
THE UNIVERSITY OF CALGARY

Inductive Theorem Generation

by

Brent J. Krawchuk

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF-COMPUTER SCIENCE

CALGARY, ALBERTA

DECEMBER, 1991

©Brent J. Krawchuk 1991

THE UNIVERSITY OF CALGARY

Faculty of Graduate Studies

The undersigned certify that they have read, and recommend to the Faculty of Graduate

Studies for acceptance, a thesis entitled, "Inductive Theorem Generation," submitted by

Brent J. Krawchuk in partial fulfillment of the requirements for the degree of Master of

Science.

Ian H. Witten

Supervisor

Department of Computer Science

Brian R. Gaines,

Department of Computer Science

Richard Cleve,

Department of Computer Science

Date December 2, 1991

11

h4í%
JohñU1Jeintz,

Department of Philosophy

Abstract

Machine learning and automated theorem proving are both important topics in computer

science that have attracted much attention. With few exceptions, they have been investigated

independently. This thesis explores their relationship by treating machine learning as a

process of inductive theorem generation.

Machine learning is often said to be a process of induction, and some automated theorem

proving systems are able to prove inductive theorems. However, we argue that the "concepts"

or rules created by machine learning systems belong to broader classes of induction that we

call "ampliative," "prudent," and "ignorative." While these classes are all inductivelike, they

differ in how they model noise and unknown data. They are formalized in this thesis by

developing a model theory of a four-valued non-monotonic equational logic.

The process of theorem generation is treated as a form of reverse theorem proving,

in which theorem-proving operators are inverted to yield generation operators. Within an

equational logic and term rewriting setting, antiunification is defined to be the inverse of

unification, expansion the inverse of rewriting, and antinarrowing the inverse of narrowing.

Specialization is viewed as an inverse to antiunification.

These ideas are implemented in the Balog system, a computer program that gener-

ates theorems and can emulate many well-known machine learning techniques within the

framework of automated theorem proving.

111

Acknowledgements

The people of the Department of Computer Science have made my stay at the U of C

immensely enjoyable. There are too many people that I'd like to thank so I'll just list the

first ones that pop into my head:

Rosanna Heise, Debbie Leishman, David Maulsby, Dan Freedman, Maurice Sharp, Thong

Phan, others in my office and the KSI, and all of the grad students I knew (for making the

Computer Science environment far from boring); Craig Jackson (for lending an ear to my

incoherent babbling, especially when I needed it the most); Lorraine Storey, Camille Sinanan,

and the rest of the office staff (for their great help over the years); Paliath Narendran, Graham

Birtwistle and John Cleary (for getting me onto the straight and narrow path of logic - maybe

I should curse them); Bruce MacDonald (for being a cool resource for machine learning stuff);

Brian Gaines (for his enthusiasm and for being a role model for my habit of devouring books);

Dave Jevans and David Hankinson (for sev, glagliness and uncompromising excellence);

Darse Billings (a friend who helped me escape from reality); Darrell Conklin (a friend who

helped me escape from both normality and stupidity); Ian Witten (for being "The Filter" and

for being an excellent supervisor); and several people outside the department (who made my

life interesting during this period). I especially would like to thank Mom and Dad who have

put up with far too much from me while I have been working (and not working!) on this

thesis.

I also wish to thank the person who I could not have accomplished this dissertation without:

me.

iv

Table of Contents

Signature Page ii

Abstract iii

Acknowledgements iv

List of Figures viii

1 Introduction 1

1.1 Semantics of Induction 3

1.2 Computational Induction 7

1.3 Thesis 9

1.4 Mathematical Preliminaries 10

2 Semantics for Induction 14

2.1 Interpretations and Models 15

2.2 Deduction and Induction 20

2.2.1 Deductive theorems 20

2.2.2 Inductive theorems 22

2.3 Inductivelike Theorems and Justification 24

2.3.1 Inductivelike theorems and total justification 24

2.3.2 Non-total justification 26

2.3.3 Biexemplar justification 26

2.4 Ampliation and Ignoration 27

2.4.1 The insufficiency of minimal and final models 28

2.4.2 A new ontology 29

2.4.3 Uriderdetermined and overdetermined (three-valued) models 30

2.4.4 Full (four-valued) models 32

2.4.5 Preferred models 34

V

CONTENTS vi

2.4.6 Ampliative, ignorative and prudent theorems 38

2.5 Theorems for Machine Learning 41

3 Theorem Proving Techniques 44

3.1 Term Unification 44

3.2 Term Rewriting Systems 46

3.3 Equational unification by narrowing 50

3.4 Inductive Theorem Proving 52

4 Theorem Generation Techniques 54

4.1 Reverse Unification 54

4.1.1 Term antiunification 56

4.1.2 Rule and equation antiunification 60

4.2 Reverse Term Rewriting 61

4.2.1 Term expansion 61

4.2.2 Rule expansion 62

4.3 Reverse Equational Unification 65

4.3.1 Antiunification with explicit background theory 66

4.3.2 Antinarrowing 68

4.3.3 Complete antinarrowing 71

4.3.4 Example of Antinarrowing 72

4.4 Reverse Cover Set Induction 73

4.4.1 Inductive antiunification 73

4.4.2 Inductive antinarrowing 75

4.5 Specialization 76

4.5.1 Term specialization 77

4.5.2 Rule specialization 80

4.6 Completeness 81

4.7 Summary 82

CONTENTS vii

5 Balog: Automated Theorem Generation 83

5.1 Theory Learning 86

5.1.1 Ampliative theory learning 86

5.1.2 Evaluating hypotheses 92

5.1.3 Hypothesis increment functions 94

5.2 Classification Learning 94

5.2.1 Representing classifiers as rewrite rules 95

5.2.2 Example of classification 96

5.3 Default Classification 101

5.4 Learning With Noise 105

5.5 Inductive Theorem Generation 107

6 Other Machine Learning Systems 110

6.1 Other Classification Systems 110

6.1.1 1D3 as a specialization system 111

6.1.2 Prism and Induct as Specialization Algorithms 1.12

6.2 Cigol 114

6.2.1 Conditional rewrite systems 114

6.2.2 Operators in Cigol 116

6.3. Other Systems 117

7 Conclusions 119

Bibliography . 122

A Proofs 126

List of Figures

1.1 A theory: predecessors of integers. 11

2.1 Theorem Classes in this Chapter 15

2.2 Standard Truth Mapping 18

2.3 Truth Values for Truth Connectives 19

2.4 Truth Values for Negation 20

2.5 Models of a simple theory 21

2.6 Truth Value Lattice 29

2.7 Three Valued Truth Mapping 31

2.8 Four Value Truth Mapping 33

2.9 A full model and an uncommitted avoidant preferred model 37

2.10 Equation sets that induce Vs grandmother(x) = mothermother(x)) 4Q

2.11 Some sample models 41

2.12 List of theorem types 42

2.13 An ampliative extension of a theory 43

3.1 Generation operators discussed in this chapter 45

3.2 Example of reduction. 48

3.3 Negation theory 53

4.1 Generation operators discussed in this chapter 55

4.2 Most specific antiunifiers. 58

4.3 Expansion is rewriting with rules reversed. 63

4.4 Rule expansion example. 64

4.5 Example of complete antinarrowing 74

5.1 Some functions used in Balog 84

5.2 A Balog Program: contact.b 85

vu'

5.3 The Append Function 87

5.4 An example set for inducing the Append function 87

5.5 Phase one algorithm 88

5.6 Balog/AMP after phase one on append data 89

5.7 Phase two algorithm 92

5.8 Balog/AMP: Algorithm 97

5.9 The depth zero antinarrowings the contact lens examples 98

5.9 Continued 99

5.10 Consistent antiunifications of the contact lens examples 100

5.11 Balog/C: contact lens data results 101

5.12 Balog/CD: result on contact lens data 104

5.13 Balog,PRU: Append examples with noise 105

5.14 Balog/PRU: Learning append even with noise 106

5.15 Balog/IND: Algorithm 107

5.16 Balog/IND example 108

6.1 ID3 111

6.2 PRISM 113

6.3 Ackermann's function and examples needed to generate it 118

Chapter 1

Introduction

Machine learning is an important topic in Computer Science that has attracted a great deal

of attention. This is not surprising since two research areas that have recently experienced

tremendous growth are expert systems and robotics, both of which would benefit enormously

from learning capabilities. The machine learning literature details many disparate methods

including systems for intelligent question asking (Krawchuk & Witten, 1988; Sammut &

Banerji, 1986), classification and concept learning (Quinlan, 1986; Quinlan, 1987; Gaines,

1991; Mitchell, 1982; Michalski, 1983), function induction (Phan, 1989), procedure and

sequence learning (Heise, 1989; Maulsby & Witten, 1989; Dietterich & Michalski, 1986),

and logic program synthesis (Muggleton & Buntine, 1988; Shapiro, 1983). This plethora

of approaches indicates a need for descriptive and analytical theoretical frameworks, which

should not only provide explanations of experimental research in the field but also should

stimulate new ways of looking at problems. This thesis develops one such theory.

Traditional learning theories have focussed on learnability and other primarily analytic

issues (Angluin & Smith, 1983). Unfortunately, they do not provide a simple descriptive

language suitable for straightforward comparison of machine learning approaches. This

thesis develops a logic-based theory used to explain some parts of machine learning and for

generating new machine learning algorithms. Its main insight is that computer science logic,

both semantics and proof theory, suggests a rich, well-understood basis for machine learning.

In particular, it shows first, how a non-monotonic, multi-valued logical semantics can model

induction of various types; and second, that methods of induction can be developed frim

theorem proving techniques.

The theory should help to provide a lingua franca for communication between machine

learning researchers; For example, it has long been suspected that a common unit in machine

learning systems is the process of universal generalization (see eg. Michalski, 1983; Pop-

plestone, 1970). This process has often been alluded to by vague phrases such as "replacing

constants by variables." Also, machine learning researchers will often say that their systems

1

Chapter 1: Introduction 2

are doing "induction," a term which has been grossly abused as a catch-all to refer to very

different things. These phrases undoubtedly need clarification - and this will follow directly

from the logical framework developed in this thesis.

It is taken for granted here that the description languages used by machine learning

systems can be encoded straightforwardly as logical formulae. It follows naturally from

this assumption that the object of machine learning is to generate theorems. This topic is

also of interest to automated theorem proving; Wos (1988) includes theorem finding in a

list of crucial research problems in the field. Unfortunately, Wos's discussion refers only to

deductive theorems. Machine learning strives to create other types of theorem, including

inductive ones.

What type of logic should be chosen for this endeavor? For some applications (like logic

programming), it would be most natural to use first order predicate calculus. The equally

powerful equational logic, on the other hand, is much more in keeping with the spirit of

functional programming. Functional programming often uses the computational mechanism

of term rewriting, and equational logic provides a declarative semantics for term rewriting

methods.

Everyday thinking and mathematical reasoning use rewriting quite regularly. Computer

applications of term rewriting include:

• automated theorem proving

• parallel functional languages

• modelling nondeterministic computations

• program verification

• abstract data type specifications

• algebraic simplification

• semantics of programming languages (including Prolog).

This thesis uses the equational logic/term rewriting framework because of its wide application

and because its use in machine learning has not yet been explored.

Chapter 1: Introduction 3

The next part of the chapter reviews previous work in this area. Then the thesis and

objectives of this thesis are stated, followed by a brief preview of what is to come. The final

portion of the chapter introduces the logic and the technical terms and symbols used in the

remainder of this work.

1.1 Semantics of Induction

One problem addressed in this thesis concerns the meaning of induction:

Problem 1. What is meant by the term "induction"? More precisely, how can induction be

formalized in logic in a clear way, capturing the intended meaning of machine learning and

automated theorem proving researchers?

A full answer to the first part of the question is- difficult. Indeed, it has been a primary

concern of philosophers, from Aristotle (and before) to the present day, and is still far from

resolved. If the question cannot be answered in general, it may still be possible to respond

to it in the narrower context of a particular research interest. Thus, the second part of the

problem trims the question down to the context of machine learning.

We might loosely define an induction as an abstraction or emergent properly of a set

of facts. However, this raises the obvious question of the meaning of "abstraction" and how

it is somehow connected with the set of facts. Several definitions of induction have been

attempted, yet few have adequately explained this connection between an induction and the

data it is based upon.

One popular definition focuses on the assumptions that are necessary to turn induction

into a deduction (see eg. Skyrms, 1975).

E - examples
A - hidden assumptions

I - inductive statement

Chapter 1: Introduction 4

For example, suppose that I is the statement "the sun will rise tomorrow" and E comprises all

the examples of days when it rose, namely every day seen so far. Then the hidden assumption

A could be "tomorrow will be just like today and previous days with respect to sun-rising."

I clearly follows from E together with A.

This model of induction is weak in two ways. First, the hidden assumptions might be

complex and unjustified. Generating A on a computer would be tricky without additional

constraints on the nature of acceptable assumptions. For example, "tomorrow will be just

like 25 trillion days ago with respect to sun rising" is a complex assumption that will not

prove that the sun will rise tomorrow. A computer should not have to even consider hidden

assumptions such as these. Second, almost anything follows from E and an unspecified A.

Any I can be made into an induction unless it contradicts something in E. In other words, I

must require some further justification for this to form a basis of a useful definition - it must

be somehow based on the examples. This justification is the source of much philosophical

controversy, and is usually couched in extralogical, statistical or simply imprecise terms.

Thus this definition, without further logical machinery, is not appropriate for the present

purposes.

Another popular description of induction defines it in terms of a deduction (see Gene-

sereth and Nilsson, 1987). Suppose that B is a given background theory. Then I is an

inductive statement when

B A fl=E and B K I.'

For example, in the sun-rising question let I be the statement "the sun rises every day" and

B be empty. Then I clearly covers all of E (as well as tomorrow!).

Although I here is forced to cover part of E, it does not have to cover all of E. For

example, suppose three people, Sandy, Chris and Jø, are examples of happy people. Suppose

that Sandy and Chris are known to be happy because they just won a million dollars each in

a lottery, and people with lots of money are known to be happy (B). Then, this definition

surprisingly says that "Jø is happy" (I) is one possible inductive conclusion. That is not too

bad; later we will propose the stronger view that deductions are also conveniently considered

'For now, read A = C as "C is a logical consequence of A." Section 2.2 defines this notion more precisely.

Chapter 1: Introduction 5

as inductions. Fortunately, the alternative, more appropriate, induction "everyone is happy"

is allowed by this definition.

There are difficulties in basing the treatment of induction entirely on deduction. Perhaps

the primary problem with the above definition is that it is unintuitive. We normally think of

an induction emerging from given information rather than that information being explained

a posteriori by the inductive statement. Instead, the definition should take the form

K l=ind'

where K is the given information. Here induction is a particular rule of inference rather than

an extralogical view of a particular pattern of deductive inferences.

Second, this deduction-based definition complicates the simple notion of induction by

insisting on the artificial distinction between the background knowledge B and the example

set E. While this may have some benefit in terms of efficiency, it seems to be merely an

implementation issue that has crept its way into the definition of a basic logical process.

The distinctions may be useful in evaluating inductions, but not necessarily for defining

them. For simplicity's sake, it is better to think of inductions as emerging from a single

base of information without regard to its sources: A further argument for removing the

distinction between background theory and examples is that the former often plays a similar

role to examples in producing inductions. In the lottery example, with B and E as before,

another perfectly valid induction would be "people are happy if they are lottery winners."

For this induction, the background information that Sandy and Chris are lottery winners is as

important as the "example" information that they are happy. This induction is just as much

about the background theory as it is about the examples.

A definition of j=jfld that derives from the automated theorem proving community (see

primarily Zhang, 1988) is based on the idea that a statement is an inductive theorem if and

only if all of its ground instances are deductive theorems:

K Iind I if V12 K = I, where 1i is a ground instance of I.

This definition corresponds to what is known as summative induction in the philosophical

literature (Von Wright, 1957). However, it does not address inductions that are based on

Chapter]: Introduction 6

"missing information." For example, including an additional lottery player, Randy, into our

simple example gambling world without including any information about Randy's happiness

would invalidate the inductive conclusion "everybody is happy." However, it would be

convenient to assume that Randy is happy so that the induction "everybody is happy" would be

possible. Using such assumptions in order to form inductions is called ampliative induction.

A complete theory should enable such inductions involving assumptions. Furthermore, one

might allow the dismissal of some data in order to make an induction. For example, even if

Randy was known to be unhappy it might still be^ useful to induce that everyone was happy

despite this minor inconsistency. This type of induction we call ignorative induction. Also,

we call a combination of both ampliative and ignorative induction prudent induction.

One way to capture ampliative and ignorative inductions in a general logical theory of

induction stems from the realization that the former are simply special kinds of satisfiable

formulae, while the latter are special kinds of inconsistent formulae. The restrictions on

satisfiable formulae include the idea of explicitly stating the type of justification used to

define a particular class of theorems. For example, in Chapter 2 we show how the definition

of inductive theorems is based on "total justification" (all instances of the theorem are true),

that of ampliative theorems on "biexemplar justification" (two instances are true) and others

types on "minimal justification" (one instance is true).

Another approach to the problem is to base induction on non-monotonic rules of infer-

ence. A full treatment of this topic did not appear until recently (Heift, 1989). The main

idea of this work is that nonmonotonistic preference can be used to bias the concept language

during the generalization phase in a machine learning setting. It shows that nonmonotonic

reasoning certainly has applications in induction and machine learning, but as yet can hardly

be considered a general framework for induction.

This thesis uses nonmonotonicity as well, but from a very different angle. A more

general, simple model is developed in Chapter 2, based on the insight that the summative

inductive rule of inference used in automated theorem proving can be used to define ampliative

and even noisy inductions.

This thesis deliberately ignores statistical approaches to defining induction (eg. Carnap,

1962; Hintikka, 1964). We are interested in what can be represented symbolically without

Chapter 1: Introduction 7

the use of numbers. It will transpire that objective probabilities and other statistical methods

are likely needed to evaluate inductions. This study focuses on logical inference and does

not entertain any notion of subjective probability.

1.2 Computational Induction

Having formalized the meaning of induction, in many of its guises, we proceed to explore

how inductive theorems can be generated:

Problem 2. How can inductive theorems be generated? Can some existing theorem proving

techniques be adapted to generate theorems? In particular, how might such theorems be

generated in an equational theory?

As mentioned earlier, the aim of machine learning is to generate theorems rather than

to prove them. It is not surprising that generation can be accomplished by methods that

are roughly the opposite of theorem proving techniques. Reconsider the deduction-based

definition of induction:

B A IE and B I.

E in this definition is produced from B and I using deductive rules of inference — resolution,

for example. If the inverse of resolution were used on E and B we would expect to obtain

I, the inductive theorems.

The basic idea is not new, although it appears never to have been fully developed.

According to Plotkin (1971), Popplestone suggested that "since unification is useful in

automatic deduction by the resolution method, its dual might prove useful in induction,"

and Plotkin, his student, responded in the same article with an early study of antiunification.

Antiunification, like unification, attempts to make two terms look alike; unlike unification,

it achieves this by replacing subterms with variables, rather than variables with subterms,

producing a term that is more general than the original ones. Since antiunification is the basic

generalization method, it forms the foundation of the present work and will be described in

great detail in Chapter 4.

Chapter 1: Introduction 8

On its own, term generalization is far from adequate for generating inductive theo-

rems. Commonly-used logics comprise not only single term statements, but implications,

conjunctions, disjunctions, negations and quantification. Vere (1977) described a general-

ization method that generates the most specific conjunction from a set of terms. A further

improvement to his algorithm allowed counterfactuals - statements of the form A A -iB

(Vere, 1980). Unfortunately, neither method allows full use of a background theory, even

for its restricted hypothesis language. FurthermOre, the algorithm is not based on any pre-

cise logical principles. While Mitchell's (1982) work on version spaces is more general, it

nevertheless suffers the same flaws.

A major step in the right direction appeared in Shapiro's (1983) "model inference

system," which introduced a sound, logic-based, general-to-specific refinement method.

What is particularly interesting is the use of a logical semantics as a foundation for the

induction methods. An interesting insight in this work is that machine learning is about

describing, or summarizing, models using logical formulae. While commendable for its

logical coherence, this work is restricted to the most commonly studied subset of first order

logic, namely Horn clauses.

Most closely related to our ideas on generation are the techniques of Muggleton and

Buntine (1988) They show how new Horn clauses can be generated from others using the

inverse of a specific type of resolution (SLD), underscoring the present thesis that generation

techniques are inversions of theorem proving methods. While this work may ultimately form

the basis of a more complete, general resolution-based theory, it currently depends on many

restrictions that do not allow the use of the full Horn clause logic. These restrictions are

necessary for accomplishing constructive induction, the generation of new predicate symbols

to aid in induction, a topic avoided by this thesis.

Other systems use techniques that should properly be thought of as inverse theorem

proving. For example, least general generalization methods are the basis of some important

induction algorithms (Vere, 1977; Vere, 1980; Buntine, 1987; Kodratoff, 1988). Most of

these are extensions of Plotkin's algorithm (1970), a clause generalization method. None link

these methods to a definition of induction. Some are incomplete in that they do not allow the

use of background theories. The present research emphasizes that least general generalization

algorithms should be thought of as inverse rules of inference in order to demonstrate their

Chapter 1: Introduction 9

soundness and completeness. Other algorithms, such as the ID3 series of classification

techniques, are based on specializations, and are generally unrelated to the semantics of

induction. We view specialization algorithms as reverse deductions as well. In a nutshell,

theorem generation techniques should be based on inverse deductive theorem proving to

provide a clear operational semantics. This thesis shows how this can be accomplished.

A distinguishing aspect of the present work is that it studies induction in equational

logic rather than classical Horn clause logic, providing a bias toward functional rather than

logic languages. One reason for preferring equational logic is its ease of extension. For

example, continuous values, sets and simple conditionals require very little extension to

the basic induction operators. Another reason is that machine learning is relatively less

researched in functional languages than in logic languages. With a prdblem as difficult as

theorem generation, it is worthwhile studying it in as many interesting subcases as possible.

1.3 Thesis

For pragmatic purposes, induction is an inadequately defined concept. This results in poorly

designed systems for machine learning and leads to conceptual confusion. It can be addressed

by formulating the varieties of induction precisely within a logical framework. As well

as providing increased clarity, this suggests generating inductive theorems by inverting

theorem proving techniques. Consideration of two particular generation methods, namely

antinarrowing and cover set specialization, reveals their theoretical and practical power for

generating several types of inductive theorems.

The objectives of this thesis are

1. To review methods and characterizations of induction, particularly with respect to.

machine learning.

2. To develop a logical framework for various types of inductive theorems that are useful

for machine learning.

3. To review theorem proving techniques as a prelude to developing generation tech-

niques.

Chapter]: Introduction 10

4. To develop operators (rules of inference) that can be used to generate theorems and

demonstrate their soundness and completeness.

5. To develop algorithms based on the generation operators and to implement them on a

computer.

6. To describe some machine learning systems in terms of the generation operators de-

veloped.

7. To determine limitations of the algorithms and operators and to suggest additions or

alternatives.

These objectives will be met in the following way: The first part of this chapter reviewed

some ideas about induction (objective 1). The remainder gives mathematical preliminaries,

and introduces the logic to be used. Chapter 2 defines several varieties of induction by

identifying each type with a class of theorems. Some restrictions on these classes are

discussed to show how they can be applied to machine learning (objective 2). Chapter 3

reviews theorem proving techniques for both deductive and inductive theorems (objective 3).

These provide the basis for the theorem generation operators discussed in Chapter 4 (objective

4). Chapter 4 gives some propositions characterizing the power of these methods with respect

to the theorem classes defined previously. Chapter 5 shows how the theory developed in

the previous chapters can be used in a variety of ways to obtain very different styles of

machine learning algorithm (objective 5). The algorithms of Chapter 5 are implemented in

Balog, a system developed for equational logic theorem proving and generation (objective

5). Chapter 6 briefly considers other machine learning algorithms (objective 6) in light of the

theory developed. Finally, Chapter 7 discusses some limitations of the theory and possible

future directions (objective 7).

1.4 Mathematical Preliminaries

• This thesis contains a wide variety of notational forms. This section reviews the language

used, and can be used for reference while reading later chapters.

Chapter 1: Introduction 11

S = {num}
V = {x,y,z,n,m}
F = {s/1,O/O,pred/1}

C = {s, O}

Type(0) = nuin

Type(s) = num
Type(pred) = num

Q- [O=pred(0)
- n pred(s(n))

Figure 1.1. A theory: predecessors of integers.

In the following, V denotes a set of variables and F a set of function symbols. The

arity of a function is the number of arguments it takes. When specifying functions, the arity

will be given along with the name. Here is a sample specification of a set F of functions:

F = {f/2,g/1,c/O}

A constant is a function symbol with arity 0. In F, for example, c is a constant while g and

f are not.

A term is

(1) a variable

(2) a constant

(3) of the form f(ti, t2, ..., t,) where f is a function with arity n and each

tj is a term.

A• ground term is one that contains no variables. We denote the terms built from a set of

functions F and variables V as Terms(F, V), and ground terms as Terms(F). The set of

variables which occur in a term is denoted Vars(t). A term t can be grounded by replacing

each variable in Vars(t) with a constant. Assume, unless otherwise stated, that these constants

are generated to be completely new to the context, that is, they are not in F if F is specified.

The grounded version of a term t is denoted Gnd(t). For example, if F = {f/2, g/1, c/0},

Gnd(f(x, f(y, x))) = f(cl, f(c2, ci)) where c and c2 are any constants other than c.

Terms may also be viewed as trees whose leaves are labelled with variable or constant

symbols, and internal nodes with function symbols of arity k where k is the number of

Chapter 1: Introduction 12

children of the node. A position is specified by a sequence of natural numbers, each number

separated by a ".". The root of the term tree is defined to be at position € (the empty sequence),

the leftmost child of the root is at position 1, and the third child of the second child of the

root is at position 2.3. The set of all positions in a term is denoted Pos(t). Consider the

term t = f(d, g(a, h(b)), c). The subterm a is at position 2.1 and f is at position E. t/p

denotes the subterm at position p. t[p - s] is the term resulting from the replacement of

the subterm at position p with the term s. So t/2.2 = h(b) and t[2 - e] = f(d, e, c). Also,

Pos(t) = {€, 1,2,2.1,2.2,2.2.1,3}.

An equation has the form s = t where s and t are terms. The set of equations that can

be built from Terms(F, V) is denoted Eqns(F, V). The set of all ground equations, that is,

ones without variables, is denoted Eqns(F). Note that it is possible for F to contain only

constants. s t denotes syntactic equality and $ = t denotes semantic equivalence with

respect to a background theory E. In other words, s = g t means that terms s and t can be

transformed into each other by using the equations in S. For example, f(a, b) = 6 f(c, b)

when S contains the equation a = c.

We are now able to define the logic. that is to be used in the rest of this thesis. Afirst order

typed equational theory Sisa pair (, Q. I = (L, S, V, F, C, Type) is an alphabet consisting
of a set of logical symbols L = {, V, 2, (,), A, v}, a set of sorts S. a set of variables V, a set
of function symbols F, a set of constructor functions C, and a typing function Type: F - S.

The typing function assigns a type specification of the form c x cr2 X ... X cr, -+ u to every

function symbol f E F of arity n. We say that f has range type of o. For example, if

F = {and/2, true/O,false/O} and S = boo!, Type could be defined as: Type(false) = boot,

Type(true) = boot, Type(and) = bool x boo! - boot. We also define the typing function for

terms as the range type of the function symbol at position c. So Type(and(true, false)) =

Type(and) = bool.

A well formed formula (wft) is defined recursively:

. ifs and t are terms then s=t and s 54 t are wffs.

• if t is a term, then t = true and t = false are wffs (these are sometimes abbreviated as

t and - it respectively).

Chapter 1: Introduction 13

. if F is a wff and x is a variable, then Vx F and 3x F are wffs.

. ifA and B are wffs, then -'A,AVB, and AAB are wffs.

The wffs generated by a set of terms Terms(F, V) are denoted WfJ(F, V). The set of ground

wffs - those without variables - is denoted Wff(F). Furthermore, we identify the first

order typed equational language of I as WfJTF, V) itself.

Q is a set of equations and inequations called the axioms of the theory; these are a subset

of WffiF, V). They are specified in a normal form; in other words existential variables will

have been skolemized out and free variables are assumed to be universal. Unless otherwise

stated, we will assume that the language is negationless: no use of the -iw or a 0 b forms

will be allowed in Q.

An example of a completely specified first order typed equational theory is given in

Figure 1.1. A theory is often just specified with a set of equations (or rules, see Section 3.2)

when the types, functions and variables intended are obvious.

Finally, constructor functions are special types of functions that can be thought of as

those used to build up the "data" in the theory. Any other function in F is called a non-

constructor. The distinction between constructors and non-constructors is useful for many

applications, and for induction in particular, as we will see in Section 2.4. A constructive

term is one that is built solely out of constructor function symbols and variables. If c1 and

c2 are two different constructive terms, then c1 c2 is an implicit axiom found in Q. Since

these are too numerous to specify in practice, they are usually not listed as part of Q.

Be aware that a few more important concepts, the application and composition of

substitutions, will not be introduced until Section 3.1 even though they will be used in,

Chapter 2.

Chapter 2

Semantics for Induction

It's one thing to be able to say "I've got a theory," quite another to say "I've

got a semantic theory," but, ah, those who can claim "I've got a deep semantic
theory," they are truly blessed. - Randy Davis

At first glance, there seem to be two types of induction. One is treated by the theorem

proving community, and the other is of concern to machine learning researchers. They are

known as summative and ampliative induction respectively (Von Wright, 1957). Summative

induction was first mentioned by Aristotle (1928):

"Induction proceeds through an enumeration of all the cases."

In other words, if all possible instances of a proposition hold, the proposition itself holds.

Ampliative inductions, on the other hand, also hold for unknown cases. This gives an induced

proposition predictive capability, which is valuable for machine learning applications. How-

ever, there is a third type of induction that allows the introduction of error, either accidentally

or on purpose. These propositions, which we call ignorative, can still be quite useful in

making inductive-like assertions. A fourth type of induction holds for unknown cases and

allows errors, and we call this prudent induction.

This chapter will characterize four types of induction, summative, ampliative, ignorative

and prudent, by showing how to capture these distinctions quite naturally in a model-theoretic

logical setting. Figure 2.1 shows that the prudent theorems that we are about to develop will

have (summative) inductive, ampliative, ignorative and deductive theorems as subclasses.

These four types of inductive theorems are examples of inductivelike theorems (Definition

2.6) that are characterized by an inductive modelling type (Definition 2.5) and ajustfication

method (Definitions 2.7, 2.9, 2.10, 2.11).

We begin with some basic model theory (Section 2.1) that enables us to define the

deductive and (summative) inductive classes of theorems (Section 2.2). We next develop the

14

Chapter 2: Semantics for Induction 15

Figure 2.1. Theorem Classes in this Chapter

idea of inductivelike theorems and show that (summative) inductive theorems are a trivial

special case (Section 2.3). We then show that standard methods are inadequate for dealing

with unknown values, and with noise (Section 2.4.1). Next, following Rescher and Brandom

(1979) and Langholm (1988), non-standard models are introduced by extending the possible

truth values to include not only true and false but also underdetermined and overdetermined

(Sections 2.4.2 - 2.4.4). The preference logic that Shoham (1988) introduces as a basis

for non-monotonic reasoning is here adapted to obtain a natural definition of ampliative,

ignorative, and prudent theorems (Sections 2.4.5 and 2.4.6). Finally, we argue that machine

learning systems are inductivelike theorem generators (Section 2.5).

2.1 Interpretations and Models

Semantics enables meaning to be attributed to statements made in a language. For a full

semantics of a language, all of its constituent parts must be well defined.

An interpretation helps in this regard by fixing the meaning of each symbol in the

language. For example, two different interpretations of the set of symbols A = 11, 2, 3,4,5 }
are assignments of A to the domains of the first five positive integers and of the fingers on

a piano player's hand. A model of a statement is an interpretation in which the statement

Chapter 2: Semantics for Induction 16

is true. The following definitions, which presuppose a first order equational theory e =
((L, S, V, F, C, Type), Q) as defined in Section 1.4, will make these concepts more precise.

Definition 2.1 A standard interpretation I = (D, IC, Q) is composed of a domain 1), a

domain mapping C, and an equational truth mapping Q, such that

1. D = {d I d E DT, T E S} is a domain. A domain is any nonemply set of objects. A
domain is partitioned into subdomains based on the types, S. of the language. DT is

called the domain of type T.

2. IC :Terms(F) - D is a domain mapping where IC(f(t1, . . . , t,)) = d for some

d E D(f).

3. Q : Eqns(D) - IT, F} is an equational truth value mapping where there are no e1

and e2 in Eqns(D) such that e1 = e2 and both c(e1) = T and 9(e2) = F.

The definition of truth value mappings in this chapter depend on the equational truth.

value mapping, 9, that is given as part of the interpretation. More generally, 9 could have

been defined over all predicates, not just over the equality predicate. However, the language

that is used in this thesis has only the equality predicate. The equation mapping will range

over a nonstandard set of truth values later in this chapter. Note that is defined only over

ground sentences.

An important constraint on the definition of G is the unique names assumption. This

requires that all constants (functions of arity zero) in the language are not equal unless

otherwise specified by Q. So, q(a = b) = T if a = b E Q, when a and b are constants.

This condition can easily be formulated as a preference relation on models (see Section 2.4),

but we will not do so here to avoid over-complexity.

Given an interpretation and any ground equation, we can determine the meaning of the

equation. But to determine the -meaning of more complex statements that include variables,

quantifiers, negations, conjunctions and disjunctions, a truth value mapping is required. This

is a function that assigns to each statement in a language a truth value in IT, F}.

Definition 2.2 A standard truth value mapping T3 with respect to an interpretation I is a

mapping where '2 : WfJ(RV) -* {T,F} such that 2(w) = T2(K(w)) for tb E Wff(EV). T2 is

Chapter 2: Semantics for Induction 17

defined in Figure 2.2.

2 takes a well formed formula and converts its terms to symbols in the domain using

the domain mapping K. It passes this partially interpreted formula to T2 which determines its

truth value.

This truth value mapping relates every well formed formula to its truth. If a sentence

evaluates to T over an interpretation I, it is said to be true in I, otherwise it is false in I. Note

that one need not specify a new definition .of the truth value mapping for each new theory; the

definition remains constant across all (standard) theories. The definitions of the truth value

of the and (A), or (V), and not (- i) connectives are given in Figure 2.3(a) and Figure 2.4

(the I and x truth values in this figure will be described later).

An interpretation and a truth value mapping enables us to determine what a sentence in

a theory means.

Definition 2.3 A standard model of a sentence w E S is an interpretation I such that w is.

true in I. A model of a set of sentences is a model of each sentence in the set.

In Figure 2.5 M 1 and M2 are both models of S. Notice that all models are consistent in that

the same equation is not assigned to both T and F (9 is afunction). Also notice that all the

equational consequences of the axioms are assigned to T. This is the least that is required

of a model. However, note that M2 includes an assumption, namely mother(karla) = joe

(ridiculous, but possible in a strange world!), and all of this assumption's consequences are

also included in the model. The model M1 is called a minimal model because the truth

value mapping maps as much as is possible to F. Note also that it is common practice to

simply list the true equations and assume that the rest are false.

Chapter 2: Semantics for Induction 18

Two-valued Truth Mapping

T2:S -- (T,F}

Form of S Conditions
Truth
Value

Eqns(D) G(S)

xW T2(W{xld})=T forsornedeDTYX) T

Vx W T2(W{x/d}) = T for all d cDT>(X) T

A v B T2(A) v T2(B)

A & B T2(A) & T2(B)

-,T2(A)

Otherwise F

F

Figure 2.2. Standard Truth Mapping

Chapter 2: Semantics for Induction 19

I

(b)

(c)

T

F

AT

(a) T T

F F

V T
T
F
TT
T

TFJ

TFJ

F F F

IFS

V

T

F

$

TFJ

T T T

TF$

T $

IA

T

F

.1

TF$X V TF$X

TF$X T TT.TT

F F F F F TFSX

SF1? $ T$S?

X F ? X X T X ? X

Figure 2.3. Truth Values for Truth Connectives

 3

Chapter 2: Semantics for Induction . 20

F

S
X

F

T

S

X

Figure 2.4. Truth Values for Negation

2.2 Deduction and Induction

Using standard models, deduction and induction can be defined straightforwardly.

2.2.1 Deductive theorems

The most common theorems are deductive theorems. Resolution theorem provers, conditional

term rewriting systems and natural deduction systems prove such theorems. When the phrase

logic is used, most people think of these theorems. However, there is much more to logic,

including some non-deductive reasoning methods that this chapter will describe. First, the

notion of logical consequence is defined in terms of the standard models of a theory.

Definition 2.4 Suppose S is a theory with Q as its axioms and d is a well formed formula of

S. Then d is a logical consequence of S if all models of Q are models of d.

From this definition, we see that a statement is a logical consequence if it is true no matter

how the symbols of the theory are interpreted and no matter what truth values are assigned

to statements whose truth is not determined by the theory's axioms.

The definition of deductive theorems follows directly from the definition of logical conse-

quence.

Chapter 2: Semantics for Induction 21

e = ((L,S,VF,C,Type), Q) where
C = {joe, betty, karla}

F = C U {mother/ 1, grandmother/1}

mother(joe) = betty
Q = mother(betty) = karla

grandmother(x) = mother(mother(x))

/ mother(joe) = betty T \
mother(betty) = karla T
grandmother(joe) = mother(mother(joe)) T
grandmother(joe) = mother(betty) T
grandmother(joe) = karla T
grandmother(betty) = mother(mother(betty)) T
grandmother(betty) = mother(karla) T
grandmother(karla) = mother(mother(karla)) T

\ otherwise F j

/ mother(joe) = betty T '
mother(betty) = karla T
grandmother(joe) = mother(mother(joe)) T
grandmother(joe) = mother(betty) T
grandmother(joe) = karla T
grandmother(betty) = mother(mother(betty)) T
grandmother(betty) = mother(karla) T
grandmother(karla) = mother(mother(karla)) T
joe = mother(karla) T
grandmother(karla) = betty T
grandmother(karla) = mother(joe) T
grandmother(betty) = joe T

\ otherwise F j

Figure 2.5. Models of a simple theory

Chapter 2: Semantics for Induction 22

Deductive Theorems (DED)

d E DED(6) if d is a logical consequence of S.

If d is a deductive theorem of S we write d E DED(S). Consider the theory 5:

Q

feline(x)

canine(x)

cat(felix)

=cat(x) -

= dog(x)

= true

cat(morris) = true

nice (felix) = true

nice(morris) = true

V={x}

S = { bool, cattype, dogtype}
F = {morris/O, felix/O, cat/l,

dog/l, canine/i, feline/i,

nice/i }

Then feline(felix) E DED(S)' since all models of Q must contain cat(felix) and, by

the first equation, are forced to contain feline(felix) as well. Similarly, —icanine(felix)

0 DED(S) since there are models of Q which have T3(canine(felix)) = T and others
with T3(canine(felix)) = F. Note that dog(felix) is not a deductive theorem while dog(felix)

= canine(felix) is.

2.2.2 Inductive theorems

There are many formulae which seem reasonable, but are nevertheless not deductive theo-

rems. In the theory above, for example, Vx cat(x), that everything is a cat, seems reasonable,

sincefelfr and morris are the only beings known in the theory. Further, Vx cat(x) = nice(x),

that all cats are nice and all nice beings are cats, seems even more reasonable. However,

neither of these are deductive theorems since there are many models in which cat(lassie) is

false and others in which cat(mccavily) is true but nice(mccavity) is false'.

But why should we be talking about Lassie and McCavity Cat when they are not even

mentioned in our theory? Recall that a deductive theorem in a theory is supposed to be

true independent of the context or the interpretations of the symbols in the theory. That is,

11f P is not an equation, P E DED(S) means (P = true) E DED(e).
2Lassie the dog and the not-so-nice McCavity Cat are famous.

Chapter 2: Semantics for Induction 23

statements like feline(felix) or 3y cat(y) = nice(y) will always be deductive theorems even if

we do add statements about Lassie or McCavity to the theory. On the other hand, statements

like Vx cat(x) are not always true.

One approach is to define such theorems by considering only minimal models rather

than all models. A minimal (initial) model is a model that assigns statements to F when

they are not implied to be either true or false by the axioms (rules/equations) of the theory.

We could say that a statement is an inductive theorem if it is true in all minimal models rather

than in all models. This approach is known as initial model induction and forms the basis for

the inductionlessinduction theorem proving technique (Lankford, 1981). In Section 2.4.1,

we will see that initial model induction is inadequate for our purposes.

Another natural way to define inductive theorems is to rely on the types and function

symbols in the specification of the theory. Then we define inductive theorems to be statements

whose instances are all deductive theorems, rather than a type of deductive theorem over a

subset of models:

Inductive Theorems (IND)

I E IND() if TO E DED(S) for all ground substitutions 0
where TO E Wff(E)

:z € IND() means that I is an inductive theorem of a theory e. Using this definition, it
follows that all deductive theorems are inductive theorems as well since all instances of a

deductive theorem are deductive theorems. The final clause ensures that substitutions do not

violate typing conventions and do not use function symbols that are not in the specification

of the theory.

This definition of induction corresponds to Aristotle's notion of summative induction.

By enumerating all possible instances of a statement and showing that each one is a deductive

theorem, the inductive theoremhood of the sentence is established.

This definition does not handle ampliative induction. Suppose it is known that bowser,

roif and pluto are dog-names and that the following are axioms:

Chapter 2: Semantics for Induction 24

nice(bowser)

nice(rolf)

Q = dog(bowser)

dog(rolf)

- dog(pluto)

There is no longer a proof that V x dog(x) = nice(x) is an inductive theorem. However,

it seems that it would be a good assumption to make that nice(pluto) is true as well. With

this assumption, the theorem can easily be shown to be an inductive theorem. This example

illustrates that there is another class of theorems that includes these types of formulae.

2.3 Inductivelike Theorems and Justification

We will shortly be developing three classes of theorems that differ from inductive theorems

in the types of interpretations and the method of justification that they use. In this section,

we describe what makes these classes similar. We then describe some forms of justification

other than the one used for the IND class of theorems.

2.3.1 Inductivelike theorems and total justification

All the classes of theorems described in this thesis share two properties: none of their

instances are false3 and they are somehow justified by their axioms. This can be defined

formally as follows.

Definition 2.5 A model M of interpretation type IT is an inductivelike modelling of a

statement S of theory e with justification J if
1. S is justified in Eby J.
2. S is not false in M.

They may be true, underdetermined or overdetermined. See Section 2.4.2.

Chapter 2: Semantics for Induction 25

Possible values for IT in this definition are standard, overdetermined, underdetermined or

full. So far only standard models have been introduced.

Definition 2.6 Consider a statement S in some equational theory Q. If all M that are

models of interpretation type IT that model Q are also inductivelike modellings of S with

justification J, then S is an inductivelike theorem of Q.

Normal inductive theorems, IND(e), are inductivelike theorems over standard inter-

pretations. Their justification (J) is given by the definition of inductive theorems itself:

all ground instances must be true. This all-or-nothing type of justification is called total

justification:

Definition 2.7 A statement S is totally justified iffor all 9, where 0 is ground and constructive,

SO is true in all models.

The second condition for inductivelike modelling theorems follows from total justification

and the coherence property of standard models which says that everything true must be not

false. Thus, inductive theorems are inductivelike theorems over standard interpretations with

total justification.

Using Definition 2.3,1, with standard models and total justification, we obtain the

definition of inductive modelling, the type used to determine IND-theoremhood:

Definition 2.8 A model M is an inductive modelling of S if it is an inductivelike modelling

of S using standard interpretations and total justification. We write M = S if M is an

inductive modelling of S.

We may now redefine inductive theorems using this definition (assuming total justification):

Inductive Theorems (IND)

IEIND(e)iffvMM = Q=MIl=I

Note that the definition of deductive theorems can also be written in a similar form:

Chapter 2: Semantics for Induction 26

Deductive Theorems (DED)

SEDED(E)iffVMMI=QMI=S

2.3.2 Non-total justification

Inductive and deductive theorems have total justification. In our new theorem classes,

theorems that have less justification will be allowed. Describing the amount of justification

could be done probabilistically. However, this work alms to restrict the use of probabilities

to searching the theorem space, not to defining it. Instead, the idea of a minimal amount of

justification is used.

Definition 2.9 A sentence S is minimally justified in a model M if there is some 9 such that

SO is true in M. (M may be standard, overdetermined, underdetermined or full).

A statement is minimally justified if it has at least one instance for which it is true. For

example, the theory If (a) = c} has Vx f(x) = c minimally justified. Notice that this

constitutes a large inductive leap. However, also notice that Vx f(c) = x is not minimally

justified. It might be possible to define weaker justifications that lie somewhere between

no justification and minimal justification. Note that inductive theorems are inductivelike

theorems with standard interpretations and minimal justification. This follows from the

fact that inductivelike theorems with standard interpretations always have total justification,

which implies that they are at least minimally justified.

2.3.3 Biexemplar justification

Many machine learning systems look at similarities between parts of a database in order to

generate their theorems. This implies that there are at least two examples of the theorem that

is to be generated. However, the minimal justifiability criterion requires only that at least one

instance of the theorem must be in DED(S). A stronger definition of justification is possible,

to look for two unrelated instances for which the theorem is true.

Definition 2.10 A sentence S is biexemplar justified in a model M if there are at least two

substitutions 01 = {vi/si, . . . , v,/s,} and 02 = {vi/ti, . . . , v/t,} such that SO, and SO2

Chapter 2: Semantics for Induction 27

are true or biexemplar justified in M and ifs f(...) and ti g(...) then f g.

A sentence is biexemplar justified if it has at least two instances that are true or biexemplar

justified themselves. They must be suitably "different" - namely, each pair of subterms

that replace a variable in the sentence S to obtain 501 and SO, must not be rooted with the

same function symbol. The recursive nature of this definition allows cases where a sentence

requires three or more true instances for its justification.

This is still a rather weak form of justification. Those theorems captured by biexemplar

justification but not by stronger forms of justification (eg, tn-exemplar) are said to be strictly

biexemplar justified:

Definition 2.11 A sentence S is strictly biexemplar justified in a model M if there are

exactly two substitutions 01 = { v1 /s, . . . , v./ti } and 02 = { vi /ti, . . . , v, /t } such that SO,
and SO2 are true in and fs f (...)and t g(...) then f 54 g.

Consider the equations {f(g(a)) = g(a),f(g(b)) = g(b)}. Then Vx f(x) = x is

not biexemplar justified and Vx f(g(x)) = g(x) is strictly biexemplar justified. If the

equation base was {f(g(a)) = g(a), f(g(b)) = g(b), 1(c) = c}, Vx f(x) = x would become

biexemplar justified though not strictly biexemplar justified.

2.4 Ampliation and Ignoration

The terms ampliation and ignoration are opposing terms. Ampliation refers to the process

of amplifying the amount of knowledge in a database. Ignoration refers to the process of

ignoring things in a database. Both are useful in machine learning. Ampliative theorems,

which were alluded to at the end of Section 2.2, are seemingly reasonable statements that

make assumptions about the truth of what is not explictly stated in a database. To see why

ignoration can be useful, consider the problem of noise: ignoration can be used to ignore

errors in a database.

In this section, we formulate ampliation and ignoration in a logical setting. First we

describe the insufficiency of some simple types of nonmonotonic reasoning. Then we show

that a simple four-valued logic can meet the needs of ampliation and ignoration. Finally

Chapter 2: Semantics for Induction 28

we introduce the idea of choosing preferred subsets of four-valued models and use this to

give a precise definition of ampliative, ignorative and full theorems (theorems that are both

ampliative and ignorative).

2.4.1 The insufficiency of minimal and final models

It seems that summative induction, ampliation, and ignoration could be captured by non-

monotonic reasoning, a formalized common sense type of reasoning. However, the minimal

model approach of methods such as circumscription (McCarthy, 1980) are not directly usable

to describe ampliation.

Minimal models are models in which all things unconstrained by the set of equations

are assumed to be false. Consider the set of equations {p(s(0)) = true, p(s(s(0))) =

true, p(s(s(s(0)))) = true}.4 The minimal model of this includes {p(0) = false,

p(s(s(s(s(0))))) = false}. This results in two unintuitive conclusions. First, it shows

that p(0) = false is a theorem. That would certainly be strange considering that the rules

offer absolutely no justification for it. Although this unjustified inference is useful for some

applications (such as default reasoning), it does not help in ampliation. Second, Vx p(s(x)) =

true is false as a deductive or inductive theorem, since there is an instance for which it is

false. However, we would expect it to be an ampliative theorem.

Using final models instead of minimal models is another possibility. Final models

assume everything unspecified to be true. However, this merely shifts the problem from false

things to true things. p(0) = true would be true without justification and Vx q(x) = true

would also be inductively true.

This minimal model approach provides a semantics for the inductionless induction style

of inductive theorem proving. However, we opt to investigate the instance based approaches

for proof and generation, because a minimal model semantics for ampliation is difficult, or

at least turbid, and it is unclear whether generation operators can be defined that are similar

to inductionless induction methods. Also, minimal model approaches seem to be unable to

give a semantics for noise. Other reasons for avoiding this approach are given by Zhang

'Do not confuse true and false, which are function symbols, with T and F, which are truth values.

Chapter 2: Semantics for Induction 29

x

T

Figure 2.6. Truth Value Lattice

(1988). Nevertheless, there will still be a use for a kind of nonmonotonism, in Section 2.4.5.

Ampliation and ignoration will be based on the straightforward definition of inductivelike

theorems, rather than taking the minimal model approach.

2.4.2 A new ontology

The simple answer to the problem of defining ampliative and ignorative induction lies in

extending the number of truth states that a proposition could possibly be in. In doing so,

a four-valued logic is obtained. The extra truth values include both underdetermined and

overdetermined in addition to the standard true and false. The symbols used for underdéter-

mined and overdetermined are I and x respectively. For a proposition to be underdetermined

means that there is no knowledge, or blurred knowledge, that bears on whether a proposition

is true or false. An overdetermined proposition is overcommitted, and has both positive and

negative (complete) justification - it could be thought of as being both true and false at the

same time. All together, the four truth values form the simple lattice (using the specificity

relation) seen in Figure 2.6. Belnap (1975) developed a multivalued logic based on a similar

set of four values.

The treatment here of propositions concerns their ontological status, not merely some

epistemological status. In other words, it is assumed that there is just one world and

things in the world -- at least the computer's world - actually are unspecifiable and even

contradictory. An epistemological approach would assume that there were many worlds

Chapter 2: Semantics for Induction 30

corresponding to knowers within the real world. If it were indeed an epistemological problem

a system of modalities might work well; there are many logics of knowledge that have been

developed. However, it is unclear who the contradictory and unsure 'knowers' would be

inside of a database. Also, modifying our ontology avoids the problem of multiple worlds

and the large amount of machinery needed to handle them. This approach to induction simply

looks at a single database and describes it in useful ways. If more interesting epistemological

problems came up, logics of knowledge could be built upon this four-valued logic.

2.4.3 Underdetermined and overdetermined (three-valued) models

In order to define ampliative and ignorative theorems, underdeterminations and overdeter-

minations must be defined, along with the truth valuation methods that they induce. We first

need to define some non-standard interpretations.

Definition 2.12 An underdetermined interpretation is the same as a standard interpretation

(Definition 2.1) except that : Eqns(D) -+ IT, F, I } with the further restriction that when •

61 =e e2 then g(e1) = I implies 9(e2) = I for e, e2 EEqns(D).

The extra condition on 9 ensures that an equation is assigned to I only when its truth value

is not forced to be either T or F.

Definition 2.13 An overdetermined interpretation is the same as a standard interpretation

except that 9 : Eqns(D) -+ IT, F, x } with the further restriction that when 61 =c e2 then
= x implies 9(e2) = x for el, e2 EEqns(D).

Here the extra condition on 9 ensures that an equation is assigned to x when all equations

equivalent to it are also assigned to x.

The meaning of 'truth' becomes muddled since it is unclear how universal and existential

formulae are affected by the introduction of I and x. Consequently we extend the notion of

truth mapping:

Definition 2.14 A three valued truth mapping 2 with respect to an interpretation I is

defined where 7: Wff(F,V) - IT, F,} such that 2(w) = T3(X(w)) for w E WfJ(F,V).

T3 is defined in Figure 2.7.

Chapter 2: Semantics for Induction 31

T3: S -•*- {T,F,J}

Three-Valued Truth Mapping

Form of S Conditions
Truth
Value

E Wff(F1V) G(S)

x W

T3(W(xld})=T forsomed2DT (X) T

T3(W(x/d}) = I for some d
and

T3(W{xld}) e {F,I } for all d e DT (X)
5

VxW

T3(W(x/d})=T foralld2DT(X) T

T3(W(x/d))=I forsoxned8DT(X)
and

T3(W(x/d)) a {Tj } for all d a
5

AvB T3(A)v T3(B)

A&B T3(A)&T3(B)

-T3(A)

Otherwise F

Figure 2.7. Three Valued Truth Mapping

Chapter 2: Semantics for Induction 32

The definition of T is equivalent with I replaced with x. This is not surprising since

a sentence's "real" truth value is just as unclear when it is overdetermined as when it is

underdetermined.

Given this new definition of truth, the appropriate non-standard models can be defined.

Definition 2.15 An underdetermined model of a sentence e E £ is an underdetermined

interpretation M such that e is true in M. An underdetermined model of a set of sentences

is an underdetermined model of each sentence in that set.

Notice that in the following definition true has been replabed with not false, allowing x to

aid in the modelling. This is the only place where the distinction between I and x appears.

Definition 2.16 An overdetermined model of a sentence e E S is an overdetermined

interpretation M such that e is not false in M. An overdetermined model of a set of

sentences is an overdetermined model of each sentence in that set.

2.4.4 Full (four-valued) models

It is also possible, and useful, to combine underdetermined and overdetermined models

allowing all four truth values in interpretations.

Definition 2.17 A full interpretation is the same as an interpretation except that Q

Eqns(D) -+ IT, F,, x}. with the further restriction that when el =,, 62 then c(e1) = x

implies 9(e2) = x and c(e1) = I implies 9(e2) = Ifor 6 1, e2 E Eqns(D).

There is a little difficulty in defining a four valued truth mapping. It is unclear how

and x interact with respect to quantifiers. Suppose that S is a universally quantified sentence

and that one instance of S is overdetermined and all the other instances are underdetermined.

Then S can only be one of I and x, since choosing one of T and F is a jump to a conclusion.

However, we choose x.

Definition 2.18 A four valued truth mapping 2< with respect to an interpretation I is

defined where 7>< : WfJ(F, V) -* {T,F} such that 7(w) = T4(,&C(w)) for w e WfJ(F, V).

Zj is defined in Figure 2.8.

Chapter 2: Semantics for Induction 33

Four-Valued Truth Mapping

T2: S —*- {T,Fj,x}

Form of S Conditions
Truth
Value

E Eqns(D) G(S)

X W

T4(W{xld})=T forsomedcDT X) T
T4(W{x/d}) =)< for some d sDTy(X)

and

T4(W(x/d}) a {F,x,J) for all d a DT()
X

T4(W(xld})=J forsomedeDT,.)
and

T4(W{x/d}) a {Fj} for all d cDT(X)
$

Vx W

T4(W(x/d}) = T for all d a DT x) T

T4(W(xld))=X for some daDT X)
and

T4(W{x/d))e{T,J,x} foralldcDT(X)
x

T4(W (x/d)) = I for some d a
and

T4(W(x/dDe{Tj} foralldaDT (X)

3

A v B T4(A) v T4(B)

A & B T4(A) & T4(B)

-,T4(A)

Otherwise F

Figure 2.8. Four Value Truth Mapping

Chapter 2: Semantics for Induction 34

Definition 2.19 A full model of a sentence S E e is a full interpretation M such that S
is true or overdetermined in M. A full model of a set of sentences is afull model of each

sentence in that set. This is denoted as M

The following proposition shows that the set of standard models of a particular theory

is a subset of the set of nonstandard models. We say that all standard models are trivial

examples of nonstandard models:

Proposition 2.1 Let S be the set of all standard models, let U be all underdetermined models,

let 0 be all overdetermined models, and let F be all full models of a negationless theory S.

Then Sc UCF and SCOCF

All proofs of propositions are found in Appendix A. This proposition depends on

negationless theories. It is possible to define negation such that the negation of values F, x,

and I are all T instead of those defined in Figure 2.4. However, this would mean that

sometimes -r-1A 0 A, for example, F = - i--i' . Other mechanisms are required to avoid

this problem.

2.4.5 Preferred models

There are statements that have inductive qualities that are nevertheless not inductive theorems.

In the introduction to this chapter we introduced the term "ampliative theorem" for a statement

that is not invalidated by data with unknown truth values, "ignorative theorem" for one that

is not invalidated by data with contradictory truth values, and "prudent theorem" for one

that is not invalidated by data with unknown or contradictory truth values. Expanding the

ontology to include underdetermined and overdetermined truth values enables us to work

with sentences whose truth values are not determined by a set of axioms, leading to definitions

of nonstandard models. At first, it seems that nonstandard theorems can be characterized

precisely using these new ways of interpreting sentences. For example, ampliative theorems

could be defined as statements "not false" (and with some justification) in all underdetermined

models of a set of axioms. But since all standard models are nonstandard models, all

nonstandard theorems defined in this way will be inductive theorems, since they are "not

false" in all standard models as well. In other words, only inductive theorems can be described

using the machinery developed so far.

Chapter 2: Semantics for Induction 35

To make use of nonstandard models, it is necessary to develop a method of ignoring

standard models when checking for nonstandard theoremhood (non-inductive ampliative,

ignorative, or prudent theoremhood). In particular, underdetermined models that have "un-

known" things assigned to T or F instead of I are ignored. Also, we ignore overdetermined

models that have consistent things assigned to x instead of the truth value that the axioms

suggest (T, F, or,). Strictly speaking, these ignored models are not wrong; they simply do

not follow the intuition behind using and x as truth values.

For example, suppose the axioms Q of a theory e only contains the equation 1(a) = b
(where Type(a) # Type(b)). Q has one overdetermined model that assigns this equation

to T and another that assigns it to x. (No model assigns it to F since an overdetermined

interpretation must have every axiom assigned to something "not false"). Since there is

nothing in Q to suggest that it is also F, its truth status is not overdetermined and we

intuitively think of it as true. The second model does not capture the expected behaviour of

the x truth value - so it should be ignored, leaving only the preferred first model.

Selection of desired models can be accomplished by using a type of nonmonotonic

minimization called preferencing. Recall that minimizing T and F in standard models had

not matched the intuition behind ampliation or ignoration (see Section 2.3.2). However, now

the extra truth values I and x have been introduced. These truth values can be minimized,

in several different ways, allowing attention to be restricted to strictly nonstandard models

when checking for theoremhood.

Preferences have been formalized by Shoham (1988) who used them to explain non-

monotonic reasoning. The following definition modifies his definition to include inductive

modelling:

Definition 2.20 Given a partial order on interpretations E called a preference relation, a

preferred model of a set of sentences S E e is an interpretation M such that each sentence
in S is true in M and -' M 1 M 1 1= Sand M t M 1. This is denoted as M

The E relation must be defined based on the application. The next definitions give three

preference relations that are appropriate for defining ampliative, ignorative and prudent

theorems. The subscript of the equational truth mapping in the following definitions refers

to the interpretation (model) that defines it.

Chapter 2: Semantics for Induction 36

Definition 2.21 An uncommitted preference relation is a partial order c on under-
determined interpretations. M 0 E M 1 iff Ve (e) = = o(e) = and

e 91(e) € T, F O(e) = . Preferred underdetermined models under the uncom-

mitted preference relation are called uncommitted-preferred models. We write M S if

M is an uncommitted-preferred model of S.

The uncommitted preference relation says that a model M 0 is preferred to another model

M 1 when everything underdetermined in Mi is also underdetermined in M 0 and when

something that is true or false in M 1 is underdetermined in M 0. This relation helps to prefer

models with the least amount of commitment to T or F. An uncommitted-preferred model

has no models preferred to it under the uncommitted preference relation.

Definition 2.22 An avoidant preference relation is a partial order E < on overdetermined

interpretations. M 0 c>< M 1 iffVe 91 (e) = T = g0(e) = T and Ve 91 (e) = x =

g0(e) E IT, x } and 2e 91 (e) = x = g0(e) = T. Preferred overdetermined models under

the avoidant preference relation are called avoidant-preferred models. We write M < S

if is an avoidant-preferred model of S.

The avoidant preference relation says that a model is preferred when it has less x points (and

has them replaced by T). By doing so, it helps to prefer models that avoid inconsistency.

An avoidant-preferred model has no models preferred to it under the avoidant preference

relation.

A forgetful preference could also be defined, maximizing the inconsistency; it is not

clear what purpose it would serve. Also, a committed preference could also be defined,

yet would be useless: it would leave only the standard models. But the uncommitted and

avoidant relations can be combined for use with full models:

Definition 2.23 An uncommitted avoidant preference relation is a partial order c on

full interpretations. M0 E. M 1 iff Ve 91 (e) = T go(e) E IT, if and Ve 91 (e) = x =
€ IT, x} and Ve 91 (e) = I => o(e) = I and (3e 91 (e) E IT, F,x} => 90(e) =

or 3e Qi(e) = x = c0(e) = T). Preferred full models under the avoidant preference

relation are called uncommitted avoidant preferred models. We write M =>< S ifM is an

uncommitted-avoidant-preferred model of S.

Chapter 2: Semantics for Induction 37

a
f(b)= b

- f(c)= d
f(c)= c

f(a)=a ><

f(b)=b T
Mj: f(c)=d x

f(c)=c x
f(d)=d F

f(a)=a T
f(b)=b T

M: f(c)=d x
f(c)=c x
f(d)=d

Figure 2.9. A full model and an uncommitted avoidant preferred model

The uncommitted avoidant preference relation says that a model M 0 is preferred to another

model M 1 when everything true in M 1 is also true in M 0, everything overdetermined in

M1 is overdetermined or true in M 0, everything underdetermined in M 1 is also underde-

termined in .M 0, and when M0 and M1 differ. In particular, they must differ in that either

something that is not underdetermined in M 1 is underdetermined in M0 or something that

is overdetermined in M1. is true in M0. The preferred models under this relation, that is,

those that have no models that are preferred to them, have the least amount of inconsistency

and avoid committing to T or F.

Figure 2.9 gives a set of axioms Q and two models of it, M1 and M. There are

other full models but no other uncommitted avoidant preferred models. Note that all models

must have f(c) = d and 1(c) = c both overdetermined since they are inconsistent. M is

preferred to M1 because 1(d) = d is underdetermined instead of anything else, f(a) = a is

true rather than overdetermined, and no other illegal changes to Mf are required to obtain

M.

Chapter 2: Semantics for Induction 38

2.4.6 Ampliative, ignorative and prudent theorems

This subsection defines ampliative, ignorative and prudent theorems, which embody the

three other forms of induction besides summative induction. These are defined as particular

inductivelike theorem classes, and vary only in the type of inductivelike modelling used.

First, the particular types of inductive modelling that discriminate these theorem classes are

defined.

Recall the concept of inductivelike modelling in Section 2.3.1. Each of the three new

types of models developed in the last section, uncommitted, avoidant, and uncommitted-

avoidant, when used instead of standard models in the definition of inductive modelling,

along with biexemplar justification, introduce three new types of inductivelike modelling:

Definition 2.24 An uncommitted-preferred model M ampliatively models a sentence S if

M inductively models M with biexemplar justification. M S means M ampliatively

models S.

Definition 2.25 An avoidant-preferred model M ignoratively models a sentence S if M

inductively models M with biexeinpiar justification. M 11=x S means M ignoratively

models S.

Definition 2.26 An uncommitted-avoidant-preferred model M prudently models a sentence

S if M inductively models M with biexemplarjustfication. M I J= S means M prudently

models S.

Using these new modelling types, three major classes of theorems can be defined directly.

They are summarized in Figure 2.12, along with the other types of theorems developed in

this chapter.

Ampliative Theorems (AMP)

S E AMP(S) iffVM M J= Q M I IS

In words, S is an ampliative theorem of S if and only if all uncommitted-preferred models

of the rules of 6 (Q) ampliatively model S.

Chapter 2: Semantics for Induction 39

Ignorative Theorems (IGN)

SEIGN(E)iffVMM I=x QM IIx S

In words, S is an ignorative theorem of 6 if and only if all avoidant-preferred models of Q

ignoratively model S.

Prudent Theorems (PRU)

S E PRU(E) iffVM M l=x Q = M S

In words, S is a prudent theorem of 6 if and only if all uncommitted-avoidant-preferred

models of the rules Q prudently model S.

Each inductive theorem is an ampliative, ignorative, and prudent theorem. Also, each

ampliative and ignorative theorem is a type of prudent theorem. These relationships between

classes are formalized in the following proposition. Figure 2.1 illustrates the subset relations

of this proposition, also noting that DED is a subclass of IND. First, a lemma used in the

proposition's proof is presented:

Lemma 2.1 Let S be the set of all standard models, let A be all avoidant preferred models,

let K be all uncommitted preferred models, and let P be all uncommitted avoidant preferred

models of a negationless theory S. Then S C A C P and S C K C P.

Proposition 2.2 IND(6) c AMP(6) 9 PRU(6) and IND(5) c IGN(6) c PRU(S)
for a negationless theory S.

Consider the equation sets in Figure 2.10 and the formula I Vx grandmother(x) =

mother(mother(x)). It is clear that I is an inductive theorem of Q3, I E IND(Q3). By

Proposition 2.2, I E AMP(Q3), I E IG4\r(Q3) and I E PRU(Q3) as well. For the other

axiom sets, I is not an inductive theorem. 10 IND(Q) because grandmother(karla) =
mother(mother(karla)) is not true in all standard models (consider model M 1 of Figure 2.11).

10 IND (Q<) and 10 IND (Q , because there are no standard models since mother(joe)

= karla = betty is inconsistent.

Chapter 2: Semantics for Induction 40

F = {joe, betty, karla, mother! 1, grandmother/i }

Q.s=

Q =

QIX =

mother(joe) =
mother(betty) =
grandmother(joe) =
grandmother(betty) =
grandmother(karla) =

mother(joe) =
mother(betty) =
granthnother(joe)
grandmother(betty) =
granthnother(karla) =

mother(joe) =
mother(joe) =
mother(betty) =
grandmother(joe) =
grandmother(betty) =
grandmother(karla) =

inother(joe) =
mother(]oe) =
mother(betty) =
grandmother(joe) =

- grandmother(betty) =

betty
karla
mother(betty)
mother(karla)
mother(mother(karla))

betty
karla
mother(betty)
mother(karla)
mother(mother(karla))

karla
betty
karla
mother(betty)
mother(karla)
mother(mother(karla))

karla
betty
karla
mother(betty)
mother(karla) -

Figure 2.10. Equation sets that induce Vx grandmother(x) = mother(mother(x))

However, I E AMP(Q), I E IGN(Q), and I E PRU(Q). For example, consider
all uncommitted-preferred models of Q. In fact there is only one, namely model M1 of

Figure 2.11. In this model, no instances of I are assigned to false. Also, it is biexemplar

justified by the instances I{joe/x} and I{betty/x}. Thus I E AMP(Q). Similar arguments

can be made to show that I E IGN(Q) and I E PRU(Q).

Chapter 2: Semantics for Induction 41

/ mother(joe) = betty T \
mother(betty) = karla T
grandmother(foe) = mother(mother(joe)) T
grandmother(joe) = mother(betty) T

= grandmother(joe) = karla T
grandmother(betty) = mother(mother(betty)) T
grandmother(betty) = mother(karla) T

grandmother(karla) = mother(mother(karla))

\ otherwise I)

/ mother(Joe) = betty T \
mother(betty) = karla T
grandmother(joe) = mother(mother(foe)) T

grandmother(joe) = mother(betty) T

grandmother(joe) = karla T

grandmother(betty) = mother(mother(beuy)) T
M2 = grandmother(betty) = mother(karla) T

grandmother(karla) = mother(mother(karla)) T
foe = mother(karla) T
grandmother(karla) = betty T

grandmother(karla) = mother(foe) T
grandmother(betty) = foe T

otherwise F J

Figure 2.11. Some sample models

2.5 Theorems for Machine Learning

The theorem classes IND, AMP, IGN, and PRU, can be used to characterize the theorems

generated by machine learning systems. IND theorems are conservative and are used mainly

to compress data reversibly. They do have predictive ability when the language is extended

to include new function symbols of the sorts referred to in the theorems. IGN theorems are

rather conservative, but can deal with noise. AMP theorems are risky in their inductive leaps,

but cannot deal with noisy data. PRU theorems are also strongly predictive, but can also deal

with noise. These four sets of theorems are comprehensive - the theorems discussed in the

remainder of this thesis will be syntactically restricted types of them. In particular, we will

Chapter 2: Semantics for Induction 42

Name Modelling Type Model Type Justification
DED (deductive) M = s standard total

IND (inductive) M s standard total

AMP (ampliative) M I s uncommitted biexemplar

IGN (ignorative) M s avoidant biexemplar

PRU (prudent) M < s uncommitted-avoidant biexemplar

Figure 2.12. List of theorem types

concentrate on negationless conjunctive universal theorems.

Machine learning systems seem to emphasize universal theorems rather than existence

theorems. This is not surprising, since existential theorems are less specific and contain less

information than the data from which they are derived, while universal theorems describe

specific properties that range over a complete database. However, existence theorems can be

useful for zooming in on interesting sub-properties of a large scene, and it would sometimes

be useful for a machine learning program to discover them. In general, all possible existence

theorems can be generated from all deductive theorems. Universal theorems are the most

often discussed of the two types of theorems. Kodratoff (1988) gives a good discussion of

the use of existential and universal theorems in machine learning.

The type of description language most often used in machine learning systems is

conjunctive, in which a set of rules is produced from a set of examples. These sets can be

thought of as a conjunction of equations. Though some more advanced systems generate

disjunctive descriptions, we disregard these.

Some machine learning systems, including a few developed in Chapter 5, first create

subconcepts and use these subconcepts to create more complex concepts. A particularly

clear example of this is the Marvin system (Sammut & Banerji, 1986). These higher level

concepts can be seen as ampliative or prudent theorems, but not of the original theory:

Definition 2.27 An extension to a theory 5 is a theory created by adding theorems of S to S.

Ampliative extensions augment S with ampliative theorems of 9 and prudent extensions

Chapter 2: Semantics for Induction 43

mother(joe) =
mother(betty) =
grandmother(Joe) =
grandmother(betty) =
grandmother(karla)
grandfather(bob) =
grandfather(karla) =

betty
karla
mother(betty)
mother(karla)

mother(mother(karla))
husband(mother(mother(bob)))
husband(mother(mother(karla)))

Q' = Q U grandmother(x) = mother(mother(x))

Figure 2.13. An ampliative extension of a theory

augment S with prudent theorems of S.

Using this definition, machine learning systems that work this way generate theorems of

extensions of a given theory.

For example, consider the rules in Figure 2.13. Q' is an ampliative extension of Q since

grandmother(x) = mother(mother(x)) is an ampliative theorem of Q. It is biexemplar

justified by instances with joe and karla and is underdetermined for all other instances. But

then, Vxgrandfather(x) = husband(grandmother(x)) is an ampliative theorem of Q', but

not of Q (since it is only justified by its karla instance). Some machine learning systems

would generate such theorems of extensions as well as theorems of the original axioms.

In summary, this chapter has given a semantics for induction as used in machine

learning. There were two common factors in all types of induction, a justification criterion

and the avoidance of refutation. The varying factors were the particular justification used, the

ontological status of propositions and the minimization technique. The status of propositions

was extended from the standard true and false to include underdetermined (unsure) and

overdetermined (inconsistent). The mechanics of managing the two new truth values to

behave in concert with new truth definitions involved minimization techniques. These

minimization techniques could be varied as well. This framework shows how to distinguish

different types of induction. The remainder of the thesis will demonstrate some of its

descriptive power.

Chapter 3

Theorem Proving Techniques

That which needs to be proved cannot be worth much. - Nietzsche

There are several methods of proving deductive and inductive theorems in first order

logic. This chapter discusses the techniques that are commonly used for equational logic

proofs. The first section describes unification and the next introduces term rewriting systems

and reduction. The next section describes narrowing, a method of equation solving. The last

section introduces a method of proving inductive theorems. All of these proof techniques

will be reversed in Chapter 4 for the purpose of generating theorems. Figure 3.1 summarizes

the important methods that are developed here.

3.1 Term Unification

In this section, the most basic concepts involved in theorem proving, namely substitution,

application, and unification, are defined.

Definition 3.1 A binding is a pair written v/t where t is a term, and v is a variable, and

v # t. Two bindings vi/ti and v2/t2 are disjoint if v1 # v2. A substitution is a set of disjoint

bindings.

Definition 3.2 Suppose 9 = {vi/ti,V2/t2. ... Then Domain(9) = {v1,v2, . . .

and Range(0) = {t1, t2, . . . , Q. A ground substitution is a substitution 9 such that

Vars(Range(9)) = 0. A ground substitution 9 is a ground substitution of term t ifVars(t) c
Domain(9). A proper substitution is a substitution .9 where 3t t E Range(9) and v is a

non-variable. Otherwise, 0 is called a variable renaming.

Some authors define Range(0) to be the set of variables in {t1, t2, . . . , t} rather than the set

of terms itself.

44

Chapter 3: Theorem Proving Techniques 45

to

Application

Substitution 0 applied to term t Section 3.1

Unification

Mgu(s,t) Most general unifier of terms sand t

Mguterm(s,t) Most general unificand of terms s and t

Match(s,t) Matching substitution of term s with term t

Reduction

Section 3.1

Section 3.1

Section 3.1

Nf(t,R) Normal form of term twith respect to Section 3.2
tern, rewriting system R

S --> t Term s reduces in one step to term t Section 3.2

t Term s reduces in any number of steps Section 3.2
to term t

Equational Unification

The set of all equations with a narrowing
Narrow(e,R) derivation from equation e with rules in R Section 3.3

Statement I is a cover set
Csi(I,R) induction of R Section 3.4

Figure 3.1. Generation operators discussed in this chapter

Chapter 3: Theorem Proving Techniques 46

Definition 3.3 A substitution 0 = {vi /ti,... , v/t} can be applied to a term t to produce

a term tO by replacing each vi in t with the term t, for each binding (1 ≤ i ≤ n) in 0.

Definition 3.4 Suppose 0 = {vi/si,v2/s2, and -y = {wi/ti,w2/t2, ..., Wm/trn}.

Then the composition of substitutions is defined as: 0 o'y = {vi/si-y, v2/82-y, . . .vn/sn7} U'y -

{w/t1 w E Domain(0)}. For example, if 0 = {v/f(x), w/f(z)} and 02 = {x/c, w/d},

then 01 0 02 = {v/f(c), w/f(z),x/c}.

Definition 3.5 A substitution 0 is said to be unifier of two terms s and t iff sO to. We say
that s and t are unifiable when a unifier exists for them. A most general unifier of s and t,

denoted Mgu(s, t), is a unifier 0 of S and t such that for each unifier o of s and t, there exists

a 5 such that 0 o S = o. If 0 = Mgu(s,t), then the term sO is called the unificand of s and

t and is denoted Mguterm(s, t). A matching unifier of s with t, written Match(s, t), is the

most general unifier of Gnd(s) and t. In other words, Match(s, t) =Mgu(Gnd(s), t). We say

s matches t when a matching unifier exists.

For example, Mgu(f(x, b), f(a, y)) = {x/a, y/c} and Mguterm(f(x, b), f(a, y)) = f(a, b);

Also, Match(f(z, b), f(x, y)) = {x/z, y/b} and Match(f(a, b), f(a, y)) = {y/b}, but f(z, b)

and f(x, x) do not match.

Unification is a central component of all first order theorem proving systems. Algorithms

to compute most general unifiers are straightforward, and can be found in any book on basic

logic in computer science (eg. Fitting, 1990; Genesereth and Nilsson, 1987) along with

descriptions of many interesting properties of unification.

3.2 Term Rewriting Systems

The generation methods and semantics presented here are based on equational logic. Since

term rewriting systems are very useful for proving theorems in this logic, they are prime

candidates on which to build theorem generation methods. Huet and Oppen (1980) provide

a good survey of term rewriting system theory and Avenhaus and Madlener (1990) have

written an extensive introduction to the area. A brief introduction to relevant aspects of the

subject is presented here.

Chapter 3: Theorem Proving Techniques 47

First, recall that equations are pairs of terms, written as s = t. The equation t = $

is the same equation as s = t. Rewrite rules are oriented equations, that is, equations

that have one term labelled as the left hand side and the other as the right hand side. For

example, the equation .s = t can be oriented into the rewrite rule s - p t where s is the left

hand side, Lhs(s - t) = .s, and t is the right hand side, Rhs(s - t) = t. Note that each

(non-trivial, ie. s t) equation can be oriented in two ways: s = t can be oriented into

both s t and t - s. Rewrite rules have the further restriction that s -+ t must satisfy

Vars(t) Vars(s). So the equation g(x) = f(x, y) can only be oriented into the rewrite

rule f(x,y) - g(x).

A term rewriting system is a triple (F, V, R) where F is a set of functions, V a set of

variables, and R a set of rewrite rules constructed from Terms(F, V). Afirst order typed term

rewriting system is a quadruple (T, F, V, R) where T is a typing function over terms (see

Section 1.4). All rules $ -+ tin a typed term rewriting system must satisfy Type(s) = Type(t).

These are called "first order" term rewriting systems, since variables are not allowed in type

specifications. They provide no extra power over untyped term rewriting systems since a

derivation (see below) in a typed term rewriting system is equivalent to one without the

types. However, they will be used in this study since they enhance representational clarity

and theorem proving efficiency.

Term rewriting systems are used to reduce terms to simpler forms. This is accomplished

by a series of reduction steps using the reduction operator:

Reduction
t

t[u i- R]O
where u E Pos(t) and

9 = Match(i/u,L2))

In this definition, some subterm of the term to be reduced is matched with the left hand

side of some rule in the term rewriting system. Note that position u will never refer to a

variable position unless L, is a variable (this is allowable-but rare in practice). The symbol

Chapter 3: Theorem Proving Techniques 48

V={x,y}

- (1) likes(x,supervisor(x)) —* true
(2) supervisor(brent) - ian
(3) supervisor(debbie) -+ brian

R = (4) supervisor(brian) - god

(5) likes(god, ian) - unknown
(6) likes(brian, ian) -+ true

- (7) likes(brent, supervisor(x)) - true -

likes(brian, supervisor(brent)) --+* true

since

likes(brian, supervisor(brent)) - likes(brian, ian) -+ true

Figure 3.2. Example of reduction.

—+ denotes a single reduction step, and the symbol _.** denotes the transitive closure of all

known reduction steps. s --+* t means that s reduces to t after some number of reductions,

or t is derivedfrom s. A sequence of reduction steps s - + s, - s... - t is a derivation.

Consider the term rewriting system R in Figure 3.2. The only possible reduc-

tion of the term likes(supervisor(y),supervisor(brent)) is via rule (2) resulting in the

term likes(supervisor(y),ian). Any other attempts at using a rule in R are mismatches.

However, likes(debbie,supervisor(debbje)) reduces via rule (1) with 0 = {x/debbie} to

true and via rule (3) to likes(debbie,brian). The figure notes that true is derived from

likes(brian,supervisor(brent)) with a two step derivation likes(brian,supervisor(brent)) -4

likes(brian,ian) -* true.

A few more definitions end our introduction to term rewriting systems. A term t is

in normal form (modulo R) if there is no rule in R that reduces t. A normal form of a

term t modulo R is written Nf(t, R). R is confluent if s -v' t1 and s —+ t2 implies that

t t1 -* t A t2 -v t. In other words, all terms must have a unique normal form modulo

R. R is noetherian (or terminating) if Vsat t = Nf(s, R). For example, the rules g - p g

and 1(x) - f(f(x)) would produce infinite sequences of rewritings on the terms g and 1(a)

respectively, and their inclusion in R would prevent it from being noetherian. However,

Chapter 3: Theorem Proving Techniques 49

f(f(x)) -* 1(x) could be included. R is interreduced if V (s -+ t) E R, t = Nf(t, R) A s =

Nf(s, R - Is - t}). In other words, all rules in R are composed of reduced terms. If R is

confluent and noetherian, then it is convergent. If it is also interreduced, then it is complete.'

Consider the rewrite system R in Figure 3.2. It is not confluent and thus not complete.

The completion of R would include:

likes(debbie, brian) -+ true

likes(brent, ian) -* true

likes(brian, god) -+ true

likes(brent, brian) -+ true

likes(brent, god) -+ true

Methods called completion procedures have been developed that attempt to make term

rewriting systems complete (Knuth & Bendix, 1970). In this thesis, the rewrite systems

that are used and generated are assumed to be complete. All results will be given under this

assumption. To ensure that a term rewriting system is noetherian, completion procedures

check to see that each rule is reducing by referring to a reduction ordering, a partial ordering

on terms (Dershowitz, 1982).

Given a complete term rewriting system for S, theorems in DED(E) can be proven very

simply. Using this method, s = t (where s and t have no existential variables) is a theorem

when Nf(s, R) Nf(t, R). In other words, simply rewrite both sides of the equation to

their normal forms, and if they are identical the equation is a theorem.

Because a universal Turing Machine can be represented as a set of equations, term

rewriting systems are Church-Turing equivalent. This implies that they are representation-

ally powerful but are sometimes undecidable. Fortunately, term rewriting systems that are

confluent and noetherian are known to be decidable.

Term rewriting systems also can be used to prove theorems in the first order predicate

calculus with equality, not just in the restricted equational logic that is used here. To do this,

general formulae in the first order predicate calculus are reduced to a set of equations using

'Many authors use the term canonical to avoid overloading the word complete.

Chapter 3: Theorem Proving Techniques 50

a deterministic procedure (Hsiang, 1986; Kapur & Narendran, 1985). This transformation

suggests that equational logic is at least as powerful as the full first order predicate calculus

with equality. Unfortunately, a drawback with this method is that the translation can be

computationally intensive.

3.3 Equational unification by narrowing

Equational unification, or equation solving, is required for proving theorems in equational

logic that involve existential variables. Given an equation s = t, equational unification

finds a 0 such that sO = W. In other words, it is unification after background theory is

used to rewrite terms. Narrowing is a method of equation solving that requires a complete

rewrite system for the equational theory. Other methods of equation solving are presented

by Dershowitz and Sivakumar (1988). The narrowing operator, the main component of the

narrowing method, is just a slight mutilation of the reduction operator:

Narrowing
t: L, = Re
L-4RER

where u E Pos(t) and
0 = Mgu(t/u, L) (ie. t/uO = L10)
t/u is a variable.

A narrowing derivation is a sequence of narrowing steps. Also, an equation is called a

narrowing of another equation e with a set of rules R if it is produced by some narrowing

derivation from e. We write the set of all narrowings of e with R as Narrow(e, R).

The study of narrowing involves attempting to choose u intelligently. An overview of

different narrowing strategies is given by Rety (1987).

To find solutions to an equation Q1x1, ..., s = t where the Q2 are either 3 or V,

Chapter 3: Theorem Proving Techniques 51

the universal variables are skolemized out (Lloyd, 1984).2 This involves replacing universal

variables with new, unique functions called skolem functions. In particular, a universal

variable xj is replaced with sk (v1, ..., 'Urn) where V1, ..., v.,, are existential variables from

among x1, ..., x_1. Second, all quantifiers are dropped. Next, the resulting equation s' = t'

is made into a term f(s', t') where f is a new function symbol. Then the narrowing operator

is applied. If narrowing results in a term f(r, r) where r is any term, then the equation is

proven, and the substitution required to obtain f(r, r) from f(s', t') is a solution.

Consider the complete term rewriting system {f(x) - c,g(a,x) - x,g(b,x) —* c}. To

prove the theorem Vyzf(y) = g(z, c), the narrowing procedure is applied to its skolemized

form: f(sk) = g(z). It returns two solutions for z, namely z is a and z is b. This not only

shows that the formula is a theorem but also computes possible values for the existential

variables it contains.

Lemma 3.1 (Hullot, 1980) Let S be an equational theory 5, R be a term rewriting system

that is complete in 5, and s and t be two terms. The set of all solutions of a narrowing

derivation of s = t is complete.

This lemma asserts that if there is a 0 such that sO = tO via R, then 0 will be computed by

using narrowing on s = t. It enables the proof of the following useful proposition:

Proposition 3.1 Let S be an equational theory and R be a term rewriting system that is

complete in S. Then narrowing on R is a complete procedure for proving theorems in

DED(S).

A corollary of this is:

Proposition 3.2 Completion and narrowing together are complete for proving theorems in

DED(S), for completable theories E.

This is true since a completion procedure produces a complete term rewriting system for a

completable theory. These propositions will be used later to show the power of the generation

operators.

21n proofs by refutation, existential variables are skolemized out. In proofs of equality, the universal
variables are skolemized out.

Chapter 3: Theorem Proving Techniques 52

3.4 Inductive Theorem Proving

Inductive theorem proving is difficult. Inductive theorems were defined in Chapter 2 as

statements whose instances are deductive theorems. Thus, proving an inductive theorem

amounts to enumerating all its instances and testing each for a deductive proof (perhaps

using narrowing and completion). The problem with this is that there is often an infinite

number of instances to test for deductive proof. Also, even if the number of instances is

finite, it is likely to be large in reasonable applications.

Two approaches have been developed for this problem. Inductionless induction

(Lankford, 1981) uses proof by consistency (Kapur- & Musser, 1987) rather than proof

by contradiction. It is a complex topic, and will not be discussed in this thesis. The

remainder of this chapter describes cover set induction, the other principal approach.

One early method of making inductive theorem proving practical was to generate finite

induction schemas made up of only a few premisses to be established. Mathematical induction

is an example where induction schemas are used to prove theorems over infinite well-ordered

domains. Its schemas are made up of base cases and generative cases. Burstall's structural

induction method (Burstall, 1969) and the Boyer-Moore induction method (Boyer & Moore,

1979) are the most famous of these methods. Zhang, Kapur and Krishnamoorthy (1988)

have recently developed the cover set induction approach, a comprehensive and yet usable

induction method. The following definition of cover sets is paraphrased from them:

Definition 3.6 A cover set of a sort T is the domain of an onto mapping 'P from afinite set

of terms of sort T to the power set of the ground constructor terms of sort T. 'P is defined

such that 'F(s) = T iffVt E T 30 sO =,, t, 'I'(t) 54 0 and '-F(s) n 'F(t) o 0 iffs t.

A cover set of positive integers, for example, is {O, s(x) j, while one for lists is

{nil, corts(x, y)}. Using cover sets simplifies the proof of inductive assertions. Instead

of considering each instance of the assertion for a deductive proof, we need only consider

each element of the cover set:

Definition 3.7 Cover Set Induction Suppose that x is a (universal) variable of sort T in an

inductive theorem I and M is a cover set of sort T. Then I E IND() iffor all m E M,

there exists a subterm t of sort T in m such that I{t/x} ='- I{m/x} E DED(E). I{t/x}

Chapter 3: Theorem Proving Techniques 53

S = {integer}
V = {x}

F = {neg/l, 0, s/i, p/l}
F(integer) = {O,s,p}

Q

neg(0) = 0
neg(p(x)) = s(neg(x))
neg(s(x)) = p(neg(x))
p(s(x)) = x

S(P(X)) = x

Inductive Theorem: Vx neg(neg(x)) = x

Figure 3.3. Negation theory

is called the inductive hypothesis.

If statement I is a cover set induction of R, we write Csi(I, R) = T. Although this definition

is sufficient for our purposes, it is incomplete since it- requires for soundness a more careful

choice of the subterins of m (Zhang, 1988). Cover set induction is at least as powerful as

Burstall's structural induction. Structural induction only uses a cover set developed from the

constructors of a sort, whereas cover set induction can use any cover set.

For an example of cover set induction in action, consider the theory in Figure 3.3. The

inductive theorem Vx neg(neg(x)) = x can be proven using cover set induction. The cover

set {0, s(x),p(x)} can be used. First neg(neg(0)) = 0 is shown to be a deductive theorem.

neg(neg(0)) = neg(0) = Oby the first axiom. Next, the inductive hypothesis neg(neg(g)) =

g is assumed (by adding it temporarily to the theory). Then neg(neg(p(g))) = p(g) is

shown to be true. Using the axioms at each step, neg(neg(p(g))) = neg(s(neg(g))) =

p(neg(neg(g))), and using the inductive hypothesis, p(neg(neg(g))) = p(g). A similar

argument is used for the successor (s) case. Using this cover set method avoids the infi-

nite enumeration of {O,p(0), s(0),p(s(0)),p(p(0)), s(s(0)), ...} that would be needed if the
definition of induction from Chapter 2 were used directly.

It is sometimes tricky to choose cover sets that will work. Zhang (1988) shows that

the definitions of function symbols in the conjecture can be used to generate cover sets

automatically, under certain conditions.

Chapter 4

Theorem Generation Techniques

Computers are useless. They can only give you answers.

- Pablo Picasso

This chapter argues that (despite Picasso) computers can generate questions. Theorems,

the central entities of this study, are the "questions" of logical languages and their generation

is the principal operation of many machine learning programs. This chapter details methods

that can be used to generate theorems. In doing so, it will help to answer the second problem

of this thesis, the problem of computational induction. Recall that Chapter 3 investigated

unification, term rewriting, equational unification and cover set induction. These proof

methods are reversed in the first four sections of this chapter in order to obtain generation

methods. Methods that involve specialization are discussed in Section 4.5. Among other

benefits, this clarifies the relationship between generalization and specialization. Figure 4.1

summarizes most of the operators that are developed here.

4.1 Reverse Unification

Unification is an important operation in theorem proving due to its ability to detect com-

monalities between terms, and in a wider sense, between clauses and rules. The unificand of

two terms is the most general description of what they have in common. Theorem provers

use this commonality to choose appropriate rules and clauses to apply next in the chain of

reasoning.

For inductive theorem generation and machine learning in general, a system must

detect and resolve differences between examples, rather than just finding commonalities.

Examples that unify, and thus have common subcases, convey redundant and thus important

information. Examples that do not unify suggest that the respects in which they differ may

be unimportant. The antiunification of terms locates and resolves differences between them.

54

Chapter 4: Theorem Generation Techniques 55

t1 a

Msa(s,t)

Au(s,t)

Rau(rl,r2)

Irau(S,R)

Exterms(t, R)

Exrules(r,R)

Wids(r, R)

Eau(rl,r2,R)

An(rl,r2, R)

Can(rl,r2,H)

Can '(rl,r2, R)

Sp(t, V)

Nspec(S,R)

Spec(S, R)

Antiapplication

Antisubstitution a antiapplied to term t

Antiunification

Most specific antiunifier of terms s and t

Antiunificand of terms s and t

Antiunificand of rules rl and i2

Inductive rule antiunifications of a set
of rules with respect to theory R

Expansion

Set of expansions of a term t, or rule r, or its
expansions, with rules in R.

Set of widenings of rules rl and i2 with theory R

Equational Antiunification

Equational antiunification of rules rl and i2
with theory R

Antinarrowing of rules rl and i2 with theory R

Complete antinarrowing of rules
rl and i2 with theory R

Inconsistent complete antinarrowing
of rules rl and i2 with theory R

Specialization

Cover set specialization of a term t
with respect to variables V

Naive cover set specialization of set
of rules S with respect to theory R

Cover set specialization of set of
rules S with respect to theory R

Section 4.1.1

Section 4.1.1

Section 4.1.1

Section 4.1.2

Section 4.4.1

Section 4.2.1

Section 4.2.2

Section 4.3.2

Section 4.3.1

Section 4.3.2

Section 4.3.3

Section 4.3.3

Section 4.5.1

Section 4.5.2

Section 4.5.2

Figure 4.1. Generation operators discussed in this chapter

Chapter 4: Theorem Generation Techniques 56

Instead of focussing in on important information like unification does, antiunification filters

out unimportant information.

This section describes the operation of antiunification. First, term antiunification is

described precisely and then it is adapted for use with rules and equations.

4.1.1 Term antiunification

The term is the basic logical entity of equational theories. To unify two terms A1 and A2, a

more specific term B and a substitution or are found such that A1cr = A2cr = B. Similarly,

to antiunify two terms B1 and B2, a more general term A and an antisubstitution a are found

such that B1 I a = A = B2 I a. This subsection defines the unfamiliar terminology and

symbols in this definition.

Antibindings and antisubstitions are defined similarly to their inverses, namely bindings

and substitutions (Definition 3.1).

Definition 4.1 An antibinding is a pair written P/v where P is a set of positions and v is a

variable. Two antibindings P1/vi and P2/v2 are disjoint if P1 fl P2 = 0. An antisubstitution

is a set of disjoint antibindings.

For example, {{ 1.1,2}/x,{1.2}/y} is an antisubstitution, while {{ l,2}/x,{2,3.l}/y} is

not. The greek letters a and 9 are usually used for antisubstitutions.

Definition 4.2 An antibinding {pi, . . ,p } /v is relevant to a term t if {pi,... , Pm } ç Pos(t)
and iff, j t1pi = t/p. That is, each position mentioned in the binding refers to aposition in
the term and all subterms of a term to which a relevant antibinding refers must be equivalent.

An antisubstitution is relevant to a term t if all of its component bindings are relevant to t.

For example, the antibinding 111.1,21/x,11.21/y} is relevant to f(g(a, a), a), but

{ {1.3}/x} is not relevant, since it refers to a nonexistent position in the term, and

{{1}/x, {2}/y} is not relevant since the term at position 1, g(a, a), is not the same as

the term at position 2, a.

Application of substitutions (Definition 3.2) is the fundamental operation in unification

Chapter 4: Theorem Generation Techniques 57

theory; here it is antiapplication:

Definition 4.3 An antisubstitution a = {Pi/vi, ..., P/v} can be antiapplied to a term .s

producing a term s T a that has all positions of s in P1 replaced with v. If a is not relevant

to s then s I a is undefined. Otherwise, s T a is defined recursively

sla={
S ifa=Ø

S1 4-V1J ... [7m 4-V1]1{P2/V2,...,Pn/Vn} ifa= {Pi/vi,...,Pn/vn}
and Pi={pi,...,pm}

For example, suppose a = {{ 1.1,2}/x, { l.2}/y} and s = f(g(a, h(b)), c). Then s la =

f(g(a,h(b)),c)[1.1 +- x][2 - x] I {{ l.2}/y} = f(g(x,h(b)),c)[2 +— x] I {{ l.2}/y}
f(g(x,h(b)),x) 1' {{ l.2}/y} = f(g(x,h(b)),x)[1.2 - y] = f(g(x,y),x). Also, h(b) I

{{1.3}/x} is undefined.

Recall from Definition 3.5 that a substitution 0 such that sO = tO is called a unifier of s

and t. The definition of antiunifier is similar:

Definition 4.4 Suppose s and t are terms. An antisubstitution a is called an antiunifier if

s T a = t T a and a is relevant to a and t. The term s T a is the antiunificand of a and t

with respect to a when a is an antiunifier of s andt. A non-variable antiunificand is called

a proper antiunificand.

For example, an antiunificand of f(g(a, h(b)), a) and f(g(b, b), h(b)) is f(x, y) using the

antiunifier {{ 1}/x, {2}/y}; another is f(g(x, y), x) using 111. 1, 2}/x, { l.2}/y}.

Unification theory speaks of most general unifiers that are produced by unification

algorithms. A similar notion in antiunification theory is useful.

Definition 4.5 Suppose a and ,6 are antiunifiers of the terms s and t. If there is a proper 9

such that s T a = (s 10)0, then a is more specific than (or equally specific to) P. We write
a≤8.

For example, consider the antiunifiers /3 = {{ 1}/x, {}/y} and a = {{ 1.1,2}/z, { 1.2}/w}

of the terms f(g(a, h(b)), a), call it a, and f(g(b, b), h(b)). Then s 10 = f(x, y) and

s T a = f(g(z,w),z). Since s T a = f(x,y){x/g(z,w),y/z} = (s I /3){x/g(z,w),y/z},

then a<8.

Chapter 4: Theorem Generation Techniques 58

Definition 4.6 If s and t are terms, then an antiunifier a of s and t such that for each

antiunifier /3 of s and t, a < /3, is called a most specific antiunifier of s and t and is denoted

Msa(s,t).

In general, a given pair of terms might have several most specific antiunifiers. However,

they only differ by the names of the variables used. Figure 4.2(i) and (ii) give two simple

cases of most specific antiunifiers. In Figure 4.2(iii) the antiunificand is f(x, x), not the

more general f(x, y).

The antiunification operator is central to this thesis and is used to compute the antiu-

nificands of most specific antiunifiers:

Antiunification
S

t

s TMsa(s,t)
where s,t are terms.

The term s T Msa(s, t) in this definition is called the antiunificand of s and t. The imple-

mentation of this operator requires the computation of the most specific antiunifier of s and

t. The following is a declarative presentation of the straightforward algorithm to do this:

f(b,x)

/\
f(a,y(x))

/\
f(x,x)

f(b,b) f(b,c) f(a,g(b)) f(a,g(c)) f(y(a),.g(a)) f(b,b)

a={{2}/x} a={{2.l}/x} a={{l,2}/x}

Figure 4.2. Most specific antiunifiers.

Chapter 4: Theorem Generation Techniques 59

Antiunification Algorithm

S if S
- f(Au(si,ti),Au(s2,t2) ... Au(s,t)) if sf(s1,s2 ... s) and { Au(s, t)
-

V8,t (a variable) otherwise

This algorithm produces the antiunificand Au(s, t) = s I Msa(s, t), and its correctness

is proven by Lassez, Maher and Marriott (1987). In the last line, Au(s, t) always gen-

erates a unique but particular variable for each pair of terms, not a unique variable for

each invocation of the Au function. For example,. consider the terms in Figure 4.2 (iii).

Au(f(g(a), g(a)), f(b, b)) = f (Au(g(a), b) ,Au(g(a), b)) = f(x, x) where Vg(a),b = X.

The following proposition shows that Msa(s, t) can be computed easily using an algo-

rithm to compute most general unifiers (Mgu).

Proposition 4.1 Suppose s and t are terms and a is the antiun/ication of s and t, that is, a =

Au(s, t). IfMgu(a,$) = {vi/si,v2/s2, ..., Vm/Sm} then 8 = Msa(s, t) = { Pos(v1,a)/vj,
... ,Pos(vm ,a)/vm ,}

For example, suppose that the antiunification algorithm produces the term a

f(g(x), h(y, x)) from the terms s = f(g(c), h(c, c)) and t = f(g(b), h(d, b)). Then

Mgu(a, s) = {x/c, y/c} and Mgu(a, t) = ix/b, y/d}. By Proposition 4.1, Msa(s, t) =

{{1.1,2.2}/x, {2.l}/y}.

Both Msa and Au have been defined on pairs of terms. It is also useful to define them

on sets of terms:

Proposition 4.2 Define Au(S) to be the antiunificand of a set of terms S computed by

Au(S) =Au(si,Au(s2,...,Au(s_1,$)))for si 0 s, 1 ≤ i,j ≤ n where ISI n. Au(S)

is independent of the order of appliOation of the pairwise Au function. Similarly, define

Msa(S) to be the most specific antiunifier of a set of terms S computed by Msa(S) =

Msa(si,Msa(s2,. . .,Msa(s,, sn))). Msa(S) is also independent of the order of application

of the pairwise Msa function.

Chapter 4: Theorem Generation Techniques 60

The antiunification algorithm and most specific antiunifiers play a central role in the

study of induction and ampliation, much like the role that unification and most general

unifiers play in theorem proving. Although by themselves rather uninteresting, they are basic

building blocks for more complicated operators. The remainder of this chapter details how

term antiunification can be put to use.

4.1.2 Rule and equation antiunification

The next larger entity in equational logic is the equation or rule. Consider the rules

{dog(barney) -* true, dog(rolj) -* true}. Their natural common generalization is that all

objects in this domain are dogs, or Vx dog(x) - true. This more general rule can be produced

by antiunifying the left hand sides, and leaving the right hand side unchanged. However, this

does not work in general. Consider the rules { dog(barney) —ilzappy(barney), dog(rolf) -+
.happy(rolf)}. The natural generalization is that all dogs are happy, orVx dog(x) —*happy(x).

This is not simply the antiunification of the left hand sides and right hand sides separately.

The left hand sides and right hand sides must be antiunified simultaneously and so each rule

is treated as a term and both terms are antiunified.

Rule Antiunification
Ll—Rl
L2 R2

All -+ A/2
where A = Au(f (Li, Ri), f(L2, R2))

and f is a new function symbol
and Vars(A/2) CVars(A/l)

Rule antiunification is denoted by Rau(rl, r2). The final condition prevents us from

creating a rule that is not variable reducing (in which case, it would not be a rule

in a term rewriting system). We sometimes write Termfy(r) as a shorthand for con-

verting a rule into a term and Makerule(t) for converting it back to a rule. Then

Rau(rl, cr2) =Makerule(Au(Termjfy(rl),Termzfy(r2))).

Chapter 4: Theorem Generation Techniques 61

Equation antiunification is barely more difficult. Since equations are unoriented, two

rules for each equation need to be antiunified with each of the two from the other equa-

tion. Orienting e1 and e2 obtains (at most) the rules e11, e12, e21, e22. Next we compute

{ Rau(eji, e21), Rau (e11, e22), Rau (e12, e21), Rau(e 12, e22)} and convert the resulting rules
back into equations.

4,2 Reverse Term Rewriting

The use of unrestricted rules with rule antiunification is not powerful enough for many

applications. Many machine learning algorithms use background theories to assist their

inductions. Often, problems are specified by defining not only rules, but also a background

theory. This section shows how a theory can be used to generate deductive theorems. In

Section 4.3, these operators will be used as components of more complex operators that

enable induction of various types.

4.2.1 Term expansion

Consider the background theory dad(barney) - harry. A good generalization of dog(harry)

and dog(dad(rolf)) with respect to this rule would be dog(dad(x)) rather than dog(x). This

is because fatherhood might have some bearing upon what makes the two dogs similar.

To obtain dog(dad(x)), dog(harry) needs to be expanded to dog(dad(barney)) using the

background theory before it is antiunified with dog(dad(rolj)).

Expansion is the dual of rewriting - instead of rewriting over a set of rules R, rewriting

is done over R with its rules reversed. This is another instance where a proof technique is

used in reverse for generation purposes. The expansion operator is defined as:

Chapter 4: Theorem Generation Techniques 62

Expansion
t
L1 - R1

(a term)

t[u +- Li]O
where u E Pos(t) and

0 = Match(t/u,RI)

The function Exterms(t, R) denotes the set of all expansions (and expansions of ex-

pansions, and so on) of a term t with respect to a term rewriting system R. Each member

of this set is called an extern. Figure 4.3 demonstrates the application of the expansion

operator. Each arrow in the middle of the figure indicates an expansion step. For example,

expansion of the term f(c, x) with respect to the rule set R yields the exterm f(g(a), x) using

the third rule in R, g(a) -+ c. The figure is not a generalization lattice since, for example,

f(g(a),p(p(x))) is less general than f(g(a), x) even though it is higher up in the expansion

graph.

When the right hand side of a rule is a variable it can be used to expand any subterm of

a term. Also, ifs - p t and Vars(t) CVars(s) (proper containment), expansion will introduce

new variables. This gives a new way in which variables can be introduced into learning

systems other than by the standard method of replacing constants with variables.

4.2.2 Rule expansion

Rules, not terms, are the objects of this study. The rule expansion operator is simply

expansion done on rules instead of terms:

Chapter 4: Theorem Generation Techniques

h(y) g(y)

2 p(y) -. y

3 g(a) -- c

The Rule Base R

Exterms(t,R) =
{ f(c,x)
f(p'(c),pJ(x))

f(pi(g(pk(a))),p.J(x))

f(p'(h(pt1(a))),pi(x)) }

for O≤i,j,k
and 1≤n

Set of Expansions of

a Term t with R

63

f(p(g(a)),p(x)) f(g(a),p(p(x))

f(h(a),x) f(g(a),p(x))

0= { y/a }

f(p(c),x) f(g(a),x)

N2 f
0= { iN-J e= { I

The Term being expanded t = f(c,x)

Some Expansions of a Term with R

Figure 4.3. Expansion is rewriting with rules reversed.

Chapter 4: Theorem Generation Techniques 64

(1) app(a.nil,nil) — a.nil (RW) app(a.nil,nil) --+ a.app(nil,nil)
(2) app (nil,x)-3x (W) app(a.app(nil, nil), nil) — a.nil

Figure 4.4. Rule expansion example.

Rule Expansion
L1 —* R1
£2 —4 R2

r/l —+ r/2

where t=f(L1,R1)
r = t[u — £210
u E Pos(t)
0 = Match(t/u, R2)
Vars(r/2) C Vars(r/l)

The set of all rule expansions of a rule is called its set of exrules and is denoted Exrules(r, R).

A single expansion step is denoted Ex(ri, r2). A right expansion is an operator that expands

only the right hand side of a rule and is defined by replacing u E Pos(t) with u E Pos(Ri) in

the above definition. Figure 4.4 shows a rule (1) that can be right-expanded by (2) to obtain

(RW). Regular expansion would also produce (W) by expanding the leftmost nil in (1) with

rule (2). Note that the final condition in the definition of rule expansion is required because

of the possible introduction of variables by expansion'

Expansion can be used to generate deductive theorems. Everything created by expansion

is a deductive theorem of the rule expanded, if the rule used to expand is a deductive theorem.

In other words, it is sound. Also, all universal2 negationless conjunctive deductive theorems

of a theory can be generated with the expansion operator applied to all tautologies (rules of

the form t —* t) using the axioms of the theory. In other words, it is a complete operator. We

end this section by presenting these results.

I When reduction orderings are used for completion procedures (Section 3.2), this condition can be strength-
ened to r/2 < rpos r/1 or r/2 < kbo ni (etc.) to ensure that the rule is still reducing.

2An existential introduction operator can be used to generate existentially-quantified rules. It amounts to
replacing subterms with existential variables.

Chapter 4: Theorem Generation Techniques 65

Proposition 4.3 Expansion Soundness Suppose that R is a complete term rewriting system

for the equational theory E. If e E DED(S) and r E R, then Ex(e, r) E DED(S).

This theorem states that rule expansions always produce rules whose corresponding equations

are logical consequences of R and r. We can rest assured that using this operator will not

introduce errors.

Proposition 4.4 Expansion Completeness Suppose that R is a complete term rewriting

system for the equational theory e. Then (a = b) E DED(S) implies that 3t (a = b) E

Exrules(t -+ t, R).

This theorem implies that all logical consequences of a theory can be generated by enumer-

ating all the terms in Terms(S). Fortunately, all we wish to do is to generate theorems given

particular terms as starting points. If we choose a t that would be used in a proof for a = b,

this theorem shows us that we can be sure that a b will be generated.

4.3 Reverse Equational Unification

In Section 3.3, we discussed how terms can be unified with respected to a background theory.

The use of background theory is also useful for theorem generation. In this section, we

will develop the E-antiunification operator, the antinarrowing operator, and the complete

antinarrowing operator, which generate rules through a combination of antiunification and

the application of background theory.

First, we distinguish between two types of background theory, called explicit and

implicit background theory.

Definition 4.7 An explicit background theory is a set of rules specified at the outset of a

generation problem. An implicit background theory is a set of rules derived from a set of

examples using antiunification-based generation operators (not expansion).

The explicit background theory might be the examples themselves or additionally include

rules that are not to be generalized. The distinction between explicit background theory

and examples is only an efficiency issue, not a logical one, and is irrelevant here. What

is important is that generation operators that solely use the explicit background theory are

Chapter 4: Theorem Generation Techniques 66

• not as powerful as those that additionally use implicit background theory. Using the logical

framework of Chapter 2, both the implicit and explicit background theory comprise the union

of all extensions of the original theory, while the explicit background theory is exactly the

original theory.

Section 4.1 discussed the rule antiunification operator as a method of generalizing rules.

Section 4.2 discussed the expansion operator that enables the use of a background theory.

In Section 4.3.1, these operators are first combined to obtain a method of generalization

using background theories called "E-antiunification" that is sufficient for use with an explicit

background theory. A more general operator called antinarrowing is developed in Section

4.3.2 that also allows the use of implicit background theory. Section 4.3.3 develops the

complete antinarrowing operator to extend the theoretical power of the regular antinarrowing

operator.

4.3.1 Antiunification with explicit background theory

The E-antiunification operato?3 is an operator that combines expansion and antiunification.

In doing so, it allows us to use an explicit background theory, R, to generate an equivalence

between two rules r1 and r2:

E-Antiunification
R
ri

(a rewrite system)
(a rule)
(a rule)

Rau (p, q)
where p E Exrules(ri, R), q e Exrules(r2, R)

and Valid(a, R)

3The name E-antiunification is a modification of the term E-unification that is used for a unification operator
used by some in the theorem proving community (Lassez, Maher & Marriott, 1987). The "E" signifies
(anti)unification with respect to an equational theory.

Chapter 4: Theorem Generation Techniques 67

The set of all rules that the E-antiunification operator generates is denoted Eau(ri, r2, R).

Notice the use of Valid in the definition. It is defined as

Valid(r, R) = Goodrule(r, R) A Consistent(r, R)

Goodrule is a boolean test to see if a rule is variable-reducing:

Goodrule(r, R) = Vars(r/2) 9 Vars(r/1)

Goodrule might be augmented with other restrictions on the type of rules that one might wish

to allow, such as the use of reduction orderings (Dershowitz, 1982). The Consistent test

checks to see that the rule is consistent with the given set of rules. When Valid is replaced with

Goodrule in the definition of E-antiunification, the inconsistent E-antiunfication operator is

derived and is denoted Eau(ri, r2, R).

To illustrate the E-antiunification operator, let r1 be g(c) - 1(c) and let r2 be g(a) - p b.

Then Rau(ri, r2) is undefined since their antiunification g(x) -+ y is not a rewrite rule (it has

a variable in the right hand side that is not in the left). Now suppose we allow the use of the

single-rule background theory R = If (a) - b}. Then an exrule of r2, namely g(a) - 1(a),

is made possible by expanding the b in r2 with the rule in R. This exrule, when antiunified

with r1 (a trivial exrule of itself), produces g(x) - f().'Since there are no other expansions

or antiunifications possible, Eau(ri, r2, R) is {g(x) -+ f(x)}.

Note that if Exterms(t, R) and Exterms(s, R) are finite, then Eau(s, t, R) is finite, as

in the example just given. When Exterms(t, R) is infinite, Eau(s, t, R) is often infinite.

However, it might be finite like in the single rule theory {f(s(s(x))) - 'f(s(x))}. Here

Eau(f(b), f(s(0)), R) is simply {f(x)}.

The E-antinanowing operator does not work for some problems. Consider trying to

generate the ampliative theorem T list(cons(x, y)) -* list(y) from this theory:

R:

list(nil) -+ true

list(cons(a, nil)) - true

list(cons(b, nil)) -+ true

list(cons(c, cons(d, nil))) -* true

Chapter 4: Theorem Generation Techniques 68

The theorem is the antiunification of r1 list(cons(a, nil)) - list(nil) and r2

list(cons(c, cons(d, nil))) -* list(cons(d, nil)). In order for the E-antiunification opera-

tor to generate T, both of these would have to be exrules of some pair of rules in R. The

former, r1, is an exrule since it is the second rule in R expanded with the first rule in R.

However, r2 is not an exrule, though it could have been an expansion of the fourth rule in R,

if only the rule B list(cons(x, nil)) -+ true was part of the explicit background theory.

However, B is part of the implicit background theory, since it is the antiunification of the

second and third rules of R. But the E-antiunification operator only has the ability to use

explicit background theory.

4.3.2 Antinarrowing

Another operator can be defined that takes into account both explicit and implicit background

theory. In Section 3.3, 'narrowing was defined as a method of proving an equality by using a

combination of unification and of rewriting. By using a combination of rule antiunification

and a type of rule expansion called widening, we define the antinarrowing operator:

Antinarrowing
R (a rewrite system)
r1: Ll RI

r2: L2 R2

{ala =Rau(p,q)
where E Wids(ri,R),q E Wids(r2, R), Valid(a, R) }

This definition of the antinarrowing operator is similar to that of E-antiunification except that

Exrules is replaced with Wids, described below. Each rule produced with the antinarrowing

operator is called an antinarrowing. The set of all antinarrowings of two rules r1 and r2 is

denoted An(r 1, r2, R) and the set of all antinarrowings of all pairs of rules in a rewrite system

is denoted An(R). Like E-antiunification, antinarrowing generates rules that comprise the

implicit background theory.

Chapter 4: Theorem Generation Techniques 69

To understand the antinarrowing operator, we first need to understand widening, and in

particular, the function Wid. The expansion operator from Section 4.2.2 chooses a rule from

an explicit background theory R and applies it in reverse to a given rule r. The widening

operator is an expansion operator that may apply rules from, both of the explicit and implicit

background theories to obtain a new rule. In other words, it can expand a rule r with the

E-antiunifications, or more generally, the antinarrowings of R. We denote the application of

the widening operator as Wid(w, a) where w is any rule (usually one produced by previous

widenings), and a is any antinarrowing. Any rule that is produced with a series of applications

(possibly zero) of the widening operator on a rule r is called a widening of the rule r. We

denote the set of all widenings of a rule r with respect to a set of rules R as Wids(r, R) and

the set of all widenings of R as Wids(R).

Consider the list example of the previous section. The rule B list(cons(x, nil)) -+

true is an antinarrowing of the second and third rules. Then, a widening of the fourth

rule using B is list(cons(c, cons(d, nil))) -* list(cons(d, nil)). Another widening,

list(cons(a, nil)) -+ list(nil) is the expansion of the first rule with the second rule. (Note

that this widening is an exrule, unlike the first widening). When both of these widenings are

antiunified, the antinarrowing list(cons(x, y)) -* list(y) is produced.

Computing Wids(r, R) is not straightforward, since it is defined in terms of antinarrow-

ings, which are in turn defined by widenings that might be in Wids(r, R). In other words,

the definitions of the set of all widenings and the set of all antinarrowings are mutually

dependent. Nevertheless, we can compute the set of all widenings as follows:

Wids(r, R) = {xlx = r V x = Wid(w,a),
where E An(R),w E Wids(r,R),I Wid(w,a)l > jwj }

The I I symbol here denotes the widening size, or the number of applications of the widening

operator required to make w from the given set of rules, R. The mutually dependent

definitions of widening size and antinarrowing size follow:

Definition 4.8 Given a rule set R, the widening size of Wid(w, a) is n, denoted

IWid(w, a)J = n, ifflwl ≤ n—i anda is ofantinarrowing size n—i andn = max(IwI, IaI)+1.
A widening r is of size 0 iffr E R.

Chapter 4: Theorem Generation Techniques 70

Definition 4.9 Given a rule set R, the antinarrowing size of a = Rau(wi, w2) is n, denoted

IaI = n, zffn = max(Jwi I, Jw2). An antinarrowing r is of size 0 iffr E Rau(R).

Given these definitions, the generation of widenings and antinarrowings can be done in

an orderly fashion starting from size 0 rules. For instance, in the list example the rules in R

are widenings of size 0 and antinarrowings of size 0. The other antinarrowings of size 0 are

the antiunifications of the rules in R:

list(x) -+ true

list(cons(x, nil)) -* true

list(cons(x, y)) - true

Size 1 widenings can be produced from the four size 0 widenings and the seven size 0

antinarrowings. There are 20 of these. All 20 of these size 1 widenings can then be

antiunified to obtain the size 1 antinarrowings. The size 1 antinarrowings can be used

on the size 1 widenings to obtain size 2 widenings and then size 2 antinarrowings and so

on. The ampliative theorem we intended to produce, list(cons(x, y)) -+ list(y), is a size 1

antinarrowing of the examples.

Another operator similar to antinarrowing is called inconsistent antinarrowing and is

defined by replacing Valid with Goodrule in the definition of antinarrowing. This allows the

inconsistent antinarrowing operator to produce rules that may conflict with noise or rules

that are exceptions to the general theory behind them. Some uses of this operator, denoted

An1(R), are shown in Chapter 5.

Finally, it. is useful to define naive versions of the antinarrowing operator and the

inconsistent antinarrowing operator that differ from the regular ones in that they are restricted

to expansion (widening) on the right hand side of a rule, or what we called right expansion.

We call these naive antinarrowing operators because only a subset of antinarrowings will

be produced if this policy is implemented. Since the programs that are developed in Chapter

5 use these naive operators only for efficiency reasons, we will only explicitly state the

assumption, without defending it in this thesis:

Chapter 4: Theorem Generation Techniques 71

Assumption. Left Expansive Maximality The only useful antinarrowings are those pro-

duced without expansion (widening) on the left hand sides of rules.

4.3.3 Complete antinarrowing

Antinarrowing computes rules that are strict biexemplar justified ampliative theorems, that

is theorems that are only justified by exactly two instances. In other words, theorems that are

justified by three or more instances are not generated by the antinarrowing operator defined in

the last section. This is the result of defining antinarrowing to use the pairwise Rau operator

instead of the set Rau operator.

To compute all biexemplar justified theorems, the complete antinarrowing operator

antiunifies sets of (complete) antinarrowings instead of just pairs:

Complete Antinarrowing
R (a rewrite system)
S (a set of rules)

{ata E S V = Rau(S')
where S' C Cwid(S, R), Valid(a) }

The set of all complete antinarrowings of a set is denoted Can(S, R) and Can(R) =

Can(R, R). Also, the inconsistent complete widening operator, denoted, Can2(R), is formed

by replacing Valid with Goodrule in the definition.

The complete widening operator (Cwid) is simply widening defined in terms of com-

plete antinarrowing instead of regular antinarrowing:

Cwid(r,R) ={xlx=rvx= Wid(w,a),

where a E Can(R), w E Cwid(r, R), I Wid(w, a)I > IwI}

Also, Cwid(S, R), the form found in the definition of complete antinarrowing, is defined to

be the set of all complete widenings of a set of rules S with respect to a rewrite system R.

Chapter 4: Theorem Generation Techniques 72

Computing Can(S, R) requires set antiunifying all subsets of complete widenings, and

can therefore be a very slow process. It turns out that we have the alternative of using

the regular antinarrowing and widening operators and pairwise antiunification to compute

Can(S, R) and pairs of widenings of differing widening size need not be antiunified as a

result of the following proposition:

Conjecture 4.1 Complete antinarrowings can be computed with binary rule antiunfication

instead of general set unification, and widening and antinarrowing operators instead of

complete widening and complete antinarrowing respectively. More precisely,

Can(R, S) = {al a E S V a =Rau(S'), where S' C_Cwid(S, R)}

= {ala E S V a =Rau(p, q), where {p, q} C Wid(S, R),p 54 q, II = Iql
or E Wid(S,R),q EAn(S,R)}

The consequence of this is that only pairs of widenings of the same size and widenings

with previously computed antinarrowings need to be antiunified for implementing complete

antinarrowings.

4.3.4 Example of Antinarrowing

The "append" function is a theorem that can be generated through complete antinarrowing.

We use the dot notation syntax for lists of objects. The constant nil signifies an empty list,

and head.tail signifies a list made up of a head object and a list tail. For-example, a.b.nil

denotes the list made of the objects a and b. The tail of this list is b.nil. The rules that

comprise the append function are:

(1) app(nil,x) -> x
(2) app(x.y,z) -> x.app(y,z)

Figure 4.5 illustrates how complete antinarrowing produces the above two rules from the

following examples:

Chapter 4: Theorem Generation Techniques 73

(1) app(nil,a.nil) -> a.nil
(2) app(nil,nil) -> nil

(3) app(b.nil,nil) -> b.nil
(4) app(c.nil,d.nil) -> c.d.nil
(5) app(e.f.nil,g.nil) -> e.f.g.nil

The two rules of append are generated in box A and box G of the figure. Recall that complete

antinarrowings are antiunifications of (possibly more than two) widenings. Box A' is the

antiunification of two trivial widenings, namely examples (1) and (2), and so is produced

by complete antinarrowing. Box G is the antiunification of the three widenings produced in

boxes C, D, and F. Box B shows the intermediate pairwiseantiunification of widenings C

and D which is then antiunified in box G with the third widening from box F. (Recall that

Proposition 4.2 shows that to antiunify a set of terms, pairwise antiunification can be used.)

Box C shows the expansion (a widening with a rule from the original examples) of example

(3) with example (2). Box D shows the widening of example (4) with the antinarrowing

produced in box A. Finally, box B shows the antiunification, or trivial antinarrowing, of

examples (3) and (4) that is used in box F to expand rule (5). Note that regular antinarrowing

would only produce the antinarrowing in box E, while complete antinarrowing produces the

antinarrowing in box G.

4.4 Reverse Cover Set Induction

Recall that cover set induction is a method of proving inductive theorems. Since inductive

theorems are specific types of ampliative theorems and antinarrowing is used for ampliation,

a restriction of antinarrowing will allow the generation of inductive theorems. In this section,

inductive antiunification is first developed and then extended to inductive antinarrowing.

4.4.1 Inductive antiunification

Inductive antiunification is a special case of antiunification. It allows the generation of a

new variable x if and only if it is fully justified by the facts. We define this method in terms

of cover sets. For example, the set of terms {f(s(0)), f(0), f(s(s(y)))} can be inductively

antiunified to the single term 1(x) since {O, s(0), s(s(y))} forms a cover set of the num type.

Chapter 4: Theorem Generation Techniques 74

Antiunifications

(1) app(nil,a.nil) --> a.nhl
(2) app(nil,nil) --> nil

app(nit,x) --> x

(3) app(b.nil,nil) --> b.nil
(4) app(c.nild.niI) --> c.d.nil

app(x.nil,z) --> x.z

Expansions (Widenings)

I
(3) app(b.nil,nil) --> b.nil
(2) app(nil,nil) --> nil

C app(b.nil,nil) --> b.app(nil,nil)

Antiunification

Widening

Antinarrowing:

(4) app(c.nil,d.nil) --> c.d.nil
app(nil,x) --> x

D app(c.nil,d.nil) --> c.app(nil,d.nil)

app(b.nil,nil) --> b.app(nil,nil)
app(c.nil,d.nil) --> c.app(nil,d.nil)

E app(x.nil,z) --> x.app(nil,z)

I
(5) app(e.f.nil,g.nil) --> e.f.g.nil

app(x.nil,z) --> x.z

app(e.f.nil,g.nil) --> e.app(f.nil,g.ni

I
app(e.f.nil,g.nil) --> e.app(f.nil,g.nil)
app(x.nil,z) --> x.app(nil,z)

G app(x.y,z) --> x.app(y,z)

Figure 4.5. Example of complete antinarrowing

Chapter 4: Theorem Generation Techniques 75

However, {f(s(0)), f(0)} will not be inductively antiunified to 1(x) since {O, s(0)} does not

form a cover set for num. The operator is precisely defined on rules (not terms) as follows:

Inductive Antiunification
S (a set of rules)

Rau(S)

if Msa(S) {Pi/vj,... , P0/v} and
for each i, 1 ≤ j < n, pi is some position in P,
{Sj/pi I sj E S} forms a cover set of Type (vi)

The inductive antiunification of the set of rules S is denoted Irau(S).

4.4.2 Inductive antinarrowing

To use background theory, another operator must be defined. We saw in Section 4.3 that

applying an antiunification operator to exterms of the examples was not sufficient. Instead,

the more comprehensive antinarrowing operator was developed to allow implicit background

theory to be used in expansion. Here we develop a specific antinarrowing operator called

inductive antinarrowing.

Like antinarrowing and complete antinarrowing, the definition of inductive antinarrow-

ing is mutually dependant on the definition of inductive widening. Inductive widening is

simply widening defined in terms of inductive antinarrowing instead of regular antinarrowing:

Iwid(r,R) = {xl x = r V x = Wid(w,a),

where a E Ian(R), w E Iwid(r, R), I Wid(w, a)I > IwI}

In other words, inductive widening is a type of rule expansion that also allows inductive

antinarrowings of the given rules to be used to expand a rule. With this definition, inductive

antinarrowing is defined as follows:

Chapter 4: Theorem Generation Techniques 76

Inductive Antinarrowing
S (a set of rules)
R (a rewrite system)

{ala E RVa=Irau(pi,...,p)
where pi E Jwid(r, R) and Valid(a, R) }

The set of all inductive antinarrowings is denoted Ian(S, R) and when S = R we write

Ian(R). Notice that it is different from regular antinarrowing in that its need for a set of

rules as input. If pairs of rules were input, as in regular antinarrowing, the only inductions

possible would be inductions involving two-element cover sets.

The inductive antinarrowing operator can be used for advantage in machine learning.

If there are inductive theorems that can be generated by a machine learner, it should generate

them instead of non-inductive ampliative theorems since they are totally justified rather than

just biexemplaiy justified.

4.5 Specialization

So far this chapter has only dealt with generalization operators. In some learning situations,

generalizations, or rules or terms that cover positive examples, are checked for consistency

against negative examples to determine if they are valid. Instead of being used simply for

consistency checking of generalizations, negative examples can be used directly to produce

valid generalizations that exclude them. Specialization refers to this use of negative examples.

This process requires an already-generated hypothesis and a set of examples that need to be

excluded from the hypothesis. Note that the examples that are to be excluded also could have

underdetermined or overdetermined truth values, rather than only false truth values, as with

negative examples. In other words, specialization is a method of reducing underdeterminacy

and overdeterminacy (inconsistency) from a hypothesis.

Many popular machine learning algorithms can be viewed as specialization algorithms.

A logic program generation technique, MIS (Shapiro, 1983) uses specialization to modify

Chapter 4: Theorem Generation Techniques 77

incorrectly learned programs. Also, explanation-based learning methods (Mitchell, Keller &

Kedar-Cabelli, 1986; Krawchuk & Witten, 1989), select specializations of concepts that cover

a given example and that satisfy other criteria such as efficiency or simplicity. Classification

systems also use specialization as their only method of generating their search spaces. We

will study the particular specialization styles of ID3 (Quinlan, 1986), PRISM (Cendrowska,

1987) and Induct (Gaines, 1991) in detail in Chapter 6. To understand these algorithms more

fully, specialization and its relationship with generalization will be explained here.

4.5.1 Term specialization

Definition 4.10 A specialization of a term g is a set (or disjunction) of instances of

g, {g0, 902, ..., 90n} = S. {0, 02, ..., O, } is called a specializer. S is a complete special-
ization of g if all proper instances of g are instances of some member of S. S is a minimal

complete specialization of g iffor all other complete specializations S0, I S ≤ IS0 . S is a
most general specialization of g if there is no other specialization S' of g such that all terms

in S are instances of some member of 5,.

For example, suppose that Type(x) = Type(y) = num. Then the set of all most general

specializations of f(x,v) is {{f(O,y),f(s(z),y)},{f(x,O),f(x,s(z))}}. Both of these

are minimal complete specializations since any other complete specializations contain more

terms. An example of a specialization that is not complete is If (0, y), f(s(0), y)}. One that is

complete but not most general nor minimally complete is {f(x, 0), f(x, s(s(z))), f(x, s(0))}.

More often specialization is done with respect to a set of negative examples. Suppose g

is a term, Xis a set of terms, and S = {g0,02, ..., go" } is a specialization of g. If C 5,

then S - X is the specialization of a term g with respect to X. For example, the most general

specialization of f(x,y) with respect to {f(w,s(z))} is {f(x,0)}.

This definition is inadequate since it does not suggest any method of computing special-

izations. Doing so would require a search through all specializers of the general term: clearly

an inefficient process. Recall that in Chapter 3 a similar difficulty was found in determining

the inductive-theoremhood of a formula. There the solution was to use cover sets to reduce

the search space. Here we use cover sets to directly produce a specialization:

Chapter 4: Theorem Generation Techniques 78

Naive Cover Set Specialization
g (a term)
X E Vars(g)

{gGj,..., go. }
where Oi = {x/c} and

{cj,...,c} is a cover set of Type(x)

The set of all naive cover set specializations of g with a particular variable x is denoted

Nsp(g, x) and the set of all naive cover set specializations of g ranging over all of the variables

in g is denoted Nsp(g). It can be shown that when no two variables are of the same type

in a term g, all of the naive cover set specializations of g are maximally general complete

specializations of g.

We call this operator "naive" since it does not always produce all of the possible complete

most general specializations. Consider the type A with the cover set { a, b} and variables x

and y of type A. The naive cover set specializations of the term f(x, y) are If (a, y), f(b, y)}

and {f(x,a),f(x,b)}. But the set {f(x,x),f(a,b),f(b,a)} is a (complete) most general

specialization of f(x, y) that is ignored by this method. Notice that in this example variable

y is renamed to another variable (x) in the term being specialized. Generalizing this idea a

little, the naive method can be amended to allow these other most general specializations:

Cover Set Specialization
9 (a term)
X E Vars(g)

Nsp(g,x)UK
where K = f go 10 = {x/y} for some y E Vars(g)

such that x 54 y and Type(x) = Type(y)}

The set of cover set specializations is written Sp(g) and the cover set specializations of g with

respect to a particular variable x is denoted Sp(g, x). Note that naive cover set specializations

and the cover set specializations are differentiated because some machine learning algorithms

Chapter 4: Theorem Generation Techniques 79

opt for the naive method of specialization. Chapter 6 discusses this further. Some interesting

facts result from this definition:

Proposition 4.5

1. IfS=Sp(g) and ISI > l then Au(S)=g

2. Sp(Au({g91 ... gO})) = {{g9i ... g9}} if {9, ...} is a most general complete spe-
cializer of g.

This proposition shows the extent to which Au and Spec are inverses of each other. The first

item says that antiunifying a most general specialization produced by cover set specialization

returns the original general term. The qualification in the first item notes that sometimes a

specialization with respect to a variable is a singleton. The second says that specialization

returns the original set of terms given to antiunification if the set completely covers all

instances of g. Since Au is a form of antiapplication, then Spec must be a particular form of

application since it is an inverse of Au.

Specialization algorithms can be primed with a general term (or equation) g that is the

antiunification of all the examples. If this is done, it is possible to show that all specializations

are antiunifications of each member of the powerset of the positive examples.

Conjecture 4.2 Let P be a set ofpositive examples and g = Au(P). Then

Sp(g) = isapartition of P}

Conjecture 4.2 suggests that anything that can be done with cover set specialization can be

done with an antiunification method and vice versa.

Cover set specialization has been defined with respect to variables instead of with

respect to negative examples, as is required for some machine learning systems. First, we

define specialization on a set of terms, A:

Sp(A) = {.GI G E Sp(g) and g e Al.

Then specialization of a set of terms with respect to variables can be defined as:

Sp(A,N)—{ {A — N} N'CA
- {GI GESp(Sp(A),N')} otherwise

Chapter 4: Theorem Generation Techniques 80

where N' = { E NA 3s E A,9 sO = n}

Thus, specialization with respect to negative examples is defined by using regular specializa-

tion and is not conceptually more difficult. An efficient and straightforward implementation

of Sp(S, N) was done by Lassez and Marriott (1986).

4.5.2 Rule specialization

So far, specialization has only been discussed with respect to terms. However, rule special-

ization can also be defined by using term specialization:

Rule Cover Set Specialization
r (a rule)
V (C Vars(r))
R (a rewrite system)

Make rule(Nf(g, R))
where g E Sp(Tennzfy(r), V)

This operator converts the rule to a term (with the Termfy function) and then specializes

it with respect to variables. The resulting term is reduced with the given rewrite system

(with the normal form function, Nf, from Section 3.2) and is then converted back into a rule

(with Makerule). The set of all rules produced in this way is denoted Spec(r, V, R) and each

member of this set is called a rule specialization. When a background theory is not used

for specialization, then R is empty and we simply write Spec(r, V). When V = Vars(r) we

write Spec(r) or Spec(r, R). Also, if Spec in the definition is replaced with Nsp, the result

naive rule specialization is defined and the whole set of them is denoted Nspec(r, V, R) (or

its related forms).

Finally, sets of rules can be specialized simultaneously. A naive rule set specialization

is defined as follows:

Chapter 4: Theorem Generation Techniques 81

Rule Set Specialization
S (a set of rules)
V (c Vars(r))
R (a rewrite system)

{XIX = Nspec(s, {v}, R) for an s E S and V E V}

The set of all such specializations is denoted Nspec(S, V, R). Rule set specialization,

Spec(S, V, R), is defined by replacing Nspec with Spec in the definition.

We complete this section with a few propositions regarding the soundness of rule

specialization.

Proposition 4.6 Rule specialization is not an ampliatively sound operator. That is, r E

AMP(R) Vs, S €Spec(r, R) = s E AMP(R)

However, when r € IND(R), all rule specializations will be inductive theorems. This is

a result of the fact that inductive theorems have total justification, and thus all its instances

will have total justification as well.

Proposition 4.7 Rule specialization is an inductively sound operator. That is, r E

IND(R) = Vs, s E Spec(r, R) = s E IND()(R)

The consequence of this is that if rule specialization is used as the major form of theorem

generation, it is necessary to check for the justification of the rules it generates unless the

rule being specialized is an inductive theorem.

4.6 Completeness

We have shown that complete antinarrowing is ampliatively sound, and rule specialization

is inductively sound. Though not ampliatively sound, rule specialization is deductively

sound since doing rule specialization on a set of rules, a set of deductive theorems, will

only produce more deductive theorems. We are finally in a position to show that applying

Chapter 4: Theorem Generation Techniques 82

complete antinarrowing to the rule specializations of a theory will construct all possible

conjuncts that can make up ampliative theorems.

Proposition 4.8 Prudential Completeness If e is a conjunctive negationless universal pru-

dent theorem of a prudent extension of a theory e with axioms R, then for each conjunct c of
e, c E (Can1(Spec(R)))

Since inductive, ampliative, and ignorative theorems are subclasses of prudent theo-

rems, this result extends to them as well. By restricting the antinarrowing method to Can

completeness is not effected since Can generates a subset of the rules generated by Can'.

This completeness result shows Us that no other operators need be developed for effective

generation of theorems.

4.7 Summary

This chapter began with a look at term antiunification. Term antiunification was modified

slightly to allow the generalization of rules. The expansion operator was introduced as a

technique for generating deductive theorems. These methods were combined into the E-

antiunification operator to enable equational antiunification, that is, generalization of rules

using explicit background theory. To enable the use of implicit background theory, antinar-

rowing was developed. To generate all biexemplar justified theorems, not just the strictly

biexemplar justified ones, the complete antinarrowing operator was designed. Next, the

inductive antinarrowing operator was created to generate inductive theorems. Also, another

important method of induction, specialization, was shown to be an inverse of antiunification

- in particular, the application of a set of substitutions. Specialization, together with in-

consistent complete antinarrowing were suggested to be complete for generating a restricted

subclass of prudent theorems.

Chapter 5

Balog: Automated Theorem Generation

Previous chapters developed a framework and some techniques for generating theorems.

This chapter describes practical applications of these methods that are incorporated into a

computer program called Balog. The Balog system has been developed as a test bed for

various equational logic theorem proving and generation methods. Figure 5.1 lists some of

the functions" of Balog.

All examples, theories, and programs in Balog are specified in a custom functional

programming language based on conditional term rewriting systems. Figure 5.2 is an example

of a Balog program used to specify a generation problem. The var command declares

variables, the type command declares type names. The infix ":" command declares a

function by specifying its types (here the "x" means "cross"). For example, the prescribe

function is declared to be a function of four arguments with types age, spec, astig, and tear

respectively and which returns a term of type lens. Also, the function symbols reduced and

normal are simultaneously declared to be arity 0 functions of type tear. The "*" indicates

that these are constructor functions. The use command tells Balog to put all following

rules into one of the several rule bases Balog maintains (in this case the rules are put in the

example base). Several other programming language commands are available to control the

operation of Balog. More control commands are available at the command line interface.

Typically, Balog program files are loaded with the load command and then the loaded rules

are processed by, other commands, such as the showx command to show the example rule

base or the balog/amp command to run the Balog/AMP ampliative theorem generation

program developed in this Chapter.

83

Chapter 5: Balog: Automated Theorem Generation 84

Function What it Implements Where Used

Rewrite Nf -- normal form
(Section 3.2)

Balog command line

Solve
narrowing
(Section 3.2) Balog command line

Ind-proof-check cover set induction
(Section 3.2)

Balog/IND (Section 5.5)

PhaseOne Can' -- inconsistent

complete antinarro wings
(Section 4.3.3)

Can --complete
antinarrowings when
the Valid function is
used instead of
Goodrule (Section 4.3.3)

An -- antinarro wings
when Limit = 0 and
the Valid function is
used (Section 4.3.2)

Rau -- rule antiunifications
when Depth = 0
(Section 4.1.2)

Balog/PRU (Section 5.4)

Balog/AMP (Section 5.1.1)

To speed up Balog/AMP
and Balog/PRU

Balog/C (Section 5.2)

Balog/CD (Section 5.3)

PhaseZero Spec - rule Set
specializations
(Section 4.5.2)

Balog/IND (Section 5.5)

Figure 5.1. Some functions used in Balog

Chapter 5: Balog: Automated Theorem Generation 85

contact.b

contact lens example adapted from Cendrowska (1987)

var w,z,y,x

type lens

{hard,soft,none} lens*

type age ; ppres is pre-presbyopic

{young,ppres,pres} : age*

type spec ; myope or hypermyope

{myope,hyper}: spec*

type astig

{yes,no} astig*

type tear ; tear production

{reduced,normal} : tear*

use example

prescribe : age x spec x astig x tear -> lens

prescribe(young,myope,no,reduced) none ; 1

prescribe (young,myope,no,normal) -> soft

prescribe (young,myope,yes, reduced) -> none

prescribe (young,myope,yes,normal) -> hard

prescribe (young,hyper,no,reduced) -> none ; 5

prescribe (young, hyper, no,normal) -> soft

prescribe (young,hyper,yes, reduced) none

prescribe (young, hyper,yes,normal) -> hard

prescribe (ppres,myope,no, reduced) -> none

prescribe (ppres,myope,no,normal) -> soft ; 10

prescribe (ppres,myope,yes, reduced) -> none

prescribe (ppres,myope,yes,normal) -> hard

prescribe(ppres,hyper,no,reduced) -> none

prescribe(ppres,hyper,no,normal) -> soft

prescribe(ppres,hyper,yes,reduced) -> none ; 15

prescribe (ppres, hyper,yes,normal) -> none

prescribe (pres,myope,no, reduced) -> none

prescribe (pres,myope,no,normal) -> none

prescribe (pres,myope,yes, reduced) -> none

prescribe(pres,myope,yes,normal) -> hard ; 20

prescribe(pres,hyper,no,reduced) none

prescribe(pres,hyper,no,normal) -> soft

prescribe (pres,hyper,yes,reduced) -> none

prescribe(pres,hyper,yes,normal) -> none ; 24

Figure 5.2. A Balog Program: contact.b

Chapter 5: Balog: Automated Theorem Generation 86

Some of the proof techniques implemented in Balog are conditional term rewriting,

narrowing, completion, reduction ordering, proof by consistency, and cover-set induction.

Generation techniques include implementations of ID3, Prism and Induct, and those men-

tioned in this chapter - an ampliative theory learning system (Balog/AMP), a classification

system (Balog/C), a default theory learner (Balog/CD), a prudent theorem generator (Ba-

log/PRU) and an inductive theorem generator (Balog/IND). The two central algorithms in

these systems, namely PhaseZero and PhaseOne, implement the Spec operator from Section

4.5.2 and the Can2 operator from Section 4.3.3 respectively.

5.1 Theory Learning

The kind of machine learning problems that we will consider first are theory learning

problems. Here we are given an original theory A that is comprised of examples in the

form of rules and possibly background theory in the form of rules. (The distinction between

examples and background theory is not necessary). The goal of theory learning is to generate

a more compact theory B made up of inductivelike theorems of the given theory A. We will

restrict our attention to theories that are conjunctions of rules. Generating candidate theories,

or hypotheses, for B is straightforward given the techniques of Chapter 4.

• The next subsection describes the generation of ampliative theorems from a given theory

- generally called "noiseless induction" in the machine learning paradigm - embodied in

a program called Balog/AMP. The following subsections detail how hypotheses may be

evaluated in order to choose the best among them.

5.1.1 Ampiiative theory learning

Balog/AMP is an implementation of a two pass algorithm for inducing ampliative theories

from a given theory. A standard example in logic programming and machine learning is

the "append" program. One reason for its use here is that it is a simple function that is also

recursive. The rules in Figure 5.3 constitute the append function that Balog/AMP will learn

from the examples in Figure 5.4, and which we use as a recurring example to help describe

the operation of the system.

Chapter 5: Balog: Automated Theorem Generation 87

(1) app(nil,x) -> x
(2) app(x.y,z) -> x.app(y,z)

Figure 5.3. The Append Funàtion

[balog] showx
example base

(1) app(nil,a.nil) -> a.nil

(2) app(nil,nil) -> nil
(3) app(b.nil,nil) -> b.nil
(4) app(c.nil,d.nil) -> c.d.nil
(5) app(e.f.nil,g.nil) -> e.f.g.nil

Figure 5.4. An example set for inducing the Append function

The first phase of Balog/AMP generates ampliative theorems of a given theory by

implementing the complete antinarrowing operator. In particular, Balog/AMP generates

all rules that are ampliative theorems of an example base. Hypotheses are combinations

(conjunctions) of these rules. The algorithm for this phase is shown in Figure 5.5. For the

append example, it produces the output shown in Figure 5.6 (when the Depth variable is set

to 2; see below).

Chapter 5: Balog: Automated Theorem Generation 88

Phase One Algorithm

PhaseOne(X, Depth, Limit,Valid)

X - example base
Depth - maximum antinanowing size
Limit - maximum antiunification iterations

Valid - function to restrict rules formed
begin
WL=X

AL=X
i=o
while (i ≤ Depth)
begin

WW = {aj a = Rau(p, q) A Valid(a)
where p,qE WL,IpI < max(O,i— 1), Iql max(O,i— 1)}

NewAU = WW

j=o
while (j < Limit A (j = 0 0 Limit V NewAW 0))
begin

NewAW = {aj a = Rau(p, q) A Valid(a)

where p E AL, q E NewAW, IpI = II i}
AW = AW U NewAW

j=j+1
end

AL—ALuWWuAW
if (i Depth)

WL = {xlx = w/awhere a E WW U AW,w € WL,IwI = Depth - 1}
end

Output: AL - antinarrowings to a depth of Depth.

Figure 5.5. Phase one algorithm

Chapter 5: Balog: Automated Theorem Generation 89

)balog) balog/amp

Balog/AMP - Version 3.0

Phase 1. Candidate Rules
Compute Antinarrowings (0) (widenings5 antinarrowings=5)
Augment Widenings (1) (widenings=5 antinarrowings8)
Compute Antinarrowings (1) (widenings23 antinarrowings=8)
Augment Widenings (2) (widenings23 antinarrowings13)
Compute Antinarrowings (2) (widenings=23 antinarrowings13)
Removed (0) inconsistent rules.

Widenings

6 (1) app(nil,a.nil) -> a.app(nil,nhl)
Source (Wid An) ((1 2) (1 6) (1 7))
7 (1) app(nil,a.nil) -> app)a.nil,nil)
Source (Wid An) ((1 7) (1 8))
8 (1) app(b.nil,nil) -> b.app(nil,nil)
Source (Wid An) ((3 2) (3 6) (3 7))
9 (1) app(b.nil,nil) -> app(nil,b.nil)
Source (Wid An) ((3 6))
10 (1) app(c.nil,d.nil) -> C.d.app(nil,nil)
Source (Wid An) ((4 2) (4 6) (4 7))
11 (1) app(c.nil,d.nil) -> app(nil,c.d.njl)
Source (Wid An) ((4 6))
12 (1) app(c.nil,d.nil) -> c.app(nil,d.nil)
Source (Wid An) ((4 6))
13 (1) app(c.nil ,d.nil) -> app(c.d.nil,nil)
Source (Wid An) ((4 7))

14 (1) app(c.nil,d.nil) -> c.app(d.nil,nil)
Source (Wid An) ((4 7) (4 8))
15 (1] app(e.f.nil,g.nil) -> e.f.g.app(nil,nil)
Source (Wid An) ((5 2) (5 6) (5 7))
16 (1) app(e.f.nil,g.nil) -> app(ni1e.f.g.ni1)
Source (Wid An) ((5 6))
17 (1) app(e.f.nil,g.nil) -> e.app(nil,f.g.nil)
Source (Wid An) ((S 6))
18 (1) app(e.f.nil,g.nil) -> e.f.app(nil,g.nil)
Source (Wid An) ((5 6))
19 (1) app(e.f.nil,g.nil) -> app(e.f.g.nil,nil)
Source)Wid An) i ((5 7))
20 (1) app(e.f.nil,g.nil) -> e.app(f.g.ni1ni1)
Source (Wid An) ((5 7))
21 (1) app(e.f.nil,g.nil) -> e.f.app(g.nil,njl)
Source (Wid An) ((S 7) (5 8))
22 (1) app(e.f.nil,g.nil) -> app(e.ni1,.g.ni1)
Source (Wid An) ((5 8))
23 111 app(e.f.nil ,g.nil) -> e.app(f.nil,g.nil)
Source (Wid An) ((5 8))

Antinarrowings:

1 (0) app(nil ,a.nil) -> a.ni].
2 (0) app(nil,nil) -> nil
3 (0) app(b.nil,nil) -> b.nil
4 (0) app(c.nil,d.nil) -> c.d.nil
S (0) app(e.f.nil,g.nil) -> e.f.g.nil
6 (1) app(niLx) -> x
From widenings: ((1 2) (2 6))
7 (1) app(x,nil) -> x
From widenings: ((2 3) (3 7))
8) 1) app(x.nil,y) -> x.y
From Widenings: ((3 4) (4 8))
9 (2) app(x.nil,y) -> app(nil,x.y)
From widenings: ((11 9))
10 (2) app(x.nil,y) -> x.app(nil,y)
From widenings: ((12 8))
11 (2) app(x.nil,y) -> x.ap(y,ni1)
From widenings: ((14 8))
12 (2) app(x.y,z) -> x.app(y,z)
From widenings: ((23 8))
13 (2) app(x.yz.ni1) -> x.app(y,z.nil)
From widenings: ((23 12))

Figure 5.6. Balog/AMP after phase one on append data

Chapter 5: Balog: Automated Theorem Generation 90

Conjecture 4.1 suggested that to generate all ampliative theorems with the complete

antinarrowing operator, it is sufficient to antiunify widenings with widenings of equal sizes

and antinarrowings that have smaller sizes. Balog/AMP implements this directly by generat-

ing a list of widenings and a list of antinarrowings, up to a specified induction depth. A size

N widening means that N widening steps are required to create it from the original theory.

(Each rule in the original theory has size 0.) A size N antinarrowing means that a size N

widening is used to create the antinarrowing through rule antiunification with some other rule

with size less than or equal to N. Balog/AMP terminates phase one when all antinarrowings

of size equal to the maximum induction depth are generated.

To start this phase, Balog/AMP initializes both the widening list (WL) and the antinar-

rowing list (AL) to the original theory. Next, rule antiunifications of all of the widenings

in WL are added to AL. For the append example, all five example rules (see Figure 5.4)

will be first installed in both WL and AL. Next, rule antiunifications of all of these new

antinarrowings in AL are antiunified with the widenings in WL and these are added to AL.

This continues until no new antinarrowings are created. At this point, AL will contain all

antinarrowings of size 0 of the original theory. In the append example, antinarrowings 1 to 8

in Figure 5.6 are all antinarrowings of size 0— they are all the antiunifications of the given

append data.

Then Balog/AMP starts working on the next level. First, all widenings of size 1

are created. These are all the widenings of size 0 widened with antinarrowings of size 0

(everything in AL so far). In general, widenings of size N are widenings of widenings of

size N—i or less with antinarrowings of size N—i or less. Of course, Balog/AMP does not

re-create widenings that have been created on previous levels. That is, only widenings that

will be of size N are created. All of these new widenings are added to WL. In the append

example, 18 new widenings (numbers 6 to 23) are created. Second, new antinarrowings

are created and put in AL by antiunifying the new widenings with each rule in WL. In the

append example, antinarrowings 9 through 13 are added. Finally, all new antinarrowings

are antiunified with the widenings in WL, to create more antinarrowings. The operation is

repeated with these newest antinarrowings until no new antinarrowings are created or until

the maximum antiunification passes limit (Limit) is reached. At this point, all antinarrowings

of level 1 (or N in general) will have been created and put in AL. In the append example,

Chapter 5: Balog: Automated Theorem Generation 91

antiunifying rules 9-13 with each other does not produce any new rules. Balog repeats this

process for the next level, until the maximum induction depth (Depth) is reached.

Balog/AMP does not create inconsistent rules. Before an antinarrowing is put in AL,

it is first checked to see if it is consistent with the original theory, and if not, it is discarded.

This is better than doing the inconsistency removal in a separate pass because if inconsistent

antinarrowings are left in, all of the antiunifications that use them will also be inconsistent,

resulting in unnecessary work. Other systems described below (Balog/PRU and Balog/CD)

simply retain all created rules, since they allow some inconsistency.

The second phase investigates combinations of the rules produced in phase one to

generate possible theories. Figure 5.7 displays this algorithm. One method, complete

generation, investigates all combinations of the rules created in the first phase. Each of these

theories, called hypotheses, is evaluated and the hypothesis with the best evaluation is chosen

to be the final generated theory. Section 5.1.2 describes possible evaluation methods. On

any but very small problems, complete generation is excruciatingly slow. For example, if

phase one generates 100 rules, then 2100 - 1 = 1.2 x 1029 hypotheses will have to be tested.

For the append example, 8 new antinarrowings are generated in phase one; so 28 = 256

hypotheses will have to be evaluated. Accordingly, computation bounds, time limits, and

searching hypotheses from shortest to longest can be used while doing complete generation.

If there exists a short theory, it will be found relatively soon in the computation.

Usually the incremental hypothesis generation method is more practicable. This creates

a hypothesis by adding appropriate rules to it, one at a time. A rule is chosen by a heuristic

method, called an increment function, to be added to the hypothesis generated so far. The

purpose of the increment function is to find the rule that is most likely, by some measure, to

be included in the final theory. The adding of rules to hypotheses stops when the increment

function falls to generate any new rules. Section 5.1.3 describes some possible increment

functions.

When Balog/AMP is run on the append examples using the generated coverage incre-

ment function described in Section 5.1.3, the desired append function is generated in about

100 seconds. The complete generation method using the compression heuristic described in

Section 5.1.2 also generates the same set of two rules, but takes about 125 seconds.

Chapter 5: Balog: Automated Theorem Generation 92

Phase Two Algorithm

PhaseTwo(An, Cf lag,F)

An - antinarrowings

Cf lag - if true use complete hypothesis generation
F - increment function if Cf lag is false

evaluation function if Cf lag is true
begin

if (Cf lag)
then
H = F(Powerset(An))

else begin

A = F(An,O)
while (A 0)
begin

H=HuA

An=An—{A}
A = F(An,H)

end
end

end
Output: H - a chosen hypothesis:

Figure 5.7. Phase two algorithm

Phases one and two together form the complete Balog/AMP algorithm exhibited in

Figure 5.8. Because Balog/AMP uses the Valid function instead of the Goodrule function, it

uses complete antinarrowing instead of inconsistent complete antinarrowing.

5.1.2 Evaluating hypotheses

Balog requires a method of judging the relative merits of the hypotheses generated by the

complete generation method of phase two. The easiest method, at least from Balog's view,

is to use an oracle. This could be another specialized program which performs experiments

using the hypotheses and chooses one based on the results. Alternatively, the oracle could

Chapter 5: Balog: Automated Theorem Generation 93

be an expert user who is required to choose the best hypothesis.

Balog can also use heuristics to decide between hypotheses. One is the coverage

heuristic. Given a set of examples and a theory H, the number of examples that are true

in H is called the coverage of H in E and is written coverage(H, E). In more colloquial

words, coverage(H, E) is the number of examples that H explains or are redundant. Since

a hypothesis H should already cover all of the examples of the original theory B (because

it ampliatively subsumes E), coverage(H - B, B) is a more informative measure - only

the rules in H that are not in B are tested for coverage. When Balog uses this heuristic, the

hypothesis that has the largest coverage is chosen.'

A variation on the coverage heuristic is the cover set heuristic. This measures the

number of possible examples that a hypothesis can cover, even ones that it has not seen.

Suppose the cover set of the function symbol f/2 is {(a, a), (a, b), (b, a), (b, b)}. Then the

hypothesis {f(x, x) --*'x} would only cover two out of a possible four. The hypothesis

{f(x, lii) - y} covers all four and is thus to be preferred. This method can be used with

infinite data types, since cover sets are always finite. Note that while the coverage heuristic

measures the range of the rules in hypotheses, the cover set heuristic measures their domain.

The cover set heuristic is usually used in combination with other heuristics.

Another possibility is the hypothesis length heuristic which counts of the number of

rules in the hypotheses and chooses the shortest. Very often, the best hypothesis is the one

with least rules because it is usually the easiest to understand. This heurisitic is generally

used in conjunction with other heuristics for tie breaking.

The most powerful heuristic used in Balog is the hypothesis complexity heuristic. There

are many ways of defining the complexity of a set of rules. One is to count the number of

variables in the hypotheses, and prefer those with more variables. The number of symbols

or the nesting levels of the terms in the hypotheses could also be counted. A principled

method of determining complexity, applied recently to several machine learning programs,

for example, Cigol (Muggleton & Buntine, 1988), is based on Kolmogorov algorithmic

complexity theory (Kolmogorov, 1965). Balog uses a modification of the approach used

in Cigol that computes the "information content" loss between the original theory and the

'In Balog, coverage can be determined with respect to another set of rules called the testbase, which is
distinct from the example base.

Chapter 5: Balog: Automated Theorem Generation 94

hypotheses and prefers the one with the most loss.

5.1.3 Hypothesis increment functions

An hypothesis increment function takes a temporary hypothesis, H, and chooses a rule r

from among a set of rules A that is the most likely rule to be part of the final desired theory. In

Balog, A is the set of antinarrowings produced from phase one. Once a rule is chosen by the

increment function, it can be added to H to create a new temporary hypothesis, H U {r}. The

most straightforward method is to use one of the hypothesis evaluation methods described

in the previous section applied to {H U {r}Ir E Al. However, less computationally costly
methods are available.

A common increment function is the coverage increment function. This function

chooses the rule that covers the most example rules. It is particularly useful for classification

problems (see the next section) rather than general problems, since the definition of coverage

applied to single rules might not be applicable in general problems. For example, it is

impossible to compute which examples in Figure 5.4 are covered by rule number 2 in

Figure 5.3 without using rule number 1. For general rules, we might count how many

examples were used to generate the rule instead. For instance, examples 3 and 4 were used to

generate the antinarrowing that was antiunified with example 5 to create rule 2. So a total of

three example rules (3,4,5) were used to create rule 2. This increment function is called the

generated coverage inérement function. Another increment function that can be used is the

syntactic simplicity increment function. This selects the rule that uses the fewest syntactic

symbols (and the most variables). There are many possibilities for increment functions

besides the ones mentioned here.

5.2 Classification Learning

Balog/C is a classification learning program like 11)3 (Quinlan, 1986) and

PRISM (Cendrowska, 1987). A classification system only allows examples, and only

generates rules, that have a class identifier as their right hand side. Also, no background

theory is used. Such systems are a particular kind of theory learning system. In fact, if

Chapter 5: Balog: Automated Theorem Generation 95

the antinarrowing size is set to zero in Balog, no background theory can be used since no

widening will be done, and a classification induction system results. The BalogIC algorithm

is exactly the same as that of Balog/AMP (Figure 5.8) except that Depth is forced to be 0.

This enables only antinarrowings of size 0, or rule antiunifications (Rau), to be produced.

Also, Balog/C restricts its input (X) to the kind of rules described below.

5.2.1 Representing classifiers as rewrite rules

Classification programs deal with entities much simpler than the general rules of Balog. Each

example instance is made up of an attribute/value vector and a class identifier where each

vector is comprised of attribute/value pairs. One representation of these is:

[(al,vl), (a2,v2) ... (am,vm)] of Class

where Class is the class identifier, [... I represents the vector, and each (aj,v2) is an

attribute/value pair. For example, suppose a set of rules is sought for determining if it is a

Saturday based solely on the weather. An example instance in this domain might be:

[(outlook,overcast),(temp,hot),(humidity,high),(wjndy,false)J of sat

and another:

{(outlook,sunny),(temp,mild),(humidity,high),(wjndy,fajse)J of other

It is quite natural to represent these as term rewrite rules: the attribute value vector is a term

on the left hand side of the rule and the class is a constant on the right hand side. For the
former, a new function symbol is invented with any name and with one argument for each

attribute. The arguments are then filled with their corresponding values.

conditions: outlook x temp x humid x wind -+ day

conditions(overcast,hot,high,false) - p sat

conditions(sunny,mild,high,false) -+ other

Chapter 5: Balog: Automated Theorem Generation 96

Further restrictions on these rules include the lack of specification or use of background

theory and the use of only finite types. In summary, the representation in a classification

system is equivalent to a term rewriting system representation in which

• there is one arbitrarily named function symbol f of arity a;

• each argument i of f has a finite type, attribute;

• the right hand side of each rules is a constant of type clb.ss;

• all attributed are disjoint with class;

• all attributed are disjoint with each other.

The last two conditions are dropped in Balog/C, enabling it to address a wider class of

classification problems than specialization-based classification learners such as ID3.

5.2.2 Example of classification

Figure 5.2 specifies the well-known contact, lens example (Cendrowska, 1987) in Balog's

functional language. Three categories of contact lens - hard, soft, or none at all - constitute

the classes in this problem. Four attributes are deemed to be relevant to prescribing lenses

- age, tear production level, presence of astigmatism, and specification. Each has a set

of possible values; for example, the attribute spec can be either myope or hypermyope.

Finally, for each combination of the values of attributes, the appropriate type of contact lens

is specified in Figure 5.7. It is the responsibility of Balog/C to determine the best theory that

compactly contains all the knowledge of these 24 rules.

During the first phase, Balog/C generates 53 new rules that may be used in the final

theory; they are listed in Figure 5.9. However, many of these rules are inconsistent with

the examples and, like Balog/AMP, Balog/C checks for inconsistency and only records

antinarrowings that are consistent. In the figure, each rule that is inconsistent is labelled with

an "Inconsistent:" field that lists the rules found to be inconsistent with it. Figure 5.10 shows

the 32 new consistent rules generated by the first phase. The original 24 rules can also be

used in the generated theory, so they are included in the list of antinarrowings produced by

the first phase.

Chapter 5: Balog: Automated Theorem Generation 97

Balog/AMP - Balog Ampliative Algorithm

Balog/Amp(X,Depth, Limit, Cflag,F)

X - example base
Depth - maximum antinarrowing size

Limit - maximum antiunification passes
Cflag. - do complete phase two search if true
F - evaluation or increment function

begin

R = PhaseTwo(PhaseOne(X,Depth,Limit, Valid), Cfiag, F)
end

Output: R - a list of rules.

Figure 5.8. Balog/AMP: Algorithm

Chapter 5: Balog: Automated Theorem Generation 98

All of rules 1-24 plus:

25 prescribe(young,myope,x,reduced) -+none
Covers: (1 3)

26 prescribe(young,x,no,reduced) - none
Covers: (1 5)

27 prescribe(young,x,y,reduced) -*none
Covers: (1357)

28 prescribe(x,myope,no,reduced) - none
Covers: (1 9 17)

29 prescribe(x,myope,y,reduced) -+none
Covers: (13911 17 19)

30 prescribe(x,y,no,reduced) ­none
Covers: (159131721)

31 prescribe(x,y,z,reduced) -*none
Covers: (13 5 7 9 11 13 15 17 19 2123)

32 prescribe(x,y,z,w) -*none
Covers: (13 5 7 9 11 13 15 16 17 18 19 2123 24)
Inconsistent: (2468 10 12 14 20 22)

33 prescribe(x,myope,no,y) - none
Covers: (1 9 17 18)
Inconsistent: (2 10)

34 prescribe(young,x,no,normal) - soft
Covers: (2 6)

35 prescribe(x,myope,no,normal) -*soft
Covers: (2 10)
Inconsistent: (18)

36 prescribe(x,y,no,normal) —soft
Covers: (26 10 14 22)
Inconsistent: (18)

37 prescribe(young,x,yes,reduced) —none
Covers: (3 7)

38 prescribe(x,myope,yes,reduced) - none
Covers: (3 1119)

39 prescribe(x,y,yes,reduced)
Covers :(3711 15 19 23)

40 prescribe(x,y,yes,z)
Covers: (3 7 11 15 16 19 23 24)
Inconsistent: (4 8 12 20)

41 prescribe(x,myope,y,z)
Covers: (13 9 11 17 18 19)
Inconsistent: (24 10 12 20)

42 prescrlbe(young,x,yes,normal)
Covers: (4 8)

43 prescribe(x,myope,yes,normal)
Covers: (4 12 20)

44 prescribe(young,hyper,x,reduced)
Covers: (5 7)

45 prescribe(x,hyper,no,reduced)
Covers: (5 13 21)

46 prescribe(x,hyper,y,reduced)
Covers: (5713 15 2123)

47 prescribe(x,hyper,y,z)
Covers: (5 7 13 15 16 2123 24)
Inconsistent: (6 8 14 22)

48 prescribe(x,y,no,z)
Covers: (15 9 13 17 18 21)
Inconsistent: (26 10 14 22)

49 prescribe(x,hyper,no,normal)
Covers: (6 14 22)

50 prescribe(x,hyper,yes,reduced)
Covers: (7 15 23)

51 prescribe(x,hyper,yes,y)
Covers: (7 15 16 23 24)
Inconsistent : (8)

-none

-+none

-none

-hard

-hard

-none

-none

-none

-*none

-*none

-*soft

-none

-none

Figure 5.9. The depth zero antinarrowings the contact lens examples

Chapter 5: Balog: Automated Theorem Generation 99

All of rules 1-24 plus:

52 prescribe(x,y,yes,normal)
Covers: (48 12 20)
Inconsistent: (16 24)

53 prescribe(ppres,myope,x,reduced)
Covers: (9 11)

54 prescribe(ppres,x,no,reduced)
Covers: (9 13)

55 prescrlbe(ppres,x,y,reduced)
Covers: (9 1113 15)

56 prescribe(ppres,x,y,z)
Covers: (9 1113 15 16)
Inconsistent: (10 12 14)

57 prescribe(ppres,x,no,normal)
Covers: (10 14)

58 prescribe(ppres,x,yes,reduced)
Covers: (11 15)

59 prescrlbc(ppres,x,yes,y)
Covers: (11 1516)
Inconsistent: (12)

60 prescribe(ppres,hyper,x,reduced)
Covers: (13 15)

61 prescribe(ppres,hyper,x,y)
Covers: (13 15 16)
Inconsistent: (14)

62 prescribe(ppres,hyper,yes,x)
Covers: (15 16)

63 prescribe(x,y,z,normal)
Covers: (16 18 24)
Inconsistent: (2468 10 12 14 20 22)

—*hard

—none

—*none

—none

—none

soft

—+none

—none

—none

—none

—none

—+flone

64 prescribe(x,hyper,yes,normal)
Covers: (16 24)
Inconsistent: (8)

65 prescribe(pres,myope,no,x)
Covers: (17 18)

66 prescribe(pres,myope,x,reduced)
Covers: (17 19)

67 prescribe(pres,x,no,reduced)
Covers: (17 21)

68 prescribe(pres,x,y,reduced)
Covers: (17 19 21 23)

69 prescribe(pres,x,y,z)
Covers: (17 18 19 2123 24)
Inconsistent: (20 22)

70 prescrlbe(pres,myope,x,y)
Covers: (17 18 19)
Inconsistent: (20)

71 prescrlbe(pres,x,no,y)
Covers: (17 18 21)
Inconsistent: (22)

72 prescrlbe(pres,x,y,normal)
Covers: (18 24)
Inconsistent: (20 22)

73 prescrlbe(pres,x,yes,reduced)
Covers: (19 23)

74 prescribe(pres,x,yes,y)
Covers : (19 23 24)
Inconsistent: (20)

75 prescribe(pres,hyper,x,reduced)
Covers: (21 23)

76 prescribe(pres,hyper,x,y)
Covers: (21 23 24)
Inconsistent: (22)

77 prescribe(pres,hyper,yes,x)
Covers: (23 24)

—none

—none

—none

—none

—none

—none

—none

—none

—none

—none

—none

—none

—none

—none

Figure 5.9. Continued.

Chapter 5: Balog: Automated Theorem Generation 100

;RAUSof 1-24

5 prescribe(young,myope,x,reduced)
Covers: (1 3)

6 prescribe(young,x,no,reduced)
Covers: (1 5)

7 prescribe(young,x,y,reduced)
Covers: (1 3 57)

8 prescribe(x,myope,no,reduced)
Covers: (1 9 17)

9 prescribe(x,myope,y,reduced)
Covers: (139 1117 19)

0 prescribe(x,y,no,reduced)
Covers: (159131721)

1 prescribe(x,y,z,reduced)
Covers: (13 5 7 9 1113 15 17 19 2123)

4 prescribe(young,x,no,normal)
Covers: (2 6)

7 prescribe(young,x,yes,reduced)
Covers: (3 7)

8 prescribe(x,myope,yes,reduced)
Covers: (3 1119)

9 prescrthe(x,y,yes,reduced)
Covers: (3711 151923)

2 prescribe(young,x,yes,normal)
Covers: (4 8)

3 prescribe(x,myope,yes,normal)
Covers: (4 12 20)
prescribe(young,hyper,x,reduced)
Covers: (5 7)

5 prescribe(x,hyper,no,reduced)
Covers: (5 13 21)

6 prescribe(x,hyper,y,reduced)
Covers: (5713152123)

9 pescribe(x,hyper,no,norma1)
Covers: (6 14 22)

0 prescribe(x,hyper,yes,reduced)
Covers: (7 15 23)

3 prescribe(ppres,myope,x,reduced)
Covers: (9 11)
prescribe(ppres,x,no,reduced)
Covers: (9 13)

—none

—+none

—none

—4none

—#none

—none

—none

—*soft

—none

—none

—none

—hard

—+hard

—+none

—+flone

—none

—soft

—+none

—+none

—none

II of rules 1-24 plus:

5 prescribe(ppres,x,y,reduced)
Covers: (9 1113 15)

7 prescribe(ppres,x,no,normal)
Covers: (10 14)

8 prescribe(ppres,x,yes,reduce4)
Covers: (11 15)
prescribe(ppres,hyper,x,reduced)
Covers: (13 15)

2 prescribe(ppres,hyper,yes,x)
Covers: (15 16)

5 prescribe(pres,myope,no,x)
Covers: (17 18)
prescribe(pres,myope,x,reduced)
Covers: (17 19)

7 prescribe(pres,x,no,reduced)
Covers: (17 21)

8 prescribe(pres,x,y,reduced)
Covers: (17 19 21 23)

3 prescribe(pres,x,yes,reduced)
Covers: (19 23)

5 prescribe(pres,hyper,x.reduced)
Covers: (21 23)

7 prescribe(pres,hyper,yes,x)
Covers: (23 24)

—none

—soft

—+none

—+none

--+none

—none

—none

—none

—none

—+none

—none

—+none

Figure 5.10. Consistent antiunifications of the contact lens examples

Chapter 5: Balog: Automated Theorem Generation 101

The second phase uses the same algorithm as Balog/AMP for hypothesis creation and

testing. By default, the hypothesis increment function is coverage testing. (A command at

the command-line can be used to change the increment function to be used). The result is

shown in Figure 5.11. Balog/C generates 9 general rules that contain all the information in

the 24 original ones.

Balog/C - Version 3.0

Phase 1. Candidate Rules

Compute Antinarrowings [0] (widenings=24 antinarrowings=24)

Augment Widenings [1] (widenings=24 antinarrowings=77)
Removed (21) inconsistent rules.

Phase 2. Hypothesis Testing

Increment Method: Coverage

Induced

(1) prescribe

(2) prescribe

(3) prescribe

(4) prescribe

(5) prescribe

'(6) prescribe

(7) prescribe

(8) prescribe

(9) prescribe

Elapsed Time:

[balog]

Rules

(pres,hyper,yes,x) -> none

(pres,myope,no,x) -> none

(ppres,hyper,yes,x) -> none

(ppres,x,no,normal) -> soft

(young,x,yes,normal) -> hard
(young,x,no,normal) -> soft

(x,hyper,no,normal) -> soft

(x,myope,yes,normal) -> hard

(x,y,z,reduced) -> none

50130 (real) 49302 (cpu)

Figure 5.11. Balog/C: contact lens data results

5.3 Default Classification

The generation of default classification theories extends the usual type of classification that

was described in the previous section.

Definition 5.1 A default theory is an ordered sequence of rules.

Chapter 5: Balog: Automated Theorem Generation 102

The notion of defaults comes in since rules earlier in the sequence can be viewed as exception

cases while those later in the sequence can be seen as general defaults. Default theories are,

in general, more readable and more compact than their equivalent coding as regular theories.

This is accomplished by allowing inconsistencies into the rule base (the theory), and by

ensuring that if there is a rule that is inconsistent with the examples, rules that override this

inconsistency are placed earlier in the sequence of rules.

For example, a useful use of default rules is in the definition of the list membership

function. Suppose member(x, y), where x is a term and y is a list, returns false if x is not in

y and true if it is in y. Then the following definition is possible:

member(x,nil) -+ false

member(x, x.y)— true

member(x, z.y)—+ member(x, y)

Note that the second and third rules are in contention since all those that match the second

also match the third. However, the second rule always gets tried first in any computation.

Without default theories, this function can only be defined by using a condition placed on

the second and third rules that tests for the equivalence of x and z. Adding such conditions

to rewrite rules is currently a topic of intense study (eg. see Kaplan, 1984).

Balog/CD is a classification system that generates default theories. It differs from

Balog/C in just two aspects. First, all rules created through antinarrowing in phase one, in-

cluding inconsistent rules, are possible candidates for inclusion in hypotheses. In other words,

Balog/CD produces size 0 inconsistent antiunifications. Thus, all the rules in Figure 5.9 are

created in phase one for the contact lens example. Second, the hypothesis increment function

is coverage, but with priority given to covering currently inconsistent examples. Hypotheses

are built by starting with the most general cases and then adding exception cases.

For instance, the first rule that is chosen by Balog/CD is rule 42 since it covers the most

example rules (fifteen).

Chapter 5: Balog: Automated Theorem Generation 103

32 prescribe(x,y,z,w) -* none

Covers: (13 5 7 9 11 13 15 16 17 18 19 2123 24)

Inconsistent: (246 8 10 12 14 20 22)

The nine examples that are inconsistent with it are of no concern since they have not yet been

covered by any rules in the hypothesis. Next, the algorithm chooses rule 36 since it covers

five rules that have not been covered by rule 32.

36 prescribe(x, y, no, normal) -* soft

Covers: (26 10 14 22)

Inconsistent: (18)

Example rule 18 is inconsistent with rule 36, and has already been covered by rule 32. The

next step is to make sure that rule 18 is covered, along with as many of the uncovered rules

(4 8 12 20) as possible. It turns out that rules which cover rule 18 do not cover any in this

list. However, rule 65 covers rules 17 and 18, so this rule is chosen in preference to the more

specific rule 18.

65 prescribe(pres, myope, no, x) -* none

Covers: (17 18)

Note that if a rule is chosen later that causes an inconsistency with only rule 17, then rule

65 will be moved higher up in the list (since it does not introduce inconsistency itself), so

that it will resolve both inconsistencies at once. The remaining four example rules that have

yet to be covered are straightforwardly covered by rules 43 and 42. (Note that example 4

is covered by both of these). Figure 5.12 shows the result of Balog/CD on the contact lens

data. While Balog/C creates nine rules on this data, Balog/CD produces only five. These

five rules are more understandable - they do not need to contain as much detail to rule out

inconsistencies.

Chapter 5: Balog: Automated Theorem Generation 104

Balog/CD - Version 3.0

Phase 1. Candidate Rules

Compute Antinarrowings [0] (widenings=24 antinarrowings=24)

Augment Widenings [1] (widenings=24 antinarrowings=77)
Removed (0) inconsistent rules.

Phase 2. Hypothesis Testing

Increment Method: Coverage + Inconsistency Reduction

Induced Rules

(1) prescribe(young,x,yes,normal) -> hard

(2) prescribe(x,myope,,yes,normal) -> hard

(3) prescribe(pres,myope,no,x) -> none

(4) prescribe(x,y,no,normal) -> soft

(5) prescribe(x,y,z,w) -> none

Elapsed Time: 51716 (real) 50014 (cpu)

[balog]

Figure 5.12. BalogICD: result on contact lens data

Chapter 5: Balog: Automated Theorem Generation 105

5.4 Learning With Noise

While Balog/CD allows inconsistency in the hypotheses that are generated, the more general

Balog/PRU can also ignore noisy data. Balog/PRU is the same as Balog/AMP except that

it allows inconsistent rules to be generated in phase one. Phase two can be configured to

use a similar hypothesis increment function as Balog/CD, namely coverage increment with

inconsistency coverage priority. Another alternative is to use one of the evaluation functions

discussed in Section 5.1.2. In this case, hypotheses that include rules produced from noisy

data will likely have poor evaluations - consistent hypotheses will be preferred.

[balog] showx
example base

(1) app(nil,a.nil) -> a.nil
(2) app(nil,nil) -> nil
(3) app(b.nil,nil) -> b.nil

(4) app(c.nil,d.nil) -> c.d.nil
(5) app(e.f.nil,g.nil) -> e.f.g.nil

(6) app(a.nil,f.nil) -> f.nil

Figure 5.13. Balog/PRU: Append examples with noise

Consider the example set in Figure 5.13, which adds a new rule, Rule 6, to the examples

in Figure 5.4. Figure 5.14 illustrates the result of running Balog/PRU on this new set.

While Rule 6 produces some extra rules in phase one, the normal definition of append is still

generated since its rules cover more of the database than do the false generalizations. The

generated theorem, namely Vx app(nil, x) - x A Vx, y, z app(x.y, z) -* x.app(y, z) is a

prudent theorem of the theory specified in Figure 5.13.

Chapter 5: Balog: Automated Theorem Generation 106

[balog] balog/pru

Balog/PRtJ - Version 3.0

Phase 1. Candidate Rules
Compute

Augment
Compute
Augment
Compute

Ant inarrowings
Widenings
Ant inarrowings
Widenings
Ant inarrowings

Ant inarrowings

(widenings=6 antinarrowings=6)

(widenings=6 antinarrowings=12)
(widenings=55 antinarrowings=12)
(widenings=55 antinarrowings=17)
(widenings=55 ant inarrowings=17)

1 [0] app(nil,a.nil) -> a.nil
2 [0] app(nil.nil) -> nil

3 (0] app(b.nil,nil) -> b.nil

4 [0] app(c.nil,d.nil) -> c.d.nil
5 (0) app(e.f.nil,g.nil) -> e.f.g.nil
6 [0] app(a.nil,f.nil) -> f.nil
7 [1] app(nil,x) -> x
From widenings: ((1 2) (2 7))
8 [1] app(x,y.nhl) -> y.nil
From widenings: ((1 6) (6 8))
9 [1] app(x,nil) -> x
From widenings: ((2 3) (3 9))
10 [1] app(x,y) -> y
From widenings: ((2 6) (2 8) (6 7) (6 10) (6 12))
11 [1] app(x.nil,y) -> x.y

From widenings: ((3 4) (4 3) (4 11))
12 [1] app(x,y) -> x

From widenings: ((3 10))
13 [2] app(x.nil,y) -> app(nil,x.y)
From widenings: ((22 16))
14 [2] app(x.nil,y) -> x.app(nil,y)
From widenings: ((23 15))

15 [2] app(x.nil,y) -> x.app(y,nil)

From widenings: ((26 15))
16 [2] app(x.y,z) -> x.app(y,z)

From widenings: ((44 15))
17 [2) app(x.y,z.nil) -> x.app(y,z.nil)

From widenings: ((44 23))
Phase 2. Hypothesis Testing

Method: Inconsistency Reduction
Elapsed Time: 23811 (real) 23150 (cpu)

Induced Rules
(1) app(nil,x)
(2) app(x.y,z)
[balog]

-> x
-> x.app(y,z)

Figure 5.14. Ba1ogfPRU: Learning append even with noise

Output: R

Chapter 5: Balog: Automated Theorem Generation 107

5.5 Inductive Theorem Generation

Balog/IND is the subsystem of Balog that generates inductive theorems. The Balog/IND

algorithm is given in Figure 5.15 and an example of its operation is shown in Figure 5.16.

Balog/IND - Summative Induction only algorithm.

Input: X
Depth
Limit

SpecLevels

- example base
- maximum antinarrowing size
- maximum antiunification passes

- number of levels to specialize.

R = PhaseTwo(PhaseOne(PhaseZero(X, SpecLevels),

Depth, Limit, Valid),
False, Ind-proof-check)

- a list of rules.

Figure 5.15. Balog/IND: Algorithm

Balog/IND generates inductive theorems, the subclass of ampliative theorems that

are totally justified. In Balog/AMP, pairs of rules were antinarrowed to create biexemplar

justified ampliative theorems. Similarly, we might expect that the best way to create inductive

theorems would be to antiunify sets of rules, checking to see that a variable is introduced

when a cover set is formed by the terms it replaces with variables. In fact, this describes the

Irau operator from Section 4.4.1. However, checking for antiunifications of sets of widenings

can be very expensive. Instead, Balog/IND generates biexemplar justified rules in the manner

of Balog/AMP and then, using the Ind-proof-check function, determines those that are cover

set justified and thus inductive theorems. Ind-proof-check implements cover-set induction

(Section 3.4).

Chapter 5: Balog: Automated Theorem Generation 108

[balog] showx

example base

(1) app(nil,x) -> x
(2) app(x.y,z) -> x.app(y,z)

[balog] balog/ind

Balog/IND - Version 3.0

Phase 0. Computing Specializations

Level (0) Specs (2)
Level (1) Specs (6)

Computed (6) specializations:

(1) app(nil,nil) -> nil

(2) app(nil,x.y) -> x.y

(3) app(x.nil,y.z) -> x.y.z
(4) app(x.nil,nil) -> x.nil

(5) app(x.y,nil) -> x.app(y,nil)

(6) app(x.y,z.w) -> x.app(y,z.w)
Phase 1. Candidate Rules

Compute Antinarrowings [0] (widenings=6 antinarrowings6)
Augment Widenings [1] (widenings=6 antiriarrowings=13)

Compute Antinarrowings [1] (widenings=30 antinarrowings=13)
Augment Widenings [2] (widenings=30 antinarrow±ngs27)

Compute Antinarrowilags [2] (widenings=30 antinarrowings=27)
Removed (2) inconsistent rules.

Phase 2. Check for inductive rules.

Elapsed Time: 44560 (real) 44140 (cpu)

Induced Rules

(1) app(x,nil) -> x

Figure 5.16. BalogulND example

Chapter 5: Balog: Automated Theorem Generation 109

Recall from Section 4.6 that the rule specialization operator (Section 4.5. 1) is required

for completeness. By default, it is not used in Balog/AMP since in practice, examples usually

have no variables to specialize. However, many of the interesting inductive theorems require

it - since in practice we wish to determine inductive theorems of theories, not examples -

and it is implemented in a new phase, Phase Zero. A depth variable, SpecLevels, controls

how many times it may be applied. For instance, if SpecLevels = 1 then only the rule

specializations of the example base will be generated. However, if SpecLevels = 2 then the

rule specializations of the rule specializations generated at specialization level 1 will also be

generated. The output of phase zero becomes the input of phase one as if it were the original

set of examples.

When Balog/IND is run on the append function (not the examples!) in Figure 5.13, the

inductive theorem Vs app(x, nil) - x is produced. Phase zero produces 6 specializations

after one application of the rule specialization operator on the original two rules. These 6

rules are passed to phase one which produces 25 antinanowings. In phase two, only one of

the antinarrowings is determined to be a non-trivial inductive theorem.

Chapter 6

Other Machine Learning Systems

The theory developed so far can help to describe other important machine learning systems. In

particular, Section 6.1 shows that a wide range of classification systems can be characterized

through their use of specialization. Cigol, a system similar to Balog/AMP, is examined in

Section 6.2 and several other machine learning systems are briefly discussed in Section 6.3.

6.1 Other Classification Systems

Most classification learning algorithms are not antiunification based like Balog. Instead,

specialization forms the main computational mechanism. These induction systems begin

with an overly general rule and specialize it until it is consistent with the example set

(and itself). The main operational difference between ID3 and PRISM/INDUCT is not the

specialization process, but what they do with the specializations.

The next two sections describe the algorithms of ID3 and PRISM in terms of rewrite

rules. During their descriptions, suppose that the original set of examples is:

X:

f(al,bl) - cl

f(al,b2) - c2

f(a2,b3) - c2

f(a2,bl) -* ci

f(a3,b3) -* c3

110

Chapter 6: Other Machine Learning Systems 111

ID3 Algorithm

Input: C - set of classes (Cl, c2, ..., cm).
X - example set such that

for all G X there are n terms t1, ..., t

and ac E C such thatr f(t1, ..., t) - f c

V = {x1,x2, ... , x}, aset of variables, such that Typeof(x) = Typeof(f/i)
S = {f(xi,x2, ..., x) - f z I z E C}

F=O
While (S 0) {

S = DelExtras(Best(Nspec(S, V), X), X)
F = {r I r € SA Consistent(r, S U X)}
S=S— F

}
Output: F - a set of rules

Figure 6.1. ID3

6.1.1 ID3 as a specialization system

ID3 (Quinlan, 1986) is an algorithm that has often been implemented in commercial systems.

Its popularity is due to its simplicity, speed, and power for learning classification rules from

data. Figure 6.1 shows the ID3 algorithm that is implemented in the Balog system.

Section 4.5 distinguished between a "naive" type of specialization and a more compre-

hensive type. This algorithm, in its use of the Nspec operator, shows that the central operator

in ID3 is naive rule set specialization. This immediately suggests that ID3 can be improved

by dropping the naive restriction and using the rule set specialization operator Spec instead.

Let us work through an example to demonstrate this algorithm. ID3 is given a set

of rules, X, and a set of classes, C. We use the set of five rules listed above to be X

and {cl, c2, c3} for C. Then 1D3 determines the most general specialization, S, that will

be subsequently specialized. In the first line of the algorithm, V = {x, y} and so S =

{f (XI y) - cl,f(x,y) -* c2,f(x,y) - c3}. We write S more compactly as{f(x,y) - z}

Chapter 6: Other Machine Learning Systems 112

where z can be any class constant in C. On entering the while loop, the first step is to check if

is empty. Rules in S are ones that are currently inconsistent with the examples, and remain to

be specialized further. Since S is not yet empty, the loop body is entered. Then ID3 calculates

the naive rule specialization of all rules in S with respect to variables in V. Nspec(S, V) =

{S1,S2} where Sl = {f(al,y) -- z,f(a2,y) - z,f(a3,y) - z} and S2 = {f(x,bi)

Z, f(x, b2) - z, f(x, b3) -* z}. Each of Si and S2 specify nine rules. Next, the function

Best chooses the best specialization in Nspec(S, V) using a coverage heuristic. ID3 chooses

S2. The function DelExtras removes rules with no instances in X. Thus S is updated to the

set {f(x,bl) -* ci,f(x,b2) - c2,f(x,b3) - c2,f(x,b3) -+ c3}. Next Fis updated to

the set If (x, bi) - ci, f(x, b2) - c2} since both of these rules are consistent with X. S

is updated to S - F leaving the inconsistent rules If (x, b3) -+ c2, f(x, b3) -* c3}. Since

S is still not empty, the while loop is entered again. This time, Nspec(S, V) = {S1} where

Si = {f(al,b3) -+ c2,f(a2,b3) -+ c2,f(a3,b3) -+ c2,f(al,b3) - c3,f(a2,b3) -+

c3, f(a3, b3) - c3}. Since there is only one rule set specialization, Si, Best({S1}) = Si.

Next, S = DelExtras(S1, X) = If (a2, b3) -+ c2, f(a3, b3) -' c3} because these two rules

are the only ones with instances, in X. Now, both of the rules in X are consistent with X,

and soFis updated to {f(x,bl) - cl,f(x,b2) -' c2,f(a2,b3) - c2,f(a3,b3) -+ c3}

and S is updated to 0. ID3 terminates and returns F as its final result.

6.1.2 Prism and Induct as Specialization Algorithms

Prism.(Cendrowska, 1988) improves upon ID3 to create a more general set of rules. While

ID3 maintains a set of rules that are specialized simultaneously, Prism specializes only a

single rule at a time. The final specialization is produced one rule at a time rather than all

at once like ID3. This allows each specialization, a single rule, to be evaluated on its own

merits rather than in combination with other rules. Figure 6.2 shows the Prism algorithm.

This time, the naive rule specialization operator, Nspec(r, V), is used rather than the naive

rule set specialization operator, Nspec(S, V).

This algorithm considers each class one at a time; 11)3 considers them all concurrently.

It sets the most general rule possible for a class and finds the best specialization of it that is

consistent with the examples not yet covered by a generated rule for the class.

Chapter 6: Other Machine Learning Systems 113

PRISM Algorithm.

Input: X - example set

C - set of classes (ci, C2, ...' Cm).

F=O
SavedX = X
while (more unprocessed classes) {

choose unprocessed c E C; mark it as processed

X = SavedX
while(s has instances in X) {

while (-iConsistent({s}, X)).

{s} =Best({{r}Ir E UNspec(s,V)},X)
Remove instances of s from X.
F=FU{s}

s=f(x1,x2,...,x)—c.

Output: F - a set of rules

Figure 6.2. PRISM

Using the same example set X and set of classes C as used to demonstrate ID3, we

illustrate the operation of PRISM. First, we choose an unprocessed class arbitrarily. This

time let c be c1. Next, let s be the rule f(x, y) -+ ci. Since s has two instances in

X, namely ri and r4, the second while loop is entered. We see that .s is not consistent

with rules r2, r3 and r5 since the left hand side of s matches the left hand sides of these

rules - for example, f(x, y) matches f(al, b2) of rule r2 - but the right hand sides

of these rules are different from ci. Thus the innermost while loop is entered. Next,

the union of the specializations of s is computed: U Nspec(s, {x, y}) = If (al, y) -+

cl,f(a2,y) -+ cl,f(a3,y) -* cl,f(x,bi) -* ci,f(x,b2) - p ci,f(x,b3) - k cl}. Then,

one specialization is chosen from among these rules using the function Best. Prism chooses

f(x, bi) -* ci because it covers both of rules ri and r4. Since the left hand side of this

new s, f(x, bi), covers only the left hand sides of r and r4, and since both of these rules

have right hand sides ci, the specialization s is now consistent with X. The inner while

loop is exited, r and r4 are removed from X leaving X = {r2, r3, r5}, and F is updated

Chapter 6: Other Machine Learning Systems 114

to {f(x, bl) -* cl}. s is reset to the general rule f(x, y) -+ ci. Now s no longer has

any instances in the updated X, so the second while loop is exited. We choose another

unprocessed c. Suppose the algorithm chooses c2. This pass through the loop produces two

rules If (x, b2) - p c2, f(a2, y) - c2} which are added to F. The last pass, using c = c3,

produces the rule f(a3, y) -* 6. At the very end, after the three classes have been processed,

Fis the set of rules {f(x,bl) -+ cl,f(x,b2) -* c2,f(a2,y) -+ c2,f(a3,y) - c3}.

The Induct algorithm (Gaines, 1991) is similar except that X is not reset to the original

set of examples on each pass through the outer while loop. In this example, Induct would

produce: {f(x,bl) - ci, f(x,b2) -* c2, f(x,y) -+ c3}. It also uses a different

formulation of the Best function, but the difference is not relevant to basic classification

learning.

6.2 Cigol

The Cigol system (Muggleton & Buntine, 1988) adopts a similar approach to the theorem

generation of Balog/AMP. While Balog/AMP inverts narrowing, since its representation

language is equational theories, Cigol inverts Horn clause resolution, since it generates

Prolog programs. Another difference is that no semantics is given for Cigol's operators.

Nevertheless, we can describe its operators in terms of the theory developed in this thesis.

However, conditional rewrite systems must first be reviewed to facilitate the explanation of

Cigol's operators.

6.2.1 Conditional rewrite systems

Dealing with conditionals in basic term rewriting systems has been a major problem for

theorem proving researchers (Kaplan, 1984). Instead of modifying the syntax of term

rewriting systems, we can introduce a function, if, that acts like a conditional:

jf(true,x,y) - x

fl.f'alse,x,y) -4 y

Chapter 6: Other Machine LearningSystems 115

Unfortunately, this method results in inefficient theorem proving since the first argument is

not always evaluated first' resulting in the evaluation of x or y or both. It is also undesirable

for theorem generation for a few reasons. Since the right hand side of both rules is a variable,

it can be used to widen any rule at any subterm in the rule. Also, widening with these rules

introduces new variables.

The most popular method of handling conditionals has been to use conditional rewrite

rules. These are basic rewrite rules with a conditional part added on.

Li -+ R14= C1 C2 A ... A Cn

Before Li is allowed to rewrite to Ri, all of Cl to Cm will have to first be rewritten to the

constant function symbol true.

While conditional rules are more convenient to use than basic rewrite rules, they are

no more expressive. It is always possible to write a set of conditional rules as a set of rules

without conditions (Zhang, 1988).

To extend antiunification to conditional rules, it is necessary to specify how the condi-

tional part of the rule is to be generalized. Basically, given two conditional rules, conjuncts

that are not common to both rules are dropped, and common conjuncts are antiunified. Also,

subterms that are antiunified to variables in the rewrite part of the conditional rule that also

occur in the conditional part may need to be assigned to the same variables in the general-

ization. For example, antiunifying 1(a) - 4b = g(a) and f(c) -+ b <= g(e) should produce
the antiunification f(x) -+ b = g(x) rather than 1(x) - b = g(y). To develop a correct

antiunification method for conditional rules is not difficult, but requires a treatment beyond

the scope of this thesis.

'Lazy evaluation methods must be employed to force execution of the first argument of an if term before its
other arguments.

Chapter 6: Other Machine Learning Systems 116

6.2.2 Operators in Cigol

There are three main operators in Cigol: the truncation operator, the absorption operator

and the intraconstruction operator. The truncation operator is simply the term antiunification

operator2.

To describe the absorption operator in terms of our theory, we will first require

functions to convert between clause form and term form. Assume that these have

been developed such that Termzfy({p(x), - q(x), -lr(x)}) = clause(p(x), q(x), r(x)) and

Clausfy(clause(p(x), q(x), r(x))) = {p(x), -ig(x), - lr(x)}.

Absorption
C = {t1, —'t2, —it3... --it} (a Horn clause)
{s} (a unit clause)

Clausfy(c I a)
where c = Termfy(C U {-'s}Oi)

Domain(a) C: Pos(c) - {e}
Oj =Match(ti,$)

Using this formulation, we immediately see that the absorption operator computes antiappli-

cations. In general, there will be more than one, since the clause c will in general have many

positions in which constants can be replaced with variables.

The intra-construction operator is the operator that does constructive induction in Cigol.

For our presentation here, we simply convert Cigol's Horn clauses into conditional rewrite

rules. Zhang (1988) developed an algorithm for doing this. Then the operator can be defined

as follows:

2This illustrates the contention of Chapter 1 that a common language for these issues has not been developed
or used.

Chapter 6: Other Machine Learning Systems 117

intra-construction operator
pi true qA q2 A ... A qm
P2 - true = rl A r2 A ... A rm

p - true = A A f
tO1 - true
tO2 true

where p = Au(pj,p2),Oi = Mgu(pi,p),02 = Mgu(p2,p)
A=riA ... rm AqiA ... qn

t1(Vi,...,Vm)

V = U Domain(0)
{v,... ,vm } = V - {vv € V;Vars(v0)

Range(0) - {vO} for = 1 on j = 2}

The symbol f is the newly constructed function of arity m. The contruction of {v1,.. . , Vm}

ensures that f is kept as simple as possible (smallest possible arity). The terms ex-

cluded from V are those that do not change in different instantiations of f. Applying

the intra-construction operator to the rules min(x, s(x).y) - true .= min(x, y) and

min(x, s(s(x)).y) -+ true <-- min(x, y) results in the set of rules {min(x, z.y) - true

min(x, y) A f(x, z), f(x, s(x)) -* true, f(x, s(.s(x))) - true}. Note that the construction

of f did not include a place for y, since y is irrelevant to what makes min(-v, s(x).y) and
min(x, s(s(x)).y) different. The constructed function in this case, f, is the common less
than (<) function.

6.3 Other Systems

There are several other important machine learning systems. Unfortunately, investigating all

of them in terms of the theory in this thesis would require a lengthy treatise. Nonetheless, a

few comments on some of these would be interesting.

Marvin (Sammut & Banerji, 1986) and Alvin (Krawchuk & Witten, 1988) are systems

that learn Horn clauses by asking a teacher questions. The process of generating questions

can be viewed as hypothesis specialization and might be described by using a form of the Spec

operator. Direct questioning in Alvin can be seen as the presenting of a set of specializations,

Chapter 6: Other Machine Learning Systems 118

ack(O,O) -> 1

ack(O,1) -> 2

ack(O,m) -> s(m) ack(1,O) -> 2

ack(s(n),O) -> ack(n,1) ack(1,1) -> 3

ack(s(n),s(m)) -> ack(n,ack(s(n),m)) ack(1,2) -> 4

ack(2,O) -> 3

ack(2,1) -> 5

Figure 6.3. Ackermann's function and examples needed to generate it

whereas the indirect questioning style of both Alvin and Marvin can be seen as presenting

single specializations. The crucial objects of Alvin can be seen as specializations unique to the

hypothesis being tested (no other hypotheses would have these particular specializations).

Both Marvin and Alvin use elaboration as one of their central algorithms. It might be

described in terms of some form of the widening operator.

Version spaces (Mitchell, 1982) are simply lattices of rules. We might provide a general

semantics for these spaces by simply stating that a version space is the lattice of prudent

theorems under the prudent modelling relation. This would be a very general statement

provided that we port the notion of prudent theorems to representation systems other than

term rewriting systems. The candidate elimination algorithm for learning in version spaces

can be seen as doing specialization of its G sets, and antinarrowing of its S sets.

MIS, the Model Inference System (Shapiro, 1983), learns Prolog programs through a

process of directed (by a teacher) specialization with respect to negative examples. Shapiro

provides a semantics of the process as being (standard) model identification. It would be

interesting to apply his methods to non-standard models.

Finally, function induction systems might also be described in terms of this theory. In

particular, the building of expressions can be seen as an application of antinarrowing. Indeed,

the term rewriting system learning developed in this thesis can directly provide both model-

theoretic and operational semantics to many function induction systems. In fact, Balog can be

seen as a way of inducing general recursive functions. For example, Balog/AMP generates

the celebrated Ackermann's function when given the seven simplest examples of it. The

function and the required examples are given in Figure 6.3.

Chapter 7

Conclusions

This thesis has

• described induction;

• introduced a model theoretic semantics;

• produced some proof and generation methods for induction;

• developed programs for induction;

• described existing programs for induction.

In this final chapter, we summarize how the problems presented in Chapter 1 have been

addressed. Recall the first problem:

Problem 1. What is meant by the term "induction"? More precisely, how can induction

be formalized in logic in a clear way, capturing the intended meaning of machine learning

and automated theorem proving researchers?

The semantics of Chapter 2 provided a solution to this problem. When we say that

a system is doing "induction", we can say instead that it generates inductivelike theorems.

Induction as conceived by theorem proving researchers was captured by noting that they

prove theorems in the IND class - that is, theorems defined with inductivelike modelling

over standard models and using total justification. A particular type of inductive proof

called cover set induction was reviewed in Chapter 3. On the other hand, machine learning

aims at generating prudent theorems, although most systems so far have only investigated

ampliative ones. Ampliation, that is, induction over statements whose truth is not known, was

given a model theoretic semantics by the development of the class of ampliative theorems

(AMP). Ignoration, that is, induction despite noise, is embodied in ignorative theorems

(IGN). Prudent induction, or induction despite noise and unknown values, is embodied in

119

Chapter 7: Conclusions 120

prudent theorems (PRU). In the development of these classes, two new truth values, namely

underdetermined and overdetermined, were introduced so that statements whose truth values

are not determined to be true or false could be manipulated explicitly within a logical setting.

By also applying preferencing techniques that are used in the study of nonmonotonic logics,

these classes of theorems were given a precise semantics.

Problem 2. How can inductive theorems be generated? Can some existing theorem

proving techniques be adapted to generate theorems? In particular, how might such theorems

be generated in an equational theory?

Chapter 4 dealt with this problem in detail. The general idea was to reverse theorem

proving techniques to obtain corresponding generation techniques. From term unifica-

tioñ and substitution application, term antiunification and antiapplication were developed.

Rewriting was reversed to obtain expansion. Equational unification was reversed to obtain

E-antiunification for use with explicit background theories. Narrowing was reversed to ob-

tain añtinarrowing which can be used with implicit background theories. To generate all

biexemplar justified theorems, not just the strictly biexemplar justified ones, the complete

antinarrowing operator was designed. Next, cover set induction was reversed to obtain

the.inductive antinarrowing operator for generating inductive theorems. Finally, specializa-

tion was formalized and shown to be an inverse of antiunification. Specialization, together

with inconsistent complete antinarrowing were suggested to be complete for generating a

restricted subclass of prudent theorems. By using these operators, it becomes possible to

generate inductivelike theorems.

Specific algorithms employing these operators were presented in Chapter 5. These

included the use of antinarrowing in Balog/AMP and Balog/PRU, and rule antiunification

in Balog/C and Balog/CD. By using antinarrowing and specialization, Balog[IND gener-

ated ampliative theorems and then tested them for inductive theoremhood using cover set

induction as an alternative to using the inductive antinarrowing operator. In Chapter 5, we

also developed some heuristics to choose interesting theorems from among the generated

theorems. In Chapter 6, we showed that the theorems generated by other machine learning

programs could be seen as using rule speèialization, antinarrowing, or antiapplication.

Chapter 7: Conclusions 121

Hopefully, the broad theory presented in this thesis aids the description of the plethora

of approaches in machine learning and adds to the much-needed research on theorem finding.

Bibliography

Angluin, D. & Smith, C. (1983). Inductive inference: theory and methods. Computing
Surveys, 15(3), 237-269.

Aristotle (1928). Prior analytics. In D. Ross (Ed.), The Works of Aristotle, volume 1.
Oxford, UK: Oxford Press.

Avenhaus, J. & Madlener, K. (1990). Term rewriting and equational reasoning. In
R. Banerji (Ed.), Formal Techniques in Artificial Intelligence. A Sourcebook. Elsevier
Science.

Belnap, N. (1975). A useful four-valued logic. In J. Dunn & G. Epstein (Eds.),
Modern uses of multiple-valued logic (pp. 8-37): D. Reidel.

Boyer, R. & Moore, J. (1979). A computational logic. New York: Academic Press.

Buntine, W. (1987). Induction of horn clauses: methods and the plausible generaliza-
tion algorithm, mt. J. Man Machine Studies, 26, 499-5 19.

Burstall, R. (1969). Proving properties of programs by structural induction. The
Computer Journal, 12 (1), 41-48.

Carnap, R. (1962). Logical Foundations of Probability. Chicago, IL: Chicago Uni-
versity Press.

Cendrowska, J. (1987). Prism: An algorithm for inducing modular rules. Int. J. Man
Machine Studies, 27, 349-370.

Dershowitz, N. (1982). Orderings for term rewriting systems. J. Theoretical Comp.
Sci., 17, 279-310.

Dershowitz, N. & Sivakumar, G. (1989). Goal-directed equation solving. In Proc. of
the 7th Natl. Conf. on Artificial Intelligence, (pp. 166-170)., San Mateo, CA. Morgan
Kaufmann.

Dietterich, T. & Michalski, R. (1986). Learning to predict sequences. In R. Michalski,
J. Carbonell, & T. Mitchell (Eds.), Machine Learning: An Artificial Intelligence

Approach Vol 2 (pp. 63-106). Los Altos, CA: Morgan Kaufmann.

Fitting, M. (1990). First-order logic and automated theorem proving. New York:
Springer Verlag.

Gaines, B. (1991). The tradeoff between knowledge and data in knowledge acqui-
sition. In J. Boose & B. Gaines (Eds.), Knowledge Discovery in Data Bases. AAAI
Press.

122

Chapter 7: Bibliography 123

Genesereth, M. & Nilsson, N. (1987). Logical Foundations of Artificial Intelligence.
Los Altos, CA: Morgan Kaufmann.

Heise, R. (1989). Demonstration instead of programming: focussing attention in robot
task acquisition. Master's thesis, University of Calgary, Calgary, AB, Canada.

Heift, N. (1989). Induction as nonmonotonic inference. In R. Brachman, H. Levesque,
& R. Reiter (Eds.), Proceedings of the First Intl. Confi on Principles of Knowledge
Representation and Reasoning (pp. 149-156). San Mateo, CA: Morgan Kaufmann.

Hintikka (1964). Towards a theory of induction generalization. In mt. Congress for
Logic Methodology and Philosophy of Science, (pp. 47-90). North-Holland.

Hsiang, H. (1986). Theorem Proving and Program Generation. PhD thesis, Yale,
Cambridge, MA.

Huet, G. & Oppen, D. (1980). Equations and rewrite rules: a survey. In R. Book
(Ed.), Formal Languages: Perspectives and Open Problems (pp. 349-405). Academic
Press.

Hullot, J. (1980). Canonical forms and unification. In Bibel, W. & Kowalski, R.
(Eds.), 5th Conf. on Automated Deduction, volume 87 (Lecture Notes in Computer'

Science), (pp. 318-334)., Berlin. Springer Verlag.

Kaplan, S. (1984). Conditional rewrite rules. J. of Theoretical Comp. Sci., 33, 175-
193.

Kapur, D. & Musser, D. (1987). Proof by consistency. Artificial Intelligence, 31,
125-57.

Kapur, D. & Narendran, P. (1985). An equational logic approach to theorem prov-
ing in first-order predicate calculus. Technical report, General Electric Company,

Schenectady, NY: GE Corporate Reaseach and Development.

Knuth, D. & Bendix, P. (1970). Simple word problems in universal algebras. In
R. Leech (Ed.), Computational Problems in Abstract Algebra (pp. 263-297). Perga-
mon Press.

Kodratoff, Y. (1988). Introduction to Machine Learning. London: Pitman.

Kolmogorov, A. (1965). Three approaches to the quantitative definition of informa-
tion. Prob. Inf. Trans, 1, 1-7.

Krawchuk, B. & Witten, I. (1988). On asking the right questions. In Proc Fifth mt.
Conference on Machine Learning, (pp. 15-21)., San Mateo, CA. Morgan Kaufmann.

Chapter 7: Bibliography 124

Krawchuk, B. & Witten, I. (1989). Explanation based learning: a problem solving
approach. J. Experimental and Theoretical Artificial Intelligence, 1(1), 44-72.

Langholm, T. (1988). Partiality, Truth and Persistence. Stanford, CA: Center for the
Study of Language and Information.

Lankford, D. (1981). A simple explanation of inductionless induction. In Mechanical
Theorem Proving, volume 14, Ruston, LA. Louisiana Tech University.

Lassez, J., Maher, M., & Marriott, K. (1987). Unification revisited. In Eighth Int.
Conf. on Automated Deduction, (pp. 67-113)., Berlin. Springer Verlag.

Lassez, J. & Marriott, K. (1987). Explicit representation of terms defined by counter

examples. J. of Automated Reasoning, 3, 301-318.

Lloyd, J. (1984). Foundations of logic programming. Berlin: Springer Verlag.

Maulsby, D. L. & Witten, I. H. (1989). Inducing programs in a direct-manipulation

environment. In Human factors in computing systems: Proc. CHI '89, (pp. 57-62).,
Austin, Texas.

McCarthy, J. (1980). Circumscription - a form of non-monotonic reasoning. Artificial
Intelligence, 13, 27-39.

Michalski, R. (1983). A theory and methodology of inductive learning. Artificial
Intelligence, 20, 111-161.

Mitchell, T. (1982). Generalization as search. Artificial Intelligence, 18, 203-226.

Mitchell, T., Keller, R., & Kedar-Cabelli, S. (1986). Explanation-based generalization:
a unifying view. Machine Learning, 1(1), 47-80.

Muggleton, S. & Buntine, W. (1988). Machine invention of first order predicates by

inverting resolution. In Laird, J. (Ed.), Fifth Int. Conf. on Machine Learning, (pp.
339-352)., San Mateo, CA. Morgan Kaufmann.

Phan, T. (1989). Equal value search. Master's thesis, University of Calgary, Calgary,
AB, Canada

Plotkin, G. (1970). A note on inductive generalization. Machine Intelligence, 5,
153-163.

Plotkin, G. (1971). A further note on inductive generalization. Machine Intelligence,
6,101-124.

Popplestone, R. (1970). An experiment in automatic induction. Machine Intelligence,
5,203-215.

Chapter 7: Bibliography 125

Quinlan, R. (1986). Induction of decision trees. Machine Learning, 1(1), 81-106.

Quinlan, R. (1987). Generating production rules from decision trees. Int. Joint Conf.
on Artificial Intelligence, 1.

Rescher, N. & Brandom, R. (1979). The logic of inconsistency. Totowa, New Jersey:
Rowman and Littlefield.

Rety, P. (1987). Improving basic narrowing techniques. In Rewriting Techniques and
Applications, (pp. 228-241)., Berlin. Springer Verlag.

Sammut, C. & Banerji, R. (1986). Learning concepts by asking questions. In
R. Michalski, J. Carbonell, & T. Mitchell (Eds.), Machine Learning: an Artificial

Intelligence Approach Vol 2 (pp. 167-192). Los Altos, CA: Morgan Kaufmann.

Shapiro, E. (1983). Algorithmic Program Debugging. PhD thesis, Yale, Cambridge,
MA.

Shoham, Y. (1988). Reasoning about change. Cambridge, MA: MIT Press.

Skyrms, B. (1975). Choice and Chance: An Introduction to Inductive Logic. Oxford,
UK: Oxford Press.

Vere, S. (1977). Induction of relational productions in the presence of background

information. In mt. Joint Conf. on Artificial Intelligence, (pp. 349-355)., Cambridge,
MA. Morgan Kaufmann.

Vere, S. (1980). Multilevel counterfactuals for generalizations of relational concepts
and productions. Artificial Intelligence, 14, 139-164.

Von Wright, G. (1957). The Logical Problem ofInduction. Oxford, UK: Oxford Press.

Wos, L. (1988). Automated Reasoning: 33 Basic Research Problems. Englewood
Cliffs, New Jersey: Prentice Hall.

Zhang, H. Kapur, D. & Krishnamoorthy, M. (1988). A mechanizable induction
principle for equational specifications. In Lusk, B. & Overbeek, R. (Eds.), 9th Conf.

on Automated Deduction, (pp. 162-181)., Berlin. Springer Verlag.

Zhang, H. (1988). Reduction, Superposition and Induction: Automated Reasoning in

an Equational Logic". PhD thesis, University of Iowa.

Appendix A

Proofs

Proposition 2.1 Let S be the set of all standard models, let U be all underdetermined models,

let 0 be all overdetermined models, and let F be all full models of a negationless theory S.
Then SCUCF and SCOCF

Proof. We will show S C U. Proof of the other containments are analogous to this proof and

pose no extra difficulty. First, choose a model M 3 E S. We need only show that M 3 E U.

Now, the models in S are different than those in U, since the truth mapping of the former, 7;
is two-valued, while that of the latter, 7, is three-valued. However, some models in U only

map statements to T and F. So M 3 E U means that there is an underdetermined model M 3
whose three-valued truth mapping that looks like a two-valued one in this way.

Now, we can construct an undetermined interpretation M from M 3 such that the
everything is the same, including the equational truth mapping, that is G3(e) = G(e), but
the three valued truth mapping 2 is used instead of 7;. To show that M is a model, we
need only show that if 7;(w) = T then 7'(w) = T for all w. That is, we need to show that

true things in the standard model are still true in the underdetermined one. Since the domain
mapping function /C is the same in M 3 and M, we really only need to show that T2 (w) = T
implies T3(w) = T.

By each considering each possible syntactic form (except negation) of w, it will be
shown that when w is T using 7; (see Figure 2.2), then w must also be true using 7; (see
Figure 2.6). For each syntactic case, assume 7;(w) = T. Also, as an inductive hypothesis
assume the proposition is true for W, A and B. That is, 7;(W) = T = 7;(W) = T,

A)=T='.T3(A)=T, and 7;(B)=T= .7;(B)=T.

Case 1 (Base Case): w E Eqns(D). Since 7;(w) = T is assumed, G3(w) T. But since

G3 = G, it directly follows that 7;(w) = T.

Case 2: w A A B. Since w is true under 7;, both A and B are true under 7;, and from the
inductive hypothesis they are also true under 7;. But then the three valued definition of A
(Figure 2.3b) must assign w to true. So w is also true under 7;.

Case 3: w AVB. Since w is true under 7;, one ofAand B are true under 7;, and from the
inductive hypothesis one is true under 7;. But then the three valued definition of V (Figure
2.3b) must assign w to true. So w is also true under 7;.

Case 4: w x W. Since w is true under 7;, 3d E DType() such that 7;(W{x/d}) = T.

126

Appendix A: Proofs 127

Since W{x/d} is an instance of W, it is true when W is true. But by the inductive hypothesis,
W is true under T3, and so W{x/d} is also true in T3. But then w must also be true in T3.

Case 5: w Vx W. Since w is true under T2, Vd € D pe(x), T2(W{x/d}) = T. Since all
W{x/d} are instances of W, they are true when W is true. But by the inductive hypothesis,

T3(W) = T so T3(W{x/d}) = T. But then w must also be true under T3.

Thus, regardless of the form of w, something true in M 3 will be true in M. Therefore
M 3 E U, and then S C U. The other inclusions pose no extra difficulties, except that x must
be considered as well as T when considering 0 ç F.

Lemma 2.1 Let S be the set of all standard models, let A be all avoidant preferred models,
let K be all uncommitted preferred models, and let P be all uncommitted avoidant preferred

models of a negationless theory S. Then S C A C P and S C K C P.

Proof. Consider that P is the set of all preferred full models under the uncommitted avoidant
preference relation E ><. Proposition 2.1 shows that all undetermined models are full models.
However, using E >< to prefer certain underdetermined models is exactly equivalent to using
E on them since there are no x truth values in underdetermined models. Since A is the set
of preferred underdetermined models with c and equivalently, the set preferred full models

with c><, A C P. Similar considerations prove the other subset relations.

Proposition 2.2 IND(S) ç AMP(S) ç PRU(S) and IND(S) 9 IGN(S) ç PRU(S)
for a negationless theory S.

Proof. Suppose S E IND(S) and M is a standard model of S. Then Lemma 2.1 shows that

M is also an uncommitted preferred model, an avoidant preferred model, and an uncommitted
avoidant preferred model of S. Also, M is an inductive modelling of IND(S) (from the
definition of inductive theorem). To show IND(S) ç AMP(S) it is required that M is also

an ampliative modelling of S. But since M is an underdetermined model, we need only show

that S is biexemplary justified in M. But since S E IND(S), S must be totally justified,
and since anything totally justified is biexemplary justified, S is biexemplary justified as

well. The remainder of the subset relations follow from Lemma 2.1 and the fact that S is
biexemplary justified in M when it is totally justified.

Lemma 3.1 (Hullot, 1980) Let S be an equational theory 5, R be a term rewriting system

that is complete in 5, and s and t be two terms. The set of all solutions of a narrowing
derivation of s = t is complete.

Proof. (Hullot, 1980).

Proposition 3.1 Let S be an equational theory and R be a term rewriting system that is

complete in S. Then narrowing on R is a complete procedure for proving theorems in

DED(S), ifS is conjunctionless and negationless.

Appendix A: Proofs 128

Proof. First note that before proving a theorem S, that all of its universal variables will
have been skolemized out. Then that only leaves disjuncts, each of which have existentially
quantified variables. We then apply Hullot's Lemma to each disjunct in turn. Since the
whole theorem is true, at least one of its disjuncts will be true. Since the Lemma says that
narrowing returns all solutions for existential variables in a disjunct, then if there is at least

one solution, then narrowing will return it for a particular disjunct, and the whole theorem
will be proven at that point.

Proposition 3.2 Completion and narrowing together are complete for proving theorems in
DED(S), for completable theories S.

Proof. A completion procedure produces a complete term rewriting system for a completable
theory. So Proposition 3.1 can be applied.

Proposition 4.1 Suppose s and t are terms and a is the antiunifi cation of s and t, that is, a =
Au(s,t). IfMgu(a,$) = {VI/S1,V2/S2,...,Vm/Sm } then /3 = Msa(s,t) = { Pos(vi,a)/vi,
... ,Pos(vm ,a)/vm ,}

Proof. To start, we assume Lassez, Maher and Marriott's (1987) proof that their algorithm,

Au(s, t), produces s T Msa(s, t). To prove the relationship between Msa and Mgu given by
this proposition, we must first show that ,8 is an antisubstitution and that it is a most specific
one. First, /3 is composed of antibindings (eg. Pos(vi, a)/vi). Also, Pos(v, a) and Pos(v, a)

does not contain common positions since that would imply two different variables occupy

the same position in a. So /3 is a disjoint antibinding. Since each position in a is a position in
s, 8 is relevant to s. Also, the positions in /3 are also positions in t, because those positions
are the places at which there are conflicts between s and t, and variables produced in a by

the Au operator. So /3 is relevant to t as well and can be antiapplied to t to produce a; Then
t /3 = a = s /3 implies that /3 is an antiunifier.

Now suppose that 8 is not the most specific antiunifier of s and t. Then there is an
a = IQ, /ui, . . . , Q/u} and a proper substitution 9 = {vi /Mb . . . , vj/m,} such that

s I a (s I a)O. Then if f = (s/Pos(v, s))/E and g = (t/Pos(v, s))/€, then f 54 g. But
Au(f(...), g(...)) is always a variable and mi is not a variable (since 9isa proper substitution),
and so the variable vi would have been at that position in a, not m. This contradiction shows
that /3 must be the most specific antiunifier.

Proposition 4.2 Define Au(S) to be the antiunificand of a set of terms S computed by

Au(S) =Au(si,Au(s2, . . .,Au(s,_i, sn))) for s s, 1 ≤ i,j ≤ n where ISI = n. Au(S)
is independent of the order of application of the pairwise Au function. Similarly, define
Msa(S) to be the most specific antiunifler of a set of terms S computed by Msa(S) =
Msa(si,Msa(52,. . .,Msa(S,-1, sn))). Msa(S) is also independent of the order of application

of the pairwise Msa function.

Proof. The proof of the Au case is by induction on the length of S. Base case: Suppose 1St

Appendix A: Proofs 129

= 2 and {Si, S21. Then we must prove the commutativity of Au, namely that Au(si, 82)

Au(s2, Si). Consider the algorithm to compute Au in Section 4.1.1. When S1 s2, s1
will be returned whether it is given as the first or second argument to Au. If the terms do
not match at their root function symbol, then either the variable v. 1,32 or the variable v32,31

is returned, depending on the order of arguments to Au. If s1 and s2 are subterms in two
different positions of terms s and t respectively, then the same variable should be produced
for both positions. This is accomplished by the second condition of the algorithm, which
keeps the subterms of s as the first argument to Au. Otherwise, if they are both terms that start
with the same function symbol, then that function is returned with a recursive application of
Au to its arguments in each of the terms. This will be commutative if each of the applications
of Au is commutative. Thus the pairwise Au operator is commutative.

Inductive case: Assume the order of application is independent for a set of length n.
Consider when ISI = n + 1. Then Au(S) = Au(si,Au(s2, . . .,Au(s_i,Au(s, s))))
The inductive hypothesis implies that S - {s} is independent of the order of applica-
tion of Au. Because of this, and from the commutativity of the pairwise Au operator,

Au(S) =Au(Au(S - {s}), s) =Au(s,Au(S - {s})). This means any element of S can be
chosen first to be the first argument of the pairwise Au operator, and so the proposition is true

for lSl=n+las well.

By the principle of mathematical induction, the setwise Au operator can use the pairwise

Au operator to compute Au(S), without needing to pairwise antiunify them in any particular
order. By Proposition 4. 1, this result extends to the Mgu operator as well.

Proposition 4.3 Expansion Soundness Suppose that R is a complete term rewriting system

for the equational theory S. If e E DED(E) and r E R, then Ex(e, r) € DED(S).

Proof. Let e L1 = R1 and r L2 - R2 and suppose that e is expanded on the term L1 at

position u with matching substitution 9 to obtain the equation Ex(e, r) L1 [u - L2]9 = R1.

Suppose that this equation is false. Then L1 [u - L29] = L1 must also be false since
R1 = L1. Since the only position at which L1 [u - L29} and L1 are different is u, then

(Li [u i- L2]9)/u Lj/u. Also, L29 54 Lj/u (since t[u - s]/u = s for all s, t, u) and
R29 0 Li/u (since L2 = R2) and R29 54 Gnd(Li/u)9. But this means R2 and Gnd(Li/u)

are not unifiable. This contradictorily means that L1 could not have been expanded by r at
position u. Thus Ex(e, r) must be true.

Proposition 4.4 Expansion Completeness Suppose that R is a complete term rewriting

system for the equational theory S. Then (a = b) E DED() implies that 2t (a = b) E
Exrules(t -* t, R).

Proof. Term rewriting proves an equation by reducing each side to its normal form to see
if they are identical. That is, (a = b) € DED(S) = NJ(a, R) Nf(b, R) if R is complete

in e. We must show that a = b is an expansion of this unique normal form, which we call
t in the proposition. Equivalently, we just need to show that p - q via R if p =Ex(q, R)

Appendix A: Proofs 130

since Nf uses only reduction steps and Exrules uses only expansion steps. Suppose that
p - q. Then q = p[u - R]9 = p[u - R9] where p EPos(q), 9 =Match(t/'a, Li), and

Ri E R. By using the same 9 and position u in the expansion case, we get that
p = q[u L]9 = q[u - L9]. We check that expanding p then reducing back obtains p
again. p = q[u - L9] and by substituting out q. p = (p[u - RO])[u - LEO]. Since
(t['u - S11) [U - s2] = t['u - sj]), then p = p[u - R9]. But the position at u in p is exactly
R9, otherwise no match would have occurred. So p[u - R9] is p itself and expanding, then
reducing, obtains the same term. Similarly, q = p['u - R10J = (q[u +- L9])[u - R9] =
q[u - L9] = q. So p - q via R if p = Ex(q, R) and thus the proposition holds.

Proposition 4.5

1. IfS=Sp(g) and IS I > l then Au(S)=g

2. Sp(Au({g9i ... gO})) = {{gOi ... gO}} if {O, ...9} is a most general complete spe-
cializer of g.

Proof. (1) Suppose S = Sp(g) and ISI > 1. Then S = {g9} for Oi = {x/c1} where

x E Vars(g) and C = {ci, ..., c} is a most general cover set for the type of x. But each
term in C must be rooted with a different function symbol, that is c/€ Ck/6 (otherwise
c/e(xj, ..., x), where n is the arity of c/€, could replace both c3 and ck in C making an

even more general cover set). But then Au(C) is a variable which can be renamed to x. Thus,
Au(S) is the term g (up to variable renaming).

(2) Suppose {9, ...9} is a most general complete specializer of g. Consider some xilti E O.
There is an xx j/ltt j E Oj where xi = x. If this were not the case, then xxi/ti i lti could be removed
from Oi to obtain a more general specializer. Also t/€ 54 t/€ otherwise x/(t/€(v1, ...,

where n is the arity of t/e, could replace xi /ti and xj Itj to obtain a more general specializer.
But since tj/6 0 t/E, Au will replace ti and tj with a variable which can be renamed to x2.

Thus, Au({ g9i ...g9}) = g (up to variable renaming).

Now suppose Sp(Au({gOi ... g9})) = {{g01 ... g9}}. Consider if 101,...O,, } were not
a most general complete specializer of g. Then there is a most general specializer of g

where m < n such that each g9j = g'y8j for some i. But then, Sp would have
generated gj instead of gOj since Sp generates the most general instances of a term. Thus
case (2) holds.

Proposition 4.6 Rule specialization is not an ampliatively sound operator That is, r e
AMP(R) # Vs, s ESpec(r, R) = S E AMP(R)

Proof. We show this by a counter example. Suppose R = If (a) -* c, f(b) -+ c}. Then
r = f(x) -* c is an inductive theorem of R. But the rule 1(c) - f c is a specialization of e,

yet is not an ampliative theorem of R.

Appendix A: Proofs 131

Proposition 4.7 Rule specialization is an inductively sound operator That is, r E
IND(R) ' Vs, s Spec(r, R) $ € IND(')(R)

Proof. Suppose r is an inductive theorem. Then it is cover set justified, that is, each of its
instances are deductive or inductive theorems. No matter which cover set was used to justify
r, the most general cover set C can also be used to justify r. Then for all c E C, r{x/c} must
be a deductive or inductive theorem of R. But a maximal complete specialization is a set of
rules formed from C, so s = r{x/c} for some c E C. Then s is a deductive or inductive
theorem of R.

Lemma 4.1 If e is a conjunctive universal prudent theorem of a theory 6 with ground axioms

R, then for each conjunct c of e, c E A where A = {ala E Rau(S) where S C Eau(R)J.

Proof. If c is a prudent theorem, then it must be biexemplar justified, that is, there are at
least two gi = cOi such that each gi is true or biexemplar justified in all models. Then,
from expansion completeness (Proposition 4.4), gi must also be in Exterms(R) if it is true,
or in Eau(R) if only biexemplar justified. Furthermore, from the definition of biexemplar
justification, all gi are most general terms that are "different" enough from each other so that
Rau({g2}) = e. So c E A.

Proposition 4.8 Prudential Completeness If e is a conjunctive negationless universal pru-

dent theorem of a prudent extension of a theory 5 with axioms R, then for each conjunct c of
e, c E (Can(Spec(R)))

Proof. Suppose e is a (conjunctive negationless universal) prudent theorem of a prudent
extension S with axioms R. Then c is also a prudent theorem of e since all conjuncts of a
prudent theorem are prudent theorems. Let E be the rules of the prudent extension of 5, and
let P be E - R. Then P contains only prudent theorems of some extension of S smaller than
E. We will prove this proposition by induction on the length of P.

Consider when JPJ = 0. Spec(R) contains all specializations including R itself and
all ground specializations of R. Then from Lemma 4.1, c E A where A = {ala E Rau(S)
where S C Eau(Spec(R))}. But then this is the Can operator applied to Spec(R), using
only expansions instead of all widenings. So c E (Can'(Spec(R))).

Assume that the proposition is true for all extensions E where IPI = n, that is, that
if c is a prudent theorem of E then c € (Can1(Spec(R))). Then consider a new extension

= E U {p} where p is a prudent theorem of E. Then IE' - RI = n + 1. Supposing
that c is a prudent theorem of E', then either c is a prudent theorem of E or c is a prudent
theorem that uses p to biexemplar justify it. If the former, then by the inductive hypothesis,

c e (Can1(Spec(R))). If the latter, then there is a set of rules Q such that Rau(Q) = c
and there is some Pw E Q where Pw is a deductive theorem of E' (but not E). Now,
p € (Can1(Spec(R))) by the inductive hypothesis, because p is a prudent theorem of E. But
then Pw = Cwid(q, E U {p}) for some q E DED(E) (by expansion soundness). Then, for

Appendix A: Proofs 132

each q E Q, including pw, q E Cwid(Spec(R)). But since c =Rau(Q), C E Can' (Spec(R))).
By the principle of mathematical induction, the proposition holds for all sizes of P and thus
for all prudent extensions of a theory.

