
the spherical spectral method. Analytical solutions of some simple layered spherical
earth models, derived for the calibration also, demonstrate that (1) a density contrast
between two solid layers introduces a buoyancy mode and a contrast in the ratio of
viscosity/(shear modulus) introduces two insignificant transitional modes, (2) neglecting
self-gravitation results in a little faster relaxation at small n harmonics, (3) the
singularities in the numerical search for the relaxation modes can be avoided easily.
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CHAPTER 1
INTRODUCTION

During the last glacial maximum eighteen thousand years ago, many parts of the world,
including Canada and Fennoscandia, were covered by huge ice sheets that were as thick as
two or three kilometers. The land was downwarped a few hundreds of meters by the
weight of the ice. As the ice sheets retreated, the land uplifts, which is called postglacial
rebound. The aim of this thesis is to investigate the effects of lateral heterogeneities of

earth properties on postglacial rebound.

1.1 POSTGLACIAL REBOUND: OBSERVATIONS,
SIGNIFICANCE, AND MODELING

In formerly glaciated areas, the rebound has been marked by elevated ancient beaches.
Heights and radio-isotope dates of the beaches provide relative sea level (RSL) history data
that can be grouped into four categories (Walcott, 1972): (1) the RSL curves at sites in
formerly glaciated areas (for example, Hudson Bay and the Guif of Bothnia) that are
characterized by continuous land emergence (Fig. 1.1a); (2) near the edge of the ice sheets
at glacial maximum, RSL histories are characterized by initial emergence followed by
submergence after about 10 thousand years before present (ka BP) (Fig. 1.1b); (3) in the
near field outside the edge of the former ice sheets, RSL curves are characterized by
continuous land submergence (Fig. 1.1¢c); (4) in the far field outside the edge of a former
ice sheet, RSL curves are characterized by initial submergence followed by land emergence
or submergence with no consistent postglacial rebound signature among all sites (Fig.
1.1d). The errors in RSL data come from those in height measurement (including
uncertainty in modern average sea-level) and those in radio C14 dating technique (Pirazzoli,
1991).
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Figure 1.1 Examples of RSL data for each of the four categories.
See text for detail. The crosses represent data with error bars.

In addition to land uplift, postglacial isostatic adjustment also affects the earth's shape, its
gravity field, angular momentum, and stress field. The effects can contribute to
measurements of VLBI (Mitrovica et al., 1993), gravity anomalies (Peltier & Wu, 1982;
Wu & Peltier, 1983: Mitrovica & Peltier, 1989; Mitrovica & Peltier, 1991; Trupin et al.,
1992; Wahr et al., 1993; Han & Wahr, 1995; Ekman & Mikinen, 1996), secular variations
in the earth's rotation rate and the position of the axis of rotation with respect to geography
(Sabadini & Peltier, 1981; Sabadini et al., 1982; Peltier & Wu, 1983: Wu & Peltier, 1984;
Peltier, 1988; Han & Wahr, 1989; Ricard et al., 1992; Trupin et al., 1992; Wabhr et al.,
1993; Trupin, 1993; Jiang & Peltier, 1994; Mitrovica & Forte, 1995; Mitrovica et al.,
1997). High precision repeated gravity measurements, sea level records, and repeated
leveling are used for monitoring current postglacial rebound in the formerly glaciated area
(Ekman & Mikinen, 1996). Tide gauge records of appropriately long duration can be used
to extract current secular sea level trends (Peltier, 1988; Peltier & Tushingham, 1989; 1991;
Trupin & Wahr, 1991; Mitrovica & Davis, 1995).
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Observations of postglacial isostatic adjustment are often used to infer earth rheology as
well as ice history. Earth rheological structure is critical for understanding mantle
convection and plate tectonics. Ice history and sea level models provide boundary
conditions for paleaoclimate and long-term environmental studies (Peltier & Tushingham,
1989; Peltier, 1988; 1994). Modeling glacial isostatic adjustment can also provide
quantitative estimate of stress associated with the rebound that makes up an important part
of the total stress in a formerly glaciated area. Knowledge of the stress can help us
understand the causes of intraplate seismicity in deglaciated areas (Wu & Hasegawa,

1996a; b; Wu, 1997).

To model postglacial rebound, two inputs are needed - ice history and earth rheology.
Usually, density and elastic properties of the earth models are taken from seismology (e.g.
The Preliminary Reference Earth Model by Dziewonski & Anderson, 1981).

The first ice history model Ice-1 (Peltier & Andrews, 1976) was constructed with three
kinds of data: ice margin history from radiocarbon dates of terminal moraines, ice profiles
from equilibrium conditions of ice mass, and world sea-level changes which constrain the
total ice volume change. The Ice-1 model gives ice thickness on a 5 by 5 degree grid for
the Northern Hemisphere between 18 ka BPand 6 ka BP. A refined model (Ice-2 by Wu
& Peltier, 1983) included the Antarctic ice component. This update also made use of RSL
histories at 45 sites as well as the gravity anomaly. The use of more RSL data enhances
knowledge of melting history of the ice sheets. The next ice model, Ice-3G, is further
refined to approximately 2 by 2 degree resolution and in regions where RSL data is
abundant to approximately 1 by 1 degree (T ushingham & Peltier, 1991) by using more
RSL data. The most recent model Ice-4G includes the long sea level record in Barbados
and allows the rising sea to transgress the continental margins (Peltier, 1994).
Uncertainties in these ice models are due to (1) missing observations of ice limits in some
areas (e.g. the Barents Sea) and (2) limited and unevenly distributed RSL observations,
especially for the early stage of the deglaciation.

There are also uncertainties about earth rheology. It is not quite clear which creep
mechanism is dominant in the mantle: [s it diffusion creep (Turcotte & Schubert, 1982;
Ranalli & Fischer, 1984), dislocation creep (Minster & Anderson, 1981; Turcotte &
Schubert, 1982; Poirier, 1985; Ranalli, 1987), or transient creep (Peltier et al. 1980;
Sabadini et al., 1985; Peltier, 1986: Peltier et al, 1986; Yuen et al., 1986; Riimpker &
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Wolf, 1996)? Some investigations have explored the effects of power-law rheology
(Nakada, 1983; Post & Griggs, 1973; Karato & Wu, 1993; Wu, 1992a; 1993; 1995). Wu
(1992a, 1993, 1995) and Karato & Wu (1993) have found that the rebound process
basically 'sees’ linear rheology in the mantle. Coincidentally, linear viscoelastic rheology
has been used in most other studies on postglacial rebound due to its mathematical
simplicity. Likewise, linear Maxwell rheology (Cathles, 1975) is adopted in this
dissertation.

Earth models of linear rheology have evolved from simple non-self-gravitating, viscous,
and flat earth models, such as thin channel models (Van Bemmelen & Berlage, 1935;
Barrell, 1914) and the uniform halfspace model (Haskell, 1935), to more sophisticated
self-gravitating, non-rotating, linear viscoelastic, and spherically layered earth models (e.g.
O'Connell, 1971; Cathles, 1975; Peltier, 1974; 1976; Wu & Peltier, 1982; 1983; 1984;
Wolf, 1987; Nakada & Lambeck, 1989; Lambeck et al., 1990; Tushingham & Peltier,
1991; Mitrovica & Peltier, 1993; Fjeldskaar, 1994). Recent models by Han & Wahr
included effects of earth rotation (Han & Wahr, 1989; 1995) and anisotropy of mantle
viscosity (Han & Wahr, 1997). However, all of these models ignored lateral
heterogeneities by taking the earth as laterally homogenous which conflicts with recent
seismic tomography results that reveal large scale lateral heterogeneities in the interior of the
earth. Some recent studies on postglacial rebound began to explore the effects of lateral
heterogeneities (Sabadini et. al, 1986; Gasperini & Sabadini, 1989; 1990; Gasperini et al.,
1990; 1991; Kaufmann et al., 1997). In the following section, the evidences of lateral
heterogeneities in earth properties and their implications on the earth's temperature and
viscosity structure are briefly reviewed. This is then followed by a short survey on the
studies of postglacial rebound with laterally heterogeneous earth models.

1.2 GEOPHYSICAL EVIDENCES FOR LATERAL HETEROGENEITIES

Topographic and geological contrasts, such as continents vs. oceans, orogenic belts vs.
shields, and mid-ocean ridges vs. oceanic floors, clearly indicate lateral variations in earth
properties. More importantly, these lateral contrasts are not just superficial, they are rooted
deeply inside the earth as shown in global seismic tomography. The seismic velocity
models from such inversions reveal three dimensional laterally heterogeneous structures of
the earth's mantle with increasing spatial resolution.
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The wavelength of lateral resolution of the earlier tomographic models (Dziewonski, 1984;
Woodhouse & Dziewonski, 1984; Nataf et al., 1986; Tanimoto, 1986a; b) was around
5000 km, or equivalently, an angular order of six. Later models came with an improved
lateral resolution of 1000 km (Wong, 1989; Zhang & Tanimoto, 1993) or included
parameterization for anisotropy (Montagner & Tanimoto, 1990; 1991) or anelasticity
(Romanowicz, 1990; Roult et al, 1990; Durek et al, 1993). Some of the recent models
(Tanimoto, 1990a; b; Woodward & Masters, 1991a; b; Su & Dziewonski, 1991; 1992; Su
etal., 1992) were inverted from SH body waves. Their radial resolution is more uniform
than in previous models and their lateral resolution has also been improved - to about 3000
km, or to an angular degree of 12 (Su et al., 1994; Li & Romanowicz, 1996).

Most of these seismic velocity anomaly models, especially the recent ones agree with each
other for the upper part of the mantle (down to 400 km depth) where they all correlate with
surface tectonics: ridges are slow, shields are fast, and seismic velocities increase with the
age of the seafloor. However, most of the anomalies decrease sharply as depth increases.
Typically, the S wave velocity variation is about 4-5 % at shallow depth (100 - 200 km),
and decreases to less than 1% at 440 km depth (Montagner & Tanimoto 1991). In the
middle of the mantle between 400 and 1700 km, there is no clear pattern, and the power
spectrum is almost flat. These lateral velocity variations can be due to lateral variations in
temperature, thereby can be indicative of lateral variations in viscosity as estimated in the
following subsections.

1.2.1 Estimation of Maximum Lateral Temperature Changes

Although seismic velocity anomalies can be due to variations in either or both of chemical
composition and temperature, here we estimate the maximum temperature variation by
ignoring changes in chemical composition. The maximum lateral temperature (T) variation
implied by the velocity anomalies can then be estimated according to the following
relationship (Estey & Douglas, 1986) for pyrolite:

L (VN 75x107
L) 7o

Thus, 1% variation in S wave velocity translates into a temperature variation of 133 9K and
5% corresponds to 666 K.
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Larger temperature contrasts have been estimated from regional temperature profiles by
Tralli & Ita (1994). Since both P and S wave anomalies in the upper 400 km are consistent
with surface geology, they established a characteristic seismic parameter profile for each of
the seven geological regions: (1) Young oceans (<25 ma), (2) Intermediate-age oceans (25-
100 ma), (3) Old oceans (>100 ma), (4) Active continental margins, (5) Platforms, (6)
Shields, and (7) Trenches. The temperature profile for each of the regions has then been
inverted by solving the differential relationship among seismic parameters ¢ , temperature
T, bulk modulus X, and density p , iteratively:

1(dK

dp
o= T %) (T~ T0) (1.2).

¢-9¢
Comparing their (Tralli & Ita, 1994) temperature profiles for intermediate-age oceans
(analogy to North-Western Atlantic) and shields (analogy to Canadian shield) at depth
interval between 270 to 370 km, the average difference is estimated to be about 900 °K
(2300 - 1400 °K).

1.2.2 Estimation of Maximum Viscosity Change

Lateral temperature contrasts can result in lateral viscosity variations as viscosity is a strong
function of temperature (T) (Karato & Wu, 1993):

V=Am(4—h5 ;TV) (1.3)

Here A is a coefficient which is a weak function of T (and can be regarded as independent
from T); E, is the activation energy; V, is the activation volume; p 1is the pressure; and R is
the gas constant. For dry olivine, E, =300 KJ/mol and V, =6 x10° m3/mol (Karato &
Wu, 1993). An estimate of p=9.4 GPa can be obtained from pgh by taking p =3200
kg/m3, g=9.8 m/s2, and k=300 km. Since pV,=56.4 kJ/mol is only about 19% of the
value of E,, variations of pressure can be neglected for simplicity. With these values, eq.
1.3 yields a mantle viscosity drop to about one fifth of that at 1500 °K for a 100°K increase.
For a 600 degree increase from 1500 °K, the viscosity drops to about two ten-thousandth
of that at 1500 °K.

For the average temperature contrast between the intermediate-age oceans (2300 °K) and
shields (1400 °K) in depth interval between 270 to 370 km, as estimated from to the



7

temperature profiles inverted by Tralli & Ita (1994), the maximum viscosity contrast can
reach 5 orders of magnitude.

1.3 PREVIOUS STUDIES ON THE EFFECTS OF LATERAL
HETEROGENEITIES

The possibility of lateral variation of a few orders of magnitude in upper mantle viscosity
raises two questions: (1) can such lateral heterogeneities be detected using postglacial
rebound data? and (2) what are the effects of lateral heterogeneities on postglacial rebound?
To detect lateral heterogeneities in the upper mantle under the continental margin in North
Europe, a suite of laterally homogeneous earth models was used to predict and match RSL
data at a series of localities near the formerly glaciated area (Breuer & Wolf, 1995;
Kaufmann & Wolf, 1996). They found that RSL histories at different locations can be
fitted by different laterally homogeneous earth models that have distinctly different upper
mantle viscosity and/or lithospheric thickness.

Breuer & Wolf (1995) studied RSL data at a group of islands in Svalbard Archipelago near
the northern European continental margin and concluded that lithospheric thickness and
asthenospheric viscosity increase towards the Eurasian continent. This was later confirmed
by Kaufmann & Wolf (1996) with land emergence data in the northern Barents Sea using
the high-resolution ice model BARENTS-2 and the RSL observations from 25 locations.
They claimed that postglacial land emergence can in fact resolve lateral variations in
asthenospheric viscosity.

Nakada & Lambeck (1989) compared differential sea-levels with computed RSL for
laterally homogeneous earth models along the shores of large gulfs and bays of Australia
and islands in the Pacific ocean. They inferred that viscosity in the upper mantle increases
towards the Australian continent.

However, the validity of using this comparative method to detect lateral heterogeneities is
questioned by Kaufmann et al. (1997), who showed that laterally homogeneous models
that fit RSL data at a given location may not always reflect the true rheology beneath the
location for a laterally heterogeneous earth.
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To address the second question regarding the effects of lateral heterogeneities, Sabadini et
al. (1986) and Gasperini et al. (1990) used finite element computations to investigate the
effects of a laterally heterogeneous upper mantle on postglacial rebound and found that
displacements in the central area of an ice sheet are not influenced by lateral variations in
lithospheric thickness and asthenospheric viscosity. On contrast, vertical displacement,
and both vertical and horizontal displacement velocities near the edge of the ice load are
sensitive to lateral heterogeneities in the upper mantle (Gasperini et al., 1990).
Deformation around the peripheral bulge can still be affected by an asthenosphere twenty-
five degrees away (Sabadini et al., 1986).

Effects of lateral viscosity varation in the whole mantle were also studied by Gasperini and
Sabadini (1989, 1990) mainly from a spectral perspective, although the FE method was
used. In their models, the logarithm of the viscosity, that reflects the exponential
dependence of the viscosity on temperature, changes sinusoidally in the lateral direction.
They concluded that postglacial rebound at the center of former ice sheet is sensitive to long
wavelength change of viscosity while that at edge is sensitive to the short wavelength
variations. However, this kind of spectral approach can be misleading because it tends to
ignore effects of different spatial phase relationship between the ice sheet and the lateral
heterogeneities which can be just as important as the wavelength.

Effects of deep continental roots, simulated with thick lithosphere sitting on high viscosity
mantle, were modeled using the finite element method and were found to be significant
(Gasperini & Sabadini, 1989; 1990; Gasperini et al., 1991): vertical displacement and
velocity field can be affected by 30% in the center of deglaciated areas. Horizontal
displacements, strain fields, and vertical velocity at the peripheral region are also very
sensitive to the prescribed lateral heterogeneities.

Kaufmann et al. (1997) did more modeling on the effects of lateral heterogeneities in the
upper mantle. They have shown that comparison of predictions of a set of laterally
homogeneous models with RSL data can only establish lateral heterogeneities qualitatively
for a known continental margin but does not necessarily produce correct values of
lithospheric thickness or asthenospheric viscosity. They concluded that "lateral
heterogeneities are most easily detected around the load margin and in the forebulge area”
(p. 186, Kaufmann et al., 1997).
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Nevertheless, the models that have been completed so far are preliminary. For example,
only ice loads with sizes comparable to the Fennoscandian Ice Sheet have been considered,
and most investigations focus on the effects of lateral heterogeneity in the upper 400 km of
the mantle. The effects of lateral viscosity variations in the lower mantle need to be
investigated with different size of loads. Further, the effects of lateral variations in density
have never been explored. Density has been taken laterally homogeneous in most of the
investigations. This needs to be justified in terms of effects of lateral density variations on
postglacial rebound.

Furthermore, conclusions are typically based on very few earth models and simple
Heaviside deglaciation histories which deglaciation is completed instantly, except
Kaufmann et al.(1997). This presents a risk in generalization of the conclusions because
validity of such forward modeling results is dependent on a large number and wide range
of models. Results from the few models give little hints about non-uniqueness - that is
whether different earth models may produce similar results. Besides, realistic ice history
should be considered.

In fact, all of these models are based on axisymmetric geometry (Sabadini et. al, 1986;
Gasperini & Sabadini, 1989; 1990; Gasperini et al., 1990; 1991; Kaufmann et al., 1997).
In an axisymmetric earth model, both the ice sheet and earth properties have to be not only
axisymmetric but also positioned concentrically. This imposes a strong constraint on the
models and as a result, conclusions on the effects of lateral heterogeneities may be limited
by what the axisymmetric models can offer. For instance, effects of lateral heterogeneities
in an axisymmetric model are often overwhelmed by effects of lateral termination of the ice
sheet. It is difficult to isolate and recognize spatial patterns of postglacial rebound due to
lateral heterogeneities.



10

1.4 OBJECTIVES AND ACHIEVEMENTS

The main aim of this dissertation is to investigate the effects of lateral heterogeneities in
earth properties on postglacial rebound. Specifically, I wish to:

(1) test the validity of using the finite element method in modeling postglacial rebound
(chapter two);

(2) investigate the effects of lateral heterogeneities in asthenosphere and lithosphere on
postglacial rebound observations, such as relative sea-level, land uplift rates, horizontal
motions and gravity anomalies (chapter three);

(3) explore the effects of lateral viscosity variations in the lower mantle and the effects of
lateral density variations on postglacial rebound (chapter four);

(4) evaluate the effects for three dimensional non-axisymmetric models with a realistic ice
load as well as a hypothetical disk load (chapter five);

(5) apply the finite element method to a spherical earth model (chapter seven).

To calibrate the finite element model for a spherical earth, analytical solutions for
postglacial rebound of some simple laterally homogeneous spherical earth models have
been derived using the spectral method. Consequently, some important issues on
postglacial rebound of spherically stratified earth are investigated, such as effects of
neglecting self-gravitation, the singularity problem in numerical search for eigenvalues of
gravitational relaxation modes, and relationships between gravitational relaxation modes
and physical property contrasts of the layers (chapter six).

As an introduction, table 1.1 is a short list of achievements of this dissertation in
comparison with previous investigations. Detail is given in the rest chapters.
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Table 1.1 Previous Investigations and this Dissertation Achievements

—_—
Previous Investigations ! This Investigation

—_— e

On postglacial rebound of laterally heterogeneous earth models

Used axisymmetric earth models. Expanded to 3D non-axisymmetric models.
Ignored lateral density variations. Evaluated the effects of lateral density
variations.

Mostly focused on lateral heterogeneity in || Considered lateral heterogeneity in the

the upper 400 km of the earth. lower mantle.
Used only one size of ice loads (comparable || Considered two sizes of ice loads
to the Fennoscandian Ice Sheet). (comparable to the Fennoscandian and

Laurentide Ice Sheets, respectively).

Used only simple Heaviside deglaciation || Considered realistic ice history.
and sawtooth ice histories. ‘
Used flat earth finite element models.

Applied the finite element method to a 3D
spherical earth model and calibrated the
| model] with the spherical spectral method.

On postglacial rebound of laterally homogeneous earth models

Numerically inferred that a density contrast || Analytically demonstrated that a density

between two solid layers introduces a contrast between two solid layers

buoyancy mode and a contrast in either of || introduces a buoyancy mode and a contrast

viscosity or shear modulus introduces two , in the ratio of viscosity/(shear modulus)

insignificant transitional modes . introduces two insignificant transitional
modes.

Re-invented an integral transformation to Found a normalized determinant function

replace the L aplace transformation to avoid I that is singularity free for numerical search

the singularities in the numerical search for | for the relaxation modes.

the relaxation modes.
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1.5 METHODS

There are two methods that are used for modeling postglacial rebound: the spectral method
and the finite element method.

The spectral method computes postglacial rebound in wavelength and Laplace transform
domain, then inverts back to the spatiai and time domain (Peltier, 1974; Wu & Peltier,
1982). It is used and detailed in chapter six for computing spherically stratified earth
models. This method is mainly suitable for laterally homogeneous earth models.

For a laterally heterogeneous earth model, using the spectral method can be complicated
because of cross-coupling among the harmonics: A harmonic load may excite more than
that one harmonic deformation in a laterally heterogeneous earth whereas one harmonic
load only excites the same harmonic deformation for a laterally homogeneous earth model.
However, for lateral variations of viscosity within one order of magnitude, the spectral
method can still be applied. For example, Richards and Hager (1989) considered flat earth
models with long wavelength lateral variations of viscosity that are spatially in phase with
the forcing load distribution. Another example is an axisymmetric craton whose viscosity
is five times that of the background and located right beneath an axisymmetric load
(D'Agostino et al., 1997).

However, if the viscosity varies laterally by a few orders of magnitude and if the lateral
variation is not spatially in phase with the load, then the finite element method is more
useful. That is why most published papers use it to model postglacial rebound of a laterally
heterogeneous earth.

In this dissertation, a commercial finite element package, called Abaqus (1996), is used
extensively for modeling laterally homogenous and heterogeneous models. The finite
element method, its optimization, and verification are discussed in the next chapter.
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CHAPTER 2

USING THE FINITE ELEMENT METHOD
TO MODEL POSTGLACIAL REBOUND

In this chapter, the finite element method is briefly reviewed. This is then followed by a
discussion on grid optimization and verification. The chapter also introduces the different
kinds of finite element models that are used to explore the effects of lateral heterogeneities
in the next three chapters: namely axisymmetric flat-earth models and three dimensional
non-axisymmetric flat-earth models.

Flat earth models have been demonstrated to be adequate in describing the postglacial
rebound process for a load with size smaller than or comparable to the Fennoscandian ice
sheet (Wolf, 1984). For ice sheets with size comparable to the Laurentide ice sheet,
Amelung & Wolf (1994) showed that one may still use flat earth models with constant
gravity because effects due to curvature of the earth and perturbation potential of gravity
tend to cancel out each other. Recently, Wu and Johnston (1998) demonstrated that finite
element flat-earth models are adequate for modeling RSL. in North America.

2.1 THE FINITE ELEMENT METHOD

The finite element method is well known for approximating deformation problems of all
kinds. The basic principles and computational implementation can be found in many
textbooks (e.g. Zienkiewicz & Taylor, 1989). Here, the method is only briefly summarized
in an intuitive way. The emphasis is on its application to modeling postglacial rebound.

For the deformation of a non-self-gravitating half-space under a surface load, the equation
of equilibrium for the incompressible and prestressed earth is (Cathles, 1975):

V-t-p,V(gu)=0 2.1)
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where p, and g, are the undisturbed density and gravity, respectively; and * and # are
perturbations in stress and vertical displacement, respectively. The term -P.V(g.w)
represents the advection of prestress.

The finite element method finds a numerical approximation to the true solution of eq. 2.1.
While the true solution is defined on a continuum of half-space, the approximate solution is
defined on a limited number of closely packed finite elements. Within each element,
material properties are assumed to be homogeneous and spatial variation of displacement
can be interpolated from nodal displacement using simple shaping functions. An intuitive
way of formulating and solving the problem is through the use of the principle of virtual
work.

Supposing there were an arbitrarily small virtual displacement in the system, the principle
of virtual work states that the virtual work done by external forces equals to the virtual
work done by internal stress. Because the variations of displacement within each element
are given by the shaping functions, the application of the principle yields a system of linear
equations in terms of displacements at the nodes (U), nodal forces (F), and stiffness matrix

X:
KU=F (2.2).

The nodal forces are dependent on external forces and element geometry, and can be
expressed by the integral of the forces over the elements. The stiffness matrix is dependent
on and computed with element geometry, material properties, and the finite element shaping
functions. The shaping functions used in this thesis are usually linear functions, except for
chapter 7 where second order polynomials are used for spherical models. At some nodes,
displacements are constrained by the boundary conditions while at other nodes the nodal
forces are constrained. The solution of eq. 2.2 yields displacements at all the nodes. The
displacement at any arbitrary location can then be obtained by interpolation using the
shaping functions.

The key to obtaining a good result from a finite element computation is discretization. To
approximate a viscoelastic half-space, the spatial extent of the finite element grid should be
large enough so that any boundary condition will not affect the results very much. This is
particularly important for viscoelastic material because its elastic displacement does not
decay very fast with increasing distance from the load center. The dimensions of elements
should be small enough so that displacements inside each element can be adequately
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approximated with the shaping functions. However, it is computationally expensive to fill
the whole model with small elements. The elements should be fine at places where large
variations of deformation are expected and coarse at other places.

2.2 THE 2D FINITE ELEMENT GRID OPTIMIZATION

Extensive tests have been done for optimizing the finite element grids. Factors that have to
be taken into consideration are types and number of elements, lateral and vertical extent of a
grid, aspect ratio of an element, vertical and horizontal variation of element size, and
boundary conditions. In the following, a viscoelastic half-space is taken as an example to
illustrate the grid optimization and verification. Viscosity, shear modulus, Poisson's ratio,
and density of the half-space are 1021 Pa-s, 1.45x1011 Pa, 0.5, and 3380 kg/m3,
respectively. A circular disk load with uniform ice thickness of 2500 m and radius of 800
km is left on the surface of the halfspace at time t = 0. (This kind of loading history is
referred as the Heaviside loading event). A cylindrical coordinate system with 4-node
cylindrical finite elements are used. A element is a circular ring with a rectangular cross
section whose four comers are defined by the four nodes on a vertical plane. The
horizontal displacements along the axis of symmetry are constrained to be zero.
Computationally, this kind of models is treated as 2D finite element models . For this
reason they will be referred to as the 2D models to differentiate from other 3D models. The
2D model uses much less computer resources than a normal 3D finite element model
covering a similar area, so it is economic to run and yet still a special kind of three
dimensional model.

2.2.1 Effects of Radial Extent and Dimensions of Elements

Because the only variation in the model is the horizontal termination of the load, it is
expected that radial dimension of each element and total radial extent of the elements are
more critical than those in the vertical direction. Four kinds of finite element grids are
tested for optimization of radial grid: (1) grid with small radial extent and elements with
small radial dimension, (2) grid with large radial extent and elements with large radial
dimension, (3) grid with large radial extent and elements with varying radial dimension, (4)
grid as described in case (3) plus additional infinite boundary elements. All grids share the
same number of regular elements in both radial (40) and vertical direction (15 elements
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extending from the surface to 5500 km depth). For verification, vertical displacements
computed with these grids are compared to those computed by the spectral method using
Hankel transformation. The test results, as detailed in the following paragraphs, show that
grid (4) is the optimal one whose results best agree with the spectral method.

The first grid tested has a uniform fine radial resolution of S0 km and small radial extent
from r=0 to r=2000 km, or 2.5 times the load radius. The nodes at the bottom of the grid
are fixed in space, and those at r=2000 km are fixed in the radial direction but free to move
vertically. This latter boundary condition is known to give better approximation to the
infinite halfspace than a fixed boundary condition there. The vertical displacements
computed by the finite element model are plotted in figure 2.1a (symbols) and are compared
with those computed by the spectral method (lines) for time t=0 (elastic deformation), 2 ka,
4 ka, and 8 ka after loading. The comparison shows that the results of this finite element
model (symbols) are quite different from that of the spectral method (lines). The amplitude
of displacement computed by the finite element model is smaller than those by the spectral
method inside the load area, but is larger outside the load area. As we shall see, this is due
to the fact that the finite element model does not extend far enough in the radial direction.

Next, we increase the radial extent to 8000 km by increasing the radial dimension of each
element to 200 km while maintaining the same number of grid points. The result of this
coarse grid (symbols in Fig. 2.1b) are much closer to those by the spectral method (lines).
But, within and around the load area, the grid is a little too coarse to capture the curvature
of the displacement curves. Conversely, in the far field where displacement curves are
almost flat, there is no need to have so many elements. A better way is to use a non-
uniform grid that is finer inside and near the load area, and coarser in far field (farther than
r = 1700 km). The results of such a non-uniform grid mimic the results of the spectral
method beautifully as shown in Fig. 2.1c, except for one minor detail. The amplitude of
displacement computed by this finite element model is slightly smaller than that by the
spectral method inside the load area, and is slightly larger outside the load area. This is
similar to that in panel a, though with much reduced magnitude, which suggests that 8000
km is still not far enough. The finite element model



17

-250
(a) Uniform grid with fine elements covering a small area (0, 2000km)
; ; ; ; %
. +F X o ]
g 27 000000° 8 2 2 =
= $0000000000000002 e oot
g ox F Poor agreement
= [o] o ° ,‘-':c between
Z 250 00°° x i Finite
a 50000009 X< i Spectrum
3 <% Jf Method Element
5 I Lt o1
(2] x ! °
= g xxxxxx* A Oka
500 el .;"‘: 7 I o 2ka
----------- +t v
++++tF /’, __________ x ika
— B + 8ka
750 T - T | :
-200
g
§ 200 i
a W |
o 5!
E ¢F._._.....°.--""° "' "’
£ 400 A
; "*‘ !
' L x- 7 Improved agreement
""" - s between the spectrum
600 method and the finite
(/tf/ * element results
800 T I | ; :
0 400 800 1200 1600 2000 2400

r (km)
Figure 2.1 Comparison of vertical displacements at 0, 2, 4, and 8 ka after a
Heaviside loading event computed by the spectrum method (lines) and the finite element
method (symbols) for a Maxwell half-space model. The load is a straight edge disk of
ice with 800 km radius and 2500 m thickness. The finite element results in different
panels are computed with different grids. Continued on next page.



-Vertical Displacement (m)

-Vertical Displacement (m)

(c) Non-uniform grid covering the large area (0, 8000km)

1]
x> F Acceptable agreement

§ .2 '," between the spectrum
600 ¥ method and the finite
» element results

{
x"x F Fine agreement
F_*,*.-x-' ',;' between the spectrum
600 y method and the finite
.‘r""+ element results
qn-—""r*
800 T T T 1 1
0 400 800 1200 1600 2000

r (km)

Figure 2.1 Continued.

2400

18



19

should extend even farther in the radial direction to model the infinite extent of the half-
space.

In Fig. 2.1d, one more element is appended to each layer, and one more layer of elements
to the bottom of the model. These additional elements are different from the others in the
model. They are infinite boundary elements that are specially designed for modeling an
infinite system, such as the half-space. Their aspect ratios can be extreme. With the infinite
elements, results of the finite element model are now in an excellent agreement with the
results of the spectral method (Fig. 2.1d). The differences are within 0.3% undemneath the
load. Therefore, the grid with large radial extent, elements of varying radial dimension, and
infinite boundary elements is the optimal one to use.

2.2.2 Vertical Resolution

Consider a stratified half-space which contains a horizontal layer with material properties
that are different from other part of the model, we wish to find out how many layers of
elements are needed to resolve this material layer. Model LV1 has a 200 km thick
asthenosphere lying beneath a lithosphere and over a uniform viscoelastic half-space (Fig.
3.3). The viscosity in the asthenosphere is laterally heterogeneous, and is generally less
than that underneath. A complete description of the model can be found in the next chapter
where it is used to model effects of lateral heterogeneities in asthenospheric viscosity.

Figure 2.2 compares vertical displacements for model LV1 computed using one, two and
four layers of elements within the low viscosity asthenosphere. The results show that the
solutions converge as the number of layers in the asthenosphere is two or greater. The one
layer results are poor and deviate significantly from the others because the solution within
the uniform asthenosphere has the form of cosh and sinh functions (Cathles, 1975) and one
layer with two nodes to interpolate with a linear shaping function is a poor approximation
to these functions. Therefore, one grid is not enough to resolve a distinct material layer.
On the other hand, the results computed with four layers are almost same as that with two
layers, hence two layers are enough and four layers may be excessive. This conclusion is
also confirmed by similar tests for the lithosphere. Thus two layers of elements will be
used within each material layer for the rest of the dissertation.
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2.2.3 The 2D Grid

In summary, the 2D finite element grid that is used in the next two chapters to represent a
stratified half-space comprises of 16 grid layers extending from the surface to 11000 km
depth. Each layer consists of 40 regular elements and one infinite boundary element,
covering an area from r=0 to 16,000 km for most models or from r=0 to 32,000 km for
some models in section 4.1. Among the horizontal elements, 10 are within the load area.
Elements around the ice edge are refined whereas the elements beyond the load edge are
coarser with increasing distance from the center of the ice. Furthermore, our experiments
show that the results are not very sensitive to element aspect ratio and any value between
0.05 to 20 can yield satisfactory results. With the infinite boundarv elements, there is no
need to explicitly prescribe the boundary condition at the bottom and the outer boundary.
Nodes at the surface are only constrained by an ice load.

2.3 THE 3D FLAT-EARTH FINITE ELEMENT GRIDS AND THEIR
VALIDITY

To evaluate non-axisymmetric 3D models we need truly 3D finite element grids. There are
two types of 3D grids that are used in this dissertation. Both are composed of 3D solid
elements of rectangular parallelepipeds in Cartesian coordinate systems. One grid is used
for an approximate disk load while another is for a realistic ice load in North America. In
the following, we first demonstrate the validity of the 3D results for the disk load by
comparing them with the 2D results. Then, we shall show the comparison of results
between the 3D finite element flat-earth mode! with the spectral results for a self-gravitating
spherical earth for a realistic ice load.

2.3.1 Validity of the 3D Grid for the Disk Load

To demonstrate the validity of the 3D model, we consider a disc load and compare the
results with that of the axisymmetric 2D model. Since the shape of the 3D elements at the
surface are squares, the disk load is not exactly circular but is approximated by an
assemblage of squares shown in Fig. 3.2. The load (pressure) on each square is assigned
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to be the ice weight of the portion of the exact disk on the square multiplied by the

percentage of the square covered by the load.

0 o 0 o 0 o o (o} [o] [¢]
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800 km

Figure 2.3 Finite element grids lying in the
center at the top of the 3D finite element
mesh are shown with their weighing factors.
The shaded grids are actively loaded to
approximate a disk load.

The 3D grid for the disk load has 10
layers of elements from the surface down
to 2886 km deep. Each layer consists of
34 by 34 8-node 3D solid elements,
covering an area of 240,000 km by
240,000 km. However, only results in the
central region are intended to be useful.
The grid there is the densest and includes
14 by 14 elements, each with horizontal
dimensions of 200 km by 200 km. The
horizontal dimensions of the elements
outside the central region increase with
increasing distance from the center. These
coarse elements are used to extend
boundaries of the grid far enough so that
results in the central region can be free
from any boundary contamination. The
horizontal displacements at the lateral
boundaries are constrained to be zero.

Across horizontal material boundaries with density discontinuities (e.g. core-mantle
boundary), appropriate buoyancy forces are applied.

To evaluate the validity of the 3D grid, vertical displacements and relative vertical
displacement (RVD) are computed with the 3D grid and compared to the 2D results for
laterally homogeneous models. The relative vertical displacement is obtained by subtracting
present displacement from the previous ones and can be regarded as a first order

approximation to relative sea level changes for sites in categories 1, 2, and 3 during the last

7 ka. according to Wu & Peltier (1983).
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histories at the center. The models are R50/21 (2 D) and LITH_50 (3D). Dots with
error bars are RSL data at Kristiinankaupunki in Fennoscandian region which show
resolving capability of the data.
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Fig. 2.4a shows the comparison of vertical displacements between models R50/21 (2D)
and LITH_50 (3D). Both earth models are physically the same and composed of a
homogeneous lithosphere of 50 km over a viscoelastic half-space of 1021 Pa-s. The two
models are incompressible and with same density and shear modulus as models in the next
chapter. The load history is also described in the next chapter. The vertical displacements
for the two models are quite close inside the load area. The difference at the center is about
2.2%. Around the load edge, the comparison is not as good. The peak of the forebulge is
missed by the 3D results. This is due to the coarse grid used in the 3D model which cannot
accurately represent a circular disk near the edge, nor capture sharp lateral gradients of the
deformation. In general, the comparison of the displacement between the 3D and the 2D
results is not as good as the comparison between the 2D and spectral method in Fig. 2.1.
However, the comparison (Fig. 2.4b) of relative vertical displacement (RVD) at the center
appears good because the differences are much smaller than the error in RSL data.
Therefore, the 3D finite element model is still usable for tests of sensitivity of RVD to the
earth properties. This is to be further demonstrated for a similar 3D grid in the next
subsection.
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Figure 2.5 Some RSL sites in Hudson Bay and surrounding area overlay the 14 x 12
finite elements of the top layer in the central region.

2.3.2 Validity of the 3D Grid for the Realistic Ice Load

Next, we use a 3D finite element grid for computing the response to a realistic ice load
(ICE-3G) in North America. The grid is similar to the previous one with slight differences.
[t still has 10 layers of elements extending to 2886 km depth. The z-coordinates of the 11
nodal points in depth are 0, -25, -50, -100, -150, -200, -420, -670, -1220, -1770, -2886
km. Each layer has 34 x 32 3D solid elements covering an area of 240,000 km x 193,800
km. The horizontal dimensions of each of the 14 x 12 elements in the central region are 340
km x 323 km as shown in Fig. 2.5. Also shown in Fig. 2.5 are locations of some RSL
observation sites that are used in the dissertations. The load area covers 16 x 14 elements at
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center of the top layer of elements. The earth model consists of a 150 km lithosphere
overlying a uniform 1(?! Pa-s half-space.

The RVD of this non-self-gravitating flat-earth is compared with that computed using the
spectral method for a self-gravitating spherical earth model of similar vertical structure by
Wu and Johnston (1998). Their comparison shows that the difference between the results
of the two models are small and cannot be resolved by the uncertainties of RSL data for
sites near the center of rebound (Fig. 2.6) and for peripheral sites such as NW
Newfoundland and Boston (Fig. 2.7). The discrepancies between the two results are large
at Prince Edward Island (PEI) which can be explained as a result of inadequate spatial
resolution in the finite element model that can not honor the original ice model precisely.
For sites further away from the glaciated area, the differences become larger and is due to
the difference between the flat earth and the spherical surface. Hence, even for the load size
in North America, the flat earth model can adequately describe the postglacial rebound
process at sites in categories 1, 2, and 3. However, the accuracy is dependent on the spatial
resolution of the finite element model (Fig. 2.4a & the relevant text) which, in turn, is
constrained by the computing resources.

From the 2D grid to the 3D grid, there are some gains and some losses. The major gain is
flexibility and capability to accommodate a wide range of model geometry besides the axial-
symmetric ones. The three dimensional models can expand our understanding of the effects
of lateral heterogeneities by allowing a wide range of load and heterogeneities that can be
hypothetical for testing ideas as well as realistic for fitting observational data and inferring 3
dimensional rheological structure of the earth. However, this advantage can be
compromised by a loss of spatial resolution due to a limitation of computing resources
because a 3D model is much more expensive to compute than a 2D model. A typical run of
a 3D laterally heterogeneous model with a variation in viscosity can take as long as 12 days
on an IBM RS6000 server at the University of Calgary. In comparison, a similar 2D
cylindrical model takes only about 10 minutes. Consequently, only a very limited number
of 3D models can be run.

In summary, we have presented the finite element models and demonstrated their validity.
The next three chapters will use these models to study the effect of lateral heterogeneity on
postglacial rebound.



27

Churchill

Ottawa Island

Time (ka BP)

Time (ka BP)

Figure 2.6 Comparison of relative vertical displacements between the spherical
spectral model (dot line) and flat-earth finite element model (sold line) for some
sites in eastern Canada (from Wu & Johnston, 1998, used with permission).
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Figure 2.7 Same as in Fig. 2.6, except that the sites are along the east coast of
Canada and the USA (from Wu & Johnston, 1998, used with permission).
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TWO DIMENSIONAL FINITE ELEMENT RESULTS PART 1:
EFFECTS OF LATERAL HETEROGENEITIES IN

THE ASTHENOSPHERE AND LITHOSPHERE

ON POSTGLACIAL REBOUND

In this chapter, the effects of lateral variations in asthenospheric viscosity or thickness and
lithospheric thickness on postglacial rebound are evaluated using the 2D cylindrical finite
element grid described in the previous chapter. The earth models are taken as
incompressible with a uniform density of 3380 kg/m3, shear modulus of 0.67x1011 Pa for
the lithosphere and 1.45x101! Pa for the material beneath it.

'
= 2500m
glaciation deglaciation
0 l\ 1
-111 21-11 0
Time (ka BP)

Figure 3.1 Sketch of the ice history
of the sawtooth loading cycle. The
vertical axis is the maximum
thickness of the disk load.

The loading history (Fig. 3.1) considered is a
simple approximation of the Late Pleistocene
glacial cycle based on global ice volume history
from deep sea core data (Peltier, 1986). It has a
growth of the ice over 90 ka reaching its
maximum thickness at 21 ka BP which is
followed by a rapid deglaciation of 10 ka
(Pelter, 1994). The deglaciation was completed
at 11 ka BP. Unless otherwise stated, the ice
model has a parabolic cross section (Paterson,
1981) with a maximum height of 2500 m in the

load center, a radius of 800 km, and a density of 1000 kg/m3. Thus, its dimensions are
comparable to the Late Pleistocene ice sheets over Fennoscandia or the Barents Sea.

The effects of lateral heterogeneity on RVD are first investigated in detail. Then, the effects
on other geodetic quantities including vertical uplift rate, gravity anomaly, horizontal
displacements and velocities are also predicted.
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3.1 EFFECTS ON RELATIVE VERTICAL DISPLACEMENT

To study the effects of the lateral heterogeneities, we follow Kaufmann et al. (1997) and
compare predicted vertical displacements and relative vertical displacement for laterally
heterogeneous models with those for laterally homogeneous reference models. Throughout
this section, the effects of lateral heterogeneities are considered to be significant if
differences in RVD between the laterally homogenous and heterogeneous models are larger
than the observational uncertainties of RSL. Thus, RSL data with error bars from the
Fennoscandian region (see Fig. 3.2 for site locations) have been included in the diagrams
for comparison. The validity of using a suite of laterally homogeneous models to detect the
presence of lateral heterogeneities is also examined.

As discussed in chapter one, seismic tomography shows that the continents are
anomalously fast and cold when compared with the nearby region beneath the oceans. This
can mean relatively higher asthenospheric viscosity or/and thinner asthenosphere under the
continental shield than under young oceanic lithosphere. The effects of these two kinds of
lateral heterogeneities are evaluated respectively in the following two subsections.
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Figure 3.2 Location map showing the RSL observation sites in Fennoscandian
region that are used in this dissertation.

3.1.1 Effects of Lateral Variations in Asthenospheric Viscosity

First, let us consider the effects of lateral viscosity variations in an asthenosphere with
constant thickness. In the laterally heterogeneous model LV1, asthenospheric viscosity
decreases stepwise every 400 km from 10! Pa-s under the load to 10'® Pa-s outside the
load while asthenospheric thickness is kept constant at 200 km (see Fig. 3.3). Above the
asthenosphere is a uniform 110 km thick elastic lithosphere and below the asthenosphere
lies a uniform 1021 Pa-s viscoelastic half-space. The choices of lithospherical thickness
here and in the subsequent sections are mostly based on lithospherical flexure studies by
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Walcott (1970a & b). Reference models used are R110/21, R110/20, R110/19, and
R110/18 where R stands for reference model and the two numbers indicate lithospheric
thickness in kilometers and the exponent of asthenospheric viscosity respectively. For
example, model R110/19 has a 110 km thick lithosphere and a 1019 Pa-s asthenosphere.
Thus, all reference models have a 110 km thick lithosphere and they only differ from model
LV1 by having a homogenous asthenosphere.

Laterally heterogeneous model LV1

200 km 11021 1020 |1019 | 1018 vz

- Mantle
400 km R a1
Viscosity = 10< Pa-s

Reference models R110/21
(also refered as LO1)

Viscosity = 1021 Pa-s Mantle
R110/18
110 km Lithosphere
200 km [ 1018 Lvz
Mantle

Viscosity = 1021 Pa-s

Figure 3.3 Sketches o laterally
heterogeneous earth model LV1 and two
reference models R110/21 and R110/18.
Two other reference models R110/19
and R110/20 are not shown here and
they differ from R18 only by different
viscosity value in the lower viscous zone

(LVZ).

The RVD history curves at selected sites of
different distance (r) from the center of the load
are plotted in Fig. 3.4 while Fig. 3.5 shows
the RVD profiles at two discrete times, 5 and
10 ka BP. Fig. 3.4 shows that the effects of
lateral heterogeneities cannot be clearly seen at
any single site because RVD history curves for
model LV1 display no recognizable
characteristics that can set it apart from those
for the laterally homogeneous models. In fact,
lateral heterogeneities can only be detected by
fitting a suite of laterally homogenous earth
models to the observations at different sites.

Suppose the earth is laterally heterogeneous
with properties given by model LV 1, thus the
observed sea levels at different sites are given
by the LV1 curves (solid lines) in Fig. 3.4. If
we use the suite of laterally homogenous
models to compare with the observations, then
we will find that different reference models will
fit the observations at different sites. Fig. 3.4
shows that the curve LV1 is c!nse to the curve
R110/21 at r=0 km, and moves towards the
curve R110/20 at r=200 km and 300 km (Fig.
3.4). At r=400 km, the curve LV1 is almost
the same as the curve R110/20. The curve
LV1 then moves towards the curve R110/19 at
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r=600 km. This "migration" of the curve LV1 among the reference curves can be
interpreted as due to lateral heterogeneities if the load model is well determined. The effects
are significant if the difference is detectable by the uncertainties of the RSL data. However,
if we try to determine the value of the viscosity beneath the site from the asthenospheric
viscosity of the reference model that lies closest to the LV1 curve, a lower viscosity value is
obtained. For example, at r=600 km (Fig. 3.4), the curve LV1 is closest to the curve
R110/19 whereas the actual viscosity underneath is 1020 Pa-s.

Furthermore, the comparison of the curve LV1 with the reference curves is not diagnostic
for sites at r = 667, 734, and 800 km, in the inner peripheral area (Fig. 3.4). This is
because the relative positions of the reference curves in the panels do not show simple
correlation with the viscosity as they do in panels for sites at r < 600 km. For example at
r=734, the curve R110/21 lies between the curves R110/19 and R110/18 (Fig. 3.4). This
can be explained by crossings among the RVD profiles (Fig. 3.5A & B) around at these
sites.

Another contributing factor to the anomalous sequences is that model R110/18 has a short
relaxation time due to its low viscosity channel. By the time 8 ka BP, its relaxation is
almost finished and its RVD curves are almost flat and close to zero from that time on (Fig.
3.4). On the other hand, the other curves at these inner peripheral sites are still not flat due
to the migration of their forebulges.

If we disqualify the curve R110/18 as a reference for time after 8 ka BP, the rest of the
sequences of reference curves at sites r=867, 1000, 1200, 1400 km are consistently
reversed from that for sites with r <600km and the curve LV1 is consistently moving
towards R110/19 (Fig. 3.4). The comparison of the curves works again but the inferred
asthenospheric viscosity is larger than the actual value. For example, at the site r=1400
(Fig. 3.4), the curve LV1 lies between the curves R110/19 and R110/20 with closer
proximity to the curve R110/19. However, the actual asthenospheric viscosity is 1018 Pa-s
underneath the site. On the other hand, comparing the position of LV1 relative to the
reference curves at these sites correctly suggests that asthenospheric viscosity decreases
with distance from the ice margin.

Because this method of comparison underestimates the viscosity inside the load but
overestimates it outside, the method cannot be used at peripheral sites across the load
margin for detecting the lateral heterogeneities. For example, comparing the two sites
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r=600 km and 867 km (Fig. 3.4) may lead to the wrong conclusion that lateral
asthenospheric viscosity increases from r=600 km to 867 km. Therefore, comparison of
peripheral sites across the load margin should be avoided. On the other hand, comparing
between sites r = O km and r = 1400 km can certainly establish existence of the lateral
variations. Hence, the spatial trend of lateral variation in land uplift inferred by the
comparison method well inside the load area or the forebulge area can reflect the spatial
trend of lateral heterogeneities of the earth, but not in a small area around the load edge.

The behavior of the RVD curves at peripheral sites (Fig. 3.4) is closely related to the
characteristics of the forebulge. This has been discussed by Kaufmann et al. (1997) and
can be seen in Fig. 3.5C. For the deep flow model R110/21, the forebulge is prominent
and migrates inwards with time whereas for the channel flow model R110/ 19, the
forebulge is less pronounced and migrates outwards (e.g. Wu, 1993). The forebulge for
model LV1 displays characteristics of both deep and channel flows. The height of the
bulge is reduced to about two-third relative to that for model R110/21 while the bulge is
still migrating inwards. So, there may be a mixed flow in the laterally heterogeneous
model LV1, with deep flow underneath the load and channel flow further outside.

In summary, the effects of lateral asthenospheric viscosity variation in model LV 1 can be
detected by comparing RVD curves for LV1 at different localities with the reference curves.
However, the inferred viscosity is lower for sites well inside the load area and higher in the
forebulge area than the actual values, and the method cannot be used at peripheral sites
across the load margin for detecting lateral heterogeneities. Therefore, this comparative
method can be used for sites well inside the load area or the forebulge area but not in a
small area around the load edge. Furthermore, the least viscous part (1018 Pa-s) of the
asthenosphere in model LV1 cannot be inferred from the comparison with reference
models. This may imply that viscosity not higher than 1018 Pa-s can not be 'seen’ in the
time window of the last 8 ka.
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Figure 3.4 Computed RVD time histories for model LV1 and reference models
R110/21, R110/20, R110/19, and R110/18 with the sawtooth loading cycle ended
at 11 ka BP. Each panel is labeled with distance (r) of the site from the center of the
disk load and locality of RSL data from Fennoscandian region. The RSL data are
plotted with error bars as reference to how large a difference among the computed
curves can be resolved by observation. Continued on next page.
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Figure 3.4 Continued.
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Figure 3.5 Computed RVD profiles for lateral heterogeneous model V1 (solid
line), and reference models R110/21 (dot line), R110/20 (dash line), R110/19
(chain line), and R110/18 (hair line) at 10 ka BP (Panel A) and 5 ka BP (Panel B).
The insert (Panel C) inside Panel B shows the migration of the forebulges for
models LV1, R110/21, and R110/19 in a larger vertical scale.
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3.1.2 Effects of Lateral Variations in Asthenospheric Thickness

Lv2 Here we consider the viscosity to be constant but
the asthenospheric thickness decreases from under
the oceanic area to under the continental area. In

Lithosphere
LvZ

model LV2, the asthenospheric thickness
decreases linearly from 200 km at r=1200 km and
-— - beyond to 60 km at r=0 km while the viscosity is
1200 kem Mante 1019 Pa-s (Fig. 3.6). Other aspects of the model
Viscosity = 102! Pa-s are the same as that for model LV1.

Figure 3.6 Sketch of model LV2 Fig. 3.7 sh " ted RVD i histori
whose thickness of the lower viscous 18- 2./ SAows the compu me stornes

for model LV2 and the reference models R110/19,

R110/20, and R110/21 at selected sites. Again,
no characteristic effects of lateral heterogeneities on RVD history curves can be found at
any single site but the "migration" of the curve L.V2 among the reference curves from site to
site reveals the lateral heterogeneities in the asthenosphere.

1019 200 km

Zone varies.

The effects of lateral thickness variations in the asthenosphere shown in Fig. 3.7 are very
similar to that due to lateral viscosity variations in the previous model LV 1, with thinner
asthenosphere producing similar effects as higher asthenospheric viscosity. At the center
where the asthenosphere is the thinnest, RVD curves for model LV2 lie very close to that
for model R110/20 (Fig. 3.7). When the asthenospheric thickness increases with
increasing distance from the center, the curves for model LV2 move away from that for
model R110/20 and towards that for model R110/19 until r = 600 km (Fig. 3.7). Beyond
this point in the peripheral area, the curves for most of the models cross, so that relative
positions of the curves can not be used for simple interpretation of the asthenospheric
thickness.
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Figure 3.7 Similar to Fig. 3.4 except for model LV2 and reference models
R110/21, R110/20, and R110/19. Continued on next page.
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Figure 3.7 Continued.
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3.1.3 Effects of Lateral Variations in Lithospheric Thickness

Here, we consider the effects of lateral variations
in lithospheric thickness. In model LV3, the
lithospheric thickness changes gradually from
- 110 km for r=400kn to S5 km for r =1200km
«;om - o (Fig. 3.8). Beneath the lithosphere is a
Viscosity = 1021 Pas viscoelastic halfspace of 102! Pa-s. Model

LV3's results will be compared with those for

Figure 3.8 Sketch of model LV3 reference models R110/21, R90/21, R70/21, and
whose lithospheric thickness varies R55/21. The reference models have different
gradually. lithosphere thicknesses overlying a viscoelastic
half-space of 1021 Pa-s as indicated in their

names. Thus all models including model LV3 have a 1021 Pa-s mantie but without an

asthenosphere.

The vertical displacements are plotted in Fig. 3.9 while the RVD histories are in Fig. 3.10.
Note that the difference between the RVD history curves for model LV3 and the reference
models are very small for sites from r=0 to 667 km (Fig. 3.10) and can not be resolved by
the uncertainties of the RSL observations. The sequence of the curves can only be
recognized in the enlarged portions of the curves (inserts in Fig. 3.10). However, on the
edge at r = 800 km, the differences among the models become marginally detectable.

The displacement curves (Fig. 3.9) for the reference models cross in a narrow inner
peripheral area, thus the comparative method of using the reference curves works in larger
areas. Local thickness of the lithosphere in model LV3 can be inferred by comparing the
curves for model LV3 with those for the reference models at most sites (Figs. 3.9 & 3.10).
For instance, the displacement (Fig. 3.9a) and RVD curves (Fig. 3.10) for model LV3 are
very close to that for R110/21 at the center; and at a distance greater than 1500 km, the
displacement is close to that for model R55/21 (Fig. 3.9b), so is the RVD curve at the site
r=1400 km (Fig. 3.10); in between, the displacement curves for model LV3 meander
through those for models R90/21 and R70/21, so do the RVD curves (Fig. 3.10) at sites
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r=800 km and 867 km (close to the curve R90/21) and r=1000 km (close to the curve
R70/21).

In comparison with the effects of lateral asthenospheric heterogeneities in the previous
models LV1 and LV2, lithospheric thickening reduces the amplitude of RVD within the
load while increasing asthenospheric viscosity or decreasing asthenosphernc thickness
increases the amplitude. However, the effects of lateral varations in lithospheric thickness
are generally smaller than that of the asthenosphere.



43

Vertical Displacement(m)

0 400 800 1200 1600 2000

Vertical Displacement(m)

400 600 800 1000 1200 1400 1600
r (km)

Figure 3.9 Computed vertical displacement for lateral heterogeneous model LV3
(solid line), and reference models R110/21 (dot line), R90/21 (dash line), R70/21
(chain line), and R55/21 (hair line) at 5 ka BP and 10 ka BP. Panel B displays an
enlarged portion of panel A.
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Figure 3.10  Similar to Fig. 3.4 except for model LV3 and reference models

R110/21, R90/21, R70/21, and R55/21. Inserts in some panels display portions of
the curves in larger scales to reveal sequence of the curves.
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3.1.4 Effects of Lateral Variations in both Asthenospheric Viscosity and
Lithospheric Thickness

Lva In this section, lateral variations of
T— ’ y asthenosphere viscosity and lithosphere
t 0km 70k —szkm—mL thickness are considered together. Model LV4
”00 ke 20 1olo | 108 LvZ (Fig. 3.11) incorporates models LV1 and LV3
1021 I together, therefore contains lateral variations in
‘ Mantle both lithospheric thickness and asthenospheric
Viscosity = 102! Pa-s viscosity. The variations in asthenospheric
thickness (like that in model LLV2) are not
included in model L.V4 because its effects are
similar to that of variations in asthenospheric
viscosity. The reference models are R110/21,
R90/20, R70/19 and RS5/18. As before, the mantle below the asthenosphere is considered
a viscoelastic half-space.

Figure 3.11 Sketch of model LV4
whose lithospheric thickmess and
LVZ viscosity vary laterally.

The computed RVD histories for model L.V4 and the reference models are plotted in Fig.
3.12. The curves LV4 and its reference curves in Fig. 3.12 look very similar to the curves
LV1 and its reference curves in Fig. 3.4. There are only slight differences between the two
figures, such as the RVD curves in the early stage of rebound are less separated in Fig.
3.12 than that in Fig. 3.4. This may be due to lithospheric thinning in LV4 and thinner
lithospheres in some of the LV4's reference models. Overall, the effects of lateral
variations in model LV4 (Fig. 3.12) are similar to those in model LV1 (Fig. 3.4). Hence,
RSL data is able to detect lateral variations in asthenosphere more than in lithosphere. This
is especially true for the central area of the load.

In summary, the effects of lateral heterogeneities in asthenospheric properties and
lithosphere thickness on postglacial rebound can be detected by comparing RSL
observations with predictions from a suite of laterally homogeneous reference models at
different locations. However, the inferred asthenospheric viscosity from the comparison
may be lower for sites inside the load area and higher outside. False lateral viscosity
variations could be obtained if one compares peripheral sites across the load margin. For
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the laterally heterogeneous asthenospheric models, there is also a trade-off between the
thickness and viscosity which can not be uniquely resolved. In the presence of both lateral
lithospheric and asthenospheric heterogeneities, effects of the asthenosphere are larger than

that of the lithosphere.
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Figure 3.12 Similar to Fig. 3.4 except for model L V4 and reference models
R110/21, R90/20, R70/19, and R55/18.



3.2 EFFECTS ON UPLIFT RATE, HORIZONTAL DISPLACEMENT AND
VELOCITY, AND GRAVITY

Here, we exam the effects of lateral heterogeneities on other geodetic quantities.
Throughout this section, the effects are considered to be significant if differences in the
geodetic quantities are larger than the observational uncertainties. We adopt conservative
error bounds of 5 m for horizontal displacements during the last 12 ka, 1 mm/a for vertical
and horizontal velocities, and 1 mGal for gravity anomalies.
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Figure 3.13 Present-day vertical (a) and horizontal (b) velocities, gravity anomalies (c)
and horizontal displacements (d) at 10 ka BP as a function of distance from the load

center.

Profiles of present-day vertical (a) and horizontal (b) velocities, gravity anomalies (c), and
horizontal displacement at 10 ka BP (d) for all the laterally heterogeneous models LV1, 2,
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3, and 4 and two reference models R110/21 and R55/21 are plotted in Fig. 3.13. These
geodetic quantities complement the RVD curves on characterizing postglacial deformation.
In previous investigations, the emphasis was on the relative vertical displacement (with
respect to the present-day displacement) rather than on the absolute vertical displacement.
This is because RVD is comparable with RSL. observations while the absolute vertical
displacement is not. Here, gravity anomaly is derived from the vertical displacement by
simply multiplying the presently remaining uplift (i.e. present-day displacement) with a
constant 0.19 mGal/m (Gasperini et al., 1991). Since RSL data reflect the amount of
vertical displacement that has taken place and gravity anomalies measures the amount of
displacement that will occur in the future, they complement each other. The present-day
vertical velocity also complements the RVD by providing its observable time derivative.

Inspection of Fig. 3.13a & c confirms results of the previous section: for the laterally
heterogeneous lithospheric model (LV3), the vertical velocity and gravity curves are closer
to those for the reference model R110/21 undemeath the load but are closer to model
R55/21 for distances greater than 1000 km from the load center (Fig. 3.13a & c¢). This
confirms that postglacial deformation at a site is sensitive to the local thickness of the
lithosphere. The differences between models LV1 and L V4 are also smali (Fig. 3.13), but
both models differ significantly from models R110/21 and LV3. This confirms that lateral
asthenospheric variations are more important than lateral lithospheric variations.

The vertical velocity and gravity curves for model LV2 are widely separated from those for
models LV1 and LV4 at the center where they have different asthenospheric viscosity
underneath (1019 Pa-s in LV2 vs. 102! Pa-s in LV1 and 4) and come together at around
r=1000 where they have the same asthenospheric viscosity underneath (Fig. 3.13a & c).
This confirms that postglacial deformation at a site is sensitive to local asthenospheric
viscosity and the rebound curves change laterally according to the lateral variations in the
models' properties.

Besides confirming what have been learned, Fig. 3.13 a and c also show that the vertical
velocity and gravity at the center of the load, for the laterally heterogeneous models LV1
and LV4, are clearly distinct from those for reference models R110/21 and R55/21. This,
however, is not the case for the RVD curves. Hence, the gravity (or vertical displacement)
at the center is affected by the low-viscosity part of the asthenosphere outside the center



50

area for models LV1 and 1.V4 while the RVD is only affected by the viscosity right beneath
the center.

The horizontal displacements at 10 ka BP experience 2 minimum at around S00-600 km for
both reference models (Fig. 3.13d). However, the amplitude of the oceanic reference
model R55/21 is reduced by about 30 per cent. Thus, a thinner lithosphere generally
results in a smaller horizontal displacement. Comparing to model R110/21, the minimum
in horizontal displacement for model LV1 shifts about 150 km towards the load center and
has a slightly increased amplitude. The differences between the horizontal displacements
of models R110/21 and LV1 are generally larger than 5 m and thus detectable. For model
LV2 with lower asthenospheric viscosity beneath the center of the load, amplitude of the
minimum decreases to two-third of that for model LV1. Also, the response for model LV3
inside the load is in close agreement with that for the reference model R110/21 since both
models share the same thick lithosphere near the center.

Similar observations can also be made for horizontal velocities (Fig. 3.13b): Here, the
reference model with thin lithosphere (model R55/21) experiences smaller horizontal
velocities than the thick continental reference model. Both laterally heterogeneous models
LV2 and LV3 have a similar response and a shifted pattern in horizontal velocity compared
to models R110/21 and RS5/21.

Comparing to the vertical responses that are least sensitive to the models' properties in the
inner peripheral area around r=700 km (see curve crossings in Figs. 3.12 a & c, Figs. 3.4
& 3.8), the horizontal quantities appear to be most sensitive in the area around r=500 km
(Fig. 3.13 b & d). Although amplitudes of these horizontal quantities are only about one
tenth of their vertical counterparts (comparing Fig. 3.13 b with a and Fig. 3.13 d with Fig.
3.5 or 3.8 ), with the trend of increasing precision from VLBI and GPS observations,
horizontal motions of the postglacial adjustment process will become useful in resolving
lateral heterogeneities in the future.

Summarizing the effects of lateral variations in the lithosphere and asthenosphere, which
can be regarded as simple approximations to the rheological variation across a continental
margin, we conclude that:

(1) Lateral heterogeneities can significantly influence the predicted RSL, velocities,
horizontal displacement, and gravity inside and around former glaciated areas.
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(2) Measurements of vertical motion of postglacial rebound (RSL, gravity, and vertical
velocity) in the inner peripheral area of former glaciers are least sensitive to lateral
heterogeneities whereas measurements of horizontal motion (horizontal displacement

and velocity) are most sensitive there.

(3) Lateral heterogeneities can be resolved from spatial-time patterns of RSL and other
geodetic signatures.

(4) Lateral variations in the asthenosphere have much more significant effects on geodetic
signatures than lateral lithospheric thickness variations.



52

CHAPTER 4

TWO DIMENSIONAL FINITE ELEMENT RESULTS PART 2:
EFFECTS OF LATERAL HETEROGENEITIES

IN LOWER MANTLE AND DENSITY

ON POSTGLACIAL REBOUND

In this chapter, we explore the effects of lateral viscosity variations in the lower mantle and
the effects of lateral density variations on postglacial rebound observations. The same
cylindrical finite element grid and the disc load model are used as in the previous chapter,
except where stated otherwise.

4.1 EFFECTS OF LATERAL VISCOSITY VARIATIONS IN THE LOWER
MANTLE

Seismic tomography shows that lateral heterogeneities in the upmost 400 km are large and
there is general agreement among different studies on the magnitude and location of the
structures. However, lateral variations in the lower mantle are generally small except near
the core-mantle boundary (Su et al., 1994), and there is a lack of consensus on structures
beneath 400 km. This may be partly due to the difference in resolving power of the
various studies at such great depth. In the following, we would like to investigate if lateral
viscosity variations in the lower mantle can have measurable effects on postglacial
rebound. If the answer turns out to be positive, then the postglacial rebound observations
may be useful for constraining the lateral variations in the lower mantle in future study.

In the following experiments, the effects of lateral heterogeneity in the lower mantle have
been tested for the ice loads with sizes comparable to the Fennoscandia Ice Sheet (disc
radius = 800 km) and the Laurentide Ice Sheet (disc radius = 1600 km), respectively.
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Figure 4.1 Sketches of laterally homogeneous reference models R110/21 and DRM
and earth models with laterally heterogeneous lower mantle DM1, 2, 3, and 4.
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First let us consider the smaller ice load which is the same as the one used in the previous
chapter. All the earth models (sketched in Fig. 4.1) have a 110 km thick lithosphere
overlying a 1021 Pa-s upper mantle. One laterally homogenous reference model is the
R110/21 while the other is model DRM that has a 5x10%2 Pa-s lower mantle. In the lower
mantle of the four laterally heterogeneous models DM1, DM2, DM3 and DM4, the
viscosity is assumed to be depth independent and varies laterally across one vertical
boundary only. Models DM1 and DM3 have a high viscosity (5x1022 Pa-s) lower mantle
under the load, while DM2 and DM4 have a 1x102! Pa-s lower mantle beneath the load.
The difference between DM1 and DMS3 is the location of the viscosity contrast. The
viscosity contrasts for models DM1 and DM2 are at r = 800 km (under the load margin)
and at r = 1200 km for models DM3 and DM4. The elastic parameters and density of these
models are same as those for model R110/21.

RVD histories at a number of locations are plotted in Fig. 4.2. For sites within r = 600
km, the curves of all heterogeneous models first follow those for model R110/21 and then
approach those for model DRM. Therefore, the deformations of the laterally heterogeneous
models are firstly dominated by relaxation of the less viscous part of the mantle, then taken
over by the relaxation of the more viscous part of the mantle. However, the differences
among RVD curves for the laterally heterogeneous models are small and are not resolvable
by the uncertainties of the RSL data.

The effect of the lateral extent of the higher viscosity region under the load is small and
hardly detectable (DM1 vs. DM3 in Fig. 4.2). But, the effect of the lateral extent of the
low viscosity region under the load is large enough to be detected at r = 800 km (DM2 vs.
DM4 in Fig. 4.2) in early stage of the postglacial rebound (before 7 ka BP). In general, the
effects of the lateral variations of viscosity in the lower mantle may not be detectable by
RSL data in Fennoscandia or where the size of the ice load was smaller than 800 km in
radius. This confirms that such loads have little resolving power to the lower mantle

(Mitrovica, 1996).
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Figure 4.2 Similar to Fig. 3.4 except for models DM1, DM2, DM3, and DM4,
and reference models DRM and R110/21.



Next, we consider the larger ice load with size comparable to the Laurentide Ice Sheet. The
radius and maximum height of the parabolic disc load are increased to 1600 km and 3500
meters, respectively, while the glacial history remains the same as before (Fig. 2.1).
Radial dimension of the earth models is also increased proportionally to form new models:
R110/21L, DML1, DML2, DML3, DM1L4, and DRML. They are named after their
predecessors with the suffix "L" to indicate the larger dimension of the ice load. The
locations of the viscosity contrasts are at r=1600 km for models DML 1 and DML2 and at
r=2400 km for models DMIL3 and DML 4.

RVD history curves for the new models (Fig. 4.3) show much more separation than that
for the previous ones. For sites inside the load area (r =0, 800, 1200 km), the RVD curves
also show decreasing curvatures as the low viscosity regions (1x102! Pa-s) beneath the
load in model R110/21L gets progressively replaced by regions of higher viscosity (DML4
to DML.2) or as the regions of high viscosity beneath the load get larger (from DML1 to
DML3 and finally to DRML.). Comparing the difference between these RVD curves and the
uncertainties of the data near the center of rebound in Fig. 4.3, we see that lateral viscosity
variations at r=1600 km affect postglacial rebound at r=0 km more than that at r=2400 km.

At marginal site r=1600, the RVD curves are also very sensitive to lateral viscosity
variations in the lower mantle. As the high viscosity region beneath the load in model
DRML becomes progressively replaced by the region of lower viscosity that comes closer
and closer to the center of rebound (DML3 to DML1), prediction of land submergence
changes to land emergence and then to submergence again at r=1600 km. As the region of
low viscosity gets broader (from DML2 to DMLA4 and finally to R110/21L), land
emergence again changes to land submergence. Thus, RSL curves at r=1600 km are
sensitive to the presence of a lateral viscosity contrast more than 800 km away. At r=2400
km and 2800 km, the RVD curves between most of the different viscosity variations in the
lower mantle can also be resolved by the observations.
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Figure 4.3 Similar to Fig. 3.4 except for models DML1, DML2, DML3, and

DMI A4, and reference modelsDRMI. and R110/21L. RSL data are at sites in North
America.



In summary, the effects of lateral viscosity variations in the lower mantle for an ice load
with size comparable to the Laurentide Ice Sheet are large and resolvable by spatial
variation of the RSL observations for sites from the center to outer peripheral area.
However, the effects of lateral heterogeneity in the lower mantle can be neglecied for an ice
load with size comparable to or smaller than the Fennoscandia Ice Sheet.

4.2 EFFECTS OF LATERAL DENSITY VARIATIONS

Although postglacial rebound is driven by buoyancy force (and impeded by viscosity),
only lateral viscosity variations have been considered so far. Density is usually assumed to
be laterally homogeneous although lateral density variations are likely as significant as
viscosity.

Lateral density variations can arise from thermal effects, chemical composition, or both.
For example, the effect of temperature on density for olivine at a constant pressure can be
estimated from the volume expansivity of a given by (Anderson, 1989):

l(dey _ _1(VY __ _52x107S
o51),=-vla), - K @21

A temperature difference of 600 °K can decrease density by about 3%. On the other hand,
it is well known that densities in the continental crust are significantly different than those
in the oceanic crust due to differences in composition. For example, granitic and
granodioritic rocks in the continental crust have average densities of 2640 and 2730 kg/m3,
respectively, whereas basalts and lherzolites (Oxburgh, 1980) beneath the oceans have
average densities close to 3000 and 3360 kg/m3, respectively. This represents a lateral
density variation of more than 10%.

Further, both the relaxation time and the amplitude of rebound depend on the buoyancy
force or the density contrasts (e.g. Wu & Ni, 1996; Appendix of Wu, 1993). For
example, the characteristic relaxation time (T) for a self-gravitating and homogeneous
Maxwell sphere at an angular order n is a function of density p, viscosity v, rigidityu,

gravity g, and earth radius a:
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T=1+Mv (4.2.2).
p~  napg

In this equation, T is made of two parts. The first part ( v/ u ) is the Maxwell time and the
second part ( M v) represents the ratio of viscosity over the buoyancy force. This
nepg
latter part reflects the balance between the impeding force and the driving force in
postglacial rebound. Thus, an increase in density results in an increase in the buoyancy
force which speeds up the rebound process. (In fact, the second part of the T is inversely
proportional to the square of density because of the gravity g.) The strength of excitation
of the uniform sphere is also dependent on density as shown in the following expression

3
(r—):
S

rko1 2n+1)
s 3, napg (4.2.3)

(2n? +4n+3)u

Furthermore, for a spherically stratified viscoelastic earth model, a discontinuity in density
introduces a major gravitational relaxation mode (except when associated with an elastic
lithosphere) while a discontinuity in the Maxwell time i— only adds two transitional modes

whose contribution to the total rebound is usually small (see chapter 6).

Thus, we wish to quantify the effect of lateral density variations for an earth model with a
thick low density continental root .

The earth models used to study the effect of lateral density variations are shown in Fig.
4.4. Models LV5 and LV6 have the same viscosity and elastic structure as reference model
R110/21. The difference is that in model R110/21 the density is constant, while model LVS
has a 420 km thick low density root beneath the load and model LV6 has an infinitely thick
low density root. The viscosity structure of model LV7 is the same as that in model LV4,
however the density structure in model LV7 varies both vertically and laterally in the
continental root and neighboring areas whereas the density in model LV4 is constant. The
ice mode! is the same as that in the previous chapter.



420 km

W Density = 3380 kg/m

Figure 4.4 Sketches of earth models with lateral density variations.

RVD curves for models LV5, LV6, LV7, R110/21 and LV4 are compared in Fig. 4.5
while the other geodetic signatures are compared in Fig. 4.6. Here, a low density root as
proposed by models LV5 and LV6 generally results in larger RVD predictions and longer
relaxation times due to the smaller buoyancy force underneath the load when compared to
the reference model R110/21. However, differences in RVD predictions are too small to
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be resolved by observations. The same conclusion can be drawn from a comparison of
models LV4 and LV7, here the additional low-density root in model LV7 results only in
small differences in RVD predictions, especially at r=1000 km (Fig. 4.5d).

A comparison of horizontal displacements and velocities for models R110/21, LVS, and
LV6 (Fig. 4.6) reveals that the effects of a 420 km thick low density root is too small to be
resolved by the data. Although an infinitely thick low density root gives larger differences
in horizontal displacements and velocities, model LV6 is still not resolvable from model
R110/21. Figs. 4.6a & c show that larger differences are predicted for the vertical uplift
rate and gravity anomalies. Thus, assuming that the observational uncertainties of vertical
velocity and gravity anomalies are 1 mm/s and 1 mGal respectively, a 420 km thick low
density root has observable effects on these data.

400 150 —
R110/21

Time (ka BP) Time (ka BP)

Figure 4.5 Similar to Fig. 3.4 except for models LVS5, LV6, LV4, and LV7 and
reference model R110/21.

Similar conclusions can be drawn from a comparison of the responses of models LV4 and
LV7. Figs. 4.6b & d show that horizontal displacements and velocities for these models
almost lie on top of each other but the difference in gravity anomaly (Fig. 4.6¢) is large
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enough to be resolved. However, Fig. 4.6a shows that the difference in the vertical
velocities predicted by LV4 & L V7 are less than 1 mm/a and thus not resolvable.

In summary, we have shown that a low density continental root generally has little effect
on RVD and horizontal motions, however its effect on gravity is detectable given that the

Pleistocene ice history is known.
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Figure 4.6 Present-day vertical (a) and horizontal (b) velocities, gravity anomalies (c)
and horizontal displacements at 10 ka BP as a function of distance from the load center for
models LV5, LV6, LV4, and LV7 and reference model R110/21.



CHAPTER 5§
THREE DIMENSIONAL FINITE ELEMENT RESULTS

All previous laterally heterogeneous earth models were axisymmetric. However, it is not
clear whether (1) axisymmetry constitutes a favorable condition for the effects of lateral
heterogeneities; (2) what the effects of non-axisymmetric lateral heterogeneities on
postglacial rebound are; and (3) how applicable simple earth models are to interpretation of
RSL data in terms of lateral heterogeneity. Questions 1 and 2 are explored in sections 5.1
and 5.2 respectively, using the 3D finite element grid and the approximate disk load
described in the chapter two. Question 3 is dealt with in section 5.3, using a more realistic
laterally heterogeneous earth model with a realistic ice history - the Ice-3G model of
Tushingham and Peltier (1991). Lateral heterogeneities considered here are limited in
lithosphere or/and asthenosphere overlying a uniform Maxwell halfspace of 10*! Pa-s.
Density and elastic parameters of most of the models are the same as that of model
R110/21, except where stated otherwise.

5.1 AXISYMMETRY VS. NON-AXISYMMETRY

The reason for asking question 1 is that there is a previous example shows that different
model geometry may result in different conclusions: In computing deformation for channel
models with power-law rheology, Wu (1992a) found no RSL-transition zone if the 2D load
has the third dimension extending to infinity but a prominent RSL-transition zone if the 2D
load is axially symmetric (Wu, 1993).

Here, our concern is illustrated in map views of models LITH_CS and LITH_AE in Fig.
5.1. Each of the two models has laterally heterogeneous lithosphere overlying on a
uniform Maxwell halfspace with a mantle viscosity of 10%' Pa-s (also see cross-sections
and 3D views in Fig. 5.2). Model LITH_CS is a typical axisymmetric one whose
lithospheric thickness under the disk load is 150 km in contrast to 50 km under area outside
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the load. On the other hand, model LITH_AE is not axisymmetric and its lithosphere is
divided into two parts by a straight line which represents a vertical plane in 3D. Each part
has a different thickness (either 150 km or 50 km) with the disk load sitting on the thicker
part of the lithosphere. Our concern is whether the deformation along the line OB in model
LITH_CS is much different from that in model LITH_AE.
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= Two time sanp shots of vertical displacement
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localities x=0 km, +600km, =+800kn, and
+1000kn are plotted in Fig. 5.4. Comparing
models LITH_CS (chain line) and LITH_AE
(dash line) along the line OB in Figs. 5.3 and
5.4, their displacement profiles are close
together (Fig. 5.3), so are their RVD curves
(Fig. 5.4) at sites with (x=0). The differences
between RVD of the two models are not
resolvable by uncertainties of the RSL data. Therefore, the effect of axisymmetry is small
in this case.

Figure 5.1 Map views of central
portions of models IITH_ CS and
LITH AE. Both models are laterally
heterogeneous with a change in
lithospheric thickness from 150 km to
50 km. See Fg. 5.2 far their 3D views
and cross-sections.

We shall see this is also true for lateral variations in asthenospheric viscosity. In map
view, models ASTH_CS and ASTH_AE (Fig. 5.5) look similar to their lithospheric
counterparts LITH_CS and LITH_AE (Fig. 5.1), except the lateral variations are in
asthenospheric viscosity. Models ASTH_CS and ASTH_AE (Fig. 5.5) have a high
viscosity asthenospheric zone (10*' Pa-s) in contrast to a low viscosity asthenospheric zone
(10*° Pa-s), with the disk load sitting above the high viscosity zone. The low viscosity
zone (LVZ) is 200 km thick. Above and beneath the asthenosphere are a uniform 110 km
thick lithosphere and a Maxwell halfspace of 10! Pa-s, respectively. Comparison of
displacements (Fig. 5.6) and RVD (Fig. 5.7) between models ASTH_CS (chain line) and
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ASTH_AE (dash line) along the line OB confirms that the effects of axisymmetry are small

Hence, the axisymmetry does not constitutes a favorable condition for the effects of the
lateral heterogeneities.

3D View Cross-Section
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Figure 5.2 Three-dimensional and laterally heterogeneous models with a
change in lithospheric thickness: LITH_AE, LITH_CS, and LITH_AM.
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Cross-Section

LITHOSPHERE 110 km thi

R R R R 2

55557 21
27272MANTLE 1021 Pa-g27702772202072-

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII' - /
III/IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII /PSS essanannssan. 1 IIIIII
VLR LR LR LA R AL AR R R A R A A A A A KA A A A A A A A A A LA A ’II 1 IIIIIIII//
LR RAARR R R A AR AR AR AR AR AR AR AR R AR AR R A A WA IIIII/III CA
IIIIIIIIIIIIIIlIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII C RARZAALRALARARL LS
Yy P PP OO PP OP 000000200 00090% -,,,,,;,,,,’,’,,,,

QLR
R oo cannisac KSILIN O A R A K K e e e
u/r/r/z//z///lt///ll/nMANT]_B///1//1/////1///111///11/
229444292427224222442772, Qe
ll”’lll“’ll“ R Ad [L L A

A ASTH_AM /——\ B
ELITHOSPHERE 110

IIIIIIIIIIIIIIIIIIIIIII/IIII
‘IIIIIIIII III/ A AAA III;’;;"

2’MANTLE 1021 Pasi?7’Z:

IIIIIIIIIIIIIIIIIIIIIII II

IIIIIIIIIIIIIIIIIIIIIIIIIIID 3D > BIPPIDI

LLALARAA IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
D IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII‘IIIIIIIIIlllll:ll‘lll. C

Y s

7
ML LR LAA
WL Ll L dddd

Figure 5.5 Three-dimensional and laterally heterogeneous models with a
Low Viscosity Zone (LVZ): ASTH_AE, ASTH_CS, and ASTH_AM.



69

WY HLSV PU ‘SOTHISV ‘Y HLSV SI9pow 10j 4g v 0] pue z e soaino wowooeldsiq  9°g aundyy

(uny) x souwIsK(T
0091 00t1 008 oov 0 0ot- 008- 00ZI1- 0091-
1 ] i 1 ] L ] 00Z-
- 0S1-
dd uj8

- 001-

. 0S-

4
\ o L
.....:..;x)«n._.....\l...u... llﬁ
!géﬁ..’ﬁ“:'.“: ....I' 2 @ om o em o r 'll.l.luo
= e
| 0 A4
0s

[eOTI2A

(m) n yaamsoe]



70

180 - Kristiinankaupunki
180 -L’t\ x=0km -#:\\ ------- ASTH_CS
2 Kristii N ASTH_AE
geo] NP NN e
o RSN _ SNy o ASTH_AM (x<0
Z 804 + + ..F'-:,.. 80 + ‘p\i\* *<0
30 N\ 30+ x=+200km (ines)
-200km (symbols)
-20 T T -20 T T T 1
150
120 _4..\ x=+400km (lines) 80 'L x=+600km (lines)
_ o \9\ -400km (symbols) \ -600km (symbols)
g, 90 - +"-.,__. %\'\ Kristiinankaupunki ﬁ Verdalsoya
2 Y “1 =
2 60 -I- =X \‘k
~e_F 20~ T
7 \\\L
N \’\? o *‘._‘\?
T T T =1 1 L ! !
30 4
. m x=+1000km (lines)
253 ™., x=+800km (lines) ) -1000km (symbols) ~Lubeck
E 20 - .’-.,.' -8m10n (Symbols) - —\..
' \\. \’-.’ ed - ve.
Sis{ R T X -}~ +- g
% 10 e N 27 :’?4:.') ﬁ
\mt- T 4 = Tl
5 g Uil
o4+F F o a4 g T a6 ‘7' T e
-5 r T T -8 T T T
8 -6 4 2 0o -8 -6 4 2 0
Time (ka BP) Time (ka BP)
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5.2 EFFECTS OF NON-AXISYMMETRIC LATERAL HETEROGENEITIES

Here, we investigate the effects of non-axisymmetric lateral heterogeneities. This had been
a serious test to some previous conclusions from the axisymmetric models. For example, it
has been proposed that postglacial rebound at the edge has most resolving power for the
lateral heterogeneity (Sabadini et al., 1986; Kaufmann et al., 1997). This may be true for
models whose material properties change near or outside the load edge. But what if the
properties change laterally under the middle of the disc load with half of the load on one
kind of material while the other half on another? Will the edge still be sensitive to the
change?

Model LITH_AM is designed to answer these questions. Its lithospheric thickness changes
laterally across a vertical plane under the middle of the disc load: half of the load sit on 150
km thick lithosphere while the other half sit on SO km thick lithosphere (Fig. 5.2). Other
aspects of model LITH_AM are the same as that of model LITH_AE. In addition, two
laterally homogeneous reference models LITH_150 and LITH_50 are considered. Each of
them has a uniform 150 km or 50 km thick lithosphere overlying a Maxwell halfspace of
10%! Pa-s.

For x>0 where model LITH_AM's lithosphere is 50 km thick, the displacement profiles
(Fig. 5.3) for LITH_AM (dot line) are almost the same as those for model LITH_50 (solid
line), so are RVD curves (dot line vs. solid line in Fig 5.4). On the other hand, for x<0
where LITH_AM's lithosphere is 150 km thick, the displacements (Fig. 5.3) for
LITH_AM (dot line) differ from model LITH_150 (thick line). However, the RVD curves
(Fig. 5.4) for model LITH_AM (circle) are very close to those for model LITH_150 (thick
line) at sites with x<0O. Thus, as far as RVD are concerned, postglacial rebound of model
LITH_AM reflects lithospheric thickness beneath the observation sites, except at
x=+600kn where, like the inner peripheral area noticed earlier in chapter 3, RVD curves
are not sensitive to differences among the models. Hence, effects of the lateral
heterogeneity lies in variations of the rebound from site to site. In this case, spatial
variation in RVD due to the lithospheric thickness change beneath the middle of the load is
the largest around the central area.
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Further, a revisit to results of model LITH_AE (Figs. 53 & 5.4) in comparison with the
reference models confirms that the change beneath the ice edge mostly affects the area
around the edge. The displacement profiles (Fig. 5.3) for LITH_AE (dash line) over most
of the thick part of the lithosphere (xs600kn) are almost on top of those for model
LITH_150 (thick line); around the edge (6004m <x <1200kn) where the lithospheric
thickness changes from 150 km to SO km at x=800 km, the displacement profiles are
moving away from those for LITH_150 to those for LITH_50, and remain lying near those
for model LITH_SO0 (thin line) for x > 1200 km. This is also evident in RVD curves in
Fig. 5.4: RVD curves for LITH_AE (triangle and dash line) are almost on top of those for
LITH_150 (thick line) at all sites with x=600kn, and RVD curves for LITH_AE (dash
line) are closer to those for LITH_SO (thin line) for =800 km. The main spatial variation
of RVD due to the lithospheric thickness change under the edge is around the edge area.
Therefore, the area where RSL is most sensitive to lateral variation in lithospheric thickness
is the area around where the variations take place. Furthermore, comparison of RVD
histories between models LITH_AM and LITH_AE shows that the lateral variation beneath
the middle of the load is more detectable by RSL data than that under the edge.

Similar conclusions can be drawn from models with lateral variations in asthenospheric
viscosity. Model ASTH_AM is similar to ASTH_AE except that the L VZ extends to the
middle of the disk load (Fig. 5.5). Results for model ASTH_AM are shown in Figs. 5.6
and 5.7. Similarly to LITH_AM, ASTH_AM exhibits asymmetric rebound in Fig. 5.6.
The displacement profiles (dot lines) are almost on top of those for ASTH_AE (dash line)
for x <-200 km. It relaxes faster than ASTH_AE for x>-200 km. This can also be seen in
RVD histories in Fig. 5.7: ASTH_AM relaxes faster than model ASTH_AE at sites x=0.
This is because ASTH_AM has an asthenosphere undemeath the area. The difference
between the RVD curves of ASTH_AM at X = +200km , or +400km , or +800kn , Oor =1000km
indicates the change at x = 0. Again, RVD at +600kn are not sensitive to the model
property. For ASTH_AE, the RVD only shows small separation between x=1000 km
(dash line) and -1000 km (triangles). This is because the change is at x = 800 km.

We have also computed models ASTH_TC and ASTH_TE in which the low viscosity
zones are restricted to lie in one quarter of the whole area (Fig. 5.8). In model ASTH_TC,
the corner of the LVZ extends to beneath the center of the disk load while in model
ASTH_TE the comer only touches the edge of the disk load. The differentiat RVD
between models ASTH_TC and reference model ASTH_21 (same as R110/21 except in the
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3D grid) for 8 ka BP and 4 ka BP are contoured in Fig. 5.9. It is obvious that only the
quarter of area above the LVZ relax faster. When the LVZ moves out of the load area,
differential RVD between ASTH_TE and ASTH_21 are very small and mostly located
outside the load area (Fig. 5.10). All these confirm that spatial variation in RVD due to a
lateral variation in viscosity is most prominent around where the variation is. And, the
property change beneath the load is more detectable than that under the edge, by RSL data.

ASTH_TC ASTH_TE

cvrovere

oo
IIIIIIIIIIIIIIII/IIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIo
WL LA AR LR AR LR AR AR AL LR AR AL LSRR R R AR R R AR R LA R
’IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIlIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII/o
WL LR LAR LR LA AR A LR ALA S R R R R A R s
VIIIIIIIIIIIII/IIIIIIIIII IIIIII (LA 'IIIIIIIIII/IIIIIIIIIIIIIIIIIIIIIIIl/lllo
VIIIIIIII II ULLL IIIIIIIIIII 'IIIIIIIII CLLA LR LA RALLL L
II[’I,/’IIIII LA LA AL 'IIII’IIII"III'
SRR IIIIIIIII 2, AR LA
L LR AL AR LA AR
LR CLRRALRARL A
LA CARR LA AA
AL LLAA . CRAAARAA LA RS
LA LLLL CLLALRAALZRALRS
UL LR LA PR LA
[\IIIIIIIII YL LA AR LA
TLLALAAALL SRR LA
LLLLLLARLA i LA AR A
LL L LLALA IIIIIIIIIII
LA LLALALA LR AL
5550552272 522555522555
.
IL R LA
CL AL RLLLAA
LLLALLLAL I
LA
IIIIIIIIIIIIII/IIIIIIII
CLAALA IIIIIIIIII
’IIIII IIIIIIIIIIIIII/
:;‘:‘I ’IIIIIIIIIIIII

Figure 5.8 Map views of three-dimensional and laterally heterogeneous
models with a Lower Viscosity Zone (LVZ): ASTH_TC and ASTH_TE.
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Figure 5.9 Differential RVD (m) between models ASTH_TC and ASTH_21
for times at 8 ka BP (lower panel) and 4 ka BP (upper panel).
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Figure 5.10 Differential RVD (m) between models ASTH_TE and ASTH_21
for times at 8 ka BP (lower panel) and 4 ka BP (upper panel).
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5.3 EFFECTS OF MORE REALISTIC LATERAL HETEROGENEITIES -
POSTGLACIAL REBOUND IN NORTH AMERICA

Modeling the effects of lateral heterogeneities on postglacial rebound has gone through
axisymmetric models (Sabadini et. al, 1986; Gasperini & Sabadini 1989, 1990; Gasperini
et al., 1990; 1991; Kaufmann et al., 1997; Chapters 3 & 4) to 3D non-axisymmetric
models (Sections 5.1 & 5.2), with simple earth models and hypothetical disk loads. Now,
we wish to do a more realistic simulation using a relatively realistic three dimensional
laterally heterogeneous earth model and a realistic ice history. The purpose is to test the
sensitivity of postglacial rebound to more realistic heterogeneities under a realistic ice load.
This will also put previous learning on a test and give some hints to question 3, i.e. how
applicable are these simple earth results in a more realistic case?

Postglacial rebound data from sites in eastern Canada and along the Atlantic coast of North
America have been extensively used to estimate the rheological structure of the Earth's
mantle (e.g. Cathles 1975; Wu & Peltier, 1983; Sabadini et al., 1985; Yuen et al., 1986;
Han & Wahr, 1995) and to recover the ice history (Peltier & Andrews, 1976; Wu &
Peltier, 1983; Tushingham & Peltier, 1991; Peltier, 1994) since early work on estimating
ice volume (e.g. Paterson, 1972) and collecting RSL data (e.g. Walcott, 1972). Here, the
postglacial rebound in North America is modeled using a realistic deglaciation history for
the Laurentian, Cordillera, Innuition and Greenland Ice Sheets defined in the ice model Ice-
3G (Tushingham & Peltier, 1991) for two earth models, a laterally homogeneous reference
model LITH_200 and a laterally heterogeneous model LAT_HET.

Model LITH_200 is composed of a 200 km thick lithosphere overlying a Maxwell
halfspace of 102! Pa-s. The heterogeneous model LAT_HET mimics the shape of the
North American continent, lateral variations of lithospherical thickness, and asthenospheric
thickness and viscosity from the continental to oceanic regions (Fig. 5.11). It differs from
the reference model within the top 200 km of the model in oceanic areas and areas
surrounding the Canadian shield. Under the Canadian shield, rheological structure is the
same as the reference model (with a 200 km thick lithosphere overlying a 1021 Pa-s visco-
elastic mantle). Under the oceans, the 55 km thick oceanic lithosphere overlies a 150 km
thick
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Figure 5.11 Laterally heterogeneous 3D earth model for North America.
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1019 Pa-s asthenosphere. In the transitional zone between the craton and the ocean, the
lithosphere is 100 km thick and overlies a 100 km thick 1020 Pa-s asthenosphere. The
spatial distribution of these three zones and a schematic cross-section are shown in Fig.
5.11. This laterally heterogeneous model is based on educated guesses, and should be
refined in future investigations. All other material property parameters are the same as
those in the previous 3D models (e.g. ASTH_AM) except for the Poisson ratio of 0.2854
reflecting compressibility of earth material.

5.3.1 Comparison of RVD with observed RSL

180 180
160 .. 160 <
140 - .'-, 140 - o
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g 80 80 —
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Figure 5.12 Comparison of RVD 140 -
curves between the laterally £ igg'
. Q 7]
heterogeneous model (dot line) and &- 80
60 -
the laterally homogeneous model 40 -
(solid line) at sites in southern 28 .
Hudson Bay area. Cross represents -20 — —T I
RSL data with error ranges. 7 6 S5 -4 3 -2 -1 0

Time (ka BP)

Our main focus is to compare RVD predictions of models LAT_HET and LITH_200 in
order to study the effects of lateral heterogeneities. As always, the observed RSL with
error bars are plotted to indicate resolvability of the difference by RSL data. Nevertheless,
comparisons of the RVD with the RSL are also documented and discussed for the sake of
further improvements of the earth model as well as the ice model. Because RVD is only a
valid approximation to RSL during postglacial time, the comparison is limited to the last 7
ka. The plots are gathered according to their geographic locations (see Appendix B for
coordinates of the sites, some are also shown in Fig. 2.5) in Figs. 5.12 - 5.18. Sites in
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southern Hudson Bay area including Cape Henrietta Maria, Richmond Gulf, James Bay,
Que. are gathered in Fig. 5.12. Churchill, Man. and Keewatin, NWT of western Hudson
Bay area are in Fig. 5.13. Milne Inlet, Baf., Igloolik Is., and Ipik Bay, Baf. of northern
Hudson Bay area are in Fig. 5.14. Ungava Pen., Southampton Is. and Ottawa Is., NWT
of the central Hudson Bay area and Cape Tanfield of north-eastern Hudson Bay area are in
Fig. 5.15. Goose Bay and NW Newfoundland are in Fig. 5.16. Tignish, PEI, French
River, PEI, Cape Breton Is., NS., and Bay of Fundy are in Fig. 5.17. Isles of Shoals,
NH, Boston, MA, Clinton, CT, and New York are in Fig. 5.18.

160 In general, the comparison of the
e Keewatin predicted RVD curves between models
LITH_200 (solid line) and LAT_HET
(dot line) confirms conclusions drawn

from previous simple earth models:
effects of lateral heterogeneities are
additional spatial variations in postglacial
rebound, and land uplift of a laterally
heterogeneous model at a site reflects the
earth properties underneath. Especially,
the spatial trend of land uplift reflects the
spatial trend of lateral heterogeneities.
For example:

(a) Differences of RVD curves between
7 6 -5 4 3 2 1 0

Time (ka BP) the two models are small when compared
Figure 5.13 Similar to Fig. 5.12 except to the uncertainties of the RSL
at sites in western Hudson Bay area. observations, for sites where the two

models have same earth properties which
happen to be near the center of the rebound (sites in Figs. 5.12, 5.13, and Southampton Is.
and Ottawa Is. in Fig. 5.15).

(b) Significant differences are found in areas where the two models have different earth
properties which happen to be near and outside the ice margin (sites in Figs. 5.16 and
5.18). These differences are mostly resolvable by RSL data within last S or 4 ka BP
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because the uncertainties of the height in RSL data are smaller for younger data points than
the older ones.

The comparison between the RVD and the RSL date (dot with error bar) divides all sites
into four groups: at Group A sites, the predictions of model LAT_HET fit the observed
data better or are closer to the data than those of model LITH_200; at Group B sites, model
LITH_200 does better than LAT_HET; at the rest of the sites, the predictions of the two
models are either too much off the observed data (Group C) or equally close to the data
(Group D i.e. Ipik Bay, Baf.).

70
a {_ Milne Inlet, Baf.

Figure 5.14 Similar to Fig.
5.12 except at sites in northern
Hudson Bay area.
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Group A sites include Cape Henrietta Maria, Richmond Gulf, and James Bay, Que. in
southern Hudson Bay area; Churchill, Man. and Keewatin, NWT in western Hudson Bay
area; Milne Inlet, Baf. and Igloolik Is. in northern Hudson Bay area; Clinton, CT. in the
periphery area of the Laurentian ice.

Group B sites include Cape Tanfield, Ungava Pen., Southampton Is., and Ottawa Is.,
NWT in north-eastern and central Hudson Bay area; Goose Bay, NW Newfoundland, Isles
of Shoals, NH, Boston, MA, and New York in the periphery area.
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Group C sites include Tignish, PEI, French River, PEI, Cape Breton Is., NS., and Bay of
Fundy.

120 -, SouthamptonIs. | go .. C.Tanfield

__100-

£ 80~
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A 60

B 40 -
20 -

-20 T L T T T -20 T T T T T T
7 6 5 4 3 2 -1 0 7 6 .5 4 3 2 -1 0

Time (ka BP) Time (ka BP)
Figure 5.15 Similar to Fig. 5.12 except at sites in central and north-east Hudson
Bay area.

5.3.2 Discussion

The misfits between the predicted RVD and observed RSL at Group C sites are no surprise
as these sites are "considered ice-marginal or edge sites" (Tushingham & Peltier 1991).
The ice history at these edge sites may not be precise enough because the ice history is
mainly constrained by RSL data inside the former glaciated areas. Further, the finite
element grid is not fine enough to honor Ice-3G in this area. Hence, the misfits may be
caused by inaccurate ice model in this area used in the finite element comptuations.
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Figure 5.16 Similar to Fig. 5.12

except at sites in Canadian east coast.
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The patter that model LAT_HET's
predictions are closer to the data than
LITH_200's at sites around the Hudson Bay
area but are worse at sites in central Hudson
Bay area and Hudson Bay strait in the north-
east appears to be correlated with the ice
history (see the time snap shot of Ice-3G at 8
ka BP in Fig. 9, Tushingham & Peltier,
1991). The ice melted earlier in the central
and north-east area than in the area around
Hudson Bay. This correlation implies that
the ice in the central and north-east area of
the Bay could melt even earlier than that
prescribed in Ice-3G if model LAT_HET is
held to be true.

At sites Cape Tanfield, Ungava Pen., and
Ottawa Is., NWT, although model
LITH_200's predictions are closer to the data

than that predicted by model LAT_HET, data points are still below the predicted curves.
This can suggest a thicker lithosphere or/and a lower asthenospheric viscosity. However,
RSL data at Cape Tanfield is almost flat, so it is more like a standing point than anything
else. A standing point is usually located near the ice margin. It stands almost still and
separates the up-going central area from the down-going forebulge area during late

postglacial time.

For sites at Goose Bay and NW Newfoundland, the trends of the data are flatter than
predictions. If we had thick (200 km) lithosphere over low viscosity asthenosphere in this
part of model LAT_HET, model LAT_HET may fit the data better than model LITH_200.
However, at Goose Bay, there is a step change in data from 3 to 4 ka BP that may be due

to other causes than the earth properties.
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Figure 5.17 Similar to Fig. 5.12 except at different sites as labeled in each panel.

At most sites along North American Atlantic coast, model LITH_200's predictions are
closer to RSL data, except at Clinton (Connecticut). The data at Boston and New York
suggest larger curvatures than the predicted. This may be indicative of large viscosity
and/or thin lithosphere. However, the trend of the data at nearby site Clinton (Connecticut)
is quite flat which may suggest low viscosity and/or thick lithosphere. Furthermore, all
these sites could be in an area similar to the inner peripheral area discussed in chapter 3
where RSL is least sensitive to an earth model's properties. In this case, the comparison at
these sites may not be indicative of earth properties. The RSL data here may also be
affected by tectonic movements that are caused by the sediment loading of the glacial
outwash (e.g. Newman et al 1980).

In short, the comparison between the two models confirms that postglacial rebound is
sensitive to relatively realistic heterogeneities with a realistic ice history. Further, the
response of postglacial rebound to the realistic heterogeneities is similar to the simple
heterogeneities in previous simple models. Therefore, the conclusions from previous
simple models are valid for this more complex model.
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Figure 5.18 Similar to Fig. 5.12 except at sites in the U.S. east coast.

5.4 SUMMARY

We have extended postglacial rebound modeling from 2D to 3D, and from simple earth
models to a more realistic model. In doing so, we have answered the three questions listed
at the beginning of the chapter:

1) The axisymmetry in the models does not noticeably amplify effects of lateral variation
based on 3D model results in this chapter.

2) Non-axisymmetric models have shown that sensitivity of RVD to a lateral heterogeneity
depends on the relative location of the observation site with respect to the lateral
heterogeneity. When a change in model property takes place under the middle of the load,
RVD in the central area is sensitive. Vice versa, RVD around the edge is sensitive to a
property change under the edge. Further, no matter how sensitive RSL at a site is, RSL at
the single site can not tell the existence of the lateral heterogeneity because the data can also
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be sensitive to vertical rheological structure. Therefore, the lateral heterogeneity can only
be detected by comparing RSL at sites across a large area, i.e. spatial-temporal pattern of
postglacial rebound. Furthermore, the effects are most prominent for the variation (of
lithospheric thickness or asthenospheric viscosity) inside the former glaciated area.

3) The realistic modeling of postglacial rebound in North America confirms that simple
earth models results are consistent with the response of this more complex earth model to
the realistic ice load history.

Although the flat-Earth models have served us well for computing deformation in and near
a formerly glaciated area, a self-gravitating spherical earth model is needed for accurate
prediction of worldwide relative sea level changes that include effects of glaciation and
deglaciation of distant ice sheets and the distribution of melted ice water in oceans. In the
next chapter, we will turn our focus to analytical solutions of simple spherical earth models
and use the result to calibrate the spherical finite element model in chapter seven.



CHAPTER 6

LAYERED SPHERICAL EARTH MODEL

Although the initial motive for studying laterally homogeneous spherical earth models
using the spectral method in this thesis is to calibrate the spherical finite element model,
the study has been expanded to include some important issues in modeling postglacial
rebound of spherically stratified earth models.

The spectral method is usually implemented numerically (Peltier, 1974; Wu & Peltier,
1982; Mitiovica & Peltier, 1989) for a multi-layer spherical earth model and solutions are
usually expressed as the superposition of normal modes of gravitational relaxation
(Longman, 1963; Peltier, 1976; Peltier & Andrews, 1976; Wu & Peltier, 1983; Mitrovica
& Peltier, 1989; also eq. 6.1.18). The questions of interest are: (1) how many modes can
a spherically layered earth model have for each angular order of spherical harmonic
deformation? (2) how are the modes related to contrasts in physical properties among the
layers? (3) how can singularities in the numerical search for the eigenmodes be removed?
and (4) what are the effects of neglecting self-gravitation?

Wu & Peltier (1982) demonstrated numerically that a pure density discontinuity introduces
an extra (buoyancy) mode and a finite viscosity jump introduces two extra (viscoelastic)
modes (also see Han & Wahr, 1995). The uncertainty here is that these may only
represent the minimum number of modes. It has not been theoretically established (except
for the inviscid core and the simple lithosphere cases discussed in Amelung & Wolf,
1994) how many modes a certain earth model should have and how they are related to
contrasts in material properties. Furthermore, there is the problem of singularities in the
characteristic function (i.e. the determinant function, DET(s) whose roots give the eigen-
spectrum). These singular points can be easily confused with roots because they appear
as zero-crossings of DET(s) (Han & Wahr, 1995; Fang & Hager, 1995). When the
number of layers is large, the number of singularities and the number of ‘viscoelastic
modes' is large and they can be so densely populated that some eigenmodes may be
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missed by the numerical root-searching scheme. So it is useful to devise a singularity free
approach.

These issues can be best understood in analytical solutions of simple spherically layered
earth models in spectral domain. In fact, solving the analytical solution for such earth
deformation problem is always appealing. Dragoni et al. (1983) extended the analytical
solutions of Wu & Peltier (1982) to the deformation of a two-layer incompressible
Maxwell sphere without a core in an attempt to examine whether earthquake-triggered
movements of earth material can excite the Chandler wobble. In the study of lithospheric
effects on postglacial rebound, Wolf (1984) derived analytical solutions for an
incompressible and hydrostatic prestressed Maxwell sphere surrounded by a thick elastic
shell under a Heaviside disc load for the non-self-gravitating case. Wu (1990) used the
analytical solutions for two-layer earth models to study the deformation of internal
boundaries. Spada et al. (1990) solved five-layer earth models with Mathematica, but no
solution in closed form was found. This is because the analytical expression is too long to
be handled by the symbolic manipulation program thus the advantages of the analytical
approach has not been fully utilized. To limit the length of the expression, we explored
the solution of a 2-layer non-self-gravitating earth.

In the following sections, we first illustrate the general formalism of solutions to the
deformation of a 2-layer spherical earth model under a surface load (section 6.1), then
evaluate the effects of neglecting self-gravitation (section 6.2), and finally explore the
relationship between eigenmodes and discontinuities in density, viscosity, and shear
modulus between the two layers. For simplicity, only incompressible earth models are
considered in most cases.

6.1 GENERAL FORMALISM

In this section, unified solutions are presented for both self-gravitation and non-self-
gravitation cases. The flag 3, indicates that the terms are due to self-gravitation and serves

as a switch between the two cases, §,=1 for self-gravitation case and §; =0 for non-self-
gravitation case. The switch makes it easy for modifying existing computer programs for
computing the self-gravitating case to the non-self-gravitating case. The idea of flagging is
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then extended to keep track of the prestress advection term with §, , so the effects of the
prestress advection can be easily examined.

Take a spherical coordinate system with the origin at the earth center and the z-axis pointing
to the North pole. The three coordinates for a point are radius (7), colatitude (8 ), and
longitude (¢ ). Let u, v, w represent displacement components on the three base vectors
e, ,eg,and e, , respectively. For a non-rotating spherical earth model, the linearized
equation of momentum conservation, Poisson's equation, and the equation for the
conservation of mass in the Laplace transformed domain s can be written as (Wu & Peltier,
1982):

0=-Poag V¢1 —P1 8 er-v( u°6apOgOer) +V-x
Vig=4nGp, 3, (6.1.1)

pi=—poV-u-u- (ar p() €

where u, T, §1, g0, po and p; are the displacement vector, the perturbation stress tensor,
the perturbed gravitational potential, the unperturbed gravity, and the initial and perturbed

density respectively. For simplicity, consider an unit point load at the north pole, so that
the deformation is pure spheroidal, and there is no displacementon e, (i.e. w=0). Using

Legendre polynomial expansion of displacements and perturbation potential

u= Y U,(r)P,(cos(6))

n=0

- dP_(cos(6))
=)V (r)—2—-2
Y 20 () a6 (6.1.2)

¢, =Y, @,(r)P,(cos(6))
n=0

the group of second order partial differential equations (eq. 6.1.1) can be written as a set of
simultaneous ordinary differential equations for a given layer (Cathles, 1975; Peltier,
1974).

dY _AY (6.1.3)
dr
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where the elements of the vector Y(r,s) =(U,, V,, T, Tg,, €.,Q,)" are the spheri
here the el f th Y@,5) =(Uy, Vo, Tony Tan, ©,, Q)T are the spherical

harmonic coefficients of radial and tangential displacements, radial and tangential stresses,
perturbation in gravitational potential and potential gradient respectively. The potential
gradient is defined as

db, n+l

Q, =—=+——&_ +4aGp,U,
r

dr (6.1.4)

Here the subscript n denotes the angular order. The matrix A for a compressible solid is:

_ A n@+H)A g
A5 7¢ 2(A+2u)r' C2wr’ l+2p.’000}

aﬁ={"i1" 3 Tli 0, 0, (6.1.5)

~ 42u+30p  [B,+Du+d,Npg 3(3 +5g)Pg
Qu+Nr? Ru+Ar r

@u+3MNp QRu+d,Mpgl (8,+D)pgr+ap
“(““)['2 Gu N2 " (2u+7~)r] T ReeNT

nm+1) (@+1Dped,

> - T » POgy
=, 2ut3Nu pgd, 1 ,e+¥n@+] A
R ey yrery Ve "2“(?’- Cu+N 2 ) "Br+Ar

1 P
3L 2% 0,

B @+ 1) 5,
ai—{-4nG pﬁg,O, 0, 0, - ——, 6g}

-4nGpn+1)3, 4xGpnf@+ 13, @-1)d,
a&={ I * T ’ 0’ ’0'—7_}

where A and W are the s dependent Lame parameters, p is the ambient density field, g is the
unperturbed gravitational acceleration and G is the gravitational constant. For an
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incompressible earth, take the limit A — © in matrix A. For a non-self-gravitating earth
(ég =0), the last two rows and columns are identically zero, so A reduces to a 4x4 matrix.

For an incompressible uniform spherical solid shell, the generalized six linearly
independent solution vectors at radius r are given by (Wu, 1978; 1990; Sabadini et al.,
1982):

nr! @m3) ™! npgr™¥,+2um3n-3)r"
Y11=\ 3G03) " 2@m3) @)’ 22n+3)

’

2u (n+2)r * 4J|:Gpm'n+15 )T
22n+3)(n+1) * 7 2(2m3) 8

n-1 n-2
- - 2 -1
y2=(rn1, rT,pg‘nléa+2p,(n-1) rn-2, .M_.

o
T
0,4Jl:Gpl'n16g)

T
y:= (0, 0,pr"8,,0, r’8,, (2n+l) r‘“ag) (6.1.6)

- (o+])

Y=

(m+Dr™ (n2)r™ (n+1)pgr'“6a-2u(n’-+ 3n-Dr
( 2(2n-1) ' 2nQn-1) ’ 2(2n-1)

2u@+l) (@-1) 1 @D AxGp@el . \T
2n (2n-1) T 2(2n-1) g )

- (0+2)

- 2
y5=(r'(n+2), fn“ o ™5 22y @D, 2u(@+2) (3

1

T
0,4xG pr'(‘”z)bg)

= -(@+1) - (D) T
Ye=(0, 0.pr ™5, 0, '™V, 0)
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The last three solution vectors are singular at the earth's center and must be excluded for a
uniform sphere (see Wu & Peltier, 1982). Thus, the solution in the inner uniform solid
sphere is a linear combination of the first three vectors, or

Yo = ZOK (6.1.7)
where Z(r) is the matrix whose column vectors are yj, ¥ ,¥y3 and
K = (Ki(s), Ka(s), Ka(s) )T (6.1.8)
is the coefficient vector. Similarly, the solution for a spherical solid shell is
Ys(r) = M(@)C (6.1.9)

where M(r) is the matrix whose column vectors are the six solution vectors yj with the
appropriate p, g, u and

C = (Cy(s), Ca(s), C3(s), Ca(s), Cs(s), Ce(s) )T (6.1.10)

is the coefficient vector. Note that C, K , M(r), Z(r), Ys(r) and Y (r) are all 's'
dependent.

For a non-self-gravitating earth, the third and sixth vectors in (6.1.6) and the last two rows
in the other vectors are identically zero, thus the matrices Z, K, M and C are reduced to
4x2, 2x1, 4x4 and 4x1 matrices respectively.

For a uniform inviscid fluid core, the Z matrix just above the core at r = ¢ can be expressed
as (Wu & Pelter, 1982; Dahlen & Fels, 1978; Chinnery, 1975; Crossley & Gubbins,
1975; Smylie & Mansinha 1971):

[ ¢ ll6g/g(c) 0]
0 1 0
0 0 p©) &9
Lo = 0 o 0 (6.1.11)
c ég 0 0
2An-1)c ™5 . 0 471G p(o) 3,
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and for a non-self-gravitating earth, the first column and the last two rows in Z can be

dropped.

The coefficients in K and C are to be determined by the continuity boundary conditions at
the interface at r = cand the surface boundary conditions for an impulsive load :

[ - g0 2n+1) ]
4na’
T (@)
B=|Tea(@| = 0 (6.1.12)
Q@)
-G @2n+l1)
a2 Og

where a is the radius of the earth (Farrell 1972, Longman 1963). For a non-self-gravitating
earth, the last row in B can be dropped.

For a two-layer earth model that is composed of a viscoelastic shell and an inviscid liquid
sphere, the solution in the shell is (Wu 1990):

Ys(r)=M(n)M}(c)Z(c)T-}(a)B (6.1.13)
and the solution within the inner sphere is
Yc(r) = Z(r)T-(a)B (6.1.14)
where T(a) = M(a)M-1(c)Z(c) (6.1.15)
but has rows 1, 2 and 5 deleted.

For a general multi-layer spherical earth model, although the solution Y can still be written
in terms of M(r) at each layer and the boundary condition B at the earth surface, it is not
practical to actually derive the final solution analytically. The algebraic expressions are too
long to manage. So, the Ys is usually obtained numerically by propagating the formal
solution (the first 3 ones in eq. 6.1.6) of the sphere through the layers to the surface using
the Matrix Techniques (Cathles, p30-33) and Runge-Kutta Techniques (Cathles, p33-34).
These formal solutions are linearly combined to match the boundary conditions at the
surface and to obtain a specific solution in the transformed s and n domains.
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Traditionally, the solution at the earth's surface is expressed in terms of the Love Numbers
hp, In and kp which are defined by (Peltier, 1974; Farrell, 1972; Love, 1911):

Ugas) h(a,5)/go

a
Va@s) | = —,\%’ L(a, s)/go (6.1.16)
D, (as) - (1 +kyas))

where ME is the mass of the earth and gy is the surface gravity.

Following Wu (1990, 1978) and Peltier (1985), the solutions for the impulsive load can be
inverted to the time domain: First, express the Love numbers as the ratio of two analytical
functions W(s) and D(s), (e.g- hn(s)= W(s)/D(s)) where the determinant function is
embedded in the denominator so that the eigenspectrum si, can be obtained from the roots
of D(s)=0. From the elastic asymptote hf; (which is defined by ht = lim_h,(s)= WE/DF)

and the viscous part of the Love number h! (s) where

W - D(s) wH) /DE
D(s)

hY(s) =h,(s) -hE = (6.1.17)

the residue for the ith eigenmode r? and the solution in the time domain can be obtained as

follows:

m .
ho() = hE 8(y + 2 rfe esit (6.1.18)

chn aW( So) (6.1.19)
|5;u5)|s§,

where m is the number of eigenmodes. Note that D(s)WE/DE do not appear in the
numerator of the residue since D(si )=0.

For Heaviside loading, the solution can be written as:

BH() = hE - ;g ;ﬁl (1-esh ) (6.1.20).
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The ratio r'%/s}, is called the excitation strength that represents contribution of a mode to the
total relaxation.

6.2 EFFECTS OF NON-SELF-GRAVITATION

Non-self-gravitation means that the gravitational potential of the load and gravitational
perturbation due to the earth deformation are neglected. This often results in a
simplification in formulation and, therefore, is advantageous if we know what are effects of
the simplification in final solutions. In this section, the effect of neglecting self-gravitation
is explored by comparing resuits of self and non-self-gravitation for the uniform sphere and
the two-layer model of a viscoelastic mantle overlying an inviscid liquid core.

6.2.1 Homogeneous Sphere

Let p, v, 1, a, and g denote density, viscosity, shear modulus, the radius and surface
gravity of the uniform earth respectively. The shear modulus in the s domain pg is defined

as

P (6.2.1)

s+E
v

Following Wu & Peltier (1982), the unified expressions for Love numbers (4, and /,) in

s-domain are derived. Let t be the characteristic relaxation time which is the negative
inverse of the eigenvalue (root) s ( t=-1/s). The residues (r* and r,) and exciting
strengths (e, and e!) which are defined as the ratio of the residues over the ei genvalue (for

/4
example, e, = 5: ), for both the self-gravitating and non-self-gravitating cases, are:

1
R vy (6.2.2)
+n
apgn,
(=Tn+T, (6.2.3)
fa—Tle (6.2.4)
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(6.2.5)

The radial components, k,, r;, and e? are related to the tangential components by the

following equations.

h(s) r* ¢ 2n+1n
J—I,,(s) =-r-?=-ez-= 3 (6.2.6)
In the above equations from (6.2.2) to (6.2.5),
Tn =i (6.2.7)
is the Maxwell time,
2n® +4n+3
T, = (2 «dn v 3 (6.2.8)
Mpgn
is a part of the relaxation time that is associated with the buoyancy force, and
(2n+1)5, - 36
I Sl Bt
gn 2(”-1) (6°2'9)
is the only factor that depends on the setting of the switches.
10 First, let us see what happens if the prestress
: advection is not included (6, =0). For the
(l,ska)l ] . self-gravitating case (6, =1),
0.1 - I
‘e,
oy = (6.2.10).
0.01 , 2(n—l)(2n2+4n+3)-l
3napg u
0.001 —
0.0001 This is plotted in Fig. 6.1 for the uniform
' h 10 100 Sphere with averaged values of p, v, and w of
Angular Order n the real earth (see Model 1 in Table 6.1). Here

Figure 6.1 Relaxation diagram for
the uniform earth Model 1 with
self-gravitation but without prestress
advection term.

s is positive for all n. This means that the
relaxation would grow exponentially if the
prestress advection term is neglected. This is
not physically feasible because observed
relaxation is always of exponential decay.
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For the non-self-gravitating case (6,=0), 6, =0 yields s=0. Mathematically, this is
saying that the earth's response to the load does not change with time and there is no
relaxation (or the relaxation time is infinite). This is also unrealistic. So, these results

support Wu's conclusion (1992b) that prestress advection is necessary for the description
of a glacial isostatic process. Therefore, from now on, we set 6, =1, and focus on the

effects of self-gravitation.

Because g, is the only factor that contains 6, , all the differences between self-gravitating
and non-self-gravitating cases are due to different expressions of g, :

For the self-gravitating case (6, =1),
8 =8 (6.2.11),
and for the non-self-gravitating case (5, =0 ),

2n+1
8 =3¢ (6.2.12).

Comparing egs. 6.2.11 and 6.2.12 implies that neglecting self-gravitation yields a larger
and n-dependent gravity g, (eq. 6.2.12). This larger g, results in shorter T, (eq. 6.2.8 )
and overall relaxation time t (eq. 6.2.3). However, when n approaches infinity,
(2n+1)/(2n-2) goes to 1. Therefore, the non-self-gravitation solutions converge to the self-
gravitating ones. In practice, the difference between self-gravitation and non-self-
gravitation becomes insignificant for n>30. These can also be seen in Fig. 6.2b where the
eigenvalues s;j of the uniform earth model (Model 1) for both non-self-gravitating and non-
self-gravitating cases are plotted. The eigenvalues sj for the non-self-gravitating case have
a slightly larger magnitude (Fig. 6.2b) than those for the self-gravitating case (see also
Amelung & Wolf, 1994) for small n. In the other panels of Fig. 6.2, Love Number spectra
for n=5, the residues, and the exciting strengths are also shown.

Further comparison between the self-gravitating (SG) and non-self-gravitation (NSG)
solutions of the uniform earth model (Model 1) shows that:

(1) Self-gravitation has no effect on the number of eigenmodes for the uniform earth (see
equations from 6.2.2 to0 6.2.12).
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Figure 6.2 Comparison between results of self-gravitation (SG) and non-self-
gravitation (NSG) for the uniform earth Model 1 (see Table 6.1 for the physical
parameters) with the prestress advection term included.
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(ii) For the non-self-gravitating case, the magnitude of the elastic asymptote (i.e. obtained
by taking the limit s— ® in egs. 6.2.2 & 6.2.6, or by takKing the large s asymptote in Fig.
6.2a) is greater than that for the self-gravitating case. Physically, this larger amplitude of
deformation is due to the larger gravity for the non-self-gravitating earth.

(iii) In both self-gravitating and non-self-gravitating cases, the isostatic asymptotes are the
same (i.e. obtained by taking the limit s—0 in egs. 6.2.2 & 6.2.6), so are the small s
asymptotes in Fig. 6.2a. For the hy Love numbers, both approaches -(2n+1)/3, whereas
for I, both approach -1/n. Since, the isostatic asymptotes are independent of gravity, self-
gravitation has no effect on them.

(iv) The excitation strength for the self-gravitating case has larger amplitude - since
excitation strength depends on the difference between the elastic and the isostatic
asymptotes. However, this difference falls below 5% for n>5 (see Fig. 6.2c, €).

(v) The residue for the self-gravitating case has smaller amplitude since they are related to
the excitation strength and the relaxation time through eq. 6.2.5.

In general, the differences between the two cases increase with decreasing n. This reaches
the extreme situation at n = 1: while g, =g and all other solutions are normal for the self-
gravitating case, g, == and all the other solutions become abnormal for the non-self-
gravitating case. This is because neglecting gravity of n=1 load, like that in the non-self-
gravitating case, leaves an unbalanced surface force driving the earth to infinite and no
regular solution exists. Only when both the surface force and opposing gravity are taken
into account, can the total force on the center of mass of the earth remains in balance and
regular solutions exist for the self-gravitating case. In contrast, any other harmonic load
exerts a total of zero net surface force and zero gravity force on the earth, thus solutions for
the non-self-gravitating case exist. In the following, the n=1 mode will not be considered.

6.2.2 Mantle over Inviscid Fluid Core

The previous subsection shows that there is only one single mode for a uniform sphere.
What happens if there is an additional layer? Is the number of eigenmodes still the sarae for
both self-gravitation and non-self-gravitation cases? In the following, a two-layer model

that is made of a viscoelastic shell overlying an inviscid liquid core is considered. Again,
the symbols p, v, i, a, and go denote density, viscosity, shear modulus, the radius, and



99

surface gravity of the outer solid shell and pc, ¢, and g: denote the density, radius, and
surface gravity for the inner fluid core.

Non-Self-Gravitating Case

The Love number spectrum at the surface of the outer shell has been derived using a
symbolic manipulation program called Theorist (now called Mathview). They can be
expressed explicitly as ratios of polynomials in s:

ho(9 = 1(2n+1)2g0(vs+p.)(KUAs+KUB)
n¥ =" 3 T E (KDA s? + KDB s + KDC)

(6.2.13)

where: dp =pcp, T= %’t—G—a- is unity when normalized (Wu & Peltier, 1982) and

&o

KDA =n o+ 1) n+ )2 CAA pdpgyg. v (6.2.14)
+4(@+2)@-)Rn+3)@n-)u™N2CAD+2(2n+ 1) nv?* CGA

KDB=2@2n+)uvp{o+ 1) 2n+1) CAA pdpggg.+ 1 CGA]
KDC=n fn+1)(2n+ 1)* u2 pdp gog. CAA
KUA=vn@+1)@n+1)dpg CAA+2uCAC]
KUB=nf{n+1)2n+ 1) udpg. CAA
CGA=CAB dpg +CACp g,

CAA_%_a-Zn-3c2n+3_a2n-l c-2n+l 4

CAB =- (n4+2n3-n2;42rn+3)Qn+1)+(n+2) @+ 1) (na-sl)(2n+1)c4n

-@+1)@-)@n2+4n+3)a?? 2c 2l p+2) @n2+ ) a 2042043y

(m*+2n3-n2-2n+3)Rn+ 1)

a4

CAC=
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@O+)@+D@-)Rn+D)n @+2)@n2+1)a?1n
- C - c2n

+@+1)@-1) @n*+4n+3)a2n-3c2n+2

_@*+cd@*+2n°-n?-2n+3)@n+1)°

CAD 2n+3)@2n-Da’c

@2 2+a27-4c42+) 2 n2+ 1) 2n2+4n+3)

€n+3)@n-Dcn

m+d@+)@-Dcn
-2 —

The eigen-spectrum can be determined from the denominator of eq. (6.2.13). Because itis
a second order polynomial in "s" (Amelung & Wolf, 1994), there is a maximum of 2

eigenvalues:
Cn+ Y)udu[=/Aa -CGA]-n@+1)(2n+1) gy pg.dp CAA)
st = v CAG (6.2. 15)
where

Aa =g} p? CAC? + g2 dp? CAB?
+2p godpg.[CABCAC-2(n+2)(a+1)(n-1) @n+3) @n-1)nCAA CAD]
CAG=4@+2)(n-1)2n+3)@2n-1) u?CAD
+@n+1)LugypCAC+g.(n+1) 2n+1) gop CAA +2u CAB] dp)}

The meaning of these eigenmodes becomes obvious for large n. Retaining terms with the
highest order in n, the two eigenvalues become:

_ PR3
1= Tav (6.2.16)

—. c@np+apgyprdpg. 6.2.17)
27 "WnZuZ+2n(@pge+cdpgn+ cpdp go &l v B

S
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Since s; has the same large n-limit as that for the uniform sphere (which can be easily
verified using egs. 6.2.3, 6.2.7, 6.2.8, and 6.2.9), it represents the main mode MO (Wu &
Peltier 1982). Because s, vanishes when c=0 or dp=0 (i.e. uniform earth), it represents
the core mode CO (Wu & Peltier 1982) that is due to the buoyancy force at the interface

r=c.

Self-Gravitating Case

The self-gravitating case has also been solved. Here, the lengthy expressions (see
Amelung & Wolf, 1994 for explicit form) are skipped and only the results are summarized.
These results basically confirm that (1) the number of eigenmodes is the same for both self-
gravitating and non-self-gravitating cases and (2) the self-gravitating earth behaves like a
non-self-gravitating earth at large n (Amelung & Wolf, 1994). The Love number spectrum
can also be expressed in a form similar to equation (6.2.13) for the non-self-gravitating
case but the definitions of the KUA, KUB, KDA, KDB & KDC are different.

(a) Relaxation diagram (b) Excitation strength for hn
1E+1 1E+2
1E+1 < ’/
A NSG 1E+0 A g 2 (Y] Mo
sG 8, Mo 1E-1
1IE+0- nsg Op 1E-2 -
s |8 sss en 1E-3 4
(1/ka) SG 1E4
co 1E-5 -
1E-1 - 1E-6 -
1E-7 -
1E-8 - co
1E-9 -
1E-2 r —
1 10 100 1 10 100
Angular Order n Angular Order n

Figure 6.3 Relaxation spectra and excitation strengths for Model 2 (see Table 6.1)
which has a solid shell overlying a fluid core. (a) The relaxation spectra for the self-
gravitating case (SG) is compared to the non-self-gravitating case (NSG). (b)
Excitation strength for the non-self-gravitating case is shown for the two modes.

Fig. 6.3a compares the eigenvalues (i.e. the inverse of the relaxation times) between the
two cases for Model 2 (see Table 6.1 for physical parameters). The solid symbols represent
the NSG (non-self-gravitating) case and the open symbols represent the SG (self-
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gravitating) case. The upper branch in each case is for the MO mode while the lower branch
is for the CO mode. Once again, like the uniform earth, Fig. 6.3a shows that non-self-
gravitation results in faster relaxation times (Amelung & Wolf, 1994). Fig. 6.3b shows that
the excitation strengths for the CO modes become insignificant for n>10.

In summary, self-gravitation has no effect on the number of eigenmodes but the relaxation
times for a NSG earth are faster than those for the self-gravitating earth for small n. This
difference however decreases with increasing n and finally the two solutions converge at

large n.

Table 6.1 Physical Properties of the Incompressible Earth Models

Parameters Model | Model | Model | Model | Model | Model | Model | Model | Model
1 2 3 4 5 6 7 ] 9
Density o f| 5517 4448 3572 3572 4448 5517 5517 5517 5517
outer shell
1 (kg/m3)
Shear modulus| 1.4519 | 1.7364 { 0.8281 | 1.4519 | 1.4519 | 0.8281 | 0.8281 | 1.4519 | 1.4519
of outer shell m
(1011 Pa)
viscosity of| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 co
outer shell
n (1021 Pa-s)
radius of innmer| - 3.4855 | 5.7000 | 5.7000 |3.4855 | 5.7000 | 5.7000 | 5.7000 | 6.221
sphere
¢ (106 m)
Density of]- 10977 | 6288 6288 10977 | 5517 5517 5517 5517
inner sphere r¢
| (kg/m3)
Shear modulus| - 0 1.7147 | 1.4519 | 1.4519 | 1.7147 | 1.7147 | 1.4519 | 1.4519
of inner sphere
m¢ (1011 Pa)
viscosity of|- 0 10.0 1.0 10 10.0 1.0 100 1.0
inner sphere
nc (1021 pa)
Number of|1 2 4 2 2 3 3 3 2
| Eigenmodes
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6.3 INTERPRETING GRAVITATIONAL RELAXATION MODES: TWO-
LAYER SOLID EARTH MODEL WITH NON-SELF-GRAVITATION

Next, we explore the relationship between eigenmodes and discontinuities in density,
viscosity, and shear modulus of a spherically stratified earth model. This is important for
interpreting normal modes of gravitational relaxation.

We consider non-self-gravitating earth models with two viscoelastic layers, i.e. a
viscoelastic shell overlying a viscoelastic sphere. Analytical solutions are derived and
special cases are discussed. These special cases include earth models with discontinuities
in any one or two or all of the three physical parameters (density, shear rigidity, and
viscosity). Because the difference between self-gravitation and non-self-gravitation
becomes insignificant for n>30, these solutions for large n derived for the non-self-
gravitating case are also valid for the self-gravitating case.

Through this exercise, the number of eigenmodes for a particular earth model is
established, a better understanding of the nature of those modes is achieved, and the
residues or excitation strength can be calculated with higher accuracy. Furthermore, insight
to solving the dense singularities problem (Wu & Ni, 1996; Han & Wahr, 1995) is gained
and a simple way of avoiding the singularities is suggested.

6.3.1 The Singularity Problem

In the following, p, v, W, a, and go denote density, viscosity, shear modulus, the radius
and surface gravity of the outer solid shell and pc, vc, ¢, €, and gc denote the
corresponding parameters for the inner solid sphere. After lengthy algebraic derivations,
DET(s) (D(s) in eq. 6.1.17) that is used to find the eigen-spectrum can be simplified and
explicitly written out in terms of s to reveal some insights on the singularity problem:

—DA BS KeS ue 6 +1) (u-cs 2
DEr(S)—DA sq_—Y'i'DB S+YC+DC u(s+Ya + DD L
2 2
LS Fle 649 po (£5)2, py (6.3.1)

+DE —bleS _ pple $XVS
E+Y)6+yvd RE+y) S+Y.
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where y = $ y Ye= S—z are the inverse of the Maxwell times for the shell and the core,

respectively; DA, DB, DC, DD, DE, DF and DG are model-dependent coefficients that are
functions of n, a, ¢, p, dp (=pc-p), go and g (see Appendix A). Itis obvious now that
this determinant function (DET(s) in eq. 6.3.1) that is used in the numerical search for the
roots is singular at s= -y ors=-y, (Fang & Hager, 1995; Han & Wahr, 1995; James,
1991). However, this derivation also shows that W(a,s) (in eq. 6.1.17) also contains
6 +y)2 6 +vJ)? in its denominator, and thus can canceled out those in DET(s). Therefore,
there is no real singularity problem. The reason for the problem in the numerical approach
is that the cancellation does not happen numerically. To avoid the singularities in the
numerical approach, simply use the determinant of the simplified Love number's
expression (after the cancellation) as the characteristic function for searching the
eigenvalues, in other words, multiply the old Determinant function by (s +y)2 s+ yc)z .

N .
For a general N-layer earth, the multiplieris J ] (s + yi)z where y; = uf and the subscript i
1=

vi
refers to the itk layer.
100 i
X
Iy
Yy
= 'y
=] &
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=
=
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s | wme L
)
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Figure 6.4 Determinant function DET(s) (dashed line) and the normalized DET(s)
(solid line) for a solid shell overlying a solid core are plotted as a function of -s.
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Fig. 6.4 shows an example: the dashed line, which represents DET(s) for a two-layer
earth, has two singularities (represented by the x symbols) - one around s=-0.54 while the
other is very close to a root (represented by the circle) near s=-2.56. Unless DET(s) is
carefully sampled, the root near s=-2.56 can be easily mistaken as a singularity! This
problem can become very severe when the number of layering increases. To remove the
singularities, DET(s) has been normalized by multiplying (s + y)2 C+y c)2 to give the solid
line which is well behaved and from which the roots can be found numerically without any
difficulty.

6.3.2 General Solution for the Two-layer Model

For a general case with discontinuities in density, shear modulus and viscosity across the
interface at r = c, the Love numbers in the s-domain can be written as:

go s+ p) (CUA s + CUB s2 + CUC s - CUD)

Ba(9 = 3 € (CDA s*+ CDB s> + CDC s* + CDD s + CDE) (63.2)

(s) =2 go s+ ) (CVA s3 +CVB 52 + CVC s+ CVD)
LS)=3 Ca*uvn(+1) (CDA s*+ CDB s’ + CDC s*+ CDD s + CDE)

where, again, CUA, CUB, CUC, CUD, CVA, CVB, CVC, CVD, CDA, CDB, CDC,
CDD and CDE are just model-dependent coefficients and are given in Appendix A.
Because the denominator in (eq. 6.3.2) is a 4th order polynomial of "s", there can only be a
maximum of 4 eigenvalues associated with the 2-layer incompressible earth.

The residues that are derived from eq. 6.1.19 are given by:

1 80 (vs;+w) (CUA s} + CUB s? + CUC s; - CUD)
=3 T @CDA s3+ 3 CDB 57+ 2 CDC s, + CDD)

(63.3)

e go vs;+ ) (CVA s} + CVB s?+ CVC s;+ CVD)
'3 §a4uvn(n+ 1) @ CDA's? +3 CDB s? + 2 CDC s; + CDD)

For large n, the coefficients in egs. (6.3.2) and (6.3.3) can be greatly simplified and the
above expressions also become valid for the self-gravitating case (at large n). The 4
eigenvalues for large n are:
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51= Ry (R =2) +RSQ(-Ryy + 3)
$2=-Ryy (R +3) + RSQ Ry, + 3) (63.4)
= R (R + )+ RSQ (R - 3
4= Ry (R = 7) ~RSQ Ry + 3)

where

1 3

2 3 9[Rv.+Vpgo+W+V)cdpglu?u\3 1,5 |°
RSQ=i{5R - + =R
Q [3' PV{RIN 2 nv2V§Gt+u92 3 Nuv

and thv = M . Since n is large, the terms within the braces remain positive,

W +prdvve
thus, all the eigenvalues must be real for large n. When n—»>®, s;=s,=0 and
s3=5,=-R, - The four modes represented by si, s;, 53, and s4 can be denoted as MO,
M1, T1 and T2. Their physical origin and meaning are to be discussed in the next
paragraph and in the following sections.

Fig. 6.5 shows the relaxation diagram and the excitation strengths for a two-layer model
(Model 3 in Table 6.1) that has an interface at 671 km depth. Several observations can be
made: (1) T1 and T2 relax much faster than MO which in tum is faster than M1 (Fig. 6.5a).
(2) The excitation strengths for vertical displacement Love number, hp, (Fig. 6.5b), show
that the MO mode is always the dominant mode and the excitation strengths of the M1 mode
decline quickly with increasing n. Similarity between visual pattern of MO and M1 in Fig.
6.5b and that of MO and CO of the 2-layer-solid-liquid model in Fig. 6.3b suggests that the
MO and M1 modes are due to the buoyancy forces at the surface and the interface
respectively. (3) For the excitation strengths for horizontal displacement I (Fig. 6.5¢), the
M1 mode is the dominant mode at small n and MO becomes the dominant mode only for
n>7. (4) At small n, the excitation strengths for I are just as strong as hkp, or even
stronger (compare Fig. 6.5b & c); only when n>10, do the excitation strengths for I
become weaker. (5) T1 and T2 modes carry excitation strengths that are smaller than that
for the MO mode by two or more orders of magnitude (Fig. 6.5b & c). (6) The excitation
strengths for /n can become negative for the viscoelastic modes T1 & T2, but their

magnitude are quite small (Fig. 6.5¢).
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Figure 6.5 Relaxation spectra (a)
and excitation strengths (b &c) for
Model 3 (see Table 6.1) which has a
solid shell overlying a solid sphere
with dp,du,dv at 671 km depth. In
panel c, the excitation strength for
the Tl & T2 modes becomes
negative.

When there is only a density contrast across the interface, i.e. p=u. and v=v,,

s+ p.)2 can be factored out of the numerator and denominator of the love numbers

expressions (eq. 6.3.2), yielding simpler expressions:

h, (9

1 g bs+w’ Os+BE

1 8ovs+uw) Ds+E)

3-§(VS+[L)7(ASZ+BS+C)=3' tAs*+Bs+0)



_2 go(vs+uw Fs+H
) =T Vo e s ) AT+Bs<C) (63.5)
CDA CDDu-2CDEV ~_CDE _CUA r__ CUD
where A=—VT ,B= !‘"!P ,C——uz— ,D-—T ,E—~-—u2— ’

- CVA _CVD
F==7 . H==7

The denominator in eq. (6.3.5) is a second order polynomial of s so that there can only be a
maximum of 2 eigenvalues. The eigenvalues of these buoyancy modes can be expressed

as:

- 2—
B=WB?-4AC 63.6)

Si= ZA

The residues are given by:

gou+vs)E+Ds)
> EB+2As) ©3.7)

=2 g (vs;+w Fs; +H)
"3 Ca%uvo@+ )B+2As)

1
I'E'=3

Again, for large n the two roots are simplified as:

Rt .

= =1 (6.3.9)
v(m* d: 2 )

Eqgs. 6.3.8 and 6.3.9 give excellent approximations to the exact eigenvalues (eq. 6.3.6) for

n>30. The expression for s; (Eq. 6.3.8) explicitly shows its origin, the buoyancy force
p 8¢ at the Earth's surface, therefore it is the MO mode. The expression for s; (eq. 6.3.9)

explicitly shows that it is due to the buoyancy force dp g at the interface r = c, therefore it
is the M1 mode.

Sa
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The relaxation diagram and excitation strengths for Model 4 (in Table 6.1) with a pure
density discontinuity at 671 km depth are plotted in Fig. 6.6 and those for Model 5 (in
Table 6.1) with a density jump at the core-mantle-boundary are in Fig. 6.7. Compare
visual patterns of excitation strengths for hn of modes MO and M1 in Fig. 6.6b and Fig.
6.7b with that of MO and M1 of the general 2-layer-solid-solid Model 3 in Fig. 6.5b, their
similarity attests that MO and M1 of the general Model 3 are indeed buoyancy modes. The
absence of the T1 and T2 modes in Fig. 6.6 and Fig. 6.7 (for Models 4 and 5 that have
only a density-change) implies that T1 and T2 are due to changes in viscosity and/or shear
modulus in Model 3.

(a) Relaxation diagram for dp at 671 km (b) Excitation strength for hn
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Other important observations are listed as follows: (1) For h;;, comparison of the excitation
strength of M1 mode between Models 4 and 5 (Fig. 6.6b & Fig. 6.7b) shows that M1
mode has larger excitation strength when the interface is shallower. (2) For lp (Fig. 6.6¢c),
the M1 mode in Model 4 is dominant for n<30 and the excitation strength for the MO mode
can become negative. (3) Comparisons of the relaxation diagrams and excitation strengths
of hp Model 5 (solid core) and Model 2 (liquid core) show that CO mode of the liquid core
(Model 2) relaxes faster (Fig. 6.5a vs. Fig. 6.7a) and carries larger excitation strengths
(Fig. 6.5b vs. Fig. 6.7b) than M1 mode of the solid core (Model 5).

(a) Relaxation diagram for dp at CMB (b) Excitation strength for hn
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Figure 6.7 Similar to Fig. 6.6 except that the pure density jump is at the core-
mantle boundary (CMB) (Model 5 of Table 6.1).

6.3.4 No Density Change

To find exact nature of T1 and T2 modes, set dp=0 and only allow changes in shear
modulus and viscosity. Thus, CDE=CUD=CVD=0 and a "s" can be factored out of the
numerator and denominator in the general expressions of the love numbers (eq. 6.3.2).
This yields the following simplified expressions:

1 8 (vs+ ) (CUA s2+CUB s + CUC)
3 L (CDA s° + CDB s2 + CDC s + CDD)

hy(s) = (6.3.11)



8o +v9 (CVA s2+CVBs+CVC)

_2
L) =3 Ca*pvn@+1) (CDA s°+ CDB s* + CDC s+ CDD)

There are a maximum of three eigenvalues:

s §m+CDS+CDT

=-4 &BB - 1 (cDs +cDT) + 1 /3 (CDS - CDT)

S2=-3 TDA ~
s3=-%-CCI87B§-%(CDS+CDT)—12-/_(CDS CDT)
where
. 1
_[1 (,[CDBP CDD . o CDB CDC 3
_ 1
_[1 CDB 13 CDD . o CDB CDC 3
oot =[5 (-2 [€BR] -27EBR + 9 Tsar”) - /B
and the discriminator is:
_ 1 cbD? +__(2c13c2 -9 CDB CDD) CDC
~4dcpaZ T 4 CDA3

@ CDB CDD- CDC? cDB?
CDA?

o4

The residues are:

b _ 1 8 (vs;+w (CUA s?+ CUB s; + CUC)
=37 £(3CDA s?+ 2 CDBs, + CDC)

=2 go @ +vs) (CVAs? +CVB s;+ CVC)
3Ca4uvn(n+1)BCDAsz+2CDB s;+ CDQ
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(6.3.12)

(6.3.13)

(6.3.14).

(6.3.15).
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Figure 6.8 Similar to Fig.6.5
except that the earth model has no
density jump at 671 km (Model 6
of Table 6.1), thus the buoyancy
mode M1 does not exist.
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1 e+ ulp g
4 nvev +n)’
roots are all real. The two roots, s; and s3, are close together with the same large n limit

!v+v !yuc

T (nrm)v
(Model 3) and can be interpreted as negative ratio of the 'effective’ viscosity and the
‘effective’ shear modulus of the model. Therefore the two roots are for the two viscoelastic

(or transition) modes. The other root, s, has a limit of - %l"g

limit as that for the uniform sphere (which can be easily verified using egs. 6.2.3, 6.2.7,
6.2.8, and 6.2.9 by dropping the Maxwell time term that can be neglected at large n in eq.

For large n, the discriminator A= -

1s negative, and the three

that is the same as those for T1 and T2 of the general two-solid-layer model

for large n. This is the same
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6.2.3) and is the same as the limit for s; for the general two layer model (Model 3), and
that for s; mode for the density-change-only two-layer model (dropping the term 1/ n ).
So, s; can be identified as the MO mode.

Fig. 6.8 shows the relaxation diagram and excitation strengths for a two-layer model with
changes in viscosity and shear modulus but not in density (Model 6 in Table 6.1). The
presence of T1 and T2 confirms that they are caused by the discontinuity in viscosity and
shear rigidity. On the other hand, the absence of M1 implies that M1 mode can only be
generated by density change in Model 3, not anything else.

6.3.5 A Finite Change in Shear Modulus or/and Viscosity

Success in identifying the origins of the buoyancy mode M1 and viscoelastic modes T1 and
T2 in terms of material contrast encouraged attempts to further break down Tl and T2 as a
group: Is the T1 mode caused by the discontinuity in shear modulus and the T2 mode by
that in viscosity? or vice versa?

Analytical solutions are derived for models with a discontinuity only in shear modulus
(Model 7 in Table 1), or only in viscosity (Model 8), or in both shear modulus and
viscosity under condition that the ratio of the two is continuous across the boundary. Itis
found that a change in either shear modulus or viscosity introduces the two transition
modes simultaneously. The results for models 7 and 8 are plotted in Figs. 6.9 and 6.10
respectively. Comparing the two figures, the largest difference between the two models is
in the behavior of the main mode MO. When the pure change is in shear modulus (Fig.
6.9), the MO behaves like that of the uniform sphere (Fig. 6.5). When the change is in
viscosity (Fig. 6.10), the relaxation time increases at small n which is shown as a decrease
of (-s) in the relaxation diagram (Fig. 6.10a).

When the ratio of shear modulus and viscosity p/v is kept constant across the interface, i.e.
M./ v.= /v but allow both of them to change, the discriminator in eq. 6.3.14 becomes
zero. Thus, two of three real roots become equal. In fact, the denominator in the
expressions (eg. 6.3.11) can be factored into:

CDA s% +CDB s2+ CDC s+ CDD=CDA £ +9°6 -s) .
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Figure 6.9 Similar to Fig.6.8
except that the earth model has no
density jump nor viscosity jump
at 671 km (Model 7 of Table
6.1). Note however a pure jump
in shear modulus introduces two
extra real roots.

Therefore, roots are s; = - % +3CDS ,sy=583 =-%
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where CDS is given by eq. 6.3.13

with D=0. The first root, s;, is for the main mode MO and the other two are for the
viscoelastic modes. However, when one substitutes s, or s; into the expressions for the
residues (eq. 6.3.15), the residues are all exactly zero. In fact, both numerator and

denominator of the expressions (eq. 6.3.11) contain the factor (-\'; +s)2 , thus after

cancellation, there is the only root for the MO mode. Hence, there is no viscoelastic mode
when the ratio is continuous. The residues for the MO mode are:

h —1 (CUAsT+CUB s, + CUC) v g

™1 o]

C CDA CDS

(6.3.16).
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6.3.6 Infinite Change in Viscosity - Elastic Lithosphere

Effects of the lithosphere on postglacial rebound have been studied by a number of
investigators (Peltier, 1984; Wu & Peltier, 1982). McConnell (1968) argued that a
lithosphere is required so that the observed decrease in the relaxation time spectrum at
shorter wavelengths could be explained. Peltier (1984) directly inferred lithospheric
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thickness from relative sealevel data along the U.S. east coast. Wolf (1984) derived
analytical solution for an incompressible and hydrostatically prestressed viscoelastic non-
self-gravitating sphere surrounded by a thick elastic shell with uniform density. The
solutions here are more generalized than Wolf's (1984) by including discontinuities in
density and shear rigidity.

The lithosphere is simulated by setting v = ® in the general two-layer model (Model 3)
while keeping dp = O, w = p. and finite v.. The love numbers can then be simplified

from those for the general two-layer model (Model 3, eq. 6.3.2) to the following:

1 8o (CLUA s?+ CLUB s+ CLUC)

Bo(9 = 3 Z(CDLA s+ CDLB s + CDLO) (63.17)
L(s) =2 go(CLVA s2+ CLVB s+ CLVC)
3%a®un(n+ 1) (CDLA s+ CDLB s+ CDLC)
where CLUA =SUA | cLup=YB | cLuc=&¥¢ |
CVA CVB cve
= VB = VC= 6.3.18).
cLva =Ep  cLvB=EF  cLve=S3¢ (6.3.18)

_CDA _ CDB _CbC
CDLA =52 ,CDLB =522 ,CDLC=20=

In fact, v does not actually exist in the expressions of the above coefficients because it
factors out with that in the numerators.

The denominator of (6.3.17) shows that there is a maximum of two eigenvalues even when
dp=0 and wu = u, : the lithospheric (viscoelastic) mode LO and the main mode MO. Fig.
6.11 plots the relaxation diagram and excitation strengths for Model 9 (Table 6.1) which
has a 150 km thick lithosphere with dp =0 and p =p.. Asis well known (e.g. McConnell,
1968; Wu & Peltier, 1982; Wolf, 1984) the lithosphere behaviors like a low pass filter that
blocks out the shorter wavelength deformations. This is confirmed in Fig. 6.11 where the
excitation strength of the main mode MO for kn is suppressed for large n (Fig. 6.11b) and
the relaxation time for the MO mode decreases with increasing n for n>15 (Fig. 6.11a). At
very large n, the relaxation time of both the MO and LO modes approaches the viscoelastic

asymptote -—2E_  The LO mode itself carries very little strength for hn (Fig. 6.11b)
(s +p.)v,
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except near n=5S where the LO and MO branches crosses in the relaxation diagram. Fig.
6.11c shows that the excitation strength of the MO mode for Iy, although greater than that

for LO in magnitude, becomes negative for n>10. Thus, large but negative excitation

strengths occur when an elastic lithosphere exists.

(a) Relaxation diagram for Lithospheric Model
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6.11 Similar

1000

to

Fig.6.10 except that the earth
model has only an 150 km thick
elastic lithosphere (Model 9 of
Table 6.1). Note that only two
modes exist and the MO mode
merges with the viscoelastic
mode LO at large n.
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6.3.7 Summary

For incompressible and non-self-gravitating two-layer viscoelastic earth models, analytical
solutions derived here established that a pure density jump introduces an extra buoyancy
mode and a discontinuity in p/v introduces two viscoelastic modes simultaneously.
However, an elastic lithosphere of infinitely large viscosity only introduces one extra mode
(LO) regardless of density and shear modulus changes.

The viscoelastic modes carry very small excitation strengths that can be negative for the
horizontal displacements (/p). When there is an elastic lithosphere, positive and negative
excitation strengths can have comparable magnitude. This may pose a numerical problem
in the construction of Green's functions for horizontal displacement, strain or stress
because the excitation strengths have to be calculated to high precision otherwise the
Green's functions constructed will not be very reliable. Thus, in order to interpret VLBI or
strain/stress data, highly accurate numerical schemes, that can reproduce these analytical
benchmark results, must be used.

Finally, a way of obtaining a singularity free determinant function has been suggested. This
is particularly useful in the numerical search for the eigenspectrum and for accurate
determination of the Green's functions for the interpretation of postglacial rebound data
when the earth model is composed of a large number of uniform layers.
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APPLYING THE FINITE ELEMENT METHOD

TO SPHERICAL EARTH

This chapter is concerned with the construction of a finite element spherical earth model
for postglacial rebound studies. We shall consider non-self-gravitating case first and
calibrate the model with the spectral method using the results derived the previous
chapter. Once the spherical finite element model has been demonstrated to work then it
can be used to study postglacial isostatic adjustment of a laterally heterogeneous spherical

earth.

The spherical finite element model is very computational intensive even for a
supercomputer and for calibration purpose we are only interested in simple spherical

5155

Figure 7.1 A profile of the six-layer finite

element mesh

earth models with long wavelength harmonic
loads, therefore we start with coarse grids in
the spherical finite element model. To model
more realistic loads, refined grids are needed.

7.1 THE FINITE ELEMENT GRID

The grid consists of thick spherical shells with
elements covering from the surface of the earth
to the bottom of the outer core at 5155
kilometers depth. The whole three
dimensional finite element grid consists of 6
spherical layers of elements. The thickness of
the each layer is largely dictated by the well
known discontinuities inside the Earth. A
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profile of the layering is shown in figure 7.1.
From the surface downwards, the layers
consists of a 150 km thick lithosphere, the
upper mantle, the transition zone and the
lower mantle which is composed of two
layers of elements to maintain the aspect ratio
between the radial dimension and the

® nodal point o mid-edge point
Figure 7.2 Prism and cubic elements.

is the liquid core.

tangential dimension of the elements to be
close to the ideal ratio of 1. The bottom layer

To fit the spherical surface, two kind of elements are used: second order prisms and cubes
(see Fig. 7.2). Second order element means that between nodes at two neighboring
comers there is an extra node along the edge. To mimic a spherical surfaces, the edges

North pole
5 5 transit clements
20
y 10 | 10 5 20 20
5 5
E1E 10 10 polar elements
. 20
I regular cubic elements
l 20 20
20
lithosphere upper mantle lower mantle

Figure 7.3 Three kinds of grid in the mesh. Numbers are in angular degree.

that connect the comer
nodal points do not
have to be straight lines
but may be slightly
curved. Also a second
order shaping function
is used to interpolate the
displacements and
stresses within an
element. The prisms are
used in the two polar
areas whereas the cubes
are used everywhere
else. To best utilize the

computing resources, a fine 5° by 5 gridis assi gned to the lithosphere since this is where
the load is applied and where displacements are calculated. Below the lithosphere, the
grids get coarser with increasing depth: 10° by 10° elements are for the upper mantle
(between 150 km depth and 700 km depth), and 20° by 20° elements for the lower mantie
and the liquid core. Figure 7.3 shows part of the layout of the three kind of grids
covering from the Greenwich Meridian to 20° longitude and from the north pole to 40°

colatitude. The rest of the grid can be deduced from symmetry.
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This spherical grid has 31094 nodes and 4122 elements. It is too large to run on the IBM-
RS 6000 servers at University of Calgary. It had to be run on the Fujitsu supercomputer
at the High Performance Computing Center. It needs about 2 giga-bytes of swap disk
and takes 1753.7 second CPU time to calculate the elastic deformation which only takes
one time increment and one iteration. In comparison, a similar computation for a flat-
earth model only takes about S0 second.

7.2 BENCHMARKING

For the purpose of calibration, we consider a non-self-gravitating and incompressible
uniform earth model (Model 1 in Table 6.1) under an n=2 harmonic load which is left on
the earth's surface at t=0. The spatial distribution of the n = 2 harmonic load is shown in
figure 7.4 along with its discrete form for the finite element computation. The load only
varies with colatitude and is the same for all elements along the same parallel.

Figure 7.5 compares the elastic and viscoelastic radial displacements computed for the
spherical finite element model with the analytical solution of spectral method from the
previous chapter. The viscoelastic displacement is computed at two thousand years (t=2
ka) after application of the load. The difference between the results computed by the two
methods is around 1 or 2% for the most part. The exceptions are in the two polar areas
and around colatitude 55 and 125 degree. In the polar areas, the larger differences may
be attributed to the coarse elements there. On the other hand, large percentage
differences around colatitude 55 and 125 degree are due to the fact that the displacements
are close to zero there. The difference is smaller for t=2 ka than the elastic ones at t=0.
In general, the comparison shows that the finite element calculation is acceptable. Better
agreement with the analytical results can be expected with a finer grid.

It is unfortunate that the Fujitsu supercomputer was shut down permanently after the
above calibrations. But, we have already shown that our spherical finite element model
can be used to calculate elastic and viscoelastic deformation of non-self-gravitating earth.
Given that more powerful supercomputers are available, we can design finite element
grids with finer spatial resolution that can handle higher harmonic loads and use it to
study postglacial rebound in laterally heterogeneous spherical non-self-gravitating earth.
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CHAPTER 8

CONCLUSIONS

While the main focus of this dissertation is on the effects of lateral heterogeneities on
postglacial rebound, a by-product of this study is that new insight on the origin of the
normal modes of viscoelastic-gravitational relaxation for a laterally homogeneous
spherical earth is gained.

For laterally homogeneous spherical earth models, analytical solutions for simple
incompressible earth models have been derived. Effects of self-gravitation, density
contrast, viscosity contrast, and shear modulus contrast on postglacial rebound have been
evaluated based on these analytical solutions. It is found that self-gravitation generally
does not affect the number of normal modes. Neglecting self-gravitation results in
slightly faster relaxation for loads with long wavelength (small n harmonics) but the
difference approaches zero at large n.

The problem of singularities and false modes has been solved by the analytical
derivation. A very simple way to avoid these artificial singularities has been suggested.
Concerning the effects of the radial structure of the earth on postglacial rebound, our
analytical solutions demonstrate that the maximum number of modes can be determined:
A density contrast between two solid layers introduces a buoyancy mode and a contrast in
the ratio of viscosity/(shear modulus) introduces two insignificant transitional modes. As
for the interface between a solid mantle and an inviscid fluid core, there is only one extra
buoyancy mode. It is confirmed that an elastic lithosphere introduces only one additional
mode but it generally has very little strength of excitation. More significantly, the
lithosphere causes a shortening of the relaxation time of the main mode at large n (also
see McConnell, 1968).

In the study of lateral heterogeneities, two dimensional axisymmetric models have been
extended to three dimensional non-axisymmetric models. The effects of lateral variation
in lithospheric thickness, asthenospheric viscosity, and asthenospheric thickness have
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been extended to other geodetic signatures other than relative sea levels. Also, the effect
of lateral variation in density and deep mantle viscosity have been investigated. The
followings are conclusions:

(1) The removal of axisymmetry does not significantly affect the validity of our 2D
results. Further, the realistic modeling of postglacial rebound in North America confirms
that simple earth models' results are consistent with the response of this more complex
earth model to the realistic ice load history.

(2) The sensitivity of RVD to a lateral heterogeneity depends on the location of the
observation site relative to the location of lateral heterogeneity and the load. When a
change in model property takes place under the middle of the load, RVD in the central
area is sensitive. Conversely, RVD around the edge is sensitive to a property change
under the edge. Further, the effects are most prominent for the variation (of lithospheric
thickness or asthenospheric viscosity) inside the former glaciated area.

(4) However, it is found that the vertical motion (measured by RVD and gravity) is least
sensitive to earth properties in the inner peripheral area of the load whereas the horizontal
motion is most sensitive there. The gravity (or vertical displacement) in the central area
can be affected by low-viscosity asthenosphere outside the load area whereas the RVD is
mainly affected by the rheology in an small area beneath an observation site.

(5) Further, no matter how sensitive RVD is at a site, RVD at the single site can not tell
the existence of lateral heterogeneity because RVD at the site can also be sensitive to
vertical rheological structure. Lateral heterogeneities can only be detected by comparing
RSL at sites across a large area, i.e. spatial-temporal pattern of postglacial rebound.

(6) When comparing RVD of laterally homogeneous models with RSL observations to
detect lateral heterogeneities, the inferred viscosity may not be exact but its spatial trend
of variation is usually indicative, excluding the inner peripheral area. This comparative
method works better where there is only lateral variation in lithospheric thickness.

(7) The effects on RSL are also dependent on the nature of the lateral heterogeneities and
size of the ice sheet. In general, the effects of lateral variations in the asthenosphere are
larger than that in the lithosphere. Furthermore, there is trade-off between effects of
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asthenospheric viscosity and asthenospheric thickness which can not be uniquely
resolved by RSL data.

(8) The effects of lateral viscosity variations in the lower mantle are significant for large
ice loads with size comparable to the Laurentide Ice Sheet, but are small for small ice
loads with size comparable to or smaller than the Fennoscandia Ice Sheet.

(9) For lateral density variations, a low density continental root generally has little effect
on RSL and horizontal motions. However its effect on gravity is detectable given that the
Pleistocene ice history is known.

The following are some suggestions for future studies on glacial isostatic adjustment:

1) Inversion of 3D rheological structure of the upper part of the mantle using RSL and
other geophysical data. Right now there are only inversions done for the radial profile of
viscosity in mantle (Mitrovica & Forte, 1997; Mitrovica & Peltier, 1995).

2) Develop a global geodynamic modeling software package that can solve both the
equation of motion and Poisson's equation for a self-gravitating 3D heterogeneous
spherical earth.

3) With more powerful supercomputers, the 3D spherical finite element grid can be
improved to model glacial isostatic adjustment of realistic ice sheets and realistic earth
models. Different kinds of observations besides RSL (e.g. gravity, horizontal
displacement and velocities, earth rotation, etc.) can be computed and the earth model as
well as ice history can be improved by comparing with the observations.
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APPENDIX A. ANALYTICAL EXPRESSIONS FOR THE LOVE NUMBERS h(s)
AND [ (s) FOR A 2-LAYER INCOMPRESSIBLE, NON-SELF-
GRAVITATING SPHERICAL EARTH

The solution in the transformed domain, which has been derived with the THEORIST
symbolic manipulation software, can be expressed in terms of the transform variable s:

1 80 s+ W (CUA s3 + CUB s+ CUC s - CUD)
3 (CDA s+ CDB s> + CDC s2+ CDD s + CDE)

ln(s)—z g vs+u) (CVA s> +CVB s2+ CVC s+ CVD)
"3 a%uvn@+1) CDA s?+ CDB s° +CDC s2+ CDD s + CDE)

where the variables CUA, CUB, CUC, CUD appear in the numerator of han(s); CVA,

CVB, CVC, CVD appear in the numerator of /(s) and CDA, CDB, CDC, CDD, CDE

appear in the denominators of ha(s) and /,(s). They are defined by:
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+3(m-1)(2n+3)Rn-1) VBa*(u.v+puv)up. vy,
+VED(2|J.CV+|,I.‘V..) Rvv.dpg.
+n@+)@2n+3)Rn-1)VAa*u.v+2uv)u.vv.dpg.

CVC =2VDa*npu?p2v?
+@-D)@Ro+3)Rn-)a*BVBv+nf+1)@n2+4n+3) VCv]u2ulv,
+VEn(u.v+2pv)up.vdpg,
+n(n+1)Rn+3)Rn-)VAa*Ru. v+uv)up.v.dp g

CVD=n[VEv+@+D)@2n+3)@2n-1) VAa*v]uZu2dp g
ZA =TBA g.dp +TC gy p
ZB=TEA g . dp + TFgqyp

and the variables TC, TD, TF, TH, TI, TAA, TBA, TEA, TGA, VA, VB, VC, VD, VE
are only functions of the radius of the earth (a), the radius of the interface (c) and angular
order (n):

4 3_n2. 2n+3
TC=2 @*+2n3-n 2na:3) @n+1)c
+2@+D)(-1) 2n?+4n+3)a20-34n+2
-2n({@n+2) 2n2+1)a2n-1
-2n@@+2 @+ ) @-1) @n+1)c20-!

€22*3+a%c?2- ) @4+2n3-n2-2n+3) @2 n+1)2
aS

2P0+ @+ D@-)@n+3)@n-1)c2o+!
a3

_2(a2n-2+a-2n~4c4n+2) (2n2+1) (2n2+4n+3)

TDO=2

2. 2n+3
TF=3 (o 3)(2131;—1)c

-4@+)@-1) @n%+4n+3)a20-3c4n+2

-@n*+16n3+4n2-4n+3)an-!




-3@+D)@-1)@n+ c2n-l

+2n3-n%2-2n+3)2n+ 122n-! .3 n(n+2) @2-3)2n+13c20+3

@*
TH=3 —3 D

n@+2)(a+D@-D@Rn+3)(2n-1)c2n+1
-6 o
-Bn*+16n3+4n2-4n+3)2n2+4n+3)a2n-2
+4n(@+2) (202 +1)(2n2+4n+3)a2n-4cdn+2

139

_ {@*+2n3-n2-2n+3)a*c2*-Len(@+2) (n+1)(n-1) 27 +3(2n+1)%C n2+ 4n+3)

TI >3

4000+ @+D@-)Rn+3) @n’+6n2+2n-3)c2n+!
a’>

-2@+1)(-1)(2n2+4n+3)%a2n-2
-2n@+2)(2n2+ 1) @2n?+4n+3)a2n-4cdn+2

TAA=ca -ca2n-l_g4n+3,-2n-3 _ .2n

@ +2n3-n2-2n+3)@n+ 1) c20
TBA =- T

no+2 @+ 1) @-1)@2n+1)c2a+4
* =
-@+ 1) @-1) @n%2+4n+3)a2n-2¢
+n{+2) @n2+1)a-2n-4c4n+3

TEA =

@*+2n3-n2-2n+3) @n+ [)2c20
- a

,{2@n+3 @n-Da2c2+2.2n+ D222+ @+ @+ 1) @-Dn

a)
-2@+1)(n-1)(2n%2+4n+3)a2n-2¢
-2n(n+2) @n2+ [)a2n-4c4n+3

2n+4
TG =_(2n+;)4c +2a2n-3c4n+3 L Oy [)c2n-2a20-1¢

VA =3 azn'lc _IQn2+2n-1)cz‘“’2
on+3)@n-10 2 @+ 1) aZ




1 @2+ n-3)Rn+1)2c2n0 na-2n-3c4n+3
"I GETD o+ Cn-D) C@r)Car I ]

1 n(n+1)2c2e+4

Z2n+3) Cn-Da’

VB = @n*+ 163 +4n2-4n+3)a2“‘1+ @n2+2n-1)c2n+t
T @-D@n+3Cn+)2n-)) @n+1)a*
@2+n-3) 2n+1)c2r-! 4n(2n2+4n+3)a'2“‘3c4“+2
) En+3)2n-1) + Cn+3) o+ 2n-1)
n{@2-3) @n+1)c2o+3

@-)@n+3)@2n-1)a*

(n+1)a2n-l_na-2n-3 cAn+2 (2n+1)c2“*’3
VC=6 + 3
n+D)Q2n+3)Cn+10)2n-1) (2n+3)@n-1)a
@n2+2n- 1)02°+1+ @%2+n-3)2n+1)c2n-1
n@+1)2n+Ya? n@+D)ECn+3) Cn-1J)

VD=3 @+2)(202+ ) a?"-!-@-1)Rn2+4n+3)a20-3c4n+2

2n+1
N @+2)(n-)Rn+3)@2n-)Rn2+2n-1)c20+!
(2n+1)a®
@*+2n°-n2-2n+3) @n+1)c2o+3

pr
-0+ @-1) @+n-3)2n+1)c2n-!

VE=@+n-3)@n+ )a*c?"+3 @+ 1)a2o+3¢
+3na28+lc4n+3 p@+ )R+ [)c2n+4
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APPENDIX B. LIST OF RSL SITES IN NORTH AMERICA

Latitude and longitude of RSL sites in North America that are used in the dissertation:

Latitude Longitude  Site Name

55.00 -82.50
57.00 -77.00
53.00 -79.00
58.00 -94.00
64.50 -95.00
72.00 -80.00
69.00 -82.00
69.00 -75.50
63.00 -70.00
62.00 -75.00
64.50 -84.00
59.80 -80.30
53.00 -60.00
51.50 -56.50
47.00 -64.00
46.50 -63.50
46.00 -60.00
45.00 -65.00
43.10 -70.70
42.80 -70.80
41.20 -72.50
41.00 -74.00

C. HENRIETTA MARIA
RICHMOND GULF
JAMES BAY, QUE.
CHURCHILL, MAN.
KEEWATIN, NWT
MILNE INLET, BAF.
IGLOOLIK IS.

IPIK BAY BAF.

C. TANFIELD
UNGAVA PEN.
SOUTHAMPTONIS.
OTTAWA IS, NWT
GOOSE BAY

NW. NEWFOUNDLAND
TIGNISH PEI

FRENCH R. PHI

CAPE BRETON IS,, NS.
BAY OF FUNDY

ISLES OF SHOALS, NH.
BOSTON, MA
CLINTON, CT.

NEW YORK
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