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Abstract

Contrary to the common assumption, correlation between financial derivatives may not be constant across time. This

thesis analyses the role of stochastic correlation in modelling for locational spread options for natural gas. We first

derive a model with Ornstein–Uhlenbeck process between two spread assets with constant correlation and then a

combination of the Ornstein–Uhlenbeck and Jacobi process is used to model a stochastic correlation. The Margrabe

formula is employed to evaluate options prices with constant correlation, the solution for which is used to compare

with Monte Carlo simulations for stochasticity. Comparing the results, we find out why stochastic correlation is more

important in real markets.
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Chapter 1

Introduction

Financial instruments, such as shares and options, are traded all over the world, across different platforms. Over

the years, derivatives have captured a large share of investment totalling to $200.4 trillion, including commodity

derivatives ($324.5 billion) in 2022, according to the US Office of the Comptroller of Currency. Spread options are one

such form of derivatives, or performance-based financial contracts. As the name suggests, these derivative contracts

are established based on the difference in price of two different commodities. This difference may arise from margins,

quality or creditworthiness, time, and location. This study focuses on locational spread options. Locational spread

options are options where the spread is calculated using the price difference of for example, natural gas between the

two distinct points of delivery. These are among the most common derivatives used in the natural gas markets. In [27],

the authors established an analytic approximation for the price of a spread option for a compound exchange option and

its hedge ratio. The pay-off of a spread option depends on the price difference between the two correlated derivative

products. Suppose F1 and F2 represent the future prices, then the payoff of a spread option is P = max[ω(F1−F2),0],

where ω = 1 for a call and ω =−1 for a put [27]. This idea is developed further in the paper.

In the commodities market, locational spread options are based on the difference in prices of a commodity, energy

commodities for this study, at two different geographical locations (Carmona and Durrleman, 2003). The energy sector

is far more fragmented than financial markets and does not enjoy the liquidity present in other financial markets. In

fact, a strong degree of mean-reversion is present in energy commodities, such as gasoline, petroleum, natural gas

and electricity, where prices tend to converge to a long-term average price level. This reversion exists partly due to

higher fixed costs, such as set-up and transmission, fluctuating prices due to economic conditions and seasonal changes

that are associated with the sector. Clewlow and Strickland (2000), Carmona and Durrleman (2003), Eydeland and

Wolyniec (2003), and Hull (2005) all portray evidence reflecting the mean-reversion of energy products [6].

As the demand for energy commodities soars throughout the world, and with the expected rise in energy prices
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due to political situations, there is a need for deeper investigation of energy-based derivatives, particularly locational

spread options. Moreover, prices of one energy commodity often effect the demand and supply, and thus the price, of

another commodity, or in this case, the commodity in another location.

It is therefore crucial to understand what role stochastic correlations play in determining the valuation of locational

spread options. This thesis attempts to answer this by identifying the impact of stochastic correlation on the value of

a locational spread option for natural gas commodities in Alberta.

Spreads contracts are established on the difference in prices between two commodities and can be divided into

four basic groups:

• Margin or Refining Spreads

• Quality Spreads

• Calendar or Time Spread

• Basic or Locational Spreads

The methods used to model each type of spread resembles each other. [26] describes applications of locational spreads

in Natural Gas Markets. The locational spread options are one of the most common derivatives used in the natural gas

markets. It represents the price difference of natural gas between the two distinct points of delivery. Margrabe [44]

considered the spread as an asset price and adopted the Black-Scholes formula to give the price of a spread option.

[27] describes the analytic approximations for spread options via assuming two underlying asset prices following

correlated GBM with constant volatility and constant correlation. [29] discusses Monte Carlo methods to model gas

swing options on spot prices of the underlying energy commodities. [30] elaborates a Monte Carlo valuation method,

which is able to include real gas price dynamics and complex physical restraints. Here they especially extend the

Least Squares Monte Carlo Method for American Options to storage valuation. [31] provides a generalized concept

of stochastic correlation processes(SCP) as a hyperbolic transformation of the modified Ornstein-Uhlenbeck process.

They then derive a transition density function for SCP in closed form which is later applied to historical data to cali-

brate SCP models.

Here, the question What is the impact of stochastic correlation on the value of a locational spread option? we are

going to answer this in our thesis.

Correlation has been widely used to measure the dependence between different financial assets [31]. A constant

correlation usually initiates a correlation risk and correlation ‘frowns’ instead of ‘smiles’ are important aspects in
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spread option markets. When determining the correlation between the two financial derivative, different methodolo-

gies are considered for constant correlation, subsequently moving towards stochastic correlation techniques. It is a

well-established fact that the correlation between financial commodities is fundamentally reflected in the pricing and

estimation of financial products.

For given two random variables X1 and X2 with finite variances, the correlation is specified as

ρ1,2 =Corr(X1,X2) =
Cov(X1,X2)

σ1σ2
, (1.1)

with covariance given by

Corr(X1,X2) = E[(X1−µ1)(X2−µ2)], (1.2)

where µi and σi are the expectation and standard deviation of Xi, i = 1,2. Also, ρ1,2 lies in the interval [−1,1]. The

boundaries −1 and 1 will be attained only if X1 and X2 are strictly linearly dependent. If the absolute value of ρ1,2 is

bigger so the dependence between X1 and X2 will be stronger. There are many drawbacks of the following correlation

concept (1.1), a few of them are as follows:

• If the random variables X1 and X2 are independent, then it follows ρ1,2 = 0, but conversely the proposition does

not hold, as in (1.1) they include only first two moments. Therefore, shows a correlation coefficient identifies

only linear dependencies between random variables.

• The correlation of the random variables X1 and X2 does not equal to the correlation of the random variables lnX1

and lnX2, which means after a transformation of the financial data the correlation is changeable.

• Normally, the provided marginal distributions and pairwise correlations of a random vector cannot define its

joint distribution.

• Finally, the variances of the two random variables X1 and X2 have to be finite.

For further details on the disadvantages consult [32]. Though the idea of correlation (1.1) to calculate dependencies

has several limitations, it has been used broadly in financial commodities. The correlation like other quantities spot

prices, volatility and exchange rates, etc, in financial markets, can’t be observed directly but rather determined by

means of a suitable model. [31] The simplest estimator of correlation is Pearson correlation coefficient for sample

defined on paired data (x1,i,x2,i), · · · ,(xn,i,xn,i), i = 1,2, · · · ,N consisting of N pairs of X1 and X2 as follows:

ρ̄1,2 =
∑

N
i=1(x1,i− µ̄1)(x2,i− µ̄2)√

∑
N
i=1(x1,i− µ̄1)2 ∑

N
i=1(x2,i− µ̄2)2

, (1.3)

where µ1 and µ2 are the sample means of X1 and X2 [31].
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One of the stochastic correlation processes was proposed by [33], incorporating a limitation on the parametric range

to make sure that the boundaries −1 and 1 of the correlation process are unappealing and unachievable. A modified

Jacobi process is proposed in modeling stochastic correlation [34] and a more generalized stochastic process was

recommended by [35], which depends on the hyperbolic transformation with the hyperbolic tangent function of any

mean-reverting process with positive and negative values.

During the analysis, it is seen that when the commodity prices are modeled as OU-process no closed-form solution

is obtained for K 6= 0. We emphasize on K = 0 case, in which we use a closed-form solution for our mean-reverting

model via Margrabe’s formula. With our closed-form solution, by using the same constant correlation we can find an

estimated solution through the Monte Carlo method and we compare them together.

Margrabe [44] calculated the exchange options by considering asset prices as geometric Brownian motion, under the

risk-neutral measure, and treating one of the assets as numeraire. In reality, energy commodities are not liquid, thus

their spot or future prices cannot act as a numeraire, but still risk-neutral approach is popular among them. [6] dealt

with forwarding price curves and evaluates a class of two asset exchange options for energy commodities. It presented

a model of spot prices using an affine two-factor mean-reverting process with and without jumps. It figured out closed-

form results for spread options on the forward price process and provide a calibration procedure. [38] presented a new

stochastic volatility model in which the squared volatility of the asset return follows a Jacobi process and covers the

Heston model as a limit case. It derives closed-form series images for option prices with discounted payoffs defined

as functions of the asset price trajectory at many finite points of time.

The Jacobi process [38], also known as Wright-Fisher diffusion, was initially applied to model gene frequencies ( [62];

[63]). Later on, the Jacobi process was also utilized to model financial factors [64] such as interest rates, and study

moment-based techniques for pricing bonds. In [64], bond prices accepted a series declaration with regard to Jacobi

polynomials. Some additional properties of the Jacobi process can be found in [65] and [66]. The multivariate Jacobi

process has been considered in [67] which proposed a smooth regime shifts model and illustrated a stochastic volatility

model without leverage effect as an example. The Jacobi process has been also used to model stochastic correlation

matrices in [68] and credit default swap indexes in [69].

[39] provides a closed-form approximation by assuming stochastic correlation and constant volatility to measure

an error for the price of several two-dimensional derivatives. Then this technique was applied to the three models

of stochastic correlation while pricing the Spread Option and Quantos Options. This paper [40] describes stochastic

correlation processes for modeling the credit spread. Firstly, it shows the modeling of components of spread option as

correlated Ornstein-Uhlenbeck processes and stochastic correlation as Jacobi process. Secondly, uses the properties

of the Jacobi process to obtain analytical solutions for credit spread options. Lastly, introduced the time change Jacobi

process for correlation series and its comparison with the Jacobi process. This is one of the main papers which pro-
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vokes me to work in a similar direction but with locational spread options as correlated Ornstein-Uhlenbeck processes.

In this thesis, the central focus is to model the locational spread options and price the locational spread options with

the stochastic correlation process. This thesis emphasizes the stochastic correlation developed on Natural gas future

prices in different regions. To model this locational spread option, we took the mean-reversion into consideration and

believed that natural gas prices, return to their mean levels during the time. In order to pursue this idea, we model

the elements of the locational spread process as correlated OU-processes and stochastic correlation as Jacobi process

which assures the correlation between main variables is a bounded process. Then using the change of variables for the

Jacobi process, we are able to derive the formation required for computing the locational spread option pricing via the

Monte Carlo method.

The structure of this thesis is as follows: In chapter 2, the basic concepts and definitions of stochastic analysis

are presented, which are crucial to develop our mathematical model, i.e. the preliminaries. In chapter 3, the Energy

markets, energy commodities, and derivatives are discussed at length, followed by an analysis of the natural gas

markets, both global and Albertan. In chapter 4, our basic mathematical model and spread options are defined. Chapter

5 follows with a consideration of the calibration model from the perspective of constant correlation and calculations

of the unknown parameters using two different methods, maximum log-likelihood and multivariate linear regression.

the stochastic correlation as a Jacobi process is detailed in Chapter 6, to figure out its value as well as discuss an

optimization model by reducing the number of unknown parameters. Penultimately, Chapter 7 elaborates the pricing

of locational spread options by Margrabe’s model and Monte Carlo simulations. Finally, the ideas presented in this

thesis are concluded in Chapter 8, along with ideas for future development.
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Chapter 2

Fundamentals of Stochastic Processes

In this chapter, the basic concepts are explained including some definitions and theorems relating to stochastic pro-

cesses. It is essential that these definitions and theorems are set up as a precursor to the model, for better understanding.

These are the initial requirements of stochastic calculus in mathematical finance. This chapter defines the measurable

spaces, the stochastic process then the concept of Ito Integral from one-dimensional to Multidimensional. Later in the

chapter, the Geometric Brownian Motion, Ornstein-Uhlenbeck process, and Exponential Ornstein-Uhlenbeck process

are explained, along with discussions regarding Risk-Neutral measures and their properties. All materials related to

the basic stochastic process are taken from the textbook [1].

Definition 2.1. If Ω is a given set, then a σ -algebra F on Ω is a family F of subsets of Ω with the following

properties:

(i) ∅ ∈F .

(ii) F ∈F ⇒ FC ∈F , where FC = Ω\F is the complement of F in Ω.

(iii) A1,A2, .... ∈F ⇒ A :=
⋃

∞
i=1 ∈F .

The pair (Ω,F ) is called a measurable space.

Definition 2.2. A probability measure P on a measurable space (Ω,F ) is a function P : F → [0,1] such that

1. P(∅) = 0, P(Ω) = 1.

2. If A1,A2, ... ∈F and {Ai}∞

i=1is disjoint (i.e. Ai
⋂

A j = φ if i 6= j) then

P

(
∞⋃

i=1

Ai

)
=

∞

∑
i=1

P(Ai). (2.1)
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The triple (Ω,F ,P) is called a probability space.

Definition 2.3. A random variable X is an F -measurable function X : Ω→ Rn. Every random variable induces a

probability measure µX on R, defined by

µX (B) = P(X−1(B)), (2.2)

where µX is called the distribution of X .

Definition 2.4. If
∫

Ω
|X(ω)|dP(ω)< ∞ then the number

E[X ] :=
∫

Ω

X(ω)dP(ω) =
∫

Rn
xdµX (x) (2.3)

is called the expectationof X (w.r.t. P).

Definition 2.5. A stochastic process is a parametrized collection of random variables

{Xt}t∈T (2.4)

defined on a probability space (Ω,F ,P) and assuming values in Rn. Note that for each t ∈ T fixed we have a random

variable ω→ Xt(ω); ω ∈Ω. On the other hand, fixing ω ∈Ω we can consider the function t→ Xt(ω); t ∈ T which is

called a path of Xt .

Definition 2.6. Let f ∈ V (S,T ). The Itô integral of f (from S to T ) is defined by

∫ T

S
f (t,ω)dBt(ω) = lim

n→∞

∫ T

S
φn(t,ω)dBt(ω), (2.5)

where Bt is one-dimensional Brownian motion and φn is a sequence of elementary functions such that

E
[∫ T

S
( f (t,ω)−φn(t,ω))2 dt

]
→ 0 as n→ ∞. (2.6)

Definition 2.7. Let Bt be one-dimensional Brownian motion on (Ω,F ,P). A (1-dimensional) Itô process (or stochas-

tic integral ) is a stochastic process Xt on (Ω,F ,P) of the form

Xt = X0 +
∫ t

0
u(s,ω)ds+

∫ t

0
v(s,ω)dBs. (2.7)

If Xt is an Itô process of the form (2.7) then its sometimes written in the shorter differential form as follows:

dXt = udt + vdBt . (2.8)
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Theorem 2.8. Let Xt be an Itô process given by (2.7). Let g(t,x) ∈ C2 ([0,∞)×R) (i.e. g is twice continuously

differentiable on ([0,∞)×R). Then

Yt = g(t,Xt) (2.9)

is again an Itô process, and

dYt =
∂g
∂ t

(t,Xt)dt +
∂g
∂x

(t,Xt)dXt +
1
2

∂ 2g
∂x2 (t,Xt) · (dXt)

2, (2.10)

where (dXt)
2 = (dXt).(dXt) is computed according to the rules

dt ·dt = 0, dt ·dBt = 0 = dBt ·dt, dBt ·dBt = dt. (2.11)

Definition 2.9. Multidimensional Itô Formula: Let B1(t),B2(t), · · · ,Bm(t) be m independent Brownian motions.

Consider n Itô processes X (1)
t ,X (2)

t , · · · ,X (n)
t given by

X (i)
t = X (i)

a +
m

∑
j=1

∫ t

a
fi j(s)dB j(s)+

∫ t

a
gi(s)ds, 1≤ i≤ n, (2.12)

where fi j ∈Lad(Ω,L2[a,b]) and gi ∈Lad(Ω,L1[a,b]) for all 1≤ i≤ n and 1≤ j ≤ m.

If we introduce the matrices

B(t) =



B1(t)

.

.

.

Bm(t)


,Xt =



X (1)
t

.

.

.

X (n)
t


, f (t) =



f11(t) . . . f1m(t)

. .

. .

. .

fn1(t) . . . fnm(t)


,g(t) =



g1(t)

.

.

.

g(nt),


, (2.13)

then (2.12) can be written as a matrix equation:

Xt = Xa +
∫ t

a
f (s)dB(s)+

∫ t

a
g(s)d(s), a≤ t ≤ b. (2.14)

Or we have

dX(t) = g(t)dt + f(t)dB(t), (2.15)

where Xt ,g(t), f (t) and B(t) are defined in (2.13). Such an X(t) process is called an n-dimensional Itô process (or

just an Itô process).

We extend Itô’s formula in the following theorems to the multidimensional case, from the book [2].
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Theorem 2.10. Let (2.15) be an n-dimensional Itô process. Let g(t,x) = (g1(t,x), ...,gp(t,x)) be a C2 map from

[0,∞)×Rn into Rp. Then the process

Y (t,ω) = g(t,X(t)) (2.16)

is again an Itô process, whose component number k,Yk, is given by

dYk =
∂gk

∂ t
(t,X)dt +∑

i

∂gk

∂xi
(t,X)dXi +

1
2 ∑

i, j

∂ 2gk

∂xi∂x j
(t,X)dXidX j, (2.17)

where dBidB j = δi jdt, dBidt = dtdBi = 0.

Theorem 2.11. Let Xt be an Itô process given by

Xt = Xa +
∫ t

a
f (s)dB(s)+

∫ t

a
g(s)ds, a≤ t ≤ b. (2.18)

Suppose θ(t,x) is a continuous function with continuous partial derivatives ∂θ

∂ t ,
∂θ

∂x , and ∂ 2θ

∂x2 . Then θ(t,Xt) is also an

Itô process and

θ(t,Xt) =θ(a,Xa)+
∫ t

a

∂θ

∂x
(s,Xs) f (s)dB(s)

+
∫ t

a

[
∂θ

∂ t
(s,Xs)+

∂θ

∂x
(s,Xs)g(s)+

1
2

∂ 2θ

∂x2 (s,Xs) f (s)2
]

ds.
(2.19)

2.1 Other Definitions

In this section, we’ll discuss Brownian Motion, the OU-processes, and the Exponential OU processes.

Definition 2.12. A stochastic process B(t,ω) is called a Brownian motion if it satisfies the following conditions:

1. P{ω;B(0,ω) = 0}= 1.

2. For any 0≤ s < t, the random variable B(t)−B(S) is normally distributed with mean 0 and variance t− s, i.e.,

for any a < b,

P{a≤ B(t)−B(s)≤ b}= 1√
2π(t− s)

∫ b

a
e−x2/2(t−s)dx. (2.20)

3. B(t,ω) has independent increments, i.e., for any 0≤< t1 < t2 < · · ·< tn, the random variables

B(t1),B(t2)−B(t1), · · · ,B(tn)−B(tn−1), (2.21)

are independent.
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4. Almost all sample paths of B(t,ω) are continuous functions, i.e.,

P{ω;B(·,ω)}= 1. (2.22)

where B(·,ω) is continuous.

2.1.1 Simple Properties of Brownian Motion

Let B(t) be a fixed Brownian motion. Some simple properties are sated below that follow directly from the definition

of Brownian motion.

1. For any t > 0, B(t) is normally distributed with mean 0 and variance t. For any s, t ≥ 0, we have E [B(s)B(t)] =

min(s, t).

2. (Translation Invariance) For fixed t0 ≥ 0, the stochastic process B̃(t) = B(t + t0)−B(t0) is also a Brownian

motion.

3. (Scaling Invariance) For any real number λ > 0, the stochastic process B̃(t) = B(λ t/
√

λ ) is also a Brownian

motion.

Definition 2.13. Ornstein-Uhlenbeck Process: The stochastic procedure that satisfies the following differential equa-

tion:

dXt = κ(θ −Xt)dt +σdBt , (2.23)

where dBt is a standard Brownian motion and κ > 0,θ ,σ > 0 are the rate of mean reversion, long-term mean and

the volatility constants respectively. The equilibrium attraction and repulsion are determined by the sign of the rate of

mean reversion κ .

2.1.2 Solution of the Ornstein-Uhlenbeck Process

The solution of the SDE (2.23) can be establish by applying Itô ’s lemma to the f (t,x) = eκtX(t) as follows in [3]:

∂ f
∂ t

= κeκtX(t),
∂ f
∂X

= κeκt ,
∂ 2 f
∂X2 = 0. (2.24)

Hence,

d
(
eκtX(t)

)
= κeκtX(t)dt + eκtdX(t)

=
(
κeκtX(t)+ eκt

κ(θ −X(t)
)
+ eκt

σdB(t).
(2.25)
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Integrating gives us

eκtX(t)−X(0) = κθ

∫ t

0
eκsds+σ

∫ t

0
eκsdB(s), (2.26)

which directs to the following with initial condition X(0) = x(0) :

x(t) = e−κtx(0)+θ
(
1− eκt)+σ

∫ t

0
eκ(s−t)dW (s), (2.27)

where mean and variance of X(t) is provided by:

E [X(t)] = e−κtx(0)+θ(1− e−κt), (2.28)

Var [X(t)] = σ
2
∫ t

0
e2κ(s−t)ds =

σ2

2κ
(1− e−2κt). (2.29)

Definition 2.14. [3] We can say that the process S(t) = expX(t), t ≥ 0 or X(t) = lnS(t) is an Exponential Ornstein-

Uhlenbeck process if S(t) satisfies the the stochastic differential equation (SDE) given by

d(lnS(t)) = κ(θ ∗− lnS(t))+σdB(t). (2.30)

where dB(t) is a standard Brownian motion and κ > 0,θ ∗,σ > 0 represents the rate of mean reversion, long-term

mean and the volatility constants respectively.

2.1.3 Solution of Exponential Ornstein-Uhlenbeck Process

Using Itô’s lemma on S(t) = expX(t) as follows:

dS(t) = eXt dX(t)+
1
2

eX(t)(dX(t))2

= S(t)
[

κ(θ ∗−X(t))dt +σdB(t)+
1
2

σ
2dt
]
,

(2.31)

whereas X(t) = lnS(t), thus we have the following:

dS(t)
S(t)

= κ

(
θ
∗− σ2

2κ

)
dt−κ lnS(t)dt +σdB(t), (2.32)

considering (θ = θ ∗− σ2

2κ
) and multiplying on both sides by the integrating factor I = e−κt , then integrating the results,

is:

S(t) = exp

[
e−κT lnS(0)+θ(1− e−κt)+σ

√
(1− e−2κt)

2κ
z

]
, (2.33)

where S(0) is the initial condition and z∼ N(0,1). With mean and variance as follows:
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µ̂ = e−κt lnS0 +θ
(
1− e−κt) , σ̂2 = σ

2 (1− e−2κt)

2κ
. (2.34)

In (2.34) notice how the mean is basically a weighted average between the initial value lnS0 and the long-term mean

θ , whereas the variance increases as time increases and approaches σ2/2κ as the time approaches to infinity [1].

2.2 Basic Aspects of Risk-Neutral Measures

It is important to outline some basic knowledge related to risk-neutral measures that we require for our model.

Theorem 2.15. Let (Ω,F ,P) be a probability space and let Z be an almost surely non-negative random variables

with EZ = 1. For A ∈F , define

P̃(A) =
∫

A
Z(ω)dP(ω), (2.35)

Then P̃ is a probability measure. Furthermore, if X is a non-negative random variable, then

ẼX = E[XZ], (2.36)

given Z is almost surely strictly positive, we also have

ẼY = Ẽ
[

Y
Z

]
, (2.37)

for every non-negative random variable Y . The Ẽ appearing in (2.36) is expectation under the probability measure P̃:

i.e., ẼX =
∫

Ω
X(ω)dP̃(ω).

2.2.1 Girsanov’s Theory for a Single Brownian Motion

In Theorem 2.15, the starting point is a probability space (Ω,F ,P) and a non-negative random variable Z that satisfies

the condition EZ = 1. A new probability measure P̃ is then defined using the formula,

P̃A =
∫

A
Z(ω)dP(ω) ∀ A ∈F . (2.38)

Any random variable X now has two expectations, one under the original probability measure P, which we denote

with EX , and the other under the new probability measure P̃, which we denote with ẼX . The relationship between

these two can be stated as:

ẼX = E[XZ], (2.39)
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if P{Z > 0} = 1, then P and P̃ agree which sets have a probability of zero and (2.36) has the companion formula in

(2.37). We say Z is the Radon-Nikodým derivative of P̃ with respect to P, written as:

Z =
dP̃
dP

. (2.40)

This serves as a reminder that Z is like a ratio of these two probability measures. In the case of a finite probability

model, we actually have:

Z(ω) =
P̃(ω)

P(ω)
, (2.41)

where multiplying both sides of (2.41) by P(ω) and summing it over ω in a set A, returns:

P̃(A) = ∑
ω∈A

Z(ω)P(ω) f or all A⊂Ω. (2.42)

In a general probability model, we cannot write (2.41) because (P,ω) is typically zero for each individual ω , which

leads to an analogue form of (2.42). This analogue form essentially is (2.38).

In particular, if X is a standard normal random variable on a probability space (Ω,F ,P), θ is a constant, and defined

as follows:

Z = exp
{
−θX− 1

2
θ

2
}
, (2.43)

where, under the probability measure P given by (2.38), the random variable Y = X + θ is standard normal. This

means ẼY = 0, whereas EY = EX +θ = θ . By changing the probability measure, the expectation of Y also changes.

Theorem 2.16. Let W (t), 0 ≤ t ≤ T , be a Brownian motion on a probability space (Ω,F ,P), and let F ,0 ≤ t ≤ T ,

be a filtration for this Brownian motion. Let Θ(t),0≤ t ≤ T , be an adapted process. Define

Z(t) = exp
{
−
∫ t

0
Θ(u)dW (u)− 1

2

∫ t

0
Θ

2(u)du
}
, (2.44)

with

W̃ (t) =W (t)+
∫ t

0
Θ(u)du, (2.45)

and assume that

E
∫ T

0
Θ

2(u)Z2(u)du < ∞. (2.46)

Set Z = Z(T ). Then EZ = 1 and under the probability measure P̃ given by (2.38), the process W̃ ,0 ≤ t ≤ T , is a

Brownian Motion.
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The probability measures P and P̃ in Girsanov ’s Theorem are equivalent i.e., they agree about which sets have a

probability of zero and hence about which sets have a probability of one. This is because P {Z > 0}= 1.

2.2.2 Stocks Under the Risk-Neutral Measure

Let W (t),0 ≤ t ≤ T , be a Brownian motion on a probability space (Ω,F ,P), and let F (t),0 ≤ t ≤ T , be a filtration

for this Brownian motion where T is a fixed final time. A differential stock price process can be written as:

dS(t) = α(t)S(t)dt +σ(t)S(t)dW (t), 0≤ t ≤ T, (2.47)

The mean rate of return α(t) and the volatility σ(t) are allowed to be adapted processes. Assuming that, for all

t ∈ [0,T ],σ(t) is almost surely not zero, the stock price, as a generalized geometric Brownian motion and an equivalent

way of writing (2.47) is:

S(t) = S(0)exp
{∫ t

0
σ(s)dW (s)+

∫ t

0

(
α(s)− 1

2
σ

2(s)ds
)

ds
}
. (2.48)

In addition, suppose we have an adapted interest rate process R(t). The discount process is defined as:

D(t) = e−
∫ t

0 R(s)ds (2.49)

and note that:

dD(t) =−R(t)D(t)dt. (2.50)

To obtain (2.50) from (2.49), we can define I(t) =
∫ t

0 R(s)ds such that dI(t) = R(t)dt and dI(t)dI(t) = 0. The function

f (x) = e−x is introduced, for which f ′(x) =− f (x), f ”(x) = f (x), thereafter the Itô’s formula is applied:

dD(t) = d f (I(t))

= f ′(I(t))dI(t)+
1
2

f ′′(I(t))dI(t)dI(t)

=− f (I(t))R(t)dt

=−R(t)D(t)dt.

(2.51)

The discounted stock price thus becomes:

D(t)S(t) = S(0)exp
{∫ t

0
σ(s)dW (s)+

∫ t

0

(
α(s)−R(s)− 1

2
σ

2(s)
)

ds
}

(2.52)

With the following differential equation:

d(D(t)S(t)) = (α(t)−R(t))D(t)S(t)dt +σ(t)D(t)S(t)dW (t)

= σ(s)D(t)S(t) [Θ(t)dt +dW (t)] ,
(2.53)
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where market price of risk is denoted as:

Θ(t) =
α(t)−R(t)

σ(t)
. (2.54)

One can derive (2.53) either by applying the Itô formula to the right-hand side of (2.52). The volatility of the dis-

counted stock price is equal to the volatility of the non-discounted stock price.

The probability measure P̃ as defined earlier in Girsanov’s Theorem, 2.16, included, using the market price of risk

Θ(t) presented in (2.54). Rearranging the formula in terms of the Brownian motion W (t) of that theorem, we may

rewrite (2.53) as

d (D(t)S(t)) = σ(t)D(t)S(t)dW̃ (t) (2.55)

. P̃, the measure defined in Girsanov’s Theorem, the risk-neutral measure because it is equivalent to the original

measure P and it renders the discounted stock price D(t)S(t) into a martingale. Infact, according to (2.55):

D(t)S(t) = S(0)+
∫ t

0
σ(u)D(u)S(u)dW̃ (u), (2.56)

and under P̃ the process ∫ t

0
σ(u)D(u)S(u)dW̃ (t), (2.57)

is an Itô integral and hence, considered a martingale.

The undiscounted stock price S(t) under P̃ has a mean rate of return equal to the interest rate, which is verifiable with

the following replacement:

dW (t) =−Θ(t)dt +dW̃ (t), (2.58)

thus (2.47) becomes:

dS(t) = R(t)S(t)dt +σ(t)S(t)dW̃ (t). (2.59)

Solving this equation for S(t) or simply replace the Itô integral
∫ t

0 σ(s)dW (s) by its equivalent
∫ t

0 σ(s)dW̃ (s)−∫ t
0 (α(s)−R(s))ds in (2.48) the undermentioned:

S(t) = S(0)exp
{∫ t

0
σ(s)dW̃ (s)+

∫ t

0

(
R(s)− 1

2
σ

2(s)
)

ds
}
. (2.60)

2.2.3 Existence of the Risk-Neutral Measure

A probability measure P̃ is said to be risk-neutral if

(i) P̃ and P are equivalent (i.e., for every A ∈F ,P(A) = 0 if and only if P̃(A) = 0), and

15



(ii) under P̃, the discounted stock price D(t)Si(t) is a martingale for every i = 1, · · · ,m.

Theorem 2.17. Risk Neutral Pricing Formula: Let V(T ) be a FT -a measurable random variable that represents the

payoff of derivative security, and let P̃ = P̃T be the risk-neutral measure above. The arbitrage-free price at time t of

derivative security with payoff V(T ) and maturity T is given as:

V(t) = Ẽ
(

exp
(
−
∫ T

t
R(s)ds

)
V(T )|Ft

)
. (2.61)

2.2.4 European Call Option under Risk-Neutral Measure

Let S(t) be the price of an underlying asset, which is not necessarily a geometric Brownian motion, i.e., volatility may

or may not be constant. With S0 = x, the risk-neutral pricing formula for the price at t = 0 of a European call on this

asset, paying (S(T )−K)+ at time T is:

c(0,T,x,K) = Ẽ
[
e−rT (S(T )−K)+

]
. (2.62)

These theorems are later employed in the paper to develop the main model.
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Chapter 3

Energy Markets and Natural Gas

Commodity markets revolve around the trading for raw materials or primary economic output. These can include

agricultural produce such as wheat and corn, natural resources including crude oil, and precious metals such as gold

and silver. This study revolves around the energy sector commodities, specifically natural gas. This chapter examines

the features of energy markets, various commodities within the energy sector and the financial derivatives associated

with these commodities. The role of natural gas in energy markets is also defined, as the model focuses on this natural

resource.

3.1 Energy Markets

Energy markets help in maintain our daily lives and economy, as energy is one of the most widely consumed commodi-

ties in any economy. Energy commodity markets still have their differences compared to the traditional commodity

markets in the financial sector. For instance, they are far less liquid than other markets, due to the nature of fixed

costs. All forms of energy require heavy investment, such as equipment, transmission, transportation, and storage

costs. Certain commodities may be kept in store for years while others, such as electricity are very difficult to store

or even impossible to store. Moreover, prices behave differently for each type of commodity, with different variables

affecting the price. While weather conditions may affect renewable energy supply positively, they may end up having

a very different or no impact on crude oil or natural gas. Commodity prices in the energy sector sometimes show

strong mean reverting trends as well [6].

Energy markets all over the world are controlled by the relevant regulatory authority or government. In the early

1990s, deregulation began in energy markets, particularly for electricity and natural gas, allowing prices to be deter-

mined by the free market forces of demand and supply. This deregulation paved the way for spot and futures trading

in energy commodities and their derivatives all across the world. The new laws allowed brought greater flexibility for
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manufacturers and consumers involved in the energy markets, to choose the risk level [4]. A significant advantage of

the deregulated energy markets was that this permitted the trading of energy commodities, even after the production

process had been initiated [5].

3.2 Energy Commodities

Energy commodities comprise a variety of non-renewable and renewable resources including crude oil, natural gas,

coal, landfill gas, bio-gas, wind, solar, and hydro-power derived products. Energy commodities are critical to human

survival and draw the attention of investors, looking to earn profit from the growing demand for energy. As a result,

financial derivatives of energy commodities are widely traded globally [7].

Energy commodities are considered primary inputs in industrial applications. The tariffs on energy commodities

are closely monitored by economists, investors, producers, and governmental authorities [8]. A correlation is ob-

served between economic development and energy expenses in an economy, perhaps, because industrial output and

production are heavily dependent on various forms of energy. Consequently, changes in the global economy have an

impact on energy prices, whether it be economic conditions, such as a global recession, or regional wars, such as the

Ukraine-Russia conflict.

In addition to production, transport industries are heavily reliant on these resources, and changes in energy prices

can translate into other goods in the economy. This widespread impact is one reason why investors and governments

may want to hedge against hikes in fuel prices.

Financial derivatives have become increasingly popular in the 21st century. Since the global financial crisis in

2007-08, diversification of investment and financial assets has been significantly emphasized by investment banks and

hedge funds. Commodities and commodity derivatives provide one such channel for diversification. Even the pop-

ularity of crypto-currencies, which consume large quantities of electricity for mining, has increased the importance

of energy derivatives. Such financial instruments have become essentials for diversifying investments and growing

portfolios– either for the long term or to hold cash under more volatile or bearish markets, where stocks might not be

a fruitful investment.

3.3 Energy Derivatives

An energy derivative is a derivatives contract where the underlying asset is an energy commodity. This commodity

could be a natural resource, such as crude oil or natural gas, or an energy product such as electricity. The financial in-

struments derived from such commodities include options, futures, forwards, and swap agreements. Energy derivatives
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have become tools for investors and companies to hedge against fluctuations in energy prices. Derivative markets have

expanded in the past few years, converting the energy commodity markets into a vast system of derivatives contracts.

These derivatives can be traded either on a stock exchange or over the counter (OTC), with prices varying based on

the asset value and market conditions. The exchanges, alongside energy products commonly traded on the exchanges,

are presented in Table 3.1, by differing energy products [9].

Exchange Products
New York Mercantile Exchange Coal, Crude Oil, Electricity, Natural Gas, Refined

(NYMEX) Products (www.cmegroup.com/trading/energy/)
Chicago Board of Trade Ethanol

(CBOT) (www.cmegroup.com/trading/energy/)
Intercontinental Exchange Coal, Crude Oil, Electricity, Emissions,

(ICE) LNG, Natural Gas, Refined Products
(https://www.theice.com/products.jhtml)

NASDAQ OMX Carbon, Power, Natural Gas
Commodities (www.nasdaqomx.com/commodities/markets/products/)

International Commodity Exchanges www.commodityonline.com/commodityexchanges /
(complete list) global-futures-trading-exchangesand-website-address/

Table 3.1: Commodity Exchanges

3.4 Natural Gas Markets

Natural gas is a conventional fuel with a relatively low-pollution composition. The base component of both Liquid

Natural gas (LNG) and Compressed Natural gas (CNG) is methane and includes lower quantities of propane, butane,

and pentane. During the 18th century and at the beginning of the 19th century, natural gas was primarily utilized for

lighting streets and buildings. Even today, its widespread use for heating and producing energy supplies has made the

commodity indispensable. Natural gas is utilized by domestic and industrial consumers for space cooling and heating

as well as to transformers for power generation. It has gradually overtaken oil and coal in the energy sector, due to

lower emissions of pollutants. Gas is also used as a fuel in steam powered systems in heavy oil production and fleet

vehicles.

Most natural gas contracts are over-the-counter(OTC) transactions, where the trade takes place directly between

the producer and buyer, without the intervention or regulation of an exchange [10]. Natural gas is obtained after

various stages of production: evaluation and extraction, processing, transportation, storage, regional deliveries, and

conversion to LNG and CNG for transportation. Before the 1990s, this was a straightforward business where evaluation

and production groups searched for natural gas, extracted it and handed it over to transportation companies to provide

the resource to local utility companies. These companies would then circulate the gas to local consumers. It was often

converted to LNG for ease of transportation. Prices were regulated by government bodies, such as the Federal Energy
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Regulatory Commission (FERC), and there was little to no competition in the market. In the early 1990s, the industry

was deregulated, and in 1992, the FERC authorized pipeline systems for transporting natural gas. This allowed for

greater competition and the market forces of demand and supply started to have an impact on the price.

Today, demand and supply have a much greater impact on prices. As demand increases, prices rise, signalling

manufacturers to increase their production for greater profits. Contrarily, as demand shrinks, manufacturers respond

by scaling down production as prices fall. This mean-reversion is an essential feature of natural gas prices, as discussed

in later chapters.

3.5 Alberta’s Energy Sector

Alberta has been supplying oil and natural gas to other parts of Canada and the US since the 1940s. It is one of the

biggest producers of natural resources such as conventional crude oil, synthetic crude, natural gas, and gas products

in Canada. It is also the world’s second largest exporter of natural gas and the fourth leading manufacturer [11].

In 2018, Alberta’s energy sector generated a surplus of $71.5 billion from household commodities. According to

Statistics Canada, oil and gas retrieving companies managed to capture the greatest share in Canada’s GDP since

1985, exceeding 7%. It even surpassed the banking and insurance sectors. This was because the companies were able

to extract unconventional oil from the oil sands and achieving a record-breaking high in production in May 2018.

Two of North America’s core producers of petrochemicals are situated in central and northern central parts of

Alberta. By-products, such as polyethylene and vinyl, manufactured in Red Deer and Edmonton, are transported

around the world. The Athabasca River territory produced oil that was used within Canada and exported, and holds

the biggest approved assets of oil in the world, with the exception of Saudi Arabia. Figure 3.1 illustrates the breakdown

of natural resources in Alberta [18].

3.5.1 Natural Gas in Alberta

There are numerous natural gas sites in Alberta. A significant proportion of natural gas reserves was found in 1883

near Medicine Hat. In 1999, the production of natural gas liquids such as ethane, propane, and butane reached 172.8

million barrels, valued at $2.27 billion. In 2018, Alberta was producing 69% of the marketable natural gas in all of

Canada [13], and 49% of Alberta’s natural gas production was used in Alberta itself [14]. Today, Alberta also delivered

nearly 13% of total natural gas used in the US. Note that the AECO “C” spot price is Alberta gas-trading price is one

of foremost North America’s benchmarks [12]. It has one of the most massive natural gas systems in the world among

its energy infrastructure, along 39,000 kilometers (24,000 miles) of energy-related pipelines [17]. Figure 3.2 [18]

illustrates the main pipelines in Alberta for natural gas.
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Figure 3.1: Energy Production in Alberta

The average annual consumption of natural gas in a household in Alberta is 135 GJ (38,000 kWh) [15]. It is the

greatest consumer of natural gas, among Canadian provinces, at around 3.9 billion cubic feet per day [16].

Figure 3.2: Natural Gas Infrastructure Map Alberta
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Chapter 4

Modelling Locational Spread Options

This chapter explains options, types of options, and styles of options. It further details spread options and locational

spread options, which is the primary focus of the study. The mathematical model is then constructed considering

locational spread options as well as the components presented in earlier chapters.

4.1 Options

An option is a right, and not an obligation, to trade risky assets or financial instruments at a predetermined, mutually

agreed price within a specified time period. Options are a financial instrument that allows, amongst other things, to

make a bet on the rising or falling values of an underlying asset. The underlying asset could be a stock, stock indices,

a parcel of shares of a company, foreign currencies, or commodities, such as oil and gas. These financial instruments

can be traded, swapped, and allow for financing mobility, i.e. leveraging and risk management.

4.2 Energy Options

An energy option is a financial derivative where the underlying asset is an energy commodity. It is an agreement where

the seller, or options writer provides the buyer, or the holder, the right to buy or sell an energy asset at an agreed price

within the specified time. These contracts are set apart from other contracts by unusual kinds of specifications of trade

such as the place of delivery, time of maturity period, conditions and size of the delivery, and storage issues.

4.3 Types of Options

There are two basic types of options.
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• Call Option: The call option (caps) gives the holder the right to buy the energy commodity for an agreed (ceiling

price) strike price K at a specific time T . The mathematical expression for the pay-off for the call option is as

follows:

C = max[(ST −K)+,0]. (4.1)

• Put Option: The put option (floors) pays a premium to give the holder the right, but not the obligation to sell

the energy commodity at a strike price K at a specific time T . The mathematical expression for the pay-off for

the put option is as follows:

P = max[(K−ST )
+,0]. (4.2)

4.3.1 Additional Key Features of Options

Some basic terminology needs to be explained regarding options, before proceeding further with the model.

• Spot Price: The spot price ST , is the current market price of the commodity, at which it is traded to get instant

payments and hand-in stocks.

• Future Price: The future price FT , is the price agreed upon in a futures contract, which expires at time T .

• Strike Price: The strike price K is a specified price at which the energy can be purchased, under a call option,

or sold, under a put option, by the holder upon the execution of the options contract.

• Underlying Asset: Options are defined as derivatives, as they infer value from the underlying asset. This asset

is in principle being purchased or sold when an option’s contract is executed. An underlying asset includes

financial assets, such as stocks and ETFs, or commodities, such as oil and gold.

• Pay-Off vs Profit: The pay-off of an option is the cash earned by the investors from an option, whereas the

profit is the amount leftover after the premium, paid at the time of initiation, is deducted from the pay-off.

• Volatility: The volatility in price refers to the variation in the price of the underlying assets in the market.

4.3.2 Option Styles

An option style depicts whether an option contract can be exercised before the date of expiry or not. There are two

main types of options; European and American [9].European options can only be exercised at the time of expiration,

T . American options, however, are flexible in execution such that they can be executed anytime up to and including

time T . This flexibility results in the American options being traded at a higher price. This thesis restricts itself to the

European-style options, based on the Black-Scholes Model.
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4.3.3 Exchange-Traded and Over-the-Counter

Options can be traded using two channels [9]: Holders of exchange-traded options can exercise their contract for a

cash settlement, or obtain a futures contract leading to a cash settlement. OTC options allow holders to customize the

features of their options contracts, given that there is a party willing to offer all those features.

4.4 Black– Merton– Scholes Model

The Black-Scholes pricing model is used to determine the fair price or theoretical value for a call or put option based

on six variables. These variables are volatility σ , type of option, underlying stock price S1 and S2, time T , strike

price K, risk-free rate r, and continuously compounded dividend yield δ .// The formula for computing the fair value

of European-style call and put options are respectively given below:

C = Se−δT N(d1)−Ke−rT N(d2), (4.3)

and

P = Ke−rT N(−d2)−Se−δT N(−d1), (4.4)

Whereas:

d1 =
ln( S

K )+(r−δ +0.5σ2)T

σ
√

T
, (4.5)

and

d2 =
ln( S

K )+(r−δ −0.5σ2)T

σ
√

T
. (4.6)

Note that e−rT is the present value factor, reflecting that the exercise price on the call option does not have to be paid

until expiration. N(d1) and N(d2) are the probabilities under a cumulative standardized normal distribution.

Assumptions and Limitations

• There are no arbitrage opportunities.

• The market is frictionless.

That is, there are no transaction costs (fees or taxes), the interest rates for borrowing and lending money are

equal, all parties have immediate access to any information, and all securities and credits are available at any

time and in any size. Further, individual trading will not influence the price.

• The underlying asset’s price movement follows a log-normal distribution.

• The option is European and can only be exercised on the expiration date.
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• There’s no transaction cost.

• There are no tax and margin costs.

These assumptions are made for the sake of simplicity. They can be relaxed and the model can be adjusted for special

circumstances when deemed necessary. In addition, we could easily use this model to price options on assets other

than stocks (currencies, futures) [19].

4.5 Spread options

The value at time t of the two underlying energy commodities in a spread option is denoted by S1(t) and S2(t). For

European-style options, the holder is paid the spread, S2(T )−S1(T ), at the time of maturity, T . The buyer must pay a

predetermined strike price of K, at expiration time, to exercise the option. This pay-off at maturity can be expressed

as [20]:

p(T,S1
0,S

2
0,K) = max[(S1

T −S2
T −K),0]. (4.7)

Spread trading can be used for hedging purposes or purely for trading (“arbitrage”). Examples of the types of spreads

are time spreads, locational spreads, frack spreads, crack spreads and spark/dark spreads [21]. The techniques used

to model each type of spread are fairly similar. Spread options are mostly carried out on equities, bonds, currencies,

commodities, and so on. These sorts of financial instruments might be purchased on exchanges or traded in the Over-

The-Counter markets.

Here our main focus is on ’Locational Spreads’, which we define below:

4.5.1 Locational Spreads

A spread option covering the difference between prices of the same commodity trading at two different locations is

called a ’Locational spread’. The call (put) option defined on a locational spread is as follows:

An European call(put) option on the locational spread between the two locations with maturity T gives its holder the

right but not the obligation to pay the price of energy commodity at location one at time T and receive the price of

same energy commodity at location two. Let ST
i be the price of energy commodity at location i(i = 1;2) at time T .

Then the payoff of the call option C(ST
1 ;ST

2 ;T ) at time T with transportation cost K is:

C(ST
1 ,S

T
2 ,K;T ) = max(ST

1 −ST
2 −K,0) (4.8)
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and the payoff of the put option P(ST
1 ;ST

2 ;T ) at time T with transportation cost K is [22]:

P(ST
1 ,S

T
2 ,K;T ) = max(K−ST

1 −ST
2 ,0). (4.9)

4.6 Data Analysis

In previous sections, we described every single definition or concept which is required to set up our mathemati-

cal model. Now we are heading towards another important part of our thesis, that is, analyzing our data set which

provides the basic characteristics of future natural gas prices. From the stock markets, we observed that energy com-

modity prices demonstrate more diverse behavior than other financial derivatives due to short-term trading of energy

commodities, which further implies there’s a distinction between the spot price and forward prices of energy com-

modities.

This section presents the data analysis using the model developed in the paper thus far. Time series data has

been collected from Union Gas Dawn Hub (Dawn township, Ontario) and TCPL-Iroquois (Iroquois, Waddington,

U.S/Canada border), from March 2002 to 2012. The data includes daily futures price data for natural gas in two

locations; Waddington and Dawn township.

4.6.1 Statistical Characteristics

Summary statistics for Union Gas Dawn Hub is presented in Table 4.1 below. These statistics are based on 3655

observations for each location. The variables summarized are future prices (FP), the change in future prices (d(FP)),

the logarithm of future prices (ln(FP)) and the log-returns of the future prices (dln(FP)).

DNG-FP Mean Std.Dev Skewness Kurtosis Min Max
FP 6.1899 2.1919 1.2389 4.8333 2.2000 15.8800

d(FP) 0.1133 0.2593 0.5093 112.7516 -4.4300 5.1960
ln(FP) 0.5517 0.1925 -0.3538 3.2821 -0.2377 1.0171

dln(FP) 0.0107 0.0213 1.1983 44.5069 -0.2798 0.2914

Table 4.1: Statistical Characteristics of UN-dawn NG-FP

Summary statistics for TCPL-Iroquois are presented in Table 4.2 presented as follows:
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DNG-FP Mean Std.Dev Skewness Kurtosis Min Max
FP 6.4808 2.3477 1.2976 5.5166 2.2300 20.8800

d(FP) 0.1707 0.5398 2.9844 143.8304 -9.3300 10.3600
ln(FP) 0.5755 0.1934 -0.4025 3.3310 -0.2206 1.1115

dln(FP) 0.0134 0.0293 2.1797 56.3508 -0.2470 0.5202

Table 4.2: Statistical Characteristics of TCPL-Iroquois NG-FP

(a) Histogram of UN-dawn NG-FP (b) Histogram of log UN-dawn NG-FP

Figure 4.1: Histogram of UN-dawn natural gas future prices

Comparing the summary statistics for the two locations, the difference in the maximum values stands out. The

maximum values for Iroquois are overall higher. The logarithmic value of futures prices (ln(FP)) will be used for

calibrating the model.

4.6.2 Distribution

An important assumption of our mathematical model is log-normal distribution of natural gas futures prices. A normal

distribution does not catch the outliers in the data. It is evident in Figures 4.1 and 4.2, where futures prices do not

spike at the extremes. The shape of the distribution is described by the skewness and kurtosis reported in summary

statistics. As the shape of the distribution is not perfectly normal, there may be some bias present.

4.6.3 Mean Reversion

Mean-reversion is a process that indicates a time series may exhibit the tendency of a data series to its long-term mean

over time, whenever the data series fluctuates. This is usually due to unexpected events, often beyond anyone’s control,

such outages, transmission constraints, weather changes or international crisis. If mean-reversion causes a spike in

data greater than the next level, it may revert back to the natural average price. In Figure 4.3 and Figure 4.4, the time

series of future and log returns of UN-dawn and TCP-Iroquois natural gas future prices are plotted, identifying the

presence of mean-reversion. The mathematical model employs the exponential Ornstein-Uhlenbeck process to reflect
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(a) Histogram of TCP-Iroquois NG-FP (b) Histogram of log TCP-Iroquois NG-FP

Figure 4.2: Histogram of TCP-Iroquois natural gas future prices

this mean-reverting process of the data series.

Comparing Figure 4.3 above with Figure 4.4, data from the two locations follow a similar trend IN prices, with

a mean-reverting tendency. The latter shows the correlation between futures prices of the two series, rather than the

average prices.

4.6.4 Correlation

Correlations exist in energy markets as the resources are very closely related and impact the valuation of energy

commodities and derivatives. The mathematical definition of the correlation of two random variables X and Y is given

as follows:

ρ =
cov(X ,Y )√

var(X)
√

var(Y )
=

E[XY ]−E[X ]E[Y ]√
E[X2]−E[X ]2

√
E[Y 2]−E[Y ]2

. (4.10)

Correlation coefficient is bounded between -1 to +1, where 1 indicates perfect positive correlation, where both vari-

ables move in the same direction, and -1 indicates perfect negative correlation, where the variables move in opposite

directions.

In order to identify the correlation that exists in locational spread options, Figure 4.4 illustrates the log of futures

prices for gas in the two locations. Two different scenarios are discussed in this thesis: constant correlation and

time-variant stochastic correlation. Stochastic correlation is estimated using the Pearson product-moment correlation

coefficient:

ρ̂X ,Y =
∑

N
i=1(xi− x)(yi− y)√

∑
N
i=1(xi− x)2

√
∑

N
i=1(yi− y)2

, (4.11)

whereas xi and yi are the estimates of X and Y , while x and y are the respective means [23].
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Figure 4.3: UN-dawn and TCP-Iroquois NG-FP from March 22, 2002, to May 21, 2021

4.6.5 Bivariate Normal Distribution

Assuming that Z1 and Z2 are two independent random variables, with a standard normal distribution N ∼ (0,1). The

joint probability density function f (z1,z2) of Z1 and Z2 for all values of z1 and z2 is described as follows:

f (z1,z2) =
1

2π
exp [−1

2
(z2

1 + z2
2)]. (4.12)

For conditional constants µ1, µ2, σ1, σ2 and ρ , defined by −∞ < µi < ∞, σi > 0 (i = 1,2) and −1 < ρ < 1, two

new dependent random variables are defined X1 and X2 by Choleskydecomposition, with the given correlation of the

independent normal variables Z1 and Z2, as follows:

X1 = σ1Z1 +µ1,

X2 = σ2

[
ρZ1 +

√
(1−ρ2)Z2

]
+µ2.

(4.13)
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Figure 4.4: Log of UN-dawn and TCP-Iroquois NG-FP from March 22, 2002, to May 21, 2021

The joint probability density function F(x1,x2) of X1 and X2 X2 can then be written as:

F(x1,x2) =
1

2πσ1σ2
√

1−ρ2
exp
{
− 1

2(1−ρ2)

[
(

x1−µ1

σ1
)2−2ρ(

x1−µ1

σ1
)(

x2−µ2

σ2
)+(

x2−µ2

σ2
)2
]}

. (4.14)

Therefore the joint probability distribution indicates that X1 and X2 is defined by (4.14), then it means X1 and X2

follows a bi-variate normal distribution with E(Xi) = µi and Var(Xi) = σ2
i for i = 1,2 and Cov(X1,X2) = ρσ1σ2.

4.7 Mathematical Model Establishment

Consider (Ω,F ,P) to be a probability space with information filtration (F ). Thus, under the physical measure P, the

logarithms of two natural gas future assets, denoted by X1 and X2 that is X1(t) = lnF1(t) and X2(t) = lnF2(t), follows

the correlated Ornstein–Uhlenbeck processes, which is given as follows:

dX1(t) = κ1(θ1−X1(t))dt +σ1dW1(t), (4.15)
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dX2(t) = κ2(θ2−X2(t))dt +σ2dW2(t), (4.16)

with

dW1(t)dW2(t) = ρdt, (4.17)

where, κ1 > 0, κ2 > 0, θ1, θ2, σ1 and σ2 ∈ R, with W1(t) and W2(t) are two dependent Brownian motions with

correlation coefficient ρ . To price the locational spread options, we should perform under the risk-neutral measure

Q. We suppose that under this measure Q, the stochastic processes of X1 and X2 are assumed correlated with Orn-

stein–Uhlenbeck processes, however with different coefficients to account for the risk premium. Therefore (4.15),

(4.16) and (4.17) become:

dX1(t) = κ
Q
1 (θ

Q
1 −X1(t))dt +σ1dW Q

1 (t), (4.18)

dX2(t) = κ
Q
2 (θ

Q
2 −X2(t))dt +σ2dW Q

2 (t), (4.19)

with

dW Q
1 (t)dW Q

2 (t) = ρdt. (4.20)

With new assumed measure Q, the vector X(T ) = (X1(T ),X2(T )) at time T , exhibits bivariate normal distribution with

mean µµµ and co-variance matrix ΣΣΣ, defined in previous section. Since κ
Q
1 , κ

Q
2 , θ

Q
1 , θ

Q
2 are constants,, these symbols

are continued to maintain the simplicity of the model. Risk-neutrality has already been detailed in Chapter 2.

In order to discretize the Ornstein–Uhlenbeck processes, let ti = t0 + i∆t, with i = 0,1,2, · · · ,N, where k = 1,2 and

i = 0,1, · · · ,N and also (θ ∗ = θ −σ2/2κ). Therefore:

X1(i) = e−κ1∆tX1(i−1)+(1− e−κ1∆t)θ ∗1 +σ1

√
(1− e−2κ1∆t)

2κ1
∆W1,i, (4.21)

X2(i) = e−κ2∆tX2(i−1)+(1− e−κ2∆t)θ ∗2 +σ2

√
(1− e−2κ2∆t)

2κ2
∆W2,i, (4.22)

and

∆Wk,i =Wk(ti)−Wk(ti−1). (4.23)

The next step is to calibrate this model in Chapter 5, using the multivariate linear regression and maximum likelihood

methods to obtain prices for locational spread options.
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Chapter 5

Calibration with Constant Correlation

This chapter revolves around the calibration of the mathematical model that has been developed in the paper thus far.

This calibration process will comprise of finding parameter values using a specific estimation method on historical

market values. Through this process, estimates for the parameters of locational spread commodities with constant

correlation under Ornstein–Uhlenbeck process will be determined using two methods. Multivariate linear regression

is the first estimation method to predict a single regression model with more than one response parameter. The

maximum likelihood method, which maximizes the log-likelihood of the actual data will be the second model. After

the two estimations are completed, the resulting parameters will then be discussed.

5.1 Multivariate Linear Regression

Multivariate regression is a technique that allows for multiple variables to be included in a regression model to estimate

a resultant variable.

Definition 5.1. The Multivariate Linear Regression Model

yi = BT xi + εi, i = 1, · · · ,n (5.1)

has m ≥ 2 response variables Y1, · · · ,Ym and p predictor variables x1,x2, · · · ,xp where x1 ≡ 1 is the trivial predictor.

The ith case is (xT
i ,y

T
i ) = (1,xi2, · · · ,xip,Yi1, · · · ,Yim), where 1 could be omitted. The matrix form of the model can be

expressed As:

Z = XB+E, (5.2)

where the matrices are defined below. The model has E(εk) = 0 and Cov(εk) = ∑ε = (σi j) for k = 1, · · · ,n. Then the
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p×m coefficient matrix B = [β1β2 · · ·βm] and the m×m covariance matrix ∑ε are to be estimated, and E(Z) = XB

while E(Yi j) = xT
i β j. The εi are assumed to be iid (independent and identically distributed).

The data matrix W = [X Z] except the first column 1 of X. The n×m matrix is as follows:

Z =



Y1,1 Y1,2 · · · Y1,m

Y2,1 Y2,2 · · · Y2,m

...
...

. . .
...

Yn,1 Yn,2 · · · Yn,m


=

[
Y1 Y2 · · · Ym

]
=


yT

1
...

yT
n

 . (5.3)

The n× p design matrix of predictor variables is

X =



x1,1 x1,2 · · · x1,p

x2,1 x2,2 · · · x2,p

...
...

. . .
...

xn,1 xn,2 · · · xn,p


=

[
υ1 υ2 · · · υp

]
=


xT

1
...

xT
n

 , (5.4)

where υ1 = 1. The p×m matrix

B =



β1,1 β1,2 · · · β1,m

β2,1 β2,2 · · · β2,m

...
...

. . .
...

βn,1 βn,2 · · · βn,m


.=

[
β1 β2 · · · βm

]
. (5.5)

The n×m matrix

E =



ε1,1 ε1,2 · · · ε1,m

ε2,1 ε2,2 · · · ε2,m

...
...

. . .
...

εn,1 εn,2 · · · εn,m


=

[
ε1 ε2 · · · εm

]
=


εT

1
...

εT
n

 . (5.6)

Considering the ith row of Z, X and E shows that yT
i = xT

i B+ εT
i .

5.1.1 Least Square Estimation

Least squares are the classical method for fitting multivariate linear regression. The least squares estimators are

B̂ = (XT X)−1XT Z =

[
β̂1 β̂2 · · · β̂m

]
. (5.7)

The predicted values or fitted values
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Ẑ = XB̂ =

[
Ŷ1 Ŷ2 · · · Ŷm

]
=



Ŷ1,1 Ŷ1,2 · · · Ŷ1,m

Ŷ2,1 Ŷ2,2 · · · Ŷ2,m

...
...

. . .
...

Ŷn,1 Ŷn,2 · · · Ŷn,m


. (5.8)

The residuals Ê = Z− Ẑ = Z−XB̂ are written as:

Ê =



ε̂T
1

ε̂T
2
...

ε̂T
n


=

[
r1 r2 · · · rm

]
=



ε̂1,1 ε̂1,2 · · · ε̂1,m

ε̂2,1 ε̂2,2 · · · ε̂2,m

...
...

. . .
...

ε̂n,1 ε̂n,2 · · · ε̂n,m


. (5.9)

These quantities can be found as: β̂ j = (XT X)−1XT Y j , Ŷ j = Xβ̂ j and r j = Y j− Ŷ j for j = 1, · · · ,m. Hence ε̂i, j =

Yi, j− Ŷi, j where Ŷj = (Ŷ1, j, · · · ,Ŷn, j)
T . Also,

Ê = [I−X(XT X)−1]Z. (5.10)

All this material is covered in [24].

5.1.2 Calibrating with Multivariate Linear Regression

Here the model by using least square estimation method is as follows:

X = AY+B+CZ, (5.11)

with

X =

X1n

X2n

 , Y =

Y1n

Y2n

 , A =

a1

a2

 , B =

b1

b2

 , C =

c11 0

c21 c22

 , Z =

z1

z2

 ,

and whereas we define:

X1n = a1Y1n +b1 + c11z1, X2n = a2Y2n +b2 + c21z1 + c22z2, (5.12)

with residuals ∆1 and ∆2:

∆1 = X1n−a1Y1n−b1, ∆2 = X1n−a2Y2n−b2, (5.13)
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and

∆ =

[
∆1 ∆2

]
=CZ. (5.14)

While comparing with (4.15) or (4.21) and (4.16) or (4.22), we have

a1 = e−κ1∆t , a2 = e−κ2∆t , (5.15)

or solving

κ1 =
− lna1

∆t
, κ2 =

− lna2

∆t
, (5.16)

and

b1 = (1− e−κ1∆t)θ1, b2 = (1− e−κ2∆t)θ2, (5.17)

while simplifying:

θ1 =
b1

(1−a1)
, θ2 =

b2

(1−a2)
, (5.18)

and last ones

C11 = σ1

√
1− e−2κ1∆t

2κ1
= σ̂1, C2

21 + c2
22 = σ2

√
1− e−2κ2∆t

2κ2
= σ̂2, (5.19)

with co-variance matrix:

C =

 σ̂1 0

ρσ̂2 σ̂2
√

1−ρ2

 . (5.20)

Now

ε
2 = ‖X−AY −b‖2

= XT X +Y T AT AY +‖b‖2−2XT AY +2bT AY −2bT X

= X2
1 +X2

2 +a2
1Y 2

1 +a2
2Y 2

2 +b2
1 +b2

2−2(a1X1Y1 +a2X2Y2)

+2(b1a1Y1 +b2a2Y2)−2(b1X1 +b2X2).

(5.21)

Partial derivative with respect to a1, a2, b1, b2 as follows (First order derivative test), and equating them equals to zero

to figure out their values:
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∂ε2

∂a1
= 2a1Y 2

1 −2X1Y1 +2b1Y1 = 0, (5.22)

∂ε2

∂a2
= 2a2Y 2

2 −2X2Y2 +2b2Y2 = 0, (5.23)

∂ε2

∂b1
= 2b1 +2a1Y1−2X1 = 0, (5.24)

∂ε2

∂b2
= 2b2 +2a2Y2−2X2 = 0. (5.25)

Four equations and four unknowns a1, a2, b1 and b2 can easily be estimated and replaced in (5.16), (5.18) to figure

out the results, using Matlab. In order to calculate the remaining three values σ1,σ2 and ρ we proceed as follows,

knowing that:

∆∆
T =CZZTCT . (5.26)

Then taking expectations on both sides and applying its properties:

E
[
∆∆

T ]= E
[
CZZTCT ]

=CE
[
ZZT ]CT

=CICT =CCT ,

(5.27)

whereas multiplying C with it transpose matrix CT , we get

CCT =

C11 0

C21 C22


C11 C21

0 C22

=

 C2
11 C11C21

C21C11 C2
22

 . (5.28)

Using (5.19), (5.20) and (5.28) we will find the remaining three values too.

5.1.3 Results

∆t κ1 κ2 θ1 θ2 σ1 σ2 ρ

1.00 0.0056 0.0141 1.17718 1.8115 0.0206 0.0394 0.6030

Table 5.1: Parametric Estimation Valuation via Multivariate Linear Regression.

The results are shown in table 5.1 we get after calibrating our model with respect to multivariate linear regression

with future prices of natural gas with data length L = 3500.
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5.2 The Maximum Log-Likelihood Method

Maximum log-likelihood estimation (MLE) is one of the most important techniques that helps estimate parameters

using the likelihood function.

Definition 5.2. Assume that the random sample X1, · · · ,Xn ∼ F , where F = Fθ is a normal distribution depending on

a parameter θ = (µ,σ), the mean and the variance. The probability density function (PDF) is employed to find the

most likely parameter for simplicity. In other words, PDF p = pθ will also be determined by the parameter θ . The

independence property dictates the joint PDF of the random sample X1, · · · ,Xn:

pX1,··· ,Xn(x1, · · · ,xn) =
n

∏
i=1

pθ (xi), (5.29)

because pθ (x) also changes when θ changes, we rewrite it as p(x;θ) = pθ (x). Thus, the joint PDF can be rewritten as

pX1,··· ,Xn(x1, · · · ,xn) =
n

∏
i=1

pθ (xi;θ). (5.30)

Having observed x1 = X1, · · · ,xn = Xn, how can the likeliness be determined? MLE proposes that, based on the joint

PDF and and x1 = X1, · · · ,xn = Xn, we can rewrite the joint PDF as a function of parameter θ :

L(θ | X1, · · · ,Xn) =
n

∏
i=1

pθ (xi;θ). (5.31)

5.2.1 Calibration using maximum log-likelihood

We consider the correlated exponential Ornstein–Uhlenbeck processes X(t) = (X1(t),X2(t)) at any time t, follows a

bivariate normal distribution with mean µµµ= (µ1,µ2) and variance ηηη222= (η2
1 ,η

2
2 ) given by:

µ1 = e−κ1tX1(n−1)+θ1(1− e−κ1t) = θ1 +(X1(n−1)−θ1)e−κ1t , (5.32)

µ2 = e−κ2tX2(n−1)+θ2(1− e−κ2t) = θ2 +(X2(n−1)−θ2)e−κ2t , (5.33)

η
2
1 =

σ2
1

2κ1
(1− e−2κ1t), (5.34)

η
2
2 =

σ2
2

2κ2
(1− e−2κ2t). (5.35)
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The joint probability density function of bivariate f (X1,X2) with mean and variance defined in (5.32), (5.33), (5.34)

and (5.35) for n sequential data sets where tn−1 < tn is stated by

f (X1(t),X2(t)) =
1

2πσ1σ2
√

1−ρ2
e−

1
2 Q(X1(t),X2(t)), (5.36)

where

Q(X1(t),X2(t)) =
1

(1−ρ2)
{2κ1(X1(n)−θ1− e−κ1∆t(X1(n−1)−θ1))

2

σ2
1 (1− e−2κ1∆t)

−2ρ
(X1(n)−θ1− e−κ1∆t(X1(n−1)−θ1))(X2(n)−θ2− e−κ2∆t(X2(n−1)−θ2))√

σ2
1

2κ1
(1− e−2κ1∆t )

√
σ2

2
2κ2

(1− e−2κ2∆t )

+
2κ2(X2(n)−θ2− e−κ2∆t(X2(n−1)−θ2))

2

σ2
2 (1− e−2κ2∆t)

}.

(5.37)

Thus,

f (X1,X2) =
2
√

κ1κ2

2πσ1σ2
√
(1− e−2κ1∆t)(1− e−2κ2∆t)

√
1−ρ2

exp
{

−1
2(1−ρ2)(

2κ1(X1(n)−θ1− e−κ1∆t(X1(n−1)−θ1))
2

σ2
1 (1− e−2κ1∆t)

+
2κ2(X2(n)−θ2− e−κ2∆t(X2(n−1)−θ2))

2

σ2
2 (1− e−2κ2∆t)

−4ρ
√

κ1κ2

(X1(n)−θ1− e−κ1∆t(X1(n−1)−θ1))(X2(n)−θ2− e−κ2∆t(X2(n−1)−θ2))

σ1σ2
√

(1− e−2κ1∆t)(1− e−2κ2∆t)

)}
.

(5.38)

Eliminating ’2’ from the above equation, and simplifying, the following result is obtained:

f (X1,X2) =

√
κ1κ2

πσ1σ2
√
(1− e−2κ1∆t)(1− e−2κ2∆t)

√
1−ρ2

exp
{
−1

(1−ρ2)(
κ1(X1(n)−θ1− e−κ1∆t(X1(n−1)−θ1))

2

σ2
1 (1− e−2κ1∆t)

+
κ2(X2(n)−θ2− e−κ2∆t(X2(n−1)−θ2))

2

σ2
2 (1− e−2κ2∆t)

−2ρ
√

κ1κ2

(X1(n)−θ1− e−κ1∆t(X1(n−1)−θ1))(X2(n)−θ2− e−κ2∆t(X2(n−1)−θ2))

σ1σ2
√

(1− e−2κ1∆t)(1− e−2κ2∆t)

)}
.

(5.39)

The log-likelihood function of the given data sets (X1(0),X1(1), ...X1(n)) and (X2(0),X2(1), ...X2(n)) can then be

obtained from the joint probability density function as follows:

L = log
N

∏
n=1

fX1,X2(x1(n),x2(n); µµµ,ηηη). (5.40)
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Using (5.39) where N refers to the total size of the data, , the following is arrived at:

L = log
N

∏
n=1

{ √
κ1κ2

πσ1σ2
√
(1− e−2κ1∆t)(1− e−2κ2∆t)

√
1−ρ2

exp
{
−1

(1−ρ2){
κ1(X1(n)−θ1− e−κ1∆t(X1(n−1)−θ1))

2

σ2
1 (1− e−2κ1∆t)

+
κ2(X2(n)−θ2− e−κ2∆t(X2(n−1)−θ2))

2

σ2
2 (1− e−2κ2∆t)

−2ρ
√

κ1κ2

(X1(n)−θ1− e−κ1∆t(X1(n−1)−θ1))(X2(n)−θ2− e−κ2∆t(X2(n−1)−θ2))

σ1σ2
√

(1− e−2κ1∆t)(1− e−2κ2∆t)
.

(5.41)

Solving to simplify as follows:

L =
N
2

log(κ1κ2)−N log(πσ1σ2)−
N
2

log(1− e−2κ1∆t)− N
2

log(1− e−2κ2∆t)

− N
2

log(1−ρ
2)− 1

(1−ρ2)

N

∑
n=1
{

κ1(X1(n)−θ1− e−κ1∆t(X1(n−1)−θ1))
2

σ2
1 (1− e−2κ1∆t)

+
κ2(X2(n)−θ2− e−κ2∆t(X2(n−1)−θ2))

2

σ2
2 (1− e−2κ2∆t)

−2ρ
√

κ1κ2
(X1(n)−θ1− e−κ1∆t(X1(n−1)−θ1))(X2(n)−θ2− e−κ2∆t(X2(n−1)−θ2))

σ1σ2
√

(1− e−2κ1∆t)(1− e−2κ2∆t)
}.

(5.42)

The log-likelihood in (5.42) is maximized using the first order derivative with respect to each underlying parameters

and then equating it to zero. However, it is not possible to differentiate independently, therefore the maximization of

the negative ’−L’ log-likelihood function in (5.42), ) is established, we use the MATLAB build-in function ’fmincon()’

via discrete time steps to estimate these underlying parameters.

5.2.2 Results

∆t κ1 κ2 θ1 θ2 σ1 σ2 ρ

1.00 0.0063 0.0072 1.7705 1.8113 0.0349 0.0568 0.6032

Table 5.2: Parametric Estimation Valuation via maximum likelihood estimation.

The results shown in Table 5.2 we got after calibrating our model with respect to maximum log-likelihood, with

our daily data, length L = 3500.
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Chapter 6

Calibration with Stochastic Correlation

Stochastic volatility models, such as Heston’s stochastic volatility model, assume constant correlation. However, in

reality, the correlation may not remain constant overtime and is likely to be stochastic. Another assumption of such

models is that correlation is the most unstable of all parameters in option pricing models. This chapter identifies

techniques for calibration with stochastic correlation. Since the correlation between two variables is limited between

[−1,1] [25], only two methods are considered: the optimization technique by reducing the number of unknown pa-

rameters and changing the regression. The Jacobi process is then applied to model stochastic correlation.

6.1 Generating a Time Series of Correlation Reducing Unknown parame-

ters

In order to generate a series of correlation, the following steps need to be followed.

1. Initialize/ choose appropriate data.

2. Compute initial parameters P0.

3. Divide the data into equal window sizes of nT = 30, monthly time step.

4. Calculate Rho ρ by using the first derivative test i.e ∂L
∂ρ

= 0 to get the implicit function of ρ in terms of other

parameters.

5. Using this maximum rho ρmax, choose one of the best remaining six parameters from all windows.

6. Then with the help of these best parameters we will generate our best rho that is explicit value, ρbest in the time

series.
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6.1.1 Mathematical Description

Differentiating (5.42) with respect to ρ gives the following result:

∂L
∂ρ

=− −2Nρ

2(1−ρ2)
−
[

2ρ

(1−ρ2)2

N

∑
i=1

{
κ1(X1(n)−θ1− (X1(n−1)−θ1)e−κ1∆t)2

σ2
1 (1− e−2κ1∆t)

+
κ2(X2(n)−θ2− (X2(n−1)−θ2)e−κ2∆t)2

σ2
2 (1− e−2κ2∆t)

−2ρ
√

κ1κ2

(X1(n)−θ1− (X1(n−1)−θ1)e−κ1∆t)(X2(n)−θ2− (X2(n−1)−θ2)e−κ2∆t)

σ1σ2
√
(1− e−2κ1∆t)(1− e−2κ2∆t)

− 1
(1−ρ2)

N

∑
i=1{

−2
√

κ1κ2
(X1(n)−θ1− (X1(n−1)−θ1)e−κ1∆t)(X2(n)−θ2− (X2(n−1)−θ2)e−κ2∆t)

σ1σ2
√

(1− e−2κ1∆t)(1− e−κ2∆t)

}
,

(6.1)

Or

∂L
∂ρ

=
Nρ

(1−ρ2)
− 2ρ

(1−ρ2)
N

∑
i=1

{
κ1(X1(n)−θ1− (X1(n−1)−θ1)e−κ1∆t)2

σ2
1 (1− e−2κ1∆t)

+
κ2(X2(n)−θ2− (X2(n−1)−θ2)e−κ2∆t)2

σ2
2 (1− e−2κ2∆t)

−2ρ
√

κ1κ2

(X1(n)−θ1− (X1(n−1)−θ1)e−κ1∆t)(X2(n)−θ2− (X2(n−1)−θ2)e−κ2∆t)

σ1σ2
√
(1− e−2κ1∆t)(1− e−2κ2∆t)

+
2

(1−ρ2)

√
κ1κ2

N

∑
i=1

{
(X1(n)−θ1− (X1(n−1)−θ1)e−κ1∆t)(X2(n)−θ2− (X2(n−1)−θ2)e−κ2∆t)

σ1σ2
√
(1− e−2κ1∆t)(1− e−κ2∆t)

}
.

(6.2)

Therefore, by simplifying:
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∂L
∂ρ

=
Nρ

(1−ρ2)
− 2ρ

(1−ρ2)2

N

∑
i=1

{
κ1(X1(n)−θ1− (X1(n−1)−θ1)e−κ1∆t)2

σ2
1 (1− e−2κ1∆t)

+
κ2(X2(n)−θ2− (X2(n−1)−θ2)e−κ2∆t)2

σ2
2 (1− e−2κ2∆t)

+
4ρ

(1−ρ2)2

√
κ1κ2

N

∑
i=1

{
(X1(n)−θ1− (X1(n−1)−θ1)e−κ1∆t)(X2(n)−θ2− (X2(n−1)−θ2)e−κ2∆t)

σ1σ2
√

(1− e−2κ1∆t)(1− e−κ2∆t)

}

+
2

(1−ρ2)

√
κ1κ2

N

∑
i=1

{
(X1(n)−θ1− (X1(n−1)−θ1)e−κ1∆t)(X2(n)−θ2− (X2(n−1)−θ2)e−κ2∆t)

σ1σ2
√

(1− e−2κ1∆t)(1− e−κ2∆t)

}
.

(6.3)

Equating ∂L
∂ρ

to zero, gives the following reduced form:

Nρ

(1−ρ2)
− 2ρ

(1−ρ2)2

N

∑
i=1

{
κ1(X1(n)−θ1− (X1(n−1)−θ1)e−κ1∆t)2

σ2
1 (1− e−2κ1∆t)

+
κ2(X2(n)−θ2− (X2(n−1)−θ2)e−κ2∆t)2

σ2
2 (1− e−2κ2∆t)

+
4ρ

(1−ρ2)2

√
κ1κ2

N

∑
i=1

{
(X1(n)−θ1− (X1(n−1)−θ1)e−κ1∆t)(X2(n)−θ2− (X2(n−1)−θ2)e−κ2∆t)

σ1σ2
√
(1− e−2κ1∆t)(1− e−κ2∆t)

}

+
2

(1−ρ2)

√
κ1κ2

N

∑
i=1

{
(X1(n)−θ1− (X1(n−1)−θ1)e−κ1∆t)(X2(n)−θ2− (X2(n−1)−θ2)e−κ2∆t)

σ1σ2
√
(1− e−2κ1∆t)(1− e−κ2∆t)

}
= 0.

(6.4)

Multiplying throughout by (1−ρ2)2, and simplifying:
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Nρ(1−ρ
2)−2ρ

N

∑
i=1

{
κ1(X1(n)−θ1− (X1(n−1)−θ1)e−κ1∆t)2

σ2
1 (1− e−2κ1∆t)

+
κ2(X2(n)−θ2− (X2(n−1)−θ2)e−κ2∆t)2

σ2
2 (1− e−2κ2∆t)

+
√

κ1κ2
{

4ρ
2 +2(1−ρ

2)
}

N

∑
i=1

{
(X1(n)−θ1− (X1(n−1)−θ1)e−κ1∆t)(X2(n)−θ2− (X2(n−1)−θ2)e−κ2∆t)

σ1σ2
√
(1− e−2κ1∆t)(1− e−κ2∆t)

}
= 0,

(6.5)

which can be written as follows in cubical form:

Nρ−Nρ
3−2ρ

N

∑
i=1

{
κ1(X1(n)−θ1− (X1(n−1)−θ1)e−κ1∆t)2

σ2
1 (1− e−2κ1∆t)

+
κ2(X2(n)−θ2− (X2(n−1)−θ2)e−κ2∆t)2

σ2
2 (1− e−2κ2∆t)

+2ρ
2√

κ1κ2

N

∑
i=1

{
(X1(n)−θ1− (X1(n−1)−θ1)e−κ1∆t)(X2(n)−θ2− (X2(n−1)−θ2)e−κ2∆t)

σ1σ2
√
(1− e−2κ1∆t)(1− e−κ2∆t)

}

+2
N

∑
i=1

{
(X1(n)−θ1− (X1(n−1)−θ1)e−κ1∆t)(X2(n)−θ2− (X2(n−1)−θ2)e−κ2∆t)

σ1σ2
√
(1− e−2κ1∆t)(1− e−κ2∆t)

}
= 0,

(6.6)

Dividing by −N, the final result for ρ is as follows:

ρ
3− 2

N
ρ

2
N

∑
i=1

{
√

κ1κ2
(X1(n)−θ1− (X1(n−1)−θ1)e−κ1∆t)(X2(n)−θ2− (X2(n−1)−θ2)e−κ2∆t)

σ1σ2
√

(1− e−2κ1∆t)(1− e−κ2∆t)

}

+
ρ

N

[
N

∑
i=1

{
κ1(X1(n)−θ1− (X1(n−1)−θ1)e−κ1∆t)2

σ2
1 (1− e−2κ1∆t)

+
κ2(X2(n)−θ2− (X2(n−1)−θ2)e−κ2∆t)2

σ2
2 (1− e−2κ2∆t)

−N

− 2
N

N

∑
i=1

{
√

κ1κ2
(X1(n)−θ1− (X1(n−1)−θ1)e−κ1∆t)(X2(n)−θ2− (X2(n−1)−θ2)e−κ2∆t)

σ1σ2
√

(1− e−2κ1∆t)(1− e−κ2∆t)

}
= 0.

(6.7)

6.1.2 Results

The conclusion of the calibration process for stochastic correlation leads us to the results in Table 6.1. These are the

best parameters, or optimal values, of the constants, κ1, κ2, θ1, θ2, σ1 and σ2.

The statistical data of the stochastic correlation ρbest is given in table 6.2. The time series of the best correlation is

shown in figure 6.1.
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κ1 κ2 θ1 θ2 σ1 σ2
0.0081 0.0068 1.7837 1.8490 -0.0342 -0.0482

Table 6.1: Best Parameters choosing from maximizing the loq-likelihood through ρmax

mean std skewness kurtosis min max
-0.0286 0.0616 -3.8834 19.9427 -0.3647 0.1145

Table 6.2: Data Statistics of ρbest

6.2 Construction of Time Series for the Correlation by Daily Change of Re-

gression

This section constructs the stochastic correlation time series using the daily change of regression method. The process

comprises of the undermentioned steps.

1. For a given time frame ηT = 30, we use the daily change of regression at time t is used using lagged future

prices X1(t) and X2(t) , i.e. the previous days future prices X1(t−∆t) and X2(t−∆t). The regression equations

are as follows

∆X1(t) = X1(t)−X1(t−∆t) = a1 +b1X1(t−∆t)+ ε1(t), (6.8)

∆X2(t) = X2(t)−X2(t−∆t) = a2 +b2X2(t−∆t)+ ε2(t). (6.9)

2. For a given time frame ηT = 30, the correlation coefficient ρ(t) is calculated by the following formula between

ε1(t) and ε2(t), given as follows:

ρ(t) =
∑

ηT
i=1(ε1(t− i∆t)− ε1(t))(ε2(t− i∆t)− ε2(t))√

∑
ηT
i=1(ε1(t− i∆t)− ε1(t))2(ε2(t− i∆t)− ε2(t))2

, (6.10)

where ε1(t) = 1
ηT

∑
ηT
i=1 ε1(t− i∆t) and ε2(t) = 1

ηT
∑

ηT
i=1 ε2(t− i∆t).

Then we move time next to (t +∆t) and so on to retrieve a time series of the correlation coefficient.

Statistics Mean Std.Dev Skewness Kurtosis Min Max
ρ(t) 0.7160 0.2211 -2.2740 7.4322 -0.2255 0.8500

Table 6.3: Statistical summary of Correlation time series

Figure 6.2 shows the correlation between two log future prices of our natural gas assets. The correlation coefficient
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Figure 6.1: Time Series of Stochastic Correlation between UN-dawn and TCP-Iroquois NG-FP

series is presented in Figure 6.2 below which shows a more pronounced cyclicality in the data, compared to Figure 6.1.

In this case, the fluctuation or correlation seems to be higher, with a natural convergence towards perfectly positive

correlation. Table 6.3, presents the summary statistics for this data series also reflects this information. The daily

change or regression method presents a series of correlation between futures prices where, on average, there is a high

positive correlation. The density function for the correlation time series ρ(t) has negative skewness and consider to

have a fat tail. The average correlation between Union Gas Dawn Hub and TCPL-Iroquois natural gas future pricing

is 0.7160. With a much higher mean, and standard deviation, and a greater range of values, between −0.22 and 0.85,

it is safe to conclude that there is greater variation in the data series generated through the daily change of regression

method.

6.2.1 Stochastic Correlation via Jacobi Process

Definition 6.1. The Jacobi Process

Let Y (t) be the Jacobi process solution of the following SDE

dY (t) = κ(θ −Y (t))dt +σ
√

Y (t)(1−Y (t))dW (t), (6.11)

with κ > 0 , σ > 0, 0 < θ < 1 and W (t) is a standard Brownian motion, unrelated with W1(t) and W2(t) defined in

45



Figure 6.2: Correlation between the log future prices of UN-dawn and TCP-Iroquois Natural gas

(4.18) and (4.19). This is a stationary process with a value ranging between 0 and 1. Where κ is the mean-reverting

parameter, θ is the mean of the process and σ is the volatility coefficient.

6.2.2 Construction Of Jacobi Process

In Figure 6.2, we plot the rate of change of correlation ρ(t) with a time difference of ηT = 30. The graph we can

clearly indicates that the correlation between future prices changes unexpectedly with time and that it does not remain

constant. However, the correlation exhibits strong mean-reversion features, as presented in Figures 6.1 and 6.2. Cor-

relation ρ is meant to be restricted between −1 and 1, according to the Jacobi process the interval is transformed to

(0,1) by using p = 2Y −1. The correlation series as a Jacobian process, ranging from ρm and ρM can be expressed as:

ρ(t) = ρm +(ρM−ρm)Y (t), (6.12)

where Y (t) is defined by (6.11).

Following [41] it is ensured that the corresponding condition will make boundaries 0 and 1 unattainable for the process

Y (t) :

σ2

2κ
≤ θ ≤ 1− σ2

2κQ ,
σ2

2κQ ≤ θ
Q ≤ 1− σ2

2κQ . (6.13)
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6.2.3 Jacobian Solution Using Change of Variables

Normally there is no closed-form expression for the transition density function for the Jacobi process [47]. However,

we can use a change of variables and approximate the transition density function of the Jacobi process as follows:

Y (t) = sin2
Θ(t); Θ(t) = sin−1

√
Y (t), Θi(t) ∈ [0,

π

2
], (6.14)

and

ρi ∈ [−1,1], Yi =
ρi +1

2
∈ [0,1], ρi = 2Yi−1, (6.15)

with

dΘ

dY
=

1
sin2Θ

;
d2Θ

dY 2 =−2cos2Θ

sin3 2Θ
. (6.16)

Now using Ito’s Lemma, as defined in Chapter 2, the following result is derived:

dΘ(t) =
1

sin2Θ(t)

{
κ(Θ(t)− sin2

Θ(t))dt +
σ

2
sin2Θ(t)dW (t)

}
− σ2 cos2Θ(t)

4sin2Θ(t)
dt. (6.17)

This can be rearranged as:

dΘ(t) =
σ2

4

[
(A− 1

2
)cotΘ(t)− (B− 1

2
) tanΘ(t)

]
dt +

σ

2
dW (t), (6.18)

where A and B are constants.

6.2.4 Calibrating the Jacobi Process

A transition density function is required in order to estimate the Jacobi process. To obtain an approximation, the

Backward Euler’s method is employed then the loglikelihood method is used to calibrate.

Definition 6.2. Backward Euler’s Method

A Backward Euler’s Method also known as the Implicit Euler’s Method, is stated as

dy
dt

= F(t,y),

y(0) = y0

yn+1− yn

∆t
= F(tn+1,yn+1).

(6.19)
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Now we will calibrate this process using Backward Euler’s Method as follows:

g(Θi+1) = Θi+1−
σ2

4
∆t
[
(A− 1

2
)cotΘi+1− (B− 1

2
) tanΘi+1

]
= Θi +

σ2

2
∆tZi = Θi + σ̂Zi,

(6.20)

where σ̂ = σ

2 ∆t.

Let

g(Θ) = Θ− σ̂
2
[
(A− 1

2
)cotΘ− (B− 1

2
) tanΘ

]
, (6.21)

and

g
′
(Θ) = 1+ σ̂

2
[
(A− 1

2
)csc2

Θ+(B− 1
2
)sec2

Θ

]
. (6.22)

The probability density function is defined as:

P[Θi+1 ≤Θ |Θ = Θ
′
] = P[g(Θi+1)≤ g(Θ) |Θ = Θ

′
]

= P[Θ
′
+ σ̂Zi ≤ g(Θ)]

= P[Zi ≤
g(Θ)−Θ

′

σ̂
]

= Φ(
g(Θ)−Θ

′

σ̂
),

(6.23)

so

PΘi+1|Θi(Θ,Θ
′
) =

g
′
(Θ)

σ̂
Φ(

g(Θ)−Θ
′

σ̂
). (6.24)

Using the maximum log-likelihood defined in section 5.2, the corresponding function becomes:

L =
N

∏
i=1

g
′
(Θi+1)

σ̂
Φ(

g(Θ)−Θ
′

σ̂
)

=
N

∏
i=1

1√
2πσ̂2

g
′
(Θi+1)

σ̂
exp(− 1

2σ̂2 (g(Θi+1)−Θ
′
i)

2).

(6.25)

With a logarithmic transformation:
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LL = logL =
N

∑
i=1

[
log(

1
2πσ̂2 )

1/2 + logexp(− 1
2πσ̂2 (g(Θi+1)−Θ

′
i)

2)+ log(
g
′
(Θi+1)

σ̂
)

]

= log(
1

2πσ̂
)N/2− 1

2σ̂2

N

∑
i=1

(g(Θi+1)−Θ
′
i)

2 +
1
σ̂

N

∑
i=1

log(g
′
(Θi+1)),

(6.26)

where,

(g(Θi+1)−Θ
′
i)

2 = [Θi+1− σ̂
2
{
(A− 1

2
)cotΘi+1− (B− 1

2
) tanΘi+1

}
−Θ

′
i]

2

= Θ
2
i+1 + σ̂

4
{
(A− 1

2
)cotΘi+1− (B− 1

2
) tanΘi+1

}2

+Θ
′2
i

−2Θi+1σ̂
2
{
(A− 1

2
)cotΘi+1− (B− 1

2
) tanΘi+1

}
−2Θi+1Θ

′
i

+2Θ
′
iσ̂

2
{
(A− 1

2
)cotΘi+1− (B− 1

2
) tanΘi+1

}
.

(6.27)

Therefore,

LL =−N
2

log(2πσ̂
2)− 1

2σ̂2

[
Θ

2
i+1 +Θ

′2
i + σ̂

4
{
(A− 1

2
)cotΘi+1− (B− 1

2
) tanΘi+1

}2

−2Θi+1σ̂
2
{
(A− 1

2
)cotΘi+1− (B− 1

2
) tanΘi+1

}
−2Θi+1Θ

′
i

+2Θ
′
iσ̂

2
{
(A− 1

2
)cotΘi+1− (B− 1

2
) tanΘi+1

}
+

1
σ̂

N

∑
i=1

log
[

1+ σ̂
2
{
(A− 1

2
)csc2

Θi+1− (B− 1
2
)sec2

Θi+1

}]
.

(6.28)

Differentiating Equation (6.29) with respect to the unknown parameters A, B and σ̂ , gives:

∂LL
∂A

=− 1
2σ̂2

N

∑
i=1

[
2σ̂

4(A− 1
2
)cot2 θ −2(B− 1

2
)cotθ tanθ

−2θi+1σ̂
2 cotθ +2σ̂

2
θ
′
i cotθ +

1
σ̂

N

∑
i=1

log(σ̂2 csc2
θ),

(6.29)

∂LL
∂B

=− 1
2σ̂2

N

∑
i=1

[
2σ̂

4(B− 1
2
) tan2

θ −2(A− 1
2
)cotθ tanθ

+2θi+1σ̂
2 cotθ +2σ̂

2
θ
′
i tanθ +

1
σ̂

N

∑
i=1

log(σ̂2 sec2
θ),

(6.30)
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∂LL
∂ σ̂

=− n
σ̂
+

1
σ̂3

N

∑
i=1

[
θ

2
i+1 +θ

′2
i + σ̂

4
{
(A− 1

2
)cot2 θ +(B− 1

2
) tan2

θ −2(A− 1
2
)(b− 1

2
)cotθ tanθ

}
−2(θi+1)σ̂

2
{
(A− 1

2
)cotθ − (B− 1

2
) tanθ

}
−2(θi+1)(θ

′
i )+2σ̂

2
θ
′
i

{
(A− 1

2
)cotθ − (B− 1

2
) tanθ

}
− 1

2σ̂2

N

∑
i=1

log

[
1+ σ̂

2
[
(A− 1

2
)csc2

θ +(B− 1
2
)sec2

θ

]
− 1

2σ̂2

N

∑
i=1

{
4σ̂

3
(
(A− 1

2
)cot2 θ +(B− 1

2
) tan2

θ

−2(A− 1
2
)(B− 1

2
)cotθ tanθ −4θi+1σ̂

(
(A− 1

2
)cotθ − (B− 1

2
) tanθ

)
+4θ

′
i σ̂

[
(A− 1

2
)cotθ − (B− 1

2
) tanθ

]
+

1
σ̂

N

∑
i=1

(
2σ̂
(
(A− 1

2 )csc2 θ +(B− 1
2 )sec2 θ

)
1+ σ̂2

(
(A− 1

2 )csc2 θ +(B− 1
2 )sec2 θ

)) .

(6.31)

These are three equations with three unknowns, where equating to zero can provide the optimal values for the

unknown parameters.

6.2.5 Simulating the Jacobi Process

Definition 6.3. Newton-Raphson’s Method

Newton-Raphson’s method is established on the simple idea of linear approximation. Let f (x) be a well-mannered

function, and let r be a root of the equation f (x) = 0. We begin with an estimate of x0 of r. Assuming xn is the current

estimate, the general equation for Newton-Raphson’s method suggests that the estimated xn+1 is given by:

xn+1 = xn−
f (xn)

f ′(xn)
, (6.32)

The Newton–Raphson’s method is used to solve the Backward Euler’s Method. Initial guess ϑ1 we will get it

through Beta distribution. Next our function f (Θi+1) and f
′
(Θi+1) are defined in (6.21) and (6.22) respectively:

f (Θi+1) = Θi+1− σ̂
2
[
(A− 1

2
)cotΘi+1− (B− 1

2
) tanΘi+1

]
−Θi− σ̂Zi, (6.33)

and

f
′
(Θi+1) = 1+ σ̂

2
[
(A− 1

2
)csc2

Θi+1 +(B− 1
2
)sec2

Θi+1

]
. (6.34)

Therefore, using Newton Raphson’s Methods in equation (6.31) aand replacing the unknown values, a solution for Θ

is obtained.

Θi+1 = Θi−
Θi+1− σ̂2

[
(A− 1

2 )cotΘi+1− (B− 1
2 ) tanΘi+1

]
−Θi− σ̂Zi

1+ σ̂2
[
(A− 1

2 )csc2 Θi+1 +(B− 1
2 )sec2 Θi+1

] . (6.35)
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6.2.6 Results

A B σ̂

2.4142 2.4142 1.0000

Table 6.4: Unknown parameters of Jacobi Process

The following table 6.4 shows the values of unknown parameters A, B, and σ̂ of the Jacobi Process estimated

using the maximum likelihood method.

Statistics Mean Std.Dev Skewness Kurtosis Min Max
ρ(t) 0.5063 0.2555 -1.0052 5.1957 -0.5937 0.9777

Table 6.5: Statistical summary of Correlation time series

Figure 6.3: Time Series of Stochastic Correlation using Jacobi Process

Figure 6.3 illustrates the correlation series generated by the Jacobi process and its stochasticity. This seems to be

little to no cyclicality in this series, and it seems to be more random. Unlike the previous series, the Jacobi process

series tends to revert to the mean, represented in the figure by the horizontal line.

Table 6.5 presents summary statistics for correlation time series estimated through the Jacobi process. The long-

term average for this data series is 0.51, which lies between the averages of 0.11 and 0.72 of the earlier correlation

series. There is greater variation in this series, compared to previous ones, with a higher standard deviation and a

greater range, with a minimum of −0.59 and a maximum value of 0.98.

In Figure 6.4 we see the difference(error) between the stochastic correlation versus the estimated time series of

correlation generated by the Jacobi process and it’s very stochastic while in Figure 6.5 we see the
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Figure 6.4: Error between Time Series of Stochastic Correlation and other using Jacobi

Figure 6.5: Time Series of Stochastic Correlation and correlation using Jacobi Series
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Chapter 7

Spread Option Pricing

In this chapter, we will discuss option pricing models, which are useful mathematical models designed to value the

options. An option is a contract between the two counterparties that gives a right to one party (not an obligation)

to buy or sell a particular asset at a prearranged price before or at the expiration date. There are two main types of

options: Calls and Puts, in this chapter we’ll discuss only call options. Options can also be categorized according

to their exercised time: European or American. European options are traded at a reduced price as compared to their

American counterparts. Nowadays, the options market is not restricted to only basic call or put options but there’s a

collection of multi-dimensional options for investors, such as sparks, cracks, locational spreads, etc. These kinds of

option contracts have a wide range of applications in the financial industry as one can lower their risk when the stock

moves exceptionally against them. Spread options, being the simplest of multi-dimensional options, attained a special

place in the finance literature.

Spread options represent an unusual challenge due to unachievable analytical solutions for most market models. Mar-

grabe [44] developed a closed-formed formula for the value of the option when exchanging one risky asset for another.

The formula he derived is based on the Black-Scholes model. So following the footsteps of Margarbe’s formula we

will produce a closed form for our Locational Spread options with constant correlation. Then we discuss the Monte

Carlo simulation for stochastic correlation. Since Monte Carlo is a more refined method to value an option and it helps

us to demonstrate the impact of risk and uncertainty in prediction and forecasting models. In this method, we simulate

the possible spot prices and later used them to find the discounted expected option payoff for stochastic correlation.

Lastly, we will compare our results and predict how they help in the context of stochastic correlation.
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7.1 The Margrabe Formula

7.1.1 Definition

The Margrabe formula gives a first approximation of the cost of the spread option and can be exercised as the baseline

for more complex models [43]. In general, this is an empirical formula. In this, we assume that spot prices S1 and S2

follow geometric Brownian motion: dSi(t) = Si(t)[rdt+σidWi(t)], i= 1,2, under the money-market measure, whereas

the correlation ρ between the Brownian motions is assumed to be a constant, with dW1dW2 = ρdt. Now considering,

K = 0, the value of the spread option V (T,S1(0),S2(0)) is given by:

V (T,S1(0),S2(0)) = e−rT [(S1(T )−S2(T ),0)]
+ , (7.1)

or it can be written as:

V = e−rT [S1(0)N(d1)−S2(0)N(d2)] , (7.2)

whereas N(d1)and N(d2) are probabilities, estimated by using a cumulative standardized normal distribution and d1

and d2 is given as:

d1,2 =
ln(S1(0)/S2(0))± 1

2 σ̂2

σ̂
, (7.3)

with

σ̂
2 =Var [σ1W1(T )−σ2W2(T )] = T (σ2

1 −σ
2
2 −2ρσ1σ2). (7.4)

Margrabe’s formula is basically an application of Black and Scholes’s formula considering S1 as the underlying asset

and S2 as the strike, with the equivalent volatility σ̂ the variance of ln[S1/S2]. The result can be easily proven by using

a change of numeraire.

7.1.2 Margrabe’s Formula for two log normally distributed variables

Suppose that Si(T ) = erT eXi , with Xi ∼ N(mi−b2
i /2,b2

i ) under some risk-neutral measure Q whereas the correlation

between X1 and X2 is ρ . The swap (exchange) value is given as follows:

V = e−rTEQ
[
(S1(T )−S2(T ))+

]
= EQ

[
(eX1 − eX2)+

]
= EQ

[
eX2(eX1−X2 −1)+

]
.

(7.5)

54



We can write X2 = m2− b2
2/2+ b2z2 and X1 = m1− b2

1/2+ b1(ρz2 + ρ̄z1), where z1 and z2 are iid N(0,1) and ρ̄ =√
(1−ρ2). Then

Y = X1−X2 = m1−m2 +(b2
2−b2

1)/2+b1ρ̄z1 +(b1ρ−b2)z2

= m1−m2 +(b2
2−b2

1)/2− b̂ẑ.
(7.6)

Since X1≥X2 when ẑ≤ m1−m2
b̂

+
b2

2−b2
1

zb̂
, where as b̂=

√
b2

1 +b2
2−ρb1b2 and ẑ=− 1

b̂
(b1ρ̄z1+(b1ρ−b2)z2)∼ N(0,1).

In terms of ẑ, we can write: z2 =
b1ρ−b2

b̂
ẑ+ ρ̄b1

b̂
ŵ, for some ŵ ∼ N(0,1), independent of ẑ. Then:

X2 = m2−
b2

2
2
− b2(b1ρ−b2)

b̂
ẑ+

ρ̄b1b2

b̂
ŵ. (7.7)

We can now calculate the option value with z∼ N(0,1) and w∼ N(0,1) as follows:

V =
∫

∞

−∞

∫
∞

−∞

em2−b2
2/2− b2(b1ρ−b2)

b̂
ẑ+ ρ̄b1b2

b̂
w
(

em1−m2+
b2
2−b2

1
2 −1− b̂z

)+

ϕ(z)ϕ(w)dzdw

=
∫

∞

−∞

(
em2−b2

2/2+ ρ̄b1b2
b̂

w
)

ϕ(w)dw+
∫ e

m1−m2
b̂

+
b2

2−b2
1

2b̂

−∞

(
em1−m2+

b2
2−b2

1
2 +(

−b2(b1ρ−b2)
b̂

−b̂)z− e
−b2(b1ρ−b2)

b̂
z

)
ϕ(z)dz.

(7.8)

Now simplifying −b2(b1ρ−b2)− b̂ = b1(b2ρ−b1) and solving the integral we get the following result:

V = em2−b2
2/2+

ρ̄2b2
1b2

2
2b̂2

em1−m2+
b2
2−b2

1
2

∫ e
m1−m2

b̂
+

b2
2−b2

1
2b̂

−∞

e
b1(b2ρ−b1

b̂ ϕ(z)dz−
∫ e

m1−m2
b̂

+
b2

2−b2
1

2b̂

−∞

e
b1(b2ρ−b1

b̂ ϕ(z)dz


= em2−b2

2/2+
ρ̄2b2

1b2
2

2b̂2 (em1−m2+
b2
2−b2

1
2 e

b2
1(b2ρ−b1)

2

2b̂2 N
(

m1−m2

b̂
+

b2
2−b2

1

2b̂
− b1(b2ρ−b1

b̂

)
− e

b2
2(b1ρ−b2)

2

2b̂2 N
(

m1−m2

b̂
+

b2
2−b2

1

2b̂
− b1(b2ρ−b1

b̂

)
).

(7.9)

Now,

(m2−b2
2 +

ρ̄b2
1b2

2
2b̂2 +m1−m2 +

b2
2−b2

1
2 +

b2
1(b2ρ−b1)

2

2b̂2 ) = (m1 +
b2

1
2b̂2 (ρ̄

2b2
2− b̂2 +((b2ρ−b1)

2)) = m1

and

(m2−
b2

2
2 +

ρ̄2b2
1b2

2
2b̂2 +

b2
2(b1ρ−b2)

2

2b̂2 ) = m2.

Thus the final value is:

V = em1N(
m1−m2

b̂
+

b̂
2
)− em2N(

m1−m2

b̂
− b̂

2
). (7.10)

where N represents the cumulative distribution function of the standard normal distribution.
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7.1.3 Margrabe’s Formula for Ornstein-Uhlenbeck Process

As we know that the mean and variance of Ornstein-Uhlenbeck process are: µ = lnS(0)e−κt + θ ∗(1− e−κt) and

σ̂2 = σ2 (1−e−2κt )
2κ

. So the value of the swap option with two underlying assets X1 = lnS1 and X2 = lnS2 will be, by

using (7.10):

V = eµ1N

 µ1−µ2√
σ̂2

1 + σ̂2
2 −2ρσ̂1σ̂2

+

√
σ̂2

1 + σ̂2
2 −2ρσ̂1σ̂2

2


− eµ2N

 µ1−µ2√
σ̂2

1 + σ̂2
2 −2ρσ̂1σ̂2

−

√
σ̂2

1 + σ̂2
2 −2ρσ̂1σ̂2

2

 .

(7.11)

Here ρ is the correlation between the two above processes. In the simplified form, we can write the pay-off function

as:

V = eµ1N(d1)− eµ2N(d2), (7.12)

where

d1 = (
µ1−µ2√

σ̂2
1 + σ̂2

2 −2ρσ̂1σ̂2

+

√
σ̂2

1 + σ̂2
2 −2ρσ̂1σ̂2

2
) (7.13)

and

d2 = (
µ1−µ2√

σ̂2
1 + σ̂2

2 −2ρσ̂1σ̂2

−

√
σ̂2

1 + σ̂2
2 −2ρσ̂1σ̂2

2
). (7.14)

7.1.4 Results

In Figure 7.1 we conclude that Spread option pricing got from Margrabe’s formula decreases as rho increases from -1

to 1. Here we kept other parameters constant and Margrabe becomes a function of rho. The parameters used in this

model are κ1 = 1.000e−03, κ2 = 1.000e−03, θ1 = 1.00, θ2 = 1.00 and σ1 = 2.00, σ2 = 4.00.

Figure 7.1: Spread Option pricing with constant Rho ρ going from -1 to 1 through Margrabe’s formula with κ1 =
1.000e−03, κ2 = 1.000e−03, θ1 = 1.00, θ2 = 1.00 and σ1 = 2.00, σ2 = 4.00.
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7.2 Monte Carlo Simulations

7.2.1 Definition

Monte Carlo option pricing is a process frequently used in Mathematical Finance to calculate the value of an option

with multiple sources of uncertainty or with complicated features which would make it difficult to evaluate through

a straightforward Black-Scholes style or any lattice-based computation. Monte Carlo methods are ideal for pricing

options where the payoff is dependent on paths, for example, Asian option or the Spread option. Monte Carlo simula-

tions turn out to be simple, flexible, and innovative. In this section, we use Monte Carlo methods to price the Spread

option with stochastic correlation.

Theoretically, Monte Carlo valuation depends on risk-neutral valuation. In it, the price of the option is its discounted

expected cost. The method is applied as follows:

1. We generate all possible large numbers of random price paths for the asset through simulation.

2. We calculate the corresponding exercise price of the option for each path.

3. We averaged these payoffs.

4. Then in the end discounted it to today’s value, which is the price of the option.

7.2.2 Mathematical Model

Here we consider the correlated Ornstein-Uhlenbeck process for stochastic variables at time t, X1(t) = lnS1(t) and

X2(t) = lnS2(t) with correlation ρ as follows, stated earlier in (4.18), (4.19) and (4.20) [70]:

dX1(t) = κ1[θ1−X1(t)]dt +σ1dW1(t), (7.15)

dX2(t) = κ2[θ2−X2(t)]dt +σ2dW2(t), (7.16)

with

dW1(t)dW2(t) = ρdt. (7.17)

7.2.3 Monte Carlo Simulations with Constant Correlation

These stochastic differential equations can be explicitly solvable and have the following solution in terms of stochastic

integrals, with (θ ∗ = θ −σ2/2κ) [71]:

X1(t) = X1(0)e−κ1T +(1− e−κ1T )θ ∗1 +σ1e−κ1T
∫ T

0
eκ1tdz1(t), (7.18)
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X2(t) = X2(0)e−κ2T +(1− e−κ2T )θ ∗2 +σ2e−κ2T
∫ T

0
eκ2tdz2(t). (7.19)

These variables X1(T ) and X2(T ) follow normal distribution with mean and variance as follows [72]:

E[X1(T )] = X1(0)e−κ1T +θ
∗
1 (1− e−κ1T ), Var[X1(T )] = (1− e−2κ1T ) · σ2

1
2κ1

, (7.20)

and

E[X2(T )] = X2(0)e−κ2T +θ
∗
2 (1− e−κ2T ), Var[X2(T )] = (1− e−2κ2T ) · σ2

2
2κ2

. (7.21)

In order to perform the simulation, it is important to get the discrete-time equation for the above processes (7.15)

and (7.16) [72], we let ti = t0 + i∆t, with i = 0,1,2, · · · ,N where k = 1,2 and i = 0,1, · · · ,N, are as follows:

X1(i) = e−κ1∆tX1(i−1)+(1− e−κ1∆t)θ ∗1 +σ1

√
(1− e−2κ1∆t)

2κ1
Z1, (7.22)

X2(i) = e−κ2∆tX2(i−1)+(1− e−κ2∆t)θ ∗2 +σ2

√
(1− e−2κ2∆t)

2κ2
Ẑ2, (7.23)

where

Ẑ2 = ρZ1 +
√
(1−ρ2)Z2, (7.24)

with random variables Z1, Z2 and Ẑ2 ∼ N(0,1).

The payoff of Locational spread option with Monte Carlo Simulation is:

V = E[e−rtmax(X1−X2,0)]. (7.25)

7.2.4 Results of Monte Carlo Simulations with constant Correlation

In figure 7.2, we can see that with constant correlation ρ = 0.7030 we get the value of locational spread option with

Margrabe formula is V = 1.6483 which lies in the 95% confidence interval of Monte Carlo simulation with constant

correlation, which is [1.5601,1.6681]. The other parameters we used to evaluate our values are κ1 = 0.0056,κ2 =

0.0141,θ1 = 1.1772, θ2 = 0.8115 and σ1 = 0.1888 σ2 = 0.2345.
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Figure 7.2: Spread Option using Monte Carlo and Margrabe’s Formula with constant Correlation ρ = 0.7030 with
κ1 = 0.0056, κ2 = 0.0141, θ1 = 1.1772, θ2 = 0.8115 and σ1 = 0.1888, σ2 = 0.2345.

7.2.5 Monte Carlo Simulations with Stochastic Correlation

In order to get Monte Carlo simulations with stochastic correlation for Spread options we model the stochastic corre-

lation as a Jacobi process:

ρ(t) = ρm +(ρM−ρm)Y (t), (7.26)

where Y (t) is defined as:

dY (t) = κ(θ −Y (t))dt +σ
√

Y (t)(1−Y (t))dW (t), (7.27)

These equations along with 7.22, 7.23, 7.24 and 7.26 gives us the Monte Carlo spread option value with stochastic

correlation.

7.2.6 Results with Stochastic Correlation

Figure 7.3 depicts the comparison of spread option value with constant correlation with spread option value with

average stochastic correlation with 5 billions samples. Here we can see the value of spread option with constant

correlation and spread option with stochastic correlation goes down as correlation moves from -1 to 1. Also, we can
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Figure 7.3: Spread Option pricing with constant correlation and stochastic correlation

Figure 7.4: Comparison between Implied Correlation and Average Stochastic Correlation
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see that the value of spread option with stochastic correlation lies in the range of that value of spread option with

constant correlation. The parameters used to derive these results are shown in the following Table 7.1.

κ1 κ2 θ1 θ2 σ1 σ2
1.000e-03 1.000e-03 2.000 2.000 4.000 8.000

Table 7.1: Parameters choose to find the Spread Option Valuation

Later, we do another test as the check how stochastic correlation works in general. For this we calculate implied

correlation with comparison to Stochastic correlation and figured out how it turns out to be. Figure 7.4 is related to

implied correlation verses the average stochastic correlation. From the graph we can see that as Implied correlation

behaves similar to average stochastic correlation as it goes from -1 to 1.

However, some differences are apparent. It is clear that the implied correlation calculated from Monte Carlo

estimates using stochastic correlation will tend to be below the constant correlation values (using average correlation)

when the Margrabe formula is a concave-up function of the correlation, and above those values when the formula is

concave-down.
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Chapter 8

Conclusion

This thesis introduces the idea of a stochastic correlation between the underlying energy commodities to model prices

of the locational spread options. The locational spread option is based on natural gas, which is widely available in

Alberta and is one of Canada’s biggest export, and is the energy commodity. The spread is calculated by taking a

difference between the prices found in Dawn hub and Iroquois.

These assets are modeled for constant correlation using Ornstein-Uhlenbeck process and for stochastic correlation

using the Jacobi process. To evaluate the unknown parameters of locational spread commodities, the model is first

calibrated with constant correlation; using two methods: the multivariate linear regression and the maximum log-

likelihood. The comparison of these techniques showed that they exhibit the same results as expected.

Similar to constant correlation, we calibrate the model with stochastic correlation using two techniques as well; the

reduced-form optimization technique and the Jacobi process. For the Jacobi process, the backward Euler’s method is

employed to approximate the transition density function, and then Newton Raphson’s method to solve the equations to

get unknown parameters. The results from these two methods predict the existence of stochastic correlation differently.

Finally, Margrabe’s formula for two log-normally distributed asset prices is adopted to give a closed-form solution

for locational spread options with constant correlation. The findings from this process indicate that its easier to

evaluate locational spread option valuation. The results from Margrabe’s formula are then compared with the Monte

Carlo simulations for spread option pricing assuming constant correlation. The comparison suggests that the value of

Margrabe’s lies in the confidence interval of Monte Carlo with constant correlation. Then Monte Carlo simulations

are also employed for option pricing with stochastic correlation to check its impact on the pricing. These simulations

demonstrate the value of the spread option with stochastic correlation differs from the value that would be computed

using constant correlation (at the average value of the stochastic correlation), and that the difference depends on the

shape of the Margrabe formula at that point.
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Further research in this direction would proceed in various ways: firstly, we can use a modified Jacobi process to

model stochastic correlation as discussed in [34] or a more generalized stochastic process such as that recommended

in [35] which depends on the hyperbolic transformation with the hyperbolic tangent function of any mean-reverting

process with positive and negative values. Secondly in this thesis, we only got the estimated values of spread option

pricing but we didn’t compare them with market value. Thus, we can compare our results with market value and

explain the authenticity of the model.

Furthermore, the framework presented in this paper can have several different applications in three key areas;

different commodities, different financial instruments, and different locations. This thesis is restricted to the natural

gas commodities in Alberta. Further implementation of this model could potentially include locational spread options

in other energy commodities traded elsewhere on the US-Canada border, such as crude oil or petroleum. The model

has the potential to be implemented to other types of financial instruments or other types or styles of options contracts.

Moreover, the model could further be implemented in natural gas spread option pricing elsewhere in the world.
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