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Abstract 

Knowledge-based expert systems have found increasing use in a wide variety of ap-

plications over the past few years. One area in which they have become particularly 

popular is design automation, a domain in which most problems are known to have 

Non-determinisitic Polynomial time complexity. Despite their great popularity, ex-

pert. systems suffer a number of liabilities in this domain, the greatest being the 

problem of applicability to design- or synthesis-oriented problems. This liability is 

often overcome by using an iterative refinement paradigm which allows the design 

problem to be attacked as a diagnostic problem, for which expert systems are better , 

suited, and for which they are shown to be effective. 

This thesis investigates the value and practicality of incorporating stochastic 

processes in design-oriented expert systems. It is demonstrated that expert systems 

employing simple iterative refinement are subject to arrest in local minima, and that 

the use of randomness in the control structure of an expert systems can ameliorate 

this situation. An experimental expert system using a stochastic procedure based 

upon Simulated Annealing is developed and used for this demonstration. 

Also presented in this thesis is the Expert System Wrapper Environment (ESWE), 

with which the test "experts" were generated. ESWE was developed by the author 

to provide simple, convenient control structures for the synchronisation of sub-tasks 

within an expert system. It assists program development by automatically adding 

necessary control patterns to rules written in ART, and provides mechanisms to 

simplify the manipulation of control facts. 
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Chapter 1 

Introduction 

1.1 Motivation 

Since the advent of integrated circuit technology in the 1960's, the complexity of 

integrated circuits has been continuously increasing, from as few as four or five 

transistors per die initially to as many as one million transistors today. Continuing 

advances in IC fabrication technology, which promise transistor counts as high as 

several million for a one centimeter squared die in the imminent future 1 and the 

possibility of increased die sizes allow for continued growth in the size and complexity 

of circuits. 

As these circuits become increasingly large, the effort required to design, verify, 

and test them increases combinatorially. The design time for a large integrated 

circuit 2 may reach hundreds of man years, while exhaustive testing becomes virtually 

impossible. Consequently, it is often possible for a very complex circuit, such as a 

32-bit microprocessor, to be in common use for several years with design flaws still 

being revealed. 

With the goal of reducing the cost of circuit design and improving the reliability 

of the circuits produced, a great deal of effort has been expended in automating 

the design process. Over time, design automation efforts have become increasingly 

ambitious, moving from simple geometrical layout editors, or "polygon pushers", to 

the automated synthesis of circuit layouts from high-level specifications. 

RAMs are already available in sample quantities [Ele88] and sixteen-megabit 
RAMs are currently under development [Cole 88]. 

2Eg. the design of Motorola's 88000 processor is reported to have taken only 20 elapsed months, 
despite the use of state-of-the-art design tools and a Reduced Instruction Set architecture. 

1 
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"Silicon compilers", software tools intended to produce mask-level layouts with 

minimal human interaction, have been in use for some time now. Despite the consid-

erable variety of techniques and approaches, most silicon compilers share a number 

of common features. Fundamental among these is the subdivision of the general 

layout problem into "simpler" problems of component placement, network routing, 

and compaction. Each of these sub-problems, however, is known to be NP-complete 

[Sastry 82] [Schlag 83] [Sahni 80], and are therefore regarded as too time consuming 

to solve optimally. Consequently, design automation researchers have been forced to 

search for suitable heuristics which can be employed to produce placements, routes, 

or compactions of reasonable  quality, without incurring the cost of exhaustively 

searching for an optimum solution. It should be noted, however, that in order for a 

heuristic to avoid the problems of NP-completeness, "optimality" must be sacrificed, 

and some notion of "acceptable quality" must be used in its place. 

One mechanism which has proven quite valuable in this context is the knowledge-

based expert system. Knowledge-based expert systems have existed for over a decade 

and are demonstrably useful for problems which involve some form of diagnosis', 

especially when complete information is not available. It has been thought for 

some time that expert systems would also prove useful for design-oriented prob-

lems such as circuit layout or routing, and considerable experimental evidence 

has been presented to support this belief [Kim 85, Joobbani 86b, Rosenbloom 85, 

Subramanya 86, Koilaritsc 85]. Unfortunately, some of these same experiments have 

demonstrated problems with design-oriented expert systems [Ackland 88]. These 

problems are now briefly discussed. 

'Typically, "reasonable" is intended to mean "comparable to hand-done work". This, however, 
is dependent upon the cost of the heuristic; a very expensive (slow) heuristic is expected to produce 
very high quality results, while we are pleased when a fast simple heuristic works acceptably for 
very simple cases. 

4This is the class of problems for which knowledge-based expert systems were originally designed 
[Shortliffe 76]. 
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1.1.1 The Problem of Local Minima 

One of the greatest problems stems primarily from difficulties in expressing design-

oriented activities in a way suitable for expert systems. One favored technique 

[Brewer 86] is that of producing an "initial" design, and iteratively refining it. This, 

in effect, casts the design problem into a diagnosis problem, which experts systems 

are better suited to tackle. Following this approach, the expert system's knowledge 

is used to recommend localised improvements to the design. These recommendations 

are usually applied "greedily" , trusting the expert system to provide adequate fore-

sight to suggest only moves which will eventually lead to a global optimum. 

Heuristics which operate using iterative refinement to minimise (or maximise) 

some function are members of a class known as "adaptive heuristics". When ap-

plied to design in the manner just described, knowledge-based expert systems form 

a distinct and relatively simple' subset of this class, and are typically characterised 

by their greediness; short-term advances toward the desired goals are readily taken, 

without regard for the possibility of longer-term advantages of other options. Conse-

quently most knowledge-based expert systems are subject to arrest  in local minima 

in the objective function they seek to óptimise, occasionally producing very inferior 

results. 

As an example, consider the task of locating a value for x at which some function 

F(x) (see Figure 1.1) has the least value. One iterative refinement method for solving 

this problem begins by selecting an arbitrary value x', and determining the value of 

F(x'). Next, a value x" is selected, x" = x'± h, and the function is evaluated at 

this point. If the new value, F(x"), is less than the previous, F(x'), accept x" as the 

current minimum of the function, otherwise x' remains the current minimum. By 

51.e. recommendations are accepted whenever they lead to an improvement, and rejected 
otherwise. 

6That is, they are simple in terms of adaptation. 
7Le., becoming trapped. 
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repeating this procedure until no further advances can be made, or until no advances 

have been made in a specified period of time, we slowly converge toward a minimum 

of the function F. 8 

Figure 1.1: Function Optimisation with Local Mimima 

This is an example of a "greedy", or opportunistic, iterative refinement procedure, 

in which short term advances are always capitalised upon without regard for the 

possible long-term consequences. For example, if the initial x' is chosen such that 

A < x ' < C, the final result will (ideally) be B, which is the global minimum of the 

function F, at least, for the range of F displayed in Figure 1.1. If the initial value 

of x' is chosen such that C < a,' < E, then the "optimum" value for x' determined 

by this method will be D, which is clearly not the global minimum of F. In the 

latter of these two cases, the iterative refinement procedure is said to have arrived 

(or arrested) at a local minimum. 

• Members of other subsets of adaptive heuristics operate on the premise that there 

is frequently long-term advantage in occasionally taking short-term losses when try-

'It is sometimes possible, if Ihi is sufficiently small, and with a small enough time interval, that 
the technique may converge upon a meta-stable value such as E in Figure 1.1. 
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ing to optimise a function. For certain classes of objective functions, these techniques 

are able to produce good results much more consistently than are greedy techniques, 

but require large amounts of time. One technique known as "Simulated Annealing", 

in particular, is known to converge to a global optimum,' but is characterised by 

very large time requirements. 

1.1.2 The Problem of Control and Maintenance 

Another major problem displayed by knowledge-based expert systems as applied to 

design automation is that of sequential control and code maintenance. The normal 

knowledge-based expert system paradigm calls for complete "modularity" in the rules 

used, requiring that, wherever possible, rules be described as independent daemons 1° 

which wait for a suitable circumstance to activate themselves. The exertion of explicit 

control over the sequence of rule activation is strongly discouraged, as it tends to 

undermine the effectiveness of the expert system. 

Design automation, however, is a domain in which sequential operations are es-

sential. That is, one subtask must be completed before the next subtask can com-

mence 11. Imposing sequential behaviour on groups of rules is relatively simple, re-

quiring only the addition of one or more control-oriented conditions on the activation 

of each rule. Unfortunately, this quickly becomes unmanageable as the number of 

rules and subtasks grows, rapidly reaching the point at which modifying the sequence 

of execution is nearly impossible. 

9Given a sufficiently slow cooling schedule, Simulated Annealing will converge to a solution 
assymptotically close to the global optimum in finite time with probability 1 [Mitra 85]. 

.10A daemon is, in the software sense, a piece of code that sits "dormant" waiting for some 
previously specified circumstance to activate-it, performs a function, and then returns to dormancy. 
"As an example, consider attempting to place the metal traces on a circuit board before chip-

locations have been assigned, or trying to change a tire before the lug nuts have been removed. 
Each task is likely possible, given a sufficiently determined effort, but can be hardly considered 
productive. 
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In order to overcome this difficulty, it is necessary to hide some of the details of 

the sequencing mechanism from the programmer, allowing sequencing conditions to 

be automatically generated for each rule. 

1.2 Thesis Outline 

This thesis presents a software environment for the development of rule-based expert' 

systems for very large scale integrated circuit (VLSI) layout, which provides support 

for the special requirements of expert systems for design-oriented problems. Of par-

ticular importance is the inclusion of special structures for controlling the sequence 

of operations in expert systems and a technique for avoiding problems with experts 

arriving at local minima. The remainder of the thesis describes a software environ-

ment for developing design-oriented expert systems and recommends a paradigm for 

solving problems with early termination by stochastic means. 

Chapter 2 provides a description of the history of integrated circuit design au-

tomation, with a particular emphasis placed on the use of heuristics for this purpose. 

Considerable attention is devoted in this chapter to the background and principles 

of expert systems and Simulated Annealing. 

Chapter 3 describes a software environment, developed by the author, for the 

description and control of design-oriented expert systems which automatically gen-

erates most of the "code" needed to control the sequence of operations in an expert 

system. 

Chapter 4 describes the usefulness of stochastic process in design-oriented ex-

pert systems and shows the results of two closely related expert systems specially 

developed for this project, one of which uses a form of Simulated Annealing as a 

"meta-heuristic", and the other of which behaves in a more conventional manner. 
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Finally, Chapter 5 presents conclusions and suggestions for further research in 

this domain. 



Chapter 2 

Historical Perspective of Silicon Compilation and 

Expert Systems 

Recent years have seen a growing general awareness of the cost and difficulty asso-

ciated with designing large scale (LSI) and very large scale (VLSI) integrated circuits. 

This, together with the considerable competitive advantage of smaller, faster, and 

more reliable systems resulting from increasing circuit densities, has provided a very 

strong incentive for the automation of integrated circuit design. 

When designing LSI and VLSI circuits by conventional means, a very large por-

tion of the designer's time is spent working at the transistor or gate level. However, 

due to increasing demands for speed and reliability, which can only be met by in-

creasing chip densities, higher level  aspects of design are of considerable importance 

in VLSI circuit design. As Mead and Conway pointed out in 1979 [Mead 80, pp. v]: 

• . Many LSI chips, such as micro processors, now consist of multiple 

complex subsystems, and are thus really integrated systems rather than 

integrated circuits." 

What we have seen so far is only the beginning. Achievable circuit 

density now doubles with each passing year or two. Physical principles 

indicate that transistors can be scaled down to less than 1/100th of their 

present area 2 and still function as the sort of switching elements with 

which we can build digital systems. By the late 1980's, it will be possible 

to fabricate chips containing millions of transistors. The devices and 

'I.e. register-transfer level and system-level 
2The lower bound on transistor gate width for digital logic is believed to be approximately 0.25 

microns. 

8 
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interconnections in such very scale integrated (VLSI) systems will have 

linear dimensions less than the wavelength of visible light. 

After ten years, these predictions prove to have been surprisingly accurate. To-

day, multi-million transistor chips are a reality, but this sort of density has been 

achieved only with relatively simple and repetitive structures such as random ac-

cess memories. Today, major issues of microprocessor design include such things as 

(on-chip) caching schemes, virtual address translation, register files and allocation 

practices, and floating point support, which had never been considered as part of 

the domain of microprocessor design only a few years ago. Accordingly, the chip 

designer of today is called upon for much more than circiiit design and layout. 

In order to permit designers to concentrate more on these very important high-

level issues, as well as to reduce the cost and increase the reliability of VLSI. systems, 

it is useful to automate as much of the low-level "detail" work as possible. The 

earliest efforts in this regard usually came either in the form of useful or simplifying 

design abstractions, or in the form of rigorous and exhaustive algorithms intended 

to optimally solve simple (and tedious) subtasks. The primary focus of much of this 

effort has been directed toward removing some of the routine tedium from the design 

process in order to allow highly skilled design experts to focus their energy on the 

more important issues of the design process. 

In recent years, the scope of design automation efforts has expanded, progressing 

from mechanically assisting the drawing of masks and automatically checking for 

design rule violations, toward automatically designing or extracting entire layouts. 

The generally accepted engineering practice for producing circuit layouts is to sub-

divide the task into the problems of module placement, network routing (global and 

detailed), and layout optimisation, or compaction. Most frequently, these steps are 
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regarded as distinct, and applied sequentially; they are, however, interdependent, 

and must be allowed to interact with one another to achieve optimal circuit designs. 

Each of these problems has presented considerable difficulty to those trying to 

automate it; in fact, all three are now known to NP-complete' [Sahni 80] [Schlag 83]. 

NP-completeness does not necessarily imply the intractability of these problems; 

theory allows for the possible existence of an efficient (i.e. polynomial complexity) 

solution method to NP-complete problems, but no such method is presently known 

for any NP-complete problem. 

2.1 Heuristics in Design Automation 

As a consequence of the very large computational complexity of most VLSI design 

problems, design automation researchers have been forced to -resort. to one of two 

basic strategies: formulating simplified models under which circuit design may be 

performed more efficiently; and developing heuristics with which problems may be 

solved more quickly (but without the assurance of an optimal result 4). Occasionally, 

considerable gains have been made with simplified models (such as symbolic layout), 

but, in general, real progress is only made possible by efficient heuristics for the 

original problem. 

For the purposes of this thesis, a heuristic may be regarded as any procedure or 

technique which is intended to solve a problem by making use of some kind of knowl-

edge or assumptions about that problem (or about likely instances Of that problem). 

In this sense, then, the terms heuristic and heuristic procedure are interchangeable; 

an expert system, for example, is referred to as a heuristic without regard to how 

many independent sources of knowledge it may actually encompass. 

3That is, members of the class of problems having non-deterministic polynomial computational 
complexity [Aho 74]. 

'Only by failing to assure optimality can the NP complexity problem be avoided. 
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The aim of a heuristic is to find, with a high probability of success, a "good" 

solution to a problem in much less time than theory predicts is required to find an 

optimal solution. For the purpose of this thesis, heuristics may be regarded as falling 

into two categories: weak heuristics which apply knowledge about problem solving 

to a very broad class of problems with little or no regard for the specifics of the 

problem; and strong heuristics, which apply knowledge about a specific problem, or 

even specific instances of the problem, to that problem only. The class of strong 

heuristics may be further subdivided into the classes simple and complex. Simple 

strong heuristics apply only one or two "pieces" of knowledge  to a problem, while 

complex strong heuristics may contain hundreds or thousands of these "pieces of 

knowledge". 

One example of a weak heuristic is the technique known as "Simulated Annealing" 

[Kirkpatric 83]. Strong heuristics abound in many domains; examples of strong 

heuristics for IC design automation are now far too numerous to list here. 

The remainder of this chapter describes some of the work done in developing 

abstractions, strong heuristics, and weak heuristics for LSI and VLSI design au-

tomation. 

2.2 Design Abstractions 

Over time, circuit designers have adopted a number of abstractions with the objective 

of simplifying their task. Most of these abstractions serve simply to "hide" certain 

levels of detail, deferring, but not eliminating, the low-level detail. Examples of such 

abstractions include the use of Register Transfer Language (RTL) descriptions (e.g. 

51.e. near optimal. 

6Know1edge, as we normally perceive it, is surely not a discrete phenomenon. It is often conve-
nient, however, to attempt to quantize knowledge into convenient parcels, and label these "ideas", 
"rules-of-thumb", "heuristics", etc. 
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[Mano 82, pp. 101 - 102]), Schematic Diagrams (at several levels), and Lambda-

based Design Rules. These abstractions, while not always directly allowing the 

automation of circuit design, can often contribute to more efficient design automation 

by hiding unnecessary detail from computers as well as human designers. 

Several abstractions commonly used by designers, have contributed directly or 

indirectly to the automation of various stages of the layout process. Prominent 

among these is symbolic layout. 

The following is a discussion of the form and impact of two such abstractions, 

namely, symbolic layout and lambda-rules 

2.2.1 Symbolic Layout 

One of the features of large scale integrated circuit fabrication is the concept of design 

rules. These are rules which define the minimum tolerances permitted on a die for 

the separation between various types of features, usually stated in microns ( 10 6m). 

Violating any of these rules greatly reduces the likelihood of producing a working 

circuit. These rules depend on such factors as the photo-lithography used in making 

masks, the accuracy of mask alignment, material used to fabricate the circuit, and 

deposition temperature and method. 

Consequently, design rules .are not only complex and numerous, but vary widely 

from technology to technology, and from process to process. This presents consider-

able difficulty in circuit design, especiilly in terms of training new design personnel. 

The complexity and dynamic nature of these rules often require several years to 

master. The fluidity of design rules has historically had an adverse impact on the 

lifetime of circuit libraries and lengthened the design cycle by occasionally requiring 

large layouts to be modified or redone because of relatively minor process changes. 

One of the earliest major abstractions for the simplification of circuit layout is a 

technique commonly referred to as symbolic layout. The specific technique, known 
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as STICKS layout, is generally credited to Williams [Williams 78]. Prior to the in-

troduction of STICKS, the final stage of IC design, translating circuit schematics 

to mask geometries, was always done by hand. The primary objective of this stage 

in the design is to place as many components (transistors, resistors, capacitors, vias 

and wires) as possible, in as small a space as possible'. This is a difficult objec-

tive to meet, due to the upper bound on die size imposed by yield considerations, 

and because of the lower bound on component size imposed by limitations of the 

fabrication process. 

Further, the number and complexity of design rules posed considerable difficulty 

for designers. They were required to place all circuit features as close together 

as possible without violating any design rules, however, when a rule violation was 

detected, or modifications to the layout required the placement of additional com-

ponents, many thousands of rectangles may have to be shifted to accommodate the 

changes. Because of the sheer number of rules involved, design rule violations were 

invariably found in layouts, often subsequent to the first fabrication. The changes 

required to fix these errors were worse than just tedious, as they often required large 

(and sometimes global) changes, and designers often found themselves introducing 

new errors while fixing the old ones. 

In an effort to relieve designers of the (needless) tedium of manual layout, the 

STICKS system introduced a high-level notation for the description of circuit topo l-

ogy 8 and a compiler to translate a topological diagram (or STICKS diagram) into 

compact physical layout. The STICKS diagram further assisted designers by replac-

ing complex mask-level representations of transistors, vias, and other objects with 

simple, technology-independent symbols. These symbols could later be translated to 

'Significant advantages of speed and reliability are realised by placing more devices in a single 
package. 

81.e. a description of component locations relative to the locations of neighbouring components. 
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the corresponding mask-level representation of overlapping rectangles of various ma-

terials, depending upon the target technology, and the context in which the symbol 

occurs 

The compiler operates by first translating the diagram into a set of constraints, a 

series of inequalities which concisely represent the topology presented in the STICKS 

diagram. These inequalities, which express relative placement of objects by con-

straining one object to be placed above, or to the left of another. By minimally 

satisfying all of these equalities, making allowance for the restrictions of the design 

rules, it is possible to produce an optimal layout of the circuit o. 

At the time the STICKS compiler was constructed, it was considefed too difficult 

to optimally satisfy both horizontal and vertical inequalities simultaneously L• In-

stead, a simpler 1-dimensional compaction 12 technique was devised, which could be 

used to satisfy constraints first on one axis (horizontal or vertical) and then on the 

other. Because this approach often produces non-optimal results, there was provi-

sion for human interaction with the compiler, so that designers could guide it toward 

better solutions. 

With layout done in this manner, designers no longer had to concern themselves' 

with the tedia of placing components within the limits of the design rules, and 

modifications were easily made, by changing the STICKS diagram and recompiling 

it. 

9For example, a considerable variety of vias exist for a given technology, and the specific type 
required is easily deduced from the types of wires it connects. 
"This is one definition of optimal layout. Other definitions also include minimising parameters 

such as total wire length, and crosstalk, which cannot be represented as inequalities. 
"The problem of optimal 2-dimensional compaction has since been shown to be NP-complete 

[Sastry 82] [Schlag 83]. It is still considered too difficult to be solved optimally. 

"The time complexity of 1-dimensional compaction has been shown [Ullman 83] to be a polyno-
mial function of the number of objects in the circuit. 
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2.2.2 Lambda Rules 

As described previously in Section 2.2.1, most LSI fabrication processes are char-

acterised by a large set of complex design rules, the application of which poses a 

major task to designers and design automation tools alike. In 1980, Mead and Con-

way [Mead 80] helped to alleviate this situation by introducing parameterised design 

rules, based on a quantity A defined as one half the narrowest wire permitted by 

the process. After making a survey of a large number of current NMOS processes, 

spanning a variety of scales, Mead and Conway produced a relatively small set of 

generic design rules which were valid across a wide variety of fabrication processes, 

and which could be reasonably expected to scale up or down. The use of A-based 

design rules not only reduced the number of design rules required by a process, but 

also made designs based on these rules more "portable" and less sensitive to small 

changes in process technologies. 

The use of A-rules eventually allowed many designers to realise advantages in 

reduced time for design-rule verification, faster (and often more reliable) development 

of integrated circuits, and less stringent training requitements for novice designers. 

In addition, because many designs now became scalable, designers were allowed to 

benefit from advances in photo-lithography and fabrication technologies'kith little 

or no modification to their layouts. 

2.3 Weak Heuristics 

The class of weak heuristics, or weak methods, is often overlooked in a treatment of 

the subject of heuristics. Frequently, however, some of our most powerful determin-

istic algorithms result from adaptations of weak methods. Mans' weak methods, for 

example, resolution [Robinson 65] are provably complete; that is, it can be proven 

that if a solution for a problem exists, the weak method will find it in finite time. 
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Unfortunately, while finite time solutions are surely better than infinite time solu-

tions, this is often an empty promise, since, for example, theorists would normally 

classify even 101001 seconds as a finite period of time. 

Two classical heuristics for algorithm development are "iterative improvement" 

and "divide-and-conquer" [Aho 74, pp. 60 - 64]. It is these two, in fact, which give 

rise to the majority of simple strong heuristics for VLSI design automation. 

2.3.1 Divide-And-Conquer 

Divide-and-conquer, in the context of computer science, is a general purpose problem 

solving technique based upon the following principle: 

If a problem is too large to be solved simply, try subdividing it into two. 

or more smaller problems (often smaller instances of the same problem), 

and then solve these. Afterward, recombine the results for the smaller 

problems to get the solution to the larger one. 

This technique, while known to be very effective, only works well if the sub-

problems are not strongly inter-dependent and the solutions to the sub-problems can 

be re-combined into a solution for the original problem with little enough trouble 

that the benefits of the sub-division are not lost. The quicksort algorithm, credited 

to C.A.R. Hoare and described in [Aho 74, pp. 92 - 97] is a classical example of 

the successful (and recursive) application of divide-and-conquer to the problem of 

sorting. 

Divide-and-conquer has also been applied to VLSI design automation with fair 

success: the class of "mm-cut" algorithms [Breuer 77] are a clear example of the ap-

plication of divide and conquer to routing. In fact, the place-route-compact paradigm 

is an application of divide-and-conquer to VLSI layout, but not a successful one. It 

is commonly accepted that this decomposition of layout into the separate steps of 
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placement, routing and compaction is does not lead to optimal design when the 

results are re-combined. 

2.3.2 Iterative Refinement 

Iterative refinement is another general purpose problem solving technique, intended 

for problems involving some form of optimisation: a shortest path; a best partition; 

or a least cost spanning tree. The technique operates by first arbitrarily selecting a 

"viable" 13 solution for the problem, and then repeatedly making a small perturbation 

to the current solution (in such a way that the result is also a viable solution), until 

a "best" 1'1 solution is found. In order to do this, there must exist some cost function 

(qualitative or quantitative) which can be used to compare the relative virtues of 

two viable solutions. Further, the technique also requires that viable solutions be 

relatively easy to find. 

Normally, with iterative refinement, a "greedy" approach is used. After making a 

perturbation to the current solution, the perturbed solution is accepted (i.e. replaces 

the original solution) only if the cost function indicates that it is the better of the 

two. Iteration terminates after no further improvements can be made. This greedy 

technique is not complete: if an optimum value exists, it will not necessarily be 

found. 

Figure 2.1 describes the general form of the iterative improvement heuristic. It, 

like the other figures of this chapter, uses a form of "Pseudo Pascal", that is, a lan-

guage with which we can describe algorithmic semantics without becoming involved 

in the strict syntax of convenlional programming languages. 

13 For example, if we are trying to find the shortest path between two vertices in a graph, a viable 
solution is any path between these two vertices. The optimal solution is the best existing viable 
solution. 
'41.e., until no more improvements can be made. 
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proc Iterative-Refinement 0; 
begin 

let State = Generate-Initial-Sta-teQ; 

while not( Completion-Criteria-Met() ) do 
let New-State = Modify( State ); 

if Accept( State, New-State ) 
then let State = New-State; 

end {While loop}; 

end {Iterative-Refinement}; 

Figure 2.1: General form of the iterative refinement heuristic. 

2.3.2.1 Adaptive Heuristics 

Adaptive heuristics [Nahar 86] are a class of general problem solving techniques 

characterised by the use of iterative refinement of an initial solution, and the dynamic 

modification of various parameters used to control the generation and acceptance of 

proposed improvements. The general form of the adaptive heuristic is presented in 

Figure 2.2. 

proc Adaptive 0; 
begin 

let State = Generate-Initial-StateQ; 

while not( Completion-Criteria-Met() ) do 
while not( Inner-Loop-Criteria-Met() ) do 

let New-State = Modify( State ); 

if Accept( State, New-State, state-variables ) 
then let State = New-State; 

end {Inner while loop}; 

Update( Accept, Modify, state-variables ); 
end {Outer while loop}; 

end {Adaptive Heuristic}; 

Figure 2.2: General Form of Adaptive Heuristic 

A brief comparison of Figures 2.1 and 2.2 will reveal that the iterative refinement 

technique is a (degenerate) special case of the class of adaptive heuristics. The class 

of adaptive heuristics is a very general one, encompassing almost every iterative 
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improvement strategy currently in use, although allowing a great deal more leeway for 

adaptation than most actually employ. Interesting sub-classes of adaptive heuristics 

include Simulated Annealing and many knowledge-based expert systems " , each of 

which has found considerable application in the domain of design automation. 

2.3.2.2 Simulated Annealing 

Simulated Annealing [Kirkpatric 83] is a general purpose stochastic optimisation 

technique adapted from the Monte Carlo method for determining the minimum en-

ergy state of a conglomeration of atoms, originally introduced by Metropolis et al in 

1953 [Metropolis 53]. Simulated Annealing is a special case of the adaptive heuristics 

described by Nahar, Sahni and Shragowitz [Nahar 86]. 

The Metropolis technique was proposed as a method of determining the equi-

librium state of a relatively small number of particles ( 10 to 10) with declining 

temperature. Kirkpatrick et al suggested an analogy between this type of physical 

process and the process of combinatorial optimisation with iterative refinement. In 

essence, they likened the cost function used to determine the " 'quality" of a config-

uration in the combinatorial optimisation to the energy function in the Metropolis 

simulation. By adding the concept of temperature to the optimisation, using it as 

a time-dependent parameter controlling the likelihood of increasing the cost or "en-

ergy" of the system, they completed the analogy. 

A primary requirement for the application of Simulated Annealing to combina-

torial optimisation is some sort of objective function which can be used to quantita-

tively describe the quality of a given solution. This function, often referred to as a 

cost function is assumed, or at least hoped to be linearly monotonic in the quality of 

"Specifically, those which employ a form of iterative refinement 
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proc Simulated-Annealing 0; 
begin 

let State = Generate-Initial-StateQ; 

let T = Initial-value(temperature); 

let iterations = Initial-value(iterations); 

while not( Allotted-time-exhausted( ) do 
let count = 0; 

while ( count <= iterations ) do 
let New-State = Modify( State ); 

if Accept( State, New-State, T ) then 
begin 

let State = New-State; 
let count = count + 1; 

end; 

end { Inner while loop}; 

Update( T, iterations ); 

end {Outer while loop}; 

end {Simulated Annealing}; 

proc Accept ( Old-State, New-State, T ); 
begin 

if ( Cost(New-State) < Cost(Old-State) ) 
then return(true); 

else if ( random(0, 1.01 < 6(Cost(Old—State)—Qost(New—State))/T) ) 
then return(true); 

else return(false); 
end {Acceptance Procedure} 

proc Update (T, iterations); 
begin 

let T = T * (1 - ); {typically, 0.01 ≤ € < 0.2} 
let iterations = f( T, iterations ); 

end {Update Procedure}; 

Figure 2.3: General Form of the Simulated Annealing Heuristic 
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the solution. Frequently it is the case that such a function exists when a problem is 

attacked with any iterative refinement technique 16 

Simulated Annealing has been used in a number of applications to VLSI de-

sign automation. Perhaps the most "natural" of these applications is to the prob-

lem of two dimensional layout compaction, since two dimensional compaction is not 

entirely unlike the problem for which the Metropolis method was originally devel-

oped. Systems which apply Simulated Annealing to compaction include TimberWoif 

[Sechen 86] and Liu's compaction algorithm [Liu 86]. 

Simulated Annealing has also been used with considerable success in applications 

to cell placement [Otten 84] [Gay 85] and global routing [Vecchi 83].The technique 

is characterised by high quality solutions, guaranteed convergence [Mitra 85], and, 

unfortunately, very large run-times. 

One of the primary advantages of the Simulated Annealing technique is its inde-

pendence from the problem domain; the technique neither makes nor requires any 

particular assumptions about the problem to which it is applied, except that the 

problem can be solved by an iterative refinement approach. 

2.4 Strong Heuristics For IC Design 

As stated in Section 2.1, the complexity of design automation problems has steadily 

forced researchers to explore heuristics for placement, routing, compaction, etc. Not 

surprisingly, the majority of of this work has involved the development of strong 

heuristics, those tailored specifically for the problem to which they are applied. Con-

sequently, the number of such heuristic procedures is far too large to allow more than 

16 This is not always the case: all that is really required for iterative refinement is a means of 
judging the relative quality of two possible solutions. 
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a very small portion to be reviewed here. For a more complete review, readers are 

referred to [Preas 86]. 

2.4.1 Simple Strong Heuristics 

The classical approach to design automation has typically involved the development 

of simple strong heuristics for use as algorithms for placement and routing. Using 

the classification of Preas and Karger [Preas 86], these simple strong heuristics may 

be grouped into two basic classes: constructive heuristics and iterative improvement 

heuristics. 

Heuristics of the first class operate on the principle of incrementally building 

a circuit one component at a time, fixing the location of each component or wire 

"permanently" 17 After all wires and components are placed, no attempt is made to 

improve the circuit by moving them. The necessity of backtracking to produce good 

designs leads to a significant cost in terms of execution time, and sometimes leads 

to infinite regression. 

Heuristics of the second class operate on the principle of beginning with a cor-

rect, but inefficient, constructive solution, and then try to improve the solution by 

repeatedly making small localised changes. Several general approaches to deciding 

which local changes to accept and which to reject are described in Section 2.3.2.1. 

The following is a brief survey of several classes of constructive and iterative 

heuristics for VLSI placement and floorplanning, following the classifications of 

[Preas 86]. For a more complete survey of this topic, refer also to [Soukup 81] and 

[Hartoog 86]. 

'71n fact, backtracking often occurs. If the placement of one or more components or wires make 
impossible the addition of a subsequent component or wire, the offending objects are often removed 
from the circuit to be re-located later. 
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2.4.1.1 Constructive Heuristics 

Of the two major classes of simple strong heuristics, the class of constructive heuris-

tics is the less common. To a large extent, this is because it is more difficult to design 

an algorithm which can perform well in constructively designing something than it 

is to design an algorithm that can arbitrarily perturb a design and judge whether 

the result is an improvement. 

Cluster Growth: This is a technique which makes use of connectivity information 

to sort circuit components into groups that are very strongly connected to 

one another, and, therefore, closely interrelated logically. A usual method for 

achieving this is to arbitrarily select one component as a "seed", and then 

repeatedly select the remaining (unselected) component that is most strongly 

connected to the cells of the cluster under construction, and add it to the 

cluster. When there exist no more unselected components whose connectivity 

is above a given threshold, the cluster is considered complete, and a new one 

is started. 

Ideally, clusters should contain roughly three to eight components: if one grows 

too large, it may be necessary to break it into sub-clusters by repeating the 

process above with a higher connectivity threshold. After the clustering pro-

cess is completed, the circuit can be floorplanned with relative facility, as the 

size and connectivity of clusters provide considerable clues for reasonable topo-

logical arrangements. Because circuits are often specified hierarchically, it is 

often possible to perform clustering independently of each level of the hierarchy 

with very good results. 

Examples of clustering algorithms are found in [Nixon 84], [Hanan 76], and 

[Schuler 72]. 
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Partitioning: This is a global placement technique, whose objective is to produce 

layouts with minimal wiring congestion. This objective is achieved by recur-

sively subdividing the components of a circuit about alternately horizontal and 

vertical "cut-lines" in such a way that the number of signals crossing the cut-

line is minimal. Many algorithms which use this approach suffer from inability 

to cope with fixed-position components or terminals or over-simplification in 

the method for determining the number of signals crossing the cut. 

Examples of such algorithms are seen in [Breuer 77], [Dunlop 85], and 

[Corrigan 79]. 

2.4.1.2 Iterative Improvement Heuristics 

As described in Section 2.3, iterative improvement heuristics operate on the principle 

of beginning with an arbitrary initial design and progressively refining the design by 

making small localised changes. The difference between weak and strong iterative 

improvement heuristics lies in the use of domain specific knowledge for generating 

or accepting proposed improvements. In each case, a comparison procedure, which 

can judge the relative merits of two (or more) potential solutions, must be provided. 

This comparison procedure, which may be either qualitative or quantitative, is also 

often based on domain-specific knowledge. The following is a brief description of 

several strong iterative improvement heuristics for VLSI floorplanning: 

Pairwise Exchange: This is one of the simplest forms of iterative improvement 

heuristics for VLSI floorplanning. This technique normally performs by se-

lecting a candidate component (cell or transistor) and trying to exchange its 

position with that of each other component in the circuit. The configuration 

which is judged best by the comparison procedure is accepted as the result of 

the iteration. The next iteration proceeds with a different candidate compo-

nent, until no further improvements are possible. 
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A generalisation of the pairwise exchange technique is seen in [Goto 79] in 

which n-tuples (i.e. ordered sets of n items) of components are exchanged in a 

cyclic fashion; the second taking the place of the first, the third taking the place 

of the second, and so forth, with the first finally taking the place of the last. 

Experimental evidence presented in [Goto 79] indicates that cyclic exchange 

with 4-tuples is most beneficial. 

Force Directed Exchange: This is a specialisation of Pairwise Exchange, in which 

the comparison procedure and cost function employ a heuristic which is anal-

ogous to stretching springs between components which are to be connected to 

one another. The objective of the procedure is to find a configuration in which 

the sum of all forces exerted by the springs is at a minimum; thus (ideally) 

producing a good compromise between minimum wire length and minimum 

area considerations. This is done by considering for interchange only those 

pairs of components that can be moved in the directions of their net forces. 

The primary advantage of this technique is that candidates for exchange can 

be selected according to the net forces acting on each component, hopefully 

improving the performance of the algorithm by reducing the number of rejected 

moves made by the arbitrary pairwise exchange procedure described above. 

Examples of Force Directed Exchange may be seen in [Sharman 86]. 

Force Directed Relaxation: This is a technique related to Force Directed Ex-

change, in which a component is selected as the candidate for relocation, and 

is moved to the site nearest its equilibrium point (the point at which the net 

force acting on the component is zero). If another component is displaced 

from that site (only one component may occupy any given site at one time), 

it then becomes the candidate component, and the procedure continues until 

a candidate component is placed in an empty site. 
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The resulting configuration is then compared to that prior to the sequence of 

changes, and is accepted only if a net improvement is found. If a net improve-

ment is not found, the entire sequence of moves is rejected. 

2.4.2 Complex Strong Heuristics 

The distinction between simple and complex strong heuristics is not especially clear. 

At what point can it be said that a heuristic procedure employs enough domain 

specific knowledge to be deemed complex? Perhaps the cut-off could be set at twenty 

"pieces" of knowledge, or perhaps fifty; such a definition would be clearly pointless, 

as these "pieces" of knowledge are, at best, very difficult to enumerate. 

Therefore, rather than relying on the quantity of knowledge used to make this 

distinction, it is more sensible to pay attention how the knowledge is used. The 

distinction between simple and complex heuristics can then be stated: a simple 

heuristic employs a fixed and usually small quantity of domain specific knowledge; 

a complex heuristic attempts to provide a framework for describing and applying an 

arbitrary amount of knowledge, and to extend that knowledge as necessary. 

The study and development of techniques for and applications of such complex 

heuristics has been the subject of much recent Artificial Intelligence (Al) research. 

It is certainly not the case that all studies under the auspices of Al research fit the 

definition of complex strong heuristics given above. There is, however, one segment of 

this research, commonly known as knowledge-based expert systems, which certainly 

does fit this definition. Prior to discussing the application of knowledge-based expert 

systems to VLSI design automation (Section 2.6), the history, philosophy, and theory 

of knowledge-based expert systems will first be elucidated. 
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2.5 Knowledge-Based Expert Systems 

Knowledge-based expert systems are a subset of Artificial Intelligence research which 

have recently received considerable attention. The principle of the knowledge-based 

expert system is to cause a computer to mimic the problem solving behaviour of 

human experts by observing the human expert in action, determining the basic 

problem-solving steps taken, and encoding these steps in a computer program. This 

approach to problem solving is normally reserved for very difficult or ill-structured 

problems which cannot be automated with conventional programming techniques ei-

ther because there is no known (efficient) algorithm for tIie problem, or the objectives 

of the problem are not adequately well-defined to be concisely encoded. 

This technique was initially received by some as the solution to all "hard" prob-

lems; if a problem could not be solved with conventional techniques, then surely, it 

was felt, it could beso1ved by producing an expert system with enough knowledge 

about the problem domain. Common sense and past experience, however, reveal that 

this is not the case. Expert systems are only suitable for those problems which human 

experts are able to solve more quickly or effectively than conventional computer pro-

grams. Further, even assuming that the knowledge and behaviour of human experts 

can be perfectly captured and encoded, an expert system can hope, at best, only to 

match, never to exceed, the peak performance of a human expert or committee of 

experts. Bleak reality indicates that even this level of achievement is improbable. 

Following is a description of the basic structure of knowledge-based expert sys-

tems. 

2.5.1 Components of a Rule Based Expert System 

As initially defined, rule-based expert systems were normally viewed as having two 

major components: working memory and an "inference engine". Working memory 
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was used to store both rules and state information, making self-modifying rules a 

simple matter to implement. 

Today, rule-based expert systems are typically composed of three major compo-

nents: rule memory, working memory, and an "inference engine". The division of 

rule memory from working memory is largely a conceptual one: it is usually the 

case that rule memory can still be modified (although often in a constrained man-

ner), but designers may find it convenient to use significantly different underlying 

representations for rules and data. 

These various components once had to be implemented specifically for each in-

dividual expert system. Modern expert system environments, often referred to as 

"expert system shells", now provide the basic components in a ready-made package, 

and often include several other features which may be useful to expert systems imple-

mentors. Although often a great convenience, expert system shells may occasionally 

be more general than a given application requires, and thus incur an unnecessary 

overhead. Consequently, expert systems shells, and sometimes expert systems them-

selves, are often regarded by implementors as prototyping tools. 

The following sections describe each of these three components individually. 

2.5.1.1 Rule Memory 

The rule memory of an expert system contains a set of heuristics designed to solve 

a particular class of problems, encoded as production rules. These production 

rules, derived from Post's "productions" [Post 43], are divided into left-hand side 

and right-hand side. When viewed as a rules of inference, the objects on one side of 

the rule are logical antecedents, and the objects on the other side are conclusions to 

be drawn. When viewed as heuristics, the objects on one side are conditions, and 

the rules on the other are actions to perform when the cot i, Ii tions are met. 
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The classical approach to expert systems design makes use of "backward-

chaining" 18 (or simply "backward") rules, in which the objects on the left-hand 

side of the rule are a number of conditions or "goals" that are set as objectives and 

the objects on the right-hand side of the rule are the conditions under which the goal 

may be deemed to be met. This form of production rule (which corresponds to the 

use of Backus-Naur Form (BNF) productions to recognise a language) is indeed a 

very powerful formalism for logical inference, and forms the basis of languages such 

as PROLOG [Clocksin 84]. 

Many languages, such as ART [ART87, pp. 14 - 21], also allow a slight variation 

of the above type of rule, whose left-hand side consists of one or more "conditions", 

and whose right-hand side consists of actions to perform or conclusions to draw when 

the conditions on the left-hand side are satisfied. This sort of rule is often called 

a "forward-chaining" or simply "forward" rule, because inference proceeds from the 

assumptions and axioms toward the desired goal, much in the way mathematicians 

formulate proofs. Forward-chaining rules, which are the dual of BNF productions 

used to generate strings of a language, are often useful for tasks which require the 

exploration of a problem space, such as design oriented problems. 

It is frequently the case that both types of inference, forward- and backward-

chaining, can be profitably brought to bear on diverse problems, and they are now 

frequently intermingled. Each, however, has its caveats: forward rules are simple 

and flexible programming structures, but subject to problems with control flow; 

backward rules are elegant, but many programmers find them difficult to write and 

understand. 

"The term backward-chaining refers to the mode of inference used: starting from a desired 
conclusion, and working backward to whatever antecedents and axioms may have been provided. 
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2.5.1.2 Working Memory 

The working memory in an expert system is used to store data which may regarded 

as a candidate for matching against patterns in rules. Typically, this is information 

which describes the (instance of) the problem to be solved, and the state of the 

solution. This part of memory is usually much more dynamic than the rule memory. 

The objects stored in the working memory are called "facts". The term "fact" 

should not be interpreted to imply anything about the truthfulness of an assertion, 

however, the presence of a piece of information in the working memory normally 

indicates that at least some part of the expert system has cause to believe this fact 

is true. 

2.5.1.3 Inference Engine 

The inference engine is the underlying control mechanism for the expert system; it 

is used to determine which rules are potential candidates for application, and when 

to apply them. It is also used to control access to the working memory. At the 

heart of the inference engine is a pattern matching algorithm, used to determine 

which preconditions for the various rules are currently met. A very typical pattern 

matching algorithm is the Rete algorithm [Forgy 82], used in both OPS5 [Forgy 81] 

and ART [ART87]. 

The inference engine maintains a list of all rules whose patterns match one or 

more facts in the working memory, called the "agenda". In many languages, such 

as ART, the elements in this agenda are prioritised. The execution cycle of the 

inference engine is as follows: first, update the agenda, adding or removing rules as 

required; next, select a (high priority) rule; finally; execute the actions contained in 

that rule, and repeat the cycle. 
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All rules and facts in an expert system are global entities; all rules are assumed 

to be applicable whenever their conditions are met, and the assertion or retraction 

of a fact in working memory can potentially affect any or all rules. 

2.6 Applications of Expert Systems to VLSI Design Au-

tomation 

Knowledge-based expert systems techniques have been applied to problems in VLSI 

design automation in a large variety of contexts, usually with a relatively high degree 

of success. Much of the work to date has concentrated on some of the "lower" 

level tasks of circuit layout, such as placement routing, and compaction. Of course, 

it has already been shown that these "low" level tasks are exceedingly difficult. 

Expert systems have also been applied to a few much higher level problems, such 

as automatically producing circuit specifications (eg. in RTL) given a procedural 

description of the function the circuit is to perform. 

The following sections provide a brief review of some of the applications of 

knowledge-based expert systems to various aspects of VLSI design automation: 

2.6.1 STICKS' Knowledge-Based Design Rule Checker 

As discussed previously in Section 2.2.1, one of the early advances in VLSI design au-

tomation was the development of the STICKS [Williams 78] system, which provided 

a compiler for translating a topological description of a circuit to patterns suitable for 

mask generation. While the translation process itself is relatively straight-forward, 

the sub-task of testing for design rule violations is less simple than it appears. 

The complexity of a typical set of design rules and the number of exceptional cases 

involved made necessary the encapsulation of design rules and their interpretation 

as a knowledge-based production system. 
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2.6.2 Expert Systems for Translating Connectivity to Cell Layout 

One of the more common applications of knowledge-based expert systems techniques 

to VLSI design automation is with the problem of translating transistor-connectivity 

lists to topologies suitable either for direct translation to fabrication masks, or for 

automated layout by such systems as STICKS [Williams 78] and MULGA [Weste 81]. 

Aside from actually drawing the masks (which is now done by STICKS-like systems), 

the description of leaf cell topologies is the lowest level of the VLSI design process. 

This is, however, in no respect a trivial task, as the two primary components of this 

task, placing the transistors, and interconnecting (routing) them, are both known to 

be NP-complete problems [Sahni 80]. 

The input for this problem consists of a set of ports (the sites at which signals 

enter and exit the circuit), and a list of interconnections to be made between the 

transistors, and between transistors and ports. Variations of this problem may re-

quire some or all ports to be "pre-placed" (i.e. have pre-assigned positions relative 

to one another), or may allow the inclusion of a set of constraints upon the relative 

locations assigned to ports. 

The output should consist the description of a complete and compact circuit in 

which all required transistors have been assigned a position (placed), and which con-

tains a full and error-free description of all the wires needed to provide the required 

interconnections. Other objectives for the output may include: minimum area; min-

imum wire length; maximum speed; "optimal" aspect-ratio; conformity with a fixed 

cell pitch; observance of constraints on wire or transistor placement. 

Because of the immense difficulty of producing a complete layout given this 

amount of information, implementations are normally restricted to laying out "leaf 

cells"; thus, there is an upper limit of 50 - 100 transistors placed on circuits to be 

laid out. Naturally, it is not always possible for all (or any two) of these objectives 
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to be met simultaneously, and the attempt to optimally satisfy even one will prove 

exceedingly time-consuming. Hence, it is required that a reasonable compromise be 

struck between these conflicting goals. 

One application of knowledge-based expert systems to this problem is seen in the 

TOPOLOGIZER system [Kollaritsc 85]. TOPOLOGIZER is intended to produce 

design-rule independent symbolic designs (in CMOS) suitable for "compilation" by 

the MULGA [Weste 81] symbolic layout system. The use of symbolic layout as the 

output representation has several potential advantages over mask-level layout. 

First, at the symbolic layout stage, the only design errors of consequence are 

illegal wire crossings or overlaps thus greatly reducing the the amount of work to be 

done with each modification to the circuit. Second, by appropriately handling such 

parameters as the number and type of routing layers available, the layout system 

becomes largely technology-independent. This means that a large proportion of 

the leaf-cells given to the layout system as input can be re-compiled into different 

fabrication technologies with relatively little difficulty. 

TALIB [Kim 85] is a second example of such an application. TALIB produces 

mask-level layouts of leaf cells in NMOS. It first accepts a hierarchical circuit speci-

fication which may include numerous "standard" sub-circuits such as and-gates, or-

gates, inverters, or latches. The hierarchical description is then modified as necessary 

to minimise the number of transistors required. Finally, the hierarchy is flattened; 

each sub-circuit is replaced by a corresponding set of transistors and interconnec-

tions. The circuit is then embedded in 'a plane using symbolic layout (the use of 

symbolic layout was found necessary to keep the number of rules at a manageable 

level), which is subsequently compacted to a single-metal NMOS layout. 
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A third such system is SPLAT [Sharman 86]. SPLAT is philosophically very 

similar to TOP OLOGIZER, producing symbolic layout of CMOS leaf cells, however, 

it is considerably more limited in scope. 

2.6.3 Expert Systems for VLSI Routing 

Routing, the process of assigning wires or paths to the interconnection networks 

between components, is a critical portion of describing VLSI circuits at low levels 

of abstraction. These interconnections often must be made within a number of very 

restrictive constraints and with a large number of objectives. Constraints on routing 

include the number of available routing layers (older technologies provided only two, 

namely metal and polysilicon; modern technologies may now permit four or more), 

restricted orientation of wires on various layers, placement of terminals, and size and 

location of wiring areas. 

Objectives for routing include 100% completion (i.e. making all required connec-

tions), miniinising vias (connections between wires), minimising wire length, making 

maximum use of lowest-impedance layers, minimising congestion (i.e. balancing 

the concentration of wires across the circuit), minimising cross-talk, and minimising 

area. Frequently, because of the difficulty of finishing partial routes by hand, 100% 

completion is the only objective fully considered. 

Traditionally, the routing problem is sub-divided into three smaller problems: 

channel assignment, in which the routing area is divided into rectangular segments, 

called channels; loose routing, in which it is decided which channels each signal will 

cross; and detailed routing, in which the physical wires for each signal are placed in 

each channel. Because the job is known to be NP-complete [Sahni 80], and because 

simple strong heuristic solutions have customarily met with limited success, routing 

is often considered a suitable task for solution by knowledge-based expert systems. 
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WEAVER [Joobbani 86a] [Joobbani 86b] is one of the earliest applications of 

expert systems technology to VLSI routing. WEAVER focuses on detailed routing, 

the final stage of the routing process. It considers, simultaneously, all important 

routing metrics, and is shown experimentally to produce more area-efficient routings 

than routers which consider only a single metric. WEAVER applies a large number 

(approximately 700) of rules the the problem of routing switchboxes, rectangular 

areas with fixed signal terminals on all four sides. It is also claimed that it is possible 

to extend WEAVER to route 'T' and '+' shaped areas in addition to rectangular 

areas 19 

Another routing expert system which adopts an approach similar to WEAVER's 

is the B&D router [Keefe 87, Keefe 86]. WEAVER and B&D both contain multi-

ple cooperating "experts", groups of rules which focus on specific subproblems or 

objectives of the overall system. These experts communicate information to one 

another using a "blackboard", a publicly shared area of the data base where one ex-

pert can post messages for another expert to read. These two expert systems differ 

primarily in that WEAVER also includes a supervisory "expert" which coordinates 

the actions of the others, while B&D's experts operate asynchronously. The use of 

multiple cooperating experts in an expert system is becoming popular. 

2.7 Chapter Summary 

This chapter has presented an overview of various parts of the VLSI design process, 

and has described a number of the problems involved therein. Specifically, the ma-

jority of tasks involved in VLSI design automation are known to be NP-complete and 

therefore may require inordinate amounts of processing time to solve optimally. Con-

sequently, researchers trying to automate various stages of the VLSI design process 

'9Areas whose perimeter is not rectangular are often not permitted by routing tools. 
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are forced to resort to the use of heuristic procedures, techniques which encapsulate 

some form of knowledge or assumption about the task at hand, in an attempt to 

provide good quality approximations with relatively little computation. 

The majority of the work done to date has been concentrated on the development 

of weak heuristics and simple strong heuristics. Unfortunately, much of this work has 

lead to disappointment: the computer programs produced suffered from a tendency 

to produce either mediocre results in a reasonable amount of time, or relatively good 

results at the cost of hours or days of computing time [Greene 86]. Often, it appears 

that weak heuristics are simply too general to operate quickly, and simple strong 

heuristics are too restrictive. 

Recent research into complex strong heuristics, specifically knowledge-based ex-

pert systems, for design automation has been presented as being quite promising, 

however at least two problems have been identified with this paradigm: First, expert 

systems do not map nicely onto design-oriented problems; we are usually forced to 

impose sequential behaviour on portions of the expert system, and this leads to dif-

ficulties in design and maintenance. Second, the paradigm most commonly used to 

map expert systems onto design automation problems is a greedy form of iterative 

refinement; this results in a tendency to arrest 20 at local minima. 

The remainder of this thesis addresses these two problems. Chapter 3 describes 

an extension to the ART expert system tool-kit which automatically generates the 

portions of code needed to sequence operations in a design-oriented expert system. 

By producing this portion of the code automatically, programmers are permitted to 

completely ignore the details of sequencing, allowing them to return to a state where 

expert sytems are viewed as sets of daemons. 

20 1.e., to become "stuck" or terminate prematurely. 
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Chapter 4 investigates one alternative to greedy iterative refinement: a modified 

version of Simulated Annealing. By regarding Simulated Annealing as just another 

member of the same class of weak methods that contains iterative refinement, a new 

type of expert system which is less prone to arrest at local minima is developed. 



Chapter 3 

The Expert System Wrapper Environment 

Chapters 1 and 2 of this thesis have described a number of important issues per-

taining to VLSI design automation. They showed that many interesting and worth-

while problems in design automation are known to be computationally intractable 

(i.e., NP-complete), and that trying to optimally solve non-trivial instances of these 

problems may greatly exceed the life expectancy of the individual seeking the solu-

tion. Consequently, we are forced to adopt techniques which may frequently produce 

less than optimal results, but will hopefully produce a close approximation to an op-

timal result in a reasonable time interval. 

To date, the only known means of doing this has been through the use of heuris-

tics; the application of some kind of knowledge about a problem in the hope of finding 

a "short-cut" to a good solution. Evidence for the existence of useful and efficient 

heuristics is provided daily by people who are able to find acceptably good solu-

tions for a wide variety of problems with relatively little time and effort. Chapter 2 

describes several classes of heuristic procedures for design automation, perhaps the 

most compelling of which is the knowledge-based expert system which seeks to solve 

problems in with the same knowledge used by people. 

Empirical studies [Nahar 86, Hartoog 86] have shown that strong heuristics out-

perform weak heuristics; that is, the indications of these studies are that problems 

are often more effectively solved when using knowledge specific to the problem do-

main than when using very general purpose knowledge. In fact this should not be 

surprising, as strong heuristics, unlike the weak, are built upon knowledge specifically 

chosen for the problem they intend to solve. 

38 
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There is considerable reason to believe that increasing the amount of domain 

knowledge in a heuristic procedure can greatly augment its problem solving power. 

The introduction of knowledge based expert systems, which can apply hundreds or 

thousands of domain specific rules to solve a problem dramatically demonstrated 

this principle. 

Another lesson learned in Chapter 2 is that expert systems, while promising great 

problem-solving potential in a variety of domains, were originally intended for, and 

are largely limited to, problems of a diagnostic nature. Implementors have found 

that expert systems techniques do not always apply well to problems which exhibit 

implicit structure, or which may require the sequential solution of sub-problems. 

Many VLSI design automation problems are known to be members of this latter 

class. 

This chapter presents the Expert System Wrapper Environment (ESWE) for de-

scribing design-oriented expert systems. Because design problems frequently involve 

sequential steps, expert systems implementors must enforce sequential behaviour un-

der a paradigm in which it is not intended. Consequently, considerable difficulty may 

be encountered in designing, implementing, and maintaining such expert systems. 

To counter this difficulty, ESWE has been written by the author with the intention 

of providing expert systems implementors with a high-level abstraction for sequen-

tial control of expert system sub-tasks. ESWE is able to automatically generate the 

control-oriented code fragments needed in each rule of the expert system, according 

to the high-level specifications provided. This benefits implementors in two ways: 

first it hides control information encoded in the rules of the expert system, making 

the encoded knowledge more clear; and second, it allows the implementor to mod-

ify the sequence of operations (often a necessary step in debugging) without risk of 

accidentally altering any of the knowledge encoded in the rules. 
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Also included in ESWE is a means of describing fabrication technologies, design 

rules, and layout primitives; and a constraint-based language for describing the rél-

ative placement of ports on the perimeter and in the interior of cells using a syntax 

similar to that of SHIFT [Liblong 84]. ESWE has been used by the author to imple-

ment two simple expert systems for transistor placement, both of which are based 

upon Sharman's SPLAT [Sharman 86]. These expert systems, which are used to 

investigate the value of incorporating randomness in a strong heuristic procedure, 

are the subject of Chapter 4. 

ESWE is written in Symbolics Common Lisp [SCL86a, SCL86b, Steele Jr. 84] and 

runs on Symbolics 3600 computers under Genera 7.1, as an extension to Inference 

Inc.'s Automated Reasoning Tool (ART) [ART87]. Much of ESWE is written as 

common-lisp macros in such a way as to provide maximum flexibility in compi-

lation with minimum run-time penalties. ESWE is meant to extends the syntax and 

semantics of ART, complimenting it without modifying it. Thus, standard ART code 

can be executed without modification, even in the presence of the ESWE extensions. 

3.1 Objectives of ESWE 

Rule-based expert system shells often provide an excellent environment for the rapid 

development of prototype expert system applications. They generally lack, however, 

a number of features that would prove useful for design-oriented expert systems. 

Some of the more noticeably missing features of expert system shells are sequen-

tial control mechanisms and facilities for hierarchical coding. It is perhaps worth' 

noting that for "conventional" expert systems applications, these features are rarely 

required. In fact, from the earliest days of expert systems research, implementors 

were enjoined not to employ explicit sequencing in their code, unless it is completely 

necessary. 
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Unfortunately, sequential (or at the very least, synchronous) behaviour is often 

required to solve problems of design. When sequencing is required in rule-based 

systems, it can normally only be achieved by a form of "token-passing". In this 

approach, a rule - or group of rules - is given "permission to fire" by the assertion 

of some specific fact in the knowledge base. Upon completion, the currently active 

group must pass "permission to fire" to another group by asserting the new group's 

control fact, and retracting its own from the knowledge base. 

Thus, "tokens" are effectively passed from one group of rules to the next, causing 

control to follow the flow of tokens. There are, however, several complications to 

this apparently simple scheme: each group of rules must expect a unique token to 

enable it, and when its actions are completed may be required to pass on any one of 

many different tokens depending on which set of 'rules is to enabled next. A strongly 

sequenced or synchronised rule-based program (epert system) may degenerate into 

a completely sequential program, totally devoid of structure. 

It is usually the case that a token-passing control paradigm such as this will result 

in: 

• cluttering the logic of a rule by the addition of several control conditions; 

• increasing the burden on the programmer by forcing him to keep distinct the 

meaning of each specific control fact; and 

• degrading the performance of the expert system by significantly increasing the 

number of changes to the knowledge base. 1 

The first two of these issues are addressed directly byES WE's facility for hierar-

chical coding of expert systems. The third issue, however, is unavoidable, except 

'For systems using Rete networks[Forgy 82], such as OPS5 and ART, the performance is mea-
sured (and limited) by the number of Working Memory Changes per second (WMC/s) [Gupta 87]. 
For OPS5 implemented in Franz Lisp on a VAX 11/780, performance is in the neighbourhood of 8 
WMC/s [Gupta 87, p. 15]. Other im plementations of OPS interpreters are stated to achieve speeds 
of 40 to 200 WMC/s. 
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by implementing a new inference engine which specifically recognises contexts for 

pattern matching and rule firing. In fact it may be possible to realise significant 

performance improvements by restricting pattern matching activities to only those 

patterns required by rules in "active" contexts. ESWE does, however, help to alleviate 

the degradation of performance by encouraging the use of fewer control facts, and 

reducing, even eliminating, the use of rules which act strictly for purposes of control. 

The primary feature of the ESWE environment is the defautomaton macro, which 

allows the declaration of general finite state automata. Also provided are macros for 

defining automaton states (which are actually groups of rules) and "experts". In 

addition, base frameworks for the description of arbitrary CMOS fabrication tech-

nologies and tools for describing leaf-cell topologies are provided for the convenience 

of implementors. 

3.1.1 Motivation for Hierarchy in Expert Systems 

A frequently used approach to developing expert systems for VLSI design automa-

tion tasks is the use of "multiple communicating experts". This paradigm, used 

by systems such as TOPOLOGIZER [Kollaritsc 85], WEAVER [Joobbani 86b], and 

B&D [Keefe 87], is used for problems with several complex and reasonably distinct 

sub-tasks. Each sub-task is assigned to a "domain expert", which contains heuris-

tics applicable to that one task. An additional "expert" is included to serve as an 

overseer or manager. 

Each domain expert, which communicates with the others and with the overseer 

using a mechanism commonly referred to as a "blackboard", serves to recommend 

changes to the design state based upon the perspective of its own domain. (For 

example, domains of expertise in an expert system for routing might include wire 

length, routability, via minimisation, etc.) The task of the overseer is to accept the 

recommendations of the domain experts, select one, and allow the domain expert 
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which made the recommendation to implement it. The overseer thus controls and 

synchronises the actions of the domain experts, while deciding which recommenda-

tions should be acted upon. 

The overseer in such an expert system therefore has a number of actions which 

must be performed sequentially. First, it must request a recommendation from each 

domain expert. Next, it must evaluate those suggestions, and decide which to act 

upon. Finally, it must inform the domain experts of its decision, and and prepare to 

repeat the process. 

The previous section described some of the difficulties involved in enforcing strict 

sequencing on rule-based expert systems. The greatest difficulties derive from the 

fact that all of the "experts" in a multiple communicating experts system reside in 

the same rule base, and all messages passed and control structures used to coor-

dinate the various actions must pass through the same globally accessible database. 

Consequently, erroneous behaviour on the part of one "expert" may seriously impact 

the behaviour of the others. Similarly, modifying the behaviour or sequencing in one 

expert may have far reaching - and often unforeseen - effects on the rest of the 

program. ESWE was designed by the author to alleviate these difficulties by providing 

an environment where the control code for experts is more localised, automatically 

generated, and can be hidden from the programmer. 

The macros provided by ESWE as an extension to the ART system are described in 

the following sections. These macros are all written in Symbolics Common Lisp, with 

complete separation of compile-time and run-time activities for minimum overhead. 

The CMOS design abstractions, described in Section 3.3, are implemented with ART 

schemata, and thus may not be as easily portable to other expert systems shells as 
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are the macros. It is important to recall that ESWE is an experimental prototyping 

environment. 

3.2 ESWE's Interface for Describing Experts 

In this section, we review the tools ESWE provides for the description of control 

structures in design-oriented expert systems. Section 3.2.3 describes ESWE's facilities 

for describing finite state automata (deterministic or otherwise), while section 3.2.5 

describes ESWE's approach to defining experts for sub-domains of VLSI design. 

In the following subsections it is important to recall that these sequencing mech-

anisms were originally designed for use with, and as extensions to, ART [ART87]. 

For this reason, a brief description of ART will be provided prior to discussing these 

macros. 

3.2.1 A Brief Introduction to ART 

ART (Automated Reasoning Tool) is an expert system language or "shell" intended 

to ease the task of developing knowledge-based programs. The ART system prede-

fines the basic component of an expert system, the inference engine, removing the 

necessity of implementing this essential for every expert system. ART also provides 

mechanisms for managing the working memory and rule memory. Along with tools 

for placing knowledge in them. - 

Rules in ART may be either forward-chaining or backward-chaining. Implicit to 

all rules in ART is the concept of patterns. A pattern is a specification for matching 

knowledge in the working memory with conditions in the rule memory. 

Each rule in ART, whether forward- or backward-chaining, has a number (zero or 

more) of conditions imposed upon it. When all of the conditions in a given rule have 

been matched to facts in the working memory, the rule is activated, and placed in a 
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queue (called the agenda) to await firing. If the conditions on a rule are matched by 

more than one distinct set of data in the working memory, the rule will be activated 

several times, once for each distinct set of working memory elements it matched. 

Each rule may be supplied with parameter referred to as its salience. Saliences 

may be in the range — 1, 000, 000 to 1,000, 000 and the default salience for a rule 

is 0. The salience of a rule determines the priority of its activated instances when 

placed on the agenda. That is, rule activations on the agenda are sorted according 

to salience, and no rule may fire if another rule of higher salience is currently on 

the agenda. The primary intent of salience declarations is to express the relative 

importance of rules, not to control the sequence of execution. 

The ART database is used to store working memory for an expert system; con-

ceptually, it is completely distinct from the rule memory. The main purpose of the 

ART inference engine is to match patterns stored in the rule memory to facts found 

in the working memory. The act of placing a fact in the ART database is commonly 

referred to as assertion (i.e., one asserts a fact in the database); the act of removing a 

fact is commonly referred to as retraction (i.e., one retracts a fact from the database). 

For a more complete description of ART, refer to Appendix A or to the ART 

Reference Manual [ART87]. 

3.2.2 Extensions to Semantics for Defrule 

The ESWE environment provides several semantic extensions to the definition of 

rules in ART. Presently, these extensions apply to forward-chaining rules only, how-

ever the extension to include backward-chaining rules is minor 2. Figure 3.1 provides 

a simplified BNF description of the syntax of declaring forward-chaining rules with 

2The extension has not been made as yet because it was not required for the implementation of 
the STANLEY experts. 
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<defrule}> 

(defrule <name> 

{(declare (salience <integer-expression>)))-

[<{\bf forward-rule-body)-> I <-C\bf backward-rule-body)->] ) 

<forward-rule-body> : : {<logical-conditions>} 

<condition>* { > <form>*} 

<backward-rule-body> :: <goal-pattern> <= <condition>* 

<condition> : := (test <safe-form)->) I 
<pattern> 

<safe-form> ::= Any Common-Lisp expression without side-effects, 

and which always returns the same value for a 

given set of arguments. 

<integer-expression> ::= Any ART or Common-Lisp expression 

which evaluates to an integer. 

<form> : : = Any valid ART or Common-Lisp expression. 

Figure 3.1: Simplified BNF for defrule. See [ART87] for complete BNF. 

ART's defrule macro. The two major extensions provided by ESWE are; i) extended 

salience declarations; and ii) a facility for declaring un-named rules. 

The first of these extensions allows the use of extended ESWE salience declarations 

within the body of an otherwise standard ART rule definition. When defining a 

rule in ART, the only declaration which can be provided is that of the salience, 

or absolute importance, of the rule. Because the ESWE environment seeks to add 

conceptual hierarchy to the structure of the expert system, it is often more useful 

to express the salience of a rule in relative, rather than absolute terms. The new 

(extended) syntax of a forward-chaining rule declaration is illustrated in Figure 3.2. 

Valid extended salience declarations may include any of the following: 
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<def rule> ::= (defrule <name> {<decl>} 

[<forward-rule-body> I <backward-rule-body>] ) 

<deci> ::= (declare -C(salience <integer-expression>)} 

{ (default-salience <integer-expression>) } 
{(relative-salience <integer-expression>)}) 

<forward-rule-body> : : {<logical-conditions>} 

{<condition>}* => {<form>}* 

<backward-rule-body> :: <goal-pattern> <= <condition>* 

<condition> : := (test <safe-form>) I <pattern> 

<safe-form> : := Any Common-Lisp expression without side-effects, 

and which always returns the same value for a 

given set of arguments. 

<integer-expression> ::= Any ART or Common-Lisp expression 

which evaluates to an integer. 

<form> ::= Any valid ART or Common-Lisp expression. 

Figure 3.2: BNF for defrule with extended declarations. 

default-salience: Declarations of default-salience override the default salience val-

ues inherited by the rule's enclosing environment. Relative-

salience declarations in the rule or enclosing structures will 

augment the default-salience as normal. 

relative-salience: Declarations of relative-salience are used to increase the 

salience of a a rule relative to the (default) salience of the en-

closing structure. Thus a rule declared with a positive relative 

salience is more salient than other rules at the same level of 

enclosure. 
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salience: Declarations of salience state the salience of a rule in abso-

lute terms. Such declarations override any default- or relative-

salience declaration, as well as any inherited salience value. 

The second extension to the syntax of forward-chaining rule definitions amounts 

to the the automatic generation of a "unique" name for a rule, relieving programmers 

of the need to provide names when none readily suggest themselves. (This feature is 

actually employed by the internal code-generating functions of ESWE.) The current 

implementation of ESWE generates these "unique" rule-names at compile time, rather 

than load time, so uniqueness is only guaranteed if the lisp system is not reset between 

compilation of any iwo program modules being used. This flaw may be corrected 

in future versions either by deferring the generation of "unique" rule names to load 

time, or by extending the rules of lexical scope to include symbols such as rule 

names, and schema names. The latter of these options is discussed in more detail in 

Section 3.2.3.1. 

3.2.3 Defgroup and Defautomaton: Flexible Hierarchical Sequencing 

This thesis has emphasised, on numerous occasions, the frequent necessity of im-

posing sequential behaviour on portions of an expert system. What has not been 

emphasised is the danger of imposing too much sequential behaviour which may 

cause an expert system to degenerate into a completely sequential program. In pro-

viding a sequencing mechanism for rule-based programs, it is necessary to be certain 

that the mechanism is neither rigid nor forceful: while portions of an expert systems 

may require sequential (or carefully synchronised) execution, it is an essential part 

of the expert system philosophy that the rules within each of these portions remain 

as asynchronous as possible. 
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This section describes ESWE's facility for defining general finite state automata. 

A finite state automaton (FSA) is a "conceptual" machine, which is described by 

the following [Brady 77] [Shields 87]: 

i) a finite, non-empty set of "states"; 

i) a means of receiving ' input' from its surroundings; 

iii) a set of possible actions or 'outputs'; 

iv) a set or function describing which action(s) to perform for a given input 

when in a given state; 

v) a means of deciding what the next state of the automaton is, given the 

current state. 

There exist two main classes of finite automata, deterministic and non determinis-

tic; the distinction is that for deterministic automata, the "next-state" is strictly 

determined by a function of only the "current" state and the "input", while for a 

non-deterministic automaton, the function which determines the "next" state may 

employ other, possibly hidden, variables. 

A finite automaton operates by: inspecting the input, and performing the actions 

prescribed by the current state, which may include producing output; determining 

which state to act on next; and causing the "current state" to be replaced by the 

"next" state. This procedure iterates until the "current state" of the automaton is 

a "terminal state", at which time the automaton halts. 

• Finite state automata are often used to recognise strings of a language in much 

the same way as do the productions of a grammar. Finite automata in ESWE no more 

recognise strings than do the production rules of an expert system implemented on 

ESWE; in each case we use an operational analog of the formalism, where rather than 

reading symbols, patterns are matched from a data base and rather than printing 

symbols, side-effects are generated in the same database. 
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ESWE's class of finite state automata differ from classic FSAs primarily in the 

mechanism used to trigger state transitions: normally, a finite state automaton un-

dergoes a state transition whenever an input is received, ESWE's finite state automata 

may undergo state transitions upon the addition of specific information to the data 

base but more usually undergo transitions when none of the rules in the currently 

active group are able to fire. 

ESWE's fundamental sequencing mechanism, the def'automaton macro (see Fig-

ure 3.3), allows programmers to declare "groups" of rules (specified with enclosed 

defgroup declarations) which form the states of the automaton, to designate an 

initial state for the automaton and to designate one or more final states for the 

automaton. The finite state automata so declared may be either deterministic or 

non-deterministic, depending on the functions the programmer specifies to select the 

next state for each group. 

Within the "groups", declared with the defgroup macro (see Figure 3.4 on 

page 56), rules are free to operate completely asynchronously, or may be organised 

into yet more finite-state automata. While the "nesting" of automata is possible, 

care must be taken not to nest more deeply than necessary, lest operational overhead 

become prohibitive. It is also necessary for implementors to use this utility within 

the "spirit" of rule-based programming and to avoid having the expert system de-

generate into a - very inefficient - sequential program. 

Implicit to these sequencing mechanisms are the concepts of activated and deac-

tivated code fragments. A deactivated code fragment is a set of one or more rules 

whose firing has been deliberately inhibited. Each group and automaton makes ev-

ery rule or group of rules it encloses dependent upon the activation or deactivation 

of that group or automaton by adding a control condition specific to that group or 
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<defautomaton> :: (defautomaton (<name> 

{ (declafr-e <aut-decl>*} 
-C<defgroup> I <defrule> I 

<lisp-or-ART-f orm>}* ) 

<aut-decl> : := (relative-salience <integer>) I 
(default-salience <integer>) I 
(salience <integer>) I 
(conditions (<lhs-pattern>+)) I 
(initial-state <group-name>) I 
(final-state <group-name>) I 
<ART-decl-form> 

<name> ::= Any valid (Common-Lisp) symbol. 

<lisp-or-ART-form> ::= Any valid Common-Lisp or ART expression. 

<group-name> ::= Any symbol, must also appear as the 

name in an enclosed <defgroup> 

<lhs-pattern> ::= Any valid ART LHS pattern. 

<ART-deci-form> : := Any form which may legally appear in an ART 

(declare ...) expression. 

Figure 3.3: BNF for the defautomaton macro. 

automaton to the rule. In plain English, a rule has "permission to fire" if and only 

if all groups and automata enclosing it are activated. 

When an automaton is first defined it is by default disa bird or "deactivated", 

as are all groups contained within it. In this state, rules enclosed in the automaton 

are prevented from firing by the absence of one or more control facts in the working 

memory. When an automaton is activated (by invoking the activate-automaton 

function), this fact ii asserted in ART's working memory, which allows the firing 

of rules which are enclosed by the automaton but not by any group. Programmers 
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may place rules at this level of enclosure to perform initialisation operations for the 

automation. 

In early implementations, ESWE automatically defined two such rules. The first, 

which had a salience of 0 relative to the rest of the automaton, would cause the 

group declared as the automaton's initial state to be activated; the second, with a 

relative salience of - 10, would, when fired, cause the automaton to deactivate itself. 

The first rule was written such that it would fire once each time the automton was 

activated. Because of its negative relative salience, the second rule should not fire 

until all active rules in the automaton have finished firing. (Programmers should 

avoid declaring rules with relative salience of less than 0 in order to assure that all 

automata continue to work as expected.) 

More recent versions of the ESWE environment have replaced these rules with more 

efficient mechanisms. The actions of the first rule, which automatically activated the 

group corresponding to an automaton's initial state, were absorbed by the (activate-

automaton ...) function, which is written in Lisp. The actions of the second 

rule, which automatically deactivated an automaton were eliminated completely, in 

favour of explicit deactivation of automata using the (deactivate-automaton ...) 

function. Naturally, if the behaviour of the older versions is desired, and considered 

worth the overhead, users may explicitly add control rules like these themselves. 

It is not possible to pause the'operation of an automaton; once deactivated (via 

the deactivate-automaton function), an automaton may resume operation only 

from its initial state. This is a consequence of using facts asserted in the data base 

to control the activation of groups and automata. 

Within each group are additional control rules which cause the determination and 

activation of the automaton's next state, either when the current group is deactivated 

(by invoking the deactivate-group function) or when the group runs out of rules 
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to fire. These automatically generated control rules are also given a salience of —20 

relative to the rest of the group. When the new group to be activated is one of those 

declared as a "final state", the automaton and all enclosed groups are deactivated. 

The following sections present a detailed description of the syntax and semantics 

of defgroup and defautomaton: 

3.2.3.1 Lexical Scoping in ESWE 

The macros provided in the ESWE environment are intended, in part, to provide a form 

of texical scope within a rule-based expert system. The normal state of affairs in a rule 

based expert system is to have a large number of rules simultaneously "watching" a 

common database for a predefined set of patterns. When a rule detects its specific 

set of patterns in the database it attempts to "fire" itself; that is, to perform the set 

of actions it has associated with it. (There are several factors which may prevent a 

given rule from firing, but they are not pertinent to this discussion.) 

Frequently it is the case that not all of the rules in an expert system are, or should 

be, eligible to fire at a given time. Eligibility to fire is controlled and determined 

simply by adding one or more "patterns" to each rule, and then asserting control 

facts into the database to trigger a given set of rules. The management of these 

control "patterns" and facts is usually quite tedious. 

The sequencing mechanisms provided by ESWE operate in precisely this manner, 

by adding control "patterns" to rules, and asserting and retracting control facts to 

and from the database. The difference is that ESWE provides the required modi-

fications to rules automatically, and manages the majority of control data in the 

database automatically, too. 

In developing hierarchical tools in the ESWE environment for describing the logical 

structure of an expert system (or rule-based program), the author adds the concept 

of lexical scoping to each rule's eligibility to fire. That is, a rule is eligible to fire at a 



54 

given time only if all ESWE structures lexically enclosing it are active at that moment. 

Lexical scoping in ESWE is presently restricted to each rule's eligibility to fire and to 

declarations of salience or conditions. Rule, group, automaton, relation, and schema 

names are all global entities due to the nature of Common-Lisp symbols, as are all 

data placed in the database due to the nature and purpose of the database. Lexical 

scoping could be extended to include names also, but only at the cost of modifying 

every such declared name and thus seriously impairing both debugging and run-time 

operations. 

In particular, to extend lexical scoping to identifiers such as rule or group names, 

it will be necessary to modify the symbols. One suitable technique, that commonly 

used in C++ [Stroustrup 86], an extension to the C [Kernighan 78] programming 

language, is to append to each identifier a string containing information about the 

lexical environment. This approach is simple and effective, but unless users are 

intimately familiar with the transformations performed on symbols, the ability to use 

run-time monitoring or debugging features of the underlying language are seriously 

impaired. 

3.2.3.2 Hierarchy and Inheritance 

Before analysing the detailed syntax and semantics of ES WE's hierarchical sequencing 

mechanisms, it will be fruitful to digress slightly and discuss the relationship between 

hierarchy and inheritance. 

The inheritance mechanism is implemented by allowing or requiring each item 

in the hierarchy (expert, automaton, group, or rule definitions) to include a set of 

declarations closely resembling those of ART's defrule macro. Each of these "items" 

(except rule declarations because they are the lowest level of the hierarchy) will cause 

any declarations it is given relating either to salience or "conditions" to be prefixed 

to the declarations for each other "item" it in turn encloses. 
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Inheritance is a mechanism which allows expressions at a given level in a hierarchy 

to obtain properties from expressions at higher (i.e., enclosing) levels in the hierarchy. 

It may be recalled that in the ART expert system language, as in most others, all 

rules in the expert system exist at a single level; no rule lexically encloses any other. 

Consequently, the only way ESWE can express hierarchy is to have expressions at a 

given level modify expressions at lower levels. 

One example of the use of inheritance in ESWE is in the propagation of conditions 

from expressions at one level of the hierarchy to the next. Thus, an automaton is able 

to make all lexically contained rules dependent upon its activation status (activated 

versus deactivated) simply by adding a declaration of the form: 

(declare (conditions (status <automaton-name> active))) 

to each of the ART expressions it directly encloses. The conditions declaration is. 

then inherited by each other ART expression enclosed at lower levels. In this way, the 

firing of any given rule is made conditional upon all enclosing groups and automata 

being active at the same time. 

A second use of inheritance is for the propagation of salience declarations. The 

default salience for any ART expression declared at the root of the hierarchy is always 

zero. (Saliences may be any value within the range of -i 000 000 to 1 000 000.) For an 

ART expression at a given level in the hierarchy, the salience will be either the value 

contained in the expression's salience declaration, or, if no such declaration exists, 

the expression's plus the sum of all the expression's relative-

saliences. (A salience declaration' overrides default/relative salience.) Once com-

puted in this manner, the expression's salience value is then propagated to enclosed 

31f an expression has more than one default-salience declaration, the last such declaration 
takes precedence over all others. Because inherited declarations are added before other declarations, 
placing a default-salience declaration in a rule overrides any inherited value. 
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expressions by adding a default-salience clause to the beginning of the declarations 

for each such enclosed expression. 

Although ESWE permits implementors to override inherited saliences by explicitly 

declaring either a default-salience or a absolute salience for an ART expression, 

they are strongly discouraged from doing so. (Although discouraged, this behaviour is 

not outrightly forbidden, as freedom to declare salience may occasionally be required 

for complete generality.) The internal functions of ESWE generate code which may 

depend ' upon some of these inherited characteristics to function properly; overriding 

default-saliences or declaring a relative-salience of less than -20 may risk upsetting 

the automatically generated code. 

3.2.3.3 Detailed Syntax and Semantics of Defgroup 

The defgroup macro provided by the ESWE environment is intended to declare groups 

of mutually asynchronous rules (or automata) which operate within the confines of 

an automaton. Figure 3.4 illustrates the syntax of defgroup. 

<deEgroup> : (defgroup <name> 

(declare (next-state <state-spec>) 

{(default-salience <integer>)}* 

{(relative-salience <integer>)}* 

{(salience <integer>)}* 

{ (conditions (<lhs-pattern>+) ) }* 
{<ART-decl-forme>}* ) 

{<ruledef> I <lisp-or-ART-Eorm>}* ) 

<lisp-or-ART- form> : := Any valid Common-Lisp or ART expression. 

<lhs-pattern> : := Any valid ART LHS pattern. 

<ART-decl-form> : := Any form which may legally appear in an ART 

(declare ...) expression. 

Figure 3.4: BNF for the defgroup macro. 
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The most important aspect of the defgroup macro is the (declare ...) expres-

sion, which is used, among other things, to implement the inheritance mechanism 

described in the previous section. This is very similar to the declare expression of 

ART's defrule macro, except that the syntax is extended to allow ESWE declarations 

also. 

As implied by the section describing inheritance, the salience and conditions dec-

larations are applicable to all ESWE definitions, and they behave for defgroup exactly 

as described in that section. Specific to defgroup is the next-state declaration. A 

defgroup definition may contain any number (zero or more) of these universal decla-

rations, but must contain precisely one next-state declaration. The value provided 

in this declaration may be one of: 

• The name of the group which is to be activated after the current group (the 

group being defined) has completed its actions or been deactivated. 

• The name of a function which, when executed, returns as its result the name of 

the next group to activate. The function may accept no arguments but is free 

to inspect (or alter) the ART database. Using functions such as this, one may 

implement conditional branching in an automaton, or even non-deterministic 

automata. Functions which modify the ART database should be used with 

caution. 

• The common-lisp symbol 'STOP-NOW-PLEASE, which is declared as a final-

state for every automaton. This will cause the enclosing automaton to halt 

and deactivate itself. 

• Any symbol contained in the (final-state ...) declaration of the enclosing 

automaton. This will have the same effect as using the symbol 'STOP-NOW-

PLEASE. 
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Declarations in a defgroup definition may appear in any order, even though 

this is not correctly reflected by the BNF of Figure 3.4. It is also "permissible" to 

include declarations for initial-state and final-state (which are normally reserved 

for defautomaton definitions) however, the results of doing so are not defined. 

The body of a defgroup definition may contain any number of (extended) rule 

definitions or valid lisp or ART expressions. Normally the only lisp or ART decla-

rations that have any true meaning in this context are such things as lisp variable 

declarations, ART relation declarations, or ESWE expert or automaton definitions ' . 

Any other lisp or ART expressions will simply be evaluated (eval'ed) at the time the 

defgroup definition is loaded into the lisp system. 

Rule definitions (using either defrule or my-defrule' ) enclosed by either a 

defgroup or defautomaton definition will be parsed by ESWE and re-written as 

syntactically correct ART defrule definitions; defrule definitions may use the ESWE 

extended declarations only within such a context. A rule whose definition appears 

within a defgroup definition is made eligible to fire exactly when the defined group 

and all groups or automata enclosing it are activated. This does not mean, however, 

that the rule will fire at this time, or even at all, since it is still bound by ART's 

regime of salience and pattern matching. 

Defgroup definitions should appear only immediately within a defautomaton 

definition. It is not meaningful to place a defgroup definition in any other context. 

The result of doing so is not defined. 

This example of the code produced by ESWE demonstrates several points: first, 

ESWE generates a substantial amount of code for each automaton or group, but all 

such code is either pure ART or Common-Lisp; second, properties are recursively 

4These are valid lisp forms. 



59 

inherited through the hierarchy; and third some inherited properties can be overrid-

den. 

3.2.3.4 Detailed Syntax and Semantics of Defautomaton 

Just as the defgroup macro is a mechanism for declaring groups of mutually asyn-

chronous rules, the defautomaton macro is a mechanism for describing the synchro-

nisation that must be performed between these sets of groups. As with the defgroup 

macro, the defautomaton macro allows a number of ART-like declarations, most of 

which get passed on to enclosed "items" (automaton, group, or rule definitions) via 

the ESWE inheritance mechanism. All declarations permitted in the defgroup macro, 

save only the next-state declaration, apply idntica11y to the defautomaton macro. 

The result of including a next-state declaration in a defautomaton, definition is 

not defined. 

There are also two ESWE declarations which are specific to the defautomaton 

macro, the initial-state declaration, and the final-state declaration. The former 

declaration is used to declare which of the one or more groups enclosed in the au-

tomaton is to be first activated (this is done automatically when the automaton is 

activated). The default initial-state is the first group immediately enclosed by the 

automaton. The latter declaration is used to declare additional final states for the 

automaton. 

The body of the automaton definition may include zero or more defgroup defini-

tions, zero or more defrule definitions, zero or more defautomaton definitions, and 

zero or more ART or Common-Lisp expressions. These expressions and definitions 

may appear in any order, but must not appear before the (declare . . 0) expression. 

As is the case with defgroup, any ART or Common-Lisp expression is legal within 

a defautomaton definition; however, declarative expressions usually make a good 

deal more sense that executable or side-effecting expressions. 
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3.2.4 Example of Defautomaton, Defgroup, and My-defrule 

Following is a brief example of some of the main features of the ESWE environment. 

It illustrates the use of groups, and automata, nested automata, and rules for ini-

tialisation of automata. 

Original Source Code: 

;-*- Mode: LISP; Syntax: Common-lisp; Package: ART-USER; Base: 10 -*-

(defautomaton (automatoni 

(declare (default-salience 100) 

(conditions ((count ?x) (test (< ?x 10))))) 

(defru].e example-of-initial-code 

(declare (relative-salience 20000)) 

(count ?y) 

(test (> ?y 5)) 

(format t "This rule will fire only if there is a 

count < 10 and a count > 5%")) 

(defgroup (groupi 

(declare (relative-salience 30) 

(next-state group2)) 

(my-defru].e 

(format t "&Group1 is now active,. . 

(defgroup (group2 

(declare (next-state STOP-NOW-PLEASE)) 

(my-defrule 

=> 

(format t " 8cGroup2 is now active, activating Automatàn2%") 

(activate-automaton ' automaton2) 

(format t "&Deactivating Automatoni. . 

(deactivate-automaton ' automatoni)))) 

(defautomaton (automaton2 

(defrule auto-rule-2 

=> 
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(format t "Rule auto-rule-2 fired%")))))) 

Passing the above code through the macros defined by ESWE while inhibiting the 

expansion of macros defined by ART yields the following, considerably more verbose 

code. Note the use of ( eva].-when ...) expressions, which force the presence of 

crucial portaions of the ESWE system when the code is loaded into the LISP (ART) 

environment. 

Code Generated by ESWE: 

(PROGN 

(EVAL-WHEN (LOAD EVAL) 

(IF (NOT (SCHEMAP ' EXPERT)) 

(LOAD '" sym-l:>stanley>stan-compiler-oljs.ar-t")) 

(IF (NOT (BOUNDP '*STAN-AUTOMATA--LIST*)) 

(LOAD '" Syln-fsa:>stanley>compiler-globals")) 

(IF (ZL:MEMQ ' AUTOMATON1 *STAN-AUTOMATA-LIST*) 

(ERROR "Attempt to redefine automaton S" 'AUTOMATONl) 
(PROG NIL 

(ZL : PUSH ' AUTOMATON1 *STAN-AUTOMATA-LIST*) 

(ZL:PUTPROP ' AUTOMATON1 '(INITIAL-STATE GROUP1) 

INITIAL-STATE)))) 

(DEFSCHEMA AUTOMATON1 

(INSTANCE-OF AUTOMATON) 
(INITIAL-STATE GROUPi) 

(FINAL-STATE STOP-NOW-PLEASE)) 

(DEFRULE EXAMPLE-OF-INITIAL-CODE 

(DECLARE (SALIENCE 20100)) 

(SCHEMA AUTOMATON1 (STATUS ACTIVE)) 

(COUNT TX) 

(TEST (< TX 10)) 

(COUNT ?Y) 

(TEST (> ?Y 5)) 
=> 

(FORMAT T "This rule will fire only if there is a 

count < 10 and a count > 5%" )) 

(PROGN 

(EVAL-WHEN (LOAD EVAL) 

(IF (NOT (SCHEMAP ' EXPERT)) 
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(LOAD '" sym-l:>stanlêy>stan-compiler-objs. art")) 

(IF (NOT (BOUNDP '*STAN-GROUP-LIST*)) 

(LOAD '"Sym-fsa:>stanley>compiler-globals")) 

(IF (ZL:MEMQ ' GROUP1 *STAN-GROUP-LIST*) 

(ERROR "attempt to redefine GROUP -S." ' GROUP1) 

(PUSH ' GROUPi *STAN-GROUP-LIST*))) 

(PROGN 

(EVAL-WHEN (LOAD EVAL) 

(IF (NOT (SCHEMAP ' EXPERT)) 

(LOAD '" sym-l:>stanley>stan-compiler-objs.ar-t"))) 

(DEFRULE I my-rule-2 I 
(DECLARE (SALIENCE 120)) 

(SCHEMA AUTOMATDN1 (CURRENT-STATE GROUP1)) 

(SCHEMA AUTONATON1 (STATUS ACTIVE)) 

(COUNT ?X) 

(TEST (< ?X 10)) 
=> 

(SET-STATE ' AUTOMATONl ' GROUP2))) 

(PROGN 

(EVAL-WHEN (LOAD EVAL) 

(IF (NOT (SCHEMAP ' EXPERT)) 

(LOAD '"sym-l:>stanley>stan-compiler-objs.ar-t"))) 

(DEFRULE Imy-rule-31 

(DECLARE (SALIENCE 130)) 

(SCHEMA AUTOMATON1 (CURRENT-STATE GROUP1)) 

(SCHEMA AUTOMATON1 (STATUS ACTIVE)) 

(COUNT ?X) 

(TEST (< ?X 10)) 

=> 

(FORMAT T "&cGroupl is now active... 

(PROGN 

(EVAL-WHEN (LOAD EVAL) 

(IF (NOT (SCHEMAP ' EXPERT)) 

(LOAD '"sym-l:>stanley>stan-compiler-objs.art")) 

(IF (NOT (BOUNDP '*STAN-GROUP-LIST*)) 

(LOAD "Sym-fsa:>stanley>compiler-globals")) 

(IF (ZL:MEMQ ' GROUP2 *STAN-GROUP-LIST*) 

(ERROR "attempt to redefine GROUP 5." ' GROUP2) 

(PUSH ' GROUP2 *STAN-GROUP-LIST*))) 

(PROGN 

(EVAL-WHEN (LOAD EVAL) 
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(IF (NOT (SCHEMAP ' EXPERT)) 

<LOAD '" sym-l:>stanley>stan-dompiler-objs.art"))) 

(DEFRULE I my-rule-41 
(DECLARE (SALIENCE 90)) 

(SCHEMA AUTOMATON1 (CURRENT-STATE GROUP2)) 

(SCHEMA AUTOMATON1 (STATUS ACTIVE)) 

(COUNT TX) 

(TEST (< TX 10)) 
=> 

(SET-STATE ' AUTOMATONl ' STOP-NOW-PLEASE))) 

(PROGN 

(EVAL-WHEN (LOAD EVAL) 

(IF (NOT (SCHEMAP ' EXPERT)) 

(LOAD '"sym-l:>stanley>stan-compiler-objs.ar-t"))) 

(DEFRULE I my-rule-5 I 
(DECLARE (SALIENCE 100)) 

(SCHEMA AUTOMATON1 (CURRENT-STATE GROUP2)) 

(SCHEMA AUTOMATON1 (STATUS ACTIVE)) 

(COUNT TX) 

(TEST (< TX 10)) 

=> 

(FORMAT T "&Group2 is now active, activating Autornaton2%') 

(ACTIVATE-AUTOMATON ' AUTONATON2) 

(FORMAT T "&Deactivating Automatoni,. .%") 

(DEACTIVATE-AUTOMATON ' AUTOMATONl)))) 

(PROGN 

(EVAL-WHEN (LOAD EVAL) 

(IF (NOT (SCHEMAP ' EXPERT)) 

(LOAD "sym-l:>stanley>stan-compiler-o'ojs,art")) 

(IF (NOT (BOUNDP '*STAN-AUTQMATA-LIST*)) 

(LOAD "Sym-fsa: >stanley>compiler-globals")) 

(IF ( ZL : MEMQ ' AUTOMATON2 *STAN-AUTOMATA-LIST*) 

(ERROR "Attempt to redefine automaton 5" ' AUTOMATON2) 

(PROG NIL 

(ZL : PUSH ' AUTOMATON2 *STAN-AUTOMATA-LIST*) 

(ZL:PUTPROP ' AUTOMATON2 '(INITIAL-STATE NIL) 

'INITIAL-STATE)))) 

(DEFSCHEMA AUTOMATON2 

(INSTANCE-OF AUTOMATON) 

(INITIAL-STATE NIL) 

(FINAL-STATE STOP-NOW-PLEASE)) 

(DEFRULE AUTO-RULE-2 
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(DECLARE (SALIENCE 100)) 

(SCHEMA AUTOMATON2 (STATUS ACTIVE)) 

(SCHEMA AUTONATON1 (STATUS ACTIVE)) 

(COUNT ?X) 

(TEST (< ?X 10)) 

(FORMAT T "Rule auto-rule-2 fired%")))) 

Notice in the expanded code, above, that only pure ART syntax and expressions 

are used. All extended declarations have been processed, and replaced by standard 

ART salience declarations. Code has been generated to create the schemata objects 

required to control the groups and automata and to allow external LISP code to 

monitor their status. 

Next is presented a brief demonstration of executing the code shown above. The 

input for the demonstration, which simply places two facts in the database and 

activates the outer automaton, is: 

(acu:reset) 

(art:assert (count 1)) 
(art:assert (count 7)) 
(activate-automaton 'automatoni) 
(acu:run) 

The output resulting from the expression ( a.cu: run) is: 

This rule will fire only if there is a count < 10 and a count > 5 

This rule will fire only if there is a count < 10 and a count > 5 

Groupl is now active... 

Groupi is now active... 

Group2 is now active, activating Automaton2 

Deactivating Automatoni. . . 

No applicable rules. 

NIL 

Note that the some of the rules fired twice. This is because they contained a pair 

of patterns, one of whichlooked for a count less than ten, and the other which looked 

for a pattern between five and ten. The facts (count 1) and (count 7) matched 

the former pattern twice, but the latter pattern only once, resulting in 2 x 1 = 2 
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activations of each rule. If the fact (count 1) were removed from the database, each 

rule would fire only once. 

3.2.5 Defexpert: ESWE's Macro for Sequential Experts 

In this section, ESWE's macro for describing and sequencing actions in a domain expert 

is reviewed. In Section 3.2.3 ESWE's macros for describing finite state automata were 

described. These macros are certainly adequate for the description of a "domain 

expert", but may tend to be both cumbersome and unnecessarily general. Frequently 

it is the case that a domain expert requires only a very simple structure, usually, a 

simple "while" loop with allowances for initialisation and wrap-up is adequate. 

<def expert> 

(defexpert (<name> 

{(declare {(relative-salience <integer>)} 

{(default-salience <integer>)} 
{(salience <integer>)} 

{ (conditions ({<ART-LHS>}*)) } 
{(initial-state <group-name>)). 

{(final-state <group-name>)). )} 
{<lisp-or-ART-form> I <ruledef>}* 

{(initialise {<lisp-or-ART-form> I <ruledef>}*)} 
{(iterate 

{(start-up {<lisp-or-ART-form> I <ruledef>}*)} 
{<lisp-or-ART-form> I <ruledef>}* 

{(clean-up -C<lisp-or-ART-form> I <ruledef>}*)})} 
{ (wrap-up -C<lisp-or-ART-form>}*) 

)) 

<lisp-or-ART-form> ::= Any valid common-lisp or ART form. 

Figure 3.5: BNF for defexpert 

The main primitive developed for defining experts is the defexpert macro, 

(see Figure 3.5) which in turn generates defautomaton, defgroup and defrule 
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Figure 3.6: State transitions among automata created by defexpert. 

macros as needed. Defexpert generates two nested finite automata (see Figure 3.6 

on page 66), which perform the following actions: 

1. Initialise the expert. 

2. Activate the body of the expert. The body is, itself, an automaton which 

iteratively performs the following actions: 

(a) Execute some set-up (start-up) code for the current iteration. 

(b) Activate the main body of the loop. The body may, of course, contain 

more finite state automata. 

(c) Execute some clean-up code, in preparation for starting the loop over. 

3. Perform some termination actions. These may include, for example, printing 

a message on a terminal, or clearing the knowledge of unnecessary temporary 

data. 
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When inspecting the state diagram of Figure 3.6 it is necessary to recall the 

nature of state transitions in ESWE FSAs. Most readers will quickly notice that none 

of the arcs in the state diagram (transitions in the automaton) are labeled. Further, 

after the hierarchy of the state diagram is flattened, it is immediately apparent that 

there are two possible transitions from the state labeled "Clean-Up", one to the state 

"Wrap-Up", which terminates the expert, and one to the state "Start-Up", which 

continues the iteration of the body of the expert. While neither of these transitions 

is associated with an "input" in any obvious way, the automaton is nonetheless 

deterministic, and has been deliberately made so. This is because the transition 

from "Clean-Up" to "Start-Up" is of higher salience (priority) than the transition 

from "Clean-Up" to "Wrap-Up"; thus the first transition will always be made in 

preference to the second, except when the iteiative body of the expert is explicitly 

deactivated by a call to the deactivate-automaton function. Once such a call is 

made, the high salience rules of the expert's body are no longer able to fire, and the 

lower salience rule which causes the state transition from "Clean-Up" to "Wrap-Up" 

will be able to fire. 

3.3 Design Abstraction in ESWE 

In addition to control structures for defining expert systems, ESWE provides a user-

extensible structure for describing circuit components, and "layout technologies" . 

The design abstraction facilities of ESWE are implemented using the object-oriented 

schema facility of the ART language [ART87, chapters 9, 12], and are therefore useful 

both for providing user extensible features and for providing an interface to external 

code written in Common Lisp. 

5Layout technologies should not be confused with "fabrication" technologies, for which they 
serve as an abstraction. 
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3.3.1 Technology Abstraction 

ESWE's technology abstraction, provided by the deftechnológy macro described in 

Figure 3.7, allows for the description of CMOS technologies on a layer-by-layer basis. 

That is, a technology may consist of an arbitrary number of layers, having arbitrary 

names. Each layer, however, is expected to be declared as one of six predefined 

types (p-active, n-active, gate, via, interconnect, and virtual) and of one of six types 

of material (polysilicon, metal, suicide, implant, diffusion, and virtual). Additional 

information about each layer, such as resistivity, capacitance, and thickness may also 

be specified, should it be required by the epert system being developed. 

"Virtual" is included as a layer type and as a material to allow the specification 

of layers which may not fall into any of the other categories. It is intended that 

layers declared as virtual be used primarily for passive layers in a technology 6, which 

are essential to the correct fabrication of devices, but unimportant in considering 

placement and routing. Naturally, virtual .layers may be used for whatever purpose 

an expert system implementor may see fit; in fact, nothing prevents all layers from 

being declared "virtual", except the loss of what may prove invaluable information 

about their physical or electrical properties. 

A second anticipated use of "virtual" layers is for space-keeping. Design rules 

are often described in terms of features which are sometimes not easily identifiable. 

For example, in order to enforce a design rule which requires a separation between 

vias and gates, it may be helpful to place a rectangle of "material" on a layer called 

"virtual-gate" over the gate of each transistor. While no such rectangle is required 

for the fabrication of the device, it is easier to check the boundary conditions between 

pairs of rectangles on "via" and "virtual-gate" layers than it is to check for conditions 

between n-tuples of rectangles. 

6The thinox "overgiass" layer of MOSIS Generic CMOS is a good example of such a layer. 
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BNF for DEFTECHNOLOGY: 

<deftech> :: 

(deftechnology <name> 

(LAYERS [<layer-spec>]*) 

(RULES 

[ <rule-spec> :1* ) 
{<defobj ects>}*. 

) 

<layer-spec> 

(<layer-name> <layer-type> <layer-material> 

{<restivity>} {<capacitance>} {<thickness>}) 

<layer-type> :: N-ACTIVE I P-ACTIVE I GATE 
INTERCONNECT I VIA I VIRTUAL 

<layer-material> : : POLY I METAL I SILICIDE I IMPLANT I 
DIFFUSION I VIRTUAL 

<rule-spec> 

(SEPARATION <layer-name-i> <layer-name-2> <integer>) 

(SURROUND <layer-name-i> <layer-name-2> <integer>) 

(MINIMUM-FEATURE <layer-name> <integer>) 

(GATE-OVERLAP <integer>) 

(ACTIVE-OVERLAP <integer>) 

Figure 3.7: BNF for the Deftechnology Macro 

Design rules for a given technology may also be specified using three general 

types of design rule: Separation rules (for the minimum distance between features 

on two layers), Surround rules (for the minimum enclosure of features on one layer 

by features on another), and Minimum-Feature rules (for the minimum features on 

a given layer). 
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3.3.2 Layout Abstraction 

To complement ESWE's technology abstractions, a facility has also been provided for 

abstraction of design components and, circuit designs. During the design of these 

abstractions, considerable emphasis was placed on uniformity of representation; this 

consideration has, in fact, taken precedence over other considerations such a memory 

use or compilation time. 

3.3.2.1 Technology Independent Layout Primitives 

There are two technology-independent layout primitives provided by ESWE, "pins" 

and "wires". All other layout "primitives" must ultimately be des'cribed in terms 

these two. Pins and wires each have several attributes, some optional, others not. 

Pins serve to represent a location in a grid, possibly associated with a specific layer 

or a specific electrical network. Wires represent an electrical connection between a 

pair of pins, possibly on a specific layer, representing a rectangle of specific width. 

Figures 3.8 and 3.9 contain the ART definitions of these two base primitives. 

In addition to slots for electrical net, layer and location, a pin also has slots 

describing its "parent" and its "constrainedness" (i.e. its state of being constrained). 

The "parent" slot is used to specify that a given pin (an instance of the schema sym-

pin) is part of another object, eg., a transistor. When a pin is declared as being 

constrained (i.e. when the value of its constrainedp slot is 'YES'), it is expected not 

to be moved except as a result of transformations or translations on its parent; the 

enforcement of this expectation is, however, left to the application. 

As with pins, wires include parent and constrainedp slots. Perhaps surprisingly, 

they do not contain width slots. This is because the sym-wire schemata is not 

expected to always represent physical wires; virtual wires without width or dimension 
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(defschema sym-pin ; "A symbolic-placement pin " 

(net) 

(layer) 

(lc) 

(parent) ;; Keep track of object a pin is part of. 

(constrainedp NO)) ;; Is this pin forced to move ONLY along with 

its parent object? (default: NO) 

(defaction translat-pin ( (pin sym-pin) ) (del-pair) 
(prog* ( (location (list*$ (get-schema-value pin ' lc))) 
(del-x (car del-pair)) 

(del-y (cadr del-pair)) 

(x-boc (car location)) 

(y-boc (cadr location)) ) 
(setq x-loc (or (and (numberp x-boc) x-boc) 0)) 

(setq y-loc (or (and (numberp y-boc) y-boc) 0)) 

(modify-schema-value 

pin ' bc (seq*$ '(,(+ x-loc del-x) 

,(+ y-boc del-y)))))) 

Figure 3.8: Formal ART Specification of Symbolic Pins. 

may be needed to indicate electrical connectivity between two objects . It is possible 

to add a width declaration to wires as required using the (modify-schema-value...) 

operation provided by ART. 

3.3.2.2 Technology Dependent Layout Primitives 

While it is possible to layout circuits with only the two primitives described above, 

many designers (and expert systems implementors) are apt to find this very low 

level of abstraction overly tedious. Of course, it is normally necessary that designs 

eventually be expressed at approximately this level of abstraction for purposes of 

mask generation. 8 Frequently, it proves useful to think of circuit elements on higher 

'For example, it is a common occurance in the ELECTRIC design system for "virtual" wires to 
be used to prevent the design-rule checker from detecting errors in well- and substrate-contacts. 

8Eg., many designs must be submitted for fabrication using CIF [Mead 80, pp. 115 - 127], which 
operates at or about this level of abstraction. 
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Following is a definition of a symbolic wire. NOTE that 

symbolic wires, by default, have no width; a width may be 

added to a wire using (modify-schema-value ...) 

(def schema av-wire-NET ( is-a active-value)) 

(defschema sym-wire ; "A symbolic placement wire" 

(net) 

(layer) 

(end- 1) 

(end-2) 

(parent) 

(cons-trainedp NO)) 

(defaction modify-before (av-wire-NET) (schema slot old-val new-val) 

(loop for pin in '(,(get-schema-value schema ' end-i) 

,(get-schema-value schema ' end-2)) do 

(modify-schema-value pin ' net new-val)) 

) 
(defaction put-before (av-wire-NET) (schema slot new-val) 

(loop for pin in '(,(get-schema-value schema ' end- I) 

,(get-schema-value schema ' end-2)) do 

(when ( schemap pin) 

(modify-schema-value pin ' net new-val))) 

) 
(add-active-value ' sym-wire ' NET ' av-wire-NET) 

Figure 3.9: Formal ART Specification of Symbolic Wires. 

levels, regarding transistors, contacts, or even logic gates as primitives; the benefits 

of this are readily gained in simplified design methodologies (it is easier to reason 

about a "transistor" than a collection of some thirty pins and wires) and simplified 

design rule checking. 

Higher level primitives can be expressed in terms of these base-level  primitives, by 

means of prototypes. (The sym-pin and sym-wire schemata in Figures 3.8 and 3.9, 

are in effect prototypes for wires and pins; in order to get an object that can be used 

in a layout one must use an "instance" of one of these prototypes.) ESWE provides 
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means for generating prototypes for two classes of objects: transistors and contacts 

(vias). The description of a prototype consists primarily of a list of pins and wires to 

be created when an instance of the prototype is made. Pin locations are relative to 

the center of the "prototype", but prototyped objects need not be symmetric. ESWE 

provides methods for rotating, mirroring, and translating instances of contact and 

transistor prototypes, although expert system implementors using ESWE may easily 

redefine these methods as required. Figure 3.10 contains examples of transistor and 

prototype declarations for the MOSIS Generic CMOS technology. 

Appendix B contains a complete sample technology definition based upon MOSIS 

Generic CMOS. 

3.3.3 ESWE Facilities for Cell Description 

The final facility provided by ESWE for design abstraction is the defcell macro. The 

least general of technology abstractions, defcell is intended to allow designers to 

easily specify the topology of a. standard cell and have that topology entered into 

the ART database for manipulation by one or more expert systems. The syntax for 

this macro is illustrated in Figure 3.11. 

Defcell allows designers not only to specify the topology of a cell, but also permits 

the required the description of locations for "ports" at which electrical networks 

enter or exit the cell. Because defcell is intended primarily for use in symbolic 

layout contexts, no provision is made for placing ports at specific locations; ports are 

placed relative to one another, using constraints on horizontal and vertical position. 

For purposes of information or error detection, a number of parameters must 

be declared for each cell. These are: the electrical networks used (internal and 

external); the size of the cell (number of rows and columns of transistors); the names 

of transistors to be used in the cell; and the names, networks, and relative positions 
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(defcontact metal- i-metal-2 

(contacts metal-i metal-2) 

(pins (rn-i metal-i (0 0)) 

(rn-2 metal-2 (0 0)) 

(c-i contact (0 0))) 

(wires (mw-1 metal-i 4 m-i rn-i) 

(mw-2 metal-2 4 m-2 rn-2) 

(cw-1 contact 2 c-i c-i))) 

(deschema p-transistor 

(instance-of transistor-prototype) 

(type P-TRANSISTOR) 

(proto-pins (SRC-PIN pactive (0 100)) 

(DRN-PIN p-active (0 -ioo)) 
(GATE-PIN-1 poly (ioo 0)) 
(GATE-PIN-2 poly (- 100 0)) 

(INT-PIN-1 p-active (0 0)) 

(INT-PIN-2 p-active (0 0)) 

(WELL-PIN-1 n-well (0 100)) 

(WELL-PIN-2 n-well (0 - 100))) 

(active-pro-to-pins SRC-PIN DRN-PIN GATE-PIN-1 GATE-PIN-2) 

(proto-wires 

(SRC-WIRE p-active 5 SRC-PIN INT-PIN-1) 

(DRN-WIRE p-active 5 DRN-PIN INT-PIN-2) 

(GATE-WIRE poly 3 GATE-PIN-1 GATE-PIN-2) 

(WELL-WIRE n-well 19 WELL-PIN-1 WELL-PIN-2)) 

(proto-constrain-ts)) 

Figure 3.10: Example of Contact and Transistor Prototypes. 
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<cell-defn> 

(DEFCELL <name> 

(NETWORKS [<netname>J *) 

(SIZE <rows> <columns>) 

(PORTS 

(NORTH {<portspec>}*) 

(SOUTH -C<portspec>}*) 

(EAST {<portspec>}*) 

(WEST {<portspec>}*) 

(INTERIOR {<portspec>}*) 

(CONST {<port-constraint**) 

) 
(TRANSISTORS [<transistor-name>] *) 

(CONSTRAINTS {<constrain-t>}*). 

) 

<portspec> 

(<portnanie> <network> {<contact-type>}) 

<port-constraint> 

(<portnanie-1> = <portname-2>) 

I (<portname-1> >= <portname-2> {+ <integer>}) 
I (<portname-1> I I <portname-2>) 
I (<portname-1> I I <portname-2> {+ <integer>}) 

Figure 3.11: BNF for the Defcell Macro. 

of the "ports" used by the cell. The following paragraphs discuss each of these classes 

separately. 

As a measure of error detection, all network names must be declared. A network 

name may be any valid ART symbol, but because this name will be used as the 

"name" of a schema, it must not have been used as the name of any other schema.' 

The schemata generated for the declared networks in a cell serve primarily to indicate 

'This, unfortunately, is also the case for layer names, contact names, transistor names, cell 
names, port names, pin names, wire names, and for names of any other object which may be 
generated either by sianley or by application software. 
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the existence of these networks, but with user-supplied extensions can be profitably 

used for such purposes as maintaining lists of strongly connected subnets for routing. 

For the purposes of the defcell macro, the declared network names, along with the 

predefined networks "PWR" and "GND", comprise the list of all symbols which may 

legally appear where a network name is required throughout the context of the cell 

definition. 

The size declaration is used to define the number of rows and columns of transis-

tors which may be used in the layout of the cell. This is of particular value to expert 

systems which produce symbolic layout, but is also pertinent to the design style that 

ESWE targets. 

Port declarations are rather complex: they are used to describe the locations of 

electrical connections between the cell's networks and the outside world. Because 

ESWE is geared toward expert systems which generate symbolic layout, there is little 

point in describing port locations in physical terms. Further, because the layout of 

a cell may require the relocation of one or more ports, describing ports in absolute 

rather than relative terms may prove counterproductive. 

When declared, each port must be explicitly placed on a specific face of the cell or 

in the interior of the cell. Exterior, or face, ports are automatically constrained either 

vertically or horizontally to lie on the face (NORTH, SOUTH, EAST or WEST) for 

which they are declared; further, they are constrained to appear in the order they 

are listed under each face, from bottom to top, or from left to right. 10 By default, 

ports declared to lie in the interior of the cell remain unconstrained; they should 

be used with caution, as the port-placement algorithm [Brinsmead 88] supplied by 

ESWE will place all unconstrained interior ports at the geometrical center of the cell. 

Pitch-matching between ports may be specified by defining horizontal or vertical 

'°Given these default constraints on face ports, it is rarely necessary to provide any addition 
constraints, except to force pitch-matching. 
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equivalence relations between pairs of ports on opposite faces. The algorithm used 

to satisfy the constraints on port placement (to generate the initial placement) is 

described in detail, and verified, in [Brinsmead 88]. 

The final declaration required by defcell is the list of the names of all transistors 

to be used in the cell. The transistor names, which must obey the same rules as 

network names, are used solely for type-checking, to help ensure the correctness 

of subsequent deftran definitions which instantiate the transistors and define their 

networks. 

Examples of defcell and accompanying deftran declarations may be seen in 

Section 4.3. 

3.4 Chapter Summary 

Chapter 2 described several difficult problems of VLSI design automation and 

explained the necessity of heuristics to provide efficient solutions to these prob-

lems. That chapter described several classes of heuristic techniques, among them, 

knowledge-based expert systems. 

This chapter presented and described the Expert System Wrapper Environment 

(EswE), developed by the author for implementing expert systems for -design-oriented 

problems in general, and for VLSI design problems in particular. By means of the 

defgroup, defautomaton, and defexpert macros defined by ESWE, programmers 

are able to easily define sequential or iterative control structures in a rule-based 

expert system without unduly impairing the asynchronicity of rules which is normally 

desired in an expert system. These macros provide useful syntactic and semantic 

extensions to the ART [ART87] expert system shell, allowing implementors to define 

arbitrary finite state automata to act as control mechanisms within an expert system. 
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Also presented in this chapter are a number of abstractions for the design of Com-

plimentary Metal Oxide Semiconductor (CMOS) circuits, which have been employed 

in the implementation an expert system for the symbolic placement of transistors in 

small VLSI circuit components. This expert system and its variants are the subject 

of Chapter 4. 



Chapter 4 

Stochastic Control in Expert Systems 

As illustrated in the review in Chapter 2, the expert systems approach to problem 

solving can be very beneficial for a wide variety of applications, including numerous 

design-oriented problems. However, when applying rule-based programs to problems 

of design, developers have found it convenient, or even necessary, to recast the prob-

lem as a matter of optimisation rather than constructive synthesis; that is, to start 

from an arbitrary initial design, and iteratively refine it. 

When the problem is a matter of diagnosis, the classical approach to expert 

systems as described in Chapter 2, has proven most successful; hovever, this is not 

necessarily the case for optimisation. The "classical" approach to expert systems 

design normally tends to produce a "greedy" optimisation, one in which short-term 

improvements are readily accepted without regard for the possible impact of these 

decisions on the progress of the optimisation at a later time. 

There is a large number of known techniques for overcoming the problem of 

greediness in optimisation, among them, stochastic processes such as Simulated An-

nealing. Stochastic techniques are especially appealing for use with expert systems 

for a number of reasons: 

1. The rules used in an expert system are typically uncertain to begin with; it 

hardly makes sense to rigorously apply a rule (heuristic) that is, a priori, known 

not to be always effective. 

2. When several rules are found to be applicable in a given context, it is not 

sensible to rigorously select one in favour of another, without a strong and 

compelling reason. 

79 
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3. Rigorously deterministic behaviour is reproduceable 1 and invariant. This is 

often an advantage, especially when testing and debugging. Unfortunately, 

should a deterministic expert system perform poorly for a given problem in-

stance, the effort of retrying will be fruitless, as the results will always be the 

same. 

4. Stochastic behaviour often helps to broaden the scope of a search, effectively 

counteracting the single-mindedness of a deterministic approach. 

This chapter describes one way in which randomness may be integrated into 

an expert system to improve overall performance; that is, by adding high-level (or 

meta-) heuristics based upon Simulated Annealing, which are used to control how a 

expert system selects and acts on multiple recommendations. This is demonstrated 

to significantly improve the performance' of a simple expert system. Unfortunately, 

a considerable penalty in computation time is incurred. Other techniques, which 

involve incorporating randomness into the inference engine of an expert system (so 

that when several rules are candidates to be fired next the selection is random rather 

than arbitrary), are suggested in Chapter 5, for future consideration. 

4.1 Expert Systems and Simulated Annealing 

When developing an expert system to synthesise designs under an iterative refine-

ment paradigm, it is first necessary to have some means of determining the relative 

value of two different states in the design space. This is normally done by means of 

a cost function, finding the minimum of which is the object of the optimisation. 

'Stochastic behaviour controlled by a pseudo-random number generator is also reproduceable, 
but only when it is desired to be. 

21.e. the expert system using Simulated Annealing regularly produces superior results, although 
with a significant penalty in time. 
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The expert system operates by inspecting the current state of the design, and 

then making recommendations for changes which might lead to a reduction in the 

cost function. One of these recommendations is selected and acted upon and the 

result compared to the state of the design prior to the change. If the cost of the new 

configuration has improved over the old one, the state resulting from the change is 

accepted made the new "current" state and the optimisation continues. Otherwise, if 

the cost has not been reduced, the change is rejected, and another recommendation 

is selected and acted upon. This procedure continues either until there are no further 

recommendations for improvement, or until the cost reaches an adequately low value. 

This approach has proven to be very successful in solving a number of prob-

lems, including channel routing [Keefe 87] [Joobbani 86b] and transistor placement 

[Kollaritsc 85] [Sharman 86]. It is unfortunately susceptible to a very real problem; 

that of becoming arrested in a local minimum. It is often the case that during 

a sequence of iterative improvements the design reaches a state where no single 

(small) change can reduce the cost function, although the minimum cost has not 

yet been reached. One well known expert system for symbolic layout, TOPOLO-

GIZER [Kollaritsc 8], is known to experience this difficulty [Ackland 88], sometimes 

terminating before a reasonably good layout has been found. 

Many techniques for avoiding local extrema are known. Methods which use back-

tracking of some form are able to retreat from local extrema, making a more complete 

exploration of the search space. Rigorous backtracking techniques such as depth-first 

and breadth-first searches [Aho 74] are able to guarantee optimal solutions, but only 

at the expense of (potentially) exploring the entire search space. For VLSI design 

problems, the size of the search space is at least combinatorial in the number of circuit 

components and interconnections, making exhaustive search techniques impractical. 
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As we have seen in chapter 2, there exists a technique known as Monte Carlo 

simulation or Simulated Annealing, which has been demonstrated to be effective in 

avoiding problems involving local extrema. This immediately suggests the possibility 

that Monte Carlo techniques may somehow improve the prospects of design comple-

tion in expert systems. Further, this also suggests that randomness of other forms 

may be beneficial to an expert system whose operation is found to be too rigid or 

shortsighted. 

While Simulated Annealing is reported to produce excellent results in many cases, 

they are all achieved with a large penalty in execution time. A large part of this 

penalty is incurred during the later stages of the annealing process, when relatively 

few attempted moves are accepted. 

One suggested means of overcoming this problem is presented by Greene and 

Supowit [Greene 86]. This method, while promising a significant performance im-

provement over the Metropolis method of Simulated Annealing [Metropolis 53], re-

quires that the result of each possible move be predicted and weighted according 

to its relative value. Then one of the moves is randomly selected according to the 

weight it is assigned. While this method assures that no move Js ever rejected, it 

is often necessary to consider a very large number of potential moves: for example, 

when seeking an optimal arrngement of n transistors among n fixed sites, using 

pairwise interchange, at any given time, there are n2 - n possible exchanges, 3 each 

of which must be evaluated before one can be accepted. For even moderate values 

of n, this can represent a prohibitive overhead. 

Another means of overcoming this problem is to use domain-specific heuristics to 

select moves which might be expected to yield favourable results. In order to pre-

serve the underlying principles of Simulated Annealing, these heuristics should be 

In cases where more complex interchange schemes are employed, the number of alternatives my 
grow as large as n!. 
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employed sparingly at very high temperatures  (when adverse changes are accepted 

with high probability), and can be invoked more frequently as the temperature de-

clines. This closely emulates the behaviour of the Simulated Annealing heuristic, 

which accepts "negative" moves with high probability in the initial stages of the 

optimisation process, and then becomes progressively greedier as simulation time 

advances. 

4.2 The STANLEY Expert Systems 

The notion of employing Simulated Annealing as a meta-heuristic in the control 

mechanism of an expert system has been tested by the author using a pair of simple 

expert systems for transistor placement in VLSI leaf cells. These expert systems, 

henceforth referred to as the STANLEY  expert systems, are based upon Sharman's 

SPLAT [Sharman 86]. 

At the lowest level, these expert systems are highly similar, both employing a 

form of Force Directed Exchange (see section 2.4.1.2) as their primary optimisation 

heuristic, along with a number of rules for selecting probable pairs of candidate 

transistors for exchange. The difference appears in the control level of these ex-

pert systems: the first expert system naively performs a greedy optimisation, always 

trying the exchange it believes to be most profitable and never accepting an unprof-

itable exchange; the second has a few additional heuristics intended to occasionally 

generate arbitrary exchanges, exchanges which it has no particular reason to believe 

profitable, or for which there may exist reasons to believe that it is unprofitable. 

The latter of these two expert systems, which will henceforth be referred to as the 

Optimising Expert, will occasionally accept "negative" or "unprofitable" exchanges 

'For a descriptiuon of the use of "temperature" in Simulated Annealing, please refer to Sec-
tion 2.3.2.2 on page 19. 

"'STANLEY" is an acronym for "STimulated ANnealing Layout Expert". 
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according to a well defined annealing schedule, while the former expert system, which 

will henceforth be referred to as the Conventional Expert always rejects negative ex-

changes without question. 

The objective in equipping the Optimising Expert with the ability to generate 

arbitrary moves and to accept unprofitable changes is to provide a simple mechanism 

by which the expert system can back away from "solutions" which do not provide a 

global optimum. 

In order to perform a good comparison of these two systems, the structure and 

logic of the Conventional Expert system will first be described, since the Conventional 

Expert system provides the basis for the Optimising Expert system. Once this has 

been done, the structure and logic of the Optimising Expert will be presented. 

4.2.1 Implementation of The STANLEY Experts 

The STANLEY expert systems are tools for the automatic placement of transistors 

in VLSI leaf cells. Both operate using an iterative refinement heuristic based upon 

Force Directed Interchange of transistors. In effect, this means that both expert 

systems employ an underlying algorithm resembling the following: 

1. Generate an arbitrary initial placement. 

2. Compute the quality of the Current Placement by evaluating Old-Cost = 

Cost (Current-Layout). 

3. Select a pair of transistors and exchange them. 

4. Compute the quality of the New Placement by evaluating New-Cost = 

Cost (New-Placement). 

5. If the difference between placements is acceptable, as determined by the func-

tion Accept (LCost), accept the New Placement. Otherwise, undo the effects 

of the exchange just attempted. 
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6. Unless Completion Criteria have been met, repeat from Step 2. 

This algorithm is essentially a basic iterative refinement; it is the implementation 

of the Cost 0 function, Accept () function, and Completion Criteria which make this 

algorithm a Force Directed Exchange procedure. As the Cost 0 function and the 

selection procedure (which chooses pairs of transistors to exchange) are common to 

both of the STANLEY expert systems, they will be described first. The peculiarities 

of each expert will be presented separately. 

The STANLEY experts are implemented partly in ART 3.0 and partly in Sym-

bolics Common Lisp. The use ofLisp code was maximised for the sake of perfor-

mance. The portions of these experts implemented in ART were coded using the 

macros of the ESWE environment, which is the subject of Chapter 3. 

4.2.1.1 Cost Function 

The cost function employed by the these experts computes a "force analog" based 

upon the interconnections between pairs of transistors. The term force analog is 

used because the forces computed between transistors are based upon the analogy 

of stretching springs between each pair of terminals which are to be electrically 

connected. The objective of the simulation is to find the configuration in which the 

sum of attractive forces between transistors is at a minimum, thus producing what 

is hoped to be a good balance between minimal area and minimum wire length. 

For the most part, the force between two electrically connected transistors is 

a vector quantity whose scalar component is a quadratic function of the distance 

between the centers of the transistors, that is, r2. Because it is intended that 

wires will eventually be added to the circuit using Manhattan rules (i.e. each wire 

segment must be parallel to either the horizontal or vertical axis), and to simplify the 

logic in the rules which reason about forces, the force between a.pair of transistors 

is represented as two separate components, one on the vertical and the other on 
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the horizontal axis. The vector portions of each component are either positive to 

indicate that a transistor is being pulled "up" (in the increasing x-direction) or to 

the "right" ( in the increasing y-direction), or negative to indicate the transistor is 

being pulled "down" or "left". 

The cost for a given configuration is the sum of all scalar components of the 

net force on each transistor. While the cost is being computed, the net force for 

each transistor is recorded for use by the heuristics which select pairs of candidate 

transistors to exchange. 

Several problem-specific heuristics are "compiled" directly into the cost unc-

tion. Forces between transistors are weighted according to the layer on which the 

connection is anticipated to lie. The style of layout to which the expert systems 

are expected to adhere requires the respective placement of power and ground rails 

(rectangles of conductive material which distribute the power and ground voltages 

to the circuit) across the entire top and bottom edges of the circuit; therefore, for 

connections between a transistor and a power or ground rail, only a vertical compo-

nent is computed, since wherever the transistor lies, power and ground are always 

available directly above and below it. 

4.2.1.2 Selection Procedure 

As with the Cost() function, the procedure for selecting pairs of transistors to ex-

change is essentially the same for both the Conventional and Optimising STANLEY 

Experts. The primary objective of this procedure is to select either two transistors 

to exchange positions, or a transistor and an empty space, with the hope of finding 

a transposition which results in reducing the total force. 

Under the Force Directed Exchange paradigm, the layout area is arranged into 

a fixed (and relatively small) number of rows and columns, which define a grid. 
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Transistors may be placed only on lattice points in the grid, and no two transistors 

may occupy the same location. 

The design style followed by the STANLEY expert systems places a number of 

constraints on the freedom of movement of transistors, many of which are reflected 

in the heuristics of the selection procedure. Primary among these is the requirement 

that all P-type transistors be placed in the North (upper) half of the circuit and 

all N-type transistors be placed in the South (lower) half. This restriction is hon-

oiired (if possible) by procedure which produces the initial (arbitrary) placement; 

subsequently, it is enforced by allowing exchanges only between transistors of similar 

type, and moves (the "exchange" of a transistor and an empty site) only when the 

transistor will remain in the appropriate region of the circuit. 

The STANLEY experts both maintain a queue of "pending" recommendations 

for moves; the Conventional Expert. treats this as a LIFO (Last In First Out) queue 

while the Optimising Expert manipulates it rather differently. Initially, the queues 

are empty; the first time a suggestion for a move is required, a number of reasonable 

(and in the case of the Optimising Expert, a few unreasonable) suggestions are gen-

erated, and placed in the queue, in reverse order of expected success. One suggestion 

is then removed from the queue, and placed in the ART knowledge base, to be acted 

upon by the rule-based portions of the expert system. 

Subsequently, when a suggestion for a transposition is required, the queue is 

inspected, and if not empty, a new suggestion is made available for action. To keep 

the suggestions in the queue up-to-date, when a transistor is successfully moved, or 

an empty site is successfully occupied, all suggestions involving that transistor or 

site are removed from the queue. Further, in the case of the Optimising Expert, if 

the queue has not been re-generated within a specified number of attempted moves 
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(currently 15), it is emptied, and new suggestions are generated. This approach to 

move generation is advantageous for several reasons: 

• The heuristics for generating suggested moves produce several simultaneous al-

ternatives. Placing all of these alternatives directly into the ART database can 

be made, with some effort, to result in very similar behaviour (since ART has 

a natural tendency to operate on most tecent data first), but at a considerable 

penalty to performance, due to the large number of Working Memory Changes 

required. It is awkward, although not difficult, to cause ART to act on sugges-

tions in LIFO order, however, the main alternative is to allow ART free reign, 

in which case it will attempt to act on all suggestions simultaneously. 

• By having the suggestions queue managed outside ART, it is possible to modify 

the way in which elements are placed in and removed from the queue with 

relatively little difficulty. The Optimising Expert, for example, redefines the 

mechanism for ptopagating elements from the queue into the ART database. 

• If new suggestions were computed for every attempted move, a rejected move 

will lead to infinite looping, as the new set of suggestions will be identical to 

the old. 

• A successful move has only a localised effect on the forces on transistors. Most 

suggestions remain equally valid even after several moves have been accepted. 

To increase the validity of remaining suggestions, suggested moves which in-

volve a transistor sharing a common network with a successfully moved tran-

sistor may be removed from the queue. 
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4.2.1.3 Backtracking 

The Optimising Expert is intended to use a very rapid "cooling schedule" 6 This 

results in lower computation times, but often causes the Optimising Expert to ter-

minate with a design state which may not be the lowest-cost design state located 

so far. Since optimal results are not being sought, the rapid cooling is acceptable, 

but only if it is possible to return to the lowest-cost design state after the expert 

terminates. To facilitate such a return, the Optimising Expert is equipped with a 

simple backtracking facility. 

Each time a change is accepted, it is pushed onto a queue. Whenever the expert 

system enters a new design state whose cost is less than or equal to the lowest cost 

yet found, the queue of accepted changes is cleared. By undoing each change in 

the queue when the expert's Simulated Annealing stage completes, it is possible to 

return to the state of lowest cost. 

4.2.2 The Conventional Expert 

The Conventional Expert uses a greedy iterative improvement approach common to 

many design oriented expert systems. Consequently, the Accept() function, which 

determines whether a move under consideration is accepted, is very simple: a move 

is accepted if and only if the cost for the new configuration is lower than the cost for 

the old configuration. Attempted moves which present a zero change in cost should 

not be accepted, and are not accepted due to the risk of oscillating forever between 

two equal-cost states. 

The termination criteria for the Conventional Expert are also simple: iteration 

is complete either when the cost reaches zero (a most unlikely occurrence), or when 

6A "cooling schedule" is the schedule used to drop the temperature during Simulated Annealing. 
A common technique is to drop the temperature by a fixed percentage (usually less than fifteen 
percent) each time a determined number of changes has been accepted. 
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no moves have been accepted in a fixed number of tries (the threshold is currently 

forty). 

4.2.3 The Optimising Expert 

The Optimising Expert is substantially similar to the Conventional Expert described 

previously, and uses the same basic approach. Force Directed Exchange remains the 

primary underlying heuristic and the cost function is precisely the same as that used 

by the Conventional Expert. 

The Optimising Expert extends the Conventional Expert's iterative refinement 

technique, by adding stochastic control mechanisms inspired by Simulated Annealing. 

The incentive for employing Simulated Annealing (or any other stochastic heuristic) 

in an expert system is to improve its ultimate results by partially relieving the 

constraints of decisions made early in its execution. 

It should be noted that the control mechanism used in the Optimising Expert 

is based upon Simulated Annealing, but has been modified in ways which are not 

completely compatible with Simulated Annealing. In particular, the Accept() func-

tion (described in the next section) places a fixed rather than stochastic limit on the 

magnitude of backward moves accepted at a given temperature. Also, the cooling 

schedule used in the Optimising Expert is very rapid, using only ten iterations per 

temperature step. 7 

The use of stochastic heuristics in the Optimising Expert has lead to a number of 

changes in the functions used by the Conventional Expert. The following paragraphs 

describe these differences: 

7This is in contrast to more conventional approaches to Simulated Annealing which may use as 
many as several thousand iterations per cooling step. 
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4.2.3.1 Changes to - the Accept() Function 

One of the most fundamental changes brought about by the use of the Simulated 

Annealing heuristic in the Optimising Expert is the introduction of the concept of 

"temperature". Even though temperature in the usual sense may have little or no 

meaning in the context of the problem solved by the expert system, its inclusion 

is essential to Simulated Annealing. The Optimising Expert includes a variable for 

temperature, T, which is used to represent the 'pseudo-temperature' of the annealing 

process, that is, as a measure of the "disorder" or permitted randomness in the layout 

procedure. 

Under the Simulated Annealing paradigm, moves which improve (i.e., reduce) the 

cost of the configuration are always accepted. Moves which do not improve the cost 

are sometimes accepted, according to a probability function based on an exponen-

tial function of pseudo-temperature, T and the change in cost, LC. The Optimising 

Expert uses temperatures in the range 0 ≤ T < 1. As time progresses, the tem-

perature is lowered exponentially, making the likelihood of accepting unproductive 

moves ever diminishing. The Accept U function used by the Optimising Expert is 

shown in Fig. 4.1. 

(defun Accept (old-cost new-cost temperature) 
(if (or (< new-cost old-cost) 

(and (> temperature (random 1.0)) 
(>= (expt temperature 0.7) 

(I (- new-cost old-cost) old-cost)))) 
(return ' YES) ;; If acceptable, say YES 
(return ' NO) ;; else, say NO. 

) 
) 

Figure 4.1: Accept() Function for Optimising Expert. 

In the acceptance function, the random function is invoked to select a random 

number in the range [0, ..., 1). This number is compared against the current value 
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of the pseudo-temperature to determine whether a poor move might be tolerated. 

If this test indicates that an increase in cost may be permitted, a cost ratio, 

(the percent change in cost) is then compared to the temperature to control the 

magnitude of the cost increase. As is normally the case with determining the cooling 

schedule for Simulated Annealing the parameters of this acceptance function have 

been determined empirically. 

Unlike the usual Simulated Annealing acceptance function, which determines 

Ac the probability of accepting backward moves .as a function related to the 

Optimising Expert will not assign all moves a non-zero probability of being accepted. 

This behaviour is acceptable, as the objective in this case is not to generate optimal 

solutions, but to avoid local minima. 

4.2.3.2 Changes to the Suggestions Queue 

In many expert systems languages, including ART 3.0, the last fact asserted in the 

working memory is the most likely to cause a rule to fire. Specifically when a single 

rule has several instances or activations available to fire (caused by, for example, 

the presence of several suggested exchanges of transistors), the instance of the*rule 

activated by the most recent fact in the working memory will be the first rule fired. 

The consequence of this behaviour in test programs was that the last recom-

mended change was always acted upon, and the time spent generating any other 

recommendations was often wasted. As described earlier in this section, the problem 

was overcome, in part, by collecting all the recommendations in a LISP structure 

(independent of ART's working 'memory), and then selecting one recommendation 

and placing it in working memory 

The Conventional Expert treated this structure as a queue, producing behaviour 

very similar to the default behaviour of ART; however, the use of this queue helped 
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improve performance by reducing traffic through the working memory and by re-

placing a number of rules with much faster compiled Lisp. 

The Optimising Expert took somewhat more liberty with the operation of the 

queue: rather than removing the first element of the queue when a new suggestion 

was needed,, the Optimising Expert randomly selects an element from the queue. 

The function used to select elements from the queue may be seen in Fig. 4.2. The 

probability distribution of this function is dependent on simulation time (pseudo-

temperature). Initially, at a very high pseudo-temperature, the function assigns 

almost equal probability of selection to each element of the queue, but as simulation 

time advances and the value of T declines, it is designed to give increasing preference 

to the first elements of the queue. At any time, however, each' element in the queue 

may be selected, with probability greater than zero. 

While this technique for selecting suggestions from the queue does not directly 

contribute to avoiding local extrema in the cost function, it can be of benefit to 

many programs by preventing one small group of heuristics from dominating the 

rest through some artifact of the "arbitrary" selection of the next rule to fire. 

Upon inspection of the function choose-element in figure 4.2, one may notice the 

fact that the index of the element selected is explicitly limited to one less than the 

length of the queue. In fact, it is quite reasonable to believe the explicit limitation 

set by the function max is unnecessary, as the value of (random 1.0) should be a 

number between 0 (inclusive) and 1.0 (exclusive). 

Table 4.1 shows the distributions of elements selected from a queue of length 20 

under a variety of temperatures. The figures presented in this table represent the 

result of ten million trials of the function in figure 4.2, without the explicit upper 

bound on the selected index. Careful inspection will show that the sum of all entries 

for Trial 2 (center column) in Table 4.1 is only 9,999,999; an out-of-range index was 
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Randomly select an element from a queue, giving preference 
to elements at the head. 

(detun choose-element (queue) 

(check-type queue (list)) ;; Make certain QUEUE is a valid list 

(let ((queue-length (length queue)) 

(selection (max ( 1- queue-length) 

(floor (* queue-length 

- (expt (random 1.0) (expt temperature 0.7)))) 

))) 
(if (null queue) 

(return NIL) 

(return (nth selection queue)))) 

Get an element from the queue bound to QUEUEPTR, and place it in the 

ART database. Remove the all copies of the element from the queue. 

(defun get-selection (QUEUEPTR) 

(check-type QUEUEPTR ( symbol)) 

(let (( element ( choose-element (symbol-value QUEUEPTR)) 

(if (null element) ;;; If thd queue was empty, 

(eval (assert (out-of-moves)) ;;; Tell ART, otherwise, 

(eva]. '(assert , element))) ;;; place element in ART's database 

) 
(set QUEUEPTR (remove element (symbol-value QUEUEPTR) : test #' equal)) 

Figure 4.2: Weighted Random Selection. The function choose-element is used 
to randomly select an element from a queue, giving preference to elements nearest 
the head. Note the use of eval and (backquote) macros in get-selection; this 
is necessary because assert is a macro that cannot be expanded until run time. 

selected in one trial in ten million, likely as the result of a floating point rounding 

error. Placing the explicit limit on the selected element corrects this error, without 

skewing the probability curve. 

4.2.4 Changes to Move Generation 

The final change to the Optimising Expert prompted by the inclusion of stochastic 

control appears in the mechanism for proposing changes to the current layout. In 

order to help avoid arrest in local minima, the function which generates recommen-
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Index Times Selected Index Times Selected 

Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 

0 499816 68102 4 10 499866 542257 15391 

1 500999 147039 0 11 499662 575964 35154 

2 499260 207512 0 12 500505 608624 74423 

3 500628 260523 0 13 500378 641706 148085 

4 500402 307998 5 14 498902 674063 280527 

5 500591 351559 59 15 499610 702733 510054 

6 498906 393850 215 16 499012 733959 895147 

7 500291 433850 709 17 500670 761270 1517133 

8 500745 469622 2417 18 499441 791971 2500417 

9 499935 507276 6372 19 500361 820121 4013883 

Samples 10000000 Trial 1 tempertaure = 1.0 

Trial 2: tempertaure = 0.48202905 

Trial 3: tempertaure = 0.03727593 

Table 4.1: Distribution of selected elements in a 20 element queue at very high, 
intermediate, and very low temperatures. 

dations for moves has been extended to occasionally suggest random changes: either 

the exchange of a random pair of transistors or moving a random transistor to  

randomly selected empty space. 

4.3 Runtime Comparison of STANLEY Experts 

In order to determine which of the STANLEY experts produces best results, a 

series of comparative tests was run. Each expert was used to produce transistor 

placements for three standard cells: a D-type flip-flop (D-TYPE); a 4-to-1 multi-
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plexor (MUX4); and an exclusive-or gate (XOR). Before presenting the results of 

the tests, the specifications of the test circuits will be given. 

Because the Conventional Expert system is completely deterministic, this test 

procedure would normally produce ten identical placements for each test circuit. In 

an effort to produce more representative data, the initial placement generated by the 

Conventional Expert is randomly permuted by exchanging the positions of two pairs 

of p- transistors and two pairs of n-transistors immediately prior to commencing the 

iterative refinement phase of the placement procedure. 

4.3.1 D-type Circuit 

The D-type flip-flop is a fully-complementary CMOS standard cell, with the input 

on the left and output on the right. The clock signals, PHI and PHIBAR are con-

strained to enter the cell at the center of the top and bottom edges respectively. This 

cell originates from the implementation of Joyce's TAMARACK [Joyce 88] micropro-

cessor. Following is the network description for the cell, as given to the STANLEY 

experts. The topology of this circuit is illustrated schematically in Fig. 4.3. 

(defcell D-TYPE 
:size (4 4) 

:networks (PWR GND PHI PHIBAR IN OUT alpha beta gamma) 
:ports ((NORTH (pr.w PWR metal-2) 

(PHI.n PHI metal- 1) 

(pwr . e PWR metal-2)) -
(SOUTH (GND.w GND metal-2) 

(PHIBAR.s PHIBAR metal-1) 

(GND.e GND metal-2)) 

(EAST (OUT.e OUT metal- 1)) 

(WEST (IN.w IN metal-1)) 
(INTERIOR ) 
(CONST (PWR.e II NORTH-EAST) 

(PWR.e = NORTH-EAST) 

(PWR.w H NORTH-EAST) 
(PWR.w = SOUTH-WEST) 
(GND.e H SOUTH-WEST) 
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(GND.e = NORTH-EAST) 

(GND.w II SOUTH-WEST) 

(GND.w SOUTH-WEST) 

(PHI.n = PHIBAR.$) 

(IN.w II OUT.e))) 

:TRANSISTORS (mux-p-1 mux-n-1 mux-p-2 mux-n-2 mv-p-1 

inv-p-2 inv-p-3 mv-n-1 inv-n-2 inv-n-3) 

) 

NAME TYPE GATE DRAIN SOURCE 

(deftran mux-p-1 p-transistor phibar in alpha) 
(deftran mux-n-1 n-transistor phi in alpha) 
(deftran mv-p-1 p-transistor alpha PWR beta) 
(deftran mv-n-1 n-transistor alpha GND beta) 

(deftran inv-p-2 p-transistor beta PWR gamma) 

(deftran inv-n-2 n-transistor beta GND gamma) 

(deftran inv-p-3 p-transistor beta PWR out) 

(deftran inv-n-3 n-transistor beta. GND out) 

(deftran mux-p-2 p-transistor phi gamma alpha) 
(deftran mux-n-2 n-transistor phibar gamma alpha) 

4.3.2 4-to-1 Multiplexor Circuit 

The second cell used to test the STANLEY expert systems is a simple four to one 

multiplexor, again using fully complementary CMOS conventions. (This cell, how-

ever, uses non-restoring logic, and should therefore be used with caution.) Following 

is the full network description given to the STANLEY experts.This circuit is derived 

from the color plates of Pucknell and Eshragian's text on VLSI design [Pucknell 88]. 

The topology of the cell is illustrated in the schematic diagram of Fig. 4.4. 

(def cell MtJX4 

:size (8 4) 

networks (PWR GND SO SObar Si Sibar 10 Ii 12 13 OUT alpha beta 

gamma delta epsilon larry moe curly) 
:ports ((NORTH (pwr.w PWR metal-2) 

(Si.n Si poly) 

(sibar.n Sibar poly) 
(SO.n SO poly) 

(SObar.n SObar poly) 
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Figure 4.3: Schematic Diagram of D-TYPE Test Circuit 

(pwr.e PWR metal-2)) 

(SOUTH (GND.w GND metal-2) 

(S1.s Si poly) 

(Slbar.s Mar poly) 

(SO.s SO poly) 

(S0bar.s SObar poly) 

(GND.e GND metal-2)) 

(EAST (OUT.e OUT metal- 1)) 

(WEST (I3.w 13 metal- 1) 

(I2.w 12 metal- 1) 

(I1.w Ii metal-1) 

(IO.w 10 metal- 1)) 

(INTERIOR ) 
(CONST (PWR.e H NORTH-EAST) 

(PWR.e = NORTH-EAST) 

(PWR.w II NORTH-EAST) 

(PWR.w = SOUTH-WEST) 

(GND.e I I SOUTH-WEST) 
(GND.e = NORTH-EAST) 

(GND.W II SOUTH-WEST) 
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(GND.w = SOUTH-WEST) 

(SO.n = SO.$) 

(S1.n = S1.$) 

(S0bar.n = S0bar.$) 

(Slbar.n = Sibar.$))) 

:TRANSISTORS (p-i p-2 p-3 p-4 p-5 p-6 p-7 p-8 

n-i n-2 n-3 n-4 n-5 n-6 n-7 n-8) 

) 

TYPE GATE SOURCE DRAIN 

(deftran p-i p-transistor Si 10 alpha) 

(deftran p-2 p-transistor SO alpha OUT) 

(deftran p-3 p-transistor Si Ii beta) 

(deftran p-4 p-transistor SObar beta OUT) 

(deftran p-5 p-transistor Sibar 12 gamma) 

(deftran p-6 p-transistor SO gamma OUT) 

(deftran p-7 p-transistor Mar 13 delta) 

(deftran p-8 p-transistor SObar delta OUT) 

(deftran n-i n-transistor Si 13 epsilon) 

(deftran n-2 n-transistor SO epsilon OUT) 

(deftran n-3 n-transistor Si 12 larry) 

(deftran n-4 n-transistor SObar larry OUT) 

(deftran n-5 n-transistor Mar Ii moe) 

(deftran n-6 n-transistor SO moe OUT) 

(deftran n-7 n-transistor Sibar 10 curly) 

(deftran n-8 n-transistor SObar curly OUT) 

(def-bus-net Si) 

(def-bus-net So) 

(def-bus-net Sibar) 

(def-bus-net SObar) 

The MUX4 circuit has one fundamental difference from the other two test circuits. 

The use of def-bus-net declarations in this circuit instruct the placement experts 

that the networks associated with the select lines (So Si SObar and Sibar) are to 

be regarded as buses. The placement experts react to these declarations by placing 

additional emphasis on these networks', making it a priority to keep each transistor 

as close as possible to the select line it uses. 
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Figure 4.4: Electrical Schematic Diagram of MUX4 Test Circuit 

4.3.3 Exclusive-Or Test Circuit 

The final test circuit used is a simple two input exclusive or gate. This circuit 

is derived from the color plates of Pucknell and Eshragian's text on VLSI design 

[Pucknell 88]. The raw input given to the expert systems is listed below; the topology 

of the circuit is illustrated in the schematic diagram of Fig 4.5. 

(defcefl XOR 
:size (4 4) 

:networks (PWR 
:ports ((NORTH 

(SOUTH 

.GND A B OUT alpha beta gamma delta) 
(pwr.w PWR xuetal-2) 

(A.n A poly) 

(B.n B poly) 

(OUT.n OUT poly) 

(pwr.e PWR metal-2)) 

(GND.w GND metal-2) 
(A.s A poly) 
(B.s B poly) 
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) 

(OUT.s 

(GND . e 

(EAST ) 
(WEST ) 
(INTERIOR ) 
(CONST (PWR.e 

(PWR.e 

(PWR.w 

(PWR.w 

(GND.e 

(GND.e 

(GND.w 

(GND.w 

(A.n = 

(B.n = 

(OUT.n 

:TRANSISTORS (p-i p-2 

NAME TYPE 

OUT poly) 

GND metal-2)) 

I I 

II 

II 

II 

NORTH-EAST) 

NORTH-EAST) 

NORTH-EAST) 

SOUTH-WEST) 

SOUTH-WEST) 

NORTH-EAST) 

SOUTH-WEST) 

SOUTH-WEST) 

A. s) 

B. s) 
= OUT.$))) 

p-3 p-4 p-5 n-i n-2 n-3 n-4 n-5) 

GATE SOURCE DRAIN 

(deftran p-i p-transistor 

(deftran p-2 p-transistor 

(deftran p-3 p-transistor 

(deftran p-4 p-transistor 

(deftran p-5 p-transistor 

(deftran n-i n-transistor 
(deftran n-2 n-transistor 

(deftran n-3 n-transistor 

(deftran n-4 n-transistor 

(deftran n-5 n-transistor 

A PWR alpha) 

B PWR alpha) 

A PWR beta) 

B beta gamma) 

gamma alpha OUT) 

A GND delta) 

B delta OUT) 

A GND gamma) 

B GND gamma) 

gamma GND OUT) 

4.3.4 Testing Procedure 

In order to compare the performance of the two expert systems, each one is made 

to repeat the transistor placement for each of the three test circuits ten times in 

succession. For each repetition, the initial cost, final cost, percentage difference from 

the minimal cost ', and elapsed time for placement  are recorded. 

8"Minimal cost" is the result of the best test run. 

9This does not include the time required for initial placement, since each expert uses identical 
initial placement heuristics. 
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Figure 4.5: Electrical Schematic Diagram of XOR Test Circuit 

The data for the Optimising Expert are displayed in Tables 4.2 through 4.4, while 

the data for the Conventional Expert are displayed in Tables 4.5 through 4.7, all of 

which are located at the end of this chapter. 

4.3.5 Observations 

1. Average computation times for the Optimising Expert are much greater than 

for the Conventional Expert. To a degree, this is a desired result, as the objec-

tive of the experiment is to prevent premature termination in expert systems. 

2. In many instances, much of the time spent in the Optimising Expert is wasted, 

in continued searches for better solutions, even after a very good solution has 

already been found. This is because it is very difficult to produce good termi-

nation criteria. One termination criterion, which causes the expert to quit after 

thirty unsuccessful moves, proved to be too strict; occasionally causing the Op-

timising Expert to terminate while its pseudo-temperature remains relatively 

high. 
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3. The test results for the D-TYPE circuit are quite clear. The Optimising Expert 

uniformly and decisively outperformed the Conventional Expert, to the extent 

that the even best solutions produced by the Conventional Expert were inferior 

to the worst solutions produced by the Optimising Expert. 

4. The results produced by the Optimising Expert are remarkably consistent, 

having a standard deviation (o-) of less than one tenth of one percent of the 

minimum cost. The Conventional Expert was considerably less consistent, with 

a standard deviation of more than ten percent of the minimum cost; more than 

one hundred times the standard deviation of the Optimising Expert. 

5. As with the D-TYPE circuit, the Optimising Expert considerably outperformed 

the Conventional Expert. Only occasionally did the Conventional Expert pro-

duce results of the quality produced by the Optimising Expert, and in all cases, 

the former failed to excel the latter. The results for the XOR circuit, while 

conclusive, are not as striking as for the D-TYPE circuit. Here, the stan-

dard deviation of the results produced by the Optimising Expert was nearly 

four percent of the minimum cost; the standard deviation for the Conventional 

Expert, however, was more than twelve percent. 

If this small sampling proves to be representative, it leads to the expectation 

that the Optimising Expert will usually produce good results, while the Con-

ventional will at least occasionally produce very bad results. 

6. The test data for MUX4 circuit are strongly counter to expectations. As ex-

pected, the Optimising Expert required considerably more (a factor of 3.3 

times) execution time than did the Conventional Expert, but produced results 

which had, on average, about 10% higher cost than those produced by the 

Conventional Expert. 

Possible explanations for this behaviour include: 
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• The Optimising Expert uses a very rapid and fixed cooling schedule. The 

number of moves the Optimising Expert accepts between drops in pseudo-

temperature does not depend upon the size of the circuit being compiled. 

Revising the cooling schedule will ameliorate this situation, but at the 

expense of even greater computation, times. 

• In addition to a rapid cooling schedule, the Optimising Expert is subject 

to the same termination criteria as the Conventional Expert; specifically, 

after forty consecutive moves have been rejected, each expert terminates. 

This behaviour will lead to premature termination of the Optimising Ex-

pert. The purpose of continuing this practice in the Optimising Expert 

is to limit the time spent annealing. Modifying this criterion to take ef-

fect only when the probability of accepting backward moves is less than a 

given threshold (roughly 3% to 5% seems appropriate) will make abrupt 

premature termination of the Optimising Expert less likely, and effec-

tively assure results which are, at worst, comparable to the Conventional 

Expert. 

• The MUX4 circuit contains a total of sixteen transistors which are to 

be laid out in a grid of eight rows and four columns. The large amount 

of empty space considerabl' decreases the likelihood of the Conventional 

Expert halting prematurely. 

• It is very likely that even if the approach used by the Optimising Expert 

is intrinsically superior to the approach used by the Conventional Expert, 

there will still exist some circuits for which the Conventional Expert will 

excel. Because of its use of "bus-nets", the MUX4 test-circuit is very 

likely to be one of these. 
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In an effort to test these hypotheses, the Optimising Expert was revised to use 

a slower cooling schedule and tried again. The MUX4 circuit was also revised, 

to allow a placement grid of only four rows and four columns. (In fact, neither 

expert actually used more than four rows in its final placements for the MUX4 

circuit.) 

Tests done using the 'revised MUX4 circuit are summarised in Tables 4.8 and 

4.9. In these tests, the Optimising Expert produced results whose final costs 

were approximately equivalent to those produced by the Conventional Expert. 

Test runs of the Revised Optimising Expert, which used a significantly slower 

cooling schedule, produced results comparable to -those produced by the Con-

ventio'nal Expert for the original MUX4 circuit. That one of these tests still 

produced a relatively high-cost result (although lower than the peak produced 

by the gredy expert) suggests that the cooling schedule is not solely to blame. 

Tests of the Revised Optimising Expert on the Revised MUX4 circuit were 

conducted with relaxed termination criteria, in which the expert was halted 

only after one hundred and fifty consecutive moves have been rejected. The 

four test runs for this case all produced very good results, but with very large 

computation time. 

It should be noted that even with slower cooling, the lower bound on cost for 

the MUX4 test circuit was not improved by the Revised Optimising Expert. 

The consistency of results was, however, greatly improved by slower cooling. 

7. The Revised Optimising Expert, despite a slower cooling schedule, still suf-

fers early terminations caused by the termination heuristic described above; 

removing or modifying this heuristic will lead to better solutions. 

8. Both expert systems used in this study are strictly experimental. No effort has 

been made to optimise the performance of either expert system in any way. 
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Re-implementing these expert systems using a customised inference engine, or 

preferably rewriting these expert systems in a language such as LISP or C 

with a careful view to efficiency, can considerably improve the execution times 

recorded in this thesis, perhaps by a factor of as much as one hundred times. 

9. It is worth noting that both experts were able to produce placements for the 

MUX4 circuit which had slightly lower costs than the relative placement de-

picted in the schematic of Figure 4.4. 

10. Due to limitations on available computation time, a small number of samples 

have been collected for this study. In order to be statistically valid, more tests 

must be conducted. 

4.3.6 Conclusions 

The Optimising Expert presented in this chapter, with suitable modifications to its 

cooling schedule, has been demonstrated to produce results ranging from comparable 

to vastly superior to those of the Conventional Expert. It is worth noting that the 

computation time consumed by the Optimising Expert was, in most cases, much 

larger than that consumed by the Conventional Expert. 

Additional tests were also run comparing the original (unrevised) Optimising 

Expert to the Conventional Expert, using a revised version of the MUX4 circuit. 

For the revised circuit, in which transistors must be placed in four rows and four 

columns (i.e., without empty spaces), the two experts performed almost equally, 

although, because the Optimising Expert still employed an excessively rapid cooling 

schedule, the Conventional Expert was able to produce marginally superior results. 

Conclusions which may be drawn from these tests are enumerated below: 
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1. Conventional Expert systems which use greedy heuristics can, and do, arrest 

at local minima. The consequence of such a premature termination is greatly 

inferior results for at least some inputs. 

2. Expert systems can profitably make use of stochastic heuristics and control 

structures to avoid arrest at local minima. 

3. The appropriate use of the Simulated Annealing heuristic in an expert system 

is demonstrated to improve best case, worst case, and mean results for at least 

some data. 

4. The Optimising Expert is shown to frequently outperform the Conventional 

Expert in terms of "cost". Given an adequate cooling schedule, the Optimising 

Expert will, at worst, perform comparably to the Conventional Expert in terms 

of cost. Therefore, time considerations aside, the Optimising Expert may be 

safely used to replace the Conventional Expert. Further, tests indicate that a 

very rapid cooling schedule is usually adequate to avoid minima; the Optimising 

Expert may therefore be used with relatively small penalty in execution time. 

5. Difficulties encountered during testing were largely due to problems with cool-

ing schedules and termination criteria; an excessively rapid cooling schedule 

or overly zealous termination criterion leads to premature termination of the 

Optimising Expert, resulting in low quali'ty results. Allowing the Optimising 

Expert to proceed for arbitrarily long periods of time will avoid this problem, 

but at great expense in terms of computation. Using the Conventional Ex-

pert in conjunction with the Optimising Expert allows an approximate upper 

bound on acceptable solution quality to be quickly computed; the Optimising 

Expert can be forced not to terminate before this upper bound is reached, thus 

assuring results no worse than those provided by the Conventional Expert. 
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6. The use of the Simulated Annealing heuristic in an expert system is demon-

strated to increase the computation time needed. The success to which rapidly 

cooled Simulated Annealing has been applied implies the possibility that other, 

more simple, stochastic heuristics may be employed with similar effect and less 

penalty. 

The scheme outlined above, which first computes a rough upper bound; and 

then limits time spent after this bound is reached, will help to reduce the 

computational overhead of Simulated Annealing. 
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Trial Elapsed Initial Minimum Percent Total 
Time (s) Cost Cost Change Moves 

1 3973 6379 1502 5.26 910 

2 2763 6379 1775 24.39 588 

3 3809 6379 .1682 17.87 849 

4 3374 6379 1445 1.26 719 

5 3116 6379 1512 5.96 651 

6 3146 6379 2457 72.18 665 

7 2284 6379 1908 33.71 429 

8 3698 6379 1602 12.33 773 

9 3522 6379 1633 14.44 747 

10 3244 6379 1880 31.74 662 

Mean 3293 6379 1739.6 21.91 699 

Expert: Optimising STANLEY Expert 

Circuit: 4-to-1 Multiplexor 

Table 4.2: Results for 10 Optimised Trials of MUX4 Circuit. 
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Trial Elapsed Initial Minimum Percent Total 
Time (s) Cost Cost Change Moves 

1 2857 956 561.5 0.00 1115 

2 2194 956 562.0 0.09 783 

3 2009 956 562.0 0.09 736 

4 2003 956 561.5 0.00 721 

5 2366 956 561.5 0.00 909 

6 1266 956 562.0 0.09 414 

7 1232 956 563.2 0.30 413 

8 2021 956 562.0 0.09 726 

9 2164 956 561.5 0.00 726 

10 1650 956 561.5 0.00 553 

Mean 1976 956 561.9 0.07 710 

Expert: Optimising STANLEY Expert 

Circuit: D-TYPE Latch 

Table 4.3: Results for 10 Optimised Trials of D-TYPE Circuit. 
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Trial Elapsed Initial Minimum Percent Total 
Time (s) Cost Cost Change Moves 

1 1967 1900 748.9 0.00 763 

2 2386 1900 748.9 0.00 957 

3 1797 1900 782.1 4.43 692 

4 1317 1900 783.1 4.57 467 

5 2234 1900 848.4 13.29 849 

6 1555 1900 789.6 5.44 574 

7 1570 1900 748.9 0.00 585 

8 1582 1900 789.6 5.44 582 

9 2355 1900 783.1 4.57 877 

10 1068 1900 748.9 0.00 345 

Mean 1738.6 1 1900 778.1 3.89 669 

Expert: Optimising STANLEY Expert 

Circuit: Exclusive-Or Gate 

Table 4.4: Results for 10 Optimised Trials of XOR Circuit. 
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Trial Elapsed Initial Minimum Percent Total 
Time (s) Cost Cost Change Moves 

1 831.3 8608 1427 0.00 189 

2 983.7 7958 1970 38.05 230 

3 952.4 9010 1650 15.63 211 

4 1268 7392 1430 0.21 297 

5 1247 7334 1427 0.00 287 

6 1005 7741 1427 0.00 224 

7 840.1 7501 1916 34.27 188 

8 879.1 7559 1427 0.00 204 

9 1061 6400 1437 0.70 234 

10 824.7 7291 1664 16.61 178 

Mean 989.2 7679 1578 10.55 224 

Expert: Conventional STANLEY Expert 

Circuit: 4-to-1 Multiplexor 

Table 4.5: Results for 10 Greedy Trials of MUX4 Circuit. 
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Trial Elapsed Initial Minimum Percent Total 
Time (s) Cost Cpst Change Moves 

1 206.5 985.3 563.3 0.32 84 

2 161.9 1151 758.3 35.05 63 

3 195.2 1117 563.3 0.32 73 

4 174.7 1104 563.3 0.32 73 

5 230.0 1069 631.0 12.38 84 

6 171.7 1112 563.3 0.32 64 

7 217.5 1057 577.0 2.65 85 

8 173.6 1143 563.3 0.32 66 

9 143.0 1042 590.5 5.17 58 

10 141.1 1035 581.3 3.53 55 

Mean 181.52 1082 595.5 6.04 71 

Expert: Conventional STANLEY Expert 

Circuit: D-TYPE Latch 

Table 4.6: Results for 10 Greedy Trials of D-TYPE Circuit. 
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Trial Elapsed Initial Minimum Percent Total 
Time (s) Cost Cost Change Moves 

1 166.5 1900 934.9 24.84 65 

2 179.4 2239 941.1 25.66 69 

3 172.1 2052 984.4 31.45 71 

4 279.4 2232 800.6 6.90 109 

5 188.0 2091 833.9 11.35 74 

6 172.5 1900 934.9 24.84 67 

7 246.6 1820 984.4 31.45 97 

8 228.9 1884 794.9 6.142 91 

9 228.4 2217 748.9 0.00 83 

10 234.1 2307 1039,6 38.82 91 

Mean 209.6 2064 899.8 20.14 82 

Expert: Conventional STANLEY Expert 

Circuit: Exclusive-Or Gate 

Table 4.7: Results for 10 Greedy Trials of XOR Circuit. 
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Trial Elapsed Initial Minimum Percent Total 
Time (s) Cost Cost Change Moves 

1 2751 3302 1416 4.27 571 

2 4509 3302 1366 0.59 773 

3 5434 3302 1358 0.00 1148 

4 2372 3302 1392 2.50 490 

5 4258 3302 1374 1.18 908 

6 3506 3302 1380 1.62 734 

7 4129 3302 1366 0.59 854 

8 4928 3302 1382 1.77 1057 

9 3635 3302 1372 1.03 780 

10 . 5023 3302 1366 0,59 1176 

Mean 4055 3302 1377 1.41 849 

Expert: Optimising STANLEY Expert 

Circuit: Revised 4-to-1 Multiplexor 

Table 4.8: Results for 10 Optimised Trials of Revised MUX4 Circuit. 
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Trial Elapsed Initial Minimum Percent Total 
Time (s) Cost Cost Change Moves 

1 359.9 2407 1372 1.03 81 

2 407.7 3910 1376 1.33 89 

3 467.7 3276 1372 1.03 103 

4 454.8 3373 1380 1.62 98 

5 409.1 3396 1386 2.06 87 

6 436.6 2475 1366 0.59 98 

7 472.3 3735 1366 0.59 66 

8 468.1 3261 1376 1.33 57 

9 296.1 3860 1386 2.06 67 

10 520.6 3653 1376 1.33 121 

Mean 429.3 3335 1376 1.33 87 

Expert: Conventional STANLEY Expert 

Circuit: Revised 4-to-1 Multiplexor 

Table 4.9: Results for 10 Greedy Trials of Revised MUX4 Circuit. 
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Trial Elapsed Initial Minimum Percent Total 
Time (s) Cost Cost Change Moves 

1 7745 6379 1666 16.74 1714 

2 8739 6379 1437 0.70 1936 

3 11935 6379 1438 0.77 2677 

Expert: Revised Optimising STANLEY Expert 

Circuit: 4-to-1 Multiplexor 

Table 4.10: Results for 3 Optimised Trials of MUX4 Circuit. 

Trial Elapsed Initial Minimum Percent Total 
Time (s) Cost Cost Change Moves 

1 17263 3302 1366 0.56 4017 

2 21824 3302 1358 0.00 5040 

3 17099 3302 1372 1.03 3877 

4 33418 3302 1364 0.44 7862 

Expert: Revised Optimising STANLEY Expert 

Circuit: Revised 4-to-1 Multiplexor 

Table 4.11; Results for 4 Optimised Trials of Revised MUX4 Circuit. 



Chapter 5 

Conclusions And Directions for Future Research 

5.1 Conclusions 

For a number of years now, the progressive growth of complexity and cost for the 

design of integrated circuits has provided a continuously increasing incentive to au-

tomate as much of the VLSI design process as possible. Knowledge-based expert 

systems are one technique which holds a strong promise for automating portions of 

the VLSI design problem which previously have not been regarded as candidate 

for automation. In the past, implementors have found that expert systems are well 

suited for problems which involve some form of diagnosis. In order to apply expert 

system techniques to design problems, they often find it helpful to employ itera-

tive refinement in the expert system, effectively recasting a problem of design as a 

problem of diagnosis. 

Two specific problems found in current expert system paradigms are the propen-

sity for expert systems built upon a "greedy" iterative refinement heuristic to arrest 

at local minima, thus producing inferior solutions; and the difficulty of imposing 

structure and synchronisation on a program written using an inherently asynchronous 

paradigm. 

Due to the overwhelming computational complexity of even the simpler sub-

problems in VLSI design, such as component placement, we are forced to rely on 

heuristics to find high quality solutions for problems of VLSI design automation in 

a reasonable period of time. 

Defined in this thesis are two primary categories of heuristic: weak heuristics 

make very few assumptions about the problems to which they are applied; and strong 

118 
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heuristics make use of more specific knowledge about the domain in which they are 

to solve problems. The class of strong heuristics is further subdivided into categories 

simple and complex: simple heuristics apply relatively little knowledge to a problem, 

while complex heuristics apply comparatively large amounts of knowledge. 

Instances of weak heuristics described in this thesis include Divide-and-Conquer, 

iterative refinement, and Simulated Annealing. The latter two of these weak heuris-

tics are both simple members of a more general class of algorithm, referred to by 

Sahni and Bhatt as "Adaptive Heuristics" [Sahni 80]. 

Examples of simple strong heuristics are cited primarily from the literature de-

scribing "conventional" algorithmic approaches to component placement and routing, 

while examples of complex strong heuristics are drawn largely from the literature of 

artificial intelligence research. For members of both classes of strong heuristic, it 

is noted that one or more weak heuristics often form the base upon which domain-

specific knowledge has been added. 

One empirical study [Sahni 80] compared weak heuristics to strong heuristics. It 

was concluded that strong heuristics, which make use of domain-specific information, 

are able to produce results of quality equal or superior to those of weak heuristics 

(specifically, Simulated Annealing) with considerably less computation. A second 

empirical study [Hartoog 86] provided similar conclusions, but with the additional 

result that strong heuristics which employ randomness can be made to produce 

superior results to a related deterministic heuristic, albeit at the expense of increased 

computation time. 

The Expert System Wrapper Environment (ESWE) is a software package designed 

and implemented by the author as an extension to the ART [ART87] expert system 

shell. The intent of ESWE is to simplify the task of defining sequential or strongly 

synchronous structures within the inherently asynchronous framework of a rule-based 
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language. At the heart of ESWE is a group of Common-Lisp [Steele Jr. 84] macros 

which define structures for describing general deterministic and non-deterministic 

finite state automata (FSAs) for the control of sequencing within an expert system. 

Also developed by the author, and included in ESWE, are a number of abstractions 

for various levels of VLSI design, suitable for use in expert systems for placement, 

routing, or compaction. 

ESWE is used by the author to develop a pair of closely related expert systems for 

the relative placement of transistors in CMOS leaf cell designs. Both expert systems 

are derived from Sharman's SPLAT [Sharman 86]; one expert uses a common greedy 

iterative refinement approach, while the other uses a stochastic approach related 

to (and derived from) Simulated Annealing. The logic and heuristics in each of 

these expert systems are fundamentally identical; the optimising expert extends the 

behaviour of the non-optimising expert, by introducing several additional stochastic 

heuristics (used, for example, to generate arbitrarychanges to the current placement 

of transistors), and by adding code and control structures to support the concepts 

of pseudo temperature and an annealing schedule. The more structured environment 

offered by ESWE was found by the author to be quite valuable in the implementation 

of these expert systems. 

Comparisons of these two expert systems show that the Simulated Annealing 

expert was less prone to arrest at a local minimum than was the conventional expert, 

despite a very rapid cooling schedule. These results are largely consistent with an 

earlier empirical study performed by Hartoog [Hartoog 86], which indicated that 

stochastic algorithms are able to achieve an improvement of roughly fifteen percent 

over rigidly deterministic procedures, although with considerably greater expenditure 

of CPU time. 
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Important results gained in the study of stochastic expert systems in this thesis 

are: 

1. Expert systems for VLSI design which use greedy heuristics can, and do, be-

come stuck in local minima, at least occasionally producing low quality results. 

2. Stochastic heuristics can be used effectively to reduce the likelihood of prema-

ture arrest. 

3. In the stochastic expert system used for this thesis, which employs a form of 

Simulated Annealing as its primary control mechanism, difficulty was experi-

enced in selecting suitable parameters for the cooling schedule and termination 

criteria. Conservative parameters are expected to result in uniformly good 

quality, but at the expense of very large computation times. Less conservative 

parameters may greatly improve computation times but usually at the expense 

of sacrificing consistently high qualify results. 

4. With appropriate cooling and termination parameters, stochastic expert sys-

tems may be used to replace deterministic expert systems, since it it is rea-

sonable to expected the stochastic expert to be at worst no more prone to 

premature termination than the deterministic. 

5. Difficulties experienced in selecting cooling and termination parameters suggest 

a profitable collaboration between stochastic and deterministic expert systems. 

Very fast deterministic heuristics can be used to compute an upper bound on 

the acceptable costs; stochastic experts with otherwise rapid cooling can easily 

be forced to at least match such an upper bound. 
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5.2 Future Directions 

The work done in this thesis suggests several potentially interesting possibilities 

for future research, both in the development of hierarchical frameworks for design-

oriented expert systems, and in the use of stochastic processes in such expert systems. 

5.2.1 Hierarchical Expert Systems 

As explained in Chapter 3 of this thesis, a number of difficulties arise in extending 

conventional expert systems shells to allow hierarchical descriptions. A conventional 

expert system shell has little or no concept of lexical closure. Typically, the highest 

level construct which includes lexical scope is an individual rule; variables bindings 

(assignments) made within a rule are efficacibus only within the scope of that one 

rule. If variable bindings beyond the scope of a single rule are supported at all, the 

variables involved are global to all rules in the expert system, and the bindings are 

not permitted to result from pattern matching operations. 

Further to this, data placed in the database are completely global. In ART, 

defining a schema named "foo" in one part of an expert system has the consequence 

of removing any previous definitions made using this name in other parts of the expert 

system. Consequently, implementors must be exceedingly cautious in selecting names 

for rules, schemata, and slots, to ensure that no name accidentally duplicated. This 

is further complicated by the existence of several hundred "base" schemata used 

internally by the system, whose definitions may also be unwittingly overridden. 

Problems involving scoping and duplication of names can be overcome using re-

writing macros of the sort found in ESWE, by modifying identifiers to reflect the lexical 

environment in which they are declared. Unfortunately, this has an adverse impact on 

software development, as implementors who wish to use symbolic debugging aides or 

who need to interface expert system code with code written in another language (eg., 
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LISP) may no longer be certain of the identifiers used internally in their compiled 

code. 

Another interesting aspect of hierarchy in expert systems is the use of the "mul-

tiple cooperating expert" paradigm, in which separate "experts" are implemented 

for each major aspect of a design problem. ESWE provides a prototypical mecha-

nism for defining such experts, but this mechanism is not as full-featured as some 

implementors might wish. Specifically, because the underlying mechanism used to 

express hierarchy and control flow in ESWE i's a form of token-passing utilising the 

ART database, it is not possible to reliably suspend an expert and later resume its 

actions at the same point'. This sort of behaviour can only be provided effectively 

by designing an inference engine which recognises "contexts", and which allows rules 

to fire only if they are members of a currently active context. 

5.2.2 Stochastic Expert Systems 

The major subject of Chapter 4 of this thesis is the use of stochastic processes in 

expert systems for VLSI design. Several reasons are offered as to why this may be 

both beneficial and constructive. Expert systems for design-oriented problems ate 

often forced to use an iterative refinement approach to recast a problem of design 

synthesis into a problem of diagnosis. 

Iterative refinement algorithms which do not allow for "hill climbing" or "back-

tracking" are often subject to arrest at local extrema, finding solutions which are 

often far from the global optimum. Stochastic "hill climbing" procedures provide a 

very simple backtracking mechanism, and some, such as Simulated Annealing, may 

be able to assure solutions assympotically close to the global optimum [Mitra 85]. By 

providing an expert system with stochastic control mechanisms, as demonstrated in 

'This can be done, of course, by making use of coroutines. Unfortunately, such structures are 
not available in most expert system shells. 
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Chapter 4, it is possible to largely avoid the problem of premature arrest. The par-

ticular stochastic mechanism used in the study of Chapter 4 has proven to be quite 

expensive. Investigations into other, more simple classes of stochastic heuristics are 

warranted 

Another possible technique for incorporating randomness in an expert system 

stems from the uncertainty of heuristics. From the earliest days of expert systems 

research, techniques for reasoning with uncertain data have existed [Buchanan 84]. 

Design-oriented expert systems, unlike many diagnostic expert systems, often have 

the luxury of dealing with relatively concrete data; for instance, we know that when 

a transistor is placed at coordinate ( 1000, 2000) in a symbolic grid, it is apt to remain 

there until it is explicitly moved. 

Uncertainty still exists in design oriented expert systems, within the very rules 

and heuristics which are used to manipulate data. It is often the case known that 

a given rule may be applied effectively in one instance, and yet prove useless in 

another. Further, some rules in an expert system may be known to be more gener-

ally applicable than are others. One possibly profitable avenue for future research 

is the development of a general purpose inference engine which allows the associa-

tion of a "certainty factor" with each rule in the expert system, and which either 

fires, or ignores, an activation of a given rule with probability proportional to the 

certainty factor associated with that rule. Greene and Supowit's Tree Algorithm for 

the Dynamic Weighted Selection Problem, as presented in [Greene 86] provides one 

possibly , suitable means of randomly selecting a rule activation from among the set 

of highest-priority activations in the queue. 

In summary, stochastic processes are demonstrated to remedy to propensity of 

some expert systems for design automation to arrest a local minima. The stochastic 

heuristic used in this thesis, which derives from Simulated Annealing, is demon-
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strated to be effective for this purpose, but may prove to be unduly expensive. 

Rsearch into less costly stochastic heuristics for knowledge-based expert systems is 

therefore warranted. 
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Appendix A 

The ART Programming Language 

ART [ART87] is a language constructed specifically to support the design and 

implementation of rule-based expert systems. It provides users with a predefined 

inference engine and database manager, and an established framework for defining 

rules. Both forward- and backward-chaining rules are s'upported. In addition, ART 

provides an object-oriented framework for representing knowledge, which extends 

the normal knowledge-base operations. 

Following is a brief discussion of some of the major issues and features of the 

ART language. At least surface knowledge of Common-Lisp is assumed; almost 

any text on Lisp or Common-Lisp should provide adequate background information 

for this discussion, however, Guy L. Steele Jr.'s text Common Lisp: The Language 

[Steele Jr. 84] is recommended. For complete information on ART, refer to the ART 

Reference Manual [ART87]. 

A.1 Viewpoints in Art 

ART's knowledge base provides support for "parallel" exploration of multiple models 

of a given given problem. The mechanism for do this is referred to as "viewpoints". 

In effect, a viewpoint is a subset of the ART knowledge base which corresponds to 

some hypothetical or time-related event; by hypothesising a given fact or decision, 

the ART data base creates a new context, in which conclusions drawn from the 

hypothesis may be stored. At a later time, a hypothesis my be either accepted or 

rejected. In each respective case, the "facts" in the viewpoint corresponding to that 
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hypothesis will either be promoted to the viewpoint in which the hypothesis was first 

made, or be destroyed entirely. 

The ART viewpoint system is very complex, and may operate on many levels. 

Because the ESWEenvironment make no explicit use of viewpoints (except to make 

certain that control facts are asserted globally in the root viewpoint) this description 

will not include a detailed analysis of the viewpoint mechanism. ESWE has been 

successfully tested with expert systems which make limited used of the viewpoint 

mechanism, but may fail under extreme circumstances. For a detailed description of 

viewpoints, refer to [ART87, chap. 7]. 

A.2 ART's Knowledge Base 

At the heart of the ART programming language is the working memory. The ART 

working memory, or database, is used to coordinate the actions of the rules in the 

rule memory. 

From the user's point of view, ART's knowledge base is comprised of two main 

forms of entity: propositional facts, and schemata. Sequences, the underlying rep-

resentation for propositional facts, form the true basis of ART's knowledge base. 

All the properties and behaviour of schemata may be duplicated using propositional 

facts (or simply "facts") and rules; schemata provide a' more pleasant syntax for 

describing certain forms of information, and provide procedural features which may 

prove more efficient than simple ART rules. 

A.2.1 Proppsitional Facts 

Facts in ART's database take the form of predicates of First-order logic, using a 

lisp-like prefix notation. Expressed in Backus-Naur Form (BNF), the syntax of an 

ART fact is: 
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<fact> : : = (<relation-name> <fact-pattern>*) 

<relation-name> : : <symbol> 

<fact-pattern> :: <symbol> I <number> I ( <fact-pattern>* ) 

<symbol> : := any valid Common-Lisp symbol, whose print-name does 

not start with the character '?'. 

<number> ::= any valid Common-Lisp numeric constant. 

In effect, a fact in the ART database has the appearance' of a Lisp list, and 

may contain an arbitrary level of nested sub-lists. The first symbol in the fact is 

regarded as the name of a relation. Each named relation must be declared, and its 

arity specified. Asserting a fact in the ART data base whose relation-name is not 

declared, results in a warning message, and a default declaration. 

When declaring a relation, it is necessary to fully describe its arity, that, is, the 

number of arguments the relation is expected to have. Relations may be declared 

to have arbitrary arity. In addition, relation declarations allow more than simply 

arity to be specified: it is possible to specify the arity of (required) sublists in the 

arguments; and a description of the semantics of the relation may be provided to 

allow conversion between natural language sentences and facts in list-notation. 

A.2.2 Schemata 

The schema  system is a useful programming interface provided by ART for the 

purpose of imposing structure on stored knowledge and defining daemons that can 

act immediately upon certain types of changes to the knowledge base. Schemata are 

'Note: this is appearance only. The internal representation is actually a 'sequence'; list notation 
is used simply for convenience. Functions which directly manipulate the knowb'dge base must be 
certain to convert between "lists" and "sequences", or the consistency of the knowledge base will 
be destroyed. 

2Singular: schema; plural: schemata. 
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also useful as an interface between code written in ART and programs written in C 

or Lisp. 

The schema system is, effectively, an object oriented language not at all un-

like Minsky's "frames" [Minsky 75]. With the schema representation, a programmer 

can easily model classes of objects, and describe relationships between classes, sub-

classes, and instances of objects. Further, programs written in languages can use 

schemata to locate specific information in the knowledge base with much less diffi-

culty than would be encountered with propositional facts. 

A.2.2.1 Example of Schemata 

A schema is a named collection of properties or slots. The slots contain information 

which describe or qualify the schema. In the example below, a schema is defined 

to describe a class of object called "book", and another schema is defined which 

describes a specific book. 

(def schema book 

(medium paper) 

(contained-data printed-text) 

(author) 

(title) 

(subject) 

(year) 

(number-of-pages)) 

(def schema dune 

(instance-of book) 

(author "Frank Herbert") 

(title "Dune") 

(has-sequels Dune-Messiah Children-of-Duie God-Emperor-of-Dune 

Heretics-of-Dune Chapterhouse-Dune) 

(primary-locale. Desert-planet-named-Arrakis) 

(subject Science-Fiction)) 

In this example, we describe "book" as a class of objects which contain printed 

text, and which are printed on paper. (Clearly, other classes of objects, such as 
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"newspapers", also meet this criteria, but that is not relevant, as most people would 

agree that a book is not a newspaper and a newspaper is not a book.) In addition 

to this specific information about what a book is, we also encounter a description of 

the sort of things we might expect to know about specific books, such as the author, 

and year of publication. 

Next, we describe Dune as a specific instance of the class of objects known as 

"book", and describe some of the important information about it. There are no 

entries given for the "year" or "number-of-pages" slots because no copy of the book 

was handy at the time the example was composed. Absence of this information is 

left to the expert system application to interpret; possibly its objective will be to 

deduce the number of pages in the originally published version. 

By stating that Dune is an instance of the class book, we know implicitly that 

Dune contains printed text, and that Dune is made of paper. The ART schema 

system handles this by way of an inheritance mechanism, which causes instances 

and subclasses to automatically acquire information which has been stated as true 

about the containing class. Additional information about Dune, is included in the 

"has-sequels" and "primary-locale" slots, which are not present in the parent schema 

"book". This is not a problem; we simply have some information about Dune which 

may not apply to books in general. 

It is worth noticing that in this example, all slots have been provided with either 

zero or one values, except for the "has-sequels" slot in the schema Dune. By default, 

each slot may contain exactly zero or one values; the "has-sequels" slot in the dec-

laration of Dune will result in an error message from ART, unless the definition is 

preceded by the declaration: 

(de±schema has-sequels 

(is-a slot) 

(slot-how-many multiple-values)) 
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This declaration states that slots named "has-equals" (in any schema) may have 

more than one value. 

A.2.2.2 Schemata and Facts 

There is a very clear and purposeful duality built into the ART database system, 

between Schemata and Propositional Facts. A schema is simply a named collection 

of slots; each slot describes a some characteristic of the schema. Within the ART 

database, slots are simply stored as trinary relations of the form 

(< slot — name > < schema— name> < slot — value >). 

The "author" slot from the Dune example above is represented in the ART knowledge 

base as: 

(author dune frank — herbert). 

Multiple value slots are treated in precisely the same manner, but are represented 

by one fact for each value. Thus the "has-sequels" slot from the Dune example above 

is represented as: 

(has-sequels dune dune-messiah) 
(has-sequels dune children-of-dune) 

Previously, it was implied that facts and schemata are fundamentally the same, 

and the concept of "duality" described in this section appears to confirm this. Facts 

and schemata, are fundamentally similar, but they are not nearly identical. The 

schemata system is considerably more than simple "syntactic sugar" ;' it provides 

several properties not available with simple propositional facts. The inheritance 

mechanism, for example, is dynamic; adding a slot or changing the default value of 

3This is often referred to as "syntose" by laconic hard-core hackers. 
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a slot in a schema will cause all descended schemata (those reflexively declared as 

instance-of the modified schema) will be automatically updated. 

Schemata also provide a very flexible interface to external code written in lan-

guages other than ART. It is possible, for example, to inspect and modify schemata 

in the ART database with code written in LISP or PROLOG, but it is very difficult 

to inspect facts, and impossible to modify them, except from within ART. For this 

reason, schemata, and not facts are used to implement most of the features of ESWE. 

A.2.3 Specification and Behaviour of Rules in ART 

Like OPS5 [Forgy 81] and other expert systems languages, ART makes use of if-then-

else type rules. These rules consist of a series of "patterns" to be matched in the 

working memory, and a number of actions to take when all such pattrs are matched. 

These actions often involve modifying the working memory, by adding or deleting 

facts, but may also include the evaluation of arbitrary Common-Lisp expressions, 

which may or may not have side-effects on the working memory. 

ART's pattern matching algorithm constantly maintains a list of all rules whose 

"patterns" are matched by one or more sets of facts in the working memory. This 

list, or agenda, is effectively the set of all candidates for the next rule to be "fired" 

or executed. Because the firing of a rule can (and usually does) modify the working 

memory, the agenda must be updated before another rule can be selected and fired. 

When it is time to select the next rule, ART chooses the rule declared to have 

the highest priority or salience (see section A.3); if more than one such rule exists, 

ART always selects that which was most recently matched. (Thus, the ART agenda 

effectively becomes a prioritised First In First Out, or FIFO, queue.) This behaviour 

is not always desirable: when several alternative courses of action are offered, they 

will always be acted upon last to first. This leaves the expert system completely 

subject to NP-complete problems. 
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Figure A.1 provides a simplified description of the syntax for declaring rules in 

ART; for a more complete -description, refer to [ART87, pp. appx-a-6 - appx-a-21]. 

Because ART rules are "global" entities, their names must always be unique from 

all other rules. 

<defrule}> :: 

(def rule <name> 
-C (declare (salience <integer-expression>) ) )-
E<-C\bf forward-rule-body)-> I <-C\bf backward-rule--body)->] ) 

<forward-rule-body> : -C<logical-conditions>} 

<condition>* { > <form>*} 

<backward-rule-body> ::= <goal-pattern> <= <condition>* 

<condition> (test <safe-form)->) I 
<pattern> 

<safe-form> ::= Any Common-Lisp expression without side-effects, 

and which always returns the same value for a 

given set of arguments. 

<integer-expression> ::= Any ART or Common-Lisp expression 

which evaluates to an integer. 

<form> Any valid ART or Common-Lisp expression. 

Figure A.1: Simplified BNF for defrule. See [ART87] for complete BNF. 

A.3 Rules, Salience, and Sequencing in ART 

An'important aspect of the agenda mechanism described above is the ability to assign 

priorities to each rule by means of the salience declaration' (see figure A.1), which 

'Henceforth, when speaking of the "salience" of a rule, what is meant is "the value appearing 
in the rule's salience declaration", unless otherwise stated. 
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takes the form "(declare (salience <integer>))". When assigning salience values 

to rules, the programmer informs ART's inference engine of the relative importance 

of each rule: rules with very high salience values are inserted at the top of the agenda; 

rules with very low salience values are placed at the bottom. Thus, a rule with a 

high salience will fire before (in preference to) to rule with a lower salience. 

It is often tempting for programmers to attempt to use the salience declarations 

of rules as a sequencing mechanism, and, in fact, this can occasionally be done with 

fair success. Unfortunately, saliences are static; once a rule is defined, its salience 

cannot be modified, effectively making impossible iteration or branching if salience 

is used as the sole sequencing mechanism. 

The more typical (and officially sanctioned) way to perform sequencing and it-

eration in a rule-based language is to add speèial conditions to each rule, and have 

each rule create a new fact in the working memory, which will allow the "next" rule 

in the sequence to be selected and fired. This sort of strict control is regarded by 

some as counter to the spirit of rule-based programming, but, unfortunately, is often 

necessary. 

This method of passing a "token" from one rule to the next in order to control 

order of execution is certainly very general, but is, unfortunately, very cumbersome 

to modify. For instance, when- the iterative requirements of an expert system require 

nested loops (fortunately, this is fairly rare), the control facts used for sequencing 

become so heavily entwined as to be essentially un-maintainable. 

5This is not the intended use of salience declarations. 
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Sample Technology Declaration 

;;; -*- Mode: LISP; Syntax: Common-lisp; Package: ART-USER; 

(eval-when (compile oval) 

(if (not (macro-function ' eq-PNAME)) 

(load " sym-i:>brinsmead>stariley>compiler-macros")) 

(if (not (macro-function ' DEFCELL)) 
(load " sym-i: >brinsmead>stanley>stan-f-ont-end")) 

) 

(eva],-when (load eva].) 

(if (not (boundp '*Current-Technology*)) 
(load " syut-fsa:>brinsmead>stanley>stanley-globals")) 

(if (not (functionp ' list-of-lists-p)) 

(load "sym-1 >brinsmead>staxley>stan-type-preds")) 

(if (not (sc1emap ' sym-cell)) 

(load "sym-fsa:Brinsmead>stanloy>stan-sym-objs")) 

(if (not (functionp '*defteclutology-l*)) 

(load "sym-fsa: >brinsmead>stanley>stan-front-end-funs")) 

) 

(deftechnology 

(layers 

(p-active 

(p-well 

(n-active 

(n-well 
(poly 

(metal-i 

(metal-2 
(contact 

(gate* 

MOSIS-GENERIC-CMOS 

p-active diffusion 

virtual virtual 

n-active diffusion 

virtual virtual 

gate poly 

interconnect metal 

interconnect metal 

via metal 

virtual virtual 

20 200 1.0) 

0 0 0) 

20 200 1.0) 

0 0 0) 

10 50 1.0) 

6 20 i.o) 
6 20 1.0) 

6 20 1.0) 

0 1.00) 

(rules 

(separation p-active p-well 16) 

(well-surround p-active 7) 

(separation n-active n-well 16) 

(well-surround n-active 7) 
(separation 

(separation 

(separation 

(separation 

(separation 

(separation 

(separation 

(separation 

(separation 

poly p-active 1) 

poly n-active 1) 

poly poly 2) 

p-active p-active 2) 

n-active n-active 2) 

metal-i metal-i 3) 

metal-2 metal-2 4) 

contact gate* 4) 

contact metal-i 3) 
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(separation contact poly 2) 

(minimum-feature metal-i 3) 

(minimum-feature metal-2 4) 

(minimum-feature poly 2) 

(minimum-feature p-active 3) 

(minimum-feature n-active 3) 
(minimum-feature contact 2) 

(minimum-feature gate* 1) 

(minimum-feature n-well 1) 

(minimum-feature p-well 1) 

) 

(defcontact metal-i-metal-2 

(contacts metal-i metal-2) 

(pins (rn-i metal-i (0 0)) 

(rn-2 metal-2 (0 0)) 

(c-i contact (0 0))) 
(wires (mw-i metal-i 4 rn-i rn-i) 

(mw-2 metal-2 4 m-2 m-2) 

(cw-i contact 2 c-i c-i)) 

) 

(defcontact metal-i-poly 

(contacts metal-i poly) 

(pins (rn-i metal-i (0 0)) 

(p-i poly (0 0)) 

(c-i contact (0 0))) 
(wires (mw-I metal-i 4 rn-i rn-I) 

(pw-I poly 6 p-I p-I) 

(cw-i contact 2 c-I c-I)) 

(defcontact metal-I-p-active 

(contacts metal-I p-active) 

(pins (rn-i metal-I (0 0)) 

(a-i p-active (0 0)) 

(c-I contact (0 0))) 

(wires (mw-i metal-i 4 rn-I rn-i) 

(aw-1 p-active 6 a-i a-i) 

(cw-1 contact 2 c-i c-i)) 

(defcontact metal-i-n-active 

(contacts metal-1 n-active) 

(pins (rn-i metal-i (0 0)) 

(a-I n-active (0 0)) 

(c-i contact (0 0))) 

(wires (mw-i metal-I 4 rn-i rn-i) 

(aw-i n-active 6 a-i a-i) 

(cw-i contact 2 c-I c-I)) 

) 

(defschema p-transistor 

(instance-of transistor-prototype) 
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(type P-TRANSISTOR) 

(proto-pins 

(Sac-PIN p-active (0 100)) 

(DaN-PIN p-active (0 -100)) 
(GATE-PIN-1 poly ( 100 0)) 

(GATE-PIN-2 poly (-100 0)) 

(INT-PIN-1 p-active (0 0)) 

(INT-PIN-2 p-active (0 0)) 

(WELL-PIN-1 n-well (0 100)) 

(WELL-PIN-2 n-well (0 -100))) 

(active-proto-pins SRC-PIN DRN-PIN GATE-PIN-I GATE-PIN-2) 
(proto-wires 

(SRC-WIRE p-active B SRC-PIN INT-PIN-I) 

(DaN-WIRE p-active S DRN-PIN INT-PIN-2) 

(GATE-WIRE poly 3 GATE-PIN-1 GATE-PIN-2) 

(WELL-WIRE n-well 19 WELL-PIN-1 WELL-PIN-2)) 
(proto-constraints 

(lambda (schema) 
(prog (pins-list 

wires-list 

gate-width 

active-width 

src-pin-name 

drn-pin-name 

gate-pin- 1-name 

gate-pin-2-name) 
(assert (schemap schema)) 

(setq pins-list (get-schema-value schema ' pins)) 

) 
) 

) 
) 

(defschema n-transistor 

(instance-of transistor-prototype) 
(type N-TRANSISTOR) 

(proto-pins 

(Sac-PIN n-active (Q 100)) 

(DaN-PIN n-active (0 -100)) 

(GATE-PIN-I poly ( 100 0)) 

(GATE-PIN-2 poly (-100 0)) 

(INT-PIN-1 n-active (0 o)) 
(INT-PIN-2 n-active (0 0)) 

(WELL-PIN-1 p-well (0 100)) 

(WELL-PIN-2 p-well (0 -100))) 

(active-proto-pins SRC-PIN DRR-PIN GATE-PIN-i GATE-PIN-2) 
(proto-wires 

(Sac-WIRE n-active S Sac-PIN INT-PIN-1) 

(DaN-WIRE n-active S DRN-PIN INT-PIN-2) 
(GATE-WIRE poly 4 GATE-PIN-i GATE-PIN-2) 

(WELL-WIRE p-well 19 WELL-PIN-1 WELL-PIN-2)) 

(proto-constraints 

(lambda (schema) 

(prog (pins-list 
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wires-list 

gate-width 

active-width 

src-pin-name 

d=-pin-name 

gate-pin- 1-name 

gate-pin-2-name) 

(assert ( chemap schema)) 

(setq pins-list (get-schema-value schema ' pins)) 

) 
) 

) 
) 

) 

(def-state-var main-map ()) 

;;; Set up the colour map for the layout editing software. 
(defcolormap main-map 

(def color main-map 0 .77 . 69 

main-map ,I (de±color .46 . 39 

(def color main-map 2 .01 . 79 

(def color main-map 3 1.0 . 00 

(defco].or main-map 4 . 00 . 72 

(def color main-map 5 1.0 . 00 

(def color main-map 6 . 00 . 00 

(defcolor 1.0 1.0 

(defcolor . 45 . 45 

main-map 7 

main-map 8 


