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Abstract 

Machine learning and automated theorem proving are both important topics in computer 

science that have attracted much attention. With few exceptions, they have been investigated 

independently. This thesis explores their relationship by treating machine learning as a 

process of inductive theorem generation. 

Machine learning is often said to be a process of induction, and some automated theorem 

proving systems are able to prove inductive theorems. However, we argue that the "concepts" 

or rules created by machine learning systems belong to broader classes of induction that we 

call "ampliative," "prudent," and "ignorative." While these classes are all inductivelike, they 

differ in how they model noise and unknown data. They are formalized in this thesis by 

developing a model theory of a four-valued non-monotonic equational logic. 

The process of theorem generation is treated as a form of reverse theorem proving, 

in which theorem-proving operators are inverted to yield generation operators. Within an 

equational logic and term rewriting setting, antiunification is defined to be the inverse of 

unification, expansion the inverse of rewriting, and antinarrowing the inverse of narrowing. 

Specialization is viewed as an inverse to antiunification. 

These ideas are implemented in the Balog system, a computer program that gener-

ates theorems and can emulate many well-known machine learning techniques within the 

framework of automated theorem proving. 

111 



Acknowledgements 

The people of the Department of Computer Science have made my stay at the U of C 

immensely enjoyable. There are too many people that I'd like to thank so I'll just list the 

first ones that pop into my head: 

Rosanna Heise, Debbie Leishman, David Maulsby, Dan Freedman, Maurice Sharp, Thong 

Phan, others in my office and the KSI, and all of the grad students I knew (for making the 

Computer Science environment far from boring); Craig Jackson (for lending an ear to my 

incoherent babbling, especially when I needed it the most); Lorraine Storey, Camille Sinanan, 

and the rest of the office staff (for their great help over the years); Paliath Narendran, Graham 

Birtwistle and John Cleary (for getting me onto the straight and narrow path of logic - maybe 

I should curse them); Bruce MacDonald (for being a cool resource for machine learning stuff); 

Brian Gaines (for his enthusiasm and for being a role model for my habit of devouring books); 

Dave Jevans and David Hankinson (for sev, glagliness and uncompromising excellence); 

Darse Billings (a friend who helped me escape from reality); Darrell Conklin (a friend who 

helped me escape from both normality and stupidity); Ian Witten (for being "The Filter" and 

for being an excellent supervisor); and several people outside the department (who made my 

life interesting during this period). I especially would like to thank Mom and Dad who have 

put up with far too much from me while I have been working (and not working!) on this 

thesis. 

I also wish to thank the person who I could not have accomplished this dissertation without: 

me. 

iv 



Table of Contents 

Signature Page ii 

Abstract iii 

Acknowledgements iv 

List of Figures viii 

1 Introduction 1 

1.1 Semantics of Induction   3 

1.2 Computational Induction   7 

1.3 Thesis   9 

1.4 Mathematical Preliminaries   10 

2 Semantics for Induction 14 

2.1 Interpretations and Models   15 

2.2 Deduction and Induction   20 

2.2.1 Deductive theorems   20 

2.2.2 Inductive theorems   22 

2.3 Inductivelike Theorems and Justification   24 

2.3.1 Inductivelike theorems and total justification   24 

2.3.2 Non-total justification   26 

2.3.3 Biexemplar justification   26 

2.4 Ampliation and Ignoration   27 

2.4.1 The insufficiency of minimal and final models   28 

2.4.2 A new ontology   29 

2.4.3 Uriderdetermined and overdetermined (three-valued) models 30 

2.4.4 Full (four-valued) models   32 

2.4.5 Preferred models  34 

V 



CONTENTS vi 

2.4.6 Ampliative, ignorative and prudent theorems   38 

2.5 Theorems for Machine Learning   41 

3 Theorem Proving Techniques 44 

3.1 Term Unification   44 

3.2 Term Rewriting Systems   46 

3.3 Equational unification by narrowing   50 

3.4 Inductive Theorem Proving   52 

4 Theorem Generation Techniques 54 

4.1 Reverse Unification   54 

4.1.1 Term antiunification   56 

4.1.2 Rule and equation antiunification   60 

4.2 Reverse Term Rewriting   61 

4.2.1 Term expansion   61 

4.2.2 Rule expansion   62 

4.3 Reverse Equational Unification   65 

4.3.1 Antiunification with explicit background theory   66 

4.3.2 Antinarrowing   68 

4.3.3 Complete antinarrowing   71 

4.3.4 Example of Antinarrowing   72 

4.4 Reverse Cover Set Induction   73 

4.4.1 Inductive antiunification   73 

4.4.2 Inductive antinarrowing   75 

4.5 Specialization   76 

4.5.1 Term specialization   77 

4.5.2 Rule specialization   80 

4.6 Completeness   81 

4.7 Summary  82 



CONTENTS vii 

5 Balog: Automated Theorem Generation 83 

5.1 Theory Learning   86 

5.1.1 Ampliative theory learning   86 

5.1.2 Evaluating hypotheses   92 

5.1.3 Hypothesis increment functions   94 

5.2 Classification Learning  94 

5.2.1 Representing classifiers as rewrite rules   95 

5.2.2 Example of classification   96 

5.3 Default Classification   101 

5.4 Learning With Noise   105 

5.5 Inductive Theorem Generation   107 

6 Other Machine Learning Systems 110 

6.1 Other Classification Systems   110 

6.1.1 1D3 as a specialization system   111 

6.1.2 Prism and Induct as Specialization Algorithms   1.12 

6.2 Cigol   114 

6.2.1 Conditional rewrite systems   114 

6.2.2 Operators in Cigol   116 

6.3. Other Systems   117 

7 Conclusions 119 

Bibliography . 122 

A Proofs 126 



List of Figures 

1.1 A theory: predecessors of integers.   11 

2.1 Theorem Classes in this Chapter   15 

2.2 Standard Truth Mapping   18 

2.3 Truth Values for Truth Connectives   19 

2.4 Truth Values for Negation   20 

2.5 Models of a simple theory   21 

2.6 Truth Value Lattice   29 

2.7 Three Valued Truth Mapping   31 

2.8 Four Value Truth Mapping   33 

2.9 A full model and an uncommitted avoidant preferred model   37 

2.10 Equation sets that induce Vs grandmother(x) = mothermother(x))   4Q 

2.11 Some sample models   41 

2.12 List of theorem types  42 

2.13 An ampliative extension of a theory   43 

3.1 Generation operators discussed in this chapter   45 

3.2 Example of reduction.   48 

3.3 Negation theory   53 

4.1 Generation operators discussed in this chapter   55 

4.2 Most specific antiunifiers.   58 

4.3 Expansion is rewriting with rules reversed.   63 

4.4 Rule expansion example.   64 

4.5 Example of complete antinarrowing   74 

5.1 Some functions used in Balog   84 

5.2 A Balog Program: contact.b   85 

vu' 



5.3 The Append Function   87 

5.4 An example set for inducing the Append function   87 

5.5 Phase one algorithm   88 

5.6 Balog/AMP after phase one on append data   89 

5.7 Phase two algorithm   92 

5.8 Balog/AMP: Algorithm   97 

5.9 The depth zero antinarrowings the contact lens examples   98 

5.9 Continued  99 

5.10 Consistent antiunifications of the contact lens examples   100 

5.11 Balog/C: contact lens data results   101 

5.12 Balog/CD: result on contact lens data   104 

5.13 Balog,PRU: Append examples with noise   105 

5.14 Balog/PRU: Learning append even with noise   106 

5.15 Balog/IND: Algorithm   107 

5.16 Balog/IND example   108 

6.1 ID3   111 

6.2 PRISM   113 

6.3 Ackermann's function and examples needed to generate it   118 



Chapter 1 

Introduction 

Machine learning is an important topic in Computer Science that has attracted a great deal 

of attention. This is not surprising since two research areas that have recently experienced 

tremendous growth are expert systems and robotics, both of which would benefit enormously 

from learning capabilities. The machine learning literature details many disparate methods 

including systems for intelligent question asking (Krawchuk & Witten, 1988; Sammut & 

Banerji, 1986), classification and concept learning (Quinlan, 1986; Quinlan, 1987; Gaines, 

1991; Mitchell, 1982; Michalski, 1983), function induction (Phan, 1989), procedure and 

sequence learning (Heise, 1989; Maulsby & Witten, 1989; Dietterich & Michalski, 1986), 

and logic program synthesis (Muggleton & Buntine, 1988; Shapiro, 1983). This plethora 

of approaches indicates a need for descriptive and analytical theoretical frameworks, which 

should not only provide explanations of experimental research in the field but also should 

stimulate new ways of looking at problems. This thesis develops one such theory. 

Traditional learning theories have focussed on learnability and other primarily analytic 

issues (Angluin & Smith, 1983). Unfortunately, they do not provide a simple descriptive 

language suitable for straightforward comparison of machine learning approaches. This 

thesis develops a logic-based theory used to explain some parts of machine learning and for 

generating new machine learning algorithms. Its main insight is that computer science logic, 

both semantics and proof theory, suggests a rich, well-understood basis for machine learning. 

In particular, it shows first, how a non-monotonic, multi-valued logical semantics can model 

induction of various types; and second, that methods of induction can be developed frim 

theorem proving techniques. 

The theory should help to provide a lingua franca for communication between machine 

learning researchers; For example, it has long been suspected that a common unit in machine 

learning systems is the process of universal generalization (see eg. Michalski, 1983; Pop-

plestone, 1970). This process has often been alluded to by vague phrases such as "replacing 

constants by variables." Also, machine learning researchers will often say that their systems 

1 



Chapter 1: Introduction 2 

are doing "induction," a term which has been grossly abused as a catch-all to refer to very 

different things. These phrases undoubtedly need clarification - and this will follow directly 

from the logical framework developed in this thesis. 

It is taken for granted here that the description languages used by machine learning 

systems can be encoded straightforwardly as logical formulae. It follows naturally from 

this assumption that the object of machine learning is to generate theorems. This topic is 

also of interest to automated theorem proving; Wos (1988) includes theorem finding in a 

list of crucial research problems in the field. Unfortunately, Wos's discussion refers only to 

deductive theorems. Machine learning strives to create other types of theorem, including 

inductive ones. 

What type of logic should be chosen for this endeavor? For some applications (like logic 

programming), it would be most natural to use first order predicate calculus. The equally 

powerful equational logic, on the other hand, is much more in keeping with the spirit of 

functional programming. Functional programming often uses the computational mechanism 

of term rewriting, and equational logic provides a declarative semantics for term rewriting 

methods. 

Everyday thinking and mathematical reasoning use rewriting quite regularly. Computer 

applications of term rewriting include: 

• automated theorem proving 

• parallel functional languages 

• modelling nondeterministic computations 

• program verification 

• abstract data type specifications 

• algebraic simplification 

• semantics of programming languages (including Prolog). 

This thesis uses the equational logic/term rewriting framework because of its wide application 

and because its use in machine learning has not yet been explored. 
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The next part of the chapter reviews previous work in this area. Then the thesis and 

objectives of this thesis are stated, followed by a brief preview of what is to come. The final 

portion of the chapter introduces the logic and the technical terms and symbols used in the 

remainder of this work. 

1.1 Semantics of Induction 

One problem addressed in this thesis concerns the meaning of induction: 

Problem 1. What is meant by the term "induction"? More precisely, how can induction be 

formalized in logic in a clear way, capturing the intended meaning of machine learning and 

automated theorem proving researchers? 

A full answer to the first part of the question is- difficult. Indeed, it has been a primary 

concern of philosophers, from Aristotle (and before) to the present day, and is still far from 

resolved. If the question cannot be answered in general, it may still be possible to respond 

to it in the narrower context of a particular research interest. Thus, the second part of the 

problem trims the question down to the context of machine learning. 

We might loosely define an induction as an abstraction or emergent properly of a set 

of facts. However, this raises the obvious question of the meaning of "abstraction" and how 

it is somehow connected with the set of facts. Several definitions of induction have been 

attempted, yet few have adequately explained this connection between an induction and the 

data it is based upon. 

One popular definition focuses on the assumptions that are necessary to turn induction 

into a deduction (see eg. Skyrms, 1975). 

E - examples 
A - hidden assumptions 

I - inductive statement 
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For example, suppose that I is the statement "the sun will rise tomorrow" and E comprises all 

the examples of days when it rose, namely every day seen so far. Then the hidden assumption 

A could be "tomorrow will be just like today and previous days with respect to sun-rising." 

I clearly follows from E together with A. 

This model of induction is weak in two ways. First, the hidden assumptions might be 

complex and unjustified. Generating A on a computer would be tricky without additional 

constraints on the nature of acceptable assumptions. For example, "tomorrow will be just 

like 25 trillion days ago with respect to sun rising" is a complex assumption that will not 

prove that the sun will rise tomorrow. A computer should not have to even consider hidden 

assumptions such as these. Second, almost anything follows from E and an unspecified A. 

Any I can be made into an induction unless it contradicts something in E. In other words, I 

must require some further justification for this to form a basis of a useful definition - it must 

be somehow based on the examples. This justification is the source of much philosophical 

controversy, and is usually couched in extralogical, statistical or simply imprecise terms. 

Thus this definition, without further logical machinery, is not appropriate for the present 

purposes. 

Another popular description of induction defines it in terms of a deduction (see Gene-

sereth and Nilsson, 1987). Suppose that B is a given background theory. Then I is an 

inductive statement when 

B A fl=E and B K I.' 

For example, in the sun-rising question let I be the statement "the sun rises every day" and 

B be empty. Then I clearly covers all of E (as well as tomorrow!). 

Although I here is forced to cover part of E, it does not have to cover all of E. For 

example, suppose three people, Sandy, Chris and Jø, are examples of happy people. Suppose 

that Sandy and Chris are known to be happy because they just won a million dollars each in 

a lottery, and people with lots of money are known to be happy (B). Then, this definition 

surprisingly says that "Jø is happy" (I) is one possible inductive conclusion. That is not too 

bad; later we will propose the stronger view that deductions are also conveniently considered 

'For now, read A = C as "C is a logical consequence of A." Section 2.2 defines this notion more precisely. 
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as inductions. Fortunately, the alternative, more appropriate, induction "everyone is happy" 

is allowed by this definition. 

There are difficulties in basing the treatment of induction entirely on deduction. Perhaps 

the primary problem with the above definition is that it is unintuitive. We normally think of 

an induction emerging from given information rather than that information being explained 

a posteriori by the inductive statement. Instead, the definition should take the form 

K l=ind' 

where K is the given information. Here induction is a particular rule of inference rather than 

an extralogical view of a particular pattern of deductive inferences. 

Second, this deduction-based definition complicates the simple notion of induction by 

insisting on the artificial distinction between the background knowledge B and the example 

set E. While this may have some benefit in terms of efficiency, it seems to be merely an 

implementation issue that has crept its way into the definition of a basic logical process. 

The distinctions may be useful in evaluating inductions, but not necessarily for defining 

them. For simplicity's sake, it is better to think of inductions as emerging from a single 

base of information without regard to its sources: A further argument for removing the 

distinction between background theory and examples is that the former often plays a similar 

role to examples in producing inductions. In the lottery example, with B and E as before, 

another perfectly valid induction would be "people are happy if they are lottery winners." 

For this induction, the background information that Sandy and Chris are lottery winners is as 

important as the "example" information that they are happy. This induction is just as much 

about the background theory as it is about the examples. 

A definition of j=jfld that derives from the automated theorem proving community (see 

primarily Zhang, 1988) is based on the idea that a statement is an inductive theorem if and 

only if all of its ground instances are deductive theorems: 

K Iind I if V12 K = I, where 1i is a ground instance of I. 

This definition corresponds to what is known as summative induction in the philosophical 

literature (Von Wright, 1957). However, it does not address inductions that are based on 
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"missing information." For example, including an additional lottery player, Randy, into our 

simple example gambling world without including any information about Randy's happiness 

would invalidate the inductive conclusion "everybody is happy." However, it would be 

convenient to assume that Randy is happy so that the induction "everybody is happy" would be 

possible. Using such assumptions in order to form inductions is called ampliative induction. 

A complete theory should enable such inductions involving assumptions. Furthermore, one 

might allow the dismissal of some data in order to make an induction. For example, even if 

Randy was known to be unhappy it might still be^ useful to induce that everyone was happy 

despite this minor inconsistency. This type of induction we call ignorative induction. Also, 

we call a combination of both ampliative and ignorative induction prudent induction. 

One way to capture ampliative and ignorative inductions in a general logical theory of 

induction stems from the realization that the former are simply special kinds of satisfiable 

formulae, while the latter are special kinds of inconsistent formulae. The restrictions on 

satisfiable formulae include the idea of explicitly stating the type of justification used to 

define a particular class of theorems. For example, in Chapter 2 we show how the definition 

of inductive theorems is based on "total justification" (all instances of the theorem are true), 

that of ampliative theorems on "biexemplar justification" (two instances are true) and others 

types on "minimal justification" (one instance is true). 

Another approach to the problem is to base induction on non-monotonic rules of infer-

ence. A full treatment of this topic did not appear until recently (Heift, 1989). The main 

idea of this work is that nonmonotonistic preference can be used to bias the concept language 

during the generalization phase in a machine learning setting. It shows that nonmonotonic 

reasoning certainly has applications in induction and machine learning, but as yet can hardly 

be considered a general framework for induction. 

This thesis uses nonmonotonicity as well, but from a very different angle. A more 

general, simple model is developed in Chapter 2, based on the insight that the summative 

inductive rule of inference used in automated theorem proving can be used to define ampliative 

and even noisy inductions. 

This thesis deliberately ignores statistical approaches to defining induction (eg. Carnap, 

1962; Hintikka, 1964). We are interested in what can be represented symbolically without 
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the use of numbers. It will transpire that objective probabilities and other statistical methods 

are likely needed to evaluate inductions. This study focuses on logical inference and does 

not entertain any notion of subjective probability. 

1.2 Computational Induction 

Having formalized the meaning of induction, in many of its guises, we proceed to explore 

how inductive theorems can be generated: 

Problem 2. How can inductive theorems be generated? Can some existing theorem proving 

techniques be adapted to generate theorems? In particular, how might such theorems be 

generated in an equational theory? 

As mentioned earlier, the aim of machine learning is to generate theorems rather than 

to prove them. It is not surprising that generation can be accomplished by methods that 

are roughly the opposite of theorem proving techniques. Reconsider the deduction-based 

definition of induction: 

B A IE and B I. 

E in this definition is produced from B and I using deductive rules of inference — resolution, 

for example. If the inverse of resolution were used on E and B we would expect to obtain 

I, the inductive theorems. 

The basic idea is not new, although it appears never to have been fully developed. 

According to Plotkin (1971), Popplestone suggested that "since unification is useful in 

automatic deduction by the resolution method, its dual might prove useful in induction," 

and Plotkin, his student, responded in the same article with an early study of antiunification. 

Antiunification, like unification, attempts to make two terms look alike; unlike unification, 

it achieves this by replacing subterms with variables, rather than variables with subterms, 

producing a term that is more general than the original ones. Since antiunification is the basic 

generalization method, it forms the foundation of the present work and will be described in 

great detail in Chapter 4. 
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On its own, term generalization is far from adequate for generating inductive theo-

rems. Commonly-used logics comprise not only single term statements, but implications, 

conjunctions, disjunctions, negations and quantification. Vere (1977) described a general-

ization method that generates the most specific conjunction from a set of terms. A further 

improvement to his algorithm allowed counterfactuals - statements of the form A A -iB 

(Vere, 1980). Unfortunately, neither method allows full use of a background theory, even 

for its restricted hypothesis language. FurthermOre, the algorithm is not based on any pre-

cise logical principles. While Mitchell's (1982) work on version spaces is more general, it 

nevertheless suffers the same flaws. 

A major step in the right direction appeared in Shapiro's (1983) "model inference 

system," which introduced a sound, logic-based, general-to-specific refinement method. 

What is particularly interesting is the use of a logical semantics as a foundation for the 

induction methods. An interesting insight in this work is that machine learning is about 

describing, or summarizing, models using logical formulae. While commendable for its 

logical coherence, this work is restricted to the most commonly studied subset of first order 

logic, namely Horn clauses. 

Most closely related to our ideas on generation are the techniques of Muggleton and 

Buntine (1988) They show how new Horn clauses can be generated from others using the 

inverse of a specific type of resolution (SLD), underscoring the present thesis that generation 

techniques are inversions of theorem proving methods. While this work may ultimately form 

the basis of a more complete, general resolution-based theory, it currently depends on many 

restrictions that do not allow the use of the full Horn clause logic. These restrictions are 

necessary for accomplishing constructive induction, the generation of new predicate symbols 

to aid in induction, a topic avoided by this thesis. 

Other systems use techniques that should properly be thought of as inverse theorem 

proving. For example, least general generalization methods are the basis of some important 

induction algorithms (Vere, 1977; Vere, 1980; Buntine, 1987; Kodratoff, 1988). Most of 

these are extensions of Plotkin's algorithm (1970), a clause generalization method. None link 

these methods to a definition of induction. Some are incomplete in that they do not allow the 

use of background theories. The present research emphasizes that least general generalization 

algorithms should be thought of as inverse rules of inference in order to demonstrate their 
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soundness and completeness. Other algorithms, such as the ID3 series of classification 

techniques, are based on specializations, and are generally unrelated to the semantics of 

induction. We view specialization algorithms as reverse deductions as well. In a nutshell, 

theorem generation techniques should be based on inverse deductive theorem proving to 

provide a clear operational semantics. This thesis shows how this can be accomplished. 

A distinguishing aspect of the present work is that it studies induction in equational 

logic rather than classical Horn clause logic, providing a bias toward functional rather than 

logic languages. One reason for preferring equational logic is its ease of extension. For 

example, continuous values, sets and simple conditionals require very little extension to 

the basic induction operators. Another reason is that machine learning is relatively less 

researched in functional languages than in logic languages. With a prdblem as difficult as 

theorem generation, it is worthwhile studying it in as many interesting subcases as possible. 

1.3 Thesis 

For pragmatic purposes, induction is an inadequately defined concept. This results in poorly 

designed systems for machine learning and leads to conceptual confusion. It can be addressed 

by formulating the varieties of induction precisely within a logical framework. As well 

as providing increased clarity, this suggests generating inductive theorems by inverting 

theorem proving techniques. Consideration of two particular generation methods, namely 

antinarrowing and cover set specialization, reveals their theoretical and practical power for 

generating several types of inductive theorems. 

The objectives of this thesis are 

1. To review methods and characterizations of induction, particularly with respect to. 

machine learning. 

2. To develop a logical framework for various types of inductive theorems that are useful 

for machine learning. 

3. To review theorem proving techniques as a prelude to developing generation tech-

niques. 
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4. To develop operators (rules of inference) that can be used to generate theorems and 

demonstrate their soundness and completeness. 

5. To develop algorithms based on the generation operators and to implement them on a 

computer. 

6. To describe some machine learning systems in terms of the generation operators de-

veloped. 

7. To determine limitations of the algorithms and operators and to suggest additions or 

alternatives. 

These objectives will be met in the following way: The first part of this chapter reviewed 

some ideas about induction (objective 1). The remainder gives mathematical preliminaries, 

and introduces the logic to be used. Chapter 2 defines several varieties of induction by 

identifying each type with a class of theorems. Some restrictions on these classes are 

discussed to show how they can be applied to machine learning (objective 2). Chapter 3 

reviews theorem proving techniques for both deductive and inductive theorems (objective 3). 

These provide the basis for the theorem generation operators discussed in Chapter 4 (objective 

4). Chapter 4 gives some propositions characterizing the power of these methods with respect 

to the theorem classes defined previously. Chapter 5 shows how the theory developed in 

the previous chapters can be used in a variety of ways to obtain very different styles of 

machine learning algorithm (objective 5). The algorithms of Chapter 5 are implemented in 

Balog, a system developed for equational logic theorem proving and generation (objective 

5). Chapter 6 briefly considers other machine learning algorithms (objective 6) in light of the 

theory developed. Finally, Chapter 7 discusses some limitations of the theory and possible 

future directions (objective 7). 

1.4 Mathematical Preliminaries 

• This thesis contains a wide variety of notational forms. This section reviews the language 

used, and can be used for reference while reading later chapters. 
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S = {num} 
V = {x,y,z,n,m} 
F = {s/1,O/O,pred/1} 

C = {s, O} 

Type(0) = nuin 

Type(s) = num 
Type(pred) = num 

Q- [ O=pred(0) 
- n pred(s(n)) 

Figure 1.1. A theory: predecessors of integers. 

In the following, V denotes a set of variables and F a set of function symbols. The 

arity of a function is the number of arguments it takes. When specifying functions, the arity 

will be given along with the name. Here is a sample specification of a set F of functions: 

F = {f/2,g/1,c/O} 

A constant is a function symbol with arity 0. In F, for example, c is a constant while g and 

f are not. 

A term is 

(1) a variable 

(2) a constant 

(3) of the form f(ti, t2, ..., t,) where f is a function with arity n and each 

tj is a term. 

A• ground term is one that contains no variables. We denote the terms built from a set of 

functions F and variables V as Terms(F, V), and ground terms as Terms(F). The set of 

variables which occur in a term is denoted Vars(t). A term t can be grounded by replacing 

each variable in Vars(t) with a constant. Assume, unless otherwise stated, that these constants 

are generated to be completely new to the context, that is, they are not in F if F is specified. 

The grounded version of a term t is denoted Gnd(t). For example, if F = {f/2, g/1, c/0}, 

Gnd(f(x, f(y, x))) = f(cl, f(c2, ci)) where c  and c2 are any constants other than c. 

Terms may also be viewed as trees whose leaves are labelled with variable or constant 

symbols, and internal nodes with function symbols of arity k where k is the number of 
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children of the node. A position is specified by a sequence of natural numbers, each number 

separated by a ".". The root of the term tree is defined to be at position € (the empty sequence), 

the leftmost child of the root is at position 1, and the third child of the second child of the 

root is at position 2.3. The set of all positions in a term is denoted Pos(t). Consider the 

term t = f(d, g(a, h(b)), c). The subterm a is at position 2.1 and f is at position E. t/p 

denotes the subterm at position p. t[p - s] is the term resulting from the replacement of 

the subterm at position p with the term s. So t/2.2 = h(b) and t[2 - e] = f(d, e, c). Also, 

Pos(t) = {€, 1,2,2.1,2.2,2.2.1,3}. 

An equation has the form s = t where s and t are terms. The set of equations that can 

be built from Terms(F, V) is denoted Eqns(F, V). The set of all ground equations, that is, 

ones without variables, is denoted Eqns(F). Note that it is possible for F to contain only 

constants. s t denotes syntactic equality and $ = t denotes semantic equivalence with 

respect to a background theory E. In other words, s = g t means that terms s and t can be 

transformed into each other by using the equations in S. For example, f(a, b) = 6 f(c, b) 

when S contains the equation a = c. 

We are now able to define the logic. that is to be used in the rest of this thesis. Afirst order 

typed equational theory Sisa pair (, Q. I = (L, S, V, F, C, Type) is an alphabet consisting 
of a set of logical symbols L = {, V, 2, (, ), A, v}, a set of sorts S. a set of variables V, a set 
of function symbols F, a set of constructor functions C, and a typing function Type: F - S. 

The typing function assigns a type specification of the form c x cr2 X ... X cr, -+ u to every 

function symbol f E F of arity n. We say that f has range type of o. For example, if 

F = {and/2, true/O,false/O} and S = boo!, Type could be defined as: Type(false) = boot, 

Type(true) = boot, Type(and) = bool x boo! - boot. We also define the typing function for 

terms as the range type of the function symbol at position c. So Type(and(true, false)) = 

Type(and) = bool. 

A well formed formula (wft) is defined recursively: 

. ifs and t are terms then s=t and s 54 t are wffs. 

• if t is a term, then t = true and t = false are wffs (these are sometimes abbreviated as 

t and - it respectively). 
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. if F is a wff and x is a variable, then Vx F and 3x F are wffs. 

. ifA and B are wffs, then -'A,AVB, and AAB are wffs. 

The wffs generated by a set of terms Terms(F, V) are denoted WfJ(F, V). The set of ground 

wffs - those without variables - is denoted Wff(F). Furthermore, we identify the first 

order typed equational language of I as WfJTF, V) itself. 

Q is a set of equations and inequations called the axioms of the theory; these are a subset 

of WffiF, V). They are specified in a normal form; in other words existential variables will 

have been skolemized out and free variables are assumed to be universal. Unless otherwise 

stated, we will assume that the language is negationless: no use of the -iw or a 0 b forms 

will be allowed in Q. 

An example of a completely specified first order typed equational theory is given in 

Figure 1.1. A theory is often just specified with a set of equations (or rules, see Section 3.2) 

when the types, functions and variables intended are obvious. 

Finally, constructor functions are special types of functions that can be thought of as 

those used to build up the "data" in the theory. Any other function in F is called a non-

constructor. The distinction between constructors and non-constructors is useful for many 

applications, and for induction in particular, as we will see in Section 2.4. A constructive 

term is one that is built solely out of constructor function symbols and variables. If c1 and 

c2 are two different constructive terms, then c1 c2 is an implicit axiom found in Q. Since 

these are too numerous to specify in practice, they are usually not listed as part of Q. 

Be aware that a few more important concepts, the application and composition of 

substitutions, will not be introduced until Section 3.1 even though they will be used in, 

Chapter 2. 



Chapter 2 

Semantics for Induction 

It's one thing to be able to say "I've got a theory," quite another to say "I've 

got a semantic theory," but, ah, those who can claim "I've got a deep semantic 
theory," they are truly blessed. - Randy Davis 

At first glance, there seem to be two types of induction. One is treated by the theorem 

proving community, and the other is of concern to machine learning researchers. They are 

known as summative and ampliative induction respectively (Von Wright, 1957). Summative 

induction was first mentioned by Aristotle (1928): 

"Induction proceeds through an enumeration of all the cases." 

In other words, if all possible instances of a proposition hold, the proposition itself holds. 

Ampliative inductions, on the other hand, also hold for unknown cases. This gives an induced 

proposition predictive capability, which is valuable for machine learning applications. How-

ever, there is a third type of induction that allows the introduction of error, either accidentally 

or on purpose. These propositions, which we call ignorative, can still be quite useful in 

making inductive-like assertions. A fourth type of induction holds for unknown cases and 

allows errors, and we call this prudent induction. 

This chapter will characterize four types of induction, summative, ampliative, ignorative 

and prudent, by showing how to capture these distinctions quite naturally in a model-theoretic 

logical setting. Figure 2.1 shows that the prudent theorems that we are about to develop will 

have (summative) inductive, ampliative, ignorative and deductive theorems as subclasses. 

These four types of inductive theorems are examples of inductivelike theorems (Definition 

2.6) that are characterized by an inductive modelling type (Definition 2.5) and ajustfication 

method (Definitions 2.7, 2.9, 2.10, 2.11). 

We begin with some basic model theory (Section 2.1) that enables us to define the 

deductive and (summative) inductive classes of theorems (Section 2.2). We next develop the 

14 
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Figure 2.1. Theorem Classes in this Chapter 

idea of inductivelike theorems and show that (summative) inductive theorems are a trivial 

special case (Section 2.3). We then show that standard methods are inadequate for dealing 

with unknown values, and with noise (Section 2.4.1). Next, following Rescher and Brandom 

(1979) and Langholm ( 1988), non-standard models are introduced by extending the possible 

truth values to include not only true and false but also underdetermined and overdetermined 

(Sections 2.4.2 - 2.4.4). The preference logic that Shoham (1988) introduces as a basis 

for non-monotonic reasoning is here adapted to obtain a natural definition of ampliative, 

ignorative, and prudent theorems (Sections 2.4.5 and 2.4.6). Finally, we argue that machine 

learning systems are inductivelike theorem generators (Section 2.5). 

2.1 Interpretations and Models 

Semantics enables meaning to be attributed to statements made in a language. For a full 

semantics of a language, all of its constituent parts must be well defined. 

An interpretation helps in this regard by fixing the meaning of each symbol in the 

language. For example, two different interpretations of the set of symbols A = 11, 2, 3,4,5 } 
are assignments of A to the domains of the first five positive integers and of the fingers on 

a piano player's hand. A model of a statement is an interpretation in which the statement 
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is true. The following definitions, which presuppose a first order equational theory e = 
((L, S, V, F, C, Type), Q) as defined in Section 1.4, will make these concepts more precise. 

Definition 2.1 A standard interpretation I = (D, IC, Q) is composed of a domain 1), a 

domain mapping C, and an equational truth mapping Q, such that 

1. D = {d I d E DT, T E S} is a domain. A domain is any nonemply set of objects. A 
domain is partitioned into subdomains based on the types, S. of the language. DT is 

called the domain of type T. 

2. IC :Terms(F) - D is a domain mapping where IC(f(t1, . . . , t,)) = d for some 

d E D(f). 

3. Q : Eqns(D) - IT, F} is an equational truth value mapping where there are no e1 

and e2 in Eqns(D) such that e1 = e2 and both c(e1) = T and 9(e2) = F. 

The definition of truth value mappings in this chapter depend on the equational truth. 

value mapping, 9, that is given as part of the interpretation. More generally, 9 could have 

been defined over all predicates, not just over the equality predicate. However, the language 

that is used in this thesis has only the equality predicate. The equation mapping will range 

over a nonstandard set of truth values later in this chapter. Note that is defined only over 

ground sentences. 

An important constraint on the definition of G is the unique names assumption. This 

requires that all constants (functions of arity zero) in the language are not equal unless 

otherwise specified by Q. So, q(a = b) = T if a = b E Q, when a and b are constants. 

This condition can easily be formulated as a preference relation on models (see Section 2.4), 

but we will not do so here to avoid over-complexity. 

Given an interpretation and any ground equation, we can determine the meaning of the 

equation. But to determine the -meaning of more complex statements that include variables, 

quantifiers, negations, conjunctions and disjunctions, a truth value mapping is required. This 

is a function that assigns to each statement in a language a truth value in IT, F}. 

Definition 2.2 A standard truth value mapping T3 with respect to an interpretation I is a 

mapping where '2 : WfJ(RV) -* {T,F} such that 2(w) = T2(K(w)) for tb E Wff(EV). T2 is 
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defined in Figure 2.2. 

2 takes a well formed formula and converts its terms to symbols in the domain using 

the domain mapping K. It passes this partially interpreted formula to T2 which determines its 

truth value. 

This truth value mapping relates every well formed formula to its truth. If a sentence 

evaluates to T over an interpretation I, it is said to be true in I, otherwise it is false in I. Note 

that one need not specify a new definition .of the truth value mapping for each new theory; the 

definition remains constant across all (standard) theories. The definitions of the truth value 

of the and (A), or (V), and not (- i) connectives are given in Figure 2.3(a) and Figure 2.4 

(the I and x truth values in this figure will be described later). 

An interpretation and a truth value mapping enables us to determine what a sentence in 

a theory means. 

Definition 2.3 A standard model of a sentence w E S is an interpretation I such that w is. 

true in I. A model of a set of sentences is a model of each sentence in the set. 

In Figure 2.5 M 1 and M2 are both models of S. Notice that all models are consistent in that 

the same equation is not assigned to both T and F (9 is afunction). Also notice that all the 

equational consequences of the axioms are assigned to T. This is the least that is required 

of a model. However, note that M2 includes an assumption, namely mother(karla) = joe 

(ridiculous, but possible in a strange world!), and all of this assumption's consequences are 

also included in the model. The model M1 is called a minimal model because the truth 

value mapping maps as much as is possible to F. Note also that it is common practice to 

simply list the true equations and assume that the rest are false. 
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Two-valued Truth Mapping 

T2:S -- (T,F} 

Form of S Conditions 
Truth 
Value 

Eqns(D) G(S) 

xW T2(W{xld})=T forsornedeDTYX) T 

Vx W T2(W{x/d}) = T for all d cDT>(X) T 

A v B T2(A) v T2(B) 

A & B T2(A) & T2(B) 

-,T2(A) 

Otherwise F 

F 

Figure 2.2. Standard Truth Mapping 
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I 

(b) 

(c) 

T 

F 

AT  

(a) T T  

F F  

V T  
T 
F 
TT 
T  

TFJ 

TFJ 

F F F 

IFS 

V 

T 

F 

$ 

TFJ 

T T T 

TF$ 

T $ 

IA 

T 

F 

.1 

TF$X V TF$X  

TF$X T TT.TT 

F F F F F TFSX 

SF1? $ T$S? 

X F ? X X T X ? X 

Figure 2.3. Truth Values for Truth Connectives 
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F 

S 
X 

F 

T 

S 

X 

Figure 2.4. Truth Values for Negation 

2.2 Deduction and Induction 

Using standard models, deduction and induction can be defined straightforwardly. 

2.2.1 Deductive theorems 

The most common theorems are deductive theorems. Resolution theorem provers, conditional 

term rewriting systems and natural deduction systems prove such theorems. When the phrase 

logic is used, most people think of these theorems. However, there is much more to logic, 

including some non-deductive reasoning methods that this chapter will describe. First, the 

notion of logical consequence is defined in terms of the standard models of a theory. 

Definition 2.4 Suppose S is a theory with Q as its axioms and d is a well formed formula of 

S. Then d is a logical consequence of S if all models of Q are models of d. 

From this definition, we see that a statement is a logical consequence if it is true no matter 

how the symbols of the theory are interpreted and no matter what truth values are assigned 

to statements whose truth is not determined by the theory's axioms. 

The definition of deductive theorems follows directly from the definition of logical conse-

quence. 
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e = ((L,S,VF,C,Type), Q) where 
C = {joe, betty, karla} 

F = C U {mother/ 1, grandmother/1} 

mother(joe) = betty 
Q = mother(betty) = karla 

grandmother(x) = mother(mother(x)) 

/ mother(joe) = betty T \ 
mother(betty) = karla T 
grandmother(joe) = mother(mother(joe)) T 
grandmother(joe) = mother(betty) T 
grandmother(joe) = karla T 
grandmother(betty) = mother(mother(betty)) T 
grandmother(betty) = mother(karla) T 
grandmother(karla) = mother(mother(karla)) T 

\ otherwise F j 

/ mother(joe) = betty T ' 
mother(betty) = karla T 
grandmother(joe) = mother(mother(joe)) T 
grandmother(joe) = mother(betty) T 
grandmother(joe) = karla T 
grandmother(betty) = mother(mother(betty)) T 
grandmother(betty) = mother(karla) T 
grandmother(karla) = mother(mother(karla)) T 
joe = mother(karla) T 
grandmother(karla) = betty T 
grandmother(karla) = mother(joe) T 
grandmother(betty) = joe T 

\ otherwise F j 

Figure 2.5. Models of a simple theory 
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Deductive Theorems (DED) 

d E DED(6) if d is a logical consequence of S. 

If d is a deductive theorem of S we write d E DED(S). Consider the theory 5: 

Q 

feline(x) 

canine(x) 

cat(felix) 

=cat(x) - 

= dog(x) 

= true 

cat(morris) = true 

nice (felix) = true 

nice(morris) = true 

V={x} 

S = { bool, cattype, dogtype} 
F = {morris/O, felix/O, cat/l, 

dog/l, canine/i, feline/i, 

nice/i } 

Then feline(felix) E DED(S)' since all models of Q must contain cat(felix) and, by 

the first equation, are forced to contain feline(felix) as well. Similarly, —icanine(felix) 

0 DED(S) since there are models of Q which have T3(canine(felix)) = T and others 
with T3(canine(felix)) = F. Note that dog(felix) is not a deductive theorem while dog(felix) 

= canine(felix) is. 

2.2.2 Inductive theorems 

There are many formulae which seem reasonable, but are nevertheless not deductive theo-

rems. In the theory above, for example, Vx cat(x), that everything is a cat, seems reasonable, 

sincefelfr and morris are the only beings known in the theory. Further, Vx cat(x) = nice(x), 

that all cats are nice and all nice beings are cats, seems even more reasonable. However, 

neither of these are deductive theorems since there are many models in which cat(lassie) is 

false and others in which cat(mccavily) is true but nice(mccavity) is false'. 

But why should we be talking about Lassie and McCavity Cat when they are not even 

mentioned in our theory? Recall that a deductive theorem in a theory is supposed to be 

true independent of the context or the interpretations of the symbols in the theory. That is, 

11f P is not an equation, P E DED(S) means (P = true) E DED(e). 
2Lassie the dog and the not-so-nice McCavity Cat are famous. 
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statements like feline(felix) or 3y cat(y) = nice(y) will always be deductive theorems even if 

we do add statements about Lassie or McCavity to the theory. On the other hand, statements 

like Vx cat(x) are not always true. 

One approach is to define such theorems by considering only minimal models rather 

than all models. A minimal (initial) model is a model that assigns statements to F when 

they are not implied to be either true or false by the axioms (rules/equations) of the theory. 

We could say that a statement is an inductive theorem if it is true in all minimal models rather 

than in all models. This approach is known as initial model induction and forms the basis for 

the inductionlessinduction theorem proving technique (Lankford, 1981). In Section 2.4.1, 

we will see that initial model induction is inadequate for our purposes. 

Another natural way to define inductive theorems is to rely on the types and function 

symbols in the specification of the theory. Then we define inductive theorems to be statements 

whose instances are all deductive theorems, rather than a type of deductive theorem over a 

subset of models: 

Inductive Theorems (IND) 

I E IND() if TO E DED(S) for all ground substitutions 0 
where TO E Wff(E) 

:z € IND() means that I is an inductive theorem of a theory e. Using this definition, it 
follows that all deductive theorems are inductive theorems as well since all instances of a 

deductive theorem are deductive theorems. The final clause ensures that substitutions do not 

violate typing conventions and do not use function symbols that are not in the specification 

of the theory. 

This definition of induction corresponds to Aristotle's notion of summative induction. 

By enumerating all possible instances of a statement and showing that each one is a deductive 

theorem, the inductive theoremhood of the sentence is established. 

This definition does not handle ampliative induction. Suppose it is known that bowser, 

roif and pluto are dog-names and that the following are axioms: 
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nice(bowser) 

nice(rolf) 

Q = dog(bowser) 

dog(rolf) 

- dog(pluto) 

There is no longer a proof that V x dog(x) = nice(x) is an inductive theorem. However, 

it seems that it would be a good assumption to make that nice(pluto) is true as well. With 

this assumption, the theorem can easily be shown to be an inductive theorem. This example 

illustrates that there is another class of theorems that includes these types of formulae. 

2.3 Inductivelike Theorems and Justification 

We will shortly be developing three classes of theorems that differ from inductive theorems 

in the types of interpretations and the method of justification that they use. In this section, 

we describe what makes these classes similar. We then describe some forms of justification 

other than the one used for the IND class of theorems. 

2.3.1 Inductivelike theorems and total justification 

All the classes of theorems described in this thesis share two properties: none of their 

instances are false3 and they are somehow justified by their axioms. This can be defined 

formally as follows. 

Definition 2.5 A model M of interpretation type IT is an inductivelike modelling of a 

statement S of theory e with justification J if 
1. S is justified in Eby J. 
2. S is not false in M. 

They may be true, underdetermined or overdetermined. See Section 2.4.2. 
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Possible values for IT in this definition are standard, overdetermined, underdetermined or 

full. So far only standard models have been introduced. 

Definition 2.6 Consider a statement S in some equational theory Q. If all M that are 

models of interpretation type IT that model Q are also inductivelike modellings of S with 

justification J, then S is an inductivelike theorem of Q. 

Normal inductive theorems, IND(e), are inductivelike theorems over standard inter-

pretations. Their justification (J) is given by the definition of inductive theorems itself: 

all ground instances must be true. This all-or-nothing type of justification is called total 

justification: 

Definition 2.7 A statement S is totally justified iffor all 9, where 0 is ground and constructive, 

SO is true in all models. 

The second condition for inductivelike modelling theorems follows from total justification 

and the coherence property of standard models which says that everything true must be not 

false. Thus, inductive theorems are inductivelike theorems over standard interpretations with 

total justification. 

Using Definition 2.3,1, with standard models and total justification, we obtain the 

definition of inductive modelling, the type used to determine IND-theoremhood: 

Definition 2.8 A model M is an inductive modelling of S if it is an inductivelike modelling 

of S using standard interpretations and total justification. We write M = S if M is an 

inductive modelling of S. 

We may now redefine inductive theorems using this definition (assuming total justification): 

Inductive Theorems (IND) 

IEIND(e)iffvMM = Q=MIl=I 

Note that the definition of deductive theorems can also be written in a similar form: 
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Deductive Theorems (DED) 

SEDED(E)iffVMMI=QMI=S 

2.3.2 Non-total justification 

Inductive and deductive theorems have total justification. In our new theorem classes, 

theorems that have less justification will be allowed. Describing the amount of justification 

could be done probabilistically. However, this work alms to restrict the use of probabilities 

to searching the theorem space, not to defining it. Instead, the idea of a minimal amount of 

justification is used. 

Definition 2.9 A sentence S is minimally justified in a model M if there is some 9 such that 

SO is true in M. (M may be standard, overdetermined, underdetermined or full). 

A statement is minimally justified if it has at least one instance for which it is true. For 

example, the theory If (a) = c} has Vx f(x) = c minimally justified. Notice that this 

constitutes a large inductive leap. However, also notice that Vx f(c) = x is not minimally 

justified. It might be possible to define weaker justifications that lie somewhere between 

no justification and minimal justification. Note that inductive theorems are inductivelike 

theorems with standard interpretations and minimal justification. This follows from the 

fact that inductivelike theorems with standard interpretations always have total justification, 

which implies that they are at least minimally justified. 

2.3.3 Biexemplar justification 

Many machine learning systems look at similarities between parts of a database in order to 

generate their theorems. This implies that there are at least two examples of the theorem that 

is to be generated. However, the minimal justifiability criterion requires only that at least one 

instance of the theorem must be in DED(S). A stronger definition of justification is possible, 

to look for two unrelated instances for which the theorem is true. 

Definition 2.10 A sentence S is biexemplar justified in a model M if there are at least two 

substitutions 01 = {vi/si, . . . , v,/s,} and 02 = {vi/ti, . . . , v/t,} such that SO, and SO2 
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are true or biexemplar justified in M and ifs f( ... ) and ti g( ... ) then f g. 

A sentence is biexemplar justified if it has at least two instances that are true or biexemplar 

justified themselves. They must be suitably "different" - namely, each pair of subterms 

that replace a variable in the sentence S to obtain 501 and SO, must not be rooted with the 

same function symbol. The recursive nature of this definition allows cases where a sentence 

requires three or more true instances for its justification. 

This is still a rather weak form of justification. Those theorems captured by biexemplar 

justification but not by stronger forms of justification (eg, tn-exemplar) are said to be strictly 

biexemplar justified: 

Definition 2.11 A sentence S is strictly biexemplar justified in a model M if there are 

exactly two substitutions 01 = { v1 /s, . . . , v./ti } and 02 = { vi /ti, . . . , v, /t } such that SO, 
and SO2 are true in  and fs f (...)and t g( ... ) then f 54 g. 

Consider the equations {f(g(a)) = g(a),f(g(b)) = g(b)}. Then Vx f(x) = x is 

not biexemplar justified and Vx f(g(x)) = g(x) is strictly biexemplar justified. If the 

equation base was {f(g(a)) = g(a), f(g(b)) = g(b), 1(c) = c}, Vx f(x) = x would become 

biexemplar justified though not strictly biexemplar justified. 

2.4 Ampliation and Ignoration 

The terms ampliation and ignoration are opposing terms. Ampliation refers to the process 

of amplifying the amount of knowledge in a database. Ignoration refers to the process of 

ignoring things in a database. Both are useful in machine learning. Ampliative theorems, 

which were alluded to at the end of Section 2.2, are seemingly reasonable statements that 

make assumptions about the truth of what is not explictly stated in a database. To see why 

ignoration can be useful, consider the problem of noise: ignoration can be used to ignore 

errors in a database. 

In this section, we formulate ampliation and ignoration in a logical setting. First we 

describe the insufficiency of some simple types of nonmonotonic reasoning. Then we show 

that a simple four-valued logic can meet the needs of ampliation and ignoration. Finally 
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we introduce the idea of choosing preferred subsets of four-valued models and use this to 

give a precise definition of ampliative, ignorative and full theorems (theorems that are both 

ampliative and ignorative). 

2.4.1 The insufficiency of minimal and final models 

It seems that summative induction, ampliation, and ignoration could be captured by non-

monotonic reasoning, a formalized common sense type of reasoning. However, the minimal 

model approach of methods such as circumscription (McCarthy, 1980) are not directly usable 

to describe ampliation. 

Minimal models are models in which all things unconstrained by the set of equations 

are assumed to be false. Consider the set of equations {p(s(0)) = true, p(s(s(0))) = 

true, p(s(s(s(0)))) = true}.4 The minimal model of this includes {p(0) = false, 

p(s(s(s(s(0))))) = false}. This results in two unintuitive conclusions. First, it shows 

that p(0) = false is a theorem. That would certainly be strange considering that the rules 

offer absolutely no justification for it. Although this unjustified inference is useful for some 

applications (such as default reasoning), it does not help in ampliation. Second, Vx p(s(x)) = 

true is false as a deductive or inductive theorem, since there is an instance for which it is 

false. However, we would expect it to be an ampliative theorem. 

Using final models instead of minimal models is another possibility. Final models 

assume everything unspecified to be true. However, this merely shifts the problem from false 

things to true things. p(0) = true would be true without justification and Vx q(x) = true 

would also be inductively true. 

This minimal model approach provides a semantics for the inductionless induction style 

of inductive theorem proving. However, we opt to investigate the instance based approaches 

for proof and generation, because a minimal model semantics for ampliation is difficult, or 

at least turbid, and it is unclear whether generation operators can be defined that are similar 

to inductionless induction methods. Also, minimal model approaches seem to be unable to 

give a semantics for noise. Other reasons for avoiding this approach are given by Zhang 

'Do not confuse true and false, which are function symbols, with T and F, which are truth values. 
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x 

T 

Figure 2.6. Truth Value Lattice 

(1988). Nevertheless, there will still be a use for a kind of nonmonotonism, in Section 2.4.5. 

Ampliation and ignoration will be based on the straightforward definition of inductivelike 

theorems, rather than taking the minimal model approach. 

2.4.2 A new ontology 

The simple answer to the problem of defining ampliative and ignorative induction lies in 

extending the number of truth states that a proposition could possibly be in. In doing so, 

a four-valued logic is obtained. The extra truth values include both underdetermined and 

overdetermined in addition to the standard true and false. The symbols used for underdéter-

mined and overdetermined are I and x respectively. For a proposition to be underdetermined 

means that there is no knowledge, or blurred knowledge, that bears on whether a proposition 

is true or false. An overdetermined proposition is overcommitted, and has both positive and 

negative (complete) justification - it could be thought of as being both true and false at the 

same time. All together, the four truth values form the simple lattice (using the specificity 

relation) seen in Figure 2.6. Belnap (1975) developed a multivalued logic based on a similar 

set of four values. 

The treatment here of propositions concerns their ontological status, not merely some 

epistemological status. In other words, it is assumed that there is just one world and 

things in the world -- at least the computer's world - actually are unspecifiable and even 

contradictory. An epistemological approach would assume that there were many worlds 
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corresponding to knowers within the real world. If it were indeed an epistemological problem 

a system of modalities might work well; there are many logics of knowledge that have been 

developed. However, it is unclear who the contradictory and unsure 'knowers' would be 

inside of a database. Also, modifying our ontology avoids the problem of multiple worlds 

and the large amount of machinery needed to handle them. This approach to induction simply 

looks at a single database and describes it in useful ways. If more interesting epistemological 

problems came up, logics of knowledge could be built upon this four-valued logic. 

2.4.3 Underdetermined and overdetermined (three-valued) models 

In order to define ampliative and ignorative theorems, underdeterminations and overdeter-

minations must be defined, along with the truth valuation methods that they induce. We first 

need to define some non-standard interpretations. 

Definition 2.12 An underdetermined interpretation is the same as a standard interpretation 

(Definition 2.1) except that : Eqns(D) -+ IT, F, I } with the further restriction that when • 

61 =e e2 then g(e1) = I implies 9(e2) = I for e, e2 EEqns(D). 

The extra condition on 9 ensures that an equation is assigned to I only when its truth value 

is not forced to be either T or F. 

Definition 2.13 An overdetermined interpretation is the same as a standard interpretation 

except that 9 : Eqns(D) -+ IT, F, x } with the further restriction that when 61 =c e2 then 
= x implies 9(e2) = x for el, e2 EEqns(D). 

Here the extra condition on 9 ensures that an equation is assigned to x when all equations 

equivalent to it are also assigned to x. 

The meaning of 'truth' becomes muddled since it is unclear how universal and existential 

formulae are affected by the introduction of I and x. Consequently we extend the notion of 

truth mapping: 

Definition 2.14 A three valued truth mapping 2 with respect to an interpretation I is 

defined where 7: Wff(F,V) - IT, F,} such that 2(w) = T3(X(w)) for w E WfJ(F,V). 

T3 is defined in Figure 2.7. 
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T3: S -•*- {T,F,J} 

Three-Valued Truth Mapping 

Form of S Conditions 
Truth 
Value 

E Wff(F1V) G(S) 

x W 

T3(W(xld})=T forsomed2DT (X) T 

T3(W(x/d}) = I for some d 
and 

T3(W{xld}) e {F,I } for all d e DT (X) 
5 

VxW 

T3(W(x/d})=T foralld2DT(X) T 

T3(W(x/d))=I forsoxned8DT(X) 
and 

T3(W(x/d)) a {Tj } for all d a 
5 

AvB T3(A)v T3(B) 

A&B T3(A)&T3(B) 

-T3(A) 

Otherwise F 

Figure 2.7. Three Valued Truth Mapping 
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The definition of T is equivalent with I replaced with x. This is not surprising since 

a sentence's "real" truth value is just as unclear when it is overdetermined as when it is 

underdetermined. 

Given this new definition of truth, the appropriate non-standard models can be defined. 

Definition 2.15 An underdetermined model of a sentence e E £ is an underdetermined 

interpretation M such that e is true in M. An underdetermined model of a set of sentences 

is an underdetermined model of each sentence in that set. 

Notice that in the following definition true has been replabed with not false, allowing x to 

aid in the modelling. This is the only place where the distinction between I and x appears. 

Definition 2.16 An overdetermined model of a sentence e E S is an overdetermined 

interpretation M such that e is not false in M. An overdetermined model of a set of 

sentences is an overdetermined model of each sentence in that set. 

2.4.4 Full (four-valued) models 

It is also possible, and useful, to combine underdetermined and overdetermined models 

allowing all four truth values in interpretations. 

Definition 2.17 A full interpretation is the same as an interpretation except that Q 

Eqns(D) -+ IT, F,, x}. with the further restriction that when el =,, 62 then c(e1) = x 

implies 9(e2) = x and c(e1) = I implies 9(e2) = Ifor 6 1, e2 E Eqns(D). 

There is a little difficulty in defining a four valued truth mapping. It is unclear how 

and x interact with respect to quantifiers. Suppose that S is a universally quantified sentence 

and that one instance of S is overdetermined and all the other instances are underdetermined. 

Then S can only be one of I and x, since choosing one of T and F is a jump to a conclusion. 

However, we choose x. 

Definition 2.18 A four valued truth mapping 2< with respect to an interpretation I is 

defined where 7>< : WfJ(F, V) -* {T,F} such that 7(w) = T4(,&C(w)) for w e WfJ(F, V). 

Zj is defined in Figure 2.8. 
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Four-Valued Truth Mapping 

T2: S —*- {T,Fj,x} 

Form of S Conditions 
Truth 
Value 

E Eqns(D) G(S) 

X W 

T4(W{xld})=T forsomedcDT X) T 
T4(W{x/d}) = )< for some d sDTy(X) 

and 

T4(W(x/d}) a {F,x,J) for all d a DT() 
X 

T4(W(xld})=J forsomedeDT,.) 
and 

T4(W{x/d}) a {Fj} for all d cDT(X) 
$  

Vx W 

T4(W(x/d}) = T for all d a DT x) T 

T4(W(xld))=X for some daDT X) 
and 

T4(W{x/d))e{T,J,x} foralldcDT(X) 
x 

T4(W (x/d)) = I for some d a 
and 

T4(W(x/dDe{Tj} foralldaDT (X) 

3 

A v B T4(A) v T4(B) 

A & B T4(A) & T4(B) 

-,T4(A) 

Otherwise F 

Figure 2.8. Four Value Truth Mapping 
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Definition 2.19 A full model of a sentence S E e is a full interpretation M such that S 
is true or overdetermined in M. A full model of a set of sentences is afull model of each 

sentence in that set. This is denoted as M  

The following proposition shows that the set of standard models of a particular theory 

is a subset of the set of nonstandard models. We say that all standard models are trivial 

examples of nonstandard models: 

Proposition 2.1 Let S be the set of all standard models, let U be all underdetermined models, 

let 0 be all overdetermined models, and let F be all full models of a negationless theory S. 

Then Sc UCF and SCOCF 

All proofs of propositions are found in Appendix A. This proposition depends on 

negationless theories. It is possible to define negation such that the negation of values F, x, 

and I are all T instead of those defined in Figure 2.4. However, this would mean that 

sometimes -r-1A 0 A, for example, F = - i--i' . Other mechanisms are required to avoid 

this problem. 

2.4.5 Preferred models 

There are statements that have inductive qualities that are nevertheless not inductive theorems. 

In the introduction to this chapter we introduced the term "ampliative theorem" for a statement 

that is not invalidated by data with unknown truth values, "ignorative theorem" for one that 

is not invalidated by data with contradictory truth values, and "prudent theorem" for one 

that is not invalidated by data with unknown or contradictory truth values. Expanding the 

ontology to include underdetermined and overdetermined truth values enables us to work 

with sentences whose truth values are not determined by a set of axioms, leading to definitions 

of nonstandard models. At first, it seems that nonstandard theorems can be characterized 

precisely using these new ways of interpreting sentences. For example, ampliative theorems 

could be defined as statements "not false" (and with some justification) in all underdetermined 

models of a set of axioms. But since all standard models are nonstandard models, all 

nonstandard theorems defined in this way will be inductive theorems, since they are "not 

false" in all standard models as well. In other words, only inductive theorems can be described 

using the machinery developed so far. 



Chapter 2: Semantics for Induction 35 

To make use of nonstandard models, it is necessary to develop a method of ignoring 

standard models when checking for nonstandard theoremhood (non-inductive ampliative, 

ignorative, or prudent theoremhood). In particular, underdetermined models that have "un-

known" things assigned to T or F instead of I are ignored. Also, we ignore overdetermined 

models that have consistent things assigned to x instead of the truth value that the axioms 

suggest (T, F, or, ). Strictly speaking, these ignored models are not wrong; they simply do 

not follow the intuition behind using and x as truth values. 

For example, suppose the axioms Q of a theory e only contains the equation 1(a) = b 
(where Type(a) # Type(b)). Q has one overdetermined model that assigns this equation 

to T and another that assigns it to x. (No model assigns it to F since an overdetermined 

interpretation must have every axiom assigned to something "not false"). Since there is 

nothing in Q to suggest that it is also F, its truth status is not overdetermined and we 

intuitively think of it as true. The second model does not capture the expected behaviour of 

the x truth value - so it should be ignored, leaving only the preferred first model. 

Selection of desired models can be accomplished by using a type of nonmonotonic 

minimization called preferencing. Recall that minimizing T and F in standard models had 

not matched the intuition behind ampliation or ignoration (see Section 2.3.2). However, now 

the extra truth values I and x have been introduced. These truth values can be minimized, 

in several different ways, allowing attention to be restricted to strictly nonstandard models 

when checking for theoremhood. 

Preferences have been formalized by Shoham (1988) who used them to explain non-

monotonic reasoning. The following definition modifies his definition to include inductive 

modelling: 

Definition 2.20 Given a partial order on interpretations E called a preference relation, a 

preferred model of a set of sentences S E e is an interpretation M such that each sentence 
in S is true in M and -' M 1 M 1 1= Sand M t M 1. This is denoted as M 

The E relation must be defined based on the application. The next definitions give three 

preference relations that are appropriate for defining ampliative, ignorative and prudent 

theorems. The subscript of the equational truth mapping in the following definitions refers 

to the interpretation (model) that defines it. 
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Definition 2.21 An uncommitted preference relation is a partial order c on under-
determined interpretations. M 0 E M 1 iff Ve (e) = = o(e) = and 

e 91(e) € T, F O(e) = . Preferred underdetermined models under the uncom-

mitted preference relation are called uncommitted-preferred models. We write M S if 

M is an uncommitted-preferred model of S. 

The uncommitted preference relation says that a model M 0 is preferred to another model 

M 1 when everything underdetermined in Mi is also underdetermined in M 0 and when 

something that is true or false in M 1 is underdetermined in M 0. This relation helps to prefer 

models with the least amount of commitment to T or F. An uncommitted-preferred model 

has no models preferred to it under the uncommitted preference relation. 

Definition 2.22 An avoidant preference relation is a partial order E < on overdetermined 

interpretations. M 0 c>< M 1 iffVe 91 (e) = T = g0(e) = T and Ve 91 (e) = x = 

g0(e) E IT, x } and 2e 91 (e) = x = g0(e) = T. Preferred overdetermined models under 

the avoidant preference relation are called avoidant-preferred models. We write M < S 

if  is an avoidant-preferred model of S. 

The avoidant preference relation says that a model is preferred when it has less x points (and 

has them replaced by T). By doing so, it helps to prefer models that avoid inconsistency. 

An avoidant-preferred model has no models preferred to it under the avoidant preference 

relation. 

A forgetful preference could also be defined, maximizing the inconsistency; it is not 

clear what purpose it would serve. Also, a committed preference could also be defined, 

yet would be useless: it would leave only the standard models. But the uncommitted and 

avoidant relations can be combined for use with full models: 

Definition 2.23 An uncommitted avoidant preference relation is a partial order c on 

full interpretations. M0 E. M 1 iff Ve 91 (e) = T go(e) E IT, if and Ve 91 (e) = x = 
€ IT, x} and Ve 91 (e) = I => o(e) = I and (3e 91 (e) E IT, F,x} => 90(e) = 

or 3e Qi(e) = x = c0(e) = T). Preferred full models under the avoidant preference 

relation are called uncommitted avoidant preferred models. We write M =>< S ifM is an 

uncommitted-avoidant-preferred model of S. 
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a 
f(b)= b 

- f(c)= d 
f(c)= c 

f(a)=a >< 

f(b)=b T 
Mj: f(c)=d x 

f(c)=c x 
f(d)=d F 

f(a)=a T 
f(b)=b T 

M: f(c)=d x 
f(c)=c x 
f(d)=d 

Figure 2.9. A full model and an uncommitted avoidant preferred model 

The uncommitted avoidant preference relation says that a model M 0 is preferred to another 

model M 1 when everything true in M 1 is also true in M 0, everything overdetermined in 

M1 is overdetermined or true in M 0, everything underdetermined in M 1 is also underde-

termined in .M 0, and when M0 and M1 differ. In particular, they must differ in that either 

something that is not underdetermined in M 1 is underdetermined in M0 or something that 

is overdetermined in M1. is true in M0. The preferred models under this relation, that is, 

those that have no models that are preferred to them, have the least amount of inconsistency 

and avoid committing to T or F. 

Figure 2.9 gives a set of axioms Q and two models of it, M1 and M. There are 

other full models but no other uncommitted avoidant preferred models. Note that all models 

must have f(c) = d and 1(c) = c both overdetermined since they are inconsistent. M is 

preferred to M1 because 1(d) = d is underdetermined instead of anything else, f(a) = a is 

true rather than overdetermined, and no other illegal changes to Mf are required to obtain 

M. 
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2.4.6 Ampliative, ignorative and prudent theorems 

This subsection defines ampliative, ignorative and prudent theorems, which embody the 

three other forms of induction besides summative induction. These are defined as particular 

inductivelike theorem classes, and vary only in the type of inductivelike modelling used. 

First, the particular types of inductive modelling that discriminate these theorem classes are 

defined. 

Recall the concept of inductivelike modelling in Section 2.3.1. Each of the three new 

types of models developed in the last section, uncommitted, avoidant, and uncommitted-

avoidant, when used instead of standard models in the definition of inductive modelling, 

along with biexemplar justification, introduce three new types of inductivelike modelling: 

Definition 2.24 An uncommitted-preferred model M ampliatively models a sentence S if 

M inductively models M with biexemplar justification. M S means M ampliatively 

models S. 

Definition 2.25 An avoidant-preferred model M ignoratively models a sentence S if M 

inductively models M with biexeinpiar justification. M 11=x S means M ignoratively 

models S. 

Definition 2.26 An uncommitted-avoidant-preferred model M prudently models a sentence 

S if M inductively models M with biexemplarjustfication. M I J= S means M prudently 

models S. 

Using these new modelling types, three major classes of theorems can be defined directly. 

They are summarized in Figure 2.12, along with the other types of theorems developed in 

this chapter. 

Ampliative Theorems (AMP) 

S E AMP(S) iffVM M J= Q M I IS 

In words, S is an ampliative theorem of S if and only if all uncommitted-preferred models 

of the rules of 6 (Q) ampliatively model S. 
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Ignorative Theorems (IGN) 

SEIGN(E)iffVMM I=x QM IIx S 

In words, S is an ignorative theorem of 6 if and only if all avoidant-preferred models of Q 

ignoratively model S. 

Prudent Theorems (PRU) 

S E PRU(E) iffVM M l=x Q = M S 

In words, S is a prudent theorem of 6 if and only if all uncommitted-avoidant-preferred 

models of the rules Q prudently model S. 

Each inductive theorem is an ampliative, ignorative, and prudent theorem. Also, each 

ampliative and ignorative theorem is a type of prudent theorem. These relationships between 

classes are formalized in the following proposition. Figure 2.1 illustrates the subset relations 

of this proposition, also noting that DED is a subclass of IND. First, a lemma used in the 

proposition's proof is presented: 

Lemma 2.1 Let S be the set of all standard models, let A be all avoidant preferred models, 

let K be all uncommitted preferred models, and let P be all uncommitted avoidant preferred 

models of a negationless theory S. Then S C A C P and S C K C P. 

Proposition 2.2 IND(6) c AMP(6) 9 PRU(6) and IND(5) c IGN(6) c PRU(S) 
for a negationless theory S. 

Consider the equation sets in Figure 2.10 and the formula I Vx grandmother(x) = 

mother(mother(x)). It is clear that I is an inductive theorem of Q3, I E IND(Q3). By 

Proposition 2.2, I E AMP(Q3), I E IG4\r(Q3) and I E PRU(Q3) as well. For the other 

axiom sets, I is not an inductive theorem. 10 IND(Q) because grandmother(karla) = 
mother(mother(karla)) is not true in all standard models (consider model M 1 of Figure 2.11). 

10 IND ( Q<) and 10 IND ( Q , because there are no standard models since mother(joe) 

= karla = betty is inconsistent. 
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F = {joe, betty, karla, mother! 1, grandmother/i } 

Q.s= 

Q = 

QIX = 

mother(joe) = 
mother(betty) = 
grandmother(joe) = 
grandmother(betty) = 
grandmother(karla) = 

mother(joe) = 
mother(betty) = 
granthnother(joe) 
grandmother(betty) = 
granthnother(karla) = 

mother(joe) = 
mother(joe) = 
mother(betty) = 
grandmother(joe) = 
grandmother(betty) = 
grandmother(karla) = 

inother(joe) = 
mother(]oe) = 
mother(betty) = 
grandmother(joe) = 

- grandmother(betty) = 

betty 
karla 
mother(betty) 
mother(karla) 
mother(mother(karla)) 

betty 
karla 
mother(betty) 
mother(karla) 
mother(mother(karla)) 

karla 
betty 
karla 
mother(betty) 
mother(karla) 
mother(mother(karla)) 

karla 
betty 
karla 
mother(betty) 
mother(karla) - 

Figure 2.10. Equation sets that induce Vx grandmother(x) = mother(mother(x)) 

However, I E AMP(Q), I E IGN(Q), and I E PRU(Q). For example, consider 
all uncommitted-preferred models of Q. In fact there is only one, namely model M1 of 

Figure 2.11. In this model, no instances of I are assigned to false. Also, it is biexemplar 

justified by the instances I{joe/x} and I{betty/x}. Thus I E AMP(Q). Similar arguments 

can be made to show that I E IGN(Q) and I E PRU(Q). 
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/ mother(joe) = betty T \ 
mother(betty) = karla T 
grandmother(foe) = mother(mother(joe)) T 
grandmother(joe) = mother(betty) T 

= grandmother(joe) = karla T 
grandmother(betty) = mother(mother(betty)) T 
grandmother(betty) = mother(karla) T 

grandmother(karla) = mother(mother(karla)) 

\ otherwise I) 

/ mother(Joe) = betty T \ 
mother(betty) = karla T 
grandmother(joe) = mother(mother(foe)) T 

grandmother(joe) = mother(betty) T 

grandmother(joe) = karla T 

grandmother(betty) = mother(mother(beuy)) T 
M2 = grandmother(betty) = mother(karla) T 

grandmother(karla) = mother(mother(karla)) T 
foe = mother(karla) T 
grandmother(karla) = betty T 

grandmother(karla) = mother(foe) T 
grandmother(betty) = foe T 

otherwise F J 

Figure 2.11. Some sample models 

2.5 Theorems for Machine Learning 

The theorem classes IND, AMP, IGN, and PRU, can be used to characterize the theorems 

generated by machine learning systems. IND theorems are conservative and are used mainly 

to compress data reversibly. They do have predictive ability when the language is extended 

to include new function symbols of the sorts referred to in the theorems. IGN theorems are 

rather conservative, but can deal with noise. AMP theorems are risky in their inductive leaps, 

but cannot deal with noisy data. PRU theorems are also strongly predictive, but can also deal 

with noise. These four sets of theorems are comprehensive - the theorems discussed in the 

remainder of this thesis will be syntactically restricted types of them. In particular, we will 
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Name Modelling Type Model Type Justification 
DED (deductive) M = s standard total 

IND (inductive) M s standard total 

AMP (ampliative) M I s uncommitted biexemplar 

IGN (ignorative) M s avoidant biexemplar 

PRU (prudent) M < s uncommitted-avoidant biexemplar 

Figure 2.12. List of theorem types 

concentrate on negationless conjunctive universal theorems. 

Machine learning systems seem to emphasize universal theorems rather than existence 

theorems. This is not surprising, since existential theorems are less specific and contain less 

information than the data from which they are derived, while universal theorems describe 

specific properties that range over a complete database. However, existence theorems can be 

useful for zooming in on interesting sub-properties of a large scene, and it would sometimes 

be useful for a machine learning program to discover them. In general, all possible existence 

theorems can be generated from all deductive theorems. Universal theorems are the most 

often discussed of the two types of theorems. Kodratoff (1988) gives a good discussion of 

the use of existential and universal theorems in machine learning. 

The type of description language most often used in machine learning systems is 

conjunctive, in which a set of rules is produced from a set of examples. These sets can be 

thought of as a conjunction of equations. Though some more advanced systems generate 

disjunctive descriptions, we disregard these. 

Some machine learning systems, including a few developed in Chapter 5, first create 

subconcepts and use these subconcepts to create more complex concepts. A particularly 

clear example of this is the Marvin system (Sammut & Banerji, 1986). These higher level 

concepts can be seen as ampliative or prudent theorems, but not of the original theory: 

Definition 2.27 An extension to a theory 5 is a theory created by adding theorems of S to S. 

Ampliative extensions augment S with ampliative theorems of 9 and prudent extensions 
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mother(joe) = 
mother(betty) = 
grandmother(Joe) = 
grandmother(betty) = 
grandmother(karla) 
grandfather(bob) = 
grandfather(karla) = 

betty 
karla 
mother(betty) 
mother(karla) 

mother(mother(karla)) 
husband(mother(mother(bob))) 
husband(mother(mother(karla))) 

Q' = Q U grandmother(x) = mother(mother(x)) 

Figure 2.13. An ampliative extension of a theory 

augment S with prudent theorems of S. 

Using this definition, machine learning systems that work this way generate theorems of 

extensions of a given theory. 

For example, consider the rules in Figure 2.13. Q' is an ampliative extension of Q since 

grandmother(x) = mother(mother(x)) is an ampliative theorem of Q. It is biexemplar 

justified by instances with joe and karla and is underdetermined for all other instances. But 

then, Vxgrandfather(x) = husband(grandmother(x)) is an ampliative theorem of Q', but 

not of Q (since it is only justified by its karla instance). Some machine learning systems 

would generate such theorems of extensions as well as theorems of the original axioms. 

In summary, this chapter has given a semantics for induction as used in machine 

learning. There were two common factors in all types of induction, a justification criterion 

and the avoidance of refutation. The varying factors were the particular justification used, the 

ontological status of propositions and the minimization technique. The status of propositions 

was extended from the standard true and false to include underdetermined (unsure) and 

overdetermined (inconsistent). The mechanics of managing the two new truth values to 

behave in concert with new truth definitions involved minimization techniques. These 

minimization techniques could be varied as well. This framework shows how to distinguish 

different types of induction. The remainder of the thesis will demonstrate some of its 

descriptive power. 
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Theorem Proving Techniques 

That which needs to be proved cannot be worth much. - Nietzsche 

There are several methods of proving deductive and inductive theorems in first order 

logic. This chapter discusses the techniques that are commonly used for equational logic 

proofs. The first section describes unification and the next introduces term rewriting systems 

and reduction. The next section describes narrowing, a method of equation solving. The last 

section introduces a method of proving inductive theorems. All of these proof techniques 

will be reversed in Chapter 4 for the purpose of generating theorems. Figure 3.1 summarizes 

the important methods that are developed here. 

3.1 Term Unification 

In this section, the most basic concepts involved in theorem proving, namely substitution, 

application, and unification, are defined. 

Definition 3.1 A binding is a pair written v/t where t is a term, and v is a variable, and 

v # t. Two bindings vi/ti and v2/t2 are disjoint if v1 # v2. A substitution is a set of disjoint 

bindings. 

Definition 3.2 Suppose 9 = {vi/ti,V2/t2. ... Then Domain(9) = {v1,v2, . . . 

and Range(0) = {t1, t2, . . . , Q. A ground substitution is a substitution 9 such that 

Vars(Range(9)) = 0. A ground substitution 9 is a ground substitution of term t ifVars(t) c 
Domain(9). A proper substitution is a substitution .9 where 3t t E Range(9) and v is a 

non-variable. Otherwise, 0 is called a variable renaming. 

Some authors define Range(0) to be the set of variables in {t1, t2, . . . , t} rather than the set 

of terms itself. 

44 
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to 

Application 

Substitution 0 applied to term t Section 3.1 

Unification 

Mgu(s,t) Most general unifier of terms sand t 

Mguterm(s,t) Most general unificand of terms s and t 

Match(s,t) Matching substitution of term s with term t 

Reduction 

Section 3.1 

Section 3.1 

Section 3.1 

Nf(t,R) Normal form of term twith respect to Section 3.2 
tern, rewriting system R 

S --> t Term s reduces in one step to term t Section 3.2 

t Term s reduces in any number of steps Section 3.2 
to term t 

Equational Unification 

The set of all equations with a narrowing 
Narrow(e,R) derivation from equation e with rules in R Section 3.3 

Statement I is a cover set 
Csi(I,R) induction of R Section 3.4 

Figure 3.1. Generation operators discussed in this chapter 
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Definition 3.3 A substitution 0 = {vi /ti,... , v/t} can be applied to a term t to produce 

a term tO by replacing each vi in t with the term t, for each binding (1 ≤ i ≤ n) in 0. 

Definition 3.4 Suppose 0 = {vi/si,v2/s2, and -y = {wi/ti,w2/t2, ..., Wm/trn}. 

Then the composition of substitutions is defined as: 0 o'y = {vi/si-y, v2/82-y, . . .vn/sn7} U'y - 

{w/t1 w E Domain(0)}. For example, if 0 = {v/f(x), w/f(z)} and 02 = {x/c, w/d}, 

then 01 0 02 = {v/f(c), w/f(z),x/c}. 

Definition 3.5 A substitution 0 is said to be unifier of two terms s and t iff sO to. We say 
that s and t are unifiable when a unifier exists for them. A most general unifier of s and t, 

denoted Mgu(s, t), is a unifier 0 of S and t such that for each unifier o of s and t, there exists 

a 5 such that 0 o S = o. If 0 = Mgu(s,t), then the term sO is called the unificand of s and 

t and is denoted Mguterm(s, t). A matching unifier of s with t, written Match(s, t), is the 

most general unifier of Gnd(s) and t. In other words, Match(s, t) =Mgu(Gnd(s), t). We say 

s matches t when a matching unifier exists. 

For example, Mgu(f(x, b), f(a, y)) = {x/a, y/c} and Mguterm(f(x, b), f(a, y)) = f(a, b); 

Also, Match(f(z, b), f(x, y)) = {x/z, y/b} and Match(f(a, b), f(a, y)) = {y/b}, but f(z, b) 

and f(x, x) do not match. 

Unification is a central component of all first order theorem proving systems. Algorithms 

to compute most general unifiers are straightforward, and can be found in any book on basic 

logic in computer science (eg. Fitting, 1990; Genesereth and Nilsson, 1987) along with 

descriptions of many interesting properties of unification. 

3.2 Term Rewriting Systems 

The generation methods and semantics presented here are based on equational logic. Since 

term rewriting systems are very useful for proving theorems in this logic, they are prime 

candidates on which to build theorem generation methods. Huet and Oppen (1980) provide 

a good survey of term rewriting system theory and Avenhaus and Madlener (1990) have 

written an extensive introduction to the area. A brief introduction to relevant aspects of the 

subject is presented here. 
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First, recall that equations are pairs of terms, written as s = t. The equation t = $ 

is the same equation as s = t. Rewrite rules are oriented equations, that is, equations 

that have one term labelled as the left hand side and the other as the right hand side. For 

example, the equation .s = t can be oriented into the rewrite rule s - p t where s is the left 

hand side, Lhs(s - t) = .s, and t is the right hand side, Rhs(s - t) = t. Note that each 

(non-trivial, ie. s t) equation can be oriented in two ways: s = t can be oriented into 

both s t and t - s. Rewrite rules have the further restriction that s -+ t must satisfy 

Vars(t) Vars(s). So the equation g(x) = f(x, y) can only be oriented into the rewrite 

rule f(x,y) - g(x). 

A term rewriting system is a triple (F, V, R) where F is a set of functions, V a set of 

variables, and R a set of rewrite rules constructed from Terms(F, V). Afirst order typed term 

rewriting system is a quadruple (T, F, V, R) where T is a typing function over terms (see 

Section 1.4). All rules $ -+ tin a typed term rewriting system must satisfy Type(s) = Type(t). 

These are called "first order" term rewriting systems, since variables are not allowed in type 

specifications. They provide no extra power over untyped term rewriting systems since a 

derivation (see below) in a typed term rewriting system is equivalent to one without the 

types. However, they will be used in this study since they enhance representational clarity 

and theorem proving efficiency. 

Term rewriting systems are used to reduce terms to simpler forms. This is accomplished 

by a series of reduction steps using the reduction operator: 

Reduction 
t 

t[u i- R]O 
where u E Pos(t) and 

9 = Match(i/u,L2)) 

In this definition, some subterm of the term to be reduced is matched with the left hand 

side of some rule in the term rewriting system. Note that position u will never refer to a 

variable position unless L, is a variable (this is allowable-but rare in practice). The symbol 
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V={x,y} 

- (1) likes(x,supervisor(x)) —* true 
(2) supervisor(brent) - ian 
(3) supervisor(debbie) -+ brian 

R = (4) supervisor(brian) - god 

(5) likes(god, ian) - unknown 
(6) likes(brian, ian) -+ true 

- (7) likes(brent, supervisor(x)) - true - 

likes(brian, supervisor(brent)) --+* true 

since 

likes(brian, supervisor(brent)) - likes(brian, ian) -+ true 

Figure 3.2. Example of reduction. 

—+ denotes a single reduction step, and the symbol _.** denotes the transitive closure of all 

known reduction steps. s --+* t means that s reduces to t after some number of reductions, 

or t is derivedfrom s. A sequence of reduction steps s - + s, -  s... - t is a derivation. 

Consider the term rewriting system R in Figure 3.2. The only possible reduc-

tion of the term likes(supervisor(y),supervisor(brent)) is via rule (2) resulting in the 

term likes(supervisor(y),ian). Any other attempts at using a rule in R are mismatches. 

However, likes(debbie,supervisor(debbje)) reduces via rule (1) with 0 = {x/debbie} to 

true and via rule (3) to likes(debbie,brian). The figure notes that true is derived from 

likes(brian,supervisor(brent)) with a two step derivation likes(brian,supervisor(brent)) -4 

likes(brian,ian) -* true. 

A few more definitions end our introduction to term rewriting systems. A term t is 

in normal form (modulo R) if there is no rule in R that reduces t. A normal form of a 

term t modulo R is written Nf(t, R). R is confluent if s -v' t1 and s —+ t2 implies that 

t t1 -* t A t2 -v t. In other words, all terms must have a unique normal form modulo 

R. R is noetherian (or terminating) if Vsat t = Nf(s, R). For example, the rules g - p g 

and 1(x) - f(f(x)) would produce infinite sequences of rewritings on the terms g and 1(a) 

respectively, and their inclusion in R would prevent it from being noetherian. However, 



Chapter 3: Theorem Proving Techniques 49 

f(f(x)) -* 1(x) could be included. R is interreduced if V (s -+ t) E R, t = Nf(t, R) A s = 

Nf(s, R - Is - t}). In other words, all rules in R are composed of reduced terms. If R is 

confluent and noetherian, then it is convergent. If it is also interreduced, then it is complete.' 

Consider the rewrite system R in Figure 3.2. It is not confluent and thus not complete. 

The completion of R would include: 

likes(debbie, brian) -+ true 

likes(brent, ian) -* true 

likes(brian, god) -+ true 

likes(brent, brian) -+ true 

likes(brent, god) -+ true 

Methods called completion procedures have been developed that attempt to make term 

rewriting systems complete (Knuth & Bendix, 1970). In this thesis, the rewrite systems 

that are used and generated are assumed to be complete. All results will be given under this 

assumption. To ensure that a term rewriting system is noetherian, completion procedures 

check to see that each rule is reducing by referring to a reduction ordering, a partial ordering 

on terms (Dershowitz, 1982). 

Given a complete term rewriting system for S, theorems in DED(E) can be proven very 

simply. Using this method, s = t (where s and t have no existential variables) is a theorem 

when Nf(s, R) Nf(t, R). In other words, simply rewrite both sides of the equation to 

their normal forms, and if they are identical the equation is a theorem. 

Because a universal Turing Machine can be represented as a set of equations, term 

rewriting systems are Church-Turing equivalent. This implies that they are representation-

ally powerful but are sometimes undecidable. Fortunately, term rewriting systems that are 

confluent and noetherian are known to be decidable. 

Term rewriting systems also can be used to prove theorems in the first order predicate 

calculus with equality, not just in the restricted equational logic that is used here. To do this, 

general formulae in the first order predicate calculus are reduced to a set of equations using 

'Many authors use the term canonical to avoid overloading the word complete. 
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a deterministic procedure (Hsiang, 1986; Kapur & Narendran, 1985). This transformation 

suggests that equational logic is at least as powerful as the full first order predicate calculus 

with equality. Unfortunately, a drawback with this method is that the translation can be 

computationally intensive. 

3.3 Equational unification by narrowing 

Equational unification, or equation solving, is required for proving theorems in equational 

logic that involve existential variables. Given an equation s = t, equational unification 

finds a 0 such that sO = W. In other words, it is unification after background theory is 

used to rewrite terms. Narrowing is a method of equation solving that requires a complete 

rewrite system for the equational theory. Other methods of equation solving are presented 

by Dershowitz and Sivakumar (1988). The narrowing operator, the main component of the 

narrowing method, is just a slight mutilation of the reduction operator: 

Narrowing 
t: L, = Re 
L-4RER 

where u E Pos(t) and 
0 = Mgu(t/u, L) (ie. t/uO = L10) 
t/u is a variable. 

A narrowing derivation is a sequence of narrowing steps. Also, an equation is called a 

narrowing of another equation e with a set of rules R if it is produced by some narrowing 

derivation from e. We write the set of all narrowings of e with R as Narrow(e, R). 

The study of narrowing involves attempting to choose u intelligently. An overview of 

different narrowing strategies is given by Rety (1987). 

To find solutions to an equation Q1x1, ..., s = t where the Q2 are either 3 or V, 
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the universal variables are skolemized out (Lloyd, 1984).2 This involves replacing universal 

variables with new, unique functions called skolem functions. In particular, a universal 

variable xj is replaced with sk (v1, ..., 'Urn) where V1, ..., v.,, are existential variables from 

among x1, ..., x_1. Second, all quantifiers are dropped. Next, the resulting equation s' = t' 

is made into a term f(s', t') where f is a new function symbol. Then the narrowing operator 

is applied. If narrowing results in a term f(r, r) where r is any term, then the equation is 

proven, and the substitution required to obtain f(r, r) from f(s', t') is a solution. 

Consider the complete term rewriting system {f(x) - c,g(a,x) - x,g(b,x) —* c}. To 

prove the theorem Vyzf(y) = g(z, c), the narrowing procedure is applied to its skolemized 

form: f(sk) = g(z). It returns two solutions for z, namely z is a and z is b. This not only 

shows that the formula is a theorem but also computes possible values for the existential 

variables it contains. 

Lemma 3.1 (Hullot, 1980) Let S be an equational theory 5, R be a term rewriting system 

that is complete in 5, and s and t be two terms. The set of all solutions of a narrowing 

derivation of s = t is complete. 

This lemma asserts that if there is a 0 such that sO = tO via R, then 0 will be computed by 

using narrowing on s = t. It enables the proof of the following useful proposition: 

Proposition 3.1 Let S be an equational theory and R be a term rewriting system that is 

complete in S. Then narrowing on R is a complete procedure for proving theorems in 

DED(S). 

A corollary of this is: 

Proposition 3.2 Completion and narrowing together are complete for proving theorems in 

DED(S), for completable theories E. 

This is true since a completion procedure produces a complete term rewriting system for a 

completable theory. These propositions will be used later to show the power of the generation 

operators. 

21n proofs by refutation, existential variables are skolemized out. In proofs of equality, the universal 
variables are skolemized out. 
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3.4 Inductive Theorem Proving 

Inductive theorem proving is difficult. Inductive theorems were defined in Chapter 2 as 

statements whose instances are deductive theorems. Thus, proving an inductive theorem 

amounts to enumerating all its instances and testing each for a deductive proof (perhaps 

using narrowing and completion). The problem with this is that there is often an infinite 

number of instances to test for deductive proof. Also, even if the number of instances is 

finite, it is likely to be large in reasonable applications. 

Two approaches have been developed for this problem. Inductionless induction 

(Lankford, 1981) uses proof by consistency (Kapur- & Musser, 1987) rather than proof 

by contradiction. It is a complex topic, and will not be discussed in this thesis. The 

remainder of this chapter describes cover set induction, the other principal approach. 

One early method of making inductive theorem proving practical was to generate finite 

induction schemas made up of only a few premisses to be established. Mathematical induction 

is an example where induction schemas are used to prove theorems over infinite well-ordered 

domains. Its schemas are made up of base cases and generative cases. Burstall's structural 

induction method (Burstall, 1969) and the Boyer-Moore induction method (Boyer & Moore, 

1979) are the most famous of these methods. Zhang, Kapur and Krishnamoorthy (1988) 

have recently developed the cover set induction approach, a comprehensive and yet usable 

induction method. The following definition of cover sets is paraphrased from them: 

Definition 3.6 A cover set of a sort T is the domain of an onto mapping 'P from afinite set 

of terms of sort T to the power set of the ground constructor terms of sort T. 'P is defined 

such that 'F(s) = T iffVt E T 30 sO =,, t, 'I'(t) 54 0 and '-F(s) n 'F(t) o 0 iffs t. 

A cover set of positive integers, for example, is {O, s(x) j,  while one for lists is 

{nil, corts(x, y)}. Using cover sets simplifies the proof of inductive assertions. Instead 

of considering each instance of the assertion for a deductive proof, we need only consider 

each element of the cover set: 

Definition 3.7 Cover Set Induction Suppose that x is a (universal) variable of sort T in an 

inductive theorem I and M is a cover set of sort T. Then I E IND() iffor all m E M, 

there exists a subterm t of sort T in m such that I{t/x} ='- I{m/x} E DED(E). I{t/x} 
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S = {integer} 
V = {x} 

F = {neg/l, 0, s/i, p/l} 
F(integer) = {O,s,p} 

Q 

neg(0) = 0 
neg(p(x)) = s(neg(x)) 
neg(s(x)) = p(neg(x)) 
p(s(x)) = x 

S(P(X)) = x 

Inductive Theorem: Vx neg(neg(x)) = x 

Figure 3.3. Negation theory 

is called the inductive hypothesis. 

If statement I is a cover set induction of R, we write Csi(I, R) = T. Although this definition 

is sufficient for our purposes, it is incomplete since it- requires for soundness a more careful 

choice of the subterins of m (Zhang, 1988). Cover set induction is at least as powerful as 

Burstall's structural induction. Structural induction only uses a cover set developed from the 

constructors of a sort, whereas cover set induction can use any cover set. 

For an example of cover set induction in action, consider the theory in Figure 3.3. The 

inductive theorem Vx neg(neg(x)) = x can be proven using cover set induction. The cover 

set {0, s(x),p(x)} can be used. First neg(neg(0)) = 0 is shown to be a deductive theorem. 

neg(neg(0)) = neg(0) = Oby the first axiom. Next, the inductive hypothesis neg(neg(g)) = 

g is assumed (by adding it temporarily to the theory). Then neg(neg(p(g))) = p(g) is 

shown to be true. Using the axioms at each step, neg(neg(p(g))) = neg(s(neg(g))) = 

p(neg(neg(g))), and using the inductive hypothesis, p(neg(neg(g))) = p(g). A similar 

argument is used for the successor (s) case. Using this cover set method avoids the infi-

nite enumeration of {O,p(0), s(0),p(s(0)),p(p(0)), s(s(0)), ...} that would be needed if the 
definition of induction from Chapter 2 were used directly. 

It is sometimes tricky to choose cover sets that will work. Zhang (1988) shows that 

the definitions of function symbols in the conjecture can be used to generate cover sets 

automatically, under certain conditions. 



Chapter 4 

Theorem Generation Techniques 

Computers are useless. They can only give you answers. 

- Pablo Picasso 

This chapter argues that (despite Picasso) computers can generate questions. Theorems, 

the central entities of this study, are the "questions" of logical languages and their generation 

is the principal operation of many machine learning programs. This chapter details methods 

that can be used to generate theorems. In doing so, it will help to answer the second problem 

of this thesis, the problem of computational induction. Recall that Chapter 3 investigated 

unification, term rewriting, equational unification and cover set induction. These proof 

methods are reversed in the first four sections of this chapter in order to obtain generation 

methods. Methods that involve specialization are discussed in Section 4.5. Among other 

benefits, this clarifies the relationship between generalization and specialization. Figure 4.1 

summarizes most of the operators that are developed here. 

4.1 Reverse Unification 

Unification is an important operation in theorem proving due to its ability to detect com-

monalities between terms, and in a wider sense, between clauses and rules. The unificand of 

two terms is the most general description of what they have in common. Theorem provers 

use this commonality to choose appropriate rules and clauses to apply next in the chain of 

reasoning. 

For inductive theorem generation and machine learning in general, a system must 

detect and resolve differences between examples, rather than just finding commonalities. 

Examples that unify, and thus have common subcases, convey redundant and thus important 

information. Examples that do not unify suggest that the respects in which they differ may 

be unimportant. The antiunification of terms locates and resolves differences between them. 

54 
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t1 a 

Msa(s,t) 

Au(s,t) 

Rau(rl,r2) 

Irau(S,R) 

Exterms(t, R) 

Exrules(r,R) 

Wids(r, R) 

Eau(rl,r2,R) 

An(rl,r2, R) 

Can(rl,r2,H) 

Can '(rl,r2, R) 

Sp(t, V) 

Nspec(S,R) 

Spec(S, R) 

Antiapplication 

Antisubstitution a antiapplied to term t 

Antiunification 

Most specific antiunifier of terms s and t 

Antiunificand of terms s and t 

Antiunificand of rules rl and i2 

Inductive rule antiunifications of a set 
of rules with respect to theory R 

Expansion 

Set of expansions of a term t, or rule r, or its 
expansions, with rules in R. 

Set of widenings of rules rl and i2 with theory R 

Equational Antiunification 

Equational antiunification of rules rl and i2 
with theory R 

Antinarrowing of rules rl and i2 with theory R 

Complete antinarrowing of rules 
rl and i2 with theory R 

Inconsistent complete antinarrowing 
of rules rl and i2 with theory R 

Specialization 

Cover set specialization of a term t 
with respect to variables V 

Naive cover set specialization of set 
of rules S with respect to theory R 

Cover set specialization of set of 
rules S with respect to theory R 

Section 4.1.1 

Section 4.1.1 

Section 4.1.1 

Section 4.1.2 

Section 4.4.1 

Section 4.2.1 

Section 4.2.2 

Section 4.3.2 

Section 4.3.1 

Section 4.3.2 

Section 4.3.3 

Section 4.3.3 

Section 4.5.1 

Section 4.5.2 

Section 4.5.2 

Figure 4.1. Generation operators discussed in this chapter 
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Instead of focussing in on important information like unification does, antiunification filters 

out unimportant information. 

This section describes the operation of antiunification. First, term antiunification is 

described precisely and then it is adapted for use with rules and equations. 

4.1.1 Term antiunification 

The term is the basic logical entity of equational theories. To unify two terms A1 and A2, a 

more specific term B and a substitution or are found such that A1cr = A2cr = B. Similarly, 

to antiunify two terms B1 and B2, a more general term A and an antisubstitution a are found 

such that B1 I a = A = B2 I a. This subsection defines the unfamiliar terminology and 

symbols in this definition. 

Antibindings and antisubstitions are defined similarly to their inverses, namely bindings 

and substitutions (Definition 3.1). 

Definition 4.1 An antibinding is a pair written P/v where P is a set of positions and v is a 

variable. Two antibindings P1/vi and P2/v2 are disjoint if P1 fl P2 = 0. An antisubstitution 

is a set of disjoint antibindings. 

For example, {{ 1.1,2}/x,{1.2}/y} is an antisubstitution, while {{ l,2}/x,{2,3.l}/y} is 

not. The greek letters a and 9 are usually used for antisubstitutions. 

Definition 4.2 An antibinding {pi, . . ,p } /v is relevant to a term t if {pi,... , Pm } ç Pos(t) 
and iff, j t1pi = t/p. That is, each position mentioned in the binding refers to aposition in 
the term and all subterms of a term to which a relevant antibinding refers must be equivalent. 

An antisubstitution is relevant to a term t if all of its component bindings are relevant to t. 

For example, the antibinding 111.1,21/x,11.21/y} is relevant to f(g(a, a), a), but 

{ {1.3}/x} is not relevant, since it refers to a nonexistent position in the term, and 

{{1}/x, {2}/y} is not relevant since the term at position 1, g(a, a), is not the same as 

the term at position 2, a. 

Application of substitutions (Definition 3.2) is the fundamental operation in unification 
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theory; here it is antiapplication: 

Definition 4.3 An antisubstitution a = {Pi/vi, ..., P/v} can be antiapplied to a term .s 

producing a term s T a that has all positions of s in P1 replaced with v. If a is not relevant 

to s then s I a is undefined. Otherwise, s T a is defined recursively 

sla={ 
S ifa=Ø 

S1 4-V1J ... [7m 4-V1]1{P2/V2,...,Pn/Vn} ifa= {Pi/vi,...,Pn/vn} 
and Pi={pi,...,pm} 

For example, suppose a = {{ 1.1,2}/x, { l.2}/y} and s = f(g(a, h(b)), c). Then s la = 

f(g(a,h(b)),c)[1.1 +- x][2 - x] I {{ l.2}/y} = f(g(x,h(b)),c)[2 +— x] I {{ l.2}/y} 
f(g(x,h(b)),x) 1' {{ l.2}/y} = f(g(x,h(b)),x)[1.2 - y] = f(g(x,y),x). Also, h(b) I 

{{1.3}/x} is undefined. 

Recall from Definition 3.5 that a substitution 0 such that sO = tO is called a unifier of s 

and t. The definition of antiunifier is similar: 

Definition 4.4 Suppose s and t are terms. An antisubstitution a is called an antiunifier if 

s T a = t T a and a is relevant to a and t. The term s T a is the antiunificand of a and t 

with respect to a when a is an antiunifier of s andt. A non-variable antiunificand is called 

a proper antiunificand. 

For example, an antiunificand of f(g(a, h(b)), a) and f(g(b, b), h(b)) is f(x, y) using the 

antiunifier {{ 1}/x, {2}/y}; another is f(g(x, y), x) using 111. 1, 2}/x, { l.2}/y}. 

Unification theory speaks of most general unifiers that are produced by unification 

algorithms. A similar notion in antiunification theory is useful. 

Definition 4.5 Suppose a and ,6 are antiunifiers of the terms s and t. If there is a proper 9 

such that s T a = (s 10)0, then a is more specific than (or equally specific to) P. We write 
a≤8. 

For example, consider the antiunifiers /3 = {{ 1}/x, {}/y} and a = {{ 1.1,2}/z, { 1.2}/w} 

of the terms f(g(a, h(b)), a), call it a, and f(g(b, b), h(b)). Then s 10 = f(x, y) and 

s T a = f(g(z,w),z). Since s T a = f(x,y){x/g(z,w),y/z} = (s I /3){x/g(z,w),y/z}, 

then a<8. 
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Definition 4.6 If s and t are terms, then an antiunifier a of s and t such that for each 

antiunifier /3 of s and t, a < /3, is called a most specific antiunifier of s and t and is denoted 

Msa(s,t). 

In general, a given pair of terms might have several most specific antiunifiers. However, 

they only differ by the names of the variables used. Figure 4.2(i) and (ii) give two simple 

cases of most specific antiunifiers. In Figure 4.2(iii) the antiunificand is f(x, x), not the 

more general f(x, y). 

The antiunification operator is central to this thesis and is used to compute the antiu-

nificands of most specific antiunifiers: 

Antiunification 
S 

t 

s TMsa(s,t) 
where s,t are terms. 

The term s T Msa(s, t) in this definition is called the antiunificand of s and t. The imple-

mentation of this operator requires the computation of the most specific antiunifier of s and 

t. The following is a declarative presentation of the straightforward algorithm to do this: 

f(b,x) 

/\ 
f(a,y(x)) 

/\ 
f(x,x) 

f(b,b) f(b,c) f(a,g(b)) f(a,g(c)) f(y(a),.g(a)) f(b,b) 

a={{2}/x} a={{2.l}/x} a={{l,2}/x} 

Figure 4.2. Most specific antiunifiers. 
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Antiunification Algorithm 

S if S  
- f(Au(si,ti),Au(s2,t2) ... Au(s,t)) if sf(s1,s2 ... s) and { Au(s, t) 
- 

V8,t (a variable) otherwise 

This algorithm produces the antiunificand Au(s, t) = s I Msa(s, t), and its correctness 

is proven by Lassez, Maher and Marriott (1987). In the last line, Au(s, t) always gen-

erates a unique but particular variable for each pair of terms, not a unique variable for 

each invocation of the Au function. For example,. consider the terms in Figure 4.2 (iii). 

Au(f(g(a), g(a)), f(b, b)) = f (Au(g(a), b) ,Au(g(a), b)) = f(x, x) where Vg(a),b = X. 

The following proposition shows that Msa(s, t) can be computed easily using an algo-

rithm to compute most general unifiers (Mgu). 

Proposition 4.1 Suppose s and t are terms and a is the antiun/ication of s and t, that is, a = 

Au(s, t). IfMgu(a,$) = {vi/si,v2/s2, ..., Vm/Sm} then 8 = Msa(s, t) = { Pos(v1,a)/vj, 
... ,Pos(vm ,a)/vm ,} 

For example, suppose that the antiunification algorithm produces the term a 

f(g(x), h(y, x)) from the terms s = f(g(c), h(c, c)) and t = f(g(b), h(d, b)). Then 

Mgu(a, s) = {x/c, y/c} and Mgu(a, t) = ix/b, y/d}. By Proposition 4.1, Msa(s, t) = 

{{1.1,2.2}/x, {2.l}/y}. 

Both Msa and Au have been defined on pairs of terms. It is also useful to define them 

on sets of terms: 

Proposition 4.2 Define Au(S) to be the antiunificand of a set of terms S computed by 

Au(S) =Au(si,Au(s2,...,Au(s_1,$)))for si 0 s, 1 ≤ i,j ≤ n where ISI n. Au(S) 

is independent of the order of appliOation of the pairwise Au function. Similarly, define 

Msa(S) to be the most specific antiunifier of a set of terms S computed by Msa(S) = 

Msa(si,Msa(s2,. . .,Msa(s,, sn))). Msa(S) is also independent of the order of application 

of the pairwise Msa function. 
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The antiunification algorithm and most specific antiunifiers play a central role in the 

study of induction and ampliation, much like the role that unification and most general 

unifiers play in theorem proving. Although by themselves rather uninteresting, they are basic 

building blocks for more complicated operators. The remainder of this chapter details how 

term antiunification can be put to use. 

4.1.2 Rule and equation antiunification 

The next larger entity in equational logic is the equation or rule. Consider the rules 

{dog(barney) -* true, dog(rolj) -* true}. Their natural common generalization is that all 

objects in this domain are dogs, or Vx dog(x) - true. This more general rule can be produced 

by antiunifying the left hand sides, and leaving the right hand side unchanged. However, this 

does not work in general. Consider the rules { dog(barney) —ilzappy(barney), dog(rolf) -+ 
.happy(rolf)}. The natural generalization is that all dogs are happy, orVx dog(x) —*happy(x). 

This is not simply the antiunification of the left hand sides and right hand sides separately. 

The left hand sides and right hand sides must be antiunified simultaneously and so each rule 

is treated as a term and both terms are antiunified. 

Rule Antiunification 
Ll—Rl 
L2 R2 

All -+ A/2 
where A = Au(f (Li, Ri), f(L2, R2)) 

and f is a new function symbol 
and Vars(A/2) CVars(A/l) 

Rule antiunification is denoted by Rau(rl, r2). The final condition prevents us from 

creating a rule that is not variable reducing (in which case, it would not be a rule 

in a term rewriting system). We sometimes write Termfy(r) as a shorthand for con-

verting a rule into a term and Makerule(t) for converting it back to a rule. Then 

Rau(rl, cr2) =Makerule(Au(Termjfy(rl),Termzfy(r2))). 
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Equation antiunification is barely more difficult. Since equations are unoriented, two 

rules for each equation need to be antiunified with each of the two from the other equa-

tion. Orienting e1 and e2 obtains (at most) the rules e11, e12, e21, e22. Next we compute 

{ Rau(eji, e21 ), Rau (e11, e22 ), Rau (e12, e21 ), Rau(e 12, e22)} and convert the resulting rules 
back into equations. 

4,2 Reverse Term Rewriting 

The use of unrestricted rules with rule antiunification is not powerful enough for many 

applications. Many machine learning algorithms use background theories to assist their 

inductions. Often, problems are specified by defining not only rules, but also a background 

theory. This section shows how a theory can be used to generate deductive theorems. In 

Section 4.3, these operators will be used as components of more complex operators that 

enable induction of various types. 

4.2.1 Term expansion 

Consider the background theory dad(barney) - harry. A good generalization of dog(harry) 

and dog(dad(rolf)) with respect to this rule would be dog(dad(x)) rather than dog(x). This 

is because fatherhood might have some bearing upon what makes the two dogs similar. 

To obtain dog(dad(x)), dog(harry) needs to be expanded to dog(dad(barney)) using the 

background theory before it is antiunified with dog(dad(rolj)). 

Expansion is the dual of rewriting - instead of rewriting over a set of rules R, rewriting 

is done over R with its rules reversed. This is another instance where a proof technique is 

used in reverse for generation purposes. The expansion operator is defined as: 
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Expansion 
t 
L1 - R1 

(a term) 

t[u +- Li]O 
where u E Pos(t) and 

0 = Match(t/u,RI) 

The function Exterms(t, R) denotes the set of all expansions (and expansions of ex-

pansions, and so on) of a term t with respect to a term rewriting system R. Each member 

of this set is called an extern. Figure 4.3 demonstrates the application of the expansion 

operator. Each arrow in the middle of the figure indicates an expansion step. For example, 

expansion of the term f(c, x) with respect to the rule set R yields the exterm f(g(a), x) using 

the third rule in R, g(a) -+ c. The figure is not a generalization lattice since, for example, 

f(g(a),p(p(x))) is less general than f(g(a), x) even though it is higher up in the expansion 

graph. 

When the right hand side of a rule is a variable it can be used to expand any subterm of 

a term. Also, ifs - p t and Vars(t) CVars(s) (proper containment), expansion will introduce 

new variables. This gives a new way in which variables can be introduced into learning 

systems other than by the standard method of replacing constants with variables. 

4.2.2 Rule expansion 

Rules, not terms, are the objects of this study. The rule expansion operator is simply 

expansion done on rules instead of terms: 
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h( y) g(y) 

2 p(y) -. y 

3 g(a) -- c 

The Rule Base R 

Exterms(t,R) = 
{ f(c,x) 
f(p'(c),pJ(x)) 

f(pi(g(pk(a))),p.J(x)) 

f(p'(h(pt1(a))),pi(x)) } 

for O≤i,j,k 
and 1≤n 

Set of Expansions of 

a Term t with R 

63 

f(p(g(a)),p(x)) f(g(a),p(p(x)) 

f(h(a),x) f(g(a),p(x)) 

0= { y/a } 

f(p(c),x) f(g(a),x) 

N2 f 
0= { iN-J e= { I 

The Term being expanded t = f(c,x) 

Some Expansions of a Term with R 

Figure 4.3. Expansion is rewriting with rules reversed. 
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(1) app(a.nil,nil) — a.nil (RW) app(a.nil,nil) --+ a.app(nil,nil) 
(2) app (nil,x)-3x (W) app(a.app(nil, nil), nil) — a.nil 

Figure 4.4. Rule expansion example. 

Rule Expansion 
L1 —* R1 
£2 —4 R2 

r/l —+ r/2 

where t=f(L1,R1) 
r = t[u — £210 
u E Pos(t) 
0 = Match(t/u, R2) 
Vars(r/2) C Vars(r/l) 

The set of all rule expansions of a rule is called its set of exrules and is denoted Exrules(r, R). 

A single expansion step is denoted Ex(ri, r2). A right expansion is an operator that expands 

only the right hand side of a rule and is defined by replacing u E Pos(t) with u E Pos(Ri) in 

the above definition. Figure 4.4 shows a rule ( 1) that can be right-expanded by (2) to obtain 

(RW). Regular expansion would also produce (W) by expanding the leftmost nil in ( 1) with 

rule (2). Note that the final condition in the definition of rule expansion is required because 

of the possible introduction of variables by expansion' 

Expansion can be used to generate deductive theorems. Everything created by expansion 

is a deductive theorem of the rule expanded, if the rule used to expand is a deductive theorem. 

In other words, it is sound. Also, all universal2 negationless conjunctive deductive theorems 

of a theory can be generated with the expansion operator applied to all tautologies (rules of 

the form t —* t) using the axioms of the theory. In other words, it is a complete operator. We 

end this section by presenting these results. 

I When reduction orderings are used for completion procedures (Section 3.2), this condition can be strength-
ened to r/2 < rpos r/1 or r/2 < kbo ni (etc.) to ensure that the rule is still reducing. 

2An existential introduction operator can be used to generate existentially-quantified rules. It amounts to 
replacing subterms with existential variables. 
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Proposition 4.3 Expansion Soundness Suppose that R is a complete term rewriting system 

for the equational theory E. If e E DED(S) and r E R, then Ex(e, r) E DED(S). 

This theorem states that rule expansions always produce rules whose corresponding equations 

are logical consequences of R and r. We can rest assured that using this operator will not 

introduce errors. 

Proposition 4.4 Expansion Completeness Suppose that R is a complete term rewriting 

system for the equational theory e. Then (a = b) E DED(S) implies that 3t (a = b) E 

Exrules(t -+ t, R). 

This theorem implies that all logical consequences of a theory can be generated by enumer-

ating all the terms in Terms(S). Fortunately, all we wish to do is to generate theorems given 

particular terms as starting points. If we choose a t that would be used in a proof for a = b, 

this theorem shows us that we can be sure that a b will be generated. 

4.3 Reverse Equational Unification 

In Section 3.3, we discussed how terms can be unified with respected to a background theory. 

The use of background theory is also useful for theorem generation. In this section, we 

will develop the E-antiunification operator, the antinarrowing operator, and the complete 

antinarrowing operator, which generate rules through a combination of antiunification and 

the application of background theory. 

First, we distinguish between two types of background theory, called explicit and 

implicit background theory. 

Definition 4.7 An explicit background theory is a set of rules specified at the outset of a 

generation problem. An implicit background theory is a set of rules derived from a set of 

examples using antiunification-based generation operators (not expansion). 

The explicit background theory might be the examples themselves or additionally include 

rules that are not to be generalized. The distinction between explicit background theory 

and examples is only an efficiency issue, not a logical one, and is irrelevant here. What 

is important is that generation operators that solely use the explicit background theory are 



Chapter 4: Theorem Generation Techniques 66 

• not as powerful as those that additionally use implicit background theory. Using the logical 

framework of Chapter 2, both the implicit and explicit background theory comprise the union 

of all extensions of the original theory, while the explicit background theory is exactly the 

original theory. 

Section 4.1 discussed the rule antiunification operator as a method of generalizing rules. 

Section 4.2 discussed the expansion operator that enables the use of a background theory. 

In Section 4.3.1, these operators are first combined to obtain a method of generalization 

using background theories called "E-antiunification" that is sufficient for use with an explicit 

background theory. A more general operator called antinarrowing is developed in Section 

4.3.2 that also allows the use of implicit background theory. Section 4.3.3 develops the 

complete antinarrowing operator to extend the theoretical power of the regular antinarrowing 

operator. 

4.3.1 Antiunification with explicit background theory 

The E-antiunification operato?3 is an operator that combines expansion and antiunification. 

In doing so, it allows us to use an explicit background theory, R, to generate an equivalence 

between two rules r1 and r2: 

E-Antiunification 
R 
ri 

(a rewrite system) 
(a rule) 
(a rule) 

Rau (p, q) 
where p E Exrules(ri, R), q e Exrules(r2, R) 

and Valid(a, R) 

3The name E-antiunification is a modification of the term E-unification that is used for a unification operator 
used by some in the theorem proving community (Lassez, Maher & Marriott, 1987). The "E" signifies 
(anti)unification with respect to an equational theory. 
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The set of all rules that the E-antiunification operator generates is denoted Eau(ri, r2, R). 

Notice the use of Valid in the definition. It is defined as 

Valid(r, R) = Goodrule(r, R) A Consistent(r, R) 

Goodrule is a boolean test to see if a rule is variable-reducing: 

Goodrule(r, R) = Vars(r/2) 9 Vars(r/1) 

Goodrule might be augmented with other restrictions on the type of rules that one might wish 

to allow, such as the use of reduction orderings (Dershowitz, 1982). The Consistent test 

checks to see that the rule is consistent with the given set of rules. When Valid is replaced with 

Goodrule in the definition of E-antiunification, the inconsistent E-antiunfication operator is 

derived and is denoted Eau(ri, r2, R). 

To illustrate the E-antiunification operator, let r1 be g(c) - 1(c) and let r2 be g(a) - p b. 

Then Rau(ri, r2) is undefined since their antiunification g(x) -+ y is not a rewrite rule (it has 

a variable in the right hand side that is not in the left). Now suppose we allow the use of the 

single-rule background theory R = If (a) - b}. Then an exrule of r2, namely g(a) - 1(a), 

is made possible by expanding the b in r2 with the rule in R. This exrule, when antiunified 

with r1 (a trivial exrule of itself), produces g(x) - f().'Since there are no other expansions 

or antiunifications possible, Eau(ri, r2, R) is {g(x) -+ f(x)}. 

Note that if Exterms(t, R) and Exterms(s, R) are finite, then Eau(s, t, R) is finite, as 

in the example just given. When Exterms(t, R) is infinite, Eau(s, t, R) is often infinite. 

However, it might be finite like in the single rule theory {f(s(s(x))) - 'f(s(x))}. Here 

Eau(f(b), f(s(0)), R) is simply {f(x)}. 

The E-antinanowing operator does not work for some problems. Consider trying to 

generate the ampliative theorem T list(cons(x, y)) -* list(y) from this theory: 

R: 

list(nil) -+ true 

list(cons(a, nil)) - true 

list(cons(b, nil)) -+ true 

list(cons(c, cons(d, nil))) -* true 
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The theorem is the antiunification of r1 list(cons(a, nil)) - list(nil) and r2 

list(cons(c, cons(d, nil))) -* list(cons(d, nil)). In order for the E-antiunification opera-

tor to generate T, both of these would have to be exrules of some pair of rules in R. The 

former, r1, is an exrule since it is the second rule in R expanded with the first rule in R. 

However, r2 is not an exrule, though it could have been an expansion of the fourth rule in R, 

if only the rule B list(cons(x, nil)) -+ true was part of the explicit background theory. 

However, B is part of the implicit background theory, since it is the antiunification of the 

second and third rules of R. But the E-antiunification operator only has the ability to use 

explicit background theory. 

4.3.2 Antinarrowing 

Another operator can be defined that takes into account both explicit and implicit background 

theory. In Section 3.3, 'narrowing was defined as a method of proving an equality by using a 

combination of unification and of rewriting. By using a combination of rule antiunification 

and a type of rule expansion called widening, we define the antinarrowing operator: 

Antinarrowing 
R (a rewrite system) 
r1: Ll RI 

r2: L2 R2 

{ala =Rau(p,q) 
where  E Wids(ri,R),q E Wids(r2, R), Valid(a, R) } 

This definition of the antinarrowing operator is similar to that of E-antiunification except that 

Exrules is replaced with Wids, described below. Each rule produced with the antinarrowing 

operator is called an antinarrowing. The set of all antinarrowings of two rules r1 and r2 is 

denoted An(r 1, r2, R) and the set of all antinarrowings of all pairs of rules in a rewrite system 

is denoted An(R). Like E-antiunification, antinarrowing generates rules that comprise the 

implicit background theory. 
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To understand the antinarrowing operator, we first need to understand widening, and in 

particular, the function Wid. The expansion operator from Section 4.2.2 chooses a rule from 

an explicit background theory R and applies it in reverse to a given rule r. The widening 

operator is an expansion operator that may apply rules from, both of the explicit and implicit 

background theories to obtain a new rule. In other words, it can expand a rule r with the 

E-antiunifications, or more generally, the antinarrowings of R. We denote the application of 

the widening operator as Wid(w, a) where w is any rule (usually one produced by previous 

widenings), and a is any antinarrowing. Any rule that is produced with a series of applications 

(possibly zero) of the widening operator on a rule r is called a widening of the rule r. We 

denote the set of all widenings of a rule r with respect to a set of rules R as Wids(r, R) and 

the set of all widenings of R as Wids(R). 

Consider the list example of the previous section. The rule B list(cons(x, nil)) -+ 

true is an antinarrowing of the second and third rules. Then, a widening of the fourth 

rule using B is list(cons(c, cons(d, nil))) -* list(cons(d, nil)). Another widening, 

list( cons(a, nil)) -+ list( nil) is the expansion of the first rule with the second rule. (Note 

that this widening is an exrule, unlike the first widening). When both of these widenings are 

antiunified, the antinarrowing list(cons(x, y)) -* list(y) is produced. 

Computing Wids(r, R) is not straightforward, since it is defined in terms of antinarrow-

ings, which are in turn defined by widenings that might be in Wids(r, R). In other words, 

the definitions of the set of all widenings and the set of all antinarrowings are mutually 

dependent. Nevertheless, we can compute the set of all widenings as follows: 

Wids(r, R) = {xlx = r V x = Wid(w,a), 
where  E An(R),w E Wids(r,R),I Wid(w,a)l > jwj } 

The I  I symbol here denotes the widening size, or the number of applications of the widening 

operator required to make w from the given set of rules, R. The mutually dependent 

definitions of widening size and antinarrowing size follow: 

Definition 4.8 Given a rule set R, the widening size of Wid(w, a) is n, denoted 

IWid(w, a)J = n, ifflwl ≤ n—i anda is ofantinarrowing size n—i andn = max(IwI, IaI)+1. 
A widening r is of size 0 iffr E R. 
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Definition 4.9 Given a rule set R, the antinarrowing size of a = Rau(wi, w2) is n, denoted 

IaI = n, zffn = max(Jwi I, Jw2 ). An antinarrowing r is of size 0 iffr E Rau(R). 

Given these definitions, the generation of widenings and antinarrowings can be done in 

an orderly fashion starting from size 0 rules. For instance, in the list example the rules in R 

are widenings of size 0 and antinarrowings of size 0. The other antinarrowings of size 0 are 

the antiunifications of the rules in R: 

list(x) -+ true 

list(cons(x, nil)) -* true 

list(cons(x, y)) - true 

Size 1 widenings can be produced from the four size 0 widenings and the seven size 0 

antinarrowings. There are 20 of these. All 20 of these size 1 widenings can then be 

antiunified to obtain the size 1 antinarrowings. The size 1 antinarrowings can be used 

on the size 1 widenings to obtain size 2 widenings and then size 2 antinarrowings and so 

on. The ampliative theorem we intended to produce, list(cons(x, y)) -+ list(y), is a size 1 

antinarrowing of the examples. 

Another operator similar to antinarrowing is called inconsistent antinarrowing and is 

defined by replacing Valid with Goodrule in the definition of antinarrowing. This allows the 

inconsistent antinarrowing operator to produce rules that may conflict with noise or rules 

that are exceptions to the general theory behind them. Some uses of this operator, denoted 

An1(R), are shown in Chapter 5. 

Finally, it. is useful to define naive versions of the antinarrowing operator and the 

inconsistent antinarrowing operator that differ from the regular ones in that they are restricted 

to expansion (widening) on the right hand side of a rule, or what we called right expansion. 

We call these naive antinarrowing operators because only a subset of antinarrowings will 

be produced if this policy is implemented. Since the programs that are developed in Chapter 

5 use these naive operators only for efficiency reasons, we will only explicitly state the 

assumption, without defending it in this thesis: 
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Assumption. Left Expansive Maximality The only useful antinarrowings are those pro-

duced without expansion (widening) on the left hand sides of rules. 

4.3.3 Complete antinarrowing 

Antinarrowing computes rules that are strict biexemplar justified ampliative theorems, that 

is theorems that are only justified by exactly two instances. In other words, theorems that are 

justified by three or more instances are not generated by the antinarrowing operator defined in 

the last section. This is the result of defining antinarrowing to use the pairwise Rau operator 

instead of the set Rau operator. 

To compute all biexemplar justified theorems, the complete antinarrowing operator 

antiunifies sets of (complete) antinarrowings instead of just pairs: 

Complete Antinarrowing 
R (a rewrite system) 
S (a set of rules) 

{ata E S V  = Rau(S') 
where S' C Cwid(S, R), Valid(a) } 

The set of all complete antinarrowings of a set is denoted Can(S, R) and Can(R) = 

Can(R, R). Also, the inconsistent complete widening operator, denoted, Can2(R), is formed 

by replacing Valid with Goodrule in the definition. 

The complete widening operator (Cwid) is simply widening defined in terms of com-

plete antinarrowing instead of regular antinarrowing: 

Cwid(r,R) ={xlx=rvx= Wid(w,a), 

where a E Can(R), w E Cwid(r, R), I Wid(w, a)I > IwI} 

Also, Cwid(S, R), the form found in the definition of complete antinarrowing, is defined to 

be the set of all complete widenings of a set of rules S with respect to a rewrite system R. 
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Computing Can(S, R) requires set antiunifying all subsets of complete widenings, and 

can therefore be a very slow process. It turns out that we have the alternative of using 

the regular antinarrowing and widening operators and pairwise antiunification to compute 

Can(S, R) and pairs of widenings of differing widening size need not be antiunified as a 

result of the following proposition: 

Conjecture 4.1 Complete antinarrowings can be computed with binary rule antiunfication 

instead of general set unification, and widening and antinarrowing operators instead of 

complete widening and complete antinarrowing respectively. More precisely, 

Can(R, S) = {al a E S V a =Rau(S'), where S' C_Cwid(S, R)} 

= {ala E S V a =Rau(p, q), where {p, q} C Wid(S, R),p 54 q, II = Iql 
or  E Wid(S,R),q EAn(S,R)} 

The consequence of this is that only pairs of widenings of the same size and widenings 

with previously computed antinarrowings need to be antiunified for implementing complete 

antinarrowings. 

4.3.4 Example of Antinarrowing 

The "append" function is a theorem that can be generated through complete antinarrowing. 

We use the dot notation syntax for lists of objects. The constant nil signifies an empty list, 

and head.tail signifies a list made up of a head object and a list tail. For-example, a.b.nil 

denotes the list made of the objects a and b. The tail of this list is b.nil. The rules that 

comprise the append function are: 

(1) app(nil,x) -> x 
(2) app(x.y,z) -> x.app(y,z) 

Figure 4.5 illustrates how complete antinarrowing produces the above two rules from the 

following examples: 
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(1) app(nil,a.nil) -> a.nil 
(2) app(nil,nil) -> nil 

(3) app(b.nil,nil) -> b.nil 
(4) app(c.nil,d.nil) -> c.d.nil 
(5) app(e.f.nil,g.nil) -> e.f.g.nil 

The two rules of append are generated in box A and box G of the figure. Recall that complete 

antinarrowings are antiunifications of (possibly more than two) widenings. Box A' is the 

antiunification of two trivial widenings, namely examples ( 1) and (2), and so is produced 

by complete antinarrowing. Box G is the antiunification of the three widenings produced in 

boxes C, D, and F. Box B shows the intermediate pairwiseantiunification of widenings C 

and D which is then antiunified in box G with the third widening from box F. (Recall that 

Proposition 4.2 shows that to antiunify a set of terms, pairwise antiunification can be used.) 

Box C shows the expansion (a widening with a rule from the original examples) of example 

(3) with example (2). Box D shows the widening of example (4) with the antinarrowing 

produced in box A. Finally, box B shows the antiunification, or trivial antinarrowing, of 

examples (3) and (4) that is used in box F to expand rule (5). Note that regular antinarrowing 

would only produce the antinarrowing in box E, while complete antinarrowing produces the 

antinarrowing in box G. 

4.4 Reverse Cover Set Induction 

Recall that cover set induction is a method of proving inductive theorems. Since inductive 

theorems are specific types of ampliative theorems and antinarrowing is used for ampliation, 

a restriction of antinarrowing will allow the generation of inductive theorems. In this section, 

inductive antiunification is first developed and then extended to inductive antinarrowing. 

4.4.1 Inductive antiunification 

Inductive antiunification is a special case of antiunification. It allows the generation of a 

new variable x if and only if it is fully justified by the facts. We define this method in terms 

of cover sets. For example, the set of terms {f(s(0)), f(0), f(s(s(y)))} can be inductively 

antiunified to the single term 1(x) since {O, s(0), s(s(y))} forms a cover set of the num type. 
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Antiunifications 

(1) app(nil,a.nil) --> a.nhl 
(2) app(nil,nil) --> nil 

app(nit,x) --> x 

(3) app(b.nil,nil) --> b.nil 
(4) app(c.nild.niI) --> c.d.nil 

app(x.nil,z) --> x.z 

Expansions (Widenings) 

I 
(3) app(b.nil,nil) --> b.nil 
(2) app(nil,nil) --> nil 

C app(b.nil,nil) --> b.app(nil,nil) 

Antiunification 

Widening 

Antinarrowing: 

(4)  app(c.nil,d.nil) --> c.d.nil 
app(nil,x) --> x 

D app(c.nil,d.nil) --> c.app(nil,d.nil) 

app(b.nil,nil) --> b.app(nil,nil) 
app(c.nil,d.nil) --> c.app(nil,d.nil) 

E app(x.nil,z) --> x.app(nil,z) 

I 
(5) app(e.f.nil,g.nil) --> e.f.g.nil 

app(x.nil,z) --> x.z 

app(e.f.nil,g.nil) --> e.app(f.nil,g.ni 

I 
app(e.f.nil,g.nil) --> e.app(f.nil,g.nil) 
app(x.nil,z) --> x.app(nil,z) 

G app(x.y,z) --> x.app(y,z) 

Figure 4.5. Example of complete antinarrowing 
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However, {f(s(0)), f(0)} will not be inductively antiunified to 1(x) since {O, s(0)} does not 

form a cover set for num. The operator is precisely defined on rules (not terms) as follows: 

Inductive Antiunification 
S (a set of rules) 

Rau(S) 

if Msa(S) {Pi/vj,... , P0/v} and 
for each i, 1 ≤ j < n, pi is some position in P, 
{Sj/pi I sj E S} forms a cover set of Type (vi) 

The inductive antiunification of the set of rules S is denoted Irau(S). 

4.4.2 Inductive antinarrowing 

To use background theory, another operator must be defined. We saw in Section 4.3 that 

applying an antiunification operator to exterms of the examples was not sufficient. Instead, 

the more comprehensive antinarrowing operator was developed to allow implicit background 

theory to be used in expansion. Here we develop a specific antinarrowing operator called 

inductive antinarrowing. 

Like antinarrowing and complete antinarrowing, the definition of inductive antinarrow-

ing is mutually dependant on the definition of inductive widening. Inductive widening is 

simply widening defined in terms of inductive antinarrowing instead of regular antinarrowing: 

Iwid(r,R) = {xl x = r V x = Wid(w,a), 

where a E Ian(R), w E Iwid(r, R), I Wid(w, a)I > IwI} 

In other words, inductive widening is a type of rule expansion that also allows inductive 

antinarrowings of the given rules to be used to expand a rule. With this definition, inductive 

antinarrowing is defined as follows: 
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Inductive Antinarrowing 
S (a set of rules) 
R (a rewrite system) 

{ala E RVa=Irau(pi,...,p) 
where pi E Jwid(r, R) and Valid(a, R) } 

The set of all inductive antinarrowings is denoted Ian(S, R) and when S = R we write 

Ian(R). Notice that it is different from regular antinarrowing in that its need for a set of 

rules as input. If pairs of rules were input, as in regular antinarrowing, the only inductions 

possible would be inductions involving two-element cover sets. 

The inductive antinarrowing operator can be used for advantage in machine learning. 

If there are inductive theorems that can be generated by a machine learner, it should generate 

them instead of non-inductive ampliative theorems since they are totally justified rather than 

just biexemplaiy justified. 

4.5 Specialization 

So far this chapter has only dealt with generalization operators. In some learning situations, 

generalizations, or rules or terms that cover positive examples, are checked for consistency 

against negative examples to determine if they are valid. Instead of being used simply for 

consistency checking of generalizations, negative examples can be used directly to produce 

valid generalizations that exclude them. Specialization refers to this use of negative examples. 

This process requires an already-generated hypothesis and a set of examples that need to be 

excluded from the hypothesis. Note that the examples that are to be excluded also could have 

underdetermined or overdetermined truth values, rather than only false truth values, as with 

negative examples. In other words, specialization is a method of reducing underdeterminacy 

and overdeterminacy (inconsistency) from a hypothesis. 

Many popular machine learning algorithms can be viewed as specialization algorithms. 

A logic program generation technique, MIS (Shapiro, 1983) uses specialization to modify 
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incorrectly learned programs. Also, explanation-based learning methods (Mitchell, Keller & 

Kedar-Cabelli, 1986; Krawchuk & Witten, 1989), select specializations of concepts that cover 

a given example and that satisfy other criteria such as efficiency or simplicity. Classification 

systems also use specialization as their only method of generating their search spaces. We 

will study the particular specialization styles of ID3 (Quinlan, 1986), PRISM (Cendrowska, 

1987) and Induct (Gaines, 1991) in detail in Chapter 6. To understand these algorithms more 

fully, specialization and its relationship with generalization will be explained here. 

4.5.1 Term specialization 

Definition 4.10 A specialization of a term g is a set (or disjunction) of instances of 

g, {g0, 902, ..., 90n} = S. {0, 02, ..., O, } is called a specializer. S is a complete special-
ization of g if all proper instances of g are instances of some member of S. S is a minimal 

complete specialization of g iffor all other complete specializations S0, I S ≤ IS0 . S is a 
most general specialization of g if there is no other specialization S' of g such that all terms 

in S are instances of some member of 5,. 

For example, suppose that Type(x) = Type(y) = num. Then the set of all most general 

specializations of f(x,v) is {{f(O,y),f(s(z),y)},{f(x,O),f(x,s(z))}}. Both of these 

are minimal complete specializations since any other complete specializations contain more 

terms. An example of a specialization that is not complete is If (0, y), f(s(0), y)}. One that is 

complete but not most general nor minimally complete is {f(x, 0), f(x, s(s(z))), f(x, s(0))}. 

More often specialization is done with respect to a set of negative examples. Suppose g 

is a term, Xis a set of terms, and S = {g0,02, ..., go" } is a specialization of g. If  C 5, 

then S - X is the specialization of a term g with respect to X. For example, the most general 

specialization of f(x,y) with respect to {f(w,s(z))} is {f(x,0)}. 

This definition is inadequate since it does not suggest any method of computing special-

izations. Doing so would require a search through all specializers of the general term: clearly 

an inefficient process. Recall that in Chapter 3 a similar difficulty was found in determining 

the inductive-theoremhood of a formula. There the solution was to use cover sets to reduce 

the search space. Here we use cover sets to directly produce a specialization: 
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Naive Cover Set Specialization 
g (a term) 
X E Vars(g) 

{gGj,..., go. } 
where Oi = {x/c} and 

{cj,...,c} is a cover set of Type(x) 

The set of all naive cover set specializations of g with a particular variable x is denoted 

Nsp(g, x) and the set of all naive cover set specializations of g ranging over all of the variables 

in g is denoted Nsp(g). It can be shown that when no two variables are of the same type 

in a term g, all of the naive cover set specializations of g are maximally general complete 

specializations of g. 

We call this operator "naive" since it does not always produce all of the possible complete 

most general specializations. Consider the type A with the cover set { a, b} and variables x 

and y of type A. The naive cover set specializations of the term f(x, y) are If (a, y), f(b, y)} 

and {f(x,a),f(x,b)}. But the set {f(x,x),f(a,b),f(b,a)} is a (complete) most general 

specialization of f(x, y) that is ignored by this method. Notice that in this example variable 

y is renamed to another variable (x) in the term being specialized. Generalizing this idea a 

little, the naive method can be amended to allow these other most general specializations: 

Cover Set Specialization 
9 (a term) 
X E Vars(g) 

Nsp(g,x)UK 
where K = f go 10 = {x/y} for some y E Vars(g) 

such that x 54 y and Type(x) = Type(y)} 

The set of cover set specializations is written Sp(g) and the cover set specializations of g with 

respect to a particular variable x is denoted Sp(g, x). Note that naive cover set specializations 

and the cover set specializations are differentiated because some machine learning algorithms 
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opt for the naive method of specialization. Chapter 6 discusses this further. Some interesting 

facts result from this definition: 

Proposition 4.5 

1. IfS=Sp(g) and ISI > l then Au(S)=g 

2. Sp(Au({g91 ... gO})) = {{g9i ... g9}} if {9, ...} is a most general complete spe-
cializer of g. 

This proposition shows the extent to which Au and Spec are inverses of each other. The first 

item says that antiunifying a most general specialization produced by cover set specialization 

returns the original general term. The qualification in the first item notes that sometimes a 

specialization with respect to a variable is a singleton. The second says that specialization 

returns the original set of terms given to antiunification if the set completely covers all 

instances of g. Since Au is a form of antiapplication, then Spec must be a particular form of 

application since it is an inverse of Au. 

Specialization algorithms can be primed with a general term (or equation) g that is the 

antiunification of all the examples. If this is done, it is possible to show that all specializations 

are antiunifications of each member of the powerset of the positive examples. 

Conjecture 4.2 Let P be a set ofpositive examples and g = Au(P). Then 

Sp(g) = isapartition of P} 

Conjecture 4.2 suggests that anything that can be done with cover set specialization can be 

done with an antiunification method and vice versa. 

Cover set specialization has been defined with respect to variables instead of with 

respect to negative examples, as is required for some machine learning systems. First, we 

define specialization on a set of terms, A: 

Sp(A) = {.GI G E Sp(g) and g e Al. 

Then specialization of a set of terms with respect to variables can be defined as: 

Sp(A,N)—{ {A — N} N'CA 
- {GI GESp(Sp(A),N')} otherwise 
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where N' = { E NA 3s E A,9 sO = n} 

Thus, specialization with respect to negative examples is defined by using regular specializa-

tion and is not conceptually more difficult. An efficient and straightforward implementation 

of Sp(S, N) was done by Lassez and Marriott ( 1986). 

4.5.2 Rule specialization 

So far, specialization has only been discussed with respect to terms. However, rule special-

ization can also be defined by using term specialization: 

Rule Cover Set Specialization 
r (a rule) 
V (C Vars(r)) 
R (a rewrite system) 

Make rule(Nf(g, R)) 
where g E Sp(Tennzfy(r), V) 

This operator converts the rule to a term (with the Termfy function) and then specializes 

it with respect to variables. The resulting term is reduced with the given rewrite system 

(with the normal form function, Nf, from Section 3.2) and is then converted back into a rule 

(with Makerule). The set of all rules produced in this way is denoted Spec(r, V, R) and each 

member of this set is called a rule specialization. When a background theory is not used 

for specialization, then R is empty and we simply write Spec(r, V). When V = Vars(r) we 

write Spec(r) or Spec(r, R). Also, if Spec in the definition is replaced with Nsp, the result 

naive rule specialization is defined and the whole set of them is denoted Nspec(r, V, R) (or 

its related forms). 

Finally, sets of rules can be specialized simultaneously. A naive rule set specialization 

is defined as follows: 
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Rule Set Specialization 
S (a set of rules) 
V (c Vars(r)) 
R (a rewrite system) 

{XIX = Nspec(s, {v}, R) for an s E S and V E V} 

The set of all such specializations is denoted Nspec(S, V, R). Rule set specialization, 

Spec(S, V, R), is defined by replacing Nspec with Spec in the definition. 

We complete this section with a few propositions regarding the soundness of rule 

specialization. 

Proposition 4.6 Rule specialization is not an ampliatively sound operator. That is, r E 

AMP(R) Vs, S €Spec(r, R) = s E AMP(R) 

However, when r € IND(R), all rule specializations will be inductive theorems. This is 

a result of the fact that inductive theorems have total justification, and thus all its instances 

will have total justification as well. 

Proposition 4.7 Rule specialization is an inductively sound operator. That is, r E 

IND(R) = Vs, s E Spec(r, R) = s E IND()(R) 

The consequence of this is that if rule specialization is used as the major form of theorem 

generation, it is necessary to check for the justification of the rules it generates unless the 

rule being specialized is an inductive theorem. 

4.6 Completeness 

We have shown that complete antinarrowing is ampliatively sound, and rule specialization 

is inductively sound. Though not ampliatively sound, rule specialization is deductively 

sound since doing rule specialization on a set of rules, a set of deductive theorems, will 

only produce more deductive theorems. We are finally in a position to show that applying 
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complete antinarrowing to the rule specializations of a theory will construct all possible 

conjuncts that can make up ampliative theorems. 

Proposition 4.8 Prudential Completeness If e is a conjunctive negationless universal pru-

dent theorem of a prudent extension of a theory e with axioms R, then for each conjunct c of 
e, c E (Can1(Spec(R))) 

Since inductive, ampliative, and ignorative theorems are subclasses of prudent theo-

rems, this result extends to them as well. By restricting the antinarrowing method to Can 

completeness is not effected since Can generates a subset of the rules generated by Can'. 

This completeness result shows Us that no other operators need be developed for effective 

generation of theorems. 

4.7 Summary 

This chapter began with a look at term antiunification. Term antiunification was modified 

slightly to allow the generalization of rules. The expansion operator was introduced as a 

technique for generating deductive theorems. These methods were combined into the E-

antiunification operator to enable equational antiunification, that is, generalization of rules 

using explicit background theory. To enable the use of implicit background theory, antinar-

rowing was developed. To generate all biexemplar justified theorems, not just the strictly 

biexemplar justified ones, the complete antinarrowing operator was designed. Next, the 

inductive antinarrowing operator was created to generate inductive theorems. Also, another 

important method of induction, specialization, was shown to be an inverse of antiunification 

- in particular, the application of a set of substitutions. Specialization, together with in-

consistent complete antinarrowing were suggested to be complete for generating a restricted 

subclass of prudent theorems. 



Chapter 5 

Balog: Automated Theorem Generation 

Previous chapters developed a framework and some techniques for generating theorems. 

This chapter describes practical applications of these methods that are incorporated into a 

computer program called Balog. The Balog system has been developed as a test bed for 

various equational logic theorem proving and generation methods. Figure 5.1 lists some of 

the functions" of Balog. 

All examples, theories, and programs in Balog are specified in a custom functional 

programming language based on conditional term rewriting systems. Figure 5.2 is an example 

of a Balog program used to specify a generation problem. The var command declares 

variables, the type command declares type names. The infix ":" command declares a 

function by specifying its types (here the "x" means "cross"). For example, the prescribe 

function is declared to be a function of four arguments with types age, spec, astig, and tear 

respectively and which returns a term of type lens. Also, the function symbols reduced and 

normal are simultaneously declared to be arity 0 functions of type tear. The "*" indicates 

that these are constructor functions. The use command tells Balog to put all following 

rules into one of the several rule bases Balog maintains (in this case the rules are put in the 

example base). Several other programming language commands are available to control the 

operation of Balog. More control commands are available at the command line interface. 

Typically, Balog program files are loaded with the load command and then the loaded rules 

are processed by, other commands, such as the showx command to show the example rule 

base or the balog/amp command to run the Balog/AMP ampliative theorem generation 

program developed in this Chapter. 

83 
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Function What it Implements Where Used 

Rewrite Nf -- normal form 
(Section 3.2) 

Balog command line 

Solve 
narrowing 
(Section 3.2) Balog command line 

Ind-proof-check cover set induction 
(Section 3.2) 

Balog/IND (Section 5.5) 

PhaseOne Can' -- inconsistent 

complete antinarro wings 
(Section 4.3.3) 

Can --complete 
antinarrowings when 
the Valid function is 
used instead of 
Goodrule (Section 4.3.3) 

An -- antinarro wings 
when Limit = 0 and 
the Valid function is 
used (Section 4.3.2) 

Rau -- rule antiunifications 
when Depth = 0 
(Section 4.1.2) 

Balog/PRU (Section 5.4) 

Balog/AMP (Section 5.1.1) 

To speed up Balog/AMP 
and Balog/PRU 

Balog/C (Section 5.2) 

Balog/CD (Section 5.3) 

PhaseZero Spec - rule Set 
specializations 
(Section 4.5.2) 

Balog/IND (Section 5.5) 

Figure 5.1. Some functions used in Balog 
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contact.b 

contact lens example adapted from Cendrowska ( 1987) 

var w,z,y,x 

type lens 

{hard,soft,none} lens* 

type age ; ppres is pre-presbyopic 

{young,ppres,pres} : age* 

type spec ; myope or hypermyope 

{myope,hyper}: spec* 

type astig 

{yes,no} astig* 

type tear ; tear production 

{reduced,normal} : tear* 

use example 

prescribe : age x spec x astig x tear -> lens 

prescribe(young,myope,no,reduced) none ; 1 

prescribe (young,myope,no,normal) -> soft 

prescribe (young,myope,yes, reduced) -> none 

prescribe (young,myope,yes,normal) -> hard 

prescribe (young,hyper,no,reduced) -> none ; 5 

prescribe (young, hyper, no,normal) -> soft 

prescribe (young,hyper,yes, reduced) none 

prescribe (young, hyper,yes,normal) -> hard 

prescribe (ppres,myope,no, reduced) -> none 

prescribe (ppres,myope,no,normal) -> soft ; 10 

prescribe (ppres,myope,yes, reduced) -> none 

prescribe (ppres,myope,yes,normal) -> hard 

prescribe(ppres,hyper,no,reduced) -> none 

prescribe(ppres,hyper,no,normal) -> soft 

prescribe(ppres,hyper,yes,reduced) -> none ; 15 

prescribe (ppres, hyper,yes,normal) -> none 

prescribe (pres,myope,no, reduced) -> none 

prescribe (pres,myope,no,normal) -> none 

prescribe (pres,myope,yes, reduced) -> none 

prescribe(pres,myope,yes,normal) -> hard ; 20 

prescribe(pres,hyper,no,reduced) none 

prescribe(pres,hyper,no,normal) -> soft 

prescribe (pres,hyper,yes,reduced) -> none 

prescribe(pres,hyper,yes,normal) -> none ; 24 

Figure 5.2. A Balog Program: contact.b 
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Some of the proof techniques implemented in Balog are conditional term rewriting, 

narrowing, completion, reduction ordering, proof by consistency, and cover-set induction. 

Generation techniques include implementations of ID3, Prism and Induct, and those men-

tioned in this chapter - an ampliative theory learning system (Balog/AMP), a classification 

system (Balog/C), a default theory learner (Balog/CD), a prudent theorem generator (Ba-

log/PRU) and an inductive theorem generator (Balog/IND). The two central algorithms in 

these systems, namely PhaseZero and PhaseOne, implement the Spec operator from Section 

4.5.2 and the Can2 operator from Section 4.3.3 respectively. 

5.1 Theory Learning 

The kind of machine learning problems that we will consider first are theory learning 

problems. Here we are given an original theory A that is comprised of examples in the 

form of rules and possibly background theory in the form of rules. (The distinction between 

examples and background theory is not necessary). The goal of theory learning is to generate 

a more compact theory B made up of inductivelike theorems of the given theory A. We will 

restrict our attention to theories that are conjunctions of rules. Generating candidate theories, 

or hypotheses, for B is straightforward given the techniques of Chapter 4. 

• The next subsection describes the generation of ampliative theorems from a given theory 

- generally called "noiseless induction" in the machine learning paradigm - embodied in 

a program called Balog/AMP. The following subsections detail how hypotheses may be 

evaluated in order to choose the best among them. 

5.1.1 Ampiiative theory learning 

Balog/AMP is an implementation of a two pass algorithm for inducing ampliative theories 

from a given theory. A standard example in logic programming and machine learning is 

the "append" program. One reason for its use here is that it is a simple function that is also 

recursive. The rules in Figure 5.3 constitute the append function that Balog/AMP will learn 

from the examples in Figure 5.4, and which we use as a recurring example to help describe 

the operation of the system. 
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(1) app(nil,x) -> x 
(2) app(x.y,z) -> x.app(y,z) 

Figure 5.3. The Append Funàtion 

[balog] showx 
example base 

(1) app(nil,a.nil) -> a.nil 

(2) app(nil,nil) -> nil 
(3) app(b.nil,nil) -> b.nil 
(4) app(c.nil,d.nil) -> c.d.nil 
(5) app(e.f.nil,g.nil) -> e.f.g.nil 

Figure 5.4. An example set for inducing the Append function 

The first phase of Balog/AMP generates ampliative theorems of a given theory by 

implementing the complete antinarrowing operator. In particular, Balog/AMP generates 

all rules that are ampliative theorems of an example base. Hypotheses are combinations 

(conjunctions) of these rules. The algorithm for this phase is shown in Figure 5.5. For the 

append example, it produces the output shown in Figure 5.6 (when the Depth variable is set 

to 2; see below). 
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Phase One Algorithm 

PhaseOne(X, Depth, Limit,Valid) 

X - example base 
Depth - maximum antinanowing size 
Limit - maximum antiunification iterations 

Valid - function to restrict rules formed 
begin 
WL=X 

AL=X 
i=o 
while (i ≤ Depth) 
begin 

WW = {aj a = Rau(p, q) A Valid(a) 
where p,qE WL,IpI < max(O,i— 1), Iql max(O,i— 1)} 

NewAU = WW 

j=o 
while (j < Limit A (j = 0 0 Limit V NewAW 0)) 
begin 

NewAW = {aj a = Rau(p, q) A Valid(a) 

where p E AL, q E NewAW, IpI = II i} 
AW = AW U NewAW 

j=j+1 
end 

AL—ALuWWuAW 
if (i Depth) 

WL = {xlx = w/awhere a E WW U AW,w € WL,IwI = Depth - 1} 
end 

Output: AL - antinarrowings to a depth of Depth. 

Figure 5.5. Phase one algorithm 
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)balog) balog/amp 

Balog/AMP - Version 3.0 

Phase 1. Candidate Rules 
Compute Antinarrowings ( 0) (widenings5 antinarrowings=5) 
Augment Widenings ( 1) (widenings=5 antinarrowings8) 
Compute Antinarrowings ( 1) (widenings23 antinarrowings=8) 
Augment Widenings (2) (widenings23 antinarrowings13) 
Compute Antinarrowings ( 2) (widenings=23 antinarrowings13) 
Removed ( 0) inconsistent rules. 

Widenings 

6 ( 1) app(nil,a.nil) -> a.app(nil,nhl) 
Source (Wid An) (( 1 2) ( 1 6) ( 1 7)) 
7 ( 1) app(nil,a.nil) -> app)a.nil,nil) 
Source (Wid An) ((1 7) ( 1 8)) 
8 ( 1) app(b.nil,nil) -> b.app(nil,nil) 
Source (Wid An) ((3 2) (3 6) (3 7)) 
9 ( 1) app(b.nil,nil) -> app(nil,b.nil) 
Source (Wid An) ((3 6)) 
10 ( 1) app(c.nil,d.nil) -> C.d.app(nil,nil) 
Source (Wid An) ((4 2) (4 6) ( 4 7)) 
11 ( 1) app(c.nil,d.nil) -> app(nil,c.d.njl) 
Source (Wid An) ((4 6)) 
12 ( 1) app(c.nil,d.nil) -> c.app(nil,d.nil) 
Source (Wid An) ((4 6)) 
13 ( 1) app(c.nil ,d.nil) -> app(c.d.nil,nil) 
Source (Wid An) ((4 7)) 

14 ( 1) app(c.nil,d.nil) -> c.app(d.nil,nil) 
Source (Wid An) ((4 7) (4 8)) 
15 ( 1] app(e.f.nil,g.nil) -> e.f.g.app(nil,nil) 
Source (Wid An) ((5 2) (5 6) ( 5 7)) 
16 ( 1) app(e.f.nil,g.nil) -> app(ni1e.f.g.ni1) 
Source (Wid An) ((5 6)) 
17 ( 1) app(e.f.nil,g.nil) -> e.app(nil,f.g.nil) 
Source (Wid An) ((S 6)) 
18 ( 1) app(e.f.nil,g.nil) -> e.f.app(nil,g.nil) 
Source (Wid An) ((5 6)) 
19 ( 1) app(e.f.nil,g.nil) -> app(e.f.g.nil,nil) 
Source )Wid An) i (( 5 7)) 
20 ( 1) app(e.f.nil,g.nil) -> e.app(f.g.ni1ni1) 
Source (Wid An) ((5 7)) 
21 (1) app(e.f.nil,g.nil) -> e.f.app(g.nil,njl) 
Source (Wid An) ((S 7) (5 8)) 
22 (1) app(e.f.nil,g.nil) -> app(e.ni1,.g.ni1) 
Source (Wid An) ((5 8)) 
23 111 app(e.f.nil ,g.nil) -> e.app(f.nil,g.nil) 
Source (Wid An) ((5 8)) 

Antinarrowings: 

1 ( 0) app(nil ,a.nil) -> a.ni]. 
2 ( 0) app(nil,nil) -> nil 
3 ( 0) app(b.nil,nil) -> b.nil 
4 ( 0) app(c.nil,d.nil) -> c.d.nil 
S ( 0) app(e.f.nil,g.nil) -> e.f.g.nil 
6 ( 1) app(niLx) -> x 
From widenings: (( 1 2) (2 6)) 
7 ( 1) app(x,nil) -> x 
From widenings: ((2 3) (3 7)) 
8 ) 1) app(x.nil,y) -> x.y 
From Widenings: ((3 4) (4 8)) 
9 ( 2) app(x.nil,y) -> app(nil,x.y) 
From widenings: (( 11 9)) 
10 ( 2) app(x.nil,y) -> x.app(nil,y) 
From widenings: (( 12 8)) 
11 ( 2) app(x.nil,y) -> x.ap(y,ni1) 
From widenings: (( 14 8)) 
12 ( 2) app(x.y,z) -> x.app(y,z) 
From widenings: (( 23 8)) 
13 ( 2) app(x.yz.ni1) -> x.app(y,z.nil) 
From widenings: (( 23 12)) 

Figure 5.6. Balog/AMP after phase one on append data 
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Conjecture 4.1 suggested that to generate all ampliative theorems with the complete 

antinarrowing operator, it is sufficient to antiunify widenings with widenings of equal sizes 

and antinarrowings that have smaller sizes. Balog/AMP implements this directly by generat-

ing a list of widenings and a list of antinarrowings, up to a specified induction depth. A size 

N widening means that N widening steps are required to create it from the original theory. 

(Each rule in the original theory has size 0.) A size N antinarrowing means that a size N 

widening is used to create the antinarrowing through rule antiunification with some other rule 

with size less than or equal to N. Balog/AMP terminates phase one when all antinarrowings 

of size equal to the maximum induction depth are generated. 

To start this phase, Balog/AMP initializes both the widening list (WL) and the antinar-

rowing list (AL) to the original theory. Next, rule antiunifications of all of the widenings 

in WL are added to AL. For the append example, all five example rules (see Figure 5.4) 

will be first installed in both WL and AL. Next, rule antiunifications of all of these new 

antinarrowings in AL are antiunified with the widenings in WL and these are added to AL. 

This continues until no new antinarrowings are created. At this point, AL will contain all 

antinarrowings of size 0 of the original theory. In the append example, antinarrowings 1 to 8 

in Figure 5.6 are all antinarrowings of size 0— they are all the antiunifications of the given 

append data. 

Then Balog/AMP starts working on the next level. First, all widenings of size 1 

are created. These are all the widenings of size 0 widened with antinarrowings of size 0 

(everything in AL so far). In general, widenings of size N are widenings of widenings of 

size N—i or less with antinarrowings of size N—i or less. Of course, Balog/AMP does not 

re-create widenings that have been created on previous levels. That is, only widenings that 

will be of size N are created. All of these new widenings are added to WL. In the append 

example, 18 new widenings (numbers 6 to 23) are created. Second, new antinarrowings 

are created and put in AL by antiunifying the new widenings with each rule in WL. In the 

append example, antinarrowings 9 through 13 are added. Finally, all new antinarrowings 

are antiunified with the widenings in WL, to create more antinarrowings. The operation is 

repeated with these newest antinarrowings until no new antinarrowings are created or until 

the maximum antiunification passes limit (Limit) is reached. At this point, all antinarrowings 

of level 1 (or N in general) will have been created and put in AL. In the append example, 
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antiunifying rules 9-13 with each other does not produce any new rules. Balog repeats this 

process for the next level, until the maximum induction depth (Depth) is reached. 

Balog/AMP does not create inconsistent rules. Before an antinarrowing is put in AL, 

it is first checked to see if it is consistent with the original theory, and if not, it is discarded. 

This is better than doing the inconsistency removal in a separate pass because if inconsistent 

antinarrowings are left in, all of the antiunifications that use them will also be inconsistent, 

resulting in unnecessary work. Other systems described below (Balog/PRU and Balog/CD) 

simply retain all created rules, since they allow some inconsistency. 

The second phase investigates combinations of the rules produced in phase one to 

generate possible theories. Figure 5.7 displays this algorithm. One method, complete 

generation, investigates all combinations of the rules created in the first phase. Each of these 

theories, called hypotheses, is evaluated and the hypothesis with the best evaluation is chosen 

to be the final generated theory. Section 5.1.2 describes possible evaluation methods. On 

any but very small problems, complete generation is excruciatingly slow. For example, if 

phase one generates 100 rules, then 2100 - 1 = 1.2 x 1029 hypotheses will have to be tested. 

For the append example, 8 new antinarrowings are generated in phase one; so 28 = 256 

hypotheses will have to be evaluated. Accordingly, computation bounds, time limits, and 

searching hypotheses from shortest to longest can be used while doing complete generation. 

If there exists a short theory, it will be found relatively soon in the computation. 

Usually the incremental hypothesis generation method is more practicable. This creates 

a hypothesis by adding appropriate rules to it, one at a time. A rule is chosen by a heuristic 

method, called an increment function, to be added to the hypothesis generated so far. The 

purpose of the increment function is to find the rule that is most likely, by some measure, to 

be included in the final theory. The adding of rules to hypotheses stops when the increment 

function falls to generate any new rules. Section 5.1.3 describes some possible increment 

functions. 

When Balog/AMP is run on the append examples using the generated coverage incre-

ment function described in Section 5.1.3, the desired append function is generated in about 

100 seconds. The complete generation method using the compression heuristic described in 

Section 5.1.2 also generates the same set of two rules, but takes about 125 seconds. 
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Phase Two Algorithm 

PhaseTwo(An, Cf lag,F) 

An - antinarrowings 

Cf lag - if true use complete hypothesis generation 
F - increment function if Cf lag is false 

evaluation function if Cf lag is true 
begin 

if (Cf lag) 
then 
H = F(Powerset(An)) 

else begin 

A = F(An,O) 
while (A 0) 
begin 

H=HuA 

An=An—{A} 
A = F(An,H) 

end 
end 

end 
Output: H - a chosen hypothesis: 

Figure 5.7. Phase two algorithm 

Phases one and two together form the complete Balog/AMP algorithm exhibited in 

Figure 5.8. Because Balog/AMP uses the Valid function instead of the Goodrule function, it 

uses complete antinarrowing instead of inconsistent complete antinarrowing. 

5.1.2 Evaluating hypotheses 

Balog requires a method of judging the relative merits of the hypotheses generated by the 

complete generation method of phase two. The easiest method, at least from Balog's view, 

is to use an oracle. This could be another specialized program which performs experiments 

using the hypotheses and chooses one based on the results. Alternatively, the oracle could 
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be an expert user who is required to choose the best hypothesis. 

Balog can also use heuristics to decide between hypotheses. One is the coverage 

heuristic. Given a set of examples and a theory H, the number of examples that are true 

in H is called the coverage of H in E and is written coverage(H, E). In more colloquial 

words, coverage(H, E) is the number of examples that H explains or are redundant. Since 

a hypothesis H should already cover all of the examples of the original theory B (because 

it ampliatively subsumes E), coverage(H - B, B) is a more informative measure - only 

the rules in H that are not in B are tested for coverage. When Balog uses this heuristic, the 

hypothesis that has the largest coverage is chosen.' 

A variation on the coverage heuristic is the cover set heuristic. This measures the 

number of possible examples that a hypothesis can cover, even ones that it has not seen. 

Suppose the cover set of the function symbol f/2 is {(a, a), (a, b), ( b, a), ( b, b)}. Then the 

hypothesis {f(x, x) --*'x} would only cover two out of a possible four. The hypothesis 

{f(x, lii) - y} covers all four and is thus to be preferred. This method can be used with 

infinite data types, since cover sets are always finite. Note that while the coverage heuristic 

measures the range of the rules in hypotheses, the cover set heuristic measures their domain. 

The cover set heuristic is usually used in combination with other heuristics. 

Another possibility is the hypothesis length heuristic which counts of the number of 

rules in the hypotheses and chooses the shortest. Very often, the best hypothesis is the one 

with least rules because it is usually the easiest to understand. This heurisitic is generally 

used in conjunction with other heuristics for tie breaking. 

The most powerful heuristic used in Balog is the hypothesis complexity heuristic. There 

are many ways of defining the complexity of a set of rules. One is to count the number of 

variables in the hypotheses, and prefer those with more variables. The number of symbols 

or the nesting levels of the terms in the hypotheses could also be counted. A principled 

method of determining complexity, applied recently to several machine learning programs, 

for example, Cigol (Muggleton & Buntine, 1988), is based on Kolmogorov algorithmic 

complexity theory (Kolmogorov, 1965). Balog uses a modification of the approach used 

in Cigol that computes the "information content" loss between the original theory and the 

'In Balog, coverage can be determined with respect to another set of rules called the testbase, which is 
distinct from the example base. 
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hypotheses and prefers the one with the most loss. 

5.1.3 Hypothesis increment functions 

An hypothesis increment function takes a temporary hypothesis, H, and chooses a rule r 

from among a set of rules A that is the most likely rule to be part of the final desired theory. In 

Balog, A is the set of antinarrowings produced from phase one. Once a rule is chosen by the 

increment function, it can be added to H to create a new temporary hypothesis, H U {r}. The 

most straightforward method is to use one of the hypothesis evaluation methods described 

in the previous section applied to {H U {r}Ir E Al. However, less computationally costly 
methods are available. 

A common increment function is the coverage increment function. This function 

chooses the rule that covers the most example rules. It is particularly useful for classification 

problems (see the next section) rather than general problems, since the definition of coverage 

applied to single rules might not be applicable in general problems. For example, it is 

impossible to compute which examples in Figure 5.4 are covered by rule number 2 in 

Figure 5.3 without using rule number 1. For general rules, we might count how many 

examples were used to generate the rule instead. For instance, examples 3 and 4 were used to 

generate the antinarrowing that was antiunified with example 5 to create rule 2. So a total of 

three example rules (3,4,5) were used to create rule 2. This increment function is called the 

generated coverage inérement function. Another increment function that can be used is the 

syntactic simplicity increment function. This selects the rule that uses the fewest syntactic 

symbols (and the most variables). There are many possibilities for increment functions 

besides the ones mentioned here. 

5.2 Classification Learning 

Balog/C is a classification learning program like 11)3 (Quinlan, 1986) and 

PRISM (Cendrowska, 1987). A classification system only allows examples, and only 

generates rules, that have a class identifier as their right hand side. Also, no background 

theory is used. Such systems are a particular kind of theory learning system. In fact, if 
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the antinarrowing size is set to zero in Balog, no background theory can be used since no 

widening will be done, and a classification induction system results. The BalogIC algorithm 

is exactly the same as that of Balog/AMP (Figure 5.8) except that Depth is forced to be 0. 

This enables only antinarrowings of size 0, or rule antiunifications (Rau), to be produced. 

Also, Balog/C restricts its input (X) to the kind of rules described below. 

5.2.1 Representing classifiers as rewrite rules 

Classification programs deal with entities much simpler than the general rules of Balog. Each 

example instance is made up of an attribute/value vector and a class identifier where each 

vector is comprised of attribute/value pairs. One representation of these is: 

[(al,vl), (a2,v2) ... (am,vm)] of Class 

where Class is the class identifier, [ ... I represents the vector, and each (aj,v2) is an 

attribute/value pair. For example, suppose a set of rules is sought for determining if it is a 

Saturday based solely on the weather. An example instance in this domain might be: 

[(outlook,overcast),(temp,hot),(humidity,high),(wjndy,false)J of sat 

and another: 

{(outlook,sunny),(temp,mild),(humidity,high),(wjndy,fajse)J of other 

It is quite natural to represent these as term rewrite rules: the attribute value vector is a term 

on the left hand side of the rule and the class is a constant on the right hand side. For the 
former, a new function symbol is invented with any name and with one argument for each 

attribute. The arguments are then filled with their corresponding values. 

conditions: outlook x temp x humid x wind -+ day 

conditions(overcast,hot,high,false) - p sat 

conditions(sunny,mild,high,false) -+ other 
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Further restrictions on these rules include the lack of specification or use of background 

theory and the use of only finite types. In summary, the representation in a classification 

system is equivalent to a term rewriting system representation in which 

• there is one arbitrarily named function symbol f of arity a; 

• each argument i of f has a finite type, attribute; 

• the right hand side of each rules is a constant of type clb.ss; 

• all attributed are disjoint with class; 

• all attributed are disjoint with each other. 

The last two conditions are dropped in Balog/C, enabling it to address a wider class of 

classification problems than specialization-based classification learners such as ID3. 

5.2.2 Example of classification 

Figure 5.2 specifies the well-known contact, lens example (Cendrowska, 1987) in Balog's 

functional language. Three categories of contact lens - hard, soft, or none at all - constitute 

the classes in this problem. Four attributes are deemed to be relevant to prescribing lenses 

- age, tear production level, presence of astigmatism, and specification. Each has a set 

of possible values; for example, the attribute spec can be either myope or hypermyope. 

Finally, for each combination of the values of attributes, the appropriate type of contact lens 

is specified in Figure 5.7. It is the responsibility of Balog/C to determine the best theory that 

compactly contains all the knowledge of these 24 rules. 

During the first phase, Balog/C generates 53 new rules that may be used in the final 

theory; they are listed in Figure 5.9. However, many of these rules are inconsistent with 

the examples and, like Balog/AMP, Balog/C checks for inconsistency and only records 

antinarrowings that are consistent. In the figure, each rule that is inconsistent is labelled with 

an "Inconsistent:" field that lists the rules found to be inconsistent with it. Figure 5.10 shows 

the 32 new consistent rules generated by the first phase. The original 24 rules can also be 

used in the generated theory, so they are included in the list of antinarrowings produced by 

the first phase. 
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Balog/AMP - Balog Ampliative Algorithm 

Balog/Amp( X,Depth, Limit, Cflag,F) 

X - example base 
Depth - maximum antinarrowing size 

Limit - maximum antiunification passes 
Cflag. - do complete phase two search if true 
F - evaluation or increment function 

begin 

R = PhaseTwo(PhaseOne(X,Depth,Limit, Valid), Cfiag, F) 
end 

Output: R - a list of rules. 

Figure 5.8. Balog/AMP: Algorithm 
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All of rules 1-24 plus: 

25 prescribe(young,myope,x,reduced) -+none 
Covers: (1 3) 

26 prescribe(young,x,no,reduced) - none 
Covers: (1 5) 

27 prescribe(young,x,y,reduced) -*none 
Covers: (1357) 

28 prescribe(x,myope,no,reduced) - none 
Covers: (1 9 17) 

29 prescribe(x,myope,y,reduced) -+none 
Covers: (13911 17 19) 

30 prescribe(x,y,no,reduced) ­none 
Covers: (159131721) 

31 prescribe(x,y,z,reduced) -*none 
Covers: (13 5 7 9 11 13 15 17 19 2123) 

32 prescribe(x,y,z,w) -*none 
Covers: (13 5 7 9 11 13 15 16 17 18 19 2123 24) 
Inconsistent: (2468 10 12 14 20 22) 

33 prescribe(x,myope,no,y) - none 
Covers: (1 9 17 18) 
Inconsistent: (2 10) 

34 prescribe(young,x,no,normal) - soft 
Covers: (2 6) 

35 prescribe(x,myope,no,normal) -*soft 
Covers: (2 10) 
Inconsistent: (18) 

36 prescribe(x,y,no,normal) —soft 
Covers: (26 10 14 22) 
Inconsistent: (18) 

37 prescribe(young,x,yes,reduced) —none 
Covers: (3 7) 

38 prescribe(x,myope,yes,reduced) - none 
Covers: (3 1119) 

39 prescribe(x,y,yes,reduced) 
Covers :(3711 15 19 23) 

40 prescribe(x,y,yes,z) 
Covers: (3 7 11 15 16 19 23 24) 
Inconsistent: (4 8 12 20) 

41 prescribe(x,myope,y,z) 
Covers: (13 9 11 17 18 19) 
Inconsistent: (24 10 12 20) 

42 prescrlbe(young,x,yes,normal) 
Covers: (4 8) 

43 prescribe(x,myope,yes,normal) 
Covers: (4 12 20) 

44 prescribe(young,hyper,x,reduced) 
Covers: (5 7) 

45 prescribe(x,hyper,no,reduced) 
Covers: (5 13 21) 

46 prescribe(x,hyper,y,reduced) 
Covers: (5713 15 2123) 

47 prescribe(x,hyper,y,z) 
Covers: (5 7 13 15 16 2123 24) 
Inconsistent: (6 8 14 22) 

48 prescribe(x,y,no,z) 
Covers: (15 9 13 17 18 21) 
Inconsistent: (26 10 14 22) 

49 prescribe(x,hyper,no,normal) 
Covers: (6 14 22) 

50 prescribe(x,hyper,yes,reduced) 
Covers: (7 15 23) 

51 prescribe(x,hyper,yes,y) 
Covers: (7 15 16 23 24) 
Inconsistent : (8) 

-none 

-+none 

-none 

-hard 

-hard 

-none 

-none 

-none 

-*none 

-*none 

-*soft 

-none 

-none 

Figure 5.9. The depth zero antinarrowings the contact lens examples 
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All of rules 1-24 plus: 

52 prescribe(x,y,yes,normal) 
Covers: (48 12 20) 
Inconsistent: (16 24) 

53 prescribe(ppres,myope,x,reduced) 
Covers: (9 11) 

54 prescribe(ppres,x,no,reduced) 
Covers: (9 13) 

55 prescrlbe(ppres,x,y,reduced) 
Covers: (9 1113 15) 

56 prescribe(ppres,x,y,z) 
Covers: (9 1113 15 16) 
Inconsistent: (10 12 14) 

57 prescribe(ppres,x,no,normal) 
Covers: (10 14) 

58 prescribe(ppres,x,yes,reduced) 
Covers: (11 15) 

59 prescrlbc(ppres,x,yes,y) 
Covers: (11 1516) 
Inconsistent: (12) 

60 prescribe(ppres,hyper,x,reduced) 
Covers: (13 15) 

61 prescribe(ppres,hyper,x,y) 
Covers: (13 15 16) 
Inconsistent: (14) 

62 prescribe(ppres,hyper,yes,x) 
Covers: (15 16) 

63 prescribe(x,y,z,normal) 
Covers: (16 18 24) 
Inconsistent: (2468 10 12 14 20 22) 

—*hard 

—none 

—*none 

—none 

—none 

soft 

—+none 

—none 

—none 

—none 

—none 

—+flone 

64 prescribe(x,hyper,yes,normal) 
Covers: (16 24) 
Inconsistent: (8) 

65 prescribe(pres,myope,no,x) 
Covers: (17 18) 

66 prescribe(pres,myope,x,reduced) 
Covers: (17 19) 

67 prescribe(pres,x,no,reduced) 
Covers: (17 21) 

68 prescribe(pres,x,y,reduced) 
Covers: (17 19 21 23) 

69 prescribe(pres,x,y,z) 
Covers: (17 18 19 2123 24) 
Inconsistent: (20 22) 

70 prescrlbe(pres,myope,x,y) 
Covers: (17 18 19) 
Inconsistent: (20) 

71 prescrlbe(pres,x,no,y) 
Covers: (17 18 21) 
Inconsistent: (22) 

72 prescrlbe(pres,x,y,normal) 
Covers: (18 24) 
Inconsistent: (20 22) 

73 prescrlbe(pres,x,yes,reduced) 
Covers: (19 23) 

74 prescribe(pres,x,yes,y) 
Covers : (19 23 24) 
Inconsistent: (20) 

75 prescribe(pres,hyper,x,reduced) 
Covers: (21 23) 

76 prescribe(pres,hyper,x,y) 
Covers: (21 23 24) 
Inconsistent: (22) 

77 prescribe(pres,hyper,yes,x) 
Covers: (23 24) 

—none 

—none 

—none 

—none 

—none 

—none 

—none 

—none 

—none 

—none 

—none 

—none 

—none 

—none 

Figure 5.9. Continued. 
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;RAUSof 1-24 

5 prescribe(young,myope,x,reduced) 
Covers: (1 3) 

6 prescribe(young,x,no,reduced) 
Covers: (1 5) 

7 prescribe(young,x,y,reduced) 
Covers: (1 3 57) 

8 prescribe(x,myope,no,reduced) 
Covers: (1 9 17) 

9 prescribe(x,myope,y,reduced) 
Covers: (139 1117 19) 

0 prescribe(x,y,no,reduced) 
Covers: (159131721) 

1 prescribe(x,y,z,reduced) 
Covers: (13 5 7 9 1113 15 17 19 2123) 

4 prescribe(young,x,no,normal) 
Covers: (2 6) 

7 prescribe(young,x,yes,reduced) 
Covers: (3 7) 

8 prescribe(x,myope,yes,reduced) 
Covers: (3 1119) 

9 prescrthe(x,y,yes,reduced) 
Covers: (3711 151923) 

2 prescribe(young,x,yes,normal) 
Covers: (4 8) 

3 prescribe(x,myope,yes,normal) 
Covers: (4 12 20) 
prescribe(young,hyper,x,reduced) 
Covers: (5 7) 

5 prescribe(x,hyper,no,reduced) 
Covers: (5 13 21) 

6 prescribe(x,hyper,y,reduced) 
Covers: (5713152123) 

9 pescribe(x,hyper,no,norma1) 
Covers: (6 14 22) 

0 prescribe(x,hyper,yes,reduced) 
Covers: (7 15 23) 

3 prescribe(ppres,myope,x,reduced) 
Covers: (9 11) 
prescribe(ppres,x,no,reduced) 
Covers: (9 13) 

—none 

—+none 

—none 

—4none 

—#none 

—none 

—none 

—*soft 

—none 

—none 

—none 

—hard 

—+hard 

—+none 

—+flone 

—none 

—soft 

—+none 

—+none 

—none 

II of rules 1-24 plus: 

5 prescribe(ppres,x,y,reduced) 
Covers: (9 1113 15) 

7 prescribe(ppres,x,no,normal) 
Covers: (10 14) 

8 prescribe(ppres,x,yes,reduce4) 
Covers: (11 15) 
prescribe(ppres,hyper,x,reduced) 
Covers: (13 15) 

2 prescribe(ppres,hyper,yes,x) 
Covers: (15 16) 

5 prescribe(pres,myope,no,x) 
Covers: (17 18) 
prescribe(pres,myope,x,reduced) 
Covers: (17 19) 

7 prescribe(pres,x,no,reduced) 
Covers: (17 21) 

8 prescribe(pres,x,y,reduced) 
Covers: (17 19 21 23) 

3 prescribe(pres,x,yes,reduced) 
Covers: (19 23) 

5 prescribe(pres,hyper,x.reduced) 
Covers: (21 23) 

7 prescribe(pres,hyper,yes,x) 
Covers: (23 24) 

—none 

—soft 

—+none 

—+none 

--+none 

—none 

—none 

—none 

—none 

—+none 

—none 

—+none 

Figure 5.10. Consistent antiunifications of the contact lens examples 
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The second phase uses the same algorithm as Balog/AMP for hypothesis creation and 

testing. By default, the hypothesis increment function is coverage testing. (A command at 

the command-line can be used to change the increment function to be used). The result is 

shown in Figure 5.11. Balog/C generates 9 general rules that contain all the information in 

the 24 original ones. 

Balog/C - Version 3.0 

Phase 1. Candidate Rules 

Compute Antinarrowings [ 0] (widenings=24 antinarrowings=24) 

Augment Widenings [ 1] (widenings=24 antinarrowings=77) 
Removed ( 21) inconsistent rules. 

Phase 2. Hypothesis Testing 

Increment Method: Coverage 

Induced 

(1) prescribe 

(2) prescribe 

(3) prescribe 

(4) prescribe 

(5) prescribe 

'(6) prescribe 

(7) prescribe 

(8) prescribe 

(9) prescribe 

Elapsed Time: 

[balog] 

Rules 

(pres,hyper,yes,x) -> none 

(pres,myope,no,x) -> none 

(ppres,hyper,yes,x) -> none 

(ppres,x,no,normal) -> soft 

(young,x,yes,normal) -> hard 
(young,x,no,normal) -> soft 

(x,hyper,no,normal) -> soft 

(x,myope,yes,normal) -> hard 

(x,y,z,reduced) -> none 

50130 ( real) 49302 ( cpu) 

Figure 5.11. Balog/C: contact lens data results 

5.3 Default Classification 

The generation of default classification theories extends the usual type of classification that 

was described in the previous section. 

Definition 5.1 A default theory is an ordered sequence of rules. 
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The notion of defaults comes in since rules earlier in the sequence can be viewed as exception 

cases while those later in the sequence can be seen as general defaults. Default theories are, 

in general, more readable and more compact than their equivalent coding as regular theories. 

This is accomplished by allowing inconsistencies into the rule base (the theory), and by 

ensuring that if there is a rule that is inconsistent with the examples, rules that override this 

inconsistency are placed earlier in the sequence of rules. 

For example, a useful use of default rules is in the definition of the list membership 

function. Suppose member(x, y), where x is a term and y is a list, returns false if x is not in 

y and true if it is in y. Then the following definition is possible: 

member(x,nil) -+ false 

member(x, x.y)— true 

member(x, z.y)—+ member(x, y) 

Note that the second and third rules are in contention since all those that match the second 

also match the third. However, the second rule always gets tried first in any computation. 

Without default theories, this function can only be defined by using a condition placed on 

the second and third rules that tests for the equivalence of x and z. Adding such conditions 

to rewrite rules is currently a topic of intense study (eg. see Kaplan, 1984). 

Balog/CD is a classification system that generates default theories. It differs from 

Balog/C in just two aspects. First, all rules created through antinarrowing in phase one, in-

cluding inconsistent rules, are possible candidates for inclusion in hypotheses. In other words, 

Balog/CD produces size 0 inconsistent antiunifications. Thus, all the rules in Figure 5.9 are 

created in phase one for the contact lens example. Second, the hypothesis increment function 

is coverage, but with priority given to covering currently inconsistent examples. Hypotheses 

are built by starting with the most general cases and then adding exception cases. 

For instance, the first rule that is chosen by Balog/CD is rule 42 since it covers the most 

example rules (fifteen). 
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32 prescribe(x,y,z,w) -* none 

Covers: (13 5 7 9 11 13 15 16 17 18 19 2123 24) 

Inconsistent: (246 8 10 12 14 20 22) 

The nine examples that are inconsistent with it are of no concern since they have not yet been 

covered by any rules in the hypothesis. Next, the algorithm chooses rule 36 since it covers 

five rules that have not been covered by rule 32. 

36 prescribe(x, y, no, normal) -* soft 

Covers: (26 10 14 22) 

Inconsistent: (18) 

Example rule 18 is inconsistent with rule 36, and has already been covered by rule 32. The 

next step is to make sure that rule 18 is covered, along with as many of the uncovered rules 

(4 8 12 20) as possible. It turns out that rules which cover rule 18 do not cover any in this 

list. However, rule 65 covers rules 17 and 18, so this rule is chosen in preference to the more 

specific rule 18. 

65 prescribe(pres, myope, no, x) -* none 

Covers: (17 18) 

Note that if a rule is chosen later that causes an inconsistency with only rule 17, then rule 

65 will be moved higher up in the list (since it does not introduce inconsistency itself), so 

that it will resolve both inconsistencies at once. The remaining four example rules that have 

yet to be covered are straightforwardly covered by rules 43 and 42. (Note that example 4 

is covered by both of these). Figure 5.12 shows the result of Balog/CD on the contact lens 

data. While Balog/C creates nine rules on this data, Balog/CD produces only five. These 

five rules are more understandable - they do not need to contain as much detail to rule out 

inconsistencies. 
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Balog/CD - Version 3.0 

Phase 1. Candidate Rules 

Compute Antinarrowings [ 0] (widenings=24 antinarrowings=24) 

Augment Widenings [ 1] (widenings=24 antinarrowings=77) 
Removed ( 0) inconsistent rules. 

Phase 2. Hypothesis Testing 

Increment Method: Coverage + Inconsistency Reduction 

Induced Rules 

(1) prescribe(young,x,yes,normal) -> hard 

(2) prescribe(x,myope,,yes,normal) -> hard 

(3) prescribe(pres,myope,no,x) -> none 

(4) prescribe(x,y,no,normal) -> soft 

(5) prescribe(x,y,z,w) -> none 

Elapsed Time: 51716 ( real) 50014 ( cpu) 

[balog] 

Figure 5.12. BalogICD: result on contact lens data 
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5.4 Learning With Noise 

While Balog/CD allows inconsistency in the hypotheses that are generated, the more general 

Balog/PRU can also ignore noisy data. Balog/PRU is the same as Balog/AMP except that 

it allows inconsistent rules to be generated in phase one. Phase two can be configured to 

use a similar hypothesis increment function as Balog/CD, namely coverage increment with 

inconsistency coverage priority. Another alternative is to use one of the evaluation functions 

discussed in Section 5.1.2. In this case, hypotheses that include rules produced from noisy 

data will likely have poor evaluations - consistent hypotheses will be preferred. 

[balog] showx 
example base 

(1) app(nil,a.nil) -> a.nil 
(2) app(nil,nil) -> nil 
(3) app(b.nil,nil) -> b.nil 

(4) app(c.nil,d.nil) -> c.d.nil 
(5) app(e.f.nil,g.nil) -> e.f.g.nil 

(6) app(a.nil,f.nil) -> f.nil 

Figure 5.13. Balog/PRU: Append examples with noise 

Consider the example set in Figure 5.13, which adds a new rule, Rule 6, to the examples 

in Figure 5.4. Figure 5.14 illustrates the result of running Balog/PRU on this new set. 

While Rule 6 produces some extra rules in phase one, the normal definition of append is still 

generated since its rules cover more of the database than do the false generalizations. The 

generated theorem, namely Vx app(nil, x) - x A Vx, y, z app(x.y, z) -* x.app(y, z) is a 

prudent theorem of the theory specified in Figure 5.13. 
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[balog] balog/pru 

Balog/PRtJ - Version 3.0 

Phase 1. Candidate Rules 
Compute 

Augment 
Compute 
Augment 
Compute 

Ant inarrowings 
Widenings 
Ant inarrowings 
Widenings 
Ant inarrowings 

Ant inarrowings 

(widenings=6 antinarrowings=6) 

(widenings=6 antinarrowings=12) 
(widenings=55 antinarrowings=12) 
(widenings=55 antinarrowings=17) 
(widenings=55 ant inarrowings=17) 

1 [ 0] app(nil,a.nil) -> a.nil 
2 [ 0] app(nil.nil) -> nil 

3 ( 0] app(b.nil,nil) -> b.nil 

4 [ 0] app(c.nil,d.nil) -> c.d.nil 
5 ( 0) app(e.f.nil,g.nil) -> e.f.g.nil 
6 [ 0] app(a.nil,f.nil) -> f.nil 
7 [ 1] app(nil,x) -> x 
From widenings: (( 1 2) (2 7)) 
8 [ 1] app(x,y.nhl) -> y.nil 
From widenings: (( 1 6) ( 6 8)) 
9 [ 1] app(x,nil) -> x 
From widenings: ((2 3) (3 9)) 
10 [ 1] app(x,y) -> y 
From widenings: (( 2 6) (2 8) ( 6 7) ( 6 10) ( 6 12)) 
11 [ 1] app(x.nil,y) -> x.y 

From widenings: (( 3 4) ( 4 3) ( 4 11)) 
12 [ 1] app(x,y) -> x 

From widenings: (( 3 10)) 
13 [ 2] app(x.nil,y) -> app(nil,x.y) 
From widenings: (( 22 16)) 
14 [ 2] app(x.nil,y) -> x.app(nil,y) 
From widenings: (( 23 15)) 

15 [ 2] app(x.nil,y) -> x.app(y,nil) 

From widenings: (( 26 15)) 
16 [ 2] app(x.y,z) -> x.app(y,z) 

From widenings: (( 44 15)) 
17 [ 2) app(x.y,z.nil) -> x.app(y,z.nil) 

From widenings: (( 44 23)) 
Phase 2. Hypothesis Testing 

Method: Inconsistency Reduction 
Elapsed Time: 23811 ( real) 23150 ( cpu) 

Induced Rules 
(1) app(nil,x) 
(2) app(x.y,z) 
[balog] 

-> x 
-> x.app(y,z) 

Figure 5.14. Ba1ogfPRU: Learning append even with noise 
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5.5 Inductive Theorem Generation 

Balog/IND is the subsystem of Balog that generates inductive theorems. The Balog/IND 

algorithm is given in Figure 5.15 and an example of its operation is shown in Figure 5.16. 

Balog/IND - Summative Induction only algorithm. 

Input: X 
Depth 
Limit 

SpecLevels 

- example base 
- maximum antinarrowing size 
- maximum antiunification passes 

- number of levels to specialize. 

R = PhaseTwo(PhaseOne(PhaseZero(X, SpecLevels), 

Depth, Limit, Valid), 
False, Ind-proof-check) 

- a list of rules. 

Figure 5.15. Balog/IND: Algorithm 

Balog/IND generates inductive theorems, the subclass of ampliative theorems that 

are totally justified. In Balog/AMP, pairs of rules were antinarrowed to create biexemplar 

justified ampliative theorems. Similarly, we might expect that the best way to create inductive 

theorems would be to antiunify sets of rules, checking to see that a variable is introduced 

when a cover set is formed by the terms it replaces with variables. In fact, this describes the 

Irau operator from Section 4.4.1. However, checking for antiunifications of sets of widenings 

can be very expensive. Instead, Balog/IND generates biexemplar justified rules in the manner 

of Balog/AMP and then, using the Ind-proof-check function, determines those that are cover 

set justified and thus inductive theorems. Ind-proof-check implements cover-set induction 

(Section 3.4). 
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[balog] showx 

example base 

(1) app(nil,x) -> x 
(2) app(x.y,z) -> x.app(y,z) 

[balog] balog/ind 

Balog/IND - Version 3.0 

Phase 0. Computing Specializations 

Level ( 0) Specs ( 2) 
Level ( 1) Specs ( 6) 

Computed ( 6) specializations: 

(1) app(nil,nil) -> nil 

(2) app(nil,x.y) -> x.y 

(3) app(x.nil,y.z) -> x.y.z 
(4) app(x.nil,nil) -> x.nil 

(5) app(x.y,nil) -> x.app(y,nil) 

(6) app(x.y,z.w) -> x.app(y,z.w) 
Phase 1. Candidate Rules 

Compute Antinarrowings [ 0] (widenings=6 antinarrowings6) 
Augment Widenings [ 1] (widenings=6 antiriarrowings=13) 

Compute Antinarrowings [ 1] (widenings=30 antinarrowings=13) 
Augment Widenings [2] (widenings=30 antinarrow±ngs27) 

Compute Antinarrowilags [ 2] (widenings=30 antinarrowings=27) 
Removed ( 2) inconsistent rules. 

Phase 2. Check for inductive rules. 

Elapsed Time: 44560 ( real) 44140 ( cpu) 

Induced Rules 

(1) app(x,nil) -> x 

Figure 5.16. BalogulND example 
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Recall from Section 4.6 that the rule specialization operator (Section 4.5. 1) is required 

for completeness. By default, it is not used in Balog/AMP since in practice, examples usually 

have no variables to specialize. However, many of the interesting inductive theorems require 

it - since in practice we wish to determine inductive theorems of theories, not examples - 

and it is implemented in a new phase, Phase Zero. A depth variable, SpecLevels, controls 

how many times it may be applied. For instance, if SpecLevels = 1 then only the rule 

specializations of the example base will be generated. However, if SpecLevels = 2 then the 

rule specializations of the rule specializations generated at specialization level 1 will also be 

generated. The output of phase zero becomes the input of phase one as if it were the original 

set of examples. 

When Balog/IND is run on the append function (not the examples!) in Figure 5.13, the 

inductive theorem Vs app(x, nil) - x is produced. Phase zero produces 6 specializations 

after one application of the rule specialization operator on the original two rules. These 6 

rules are passed to phase one which produces 25 antinanowings. In phase two, only one of 

the antinarrowings is determined to be a non-trivial inductive theorem. 



Chapter 6 

Other Machine Learning Systems 

The theory developed so far can help to describe other important machine learning systems. In 

particular, Section 6.1 shows that a wide range of classification systems can be characterized 

through their use of specialization. Cigol, a system similar to Balog/AMP, is examined in 

Section 6.2 and several other machine learning systems are briefly discussed in Section 6.3. 

6.1 Other Classification Systems 

Most classification learning algorithms are not antiunification based like Balog. Instead, 

specialization forms the main computational mechanism. These induction systems begin 

with an overly general rule and specialize it until it is consistent with the example set 

(and itself). The main operational difference between ID3 and PRISM/INDUCT is not the 

specialization process, but what they do with the specializations. 

The next two sections describe the algorithms of ID3 and PRISM in terms of rewrite 

rules. During their descriptions, suppose that the original set of examples is: 

X: 

f(al,bl) - cl 

f(al,b2) - c2 

f(a2,b3) - c2 

f(a2,bl) -* ci 

f(a3,b3) -* c3 

110 
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ID3 Algorithm 

Input: C - set of classes (Cl, c2, ..., cm). 
X - example set such that 

for all  G X there are n terms t1, ..., t 

and ac E C such thatr f(t1, ..., t) - f c 

V = {x1,x2, ... , x}, aset of variables, such that Typeof(x) = Typeof(f/i) 
S = {f(xi,x2, ..., x) - f z I z E C} 

F=O 
While (S 0) { 

S = DelExtras(Best(Nspec(S, V), X), X) 
F = {r I r € SA Consistent(r, S U X)} 
S=S— F 

} 
Output: F - a set of rules 

Figure 6.1. ID3 

6.1.1 ID3 as a specialization system 

ID3 (Quinlan, 1986) is an algorithm that has often been implemented in commercial systems. 

Its popularity is due to its simplicity, speed, and power for learning classification rules from 

data. Figure 6.1 shows the ID3 algorithm that is implemented in the Balog system. 

Section 4.5 distinguished between a "naive" type of specialization and a more compre-

hensive type. This algorithm, in its use of the Nspec operator, shows that the central operator 

in ID3 is naive rule set specialization. This immediately suggests that ID3 can be improved 

by dropping the naive restriction and using the rule set specialization operator Spec instead. 

Let us work through an example to demonstrate this algorithm. ID3 is given a set 

of rules, X, and a set of classes, C. We use the set of five rules listed above to be X 

and {cl, c2, c3} for C. Then 1D3 determines the most general specialization, S, that will 

be subsequently specialized. In the first line of the algorithm, V = {x, y} and so S = 

{f (XI y) - cl,f(x,y) -* c2,f(x,y) - c3}. We write S more compactly as{f(x,y) - z} 
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where z can be any class constant in C. On entering the while loop, the first step is to check if  

is empty. Rules in S are ones that are currently inconsistent with the examples, and remain to 

be specialized further. Since S is not yet empty, the loop body is entered. Then ID3 calculates 

the naive rule specialization of all rules in S with respect to variables in V. Nspec(S, V) = 

{S1,S2} where Sl = {f(al,y) -- z,f(a2,y) - z,f(a3,y) - z} and S2 = {f(x,bi) 

Z, f(x, b2) - z, f(x, b3) -* z}. Each of Si and S2 specify nine rules. Next, the function 

Best chooses the best specialization in Nspec(S, V) using a coverage heuristic. ID3 chooses 

S2. The function DelExtras removes rules with no instances in X. Thus S is updated to the 

set {f(x,bl) -* ci,f(x,b2) - c2,f(x,b3) - c2,f(x,b3) -+ c3}. Next Fis updated to 

the set If (x, bi) - ci, f(x, b2) - c2} since both of these rules are consistent with X. S 

is updated to S - F leaving the inconsistent rules If (x, b3) -+ c2, f(x, b3) -* c3}. Since 

S is still not empty, the while loop is entered again. This time, Nspec(S, V) = {S1} where 

Si = {f(al,b3) -+ c2,f(a2,b3) -+ c2,f(a3,b3) -+ c2,f(al,b3) - c3,f(a2,b3) -+ 

c3, f(a3, b3) - c3}. Since there is only one rule set specialization, Si, Best({S1}) = Si. 

Next, S = DelExtras(S1, X) = If (a2, b3) -+ c2, f(a3, b3) -' c3} because these two rules 

are the only ones with instances, in X. Now, both of the rules in X are consistent with X, 

and soFis updated to {f(x,bl) - cl,f(x,b2) -' c2,f(a2,b3) - c2,f(a3,b3) -+ c3} 

and S is updated to 0. ID3 terminates and returns F as its final result. 

6.1.2 Prism and Induct as Specialization Algorithms 

Prism.(Cendrowska, 1988) improves upon ID3 to create a more general set of rules. While 

ID3 maintains a set of rules that are specialized simultaneously, Prism specializes only a 

single rule at a time. The final specialization is produced one rule at a time rather than all 

at once like ID3. This allows each specialization, a single rule, to be evaluated on its own 

merits rather than in combination with other rules. Figure 6.2 shows the Prism algorithm. 

This time, the naive rule specialization operator, Nspec(r, V), is used rather than the naive 

rule set specialization operator, Nspec(S, V). 

This algorithm considers each class one at a time; 11)3 considers them all concurrently. 

It sets the most general rule possible for a class and finds the best specialization of it that is 

consistent with the examples not yet covered by a generated rule for the class. 
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PRISM Algorithm. 

Input: X - example set 

C - set of classes (ci, C2, ...' Cm). 

F=O 
SavedX = X 
while (more unprocessed classes) { 

choose unprocessed c E C; mark it as processed 

X = SavedX 
while(s has instances in X) { 

while (-iConsistent({s}, X)). 

{s} =Best({{r}Ir E UNspec(s,V)},X) 
Remove instances of s from X. 
F=FU{s} 

s=f(x1,x2,...,x)—c. 

Output: F - a set of rules 

Figure 6.2. PRISM 

Using the same example set X and set of classes C as used to demonstrate ID3, we 

illustrate the operation of PRISM. First, we choose an unprocessed class arbitrarily. This 

time let c be c1. Next, let s be the rule f(x, y) -+ ci. Since s has two instances in 

X, namely ri and r4, the second while loop is entered. We see that .s is not consistent 

with rules r2, r3 and r5 since the left hand side of s matches the left hand sides of these 

rules - for example, f(x, y) matches f(al, b2) of rule r2 - but the right hand sides 

of these rules are different from ci. Thus the innermost while loop is entered. Next, 

the union of the specializations of s is computed: U Nspec(s, {x, y}) = If (al, y) -+ 

cl,f(a2,y) -+ cl,f(a3,y) -* cl,f(x,bi) -* ci,f(x,b2) - p ci,f(x,b3) - k cl}. Then, 

one specialization is chosen from among these rules using the function Best. Prism chooses 

f(x, bi) -* ci because it covers both of rules ri and r4. Since the left hand side of this 

new s, f(x, bi), covers only the left hand sides of r  and r4, and since both of these rules 

have right hand sides ci, the specialization s is now consistent with X. The inner while 

loop is exited, r  and r4 are removed from X leaving X = {r2, r3, r5}, and F is updated 
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to {f(x, bl) -* cl}. s is reset to the general rule f(x, y) -+ ci. Now s no longer has 

any instances in the updated X, so the second while loop is exited. We choose another 

unprocessed c. Suppose the algorithm chooses c2. This pass through the loop produces two 

rules If (x, b2) - p c2, f(a2, y) - c2} which are added to F. The last pass, using c = c3, 

produces the rule f(a3, y) -* 6. At the very end, after the three classes have been processed, 

Fis the set of rules {f(x,bl) -+ cl,f(x,b2) -* c2,f(a2,y) -+ c2,f(a3,y) - c3}. 

The Induct algorithm (Gaines, 1991) is similar except that X is not reset to the original 

set of examples on each pass through the outer while loop. In this example, Induct would 

produce: {f(x,bl) - ci, f(x,b2) -* c2, f(x,y) -+ c3}. It also uses a different 

formulation of the Best function, but the difference is not relevant to basic classification 

learning. 

6.2 Cigol 

The Cigol system (Muggleton & Buntine, 1988) adopts a similar approach to the theorem 

generation of Balog/AMP. While Balog/AMP inverts narrowing, since its representation 

language is equational theories, Cigol inverts Horn clause resolution, since it generates 

Prolog programs. Another difference is that no semantics is given for Cigol's operators. 

Nevertheless, we can describe its operators in terms of the theory developed in this thesis. 

However, conditional rewrite systems must first be reviewed to facilitate the explanation of 

Cigol's operators. 

6.2.1 Conditional rewrite systems 

Dealing with conditionals in basic term rewriting systems has been a major problem for 

theorem proving researchers (Kaplan, 1984). Instead of modifying the syntax of term 

rewriting systems, we can introduce a function, if, that acts like a conditional: 

jf(true,x,y) - x 

fl.f'alse,x,y) -4 y 
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Unfortunately, this method results in inefficient theorem proving since the first argument is 

not always evaluated first' resulting in the evaluation of x or y or both. It is also undesirable 

for theorem generation for a few reasons. Since the right hand side of both rules is a variable, 

it can be used to widen any rule at any subterm in the rule. Also, widening with these rules 

introduces new variables. 

The most popular method of handling conditionals has been to use conditional rewrite 

rules. These are basic rewrite rules with a conditional part added on. 

Li -+ R14= C1  C2 A ... A Cn 

Before Li is allowed to rewrite to Ri, all of Cl to Cm will have to first be rewritten to the 

constant function symbol true. 

While conditional rules are more convenient to use than basic rewrite rules, they are 

no more expressive. It is always possible to write a set of conditional rules as a set of rules 

without conditions (Zhang, 1988). 

To extend antiunification to conditional rules, it is necessary to specify how the condi-

tional part of the rule is to be generalized. Basically, given two conditional rules, conjuncts 

that are not common to both rules are dropped, and common conjuncts are antiunified. Also, 

subterms that are antiunified to variables in the rewrite part of the conditional rule that also 

occur in the conditional part may need to be assigned to the same variables in the general-

ization. For example, antiunifying 1(a) - 4b = g(a) and f(c) -+ b <= g(e) should produce 
the antiunification f(x) -+ b = g(x) rather than 1(x) - b = g(y). To develop a correct 

antiunification method for conditional rules is not difficult, but requires a treatment beyond 

the scope of this thesis. 

'Lazy evaluation methods must be employed to force execution of the first argument of an if term before its 
other arguments. 
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6.2.2 Operators in Cigol 

There are three main operators in Cigol: the truncation operator, the absorption operator 

and the intraconstruction operator. The truncation operator is simply the term antiunification 

operator2. 

To describe the absorption operator in terms of our theory, we will first require 

functions to convert between clause form and term form. Assume that these have 

been developed such that Termzfy({p(x), - q(x), -lr(x)}) = clause(p(x), q(x), r(x)) and 

Clausfy(clause(p(x), q(x), r(x))) = {p(x), -ig(x), - lr(x)}. 

Absorption 
C = {t1, —'t2, —it3... --it} (a Horn clause) 
{s} (a unit clause) 

Clausfy(c I a) 
where c = Termfy(C U {-'s}Oi) 

Domain(a) C: Pos(c) - {e} 
Oj =Match(ti,$) 

Using this formulation, we immediately see that the absorption operator computes antiappli-

cations. In general, there will be more than one, since the clause c will in general have many 

positions in which constants can be replaced with variables. 

The intra-construction operator is the operator that does constructive induction in Cigol. 

For our presentation here, we simply convert Cigol's Horn clauses into conditional rewrite 

rules. Zhang (1988) developed an algorithm for doing this. Then the operator can be defined 

as follows: 

2This illustrates the contention of Chapter 1 that a common language for these issues has not been developed 
or used. 
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intra-construction operator 
pi true qA q2 A ... A qm 
P2 - true = rl A r2 A ... A rm 

p - true = A A f 
tO1 - true 
tO2 true 

where p = Au(pj,p2),Oi = Mgu(pi,p),02 = Mgu(p2,p) 
A=riA ... rm AqiA ... qn 

t1(Vi,...,Vm) 

V = U Domain(0) 
{v,... ,vm } = V - {vv € V;Vars(v0) 

Range(0) - {vO} for  = 1 on j = 2} 

The symbol f is the newly constructed function of arity m. The contruction of {v1,.. . , Vm} 

ensures that f is kept as simple as possible (smallest possible arity). The terms ex-

cluded from V are those that do not change in different instantiations of f. Applying 

the intra-construction operator to the rules min(x, s(x).y) - true .= min(x, y) and 

min(x, s(s(x)).y) -+ true <-- min(x, y) results in the set of rules {min(x, z.y) - true 

min(x, y) A f(x, z), f(x, s(x)) -* true, f(x, s(.s(x))) - true}. Note that the construction 

of f did not include a place for y, since y is irrelevant to what makes min( -v, s(x).y) and 
min(x, s(s(x)).y) different. The constructed function in this case, f, is the common less 
than (<) function. 

6.3 Other Systems 

There are several other important machine learning systems. Unfortunately, investigating all 

of them in terms of the theory in this thesis would require a lengthy treatise. Nonetheless, a 

few comments on some of these would be interesting. 

Marvin (Sammut & Banerji, 1986) and Alvin (Krawchuk & Witten, 1988) are systems 

that learn Horn clauses by asking a teacher questions. The process of generating questions 

can be viewed as hypothesis specialization and might be described by using a form of the Spec 

operator. Direct questioning in Alvin can be seen as the presenting of a set of specializations, 
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ack(O,O) -> 1 

ack(O,1) -> 2 

ack(O,m) -> s(m) ack(1,O) -> 2 

ack(s(n),O) -> ack(n,1) ack(1,1) -> 3 

ack(s(n),s(m)) -> ack(n,ack(s(n),m)) ack(1,2) -> 4 

ack(2,O) -> 3 

ack(2,1) -> 5 

Figure 6.3. Ackermann's function and examples needed to generate it 

whereas the indirect questioning style of both Alvin and Marvin can be seen as presenting 

single specializations. The crucial objects of Alvin can be seen as specializations unique to the 

hypothesis being tested (no other hypotheses would have these particular specializations). 

Both Marvin and Alvin use elaboration as one of their central algorithms. It might be 

described in terms of some form of the widening operator. 

Version spaces (Mitchell, 1982) are simply lattices of rules. We might provide a general 

semantics for these spaces by simply stating that a version space is the lattice of prudent 

theorems under the prudent modelling relation. This would be a very general statement 

provided that we port the notion of prudent theorems to representation systems other than 

term rewriting systems. The candidate elimination algorithm for learning in version spaces 

can be seen as doing specialization of its G sets, and antinarrowing of its S sets. 

MIS, the Model Inference System (Shapiro, 1983), learns Prolog programs through a 

process of directed (by a teacher) specialization with respect to negative examples. Shapiro 

provides a semantics of the process as being (standard) model identification. It would be 

interesting to apply his methods to non-standard models. 

Finally, function induction systems might also be described in terms of this theory. In 

particular, the building of expressions can be seen as an application of antinarrowing. Indeed, 

the term rewriting system learning developed in this thesis can directly provide both model-

theoretic and operational semantics to many function induction systems. In fact, Balog can be 

seen as a way of inducing general recursive functions. For example, Balog/AMP generates 

the celebrated Ackermann's function when given the seven simplest examples of it. The 

function and the required examples are given in Figure 6.3. 
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Conclusions 

This thesis has 

• described induction; 

• introduced a model theoretic semantics; 

• produced some proof and generation methods for induction; 

• developed programs for induction; 

• described existing programs for induction. 

In this final chapter, we summarize how the problems presented in Chapter 1 have been 

addressed. Recall the first problem: 

Problem 1. What is meant by the term "induction"? More precisely, how can induction 

be formalized in logic in a clear way, capturing the intended meaning of machine learning 

and automated theorem proving researchers? 

The semantics of Chapter 2 provided a solution to this problem. When we say that 

a system is doing "induction", we can say instead that it generates inductivelike theorems. 

Induction as conceived by theorem proving researchers was captured by noting that they 

prove theorems in the IND class - that is, theorems defined with inductivelike modelling 

over standard models and using total justification. A particular type of inductive proof 

called cover set induction was reviewed in Chapter 3. On the other hand, machine learning 

aims at generating prudent theorems, although most systems so far have only investigated 

ampliative ones. Ampliation, that is, induction over statements whose truth is not known, was 

given a model theoretic semantics by the development of the class of ampliative theorems 

(AMP). Ignoration, that is, induction despite noise, is embodied in ignorative theorems 

(IGN). Prudent induction, or induction despite noise and unknown values, is embodied in 

119 
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prudent theorems (PRU). In the development of these classes, two new truth values, namely 

underdetermined and overdetermined, were introduced so that statements whose truth values 

are not determined to be true or false could be manipulated explicitly within a logical setting. 

By also applying preferencing techniques that are used in the study of nonmonotonic logics, 

these classes of theorems were given a precise semantics. 

Problem 2. How can inductive theorems be generated? Can some existing theorem 

proving techniques be adapted to generate theorems? In particular, how might such theorems 

be generated in an equational theory? 

Chapter 4 dealt with this problem in detail. The general idea was to reverse theorem 

proving techniques to obtain corresponding generation techniques. From term unifica-

tioñ and substitution application, term antiunification and antiapplication were developed. 

Rewriting was reversed to obtain expansion. Equational unification was reversed to obtain 

E-antiunification for use with explicit background theories. Narrowing was reversed to ob-

tain añtinarrowing which can be used with implicit background theories. To generate all 

biexemplar justified theorems, not just the strictly biexemplar justified ones, the complete 

antinarrowing operator was designed. Next, cover set induction was reversed to obtain 

the.inductive antinarrowing operator for generating inductive theorems. Finally, specializa-

tion was formalized and shown to be an inverse of antiunification. Specialization, together 

with inconsistent complete antinarrowing were suggested to be complete for generating a 

restricted subclass of prudent theorems. By using these operators, it becomes possible to 

generate inductivelike theorems. 

Specific algorithms employing these operators were presented in Chapter 5. These 

included the use of antinarrowing in Balog/AMP and Balog/PRU, and rule antiunification 

in Balog/C and Balog/CD. By using antinarrowing and specialization, Balog[IND gener-

ated ampliative theorems and then tested them for inductive theoremhood using cover set 

induction as an alternative to using the inductive antinarrowing operator. In Chapter 5, we 

also developed some heuristics to choose interesting theorems from among the generated 

theorems. In Chapter 6, we showed that the theorems generated by other machine learning 

programs could be seen as using rule speèialization, antinarrowing, or antiapplication. 
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Hopefully, the broad theory presented in this thesis aids the description of the plethora 

of approaches in machine learning and adds to the much-needed research on theorem finding. 



Bibliography 

Angluin, D. & Smith, C. ( 1983). Inductive inference: theory and methods. Computing 
Surveys, 15(3), 237-269. 

Aristotle (1928). Prior analytics. In D. Ross (Ed.), The Works of Aristotle, volume 1. 
Oxford, UK: Oxford Press. 

Avenhaus, J. & Madlener, K. (1990). Term rewriting and equational reasoning. In 
R. Banerji (Ed.), Formal Techniques in Artificial Intelligence. A Sourcebook. Elsevier 
Science. 

Belnap, N. (1975). A useful four-valued logic. In J. Dunn & G. Epstein (Eds.), 
Modern uses of multiple-valued logic (pp. 8-37): D. Reidel. 

Boyer, R. & Moore, J. (1979). A computational logic. New York: Academic Press. 

Buntine, W. (1987). Induction of horn clauses: methods and the plausible generaliza-
tion algorithm, mt. J. Man Machine Studies, 26, 499-5 19. 

Burstall, R. (1969). Proving properties of programs by structural induction. The 
Computer Journal, 12 (1), 41-48. 

Carnap, R. (1962). Logical Foundations of Probability. Chicago, IL: Chicago Uni-
versity Press. 

Cendrowska, J. (1987). Prism: An algorithm for inducing modular rules. Int. J. Man 
Machine Studies, 27, 349-370. 

Dershowitz, N. (1982). Orderings for term rewriting systems. J. Theoretical Comp. 
Sci., 17, 279-310. 

Dershowitz, N. & Sivakumar, G. (1989). Goal-directed equation solving. In Proc. of 
the 7th Natl. Conf. on Artificial Intelligence, (pp. 166-170)., San Mateo, CA. Morgan 
Kaufmann. 

Dietterich, T. & Michalski, R. ( 1986). Learning to predict sequences. In R. Michalski, 
J. Carbonell, & T. Mitchell (Eds.), Machine Learning: An Artificial Intelligence 

Approach Vol 2 (pp. 63-106). Los Altos, CA: Morgan Kaufmann. 

Fitting, M. (1990). First-order logic and automated theorem proving. New York: 
Springer Verlag. 

Gaines, B. ( 1991). The tradeoff between knowledge and data in knowledge acqui-
sition. In J. Boose & B. Gaines (Eds.), Knowledge Discovery in Data Bases. AAAI 
Press. 

122 



Chapter 7: Bibliography 123 

Genesereth, M. & Nilsson, N. ( 1987). Logical Foundations of Artificial Intelligence. 
Los Altos, CA: Morgan Kaufmann. 

Heise, R. (1989). Demonstration instead of programming: focussing attention in robot 
task acquisition. Master's thesis, University of Calgary, Calgary, AB, Canada. 

Heift, N. (1989). Induction as nonmonotonic inference. In R. Brachman, H. Levesque, 
& R. Reiter (Eds.), Proceedings of the First Intl. Confi on Principles of Knowledge 
Representation and Reasoning (pp. 149-156). San Mateo, CA: Morgan Kaufmann. 

Hintikka (1964). Towards a theory of induction generalization. In mt. Congress for 
Logic Methodology and Philosophy of Science, (pp. 47-90). North-Holland. 

Hsiang, H. (1986). Theorem Proving and Program Generation. PhD thesis, Yale, 
Cambridge, MA. 

Huet, G. & Oppen, D. (1980). Equations and rewrite rules: a survey. In R. Book 
(Ed.), Formal Languages: Perspectives and Open Problems (pp. 349-405). Academic 
Press. 

Hullot, J. (1980). Canonical forms and unification. In Bibel, W. & Kowalski, R. 
(Eds.), 5th Conf. on Automated Deduction, volume 87 (Lecture Notes in Computer' 

Science), (pp. 318-334)., Berlin. Springer Verlag. 

Kaplan, S. ( 1984). Conditional rewrite rules. J. of Theoretical Comp. Sci., 33, 175-
193. 

Kapur, D. & Musser, D. (1987). Proof by consistency. Artificial Intelligence, 31, 
125-57. 

Kapur, D. & Narendran, P. (1985). An equational logic approach to theorem prov-
ing in first-order predicate calculus. Technical report, General Electric Company, 

Schenectady, NY: GE Corporate Reaseach and Development. 

Knuth, D. & Bendix, P. (1970). Simple word problems in universal algebras. In 
R. Leech (Ed.), Computational Problems in Abstract Algebra (pp. 263-297). Perga-
mon Press. 

Kodratoff, Y. (1988). Introduction to Machine Learning. London: Pitman. 

Kolmogorov, A. (1965). Three approaches to the quantitative definition of informa-
tion. Prob. Inf. Trans, 1, 1-7. 

Krawchuk, B. & Witten, I. (1988). On asking the right questions. In Proc Fifth mt. 
Conference on Machine Learning, (pp. 15-21)., San Mateo, CA. Morgan Kaufmann. 



Chapter 7: Bibliography 124 

Krawchuk, B. & Witten, I. (1989). Explanation based learning: a problem solving 
approach. J. Experimental and Theoretical Artificial Intelligence, 1(1), 44-72. 

Langholm, T. ( 1988). Partiality, Truth and Persistence. Stanford, CA: Center for the 
Study of Language and Information. 

Lankford, D. ( 1981). A simple explanation of inductionless induction. In Mechanical 
Theorem Proving, volume 14, Ruston, LA. Louisiana Tech University. 

Lassez, J., Maher, M., & Marriott, K. ( 1987). Unification revisited. In Eighth Int. 
Conf. on Automated Deduction, (pp. 67-113)., Berlin. Springer Verlag. 

Lassez, J. & Marriott, K. (1987). Explicit representation of terms defined by counter 

examples. J. of Automated Reasoning, 3, 301-318. 

Lloyd, J. ( 1984). Foundations of logic programming. Berlin: Springer Verlag. 

Maulsby, D. L. & Witten, I. H. ( 1989). Inducing programs in a direct-manipulation 

environment. In Human factors in computing systems: Proc. CHI '89, (pp. 57-62)., 
Austin, Texas. 

McCarthy, J. ( 1980). Circumscription - a form of non-monotonic reasoning. Artificial 
Intelligence, 13, 27-39. 

Michalski, R. (1983). A theory and methodology of inductive learning. Artificial 
Intelligence, 20, 111-161. 

Mitchell, T. (1982). Generalization as search. Artificial Intelligence, 18, 203-226. 

Mitchell, T., Keller, R., & Kedar-Cabelli, S. ( 1986). Explanation-based generalization: 
a unifying view. Machine Learning, 1(1), 47-80. 

Muggleton, S. & Buntine, W. (1988). Machine invention of first order predicates by 

inverting resolution. In Laird, J. (Ed.), Fifth Int. Conf. on Machine Learning, (pp. 
339-352)., San Mateo, CA. Morgan Kaufmann. 

Phan, T. ( 1989). Equal value search. Master's thesis, University of Calgary, Calgary, 
AB, Canada 

Plotkin, G. (1970). A note on inductive generalization. Machine Intelligence, 5, 
153-163. 

Plotkin, G. ( 1971). A further note on inductive generalization. Machine Intelligence, 
6,101-124. 

Popplestone, R. (1970). An experiment in automatic induction. Machine Intelligence, 
5,203-215. 



Chapter 7: Bibliography 125 

Quinlan, R. ( 1986). Induction of decision trees. Machine Learning, 1(1), 81-106. 

Quinlan, R. ( 1987). Generating production rules from decision trees. Int. Joint Conf. 
on Artificial Intelligence, 1. 

Rescher, N. & Brandom, R. ( 1979). The logic of inconsistency. Totowa, New Jersey: 
Rowman and Littlefield. 

Rety, P. (1987). Improving basic narrowing techniques. In Rewriting Techniques and 
Applications, (pp. 228-241)., Berlin. Springer Verlag. 

Sammut, C. & Banerji, R. (1986). Learning concepts by asking questions. In 
R. Michalski, J. Carbonell, & T. Mitchell (Eds.), Machine Learning: an Artificial 

Intelligence Approach Vol 2 (pp. 167-192). Los Altos, CA: Morgan Kaufmann. 

Shapiro, E. ( 1983). Algorithmic Program Debugging. PhD thesis, Yale, Cambridge, 
MA. 

Shoham, Y. (1988). Reasoning about change. Cambridge, MA: MIT Press. 

Skyrms, B. ( 1975). Choice and Chance: An Introduction to Inductive Logic. Oxford, 
UK: Oxford Press. 

Vere, S. (1977). Induction of relational productions in the presence of background 

information. In mt. Joint Conf. on Artificial Intelligence, (pp. 349-355)., Cambridge, 
MA. Morgan Kaufmann. 

Vere, S. ( 1980). Multilevel counterfactuals for generalizations of relational concepts 
and productions. Artificial Intelligence, 14, 139-164. 

Von Wright, G. (1957). The Logical Problem ofInduction. Oxford, UK: Oxford Press. 

Wos, L. (1988). Automated Reasoning: 33 Basic Research Problems. Englewood 
Cliffs, New Jersey: Prentice Hall. 

Zhang, H. Kapur, D. & Krishnamoorthy, M. (1988). A mechanizable induction 
principle for equational specifications. In Lusk, B. & Overbeek, R. (Eds.), 9th Conf. 

on Automated Deduction, (pp. 162-181)., Berlin. Springer Verlag. 

Zhang, H. (1988). Reduction, Superposition and Induction: Automated Reasoning in 

an Equational Logic". PhD thesis, University of Iowa. 



Appendix A 

Proofs 

Proposition 2.1 Let S be the set of all standard models, let U be all underdetermined models, 

let 0 be all overdetermined models, and let F be all full models of a negationless theory S. 
Then SCUCF and SCOCF 

Proof. We will show S C U. Proof of the other containments are analogous to this proof and 

pose no extra difficulty. First, choose a model M 3 E S. We need only show that M 3 E U. 

Now, the models in S are different than those in U, since the truth mapping of the former, 7; 
is two-valued, while that of the latter, 7, is three-valued. However, some models in U only 

map statements to T and F. So M 3 E U means that there is an underdetermined model M 3 
whose three-valued truth mapping that looks like a two-valued one in this way. 

Now, we can construct an undetermined interpretation M from M 3 such that the 
everything is the same, including the equational truth mapping, that is G3(e) = G(e), but 
the three valued truth mapping 2 is used instead of 7;. To show that M is a model, we 
need only show that if 7;(w) = T then 7'(w) = T for all w. That is, we need to show that 

true things in the standard model are still true in the underdetermined one. Since the domain 
mapping function /C is the same in M 3 and M, we really only need to show that T2 (w) = T 
implies T3(w) = T. 

By each considering each possible syntactic form (except negation) of w, it will be 
shown that when w is T using 7; (see Figure 2.2), then w must also be true using 7; (see 
Figure 2.6). For each syntactic case, assume 7;(w) = T. Also, as an inductive hypothesis 
assume the proposition is true for W, A and B. That is, 7;(W) = T = 7;(W) = T, 

A)=T='.T3(A)=T, and 7;(B)=T= .7;(B)=T. 

Case 1 (Base Case): w E Eqns(D). Since 7;(w) = T is assumed, G3(w) T. But since 

G3 = G, it directly follows that 7;(w) = T. 

Case 2: w A A B. Since w is true under 7;, both A and B are true under 7;, and from the 
inductive hypothesis they are also true under 7;. But then the three valued definition of A 
(Figure 2.3b) must assign w to true. So w is also true under 7;. 

Case 3: w AVB. Since w is true under 7;, one ofAand B are true under 7;, and from the 
inductive hypothesis one is true under 7;. But then the three valued definition of V (Figure 
2.3b) must assign w to true. So w is also true under 7;. 

Case 4: w x W. Since w is true under 7;, 3d E DType() such that 7;(W{x/d}) = T. 
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Since W{x/d} is an instance of W, it is true when W is true. But by the inductive hypothesis, 
W is true under T3, and so W{x/d} is also true in T3. But then w must also be true in T3. 

Case 5: w Vx W. Since w is true under T2, Vd € D pe(x), T2(W{x/d}) = T. Since all 
W{x/d} are instances of W, they are true when W is true. But by the inductive hypothesis, 

T3(W) = T so T3(W{x/d}) = T. But then w must also be true under T3. 

Thus, regardless of the form of w, something true in M 3 will be true in M. Therefore 
M 3 E U, and then S C U. The other inclusions pose no extra difficulties, except that x must 
be considered as well as T when considering 0 ç F. 

Lemma 2.1 Let S be the set of all standard models, let A be all avoidant preferred models, 
let K be all uncommitted preferred models, and let P be all uncommitted avoidant preferred 

models of a negationless theory S. Then S C A C P and S C K C P. 

Proof. Consider that P is the set of all preferred full models under the uncommitted avoidant 
preference relation E ><. Proposition 2.1 shows that all undetermined models are full models. 
However, using E >< to prefer certain underdetermined models is exactly equivalent to using 
E on them since there are no x truth values in underdetermined models. Since A is the set 
of preferred underdetermined models with c and equivalently, the set preferred full models 

with c><, A C P. Similar considerations prove the other subset relations. 

Proposition 2.2 IND(S) ç AMP(S) ç PRU(S) and IND(S) 9 IGN(S) ç PRU(S) 
for a negationless theory S. 

Proof. Suppose S E IND(S) and M is a standard model of S. Then Lemma 2.1 shows that 

M is also an uncommitted preferred model, an avoidant preferred model, and an uncommitted 
avoidant preferred model of S. Also, M is an inductive modelling of IND(S) (from the 
definition of inductive theorem). To show IND(S) ç AMP(S) it is required that M is also 

an ampliative modelling of S. But since M is an underdetermined model, we need only show 

that S is biexemplary justified in M. But since S E IND(S), S must be totally justified, 
and since anything totally justified is biexemplary justified, S is biexemplary justified as 

well. The remainder of the subset relations follow from Lemma 2.1 and the fact that S is 
biexemplary justified in M when it is totally justified. 

Lemma 3.1 (Hullot, 1980) Let S be an equational theory 5, R be a term rewriting system 

that is complete in 5, and s and t be two terms. The set of all solutions of a narrowing 
derivation of s = t is complete. 

Proof. (Hullot, 1980). 

Proposition 3.1 Let S be an equational theory and R be a term rewriting system that is 

complete in S. Then narrowing on R is a complete procedure for proving theorems in 

DED(S), ifS is conjunctionless and negationless. 
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Proof. First note that before proving a theorem S, that all of its universal variables will 
have been skolemized out. Then that only leaves disjuncts, each of which have existentially 
quantified variables. We then apply Hullot's Lemma to each disjunct in turn. Since the 
whole theorem is true, at least one of its disjuncts will be true. Since the Lemma says that 
narrowing returns all solutions for existential variables in a disjunct, then if there is at least 

one solution, then narrowing will return it for a particular disjunct, and the whole theorem 
will be proven at that point. 

Proposition 3.2 Completion and narrowing together are complete for proving theorems in 
DED(S), for completable theories S. 

Proof. A completion procedure produces a complete term rewriting system for a completable 
theory. So Proposition 3.1 can be applied. 

Proposition 4.1 Suppose s and t are terms and a is the antiunifi cation of s and t, that is, a = 
Au(s,t). IfMgu(a,$) = {VI/S1,V2/S2,...,Vm/Sm } then /3 = Msa(s,t) = { Pos(vi,a)/vi, 
... ,Pos(vm ,a)/vm ,} 

Proof. To start, we assume Lassez, Maher and Marriott's (1987) proof that their algorithm, 

Au(s, t), produces s T Msa(s, t). To prove the relationship between Msa and Mgu given by 
this proposition, we must first show that ,8 is an antisubstitution and that it is a most specific 
one. First, /3 is composed of antibindings (eg. Pos(vi, a)/vi). Also, Pos(v, a) and Pos(v, a) 

does not contain common positions since that would imply two different variables occupy 

the same position in a. So /3 is a disjoint antibinding. Since each position in a is a position in 
s, 8 is relevant to s. Also, the positions in /3 are also positions in t, because those positions 
are the places at which there are conflicts between s and t, and variables produced in a by 

the Au operator. So /3 is relevant to t as well and can be antiapplied to t to produce a; Then 
t /3 = a = s /3 implies that /3 is an antiunifier. 

Now suppose that 8 is not the most specific antiunifier of s and t. Then there is an 
a = IQ, /ui, . . . , Q/u} and a proper substitution 9 = {vi /Mb . . . , vj/m,} such that 

s I a (s I a)O. Then if f = (s/Pos(v, s))/E and g = (t/Pos(v, s))/€, then f 54 g. But 
Au(f(...), g( ... )) is always a variable and mi is not a variable (since 9isa proper substitution), 
and so the variable vi would have been at that position in a, not m. This contradiction shows 
that /3 must be the most specific antiunifier. 

Proposition 4.2 Define Au(S) to be the antiunificand of a set of terms S computed by 

Au(S) =Au(si,Au(s2, . . .,Au(s,_i, sn))) for s s, 1 ≤ i,j ≤ n where ISI = n. Au(S) 
is independent of the order of application of the pairwise Au function. Similarly, define 
Msa(S) to be the most specific antiunifler of a set of terms S computed by Msa(S) = 
Msa(si,Msa(52,. . .,Msa(S,-1, sn))). Msa(S) is also independent of the order of application 

of the pairwise Msa function. 

Proof. The proof of the Au case is by induction on the length of S. Base case: Suppose 1St 
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= 2 and {Si, S21. Then we must prove the commutativity of Au, namely that Au(si, 82) 

Au(s2, Si). Consider the algorithm to compute Au in Section 4.1.1. When S1 s2, s1 
will be returned whether it is given as the first or second argument to Au. If the terms do 
not match at their root function symbol, then either the variable v. 1,32 or the variable v32,31 

is returned, depending on the order of arguments to Au. If s1 and s2 are subterms in two 
different positions of terms s and t respectively, then the same variable should be produced 
for both positions. This is accomplished by the second condition of the algorithm, which 
keeps the subterms of s as the first argument to Au. Otherwise, if they are both terms that start 
with the same function symbol, then that function is returned with a recursive application of 
Au to its arguments in each of the terms. This will be commutative if each of the applications 
of Au is commutative. Thus the pairwise Au operator is commutative. 

Inductive case: Assume the order of application is independent for a set of length n. 
Consider when ISI = n + 1. Then Au(S) = Au(si,Au(s2, . . .,Au(s_i,Au(s, s)))) 
The inductive hypothesis implies that S - {s} is independent of the order of applica-
tion of Au. Because of this, and from the commutativity of the pairwise Au operator, 

Au(S) =Au(Au(S - {s}), s) =Au(s,Au(S - {s})). This means any element of S can be 
chosen first to be the first argument of the pairwise Au operator, and so the proposition is true 

for lSl=n+las well. 

By the principle of mathematical induction, the setwise Au operator can use the pairwise 

Au operator to compute Au(S), without needing to pairwise antiunify them in any particular 
order. By Proposition 4. 1, this result extends to the Mgu operator as well. 

Proposition 4.3 Expansion Soundness Suppose that R is a complete term rewriting system 

for the equational theory S. If e E DED(E) and r E R, then Ex(e, r) € DED(S). 

Proof. Let e L1 = R1 and r L2 - R2 and suppose that e is expanded on the term L1 at 

position u with matching substitution 9 to obtain the equation Ex(e, r) L1 [u - L2]9 = R1. 

Suppose that this equation is false. Then L1 [u - L29] = L1 must also be false since 
R1 = L1. Since the only position at which L1 [u - L29} and L1 are different is u, then 

(Li [u i-  L2]9)/u Lj/u. Also, L29 54 Lj/u (since t[u - s]/u = s for all s, t, u) and 
R29 0 Li/u (since L2 = R2) and R29 54 Gnd(Li/u)9. But this means R2 and Gnd(Li/u) 

are not unifiable. This contradictorily means that L1 could not have been expanded by r at 
position u. Thus Ex(e, r) must be true. 

Proposition 4.4 Expansion Completeness Suppose that R is a complete term rewriting 

system for the equational theory S. Then (a = b) E DED() implies that 2t (a = b) E 
Exrules(t -* t, R). 

Proof. Term rewriting proves an equation by reducing each side to its normal form to see 
if they are identical. That is, (a = b) € DED(S) = NJ(a, R) Nf(b, R) if R is complete 

in e. We must show that a = b is an expansion of this unique normal form, which we call 
t in the proposition. Equivalently, we just need to show that p - q via R if p =Ex(q, R) 
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since Nf uses only reduction steps and Exrules uses only expansion steps. Suppose that 
p - q. Then q = p[u - R]9 = p[u - R9] where p EPos(q), 9 =Match(t/'a, Li), and 

Ri E R. By using the same 9 and position u in the expansion case, we get that 
p = q[u L]9 = q[u - L9]. We check that expanding p then reducing back obtains p 
again. p = q[u - L9] and by substituting out q. p = (p[u - RO])[u - LEO]. Since 
(t['u - S11) [U - s2] = t['u - sj]), then p = p[u - R9]. But the position at u in p is exactly 
R9, otherwise no match would have occurred. So p[u - R9] is p itself and expanding, then 
reducing, obtains the same term. Similarly, q = p['u - R10J = (q[u +- L9])[u - R9] = 
q[u - L9] = q. So p - q via R if p = Ex(q, R) and thus the proposition holds. 

Proposition 4.5 

1. IfS=Sp(g) and IS I > l then Au(S)=g 

2. Sp(Au({g9i ... gO})) = {{gOi ... gO}} if {O, ...9} is a most general complete spe-
cializer of g. 

Proof. (1) Suppose S = Sp(g) and ISI > 1. Then S = {g9} for Oi = {x/c1} where 

x E Vars(g) and C = {ci, ..., c} is a most general cover set for the type of x. But each 
term in C must be rooted with a different function symbol, that is c/€ Ck/6 (otherwise 
c/e(xj, ..., x), where n is the arity of c/€, could replace both c3 and ck in C making an 

even more general cover set). But then Au(C) is a variable which can be renamed to x. Thus, 
Au(S) is the term g (up to variable renaming). 

(2) Suppose {9, ...9} is a most general complete specializer of g. Consider some xilti E O. 
There is an xx j/ltt j E Oj where xi = x. If this were not the case, then xxi/ti i lti could be removed 
from Oi to obtain a more general specializer. Also t/€ 54 t/€ otherwise x/(t/€(v1, ..., 

where n is the arity of t/e, could replace xi /ti and xj Itj to obtain a more general specializer. 
But since tj/6 0 t/E, Au will replace ti and tj with a variable which can be renamed to x2. 

Thus, Au({ g9i ...g9}) = g (up to variable renaming). 

Now suppose Sp(Au({gOi ... g9})) = {{g01 ... g9}}. Consider if 101,...O,, } were not 
a most general complete specializer of g. Then there is a most general specializer of g 

where m < n such that each g9j = g'y8j for some i. But then, Sp would have 
generated gj instead of gOj since Sp generates the most general instances of a term. Thus 
case (2) holds. 

Proposition 4.6 Rule specialization is not an ampliatively sound operator That is, r e 
AMP(R) # Vs, s ESpec(r, R) = S E AMP(R) 

Proof. We show this by a counter example. Suppose R = If (a) -* c, f(b) -+ c}. Then 
r = f(x) -* c is an inductive theorem of R. But the rule 1(c) - f c is a specialization of e, 

yet is not an ampliative theorem of R. 
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Proposition 4.7 Rule specialization is an inductively sound operator That is, r E 
IND(R) ' Vs, s Spec(r, R) $ € IND(')(R) 

Proof. Suppose r is an inductive theorem. Then it is cover set justified, that is, each of its 
instances are deductive or inductive theorems. No matter which cover set was used to justify 
r, the most general cover set C can also be used to justify r. Then for all c E C, r{x/c} must 
be a deductive or inductive theorem of R. But a maximal complete specialization is a set of 
rules formed from C, so s = r{x/c} for some c E C. Then s is a deductive or inductive 
theorem of R. 

Lemma 4.1 If e is a conjunctive universal prudent theorem of a theory 6 with ground axioms 

R, then for each conjunct c of e, c E A where A = {ala E Rau(S) where S C Eau(R)J. 

Proof. If c is a prudent theorem, then it must be biexemplar justified, that is, there are at 
least two gi = cOi such that each gi is true or biexemplar justified in all models. Then, 
from expansion completeness (Proposition 4.4), gi must also be in Exterms(R) if it is true, 
or in Eau(R) if only biexemplar justified. Furthermore, from the definition of biexemplar 
justification, all gi are most general terms that are "different" enough from each other so that 
Rau({g2}) = e. So c E A. 

Proposition 4.8 Prudential Completeness If e is a conjunctive negationless universal pru-

dent theorem of a prudent extension of a theory 5 with axioms R, then for each conjunct c of 
e, c E (Can(Spec(R))) 

Proof. Suppose e is a (conjunctive negationless universal) prudent theorem of a prudent 
extension S with axioms R. Then c is also a prudent theorem of e since all conjuncts of a 
prudent theorem are prudent theorems. Let E be the rules of the prudent extension of 5, and 
let P be E - R. Then P contains only prudent theorems of some extension of S smaller than 
E. We will prove this proposition by induction on the length of P. 

Consider when JPJ = 0. Spec(R) contains all specializations including R itself and 
all ground specializations of R. Then from Lemma 4.1, c E A where A = {ala E Rau(S) 
where S C Eau(Spec(R))}. But then this is the Can operator applied to Spec(R), using 
only expansions instead of all widenings. So c E (Can'(Spec(R))). 

Assume that the proposition is true for all extensions E where IPI = n, that is, that 
if c is a prudent theorem of E then c € (Can1(Spec(R))). Then consider a new extension 

= E U {p} where p is a prudent theorem of E. Then IE' - RI = n + 1. Supposing 
that c is a prudent theorem of E', then either c is a prudent theorem of E or c is a prudent 
theorem that uses p to biexemplar justify it. If the former, then by the inductive hypothesis, 

c e (Can1(Spec(R))). If the latter, then there is a set of rules Q such that Rau(Q) = c 
and there is some Pw E Q where Pw is a deductive theorem of E' (but not E). Now, 
p € (Can1(Spec(R))) by the inductive hypothesis, because p is a prudent theorem of E. But 
then Pw = Cwid(q, E U {p}) for some q E DED(E) (by expansion soundness). Then, for 
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each q E Q, including pw, q E Cwid(Spec(R)). But since c =Rau(Q), C E Can' (Spec(R))). 
By the principle of mathematical induction, the proposition holds for all sizes of P and thus 
for all prudent extensions of a theory. 


