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Abstract 

Modeling of the W UMa binary star system TY Boo has been carried out with 

the Wilson-Devinnev program, to obtain solutions to the elements of the system. 

BVI light curves obtained at the Rothney Astrophysical Observatory, together with 

BVRI light curves obtained by D.H. Bradstreet at Kitt Peak National Observatory, 

and radial velocity data from the Dominion Astrophysical Observatory were used. 

The program was run in the Cyber 205 supercomputer of the University of Calgary. 

The O'Connell effect was observed in all light curves, together with other dis-

tortions, and studied by Fourier analysis. New elements were computed from the 

above mentioned observations together with all other previously published data. 

The asymmetries were successfully modeled with the use of homogeneous spots, 

one cool and one warm, near the equator of star 2. 

The results indicate that TY Boo is a shallow contact system, as confirmed by 

runs of the Wilson Devinney program in the semi-detached mode, with f=0.087(7). 

The mass ratio m2/ini - 2.084(3), where m1 is the mass of the star eclipsed during 

primary minimum, shows the hotter star to be the less massive one, making this a 

W-type W UMa system. The temperature of the hotter component was assumed 

to be 5623 K, appropriate for a G3V star; the temperature difference was found to 

be 395(5) K, satisfactorily consistent with the observed spectral type at primary 

minimum - G8 ± 1/10 spectral class. 
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Chapter 1 

Introduction 

It has been shown that a large fraction of the stars we observe are not single stars. 

Over 50 % of the stars within 5 pcs of the sun are double or multiple stars (Mihalas 

and Binney 1981) moving around a common center of mass. These stars are called 

binary stars. There is more that one can learn from such a pair as opposed to a 

single star, by studying the interaction that takes place between them. 

The most obvious effect is the eclipse phenomenon that occurs if the plane of 

the orbit of the stars is close to the line of sight of the observer. Here one star 

moves in front of the other blocking some of its light. If the observer records the 

brightness of the system at consecutive times, he can then obtain a light curve as 

shown in Figure 1.1. 

There are three types of light curves. The diagram shows the light curve of a 

detached system in which .the light remains constant most of the time except when 

one of the stars moves in front of the other, eclipsing it. At this point we see a 

rapid reduction in the amount of light until one star is in front of the other, then 

the light increases again as the eclipse ends. A second eclipse takes place half a 

period later, when the positions of the twb stars rverse. 

The difference between the shapes and depths of the two eclipses depends on 

the sizes and temperatures of the stars. The deeper minimum is called the primary 

minimum, and occurs when the star with the higher surface brightness is eclipsed 

1 
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V ., 

time 

Figure 1.1: Detached system light curve 

by' the other. The shallow minimum is called the secondary minimum. The fact 

that the light remains constant outside eclipse shows that the two stars are essen-

tially undistorted spheres. and that the light variation come only from the eclipses 

themselves. Light curves of this sort are often designated"Algol" light curves after 

the prototype. 

lithe two stars are closer together then the tidal forces can distort the surfaces 

of the stars into ablate spheroids. This distortion will manifest itself in the light 

curve since now there will be a continuous change of light as the exposed surface of 

the spheroid changes with respect to its position. The observer would see a change 

in the light of the system even outside the eclipses as the spheroids turn and expose 

different surface areas and brightnesses. The peak brightness OCCUS at phlas('S 0.25 

and 0.75 when no eclipseS take place. and the surface exposed is maximum. Such 
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Figure 1.2:. Semi-Detached system light curve 

light curves are referred to as "8 Lyrae" light curves after this archetype star. The 

light curve of such a system will now look like that in Figure 1.2. 

These systems are known as close binaries, since the distortion is only possible 

when the stars are close to each other. 

1.1 W UMa Stars 

In an extreme case. the surfaces of the stars can be so close together that exchange 

of material can take place through a bridge of matter running from one star to 

the other. This is a contact type binary. The "contact" designation refers to the 

physical circumstances of the system. The terni \\' UMa" refers to the light curves 

of the archetype systeni \V Ursae Majoris. in which the light continuously varies 
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Figure 1.3: Contact system light curve 

ana the eclipse depths are approximately equal. About 400 contact systems are 

known to date, and only about one-tenth have been reasonably studied. 

Because of the interaction that takes place certain parameters of the component 

stars in contact sysems have the same value. Since the outer envelope is shaped 

by both stars, the potential, the gravity darkening, albedo, and for many cases the 

limb-darkening (at a particular wavelength) are taken as equal. 

The components of a W UMa system are not identical. Usually sizes and 

temperatures will differ, although the contact between the stars will tend to force 

the temperatures to equilibrium through the exchange of material. If the larger 

star is the hotter. primary minimum occurs when this component is eclipsed by 

the smaller star. In such a case, the system is known as an A type \V UMa 

system. If the situation is such that primary minimum happens when the smaller 
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star is eclipsed by the larger and cooler component, the system is called a W type 

W UMa system. Another way to express this condition is that a transit during 

primary minimum would characterize an A type system, while an occultation at 

this minimum will correspond to a W type. If the inclination of the system is large 

enough for the eclipses to be total, then identification of subtype can be made by 

inspection of the light curve. If the eclipses are partial, or if no total eclipses take 

place, then spectroscopy is essential to determine the motion and relative masses 

of the components. 

1.2 TY Bootis 

The binary system known as TY Bootis seemed a suitable candidate for further 

study because of its variable light curve, its solar type spectrum, and because of the 

observed flares seen in Ca II by Milone (1986). A study of it would almost certainly 

result in a useful contribution to our knowledge of W UMa stars. TY Boo had 

been chosen earlier as a program star at the Rothney Astrophysical Observatory 

for displaying some asymmetry in its light curve. 

TY Boo was discovered by Guthnick and Prager (1926) and was originally 

cataloged as a 0 Lyrae system. The latter systems are characterized, however, 

by larger differences between the depths of the minima than are seen here (see 

Figure 1.2 for an example of a # Lyr type curve). The change in brightness was 

reported as being in the range 11.5— 12.O". 

TY Boo was extensively observed by R. Szafraniec (1948, 1949, 1959, 1951, 

1953, 1955. 1956, 1957. 1958, 1959. 1960, 1963, 1.966) who recorded several times 
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of minima. UBV light curves obtained in May 1969, with "nonrectiflable distor-

tions" were published by Carr (1972). The term "nonrectifiable distortions" refers 

to features in the light curve which indicate variability above and beyond the causes 

of light variation already discussed, and which can not be removed by following the 

technique described by Russell and Merrill (1952). The Russell-Merrill light curve 

analysis method calls for the removal of the sine terms in the Fourier representa-

tion of the light curve. Niarchos (1978) later analyzed these light curves with the 

"frequency domain" method. Samec and Bookmyer (1987) observed TY Boo on 

five nights beginning on 1986 June 5 U.T. with the 0.79 in reflector at Lowell Ob-

servatory. Independently of the, previous work Bradstreet (private communication 

1985) made high quality observations of TY Boo in 1985 with a 36-inch telescope 

at KPNO and carried out a preliminary solution. At the Rothney Astrophysical 

Observatory (hereafter referred to as RAO) of the University of Calgary, TY Boo 

has been part of the ongoing observing program since 1985. 

1.3 Analysis History 

In her study of a large set of observations, Szafraniec (1952) analyzed the basic 

characteristics of TY Boo. She described the asymmetry of the light curve, in-

dicating that the descending branch of both the primary and secondary minima 

had a smaller slope than the ascending branch. The difference in the maxima was 

also evident from the light curve published. To minimize systematic error, she also 

reworked all observations with the tracing paper method she had used on her own 

observations. 



In a later study, Samec and Bookmyer (1987) obtained a least-squares solution 

to the 0 - C (observed minus computed data points) of Szafraniec's study together 

with new observations, and recomputed the elements: P0=O.31714964(3) day and 

E,=24465S9.79O6(.t). However the 0— C curve is far from being smooth, and from 

the early visual observations they concluded that "two period changes have taken 

place in a 19-year interval". 

Carr (1972) attempted a light curve solution based on his observations. However 

he asserted that nonrectifiable distortions in the light curves limited the accuracy of 

his results. He found an orbital inclination of 7370, and suggested the components 

to be of spectral type G3 and G7. 

1.4 Aims 

It is the purppse of binary star research to shed light on the nature of these stars, 

especially the poorly understood ones, such as the W-type W UMa systems. With 

all the available data, a complete solution of one of these - TV Boo - was now 

possible. The four recent light curves together with the radial velocity observa-

tions (some of which were reported by Milone, Fry and Grillmair 1987) would be 

combined and studied using the Wilson-Devinney program. 

From the radial velocity data the mass ratio and other spectroscopic parameters 

are determinable. The inclination, relative brightnesses, sizes and other photomet-

ric elements would be obtained from the light curves. Preliminary values could 

then be improved by using the Wilson-Deviney program to compute differential 

corrections, which would be applied in an iterative fashion. 
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The anomalies present in both the radial velocity and light curve data made 

TY Boo an ideal. system in which to study the effects of such phenomena on 

the derived elements of the system, and the results would become an important 

contribution to the study of close binary stars. 



Chapter 2 

Photometric Observations and Reduction 

2.1 Observations 

Figure 2.1 shows a finding chart for TY Boo; it identifies the comparison and 

check stars used. The variable is located at a = 141158m473, S = 35°19'.8 (1950 

coordinates). 

The starting point for this study was a collection of light curves observed in 

the years 1985, 1986 and 1987 using the RADS system on the 0.4-rn telescope at 

RAO in Priddis. These are referred below as data sets LC 1, 3 and 4 respectively. 

RADS will be described in depth in a later Appendix. TY Boo was part of the RAO 

observing program of Milone carried out during this period by student observers 

J. Van Leeuwen, S.C. Griffiths, C. Rousseau and the author. The light curves were 

restricted to the B, V and I bandpasses as a compromise between full wavelength 

coverage and phase-limited integration times for this'short-period variable. All the 

times are converted into phase by subtracting the epoch (E0) and dividing by the 

period (F0). 

Another set of light curves was obtained by Bradstreet in the BVRI filter bands 

during 1985 (private communication) at Kitt Peak, with 0.9-rn telescope. These 

observations consist of a much larger set of points and are of a higher quality. 

From these data normal points were computed and used instead of the full set. 

The normal points light curves constitute data set LC 2. 

9 
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Table 2.1: Light curve sets. 

name JD +2446000 observer(s) bandpasses 
LC 1 228.3 RAO 13V1 

LC 2 229.3 Bradstreet I3VRI 

LC 3 560.0 RAO BVI 
LC 4 927.8 RAO BVI 

N 

S 

E 

S 
1? Boo 

. 

S 

Figure 2.1: Finding chart for TV Boo 
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The four sets of differential light curves are reproduced in Figures 2.2 through 

2.5 in luminosity units normalized to the higher maximum in each case. 

2.2 Light Curve Analysis 

The TY Boo light curves are typical of W UMa systems as the change in the light 

from the system is continuous. The beginnings and endings of the eclipses can be 

seen at about 0.2 phase on both sides of each minimum. 

Visual inspection of these light curves revealed the secondary minimum at pre-

cisely 0.5 phase units following the primary minimum. This, together with the 

widths of both eclipses being similar in width, indicated that the orbit is circular, 

a common condition in W UMa systems. 

It was also observed that the brightness of the system outside eclipse was dif-

ferent from one maximum to the other. This is known as the O'Connell effect, a 

name given the phenomenon by Wesselink and Milone (Milone 1968). The most 

important work on this phenomenon (formerly called the "periastron effect") was 

done by O'Connell (1951) and, independently, by Mergentaler (1950), who treated 

a much smaller volume of data. •In his paper, O'Connell defined Am as the mag-

nitude difference maximum11 - maximum1 where the subscripts I and II refer 

to the maximum following primary and secondary minima respectively; in this 

way Am would result positive for a system with a brighter maximum following 

the primary minimum. A subsequent study of this phenomenon was carried out 

by Davidge and Milone (1984) and by Davidge (1981). A principal result of that 

study was that the O'Connell effect had more than one origin; i.e. it could not 
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always be attributed, say, to starspots alone. The study did not include contact 

systems, however. Hence, further work needs to be done. 

In the present light curves not only does the magnitude of the effect change 

from one wavelength to another, but the sign and magnitude vary as vell, from 

one year to the next. In the years 1985 and 1987 (Sets LC :1, 2 and 4) maximum I is 

brighter than II. The opposite is true during 1986. Table 2.2 lists the values of /m 

in the RAO light curves for both maxima and each year. The mean magnitude of 

each maximum is taken as the average of all observations within 0.1 phase around 

each maximum. As in other tables in this thesis, the standard deviation of the 

mean appears in the parenthesis in units of the last digit. This error is larger than 

that of a single observation as computed from the whole light curve. This can 

be attributed to the fact that the latter is computed from a specific region of the 

light curve that appears to contain higher scatter than the overall average. Errors 

computed from the whole set of points include data with less scatter, and are hence 

smaller. 

A more objective way of studying these changes is by Fourier analyzing the 

data. This process yields a best fit curve expressed as a series of sine and cosine 

terms; the coefficients of each light curve can then be compared term by term. 

Before doing this, one must make sure that the center of the primary eclipse falls 

exactly at phase 0. Variations of the phase of minima of TY Boo had already been 

observed by Szafraniec (1952). Phases of minima were computed for each light 

curve observed at the RAO using the University of Calgary PFJIMIN program. 

This program is essentially the method of Hertzsprung as developed by Kwee and 

Van \Voerden (1956). Table 2.3 lists the phases of minima for each light curve. The 
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Table 2.2: Mean differential magnitudes at Maximum Light of TY Boo 

Light Curve max B V I 
LC 1 I 3.356(34) 3.568(19) 3.743(29) 

II 3.372(30) 3.577(02) 3.732(02) 
Lm +0.017(45) +0.009(1) -0.011(29) 

LC 3 I 3.462(37) 3.667(29) 3.799(34) 
II 3.408(32) 3.626(32) 3.780(35) 
Lrn -0.053(50) -0.041(43) -0.018(49) 

LC 4 I 3.419(29) 3.620(30) 3.790(15) 
II 3.444(26) 3.647(26) 3.792(15) 
1m +0.025(39) +0.027(40) +0.001(21) 

elements used were those of Bradstreet (private communication): P0: 0.317146(5) 

day, E0: 2446230.7751(4). Here P0 is the period of the system in days and E0 the 

date (in Julian Days) of a primary minimum used as reference. Data Set LC 2 had 

already been adjusted in phase by Bradstreet. 

From these figures an average phase shift can be computed for a run of data. 

Results are listed in Table 2.4. 

Two methods were used to compute the errors. First the weighted average of 

the values in Tables 2.3 and 2.4 were computed. This led to a very small error for 

the data set LC 3, since the phase shifts for both minima are almost equal. The 

root mean square of the error estimates was also computed, and then the larger of 

the two error estimates was reported. 

Even though the changes in phase seem to show a predictable trend from the 

three values obtained for our light curves, Szafraniec's work (1952), and the work 

presented here, show that over a longer period of time irregular short term 'aria-
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Table 2.3: Phases of Minima 

Phase of Primary Minimum 

Light Curve V B I mean 
LC 1 0.0045 (133) 0.9999 (75) 0.0051 (94) 0.0023 (18) 
LC 3 0.0194 (050) 0.0208 (49) 0.0218 (33) 0.0210 (07) 
LC 4 0.0358 (042) 0.0347 (41) 0.0344 (31) 0.0348 (04) 

Phase of Secondary Minimum 

Light Curve V B I mean 
LC 1 0.5037 (44) 0.5074 (048) 0.5042 (40) 0.5049 (11) 
LC 3 0.5210 (15) 0.5212 (034) 0.5207 (47) 0.5210 (01) 
LC 4 0.5369 (47) 0.5410 (054) 0.5393 (31) 0.5390 (10) 

Table 2.4: Average Phase Shift 

Light Curve Phase Shift 
LC 1 0.0042 (15) 
LC 3 0.0210 (05) 
LC 4 0.0354 (14) 
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Figure 2.6: Phases of minima for Bradstreet's. elements 

tions in the times of minima are common in TY Boo. 

2.3 Period Analysis 

iC3 

All available phases of minima (including those of the RAO and Bradstreet) were 

used to study the period of TY Boo over a long base line. First, phases of minima 

were computed using Bradstreet's elements, and from these and the observed times 

a set of 0 - C (observed minus computed) phases were obtained. The resulting 

points are plotted in Figure 2.6. 

A least squares fit to the data showed a significant slope. This slope was then 

used to adjust the period. The new elements are 

P0 :0.3171482(2) and E, :2446230.7666(9) 

The 0 - C phases corresponding to these elements can be seen in Figure 2.7 

and t lie list of tile values caii be found in Table 2.5, where the subscript 1 denotes 
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values derived from the Bradstreet elements, and 2 those derived from the new 

elements, namely: 0 -- C1: F0: 0.3171'16 E0: 2446230.7751; 0 -- C2: F0: 0.3171482 

E0: 2446230.7666. 

AS was mentioned in Chapter 1 the significant spread of the data points is in 

part due to the varying quality of the observations, in particular those around JD 

2442000 to 2444000, which were observed by European amateur Roger Diethelm 

(Dietheirn 1972, 1976a, 197Gb, 1977, 1980). Mochnacki (1971), however, indicates 

that even the archetype for TY Boo's classification, W UMa itself has shown con-

siderable variation in period during the several decades it has been observed. 
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Table 2.5: 0 - C Phases of minima for two sets of elements. 

JD 0-C1 0-C2 JD 0-C1 0-C2 
+2400000 +2400000 
32650.4710 0.354 0.021 34456.4830 0.278 -0.014 
32659.5080 0.360 0.026 34457.5950 0.272 -0.020 
32676.4860 0.326 -0.007 34480.4250 0.286 -0.006 
32682.5080 0.338 0.005 34481.3690 0.310 0.018 
32688.5390 0.321 -0.011 34488.3500 0.298 0.006 
32688.5450 0.302 -0.030 34604.4420 0.246 -0.044 
32717.4100 0.288 -0.044 35217.4980 0.205 -0.070 
32987.6110 0.311 -0.015 35240.4780 0.247 -0.028 
32996.4900 0.314 -0.011 35603.4400 0.283 0.016 
33001.4060 0.314 -0.012 35903.4690 0.255 -0.005 
33002.3580 0.312 -0.014 35933.4420 0.247 -0.013 
33005.3680 0.321 -0.004 36074.4080 0.264 0.008 
33006.4850 0.299 -0.026 36361.43 10 0.245 -0.004 
33010.4370 0.338 0.013 36727.4100 0.269 0.027 

33028.5110 0.348 0.023 36728.3730 0.232 -0.009 
33031.3650 0.349 0.024 37015.3800 0.264 0.029 
33032.4750 0.349 0.024 37027.4230 0.291 0.057 
33040.4110 0.326 0.002 38882.4230 0.250 0.057 
33041.3650 0.318 -0.007 38961.4030 0.216 0.026 
33053.4210 0.304 -0.020 40367.7910 0.205 0.046 
33054.5190 0.342 0.018 40367.9490 0.206 0.047 
33056.4250 0.332 0.008 40368.9000 0.206 0.047 
33059.4440 0.313 -0.011 40368.7420 0.205 0.046 
33063.3990 0.342 0.018 40369.6940 0.204 0.045 
33066.4280 0.291 -0.033 40369.8520 0.206 0.047 
33068.4780 0.327 0,003 40370.8030 0.206 0.047 

33069.4330 0.318 -0.006 41460.3820 0.131 -0.003 
33082.4330 0.326 0.002 42887.3830 0.123 0.021 
33082.4350 0.319 -0.004 42900.3790 0.145 0.043 
33350.4150 0.346 0.028 43360.4000 0.143 0.051 
33357.3940 0.340 0.023 44303.4610 0.056 -0.014 
33362.4660 0.347 0.030 44342.4380 0.157 0.088 

33362.4730 0.325 0.008 45 120.4390 0.024 -0.028 
33390.3880 0.306 -0.011 46226.8110 -0.001 .0.028 
33391.3390 0.307 -0.009 46227.7630 -0.002 -0.029 
33410.3620 0.325 0.009 46228.3000 -0.005 -0.028 
33440.4980 0.303 -0.013 46228.3000 -0.002 -0.027 

33746.3750 0.335 0.027 46230.7750 0.001 -0.026 
33762.3970 0.316 0.008 46231.7270 0.000 -0.027 
33782.3810 0.304 -0.004 46560.0000 -0.021 -0.027 
33798.4070 0.272 -0.035 46560.0000 -0.021 -0.027 
33860.4110 0.266 -0.040 46587.7280 -0.016 -0.035 

34123.3160 0.295 -0.006 46588.8390 -0.020 -0.038 
34131.4080. 0.279 -0.020 46589.7910 -0.020 -0.039 
34133.4640 0.297 -0.003 46590.7430 -0.022 -0.041 

34179.4470 0.307 0.008 46591.8510 -0.016 -0.035 

34451.5710 0.266 -0.026 46927.8000 -0.040 -0.040 
34452.5050 0.321 0.029 46927.8000 -0.035 -0.035 
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Figure 2.7: 0 - C phases of minima from the new elements 

2.4 Fourier Analysis 

As was mentioned in the introduction to this thesis, the variations of the light curve 

of a W lJMa system are due to a combination of several mechanisms. On one hand 

the periodic eclipses that take place around phases 0.0 and 0.5 are responsible for 

the sharp decrease in light when one star partially blocks the light coming from 

the other. Thus, this mechanism is limited to certain regions of the light curve. 

Another cause for variation is the tidally distorted shapes of the stars. As they spin 

around the common center of mass the stars rotate with respect to the observer, 

exposing different fractions of their surfaces. This is a continuous change that 

reaches its maximum at quadrature, when the stars are seen on their side, and 

show the largest cross section, but goes on uninterrupted even during the eclipses. 

Fourier analysis has long been used to study these effects. A 9-term Fourier 

representation was chosen to fit the data, consisting of a constant term, 4 sine and 

4 cosine ternis of the form: 
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4 4 

I = > a1 cos(iO) + E b1 sin(10) 
1=0 1=1 

Where I is the broad-band flux of the system relative to the comparison star. To 

study the different effects individually one may choose to [It either only the maxima, 

to study proximity effects, or the minima to look at the eclipses themselves. A full 

light curve fit is also useful, as will become clear in Chapter 4. 

To compute the fit the program FOURIER from the University of Calgary 

was used. The program computes not only the coefficients but also the standard 

deviation for a single observation. This value is a good estimate of the error of 

each fit. Three tables list the results from the fourier fits with the last column, e1 

indicating the error of the fit. The fits have been graphed against the corresponding 

light curves, and are presented in Figures 2.8 through 2.13. The fit coefficients are 

listed in Tables 2.6 through 2.8. From the light curves —and specially LC 2— the 

points of first and last contact were taken to be at phases 0.125 and 0.375 for the 

primary eclipse and phases 0.625 and 0.875 for the secondary eclipse. 
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Table 2.6: 9 Term Fourier Representation (Fit to Minima Only) 

L. C. ao a1 a2 a3 a4 
LC 1-B 0.816(058) -0.021(008) -0.105(086) -0.028(012) -0.112(032) 

V 0.922(103) -0.020(014) -0.254(154) -0.009(021) -0.025(056) 

I 0.883(101) -0.021(014) -0.145(150) -0.010(021) -0.071(055) 
LC 2-B 0.750(007) -0.022(001) -0.084(011) -0.019(002) -0.112(005) 

V 0.754(007) -0.021(001) -0.063(011) -0.018(001) -0.116(005) 

R 0.764(008) -0.019(001) -0.062(012) -0.014(002) -0.112(005) 

I 0.771(006) -0.016(001) -0.058(010) -0.014(001) -0.111(004) 

LC 3-B 0.642(063) 0.024(013) 0.040(101) -0.002(017) -0.170(046) 

V 0.679(038) 0.003(007) 0.036(059) 0.004(010) -0.165(026) 
I 0.710(038) 0.013(007) 0.043(060) 0.004(010) -0.163(026) 

LC 4-B 0.816(046) -0.027(009) -0.163(068) -0.021(012) -0.078(026) 

V 0.766(018) -0.013(003) -0.058(027) -0.027(004) -0.120(012) 

I 0.799(020) -0.014(003) -0.066(031) -0.013(004) -0.112(013) 

LO 1-B 
V 

I 

LC 2-B 

V 

R 

I 
LC 3-B 

V 

I 

LC 4-B 

V 

I 

0.048(062) 

0.070(113) 
0.018 (110) 

0.000(006) 

0.009(006) 

0.013(007) 

0.004(005) 

-0.081(066) 

-0.068(039) 

-0.077(039) 

-0.037(048) 

0.048(016) 

0.027(018) 

b2 

0.023(016) 

-0.005(029) 
-0.006(028) 

-0.004(002) 

-0.002(002) 

-0.005(002) 

-0.000(002) 

0.041(022) 

0.038(013) 

0.047(013) 

-0.009(019) 

0.000(006) 

-0.001(006) 

b3 

-0.011(028) 

-0.034(051) 
-0.012(050) 

0.002(003) 

-0.002(003) 

-0.005(004) 

0.000(003) 

0.059(038) 

0.022(022) 

0.027(022) 

0.033(021) 

-0.023(009) 

-0.010(010) 

-0.018(013) 
0.002(023) 

0.001(022) 

0.001(002) 

-0.003(002) 

0.001(002) 
-0.002(002) 

-0.056(022) 

-0.017(013) 

-0.027(013) 

-0.002(015) 

-0.006(005) 

-0.004(006) 

e1 

0.012 
0.023 

0.023 

0.005 

0.004 

0.005 

0.004 

0.049 

0.030 

0.030 

0.027 

0.014 

0.016 
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Table 2.7: 9 Term Fourier Representation (Fit to Maxima Only) 

L.C. 

LC 1-B 
V 

'I 
LC 2-B 

V 

R 

I 

LC 3-B 
V 

I 

LC 4-B 
V 

I 

LC 1-B 

V 

I 

LC 2-B 
V 

R 

I 

LC 3-B 
V 

I 

LC 4-B 
V 

I 

a0 

0.795(137) 

0.866(052) 

0.883(056) 
0.848(018) 

0.871(005) 

0.887(005) 

0.896(005) 

0.900(069) 

0.843(049) 

0.834(051) 

0.867(034) 

0.944(017) 

0.899(019) 

b1 

0.007(018) 

0.004(007) 
-0.002(007) 

0.006(002) 

0.007(001) 

0.007(001) 
0.005(001) 

-0.023(009) 

-0.019(006) 

-0.015(007) 

0.018(005) 

0.012(002) 

0.004(003) 

a1 

0.005(146) -0.333(210) 

-0.009(049) -0.211(081) 

0.022(053) -0.226(087) 

-0.000(015) -0.147(028) 

-0.007(004) -0.123(008) 
-0.007(005) -0.109(008) 

-0.001(005) -0.098(009) 

0.047(063) -0.071(109) 

-0.001(041) -0.163(077) 

0.002(043) -0.224(081) 

0.027(031) -0.149(052) 

-0.002(015) -0.029(026) 

0.000(017) -0.137(029) 

b2 b3 

-0.044(048) 0.002(024) 
-0.017(016) -0.001(010) 

-0.024(017) 0.002(011) 

-0.001(005) -0.006(003) 
-0.003(001) -0.002(001) 

-0.004(002) -0.000(001) 

-0.003(001) -0.001(001) 

0.043(019) -0.003(013) 
0.026(013) -0.006(009) 

0.017(013) -0.009(009) 

-0.004(010) 0.004(007) 

-0.011(005) -0.001(004) 

-0.003(005) 0.001(004) 

a3 a4 

0.007(072) -0.088(081) 

0.002(026) -0.037(032) 
0.014(028) -0.047(034) 

0.011(008) -0.013(012) 
0.003(002) -0.006(003) 

0.004(003) 0.000(004) 

0.004(003) 0.002(004) 

0.029(035) 0.012(045) 

0.012(023) -0.024(033) 
0.006(024) -0.049(034) 

0.020(017) -0.011(023) 

0.003(008) 0.036(011) 

0.004(009) -0.016(013) 

-0.032(043) 

-0.022(014) 

-0.022(015) 

0.003(005) 
0.003(001) 

0.001 (002) 

0.002(001) 

0.019(020) 

0.013(013) 

0.001(014) 

0.006(010) 

-0.010(005) 

-0.003(005) 

el 

0.040 
0.019 

0.020 

0.009 

0.003 

0.004 

0.004 

0.038 

0.031 
0.032 

0.028 

0.014 

0.015 



Table 2.8: 9 Term Fourier Representation (Fit to Full Light Curve) 

L.C. a0 a1 a2 a3 a4 

LC 1-B 0.878(4) -0.031(6) -0.210(6) -0.010(6) -0.049(6) 
V 0.879(3) -0.024(5) -0.194(5) -0.004(5) -0.038(5) 

I 0.909(4) -0.022(5) -0.189(5) -0.006(6) -0.041(5) 

LC 2-B 0.820(2) -0.026(3) -0.198(3) -0.006(3) -0.048(3) 

V 0.831(2) -0.025(3) -0.186(3) -0.008(3) -0.045(3) 

R 0.841(2) -0.022(2) -0.186(2) -0.006(2) -0.046(2) 

I 0.846(2) -0.019(2) -0.181(2) -0.007(2) -0.046(2) 

LC 3-B 0.808(5) 0.015(8) -0.225(8) 0.005(8) -0.055(7) 

V 0.824(3) -0.000(5) -0.199(5) 0.008(5) -0.052(4) 

I 0.856(4) 0.011(5) -0.194(5) 0.004(5) -0.050(5) 

LC 4-B 0.827(2) -0.030(3) -0.200(3) -0.014(3) -0.044(4) 

V 0.845(2) -0.021(3) -0.189(3) -0.012(3) -0.048(3) 

- I 0.871(2) -0.016(3) -0.184(3) -0.007(2) -0.050(3) 

LC 1-B 

I 

LC 2-B 
V 

R 

I 

LC 3-B 

I 

LC 4-B 

V 

I 

b2 b3 b4 el 
0:008(6) -0.004(6) 0.004(6) -0.002(6) 0.023 

0.003(5) -0.002(5) -0.006(5) -0.007(5) 0.019 
-0.004(5) -0.006(5) -0.004(5) -0.005(5) 0.020 

0.007(3) -0.003(3) -0.003(2) 0.000(2) 0.016 

0.004(3) -0.003(3) -0.004(3) -0.001(3) 0.016 

0.006(2) -0.004(2) -0.001(2) 0.000(2) 0.014 

0.005(2) -0.002(2) -0.000(2) 0.001(2) 0.013 

-0.013(8) 0.009(8) 0.014(8) -0.021(8) 0.042 
-0.019(5) 0.020(5) -0.004(5) 0.005(5) 0.030 

-0.017(5) 0.021(5) -0.007(5) -0.002(5) 0.031 

0.013(3) -0.010(4) 0.005(4) -0.003(3) 0.025 

0.010(3) -0.005(3) -0.003(3) -0.007(2) 0.020 

0.003(3) -0.003(3) 0.001(3) -0.007(2) 0.020 
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Both the plots and the errors of the coefficients show that the sets LC 1 and 

LC 3 are too sparse and yield poor fits. LC 2 is a high quality light curve, and 

the resulting fits are better. LC 4 is the best of the three RAO light curves, and 

the resulting fits, particularly for the maxima and the whole light curve, prove it. 

Accordingly LC 2 will be chosen for modeling the system in a later chapter, while 

LC 4 will be used as an independent check. 

The general shape of the light curve of two eclipsing stars may be represented 

by a function of the form a2 cos(20) where a2 would be negative to account for the 

decrease in intensity at the primary minimum. This can be seen in Tables 2.7 and 

2.8 as the value of a2 is more significant than those of any other term. But the 

shape of the light curve departs from that of a pure cosine. The term a4 introduces 

some of these distortions, as it affects the shape of the branches at each side of the 

minima. Table 2.6 shows how when fitting the minima a4 becomes dominant, with 

a2 second in order of importance. 

Finally the odd cosine terms a1 and a3 represent the differences in shape and 

depth between the two minima with the reflection effect affecting a1 as well. Be-

cause of this, they are negligible in the fit to the maxima. 

Due to its high quality, LC 2 is ideal to observe the proximity effect. The fit 

seen in Figure 2.12 closely follows the maxima and, as mentioned before, can be 

extended into the minima, where the smooth and continuous change can also be 

observed. 

The coefficients in all three tables show the presence of changing asymmetries 

on the light curves, as the corresponding values vary significantly. Most of this 

change can be attributed to the change in O'Connell effect, which has already 



34 

been noted. The Fourier representation offers a way to quantify such change. We 

note also, that except for the a0 terms, the coefficients for the light curves LC 1 and 

2 are not significantly different as is expected since they were observed at almost 

the same time, though by different instruments and observers. Another difference 

is the extent of time they cover. LC 2 was observed in three consecutive nights, 

while 20 days separate the first and last observations in LC 1. 

The changing coefficients can be used to observe the changing O'Connell effect. 

In particular b1 is positive when max1 is brighter than max11. In Table 2.7 we see 

it being negative in LC 3, and positive or close to zero for all the others. 

The a0 coefficient is simply the average of all the points present in the light 

curve. Because of this, differences in a0 are mostly due to differences in coverage 

of the light curve. The RAO light curves have more points near the minima, while 

LC 2' is evenly spaced, resulting in significantly different averages. 

Fourier series fitted to light curve data have been used in the past to remove 

some of the proximity effects, making it possible to solve the system with methods 

that apply to detached systems. We chose, however, not to modify the light curves. 

In Chapter 4 we discuss a model that attempts to deal with light curve anomalies 

such as those quantified here in a different way. We shall also use the a2 and a4 

coefficient of the full light curve fit to test some of the results. 

Next we examine the role of spectroscopic data in understanding the system. 



Chapter 3 

Spectroscopic Observations and Reduction 

3.1 Background 

The radial velocity observations were obtained at the Dominion Astrophysical Ob-

servatory in Victoria by RAO observers during June 1985, August 1986 and April 

1987. The observations were made with DAO's 1.82 m telescope and 21121 spec-

trograph. The latter provides a nominal reciprocal linear dispersion of 15 A/mm. 

The sensing device is a reticon array that receives the light from the spectrograph 

after being amplified by an EMI single-stage image intensifier. The reticon can be 

"exposed" for an extended period of time to increase the photon count. Once the 

desired exposure time is reached, the image can be read into disk storage for later 

processing. Reference arc spectra from an Fe lamp are exposed before and after 

every star exposure. They are used later for wavelength calibration of the spectra. 

Table 3.3 lists the spectra of TY Boo which were obtained at DAO. Typical 

exposure times for TY Boo were between 10 and 20 minutes depending on seeing 

and sky transparency. The exposure times cannot be greatly increased because 

the radial velocities of the components are changing during the exposure. The 

observations are thus phase-limited. This condition and the faintness of the system 

require the use of the image intensifier tube: 

35 
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3.2 Spectral Type Determination 

From the spectra obtained for radial velocity computation at DAO the spectral 

type could be determined by careful comparison with other reference spectra. 

The most important features for classification purposes for early C spectra are 

indicated on the TY Boo spectrum in Figure 3.1 where the raw data have been 

plotted. The x axis represents the pixel number, with each pixel corresponding to 

a diode in the detector. The y axis is the intensity measured by each diode. Since 

the TY Boo spectrum is distorted, mostly by the use of the image tube, the lines 

cannot be identified by measuring their positions only, but rather by their relative 

positions compared to other lines in the spectrum. A determination can now be 

made by observing the most salient features of the spectruni. 

The presence of the G band does confirm a spectral type near G. The principal 

source of standard star spectra which were used for comparison purposes was the 

Atlas of Representative Stellar Spectra (Yamasita et al. 1978). In the absence 

of anomalous effects, classification criteria for C systems involve the ratios of the 

depths of the line depths: 

Fe 14046 A, 4144 A, Ca 14227 A vs I-IS 

However, when these èriteria are applied to TY Boo, it is clear that the hydrogen 

lines are unreliable, probably due to emission infilling. This was noted to be the 

case also for RW Corn (vIilone, Wilson and Hrivnak 1987). According to Keenan 

and Mc Neil (1976) the following composition-independent criteria can be used to 

determine spectral types of C stars: 
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Cr 4254 A vs Fe 4250 A 

Cr 4254 A vs Fe 4260 A 

Cr 4274 A vs Fe 4272 A 

Spectra of TY Boo near primary and secondary minimum were then chosen. 

During primary minimum, star one would be partially eclipsed by star two, so that 

the spectrum of star two should dominate; the reverse situation should happen 

during secondary minimum. Previously published values for the spectra of the 

components of TY Boo were G3 and G7 (Carr 1972) so the stars HD 154417 

(spectral type G3) and HD 144579 (spectral type G8) were chosen as comparisons. 

Figure 3.2 shows portions of the spectrum of TY Boo near primary minimum. 

Following the above mentioned classification criteria we notice that the line of Cr 

4254 A has a depth equal to that of Fe 4250 A and Fe 4260 A. This is also seen 

in the spectrum of HD 144579 (G8) shown in Figure 3.3. 

The spectrum of TY Boo near secondary minimum can be seen in Figure 3.4. 

In this spectrum the line of Cr 4254 A is now fainter than the two neighboring Fe 

lines. This agrees with the spectrum of HD 154417 (G3) showed in Figure 3.5. 

Blending of the lines Cr 4274 A and 4272 A in all of the spectra of TY Boo 

make it impossible to apply the last criterion, which might have helped to further 

confirm the classification. The determination of the system spectral type outside 

eclipse was similarly precluded by blending, particularly of the Fe 4260 A line 

which lies next to a strong night sky emission feature. The blending made it 

impossible to determine the actual depth of the Fe line. 

In conclusion star one in TY Boo seemed to be of spectral type G3 and star two 
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of type G8, with an uncertainty of about 1/10 spectral type for each component. 

3.3 Data Reduction 

The spectroscopic observations, in the form of digitized spectra, were reduced 

using DAO's REDUCTION and ANALYSE code (Hill 1982 and 1983) which cross-

correlate the observed program star spectra with comparison star spectra in order 

to compute radial velocities. This technique will be discussed in more depth in 

Section 3.5. 

The first package, REDUCTION, is used to calibrate the data through several 

steps. The first step involves reading in the arc files exposed before and after 

the image. The arc files are then scanned, and the positions of known lines are 

measured using cursor keys to move cross hairs on a graphics terminal. Figure 3.6 

shows the most common lines used for calibration. These lines are usually singléts, 

a very desirable quality, since the program can run in an automatic mode in which 

it approximates the position of the line and th&searches for it around this point. 

A multiplet would have several peaks in a small region of the spectra, making 

misidentification more likely. 

The first line to be located is the fiducial line; usually the 4131 A line of Fe. This 

line was identified and the corresponding reticon pixel number recorded during the 

observation run, since it lies near the center of the portion of the spectrum being 

observed. During reduction the user locates the lines, beginning with the fiducial 

line, and the program computes the centroid for each one of them. Figure 3.7 

shows a sample screen in which both spectra are visible, in the region of the line 
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being identified. The small arrow head above each spectrum indicates where the 

program estimates the position of the line. 

Once a set of lines has been measured the program fits a polynomial function 

to the resulting wavelength vs position points, and computes the residuals. In this 

way wavelength nonlinearities in the star spectrum can be treated. Nonlinearity 

is expected mainly because the image intensifier produces an S-shaped distortion. 

The star file is then read in together with the coefficients from the 0 - C arc fit 

and linearized in wavelength. 

The next step consists in measuring the continuum of the spectrum of the 

star, in order to normalize the spectrum. The normalization is necessary since the 

program will measure correlations between the features of the target spectrum and 

those of the comparison star, and any continuum fluctuations would be interpreted 

as very wide lines, contaminating the results. The continuum fluctuations are due 

to free-free and bound-free continuum opacities in the stars' atmospheres as well 

as varying effects of the earth atmosphere. The normalization is accomplished by 

placing the cross hairs on points along the spectrum. The program then reads 

in these points and fits a spline curve through them. The result is displayed on 

the screen and is shown in Figure 3.8. This function is then subtracted from the 

spectrum. The result is a more or less flat spectrum. 

Finally the A abscissa is converted to In A, since the Doppler shift is linear in 

In A, rather than A itself. The file is then ready for cross correlation. The cross-

correlation technique is the preferred one for treating W UMa systems because 

of the strongly blended lines in their spectra. The cross-correlation technique 
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requires velocity standard stars, with which the program star is correlated. The 

main comparison stars for TY Boo were HD 144579, HD 181096 and HD 154417; 

the velocity standard HD 136202 was also used for a sub-set of the data. They were 

chosen from the list of radial velocity standards (Astronomical Almanac 1985) and 

are similar in spectral type to the variable star. 

To cross correlate the data the program VCROSS (Hill 1983) was used. The 

program reads in both the program star and comparison star files. Selected spec-

tral regions may be excluded from the cross-correlations. This yields a cleaner 

correlation, since only the sharper features are considered. Here the strong Ca II 

H and K lines, Balmer lines and the principle night sky lines have been excluded. 

Once computed, the cross correlation is displayed on the screen, as seen in 

Figure 3.9. 

The curve shows the two peaks corresponding to the Doppler shifted spectra of 

each star in TY Boo correlated with the comparison. The centroids of these peaks 

are taken as the radial velocities of each component with respect to tIle comparison. 

The centroids can be found by having the program fit a Gaussian through each 

peak. The results, with corresponding errors, are reported directly in velocity units 

as can be seen on the top part of figure 3.9. 

Since this is actually the velocity of each component with respect to the com-

parison star, the latter velocity must now be added. 
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3.4 Radial Velocity of Comparison Stars 

Unfortunately the published values for the radial velocities of each of the standards 

differ for various reasons. Table 3.1 lists the published values for the comparison 

star velocities. 

To resolve the problem, cross-correlations were performed among these stars. 

Each resulting correlation curve had a single peak indicating that these were not bi-

nary stars, and placed at the difference between the velocities of the two correlated 

stars. When all possible combinations were computed there were three differences, 

corresponding to three independent equations, in which the three individual veloc-

ities could be taken as unknowns. Taking v1 as the velocity of HD 144579, v2 as 

that of HD 154417 and v3 as that of I-ID 181096 the equations are: 

—v1 + v2 = 45.28 km/sec 

—v1 + v3 = 13.96 km/sec 

—v2 + v3 = -30.70 km/sec 

These equations, however, were not enough to solve for new values of the radial 

velocities. The situation is illustrated by Figure 3.10, where the radial velocities 

of the three stars are represented by three correspohding vectors. The results of 

the cross-correlations are the vector differences of the radial velocities of the cross-

correlated stars, also illustrated in the same figure. It can be seen that these vectors 

have no information at all of the actual radial velocities being studied, but only of 

their differences; hence more data are needed. 

Using the average of the published values as starting guesses new values were 

numerically computed. These values, when used in the above mentioned equations, 
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Figure 3.10: Vector diagram of cross-correlation results and their differences 

would yield the minimum possible differences with respect to the cross-correlation 

results, and would also minimize the differences with the published values them-

selves. 

These were then the values used for the radial velocities of the comparison stars. 

The resulting radial velocities for TY Boo are listed in the appendix. 

3.5 The Cross-Correlation Technique 

Cross-correlation is a way of measuring Doppler shifts in digitized spectra. Simkin 

(1974) outlined this method and essentially introduced it to the astronomy corn-

mu ni ty. 

The cross correlation technique uses all available information on the recorded 
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Table 3.1: Comparison Stars Radial Velocities 

HD vel (km/sec) 
-60.0 
-59.6 
-60.8 
-59.2 
-59.5 
-55.1 
-56.9 
-55.8 

mean -58.4 ± 2.1 

154417 -14.8 
-18.6 
-18.0 
-20.1 
-17.3 
-15.3 
-16.1 
-19.1 

mean -17.4 ± 1.9 

181096 -45.0 
-44.6 

mean -44.8 + 0.2 

obs reference 
3 Adams and Kolilschuter (1914) 
3 Adams and Joy (1923) 
2 Harper (1934) 

11 Wilson and Joy (1950) 
4 Boulon (1956) 
8 Petrie et al. (1957) 
6 Rebeirot (1965) 
2 Ambert (1967) 

2 Harper and Ambert (1921) 
7 Adams and Joy (1923) 
3 Shajn and Albirtzky (1932) 
3 Harper (1934) 
1 Plaskett et al. (1948) 
2 Evans (1963) 

2 Evans (1963) 
3 Ambert (1967) 

6 Plaskett et al. (1921) 
4 Adams et al. (1923) 

Table 3.2: Computed Comparison Stars Radial Velocities 

star 
HD 144579 
HD 154417 
HD 181096 

vel (km/sec) 
-59.7 (2) 
-14.7 (2) 
-45.6 (2) 



51 

spectrum to measure the shift. It uses two spectra and compares both of them at 

different shifts, measuring at every point how "similar" the spectra are. This will 

give a peak when the shift matches the Doppler shift of the spectra. 

We can then see that for a. spectrum to be studied, it must have a fairly well 

determined spectral type, and one must be able to "generate" this spectrum from 

a known "prototype" spectrum by Doppler shifting it. The "prototype" is the 

undistorted star spectrum, while the observed one has been Doppler shifted. 

If we call the relative velocity of the shifted spectrum to the prototype v, the 

resulting shift in lambda is not linear, but given by: 

A'/A = 
1 + (v/c)  

1—(v/c) 

where (v/c) is the ratio of the relative velocity of the star to the speed of light, 

A is the wavelength of a line in the unshifted spectrum and A' the corresponding 

wavelength in the shifted spectrum. If we now define x = In(A) then we can have 

the same difference expressed in the form 

( 
X1 — x= ln(A/A 1 1+(v/c) 

) = In (v/c) 

Both spectra to be used in the cross-correlations must be in digital form, both 

must be calibrated in wavelength and be converted to normalized intensity. The 

spectra should ideally be of similar spectral type, be taken with the same instru-

ment, and cover cover similar wavelength regions for the correlation to yield the. 

sharpest results. Also any contamination from the sky, whether emission lines or 

continuum. must be masked out. All spectra must be stored in arrays which have 
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equal intervals in in A, so that the A corresponding to any cell in one array is equal 

to the corresponding A in the other. This may require interpolating the original 

values. 

We can now define the cross-correlation function as: 

C(z) = af +00 T(x)G(x + z)dx 
00 

Here T is the function describing the spectrum of the standard, and C that 

of the spectrum to be measured. This function will have a maximum at the shift 

z = z0. In the case of stars, z0 is related to the Doppler shift of the spectrum G 

with respect to T. In this definition a is a scaling factor equal to the square root 

of the product of the mean square values of C and T, when the means of C and 

T have been set' to zero by subtracting the average value of the spectral data from 

every data value. 

For observational data, the continuous functions G(x) and T(x) become discrete 

points G(x) and T(x) in arrays of size N and K and sampled at equal intervals 

Ax. This is usually done by the detector, such as a Reticon array, or can be 

'done afterwards by digitizing other type of data such as photographic plates on a 

densitometer. In the case of the Reticon the sampling is a function of both the 

spacing between diodes and the dispersion of the spectrograph. The length of the 

arrays is just the number of diodes in the array. 

The cross correlation function C(z) becomes a set of unbiased cross correlation 

coefficients, also referred to as a c.c.f.. 

For a lag (or shift) ZL = x(L - 1) the coefficients are defined as 
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C(zL) = -.>T(xj)G (xi +zL) 
3 i=1 

For small sets of data this equation can be readily evaluated by the computer. 

However when the data set is large (more than 1000 points when measuring shifts 

of about 2% of the data set) it is more efficient to calculate CJ(zL) indirectly by 

using the Fast Fourier Transform (FFT) algorithm. 

This introduces some complications, however, due to the fact that the spectral 

segments become periodic functions when they are expressed in terms of a finite 

Fourier series. For example a straightforward calculation of a continuous c.c.f, 

from the definition of C(z) by means of the Fourier transform gives 

f-' C(z) = a oo g(f)t(—f)&' 2'1'df 
00 

where f is the transform variable, t and g are the Fourier transforms of T and 

G, and t(—f) is the conjugate transform of T(x). Once again this can be expressed 

in terms of digitized data in the form 

C(zL) = aN 2 

where fj = (j-1)/(Nix). However the coefficients from this expression are not 

the same as those from the non-periodic definition of C(z), because now the entire 

periodic spectrum is included in the sum, and the last £ terms of one spectrum 

will enter the cross correlation sum as products with the first £ terms of the other. 

This is called aliasing and can introduce significant error into the measurement of 

z0 when it exceeds 10 or 20% of the array length. 
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The usual method for removing this overlap distortion is to set the mean of 

each data array to zero and then expand the arrays to twice their length by adding 

N terms of zero values. This however does not have to be done for small lag values. 

In this case it is sufficient to extend the array by the amount 2z0 by adding enough 

zero terms. 

To obtain the transformed arrays t and g one can use the FFT algorithm. There 

are lots of routines that can perform this fast transformation. The FFT takes 

advantage of the symmetries in the nested sums involved in the Fourier transform 

algorithm to save time. 

Once the peak of the c.c.f. is found, the lag z0 can be transformed back into 

units of A and hence velocity. 

The implementation of the cross-correlation technique used in this study is that 

of Hill (1982) at the Dominion Astrophysical Observatory. 

3.6 TY Boo Radial Velocities 

The program VOROSS (Hill 1982) used to perform the cross-correlations between 

variable star and the comparison star spectra displays the c.c.f. on the graphics 

screen and allows the user to chose a region about the peak or peaks to be fitted. 

The fitting function can be either a simple parabola, a Gaussian or a Lorentzian. 

In the present work, Gaussian functions were selected because they appeared to fit 

the obtained c.c.f. best. 

VCROSS reports the result of the fit in km/sec including the corresponding 

errors. The results for TY Boo are shown in Table 3.3 and graphed in Figure 3.11. 
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Table 3.3: Radial Velocities for TY Boo. 

File JD Corr. Comparison 

name +46000 Phase to Sun Star U au V av 
72862155 650.7203 0.1384 -18.34 HD 144579 37.7 1.4 -217.5 1.5 

72862157 650.7321 0.1756 -18.35 HD 144579 62.0 2.6 -233.9 3.1 
72862221 651.7223 0.2978 -18.25 HD 144579 68.9 5.8 -264.2 3.4 

72862223 651.7320 0.3284 -18.26 HD 144579 65.1 1.3 -255.2 1.3 
72862225 651.7411 0.3571 -18.26 HD 144579 59.5 2.7 -261.8 2.8 

72862227 651.7515 0.3899 -18.27 HD 144579 43.6 1.4 -225.7 1.4 
72862155 650.7203 0.1384 -18.34 HD 154417 49.9 1.5 -217.9 1.5 
72862157 650.7321 0.1756 -18.35 HD 154417 73.4 4.3 -239.5 2.1 

72862219 651.7119 0.2650 -18.24 HD 154417 67.8 4.1 -283.5 3.2 
72862221 651.7223 0.2978 -18.25 HD 154417 70.2 4.9 -265.4 3.8 

72862223 651.7320 0.3284 -18.26 HD 154417 63.5 2.4 -261.4 2,9 

72862225 651.7411 0.3571 -18.26 HD 154417 61.4 3.5 -261.8 3.6 

72862227 651.7515 0.3899 -18.27 Hp 154417 47.8 2.1 -219.5 2.8 
7287131 902.8316 0.0761 0.62 HD 144579 31.5 5.2 -175.6 6.0 
7287137 902.9211 0.3583 0.45 HD 144579 54.9 3.3 -235.5 4.7 

7287139 902.9454 0.4349 0.41 HD 144579 6.4 4.1 -194.5 4.0 

7287131 902.8316 0.0761 0.62 HD 154417 55.2 11.4 -145.8 13.7 
7287137 902.9211 0.3583 0.45 HD 154417 58.5 4.3 -238.2 6.2 

7287139 902.9454 0.4349 0.41 HD 154417 21.8 4.8 -200.0 10.5 
0209 232.8569 0.5642 -16.24 HD 136202 -113.4 8.8 43.9 5.8 
0211 232.8743 0.6190 -16.26 HD 136202 -123.3 8.3 106.7 7.2 

0213 232.8903 0.6695 -16.28 HD 136202 -117.1 4.5 156.5 4.8 
0215 232.9042 0.7133 -16.29 HD 136202 -134.2 7.4 167.6 8.3 

0217 232.9208 0.7657 -16.30 HD 136202 -137.5 5.8 186.4 5.2 

0349 233.8979 0.8466 -16.46 HD 136202 -120.4 7.3 164.8 5.9 
0352 233.9242 0.9295 -16.48 HD 136202 -53.6 14.1 106.9 8.5 

0446 234.9172 0.0605 -16.64 HD 136202 20.4 13.5 -143.9 23.0 
0448 234.9367 0.1220 -16.66 HD 136202 31.3 8.0 -185.1 15.8 

0209 232.8569 0.5642 -16.24 HD 114762 -111.3 12.3 51.3 8.8 

0211 232.8743 0.6190 -16.26 HD 114762 -121.6 6.5 117.5 6.8 
0213 232.8903 0.6695 -16.28 HD 114762 -129.0 4.2 153.8 4.6 

0215 232.9042 0.7133 -16.29 HD 114762 -140.7 4.6 185.3 5.0 

0217 232.9208 0.7657 -16.30 HD 114762 -143.8 5.1 189.1 4.7 
0349 233.8979 0.8466 -16.46 HD 114762 -135.6 6.7 170.3 6.2 

0352 233.9242 0.9295 -16.48 HD 114762 -81.5 9.2 113.2 10.4 
0446 234.9172 0.0605 -16.64 HD 114762 34.3 27.1 -120.3 46.0 

0448 234.9367 0.1220 -16.66 HD 114762 32.3 9.7 -185.3 16.0 
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Figure 3.11: TY Boo Radial Velocity Curves 

The radial velocity of a star in a circular orbit is given by the expression 

Vr = '1 + Vor sin() sin(i) 

where v,,, is the orbiting velocity, y the radial velocity of the system's center of 

mass, q!.' the angular phase and i the inclination of the orbital plane to the plane of 

the sky. We take 4 to be zero at primary minimum. Notice that for the secondary 

component the sign offVr will be reversed, since it always moves in the opposite 

direction of the primary, receding after primary minimum, and approaching the 

observer after secondary minimum. 

By using the transfrmation y = V. and x = sin() we reduce the expression to 

a linear relation in sin() where the slope is given by VOr sin(i) and the X.-intercept 

by -y. Figure 3.12 shows the plot of the radial velocity of each component. 
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Figure 3.12: u and v vs sin() and best fits. 

0.8 1.0 

The y-intercept is equal to the velocity of the system. Assuming a value for 

we compute the distances of the centers of the stars to the center of mass, r1 and 

r2 using 

r1,2 = Vor(l,2)P 

2ir 

where p is the period. This expression is valid only for a circular orbit, which 

is usually the case in W UMa systems. As for TY Boo, it was shown in Chapter 2 

that the secondary minimum occurs at 0.5 in phase units and that the durations 

of both eclipses are approximately the same, supporting the case that the orbit of 

TY Boo is circular. 

The mass ratio. q. and the velocity of the system, y, were computed using the 

Wilson method (Wilson 1941). Following \Vilsons notation we use u to denote 
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Figure 3.13: v vs u plot of TY Boo Radial Velocities 

100.0 

the radial velocity of the more massive star. Since this component is closer to the 

center of mass of the system, its velocity will have the smaller amplitude. The 

letter v is used for the less massive component. These two parameters are related 

by the expression 

v — -i 

'1—u 

If v is plotted against u the resulting graph should be that of a straight line. Its 

slope would be the negative of the mass ratio q, defined as m,,/m,,, and the point 

where it intersects the x axis would be '1(1 +,$) where s is the slope of the line. 

Figure 3.13 shows the plot of v vs u, with the data points and the fit line. This 

line is found by performing a least squares fit on the n data points. 
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The resulting values are: 

q = 2.08(7) 

= -37(2) km/sec 

The quantities 'a and v can be computed from the product of the distance r and 

the angular velocity (given by the period). The mass ratio q is determined directly 

from M,/?-n,. The quantity a (the distance between the centers of the stars) is 

simply given by the sum r + r. 

To estimate the goodness of the fit the linear correlation coefficient (R) was 

also computed. The closer it is to 1, the better the fit. Table 3.4 shows the results 

of this method compared to those obtained by Wilson's method. The inclination 

was assumed to be 75.0° (Bradstreet private communication 1988). Even though 

this value would be improved upon later, a small change in i translates into an 

even smaller error in sin(i) when i is close to 90.0°. The present method value for 

-y is an average of two separate values which agree within their standard errors. It 

can be seen that both y and q agree between the two methods within errors. The 

present method produces additional results, in particular it provides a (or more 

generally asin(i)), which is a needed parameter for the Wilson-Devinney program. 

The radial velocity curves confirm TY Boo to be a W-type V UMa system. 

In these systems the cooler and more massive star is closer to the observer during 

primary minimum. 
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Table 3.4: Photometric elements. 

Wilson method Present method 
U - 117.2 ± 2.0 km/sec 
V 250.8 ± 2.8 km/sec 
y -37.0 ± 2.0 km/sec -37.5 ± 5.1 km/sec 
q 2.08 ± 0.07 2.140 ± 0.04 

5.10 x 105 km 
0.977 

- 1.10 x 106 km 
0.926 

a - 2.302 R0 



Chapter 4 

Light Curve and Radial Velocity Curve Analysis 

With the availability of a set of initial values for the elements, modeling of the sys-

tem could begin. The Wilson-Devinney code (Wilson and Devinney (1971)) would 

be used, running on the University of Calgary's Cyber 205 Super Computer. This 

program can operate in two basic modes: LC and DC. Operation of the program is 

also discussed at length by Leung (1977). LC stands for Light Curve, since in this 

mode the program computes synthetic light curves from the input parameters. DC 

stands for Differential Corrections, and here the program computes corrections to 

the desired parameters, for their adjustment. 

4.1 Light Curve Synthesis 

The LC mode was used first. Here the values for the elements of the binary system 

are entered as input, and the program generates the corresponding synthetic light 

curve. The program uses the input parameters to create a model of the system. 

It then places a grid on the surfaces of the stars. Every cell in the grid is later 

scanned and, depending on the phase and position, it is found whether or not the 

cell is visible to the observer. If it is visible, the contribution to both the light 

and radial velocity curves is computed. All contributions from visible cells are 

added, to create the final output. By comparing the resulting light and/or velocity 

curves to the observed ones the elements can be fine tuned until a close match is 

61 
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Table 4.1: Synthetic Light Curve Parameters. 

Parameter 

1, 2 

Description 
inclination of the orbit 
monochromatic luminosities of the two components 
limb-darkening coefficients 
gravity darkening exponents 
surface temperatures 
mass ratio defined as m2/m1 
surface potentials 

obtained. Preliminary values of the mass ratio, distance and orbit inclination had 

already been determined with relatively good accuracy, as described in the previous 

chapter. The initial temperatures were based on the spectral classifications done 

earlier. The scale of Popper (1980) was used. The LC mode allows adjustment of 

the potential of the surface of the stars (Il), and this determines whether or not 

TY Boo is actually a contact system. 

In order to study a binary system a set of parameters must be found to uniquely 

define such a system. The usual parameters are listed in Table 4.1. 

For all these parameters the subscript "1" refers to the primary component, that 

is the star being eclipsed during the primary minimum. The orbital inclination is 

measured with respect to the plane of the sky. A system with an inclination of 90.0° 

lies in a plane which includes the line of sight of the observer. The luminosities are 

normalized so that their sum at maximum light equals one. 
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4.2 Roche Model 

The geometry of the equipotential surface due to two corotating stars was studied 

by Kopal (1959) among others and is called the Roche potential, after the French 

mathematician Edouard Albert Roche. This model gives an analytical solution 

to the three dimensional shape of the equipotential surface by making certain as-

sumptions about the system. First the two stars are taken to be in a circular 

orbit, secondly their rates of rotation are taken to be synchronous with the orbital 

motion, and, finally, the mass of the stars is assumed to be highly concentrated 

at the center. In practice, and when dealing with contact systems, these assump-

tions turn out to be very reasonable (Kopal 1978). In any type of contact system 

the interaction between the two stars usually makes the orbits circular, and the 

rotations synchronous. 

If we now consider the two body system as a gravitational dipole, we can express 

the angular velocity of rotation w by using Kepler's laws for the circular case, where 

G is the gravitational constant. 

2 G(mi+m2)  
w= 

R3 

The potential at any point p can be found by first placing a coordinate system 

with the x axis on the line that joins the centers of the stars and origin on mass 

m1. If R is the distance between the stars and x and y are the coordinates of point 

p, the potential is given by Kopal (1978) 

m2  )2+y21 

r2 2 ml-rrn2 J 
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Figure 4.1: Coordinate system for Roche lobe computation 

This expression can be rewritten in the form 

2  1 2q  1 
0(r, q) = (1+q)ri + (l+q)r2 __ 

In these expressions q is the mass ratio, r1 and r2 are the distances of a point r 

to the centers of both stars, and p is the perpendicular distance from this point to 

the axis of rotation, as indicated in Figure 4.1. The unit of this potential is given 

by G(mi + m2)/2R where R is the distance between the stars. 

There are two useful ways of representing this type of potential, and both show 

the values on a plane that cuts the three dimensional potential. One consists in 

using a three dimensional surface plot, where x and y represent the actual coordi-

nates in space, but z is the strength of the potential t&(x.y). Such representation 

is seen in Figure 4.2. The second method uses a contour plot to represent the 
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position of lines of equal potential on the chosen plane. This can be seen in Figure 

4.3. Both these plots were made for a mass ratio of 2.08 from the results in Chap-

ter 3. The value of the potential increases as the distance to the stars gets smaller. 

This means that if the value of the constant C were sufficiently large the resulting 

system would be detached. 

It is also possible to have a system touching at just one point. This point is 

called L1 and the value of the potential of the corresponding surface is called the 

inner -Lagrangian surface. 

The initial values for the first LC run were provided by Bradstreet who also 

supplied the data set LC 2. The preliminary mass ratio q=3.4 had been originally 

found by Milone, Fry and Grilimair (1987) from radial velocity data which were 

less well phase distributed than those used in the final analysis. With q=3.4, the 

first output agreed with Bradstreet's (private communication) output which also 

used this mass ratio. 

Several runs were made with different values for the Roche potential. As previ-

ously mentioned a value too large would make the stars so small that the resulting 

system would be detached. On the other hand the adoption of too small values 

would result in a failure to predict the correct shape and amplitude of the light 

curve. The value of C = 5.30 seemed to give a reasonable fit. The slightly improved 

parameters shown in Figure 4.4 were then input into the DC program. 
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Figure 4.2: Roche Potential: Surface Plot 
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Figure 4.4: Data from Bradstreet compared to initial parameters. 

4.3 Differential Corrections 

In the DC mode the Wilson-Devinney program can compute differential corrections 

for the desired system parameters. The input includes the radial velocity and light 

curve data, together with the current system parameters. Through a list of 22 ones 

and zeroes the program can be instructed to vary some parameters, and compute 

differential corrections. 

First a decision must be made as to the mode in which the program must be 

run. Of eight possible modes permitted by the Wilson-Devinney code, modes 3.4 

and 5 were used. In mode 3 the program assumes the system is in contact, so that 

92 = y and ft. = ul. The parameter T2 however is free, and it determines L. 

which can not be adjusted. Modes 4 and 5 are semi-detached modes: their uses 
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will be explained in a later section. 

DC outputs a list of corrections for the parameters that were adjusted and 

their probable errors. If the correction is bigger than its error the user may then 

decide to apply it to the parameter. This adjusted value can then be run again, 

to compute new corrections. Eventually the iteration process will converge to a 

solution, as all the corrections become smaller than their errors. The program also 

outputs a sum of residuals between the data and the computed light and radial 

velocity curves. This quantity provides an estimate of the goodness of the fit. 

The program also allows for subsets of parameters to be adjusted on the same 

run. Since the corresponding derivatives have already been calculated, a subset 

can then be computed much faster than in a new run. Because of this a large set of 

parameters were adjusted, and broken up into several subsets, one predominantly 

for the spectroscopic, and one for the light elements. The elements adjusted were 

a, y, 1, 7'2, ill and L1. Since L1 depends on wavelength four corrections were 

reported (one for each wavelength). Three subsets were created to avoid the prob-

lem of correlations among the parameters, as discussed by Wilson and Biermann 

(1976). Subset one included a, i, y and i; subset two i, T2 and L1 and subset 

three consisted of a, 'y and q. Adjustments were made to all parameters until the 

corrections became smaller than their probable errors. 

4.4 Spots 

At this point the parameters were very close to the appropriate values, but asym-

metries in the light curve became dominant and resulted in large residuals. 
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TY Boo had been chosen as an RAO programme system, and for further study 

in this thesis for its large O'Connell effect, among other reasons. Accordingly 

at this point it seemed reasonable to introduce one or more star spots to model 

the observed large asymmetries. The Wilson-Devinney program uses spots as a 

device to account for any large departures from a model light curve. Its invocation 

does not necessarily mean that an actual spot is thought to exist on the surface 

of the star, but merely that some mechanism is producing an effect on the light 

distribution. It has been shown, Milone, Wilson and Hrivnak (1987), that the 

parameter solutions are not strongly affected by this solution artifice as compared 

to a rectification process. It was decided to place a homogeneous cool spot on 

star 2. 

Spots in the Wilson-Devinney program approximate circular regions on the sur-

face of a star. A line in the input file lists the co-latitude (), longitude (0), radius 

(p) and a temperature factor (t1). The coordinate system used by the program 

consists in a latitude and longitude grid much like the one used for terrestrial coor-

dinates. The co-latitude, however, runs from 00 at the north pole (which is inclined 

toward earth) to 180° at the south. Longitude is 00 at the meridian that includes 

the line of centers and 360° around the star, clockwise as seen from the north pole. 

The radius is in degrees as seen from the center of the star. The temperature 

factor, in units of the temperature of an unperturbed region at the same location, 

is larger than 1 for spots hotter than the surface, and less than 1 for cold spots. 

Since the effect looked symmetric around secondary maximum, it was decided 

to place the spot so that it would face the observer at second quadrature. It was 

placed on star 2 at = 90.0° and 0 = 90.0°. Values of p = 20.0° and t1 = 0.95 
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Figure 4.5: Spot 1, first attempt 

were used. Figure 4.5 shows the resulting V light curve. It can be seen that the 

spot is too large, and maybe too cool. 

Following the technique outlined by Milone, Wilson and Hrivnak (1987), several 

values for p, ranging from 8.00 to 20.0°, were run. As the value of p changed, so did 

the sum of the weighted residuals (Ewr2) in the DC output. If these residuals are 

graphed versus p it can be seen that one value of p minimizes the residuals. Table 

4.2 shows the values of p and the residuals. These values were fit by a polynomial 

of the form Ewr2 a + bp ± cp2, where a, & and c are constants. Figure 4.6 shows 

both the data and the best ht curve. 

The p for the spot could now be calculated from p = —h/2c. Once the best value 

for p had been determined, the same procedure was used to adjust the temperature 

factor. Table 4.3 and Figure 4.7 illustrate this. 
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Table 4.2: Spot 1, p and Ewr2 
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Table 4.3: Spot 1, t,- and Ewr2 
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Figure 4.7: Spot 1, Ewr for t1 determination 
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Figure 4.8: B light curve. 1 spot fit 

The resulting values for the spot were found to be: 

p: 12.01° ± 1.27° 

t1: 0.04±0.03 

When used in subsequent DC runs, a spot with these parameters reduced the 

values of the residuals considerably, and allowed further adjustment of the system 

parameters. Figures 4.8 through 4.11 show the resulting fits. At this point another 

asymmetry became dominant. As can be seen in the above mentioned figures. a 

bright spot appeared to be necessary around phase 0.3. 

The same method was now used to adjust spot 2, only this time 0 had to be 

adjusted also, since it was not very clear what the optimum value should be. It 

was initally placed at 0 = 320.0° on star 2, since in this way the sudden increase in 
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Figure 4.9: V light curve. 1 spot fit 
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Figure 4.10: R light curve. 1 spot fit 
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Figure 4.11: I light curve. 1 spot fit 

luminosity right after quadrature would be explained as the spot came into view 

at second quadrature. The gradual drop could then be explained by the eclipse of 

the spot by star 1 right after second quadrature. 

After adjusting the longitude, the size and the temperature factor in the same 

way as for spot 1, the best fit values for spot 2 were: 

O 323 10 ± 5.3 0 

p: 9•90 ± 4.2° 

tj: 1.07±0.05 

Not ice the large error in the size of the spot, probably due to the foreshortening 

at the point when it is visible, and the very sudden eclipse afterwards. 

With both spots in place, to reduce any remaining residuals the final iterations 



Table 4.4: Spot 2, longitude and Ewr 

1oiigitide wr2 

310.0 0.29562 
320.0 0.29344 
330.0 0.29423 

340.0 0.29685 

a 1.5465 ± 0.0003 
b -0.0078 ± 0.0008 
C 0.0000 ± 0.0000 
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Figure 4.12: Spot 2. wr for longitude determination 
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Table 4.5: Spot 2, p and Ewr2 

P Ewr2 
8.0 0.29654 
10.0 0.29377 
12.0 0.29644 

14.0 0.32357 

a 0.4733 ± 0.0043 

b -0.0369 ± 0.0117 
c 0.0019 ± 0.0005 

0.335 -

0.325-

0.315-

C.285  

6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 

0 

Figury 1.13: Spot 2. u'r2 for p determination 
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Table 4.6: Spot 2, tj and Ewr 

t1 Ezvr 

1.04 0.20000 
1.06 0.29377 
1.08 0.29378 

1.10 0.30094 

a 9.7860 ± 0.0002 
b -17.7597 ± 0.6042 

c 8.3062 ± 0.2823 
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Figure 4.14: Spot 2, Ewr2 for tf determination 
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Figure 4.15: B light curve, 2 spot fit 

with DC were performed. The fits to the light curves can be seen in Figures 4.15 

through 4.18. 

4.5 Graphical Representation of the Model 

Modern computers and specially written software allowed the modeler to obtain a 

graphical representation of the physical appearance of the system. This is equiva-

lent to graphing the equipotential surface determined by the Roche potential. 

A program was developed which was able to draw a three dimensional view 

of the star system. given its mass ratio, Roche potential and phase. Drawings 

for several phases appear in Figures 4.5 through 4.5. This program is capable of 

hidden line removal and is a useful aid for visualizing the eclipse mechanism and 
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Figure 4.16: V light curve, 2 spot fit 
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Figure 4.17: R light curve, spot fit 
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Figure 4.18: I light curve, 2 spot fit 

spots. In order to graph the Roche lobes the kotential function has to be solved at 

a grid of points in three dimensional space, and the hidden line removal algorithm 

is then used to decide whether to plot this point or not. 

First the plotting coordinate system is set up. The x axis is chosen along the 

line that joins the centers of the stars, the y axis is on the axis of rotation of 

the system and the z axis is perpendicular to both. This is the common usage in 

graphics programing and differs from the type of coordinate axis normally used in 

the Roche geometry. 

The system is rotated to match the orbital inclination, and then rotated in the 

plane of the orbit to match the corresponding phase. This determines the position 

of die observer with respect to the system. The Roche potential equation is then 

solved by the Newton-Raplisoii method first along lines running from tile outer 
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limb of one star, through the connecting bridge to the limb of the opposite star. 

This gives the x, y and z coordinate of all the points that represent the surface of 

the binary system. 

To determine whether or not the point must be plotted, it is necessary to know 

if it is being eclipsed by other parts of the star. To do this a line starting at the 

given point and pointing towards the observer is computed. An imaginary point 

is then moved along this line, and the potential computed at every step. If the 

potential at any point becomes larger than the surface potential this means the 

line intersects the equipotential surface, and hence the point is being eclipsed by 

this part of the surface. If this doesn't happen the point is plotted. 

The program is very useful when visualizing the eclipse mechanism. It can show 

the eclipses being total, or partial, by showing how much of each star is visible at 

any given phase. Another advantage of the program is its ability to show the 

location of cold or hot spots on the surface of the star, and to observe how they 

are eclipsed. 

4.6 Tests of the Model 

To check the validity of the fitting results, the Wilson-Devinney program was also 

run in modes 4 and 5. When run in mode 3 the program assumes that the stars 

are indeed in contact so that 01 . In order to test this assumption for TY Boo 

the program was set to run in semi-detached modes. If the system was truly in 

contact, the solutions should converge to the contact case. Such a test was run 

on RW Corn by Milone, Wilson and Flrivnak (1987). Schiller and Milone (1988) 



84 

,r  f  

• • • : 
l(••.\••• !!i 

0 

.—..,; •.. •. • . ..• •.• : • .. • .. • ..•.. . ....— 
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applied a similar technique on DS And, only in this case a detached system was 

suspected. The tests were done by starting with values that meant contact, and 

observing them converge to detached. 

In mode -t the primary is set to 1111 its Roche lobe, regardless of the input value, 

because of this, fl can not be adjusted. Mode 5 is the equivalent mode where the 

secondary fills its Roche lobe and 122 can not be adjusted. 

From the tables of Plavec and Kratochvil (1964) it was found that for a system 

with a mass ratio of 2.085 the value of 11 jnner was 5.372. This means that a value 

larger than this for either of the two stars would yield a semi-detached system. 

As the iterations were performed, each of the modes gave slightly different 

results for £ and i, because in each mode the potential of one of the stars was 

being held at the critical value, and hence the size was smaller than in mode 3. 

The values of the potential of the star being adjusted, were found to converge 

to values smaller than the critical value, confirming the contact system solution. 

These results are also shown in Table 4.7. 

A second test of the solution elements was to use as input the RAO light curves 

mentioned in Chapter 2 (LC 1, LC 3 and LC 4), and run them in DC mode. The 

1985 and 1986 data were relatively sparse, so only the 1987 BVI curves were used 

(LC 4). After they were converted to units of luminosity and normalized to the 

first maximum, a new Wilson-Devinney input file was created. It was decided to 

normalize the light curves to a value of 1 at the brightest maximum for consistency, 

since this approach had already been followed by Bradstreet with LC 2. However, 

as discussed by Milone, Wilson and Hrivnak (1987), the choice of either maximum, 

or even the average of the two, does not change the results much. 
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The parameters for this run were set to the previously found values. After 

only two iterations all corrections fell within errors. The results are listed in Ta-

ble 4.7, where £ is the monochromatic liminosity normalized so that the suni of 

the contributions from both components add up to 1. 

The data set LC 4 was run without any spots, which helps to explain the larger 

Ewr2 for this data set. The presence of spots in LC 2 helped reduce the residuals, 

and hence the uncertainty of the results but the resulting parameters were virtually 

identical since the previously found results were used as input. 

A second run with data set LC 4 was done where the input values were those 

previously found, but perturbed by ± 10%. Once again the results converged to 

those values previously found. 

4.7 Contact Parameter and Fill-Out Factor 

From the tables of Plavec and Kratochvil (1964) the value of OUtCr was also found. 

It was now possible to find the contact parameter f, defined as 

- inner - 

irzrzer - outer 

This factor gives an indication of the degree of filling of the contact envelope. 

It was found to be equal to 0.087. This is a small value showing that the system is 

barely in contact, the semi-detached mode solutions, however, confirm the contact 

condition. 

To test the results we resort to the values obtained by the Fourier fit to the light. 

curves. Ruciñski (1973) suggests a relation between the terms a and a4 versus the 
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Table 4.7: TY Boo, Solutions to Radial Velocity and Light Curves 

a 

i 

* 
1 

T1 T2 

p1112 

q 
91 - * 

- 92 
A _ 11A* 
111 - 2 

A _ A* 
111 - 

X1 

X1 

X1 

Xi 1* 

X2 B * 

X2 V 

X2 

X2 
(.3 

El B 

£1 V 

tl 1? 

£2 B 

£2 V 

£2 R 

£2 I 

r1 pole 

r1 side 

r1 back 

r2 pole 

r2 side 
r2 back 
v'. w 2 r 

: assumed 

LC  

2.33(1) 

75.90(7) 

5623 (100) 

395(5) 
5.320(3) 

2.084(3) 
0.32 

0.5 
0.5 

0.97 
0.87 

0.84 

0.80 

0.97 

0.87 

0.84 

0.80 

0.0 

0.439(1) 

0.419(1) 

0.404(1) 

0.393(1) 

0.561(1) 

0.581(1) 

0.596(1) 

0.607(1) 

0.301(6) 

0.315(7) 

0.350(13) 

0.422(3) 

0.450(4) 

0.479(6) 
0.2678 

and unadjusted 

LC  

unperturbed 

2.33(2) 

-39(10) 
75.58 (18) 

5623(100) 

395(12) 
5.324(8) 

2.084(3) 

0.32 

0.5 

0.5 
0.97 
0.87 

0.84 

0.80 

0.97 
0.87 

0.84 

0.80 

0.0 

0.439(4) 

0.418(4) 

0.393(4) 

0.56 1(4) 

0.582(4) 

0.607(4) 

0.305(5) 

0.314(6) 

0.349(12) 

0.422(3) 

0.449(5) 

0.478(7) 

0.6244 

LC  

perturbed 
2.31(2) 

-39(10) 
75.66(19) 

5623(100) 

403(11) 

5.348(7) 
2.084(3) 

0.32 

0.5 

0.5 
0.97 

0.87 
0.84 

0.80 

0.97 

0.87 

0.84 

0.80 

0.0 

0.440(4) 

0.420(4) 

0.394(4) 

0.560(4) 

0.580(4) 

0.606(6) 

0.298(5) 

0.312(6) 

0.345(11) 

0.419(3) 

0.446(4) 

0.475(7) 

0.5699 

R0 
kin ,sec 

degrees 

K 
K 

a 

a 

a 

a 

a 
(I 
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mass ratio q and the contact parameter f. In this paper the fill-out parameter is 

defined in a way similar to that of the contact parameter already computed. His 

definition, which we will now designate f' is 

= cz - pouter  

inner - pouter 

This fill-out parameter has a value of one for systems that touch at only one 

point, and zero for those in full contact. Notice that this means that f = 1 - f. 

Another difference is in the definition of the mass ratio, which we now designate 

q'. Ruciñski defines it as 

q' = m2/rnj ≤ 1 

The subscripts are defined in terms of mass (mi being the more massive star) 

and not in term of surface brightness. 

To be consistent with this notation we recompute f and q' for TY Boo and 

arrive at these values: 

q' = 0.48 

1' = 0.91 

a2 = -0.191 

a4 = -0.043 

Figure 4.25 reproduces Rucitiski's (1973) graph. Filled dots correspond to f' 

=1, open circles to P=O and half-filled circles to f'=1/2. These points were com-

puted for two values of the inclination. The set that extends further towards the 

upper right hand corner was computed with i = 90.0°, the other with I = 75.0°. 
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The position of the values of a4 and a2 for TY Boo in Figure 4.25 indicate that 

f' must be between 0.5 and 1. We also see that it is very close to the i = 750 

region, as expected. 

Ruciiski also plotted known stars on the same type of plot. In Figure 4.26 

we find that the placement of TY Boo among these stars, showing it to be by no 

means unique. In this plot, the lines of f'= 0.0, 0.5 and 1.0 for i = 90.0° have been 

indicated for convenience. 

The stars UX Eri (f'=0.9) and AC Boo (f'=0.8) fall very close to TY Boo. Both 

of these systems have been observed in the past. Schieven et al.(1983) observed 

AC Boo and Binnendijk (1967) tJX En. In both cases asymmetries in the light 

curves and changes in period, both long and short term, were found. This makes 

these two binaries prime targets for future work. 

The way in which the contact condition affects the two stars can be seen by 

plotting them in a mass-luminosity graph. Figure 4.27 shows the data studied by 

Griffiths, Hicks and Milone (1988), in which the logarithm of mass and luminosity 

of main sequence stars, normalized to solar values, has been plotted. It can be 

seen that component 2, the more luminous star, lies below the normal stars. Star 

1, however, lies above the population. This could be explained by the transfer of 

energy from star 2 to 1. Since star 2 is also the more massive one the equilibrium 

will be closer to its original energy, explaining why it is the closest one to the 

normal trend. 

In his model for W TJMa stars Lucy (1968) indicates that entropy must be 

transferred from one star to the other through the "throat" of the common convec-

tive envelope. As Mochnacki (1971) mentions, some of these systems are in very 
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shallow contact, and any activity near the contact point may impede the normal 

energy flow. This "choking", as lie calls it, may disappear in a sudden way causing 

flare activity. This is not uncommon in W UMa type stars, and has been observed 

in TV Boo as Nvell. During an observing run at DAO in June :1985 Milone. Fry 

and Grillmair (1987) observed a flare develop in the spectrum of TY Boo. Four 

such spectra are reproduced in Figure 4.28. Notice that the sharp Ca II emission 

features at 3933 and 3968 A increase in intensity as time progresses. 

4.8 Conclusions 

In this thesis it has been established that TY Boo is a W type system on the basis 

of its radial velocity curve. It is useful to compare the results obtained here with 

the general characteristics of these systems as presented by Rucitiski (1973). 

Spectral Type: W UMa stars tend to be in the F—G region, with the W-type 

systems being the "later". We found the components of TY Boo to be G3 and G7. 

Activity: W-type systems tend to have "strong or very strong changes of 

light curve, asymmetries of maxima". This thesis demonstrates the change in the 

O'Connell effect and other changes in the light curve of TY Boo from year to year. 

Mass-ratio: W-type systems have "larger ratios, 0.33-0.88" this corresponds 

to Ruciñski's notation. The value for TY Boo in the same notation is 0.48, in 

agreement with the characterization. 

Degree of contact: \V-type systems have "shallow envelopes". At f 0.91 

TY Boo fills the contact envelope by less than 10%. 
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Table 4.8: TY Boo, Absolute Parameters 

a 

f 

R2 
T1 
T2 
nIl 

Tn2 

Pi 
92 

1 

2 

Distance 

Bradstreet 
light curve 

2.33(1) 
-39(7) 

0.087(7) 
0.739(13) 
1.048(7) 

5623(100) 
5228(66) 

1.090(6)X1033 

2.27(2)x1033 
1.90(1) 
1.40(3) 
0.51(2) 
0.73(1) 
326(16) 

RAO 87 
light curve 

2.33(2) 
-39(10) 
0.087(7) 

0.748(11) 
1.046(7) 

5623(100) 
5228(159) 

1.09(1)x1033 
2.27(4)x1033 

1.84(8) 
1.41(4) 
0.50(2) 
0.74(2) 
326(36) 

R 
Kill/ "Sec 

Re 
R® 
K 
K 
gr 
gr 
gr/cm3 
gr/crn3 

0 

0 

PCs 

Other characteristics: Another characteristic of W UMa systems is a red-

dening of the light curve during both minima. This is due to differences in the 

surface temperature of the stars, which are lower towards the tidally elongated 

ends. During eclipses the light from one of the ends becomes dominant, shifting 

the colour index towards the red, as can be seen in Figure 4.29. Here the difference 

of the B and V light curves from LC 2 have been plotted in magnitudes. In this 

unit, larger values of the difference B - V indicate redder colour. 

In conclusion, the parameters of TY Boo appear consistent with a typical W-

type W UMa system. Its short period, mass ratio far from unity and asymmetries 

in the light curve confirm this. Table 4.8 lists the absolute paranieters of TY Boo, 

obtained from the photometric and spectroscopic solutions. 
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We found new elements of this binary system by collecting all available data, 

and also including some new observations. 

We succeeded in fitting the light and radial velocity curves of TY Boo, a W-type 

W UMa system, which displays O'Connell effect. The close agreement between the 

spotted and unspotted model fitting shows that spots are a practical way of dealing 

with asymmetries in the light curves. They reduce the uncertainty in the results, 

and at the same time the system elements are not strongly affected by their use. 

We have also found TY Boo to be, like RW Corn, a shallow contact binary. 

This condition was tested and confirmed by the Wilson-Devinney program run in 

semi-detached mode, and the a2 and a4 Fourier coefficients. 

Further work on TY Boo should include analysis of other light curves taken 

at other times and in other band passes. This would provide clues to the origin 

of the asymmetries in the system. The expansion of the Wilson Devinney code 

taking place at this time at the University of Calgary could allow the inclusion of 

observations in other band passes. 

Work could also be extended to other W UMa systems, in particular, those that 

exhibit marked thermal discontinuity. We have already pointed out UX Eri and 

AC Boo as two likely candidates. 

The type of study which has been conducted on TY Boo, with the analytical 

tools employed here, could be extended to other similar binary stars. Results so 

obtained should help us to better understand W UMa systems. 
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Appendix A 

Spectroscopic and photometric data 

The present appendix lists the radial velocity and light curve data employed in the 

present work. Table A.1 lists the radial velocity data. The first column indicates 

the Julian Date of the observation, the second the corresponding phase. The 

comparison star used in the cross-correlation is listed in column three. The last 

four columns indicate the radial velocity of the more massive component (V) and 

the less massive component (U) with their errors, all in km/sec. 

Tables A.3 through A.8 lists the normal points from the 1986 and 1987 light 

curves obtained at the R.othney Astrophysical Observatory in 1987. For every 

bandpass (B, V and I) the phase is indicated together with a weight (W), this 

weight is inversely proportional to the uncertainty of the luminosity of the point. 

Tables A.9 through A.12 list the normal points of the light curves obtained 

by Bradstreet (private communication). They list the phase, the number of data 

points (N) averaged, the monochromatic luminosity and the corresponding error 

(cr). 

[05 
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Table A.1: Cross-correlation results (all velocities in km/sec) 

JD comp. 
+46000 phase star U or V 

650.7203 0.1384 Hi) 1-14579 37.72 1.36 -217.53 1.53 

650.7321 0.1756 i-lI) 1-14579 61.96 2.62 -233.89 3.14 
651.7223 0.2978 HD 144579 68.89 5.78 -264.22 3.36 

651.7320 0.3284 HD 144579 65.07 1.27 -255.15 1.33 

651.7411 0.3571 HD 144579 59.54 2.67 -261.77 2.83 
651.7515 0.3899 HD 144579 43.57 1.36 -225.69 1.41 

650.7203 0.1384 I-ID 154417 49.88 1.54 -217.86 1.51 
650.7321 0.1756 HD 154417 73.44 4.30 -239.53 2.14 

651.7119 0.2650 HD 154417 67.77 4.14 -283.51 3.20 
651.7223 0.2978 HD 154417 70.22 4.94 -265.41 3.76 

651.7320 0.3284 HD 154417 63.45 2.37 -261.42 2.87 

651.7411 0.3571 HD 154417 61.35 3.46 -261.77 3.57 

651.7515 0.3899 HD 154417 47.84 2.12 -219.51 2.80 

902.8316 0.0761 HD 144579 31.48 5.18 -175.57 5.97 

902.9211 0.3583 HD 144579 54.87 3.29 -235.52 4.70 

902.9454 0.4349 HD 144579 6.41 4.06 -194.48 4.00 
902.8316 0.0761 HD 154417 55.21 11.40 -145.75 13.72 

902.9211 0.3583 HD 154417 58.47 4.29 -238.15 6.17 

902.9454 0.4349 HD 154417 21.77 4.75 -200.04 10.47 
232.8569 0.5642 HI) 136202 -113.44 8.83 43.87 5.80 

232.8743 0.6190 RD 136202 -123.33 8.31 106.66 7.17 

232.8903 0.6695 HD 136202 -117.08 4.52 156.46 4.80 

232.9042 0.7133 HD 136202 -134.22 7.35 167.59 8.25 
232.9208 0.7657 HD 136202 -137.53 5.84 186.41 5.20 

233.8979 0.8466 HD 136202 -120.41 7.31 164.82 5.89 

233.9242 0.9295 HD 136202 -53.61 14.09 106.91 8.46 

234.9172 0.0605 HI) 136202 20.36 13.51 -143.85 23.00 

234.9367 0.1220 HD 136202 31.26 7.96 -185.14 15.75 
232.8569 0.5642 HD 114762 -111.33 12.25 51.26 8.83 

232.8743 0.6190 RD 114762 -121.62 6.53 117.47 6.75 
232.8903 0.6695 HI:) 114762 -129.02 4.15 153.76 4.62 

232.9042 0.7133 HI) 114762 -140.67 4.63 185.27 4.96 

232.9208 0.7657 III:) 114762 -143.84 5.08 189.12 4.73 

233.8979 0.8466 111:) 114762 -135.63 6.67 170.26 6.20 
233.9242 0.9295 HI:) 111762 -81.-18 9.18 113.20 10.41 

234.9172 0.0605 HI:) 114762 34.25 27.11 -120.30 46.04 

234.9367 0.1220 III:) 114762 32.33 9.71 -185.32 15.98 
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Table A.2: RAO 1985 light curves. 

Phase DV DB DI Phase DV DB DI 
0.0413 4.123 3.941 4.231 0.5413 3.975 3.808 4.115 
0.0784 3.916 3.688 4.053 0.7019 3.592 3.382 3.735 
0.1419 3.707 3.508 3.870 0.7510 3.579 3.342 3.734 
0.2115 3.541 3.304 3.711 0.7982 3.624 3.371 3.761 
0.2554 3.574 3.394 3.732 0.8418 3.676 3.401 3.804 

0.1736 3.620 3.491 3.776 0.8861 3.732 3.541 3.889 
0.2091 3.561 3.339 3.792 0.9333 3.891 3.725 3.982 
0.2382 3.600 3.391 3.757 0.9819 4.064 4.008 4.236 
0.1622 3.661 3.417 3.789 0.7660 3.575 3.403 3.730 
0.2009 3.615 3.358 3.744 0.8071 3.628 3.739 
0.2429 3.567 3.351 3.724 0.8164 3.625 3.781 
0.3232 3.603 3.352 3.764 0.8282 3.624 3.413 3.765 
0.3657 3.672 3.446 3.823 0.8399 3.629 - 3.764 

0.4052 3.758 3.543 3.904 0.8651 3.699 3.828 
0.4443 3.908 3.680 4.036 0.8744 3.705 3.823 
0.4846 4.057 3.867 4.188 0.8861 3.751 3.572 3.856 
0.5219 4.043 3.858 4.172 0.8979 3.742 3.907 
0.5826 3.847 3.642 3.981 0.9193 3.897 4.002 
0.6224 3.726 3.507 3.865 0.9286 3.916 4.052 
0.6628 3.634 3.435 3.794 0.9404 3.995 3.798 4.116 

- 0.9521 4.042 - 4.162 



108 

Table A.): RAO 1986 V light curve. Normal points. 

Phase L(V) W Phase L(V) W 
0.0130 0.6002 1.4 0.5583 0.6625 1.0 
0.0334 0.6199 0.8 0.5850 0.8604 1.0 
0.0511 0.6851 1.7 0.6035 0.8882 1.0 
0.0685 0.7413 0.2 0.6283 0.9470 1.0 
0.0929 0.8326 0.6 0.6460 0.9462 1.0 
0.1182 0.8591 1.6 0.6658 1.0042 1.4 
0.1447 0.8994 1.0 0.6940 0.9906 0.9 
0.1655 0.9687 1.0 0.7147 1.0213 0.7 
0.2013 0.9463 1.0 0.7346 1.0220 0.8 
0.2238 0.9838 0.8 0.7517 1.0011 0.9 
0.2512 0.9800 0.8 0.7714 1.0248 1.7 

0.2771 0.9680 1.0 0.7850 0.9793 0.4 
0.3003 0.9822 1.4 0.8049 0.9813 0.8 
0.3285 0.9509 0.6 0.8282 0.9457 0.7 
0.3569 0.8889 1.4 0.8408 0.9603 1.4 
0.3711 0.8518 1.0 0.8599 0.8909 0.7 
0.3867 0.8118 1.0 0.8860 0.8484 0.6 
0.4175 0.7363 1.0 0.9153 0.7901 0.5 
0.4409 0.6776 1.0 0.9358 0.7282 0.5 
0.4634 0.6094 1.0 0.9487 0.7117 1.0 
0.4868 0.5812 1.0 0.9719 0.5913 0.5 
0.5117 0.5721 1.0 0.9928 0.5634 1.0 
0.5356 0.6145 1.0 
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Table A.4: RAO 1986 B light curve. Normal points. 

Phase L(B) W Phase L(B) W 

0.0130 0.5718 1.4 0.5356 0.5691 1.0 
0.0334 0.5972 0.7 0.5583 0.4572 1.0 

0.0525 0.6732 1.4 0.6283 0.9424 0.6 
0.0685 0.7317 0.4 0.6460 0.9546 1.0 

0.0929 0.8378 0.5 0.6658 1.0016 1.4 

0.1182 0.8533 L2 0.6943 1.0140 1.0 
0.1431 0.9455 0.7 0.7178 1.0467 1.0 
0.1655 0.9565 1.0 0.7463 1.0214 1.7 

0.2013 0.9252 1.0 0.7605 1.0149 0.7 
0.2238 0.9857 1.4 0.7773 0.9952 0.7 

0.2512 0.9906 0.8 0.7926 1.0345 1.4 
0.2771 0.9422 1.0 0.8111 0.9790 0.9 

0.2991 0.9983 1.0 0.8362 0.9313 0.9 

0.3306 0.9163 1.0 0.8599 0.9078 0.7 

0.3599 0.8603 1.0 0.8860 0.8193 0.4 

0.3867 0.8341 1.0 0.9153 0.7912 0.6 

0.4175 0.7073 1.0 0.9358 0.7264 1.4 

0.4409 0.6905 1.0 0.9487 0.6947 1.0 

0.4634 0.5880 1.0 0.9719 0.5790 0.6 
0.4868 0.5508 1.0 0.9928 0.5327 0.9 

0.5117 0.5751 1.0 - 
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Table A.5: RAO 1986 I light curve. Normal points. 

Phase L(I) W Phase L(I) W 
0.0130 0.6123 0.6 0.5583 0.6605 1.0 

0.0334 0.6569 0.7 0.5850 0.8511 1.0 
0.0511 0.7096 1.7 0.6035 0.9067 1.0 
0.0685 0.7632 0.3 0.6283 0.9431 1.3 

0.0929 0.8506 0.4 0.6460 0.9470 1.0 
0.1182 0.8752 0.6 0.6658 0.9752 1.4 

0.1447 0.9102 0.8 0.6940 1.0066 1.7 
0.1655 0.9614 1.0 0.7147 1.0168 0.7 
0.2013 1.0145 1.0 0.7346 1.0127 0.6 
0.2238 0.9919 1.4 0.7517 1.0010 0.6 
0.2512 0.9777, 0.5 0.7714 1.0052 1.0 

0.2771 0.9745 1.0 0.7850 0.9833 0.6 

0.3003 0.9816 1.1 0.8049 0.9820 0.9 
0.3285 0.9631 0.4 0.8282 0.9582 0.8 
0.3569 0.8847 1.4 0.8408 0.9621 1.4 
0.3711 0.8471 1.0 0.8599 0.9031 0.8 
0.3867 0.7996 1.0 0.8860 0.8626 0.8 
0.4175 0.7528 1.0 0.9153 0.8022 0.5 
0.4409 0.6931 1.0 0.9358 0.7585 0.5 
0.4634 0.6193 1.0 0.9487 0.7407 1.0 
0.4868 0.5840 1.0 0.9719 0.6334 0.8 

0.5117 0.6013 1.0 0.9928 0.5931 1.9 
0.5356 0.6238 1.0 - 
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Table A.6: RAO 1987 V light curve. Normal points. 

Phase L(V) \V Phase L(V) W 

0.0034 0.5558 1.0 0.5313 0.6695 0.9 

0.0200 0.5676 0.7 0.5537 0.7180 1.0 

0.0366 0.6126 0.4 0.5713 0.7691 1.0 
0.0571 0.6827 0.4 0.5876 0.8239 0.5 

0.0740 0.7342 0.5 0.6033 0.8484 1.2 

0.0889 0.8169 1.0 0.6230 0.8740 0.7 

0.1172 0.8967 1.0 0.6387 0.9104 0.8 

0.1284 0.9078 1.0 0.6580 0.9292 1.3 
0.1606 0.9442 1.4 0.6738 0.9446 1.4 

0.1772 0.9649 0.8 0.6934 0.9709 1.4 

0.1982 0.9924 1.1 0.7097 0.9925 0.6 

0.2151 1.0092 1.4 0.7285 0.9856 1.4 

0.2349 1.0269 1.4 0.7422 1.0117 1.0 

0.2507 1.0352 1.0 0.7622 0.9823 1.7 

0.2964 0.9928 1.4 0.7743 1.0056 1.7 

0.3076 0.9866 1.0 0.7837 0.9877 1.4 
0.3278 0.9580 1.5 0.7979 0.9687 1.1 
0.3389 0.9641 1.4 0.8088 0.9509 0.8 

0.3516 0.9553 1.6 0.8198 0.9490 1.6 

0.3699 0.9239 1.3 0.8414 0.9144 0.7 

0.3884 0.8930 1.4 0.8610 0.9256 1.4 

0.4086 0.8396 0.8 0.8826 0.8807 1.2 

0.4182 0.7995 1.0 0.8945 0.8424 1.2 

0.4324 0.7732 1.1 0.9077 0.8127 1.1 

0.4450 0.7278 0.9 0.9219 0.7999 0.4 

0.4583 0.7004 1.7 0.9338 0.7320 1.4 

0.4724 0.6642 0.5 0.9455 0.6781 0.6 

0.4875 0.6466 0.6 0.9624 0.6356 1.1 

0.5000 0.6423 1.0 0.9827 0.5487 1.0 

0.5149 0.6227 1.4 - 
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Table 1.7: RIO 1987 13 light, curve. Normal points. 

Phase L(B) W Phase L(B) \V 
0.0034 0.5107 1.0 0.5537 0.7108 1.0 

0.0200 0.5696 0.7 0.5713 0.7561 1.0 
0.0366 0.5767 1.4 0.5830 0.7794 1.0 

0.0571 0.6705 0.7 0.6033 0.8261 0.5 
0.0740 0.7283 1.4 0.6230 0.8833 1.2 

0.1284 0.8921 1.0 0.6387 0.8777 0.5 

0.1606 0.9592 0.8 0.6580 0.9291 0.8 

0.1772 0.9630 1.4 0.6738 0.9481 1.4 

0.1982 0.9944 1.4 0.6934 0.9696 0.7 

0.2151 0.9868 1.1 0.7097 0.9837 1.4 

0.2349 1.0238 1.4 0.7285 0.9831 1.0 

0.2507 1.0310 1.4 0.7422 1.0068 1.0 
0.2964 1.0115 1.4 0.7622 1.0155 1.0 

0.3278 1.0001 1.4 0.7732 0.9626 0.2 

0.3389 0.9758 0.4 0.7837 0.9869 1.4 

0.3513 0.9533 0.8 0.7979 0.9957 0.7 

0.3699 0.9161 2.0 0.8088 0.9602 0.8 
0.3884 0.8839 1.4 0.8198 0.9448 1.7 

0.4086 0.8492 1.3 0.8414 0.9270 0.6 

0.4182 0.8349 0.9 0.8610 0.9070 0.4 

0.4324 0.7707 1.4 0.8826 0.8807 0.6 
0.4450 0.7420 1.4 0.8945 0.8317 1.4 

0.4583 0.7126 0.3 0.9077 0.8172 0.3 
0.4724 0.6701 1.4 0.9219 0.6775 0.3 

0.4875 0.6265 1.4 0.9338 0.6987 0.7 

0.5000 0.6201 1.0 0.9455 0.6512 0.8 

0.5149 0.6114 0.7 0.9624 0.5942 1.4 

0.5313 0.6588 1.2 0.9827 0.5446 1.4 
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Table A.8: RAO 1987 I light curve. Normal points. 

Phase L(I) W Phase L(I) \V 

0.0034 0.5752 1.0 0.5149 0.6383 0.4 

0.0200 0.6105 0.9 0.5313 0.6657 0.6 

0.0366 0.6499 0.4 0.5537 0.7129 1.0 
0.0571 0.7037 0.4 0.5713 0.8046 1.0 

0.0740 0.7646 0.6 0.5876 0.8129 0.4 

0.0889 0.8141 1.0 0.6033 0.8729 0.5 

0.1172 0.8879 1.0 0.6230 0.8952 0.7 

0.1284 0.9022 1.0 0.6387 0.9195 0.5 

0.1606 0.9586 1.4 0.6580 0.9533 1.4 

0.1772 0.9794 1.4 0.6738 0.9709 1.4 
0.1982 0.9893 1.4 0.6934 0.9837 1.4 

0.2151 0.9988 1.0 0.7097 0.9935 1.4 

0.2349 1.0105 1.4 0.7285 1.0119 1.4 
0.2471 1.0108 1.0 0.7422 1.0066 1.0 

0.2964 0.9943 1.4 0.7622 0.9892 0.7 

0.3076 1.0032 1.0 0.7743 0.9973 1.0 
0.3278 0.9788 1.7 0.7905 1.0023 0.5 
0.3389 0.9635 0.6 0.8016 0.9872 0.7 

0.3516 0.9479 0.7 0.8140 0.9670 0.9 

0.3699 0.9175 2.0 0.8247 0.9502 1.0 

0.3884 0.9224 1.4 0.8414 0.9461 1.0 
0.4076 0.8445 0.6 0.8610 0.9235 1.7 

0.4182 0.8163 0.7 0.8826 0.8801 1.3 

0.4324 0.7785 1.1 0.8945 0.8584 1.4 
0.4450 0.7426 0.5 0.9077 0.8227 1.7 

0.4600 0.7000 0.5 0.9219 0.7923 1.7 

0.4724 0.6834 0.6 0.9338 0.7523 1.4 

0.4875 0.6574 0.8 0.9455 0.7080 0.4 

0.5000 0.6501 1.0 0.9624 0.6476 0.3 
- - - 0.9827 0.5842 0.5 
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Table A.9: Bradstreet Normal points. B bandpass. 

Phase L(B) or Phase L(B) a 

0.0162 0.5260 0.0026 0.5021 0.5916 0.0005 

0.0325 0.5580 0.0028 0.5200 0.6107 0.0032 

0.0-148 0.6023 0.0019 0.5369 0.6-179 0.0031 
0.0514 0.6234 0.0057 0.5415 0.6519 0.0003 

0.0660 0.6813 0.0069 0.5584 0.7010 0.0039 

0.0786 0.7271 0.0049 0.5717 0.7439 0.0026 
0.0874 0.7593 0.0000 0.5902 0.7989 0.0011 

0.1035 0.8089 0.0037 0.5944 0.8035 0.0011 

0.1218 0.8521 0.0018 0.6090 0.8318 0.0046 

0.1340 0.8676 0.0062 0.6227 0.8662 0.0016 
0.1461 0.8859 0.0028 0.6402 0.8900 0.0029 

0.1551 0.9028 0.0042 0.6693 0.9237 0.0048 

0.1709 0.9241 0.0010 0.6795 0.9731 0.0038 

0.1884 0.9441 0.0028 0.6927 0.9515 0.0045 

0.2013 0.9563 0.0022 0.7116 0.9629 0.0010 
0.2113 0.9662 0.0026 0.7151 0.9532 0.0000 

0.2250 0.9849 0.0055 0.7341 0.9707 0.0017 

0.2403 1.0055 0.0016 0.7465 0.9771 0.0040 
0.2592 0.9899 0.0073 0.7606 0.9606 0.0100 

0.2626 0.9963 0.0000 0.7825 0.9661 0.0036 

0.2902 0.9931 0.0014 0.8035 0.9513 0.0019 
0.3092 0.9734 0.0007 0.8140 0.9393 0.0052 

0.3328 0.9481 0.0029 0.8244 0.9237 0.0017 
0.3468 0.9258 0.0036 0.8432 0.8960 0.0027 

0.3606 0.9025 0.0017 0.8546 0.8904 0.0016 

0.3778 0.8763 0.0038 0.8665 0.8695 0.0018 

0.3868 0.8531 0.0145 0.8754 0.8610 0.0004 
0.3962 0.8353 0.0011 0.8941 0.8188 0.0012 

0.4111 0.7943 0.0035 0.9105 0.7702 0.0004 
0.4312 0.7444 0.0040 0.9139 0.7561 0.0010 

0.4466 0.6969 0.0000 0.9305 0.6997 0.0024 

0.4502 0.6859 0.0049 0.9484 0.6240 0.0069 

0.4659 0.6388 0.0028 0.9613 0.5836 0.0054 

0.4840 0.5992 0.0055 0.9778 0.5279 0.0023 

0.4932 0.5992 0.0014 0.9827 0.5229 0.0032 

0.9993 0.5112 0.0007 
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Table A.10: Bradstreet Normal points. V bandpass. 

Phase L(V) a Phase L(V) a 
0.0007 0.5320 0.0010 0.4933 0.6150 0.0003 

0.0129 0.5396 0.0033 0.5043 0.6152 0.0014 
0.0205 0.5521 0.0000 0.5197 0.6276 0.0025 

0.0386 0.5996 0.0144 0.5340 0.6533 0.0061 

0.0522 0.6469 0.0079 0.5412 0.6653 0.0046 

0.0674 0.7031 0.0058 0.5584 0.7166 0.0086 
0.0784 0.7434 0.0042 0.5717 0.7574 0.0062 

0.0889 0.7766 0.0004 0.5902 0.8072 0.0030 
0.1035 0.8262 0.0043 0.6010 0.8346 0.0054 

0.1210 0.8623 0.0033 0.6137 0.8594 0.0028 
0.1347 0.8837 0.0024 0.6251 0.8742 0.0032 

0.1494 0.9057 0.0015 0.6378 0.8987 0.0017 
0.1603 0.9213 0.0024 0.6694 0,9365 0.0024 

0.1711 0.9374 0.0015 0.6796 0.9454 0.0009 
0.1853 0.9506 0.0019 0.6938 0.9504 0.0044 

0.1989 0.9642 0.0011 0.7093 0.9654 0.0028 
0.2119 0.9753 0.0027 0.7175 0.9710 0.0036 

0.2242 0.9867 0.0020 0.7341 0.9772 0.0015 

0.2403 0.9982 0.0014 0.7470 0.9769 0.0052 
0.2569 0.9899 0.0036 0.7617 0.9813 0.0005 

0.2649 1.0000 0.0028 0.7783 0.9714 0.0004 

0.2925 0.9927 0.0027 0.7865 0.9714 0.0004 
0.3077 0.9814 0.0006 0.7994 0.9678 0.0004 

0.3219 0.9656 0.0036 0.8117 0.9455 0.0023 
0.3339 0.9516 0.0021 0.8259 0.9367 0.0036 

0.3468 0.9333 0.0029 0.8417 0.9148 0.0040 

0.3613 0.9120 0.0022 0.8554 0.8989 0.0041 
0.3745 0.8929 0.0008 0.8670 0.8828 0.0021 

0.3825 0.8806 0.0016 0.8776 0.8638 0.0016 
0.3987 0.8424 0.0067 0.8949 0.8254 0.0030 

0.4128 0.8115 0.0063 0.9083 0.7925 0.0026 

0.4312 0.7575 0.0034, 0.9163 0.7631 0.0025 

0.4447 0.7204 0.0020 0.9305 0.7160 0.0031 

0.4557 0.6844 0.0092 0.9484 0.6536 0.0081 

0.4664 0.6611 0.0046 0.9614 0.6090 0.0075 

0.4816 0.6269 0.0000 0.9786 0.5528 0.0034 

- - 0.9889 0.5365 0.0039 
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Table A.11: Bradstreet Normal points. R bandpass. 

Phase L(R) a Phase L(R) a 
0.0096 0.5569 0.0012 0.5067 0.6232 0.0003 

0.0224 0.5781 0.0027 0.5182 0.6323 0.001.3 
0.0411 0.6286 0.0078 0.5318 0.6639 0.0039 

0.0549 0.6744 0.0065 0.5477 0.6978 0.0062 
0.0688 0.7225 0.0036 0.5652 0.7480 0.0006 

0.0801 0.7624 0.0034 0.5780 0.7831 0.0040 

0.0939 0.8019 0.0110 0.5861 0.8046 0.0015 

0.1050 0.8305 0.0056 0.5988 0.8366 0.0042 
0.1188 0.8688 0.0061 0.6161 0.8678 0.0024 

0.1337 0.8906 0.0033 0.6273 0.8884 0.0004 

0.1494 0.9169 0.0011 0.6356 0.9003 0.0008 
0.1618 0.9251 0.0031 0.6686 0.9369 0.0022 

0.1722 0.9438 0.0023 0.6796 0.9541 0.0022 

0.1853 0.9563 0.0028 0.6929 0.9638 0.0031 
0.1994 0.9709 0.0015 0.7050 0.9783 0.0016 

0.2157 0.9888 0.0020 0.7197 0.9768 0.0013 
0.2257 0.9956 0.0027 0.7346 0.9894 0.0038 

0.2381 0.9948 0.0019 0.7482 0.9861 0.0009 
0.2534 0.9989 0.0023 0.7594 0.9917 0.0009 

0.2652 1.0083 0.0038 0.7761 0.9804 0.0005 

0.2800 0.9995 0.0106 0.7889 0.9719 0.0009 
0.2957 1.0009 0.0060 0.7972 0.9701 0.0009 

0.3029 0.9849 0.0023 0.8124 0.9537 0.0011 
0.3209 0.9690 0.0021 0.8307 0.9402 0.0000 
0.3341 0.9565 0.0024 0.8368 0.9273 0.0026 

0.3455 0.9414 0.0017 0.8554 0.9036 0.0023 
0.3594 0.9283 0.0023 0.8687 0.8853 0.0025 

0.3699 0.9095 0.0021 0.8800 0.8646 0.0024 

0.3888 0.8839 0.0051 0.8930 0.8400 0.0062 
0.4016 0.8457 0.0035 0.9034 0.8162 0.0049 

0.4152 0.8056 0.0142 0.9211 0.7621 0.0088 
0.4280 0.7780 0.0004 09318 0.7227 0.0079 

0.4385 0.7432 0.0061 0.9421 0.6868 0.0019 

0.4570 0.6906 0.0013 0.9550 0.6408 0.0034 

0.4677 0.6625 0.0052 0.9717 0.5932 0.0061 

0.4794 0.6433 0.0036 0.9868 0.5588 0.0028 
0.4932 0.6255 0.0006 0.9992 0.5513 0.0009 



117 

Table A.12: Bradstreet Normal points. R bandpass. 

Phase L(I) 

0.0096 0.5713 

0.0246 0.5981 

0.0411 0.6387 

• 0.0546 0.6855 

0.0670 0.7277 

0.0809 0.7741 
0.0954 0.8187 

0.1110 0.8561 
0.1186 0.8774 

0.1324 0.8960 

0.1431 0.9169 

0.1608 0.9330 

0.1788 0.9537 
0.1877 0.9618 

0.2006 0.9740 

0.2163 0.9903 

0.2268 0.9923 

0.2529 0.9972 
0.2653 1.0065 

0.2800 0.9993 

0.2980 0.9917 

0.3006 0.9822 
0.3210 0.9710 

0.3345 0.9568 

0.3470 0.9419 

0.3660 0.9145 

0.3693 0.9110 

0.3888 0.8796 

0.4017 0.8451 
0.4236 0.7930 

0.4384 0.7513 

0.4570 0.6969 

0.4658 0.6755 

0.4759 0.6581 

0.4933. 0.6297 

0.5107 0.63-12 

a 

0.0013 
0.0033 

0.003-1 

0.0049 

0.0062 

0.0046 

0.0034 

0.0033 

0.0074 

0.0021 

0.0025 

0.0028 

0.0013 

0.0013 
0.0017 

0.0041 

0.0010 

0.0022 

0.0063 
0.0037 

0.0037 

0.0032 

0.0019 
0.0049 

0.0009 

0.0000 

0.0020 
0.0012 

0.0023 

0.0018 

0.0031 

0.0026 

0.0057 

0.0025 

0.0003 

0.0022 

Phase 

0.5238 

0.5310 
0.5-177 

0.5643 

0.5736 

0.5829 

0.5995 

0.6183 
0.6307 

0.6337 

0.6668 

0.6803 

0.6995 

0.7038 

0.7238 

0.7364 

0.7462 

0.7562 

0.7737 
0.7912 

0.7988 

0.8127 

0.8326 

0.8343 

0.8536 

0.8663 

0.8840 

0.8996 

0.9030 

0.9227 

0.9374 

0.9463 

0.9559 
0.9717 

0.9872 

0.9992 

L(I) 

0.6483 
0.6658 
0.7075 

0.7556 

0.7762 

0.8009 

0.8467 
0.8790 

0.8929 

0.9070 

0.9413 

0.9565 

0.9603 
0.9730 

0.9858 

0.9917 

0.9934 

0.9902 

0.9845 
0.9736 

0.9707 

0.9573 

0.9402 
0.9373 

0.9160 

0.9005 

0.8650 

0.8295 

0.8249 

0.7637 

0.7101 

0.6827 

0.6494 
0.6044 

0.5749 

0.5675 

or 
0.0027 

0.0050 

0.0026 

0.0040 

0.0157 

0.0056 

0.0031 

0.0024 
0.0087 

0.0000 

0.0040 

0.0017 

0.0000 

0.0033 
0.00].2 

0.0027 

0.0018 

0.0044 
0.0018 

0.0009 

0.0036 
0.0021 

0.0000 

0.0016 

0.0017 

0.0035 

0.0019 

0.0000 

0.0024 

0.0032 

0.0019 

0.0179 

0.0057 
n• ) ') (t '.1  

0.0019 

0.0007 



Appendix B 

Hardware and software 

B.1 The RADS System 

The rapid alternate detection system has been on line at the University of Calgary 

since 1981. It was designed to allow high quality photometry even under less than 

desirable sky conditions. 

The system was described in detail by Milone, Robb, Babott and Hansen (1982). 

It is installed on the 41 cm reflecting telescope of the Rothney Astrophysical Ob-

servatory. 

The heart of the system is an oscillating Cassegrain secondary mirror which 

can be driven to any of four different positions. 

The secondary mirror is directly driven by an electrodynamic vibrator. A 

transducer is mounted opposite the driver, and allows measuring the position of the 

mirror. This whole unit can be rotated 3600 about the optical axis of the mirror, 

permitting a selection of a comparison star at any position angle. 

The driver is controlled by a wave form generator. The amplitude of the signal 

determines the position of the mirror, and its length determines the time it will 

stay at that position. The amplitude can be varied across about 4.5 minutes of 

arc. 

A data acquisition system receives this signal and keeps four individual counts, 

one for each position of the mirror. Independent counts of the integration times, 
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Figure B.1: RADS system 
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accurate to ±1ps are also obtained. The Universal Time is also read from a digital 

clock. When the desired integration time is reached the counts are normalized 

according to the integration time for each channel. All data are then stored by 

an Apple He microcomputer on 5-1/4 inch floppy disks, and also printed out. 

Figure B.1 shows a diagram of the RADS system, adapted from Milone et al. 

(1982). 

To reduce noise the pliotornultiplier tube is dry-ice cooled. operating at a 



120 

temperature of about —70°C. This reduces the dark counts to a minimum. 

The fact that all four channels are obtained with the same photomultiplier 

tube eliminates the possible sensitivity differences of a multi tube system. The 

speed of the chopping allows for rapid consecutive measurements of the variable. 

the comparison and the sky, removing much of the transparency variations due to 

clouds and sky brightness variations. 

B.2 Data Reduction 

The RAO data was gathered on an, Apple He microcomputer. A similar machine 

was used to reduce it; software developed and tested at University of Calgary 

over several years was used for the reduction. At the present time the reduction 

programs are in the process of being transported to PC type computers. The 

faster execution speed and the more powerful versions of BASIC available on these 

machines will translate into more productivity for the user. 

Though the radial velocity data were reduced on the Dominion Observatory 

VAX computer from the University of Calgary, a Tektronix emulation program on 

a Zenith Z-150 equipped with a modem allowed the remote use of this software 

from Calgary via Datapac. The program was flexible enough to 'allow the storage 

of the cross correlation graphs on disk for later printing, and reproduced all the 

characteristics of the mentioned terminal. 

The data obtained were then entered into a spreadsheet on the same personal 

computer. The appropriate corrections were entered in separate columns and the 

heliocentric radial velocities were then computed. The formulas for computing 
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mass ratio and gamma velocity according to Wilson were also entered on the same 

spreadsheet, and these numbers also computed. Finally the graphics capability of 

the PC was used to realize the radial velocity curves. 

A program was also developed for computing normal points. The results were 

then graphed on the screen, and an output file written in the input format of the 

Wilson-Devinney code. This file was later transferred via modem to the Cyber 205 

supercomputer at the University of Calgary. 

Once again the graphic capabilities of the spreadsheet were used to visualize 

the output of the Wilson-Devinney program in LC mode, as compared to the 

observed light curves. Once a value of the potential was found, a program for 

solving equations by differential corrections was used on the PC to obtain a rough 

estimate of the cross section of the star. This program took as input the Roche 

potential formula, the mass ratio and the positions of the centers of the stars. It 

then computed, by iterations, the Y values of points along the edge of the system 

for X running from one end to the other. 

B.3 Use of Mainframe Computers 

The heart of the project was the modeling carried out with the Wilson-Devinney 

program (Wilson and Devinney, 1971), which computed both the synthetic light 

curves and the differential corrections to the system parameters. It was run on the 

Cyber 205 supercomputer at the University of Calgary. The computer operates 

only in batch" mode, and the programs must be submitted froin a front end 

computer. During the length of the project the front end was changed from a 
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Cyber 175 to a Cyber 860, this change was transparent to our program. There 

was, however, also a change in the operating system on the Cyber 205. This 

brought out some incompatibilities with the code, which were corrected. 

The power of t:he sulercornputcr is essential when executing a program like that 

of Wilson. The process of computing both the differential corrections and the light 

curves requires a lot of iterative work. The sheer speed of the computer shortens 

the length of each run to no more than twenty minutes of real time. In this way a 

day of work can mean several runs, and hence much faster results. 

The Multics system was used for its flexibility and ease of use. Almost all the 

graphs were generated by FORTRAN programs written on Multics, and using the 

graphics subroutine library DISSPLA. When only medium quality output were 

required, a screen dump into a dot matrix printer was usually enough. For high 

quality output both the Calcomp plotter and the QMS laser printer were employed. 

Data could easily be transferred between the mainframes and the personal 

computers by the use of modems. In the case of the Apple and the PC a serial 

connection was made and the data transferred. The transfer between the Cyber 860 

and Multics was possible by using a special line called the HASP link. In this way 

the output from the Wilson-Devinney code could be moved over to Multics for 

graphing. The plotted fittings are indispensable tools, and the ultimate test of the 

success of the modeling. 

The graphing program could then read the output without any editing needed. 

It could also read a file with radial velocity data, and another one with light curve 

data. If desired, all sets could be plotted, and the output parameters listed for 

faster reference. A sample output can be seen in Figure B.2. 
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Figure B.2: Sample graph from the LC mode output 
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Finally the text of this thesis itself was written on the Multics system, and 

typeset using the program TeX. Graphs were printed on the laser printer and later 

pasted into the manuscript. 


