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In this paper we describe a general approach which allows the hypernetted chain (HNC) and
Percus—Yevick (PY) integral equation theories to be solved numerically for fluids of hard
nonspherical particles. Explicit results are given for fluids of hard ellipsoids of revolution and
comparisons are made with recent Monte Carlo calculations. It is found that for dense systems
of highly anisotropic ellipsoids the HNC and PY closures give significantly different results.
The HNC theory is superior predicting the existance of a nematic phase in qualitative
agreement with computer simulations. The PY approximation strongly and erroneously
suggests that the isotropic phase is stable throughout the liquid regime.

I. INTRODUCTION

The purpose of this paper is to describe a method which
allows the hypernetted chain (HNC) and Percus-Yevick
(PY) integral equation theories to be solved for fluids of
hard nonspherical particles and to give explicit results for
hard ellipsoids of revolution. The present approach closely
follows that described in earlier papers,'~ but some exten-
sion of the theory is necessary in order to account for the fact
that pair potentials which characterize the interaction of
hard nonspherical objects are discontinuous in orientational
space. The method given here allows the integral equation
theories to be solved for hard particles of arbitrary shape
provided that the minimum contact distance between two
particles is 2 known function of the particle orientations. For
example, this contact function is known for ellipsoids,®’
spherocylinders,® and for particles of any shape which can be
represented by aggregates of fused hard spheres.

This paper also includes a detailed analysis of the HNC
and PY theories for fluids consisting of hard ellipsoids of
revolution. Fluids of ellipsoids with length-to-breadth ratios
a/b =1.25,2, 3, and 5 are studied for different densities, and
insofar as possible, comparisons are made with the extensive
Monte Carlo (MC) calculations of Frenkel and Mulder®
and with those of Perram et al.'® We also investigate the
stability limits of the isotropic phase with respect to fluctu-
ations of nematic symmetry. This is done using the stability
conditions put forward by Stecki and Kloczkowski!' as dis-
cussed in our earlier paper’ dealing with simple liquid crystal
models. Indeed, it is in this regard that one finds an interest-
ing difference between the HNC and PY approximations. If
a/b is sufficiently large the HNC theory shows an orienta-
tional instability at liquid densities. Furthermore, for a/b
= 3 the system becomes orientationally unstable at a den-
sity which is in good agreement with the isotropic—nematic
transition observed by Frenkel and Mulder.® This is not true
for the PY approximation which does not predict an orienta-
tional instability at densities lower than the Monte Carlo
freezing transition.” Thus the tendency of ellipsoids to align
and form a nematic phaseifa/b 2 2.75 (cf. Ref. 9) is not well
described by the PY theory. The equations of state and the
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pair correlation functions given by the HNC and PY theor-
ies are also compared and evaluated in the text.

The remainder of this paper is divided into three parts.
The method of solution is discussed in Sec. II, results for
ellipsoids are given in Sec. III, and our conclusions are sum-
marized in Sec. IV.

Il. THEORY

In this section we consider hard nonspherical objects of
arbitrary shape. For particles of this type the pair potential
u(r,{1,,0Q,) can be expressed in the form
w, if particles 1 and 2 overlap
0, if particles 1 and 2 do not overlap’

1
where (1, and Q, represent Euler angles describing the orien-

tations of particles 1 and 2 and r is the vector joining the
centers of mass.

u(r,Ql,Qz) = [

A. The HNC and PY theories

If A(r,Q,,Q,) and c(r,Q,,Q,) are the pair and direct
correlation functions, respectively, and if we let
7(12) = A(12) — ¢(12), then the HNC and PY integral
equation theories are given by the Ornstein—Zernike (0Z)
equation

7(12) =§”;fc(13)[n(32) +e(3DIB), (@)

coupled with the closure relationships
c(12) = — 1 —9(12) overlap, (3a)

¢(12) = ¢ (12) no overlap, (3b)

where p is the number density, d(3) =dQ,dr,, and
¢cL (12) represents either the HNC or the PY approxima-
tion. In general the HNC and PY closures are given by'2

Ccunc(12) =h(12) —Ing(12) — Bu(12) (4a)
and
cpy (12) =g(12)[e_—ﬂu“2) 1], (4b)
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where g(12) = h(12) + 1 and B = 1/kT. For hard non-
spherical particles it is clear that these equations become

cane (12) = A(12) — Ing(12) (5a)
and
epy (12) =0

if the particles do not overlap.

The reduction and solution of Egs. (2) and (3) with
cor (12) given by Eqs. (5a) or (5b) closely follows the ap-
proach employed in previous papers.’? Therefore, here we
given only a brief summary of the basic results and a discus-
sion of the extensions necessary in order to deal with fluids of
hard nonspherical particles. For a more complete descrip-
tion of the method the reader is referred to Refs. 1 and 2.

In order to reduce and solve Eqgs. (2) and (3) it is neces-

(5b)

sary to expand all correlation functions in the form"!!4
F(12) =3 Frob(n@m! (92,0,8), (6a)
mnl
wy
where the coefficients F /() are defined by
Fin = z,lnn: f F(12)®0'*(12)dQ, dQ,,  (6b)
Bv .
1;;':’=fq>;;':'(12)<b;;';"*(12) dQ, dq, . (6¢)

As in earlier work'? the rotational invariants ®77'(12) are
defined by

!

omi(12) = fm (:’ " )

# s ,‘g;. v A
XR7 (DR, ()R (F),  (6d)

where # = (r, —r,)/|r, — 14|, R 2, (Q,) is a Wigner gener-
alized spherical harmonic'® and f™ can be any nonzero
constant. It is useful to note that the rotational invariants
satisfy the orthogonality condition'*®:

1 oy
(87%)2 f¢:’fl (12)¢Z'$'I"'(12)d0, dQ,
(fmnl)z _—
= am’nt" VAR Ta
Gm+ D2t DRI 1) e (72)
where
Wt = O O S Sy O (7b)

In Fourier space the correlation function expansions allow
the OZ equation to be reduced'*! to a set of algebraic equa-
tions relating the Hankel transforms #7"'(k) and &7 (k)
defined by the general expression

Froky = 4m"r P (kr)F el (r)dr, (8a)
0

where j, (kr) is a spherical Bessel function. For reference
below, it is useful to note here that if F Z';" (7) decays more
rapidly than 1/7° ds r— «, then

Fru(k=0) =0, foralll#0. (8b)

It is also possible'*” to expand (essentially analytical-
ly) the HNC and PY closures in the same basis set of rota-
tional invariants. For potentials which are continuous func-

tions of the orientational variables this allows the HNC and
PY equations to be solved as described in Refs. 1 and 2,
respectively. However, for the hard nonspherical models
considered in the present paper the problem is complicated
by the fact that c(r,,,Q2,) and A(r,{},,2,) are discontin-
uous functions of ), and ), as well as of r. In the numerical
solution of the integral equation theories, the discontinuous
behavior must be taken into account as described below.
From the definition (6b) we have the relationship

I emei(r) =fc(12)¢$3'*(12)dﬂldﬂz, 9)

where I is given by Eq. (6¢). For fixed 7, we can split the
integral in Eq. (9) into two parts corresponding to the re-
gions of orientational space where the particles do and do not
overlap. Thus we have

I7emnr) =f c(12)Drri*(12)dQ, dQ,
ov

+| ca2yomri=(12)d,d0,,  (10)

NOV

where OV denotes the overlap and NOV in the nonoverlap
regions. Applying the closure relations (3a) and (3b), Eq.
(10) becomes

Immemmry = | [ —1—9(12)]0m"(12)dQ, dQ,
oV

+ ca (12)®7*(12)dQ, d(Y, .

nv
NOV
(11)

If7(12) and ¢, (12) are now expanded in rotational invar-
iants we obtain

1 LV i’
el =3 [ =8z —niy" (N Ak (1)

m'n'l’
u'v
+ Z,,cgi"ﬁ'?(’) Bk, (r),  (12a)
u'v
where
l Oy g
ATy (N =00 | U (12)d0, d0,,
uv
(12b)
Y 1 mn m'n'l’
By (0 = o J;ovq)#v’*(lz)d)“vl (12)dQ2, d92, .
nv

(12¢c)

Itis also clear from the orthogonality condition (7a) that the
simple relationship

Bty (1) = 8ty — A Tty (1) (13)

must hold. Equation (13) allows Eq. (12a) to be expressed
in the final convenient form

! 'y
' ()= [ —8ooo”” —
m'n’l’

uv

X Ay, (r) + cgl., (r), (14)

ot -
Ty (1) — €&l (1) ]
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which is valid for all values of 7.

There are several points worthy of note. If weleta and b
be distances such that if r <& the particles overlap for all
orientations, and if 7> a the particles do not overlap for any
orientation, then it is evident that for r <,

4 :"nl'?;;v n= 5:7%7#'1/ s (15a)

cpr(r) = — Bgooe — Muw' (1) (15b)
and for r>a,

A, (r) =0, (16a)

() = el (1) - (16b)

Thus both terms in Eq. (14) only apply in the intermediate
region where b < r <a. It is also clear that the 4 204", (1)
and consequently the projections c,'j‘;" (r) must be continuous
functions of r for hard nonspherical particles. This differs
from models previously studied"** (i.e., multipolar hard
spheres) where the hard spherical core introduces discontin-
uities in the ¢[7/(r) coefficients at the hard sphere diameter.
Finally, we remark that Eq. (14) is not restricted to simple
hard objects but could also be used to solve the HNC and PY
theories for decorated hard nonspherical particles such as
multipolar ellipsoids.

In actual applications the ¢Zf"/,, (CL=HNC or PY)
projections used in Eq. (14) are obtained from the HNC or
PY expansions given in Refs. 1 and 2, respectively. For sim-
ple hard objects these give

() =0 17
and
cg;}cwv (rH = z z P h;ll.vn‘.l.(r;)
mnl, myn,l, r
MV, vy
X‘aa;" [ —meten]ar, (18)

where p depends upon all 15 indicies and its definition is
apparent from Egs. (23) of Ref. 1. Also we note that the
A zf',,’f;?;,,, (r) functions must in general be found by numeri-
cal integration of Eq. (12b).

B. The equation of state

The equation of state can be obtained from the virial or
from the compressibility equations. Of course, in an exact
calculation both routes must give the same result, but this is
not true for approximate theories such as the HNC and PY
approximations.'?

In general for isotropic fluids the virial equation of state
can be expressed in the form

BP 27 1
L _(_Tp, '
o 3 P Gy

xfdﬂ, dazfdrﬂéy—(ﬁgi&zlg(r,ﬂpﬂz),
r .

(19)
where P is the pressure. If u(r,0,,8),) is given by Eq. (1),
then for fixed 2, and 0, (now expressed in an intermolecu-

lar coordinate system) integration over r can be carried out'?
to give

—ﬂ;—)P—= 1 +33£p(_81}27JdQl 920(Q1,92)3g(0',91,02) Iy
(20)

where o (0,,(),) is the contact distance for fixed orientations
Q, and §),. Expanding g(12) in rotational invariants imme-
diately yield
BP _ + 2mp 1 ;

(87%)

P 3
xy fdﬂl dQ,o(12)°’grr (o) P (12) .

mnl
uv

Thus the virial expression for the compressibility factor de-
pends upon all terms in the rotational invariant expansion of
g(12).

If o (Q,,02,) and g(0,0,,§),) are known, then Eq. (20)
can be integrated numerically to give the equation of state.
However, a word of caution is in order. In general in numeri-
cal calculations the value of o for given 2, and Q, will not
exactly coincide with an r-space grid point. Therefore, in
order to obtain a value for g(¢,0,,Q,) an extrapolation is
required. Now, since g(7,Q2,,02,) is discontinuous at r = o
and varies rapidly in this region, numerical extrapolations
are usually not very accurate. Therefore, in HNC and PY
calculations a much better method is to first determine
7(0,02,,$2,) by interpolation of the continuous function
7(r,Q,,Q,). The required values of g(0,0,,Q) are then giv-
en by the relationships

g(aynl,ﬂz) = e"’(”r“unz);
and
£(0,0,0,) =1+ 9(0,Q.,0,); PY,

which can be easily deduced from Eqgs. (1) and (4).
The equation of state can also be obtained from the com-
pressibility equation which can be expressed in the form'?

P\ _ Xr 1
8(%F) - . @)
dp/r xr [1+phk=0)]
where y - is the isothermal compressibility and Y5 = B /p is
the ideal gas result. In Appendix A the OZ equation together
with Eq. (8a) is used to show that the relationship
1
[1-petk=00]"
which is very useful in the theory of spherical particles,?

also holds in the hard nonspherical case. Therefore, Eq. (23)
can also be written as

B(i’.'i) —1—p&® (k=0).
dp/r

Finally, the compressibility factor, P /p can be determined
by numerical integration of the equation

2o L) e

1. HARD ELLIPSOIDS OF REVOLUTIONS

We consider hard ellipsoids of revolution characterized
by the length-to-breadth ratio a/b. In the present work it is

(21)

HNC, (22a)

(22b)

14 ph(k=0) =

(24)

(25)

(26)
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TABLE I. The terms included in the different basis sets. In all cases m,,,, = n,,, and [ ,, <6.

No. of No. of independent
Basis independent Am(r)
set terms (N,) coefficients® Terms included®
I
(000),(022),(220),(222)
(224),(044),(242),(244)
(246),(440),(442),(444)
(Mg = 4) 13 106 (446)
II
(066),(264),(266),(462)
(464),(466),(660),(662)
(M, =6) 23 342 (664),(666)
III
(286),(484),(486),(682)
(684),(686),(880),(882)
(Mg = 8) 33 714 (884),(886)

*Here we list only the additional terms which occur in each basis set. The total set is the sum of the additional

plus all previous terms.

®The total number of 4 7%,. (r) coefficients is N, = [N, (N, + 1)/2] + [N, (N,; + 1)/2], where N; is the
number of independent terms and N, is the number of pairs of terms related by Eq. (27).

convenient to define a state of the ellipsoidal fluid by specify-
ing the reduced density p* = pb *. All numerical calculations
were carried out using 1024 grid points and the grid width Ar
was 0.015 for a/b<3 and 0.02b for a/b = 5. Percus-Yevick
and HNC results are given for a/b = 1.25, 2, 3, and 5, and
for the first three cases comparisons are made with the
Monte Carlo calculations of Frenkel and Mulder.'® Com-
puter simulation results are not available for values of a/b
larger than 3.

Ellipsoids of revolution have axial symmetry together
with a center of inversion. This means that only terms for
which ¢4 = v = 0 and m, n, and / are even, are allowed in the
correlation function expansions. Furthermore, the expan-
sion coeflicients must satisfy the relationship

Foi(ry=FxH(r), (27)

where F=4, c, or 77. These symmetry requirements will obvi-
ously simplify the general equation given above. Also, in
order to simplify the notation, the indices g = v = 0 shall
not be explicitly written in the following discussion of results
for hard ellipsoids.

In general, the calculation of the 4 74", (r) coeffi-
cients would involve five-dimensional numerical integra-
tions over the angular variables. However, for axially sym-

TABLE II. The basis set dependence of the HNC results for a/b = 3 and
p* = 0.24, The basis sets are defined in Table I.

Basis Set
Property I 1 11
BP(M 1/p 13.6 131 13.8
[BP(C))/p 8.15 8.12
xr/x> 0.0413 0.0416 0.0418
PAK ! 0.485 0.478 0.506

metric particles the angular integration is reduced to three
dimensions. Also one has the symmetry relationship

AT (r) =AWl (r), (28)
which obviously reduces the number of necessary calcula-
tions. It should be emphasized that the calculation of the
A7, (r) coefficients is not part of the interation scheme
used to solve the integral equations and must be performed
only once for each value of a/b. Nevertheless, for relatively
large basis sets the calculation of these functions is a major
part of the computational effort and it is in fact the number
of 4 ™., (r) coefficients which eventually limits the number
of terms it is practical to include in the correlation function
expansions (see Table I). An outline of the numerical meth-
od used to calculate the 4 [i,. () coefficients for hard ellip-
soids is given in Appendix B.

The results obtained for a given closure will depend to
some extent upon the number of terms included in the rota-
tional invariant expansion of the correlation functions.
Therefore, in order to investigate the basis set dependence
we have carried out calculations for the different basis sets
summarized in Table 1. The different basis sets are defined
by the maximum values of the indices m, n, and / (i.e.,
Moy = My, and /., ) used in the calculation. The number
of independent terms [i.e., terms related by Eq. (27) are
only counted once] in each basis set as well as the number of
independent [i.e., terms related by Eq. (28) are only count-
edonce] 4 7%.,. (r) coefficients are also given in Table I. The
number of 4 7%, (r) coefficients obviously grows rapidly
with the number of terms in the expansion (cf. Table I, foot-
note b) and as mentioned above this eventually limits the
number of terms which can be included in the calculation.

The basis set dependence in the HNC results for hard
ellipsoids with a/b = 3 and p* = 0.24 is shown in Table II.
The quantities [BP(¥) ]/p and [BP(C)]/p are the virial and
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11.04
10.0-
9.0-
8.0-
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60
5.0
4.0-
30

2.07

1.01

00 T T T T T T T >
) 0l 02 03 04 O3 06 07 08 p*

FIG. 1. The compressibility factor SP /p for a/b = 1.25 obtained with basis
set IL. The solid curve represents the Monte Carlo data (Ref. 9) and the
dashed curve is the y expansion (Ref. 9). The solid and open triangles are
the HNC results obtained for the virial and compressibility equations, re-
spectively. The solid and open circles are the PY results obtained from the
virial and compressibility equations, respectively.

compressibility values as determined by Eqs. (20) and (26),
respectively. The ratio of the isothermal compressibility to
theideal gas value y /¥ is given by Eq. (23),and B4K ~'is
a reduced reciprocal Kerr constant. The Kerr constant is
important in analysis of the stability of the isotropic phase
and is defined below [cf. Eq. (34)]. It can be seen from
Table II that some basis set dependence is observed for
[BP(V)1/p but that [BP(C)]/p and y r/xT show very little
variation. This is what we would expect since [BP(C)]/p
and y, depend explicitly only upon g°°(r), whereas
[BP(V)1/p has an explicit dependence upon all the g™ (r)
projections [cf. Eq. (21)]. The Kerr constant explicitly de-
pends upon % 2?°(r) [cf. Eq. (34a)] and thus has a weak
dependence upon basis set.

For the quantities given in Table II the basis set depen-
dence in the PY results is either similar to or smaller than
that found for the HNC theory. We note that the basis set
dependence decreases with the a/b value and also with den-
sity. Therefore, the basis set dependence shown in Table 11
illustrates essentially the maximum observed for fluids com-
pared with Monte Carlo calculations. We have investigated
the basis set dependence only for a/b = 3, and the a/b =5
results obtained with basis set I are included simply to given
an idea of how very long ellipsoids are likely to behave. We
certainly do not claim that the bais set II results are full
HNC or PY solutions for this system. Finally, we note that

200+ -
18.04

16.01
14.0
120
100
8.0

6.0

4.0
2_0-///

00" oI 02 03 04 05 06 p*

FIG. 2. The compressibility factor 8P /p for a/b = 2 obtained with basis set
IL The curves are as in Fig. 1.

1.o4 BP
10.0-
9.0
8.0
7.0-
6.0
5.0

4.0

3.0
2.04’/
1.0

t
00 0.1 0.2 03 p

%Y

FIG. 3. The compressibility factor 8P /p for a/b = 3 obtained with basis set
IL. The curves are as in Fig. 1.
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1004 BP o
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! 1
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FIG. 4. The compressibility factor 8P /p for a/b = 5 obtained with basis set
II. The curves are as in Fig. 1 except that there are no Monte Carlo results in
this case.

the basis set dependence of g°®(7) and k 22°(r) is discussed
below (cf. Sec. III B).

A. The equation of state

The compressibility factor BP /p for a/b = 1.25, 2, 3,
and 5 is plotted in Figs. 14, respectively. All integral equa-
tion results shown in Figs. 1-4 were obtained with basis set
II. We also included in the figures the theoretical equation of
state given by the so-called y expansion applied to ellipsoids
by Frenkel and Mulder.® For a/b = 1.25, 2, and 3 the theo-
retical results are compared with exact Monte Carlo values.’
The y expansion is quite accurate for hard spheres'® and is
generally in better agreement with exact results than PY or
HNC theories. For ellipsoids we find that this is also true for
a/b = 1.25 and 2. However, for a/b =3 more accurate
equations of state are given by both the PY and HNC theor-
ies.

The curves shown in Fig. 1 for a/b = 1.25 resemble to
some extent those for hard spheres with the PY results being
more accurate than the corresponding HNC values. How-
ever, we observe that the PY (V) is slightly more accurate
than the PY(C) (i.e., ¥ and C denote the viral and com-
pressibility results, respectively ) whereas the opposite is true
for hard spheres.'>'® From Figs. 2 and 3 it can be seen that
for a/b = 2 and 3 the PY (¥) and HNC(C) results are very
similar and are more accurate than the PY(C) and
HNC(¥) values. This is particularly true at a/b=3 (cf.
Fig. 3) where, as mentioned above, the PY (V) and
HNC(C) are considerably more accurate than the y expan-
sion. There are no exact Monte Carlo results for a/b = 5 but
if the pattern observed in Fig. 3 holds then the PY (V) and

1.0 1.5 29 25
2.0
.5 «)
i.0
1.5
7.0
1.5
-1.0\ ooz
T s T 29 2
r/ob

FIG. 5. The HNC results for 5™ (r) obtained with basis set III fora/b = 3
and p* = 0.24, The four plots are as follows: (a) (m,n)<2; (b) (m,n)<4;
(c) (mn)<6; (d) (m,n)<8. Only those curves clearly discernable on the
scale used in the figure are labeled with the appropriate (mn!/) values.

HNC(C) are likely the most accurate theoretical results in
this case as well.

B. The pair distribution function

From Egs. (6) it is obvious that the magnitude of the
h™(r) coefficients will depend upon the choice one makes
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g (r)

FIG. 6. The radial distribution function g°°(r) for a/b = 1.25 obtained
with basis set I1. The solid and dotted curves are, respectively, HNC and PY
results at p* = 0.624. The dashed curve is at p* = 0.20 where the HNC and
PY results are not distinguishable on the scale used in the figure.

for f™. Asin our earlier work'-* all functions shown in this
paper are for the choice

fml=”/(’: on 0/

The h ™ (r) coefficients obtained with basis set III for a/b
= 3 are shown in Fig. 5. It can be seen from the figures that
the most important coefficients dre those for which / = 0.
For / #0 the magnitude and importance of the projections
fall very rapidly with increasing / regardless of the values of
m and n. All coeflicients with / = 4 are small and those for
which / = 6 cannot be seen on the scale used in Fig. 5. Hence,
no projections for which /> 6 are included in the basis sets.
The HNC results for g°°(r) obtained with basis set II
fora/b = 1.25, 2, 3, and 5 are shown in Figs. 6-9, respective-
ly. At a/b = 1.25 (Fig. 6) one obtains a smooth curve with
well-defined structural features. Indeed, g°°(r) looks very
similar to the radial distribution functions obtained for typi-
cal “soft” sphere fluids. At a/b=2 and 3 (Figs. 7 and 8,
respectively) the radial distribution functions have rather
broad peaks with some “fine structure” at high density. The
fine structure is not a numerical artifact [cf. note that the
structure factors (Figs. 11 and 12) are smooth functions]
but it does exhibit some dependence upon basis set (cf. Fig.

(29)

g™(r)

FIG. 7. The radial distribution function g°°(r) for a/b = 2 obtained with
basis set II. The solid and dotted curves are, respectively, the HNC and PY
results at p* = 0.397. The dashed curve isat p* = 0.20 where the HNC and
PY results are not distinguishable on the scale used in the figure.

1.504 g™(r)
1.25-

7
1.00-
0.754 |/

0.504¢

o.zsj/}"
¥
0.00+——F—————————
1.0 1.5 2.0 2.5
r/b

FIG. 8. The radial distribution function g°®(r) for a/b = 3 obtained with
basis set II. The solid, dotted, and short-dash curves are HNC results for
p* =0.26,0.24, and 0.14, respectively. The long-dash and dash—dot curves
are PY results for p* = 0.24 and 0.14, respectively. The solid triangles are
Monte Carlo points (Ref. 10) for p* = 0.2546.

10). At a/b =3 (Fig. 8) and particularly at a/b = 5 (Fig.
9) the HNC curves show a distinct peak developing at short
range as the density is increased. This likely indicates an
increasing tendency for the ellipsoids to form parallel config-
urations. This effect is also apparent in the 4 ?*°(r) projec-
tions (cf. Figs. 14 and 15).

The PY results for g°®°(r) are also shown in Figs. 6-9.
At low density the PY and HNC curves are very similar for
all values of a/b. However, for relatively large values of a/b
and high densities (cf. Figs. 7-9) significant discrepancies
occur. Of particular importance is the fact that the PY ap-
proximation does not show the peak at short range evident in
the HNC curves for a/b = 3 and a/b = 5. Again, this is con-
sistent with the A 22°(r) results and is due to the fact that the
PY approximation does not predict a strong preference for
parallel configurations.

The basis set dependence of the HNC g%°(7) for a/b
= 3 and p* = 0.24 is shown in Fig. 10. We note that basis
sets II and III give very similar results but that the fine de-
tails do vary to some extent particularly at short range. All
basis set dependence rapidly vanishes as the density is de-
creased. For a/b = 3 the PY result for g%%°(r) exhibits virtu-
ally no basis set dependence even at high density. In all cases
we have looked at, basis sets I and II give essentially identical
results.

0.01 T T T T T T T T Y
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
r/b

FIG. 9. The radial distribution function g°®(r) for a/b = 5 obtained with
basis set II. The solid and short-dash curves are HNC results for p* = 0.12
and 0.05, respectively. The dotted and long-dash curves are PY results for
p* =0.12 and 0.05, respectively.
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g™ ()

FIG. 10. The basis set dependence in the HNC result for g°®(r) fora/b =3
at p* = 0.24. The solid dotted and dashed curves are for basis sets III, II,
and I, respectively.

The Monte Carlo results for g°°(») with a/b =3 re-
ported by Perram et al.'® are also shown in Fig. 8. We note
that the overall shape of the Monte Carlo curve is similar to
the integral equation results. The Monte Carlo points plot-
ted in Fig. 8 were estimated from the smooth curve given in
Ref. 10. Very precise Monte Carlo calculations would be
necessary in order to test the fine detail in the theoretical
results.

The structure factors defined by

S(k) =1 4+ ph*(k) (30)

given by the HNC and PY theories for a/b = 2 and 3 are
illustrated in Figs. 11 and 12, respectively. We note that
these functions are basically unremarkable smooth curves.
As we would expect from the g°®°(r) results the structural
features in S(k) become less distinct as a/b is increased.
The A 22°(r) projection is particularly important since its
behavior determines the stability limit of the isotropic phase
(cf. Sec. III C). HNC and PY results for 4 2?°(r) with a/b
= 2, 3, and 5 are shown in Figs. 13-15, respectively. In order
to obtain a physical understanding of this function it is useful
to note that®

53/2

h?°(r) = g%%°(r)(P,(cos B)), , (31)

f220

where £ is the angle between the symmetry axes of the ellip-
soids, P, (cos B) represents the usual second order Legendre
polynomial, and (P,(cos B)) , denotes the average value per

2.07 s(k)

FIG. 11. The structure factor S(k) for a/b = 2 obtained with basis set II.
The solid and dotted curves are, respectively, the HNC and PY results at
p* = 0.397. The dashed curve is at p* = 0.20 where the HNC and PY re-
sults are not distinguishable on the scale used in the figure.

1.254

S(k)

1.004

0.754

0.504

0.254 /

o
o
o

1 T T
4.

bk
FIG. 12. The structure factor S(k) for a/b = 3 obtained with basis set II.
The solid and short-dash curves are HNC results for p* = 0.24 and 0.14,

respectively. The long-dash and dotted curves are PY results for p* = 0.24
and 0.14, respectively.

particle for a distance r. Thus for a given g°°(#), h °(r)
increases with increasing tendency towards parallel configu-
rations. It can be seen from Figs. 13-15 that the HNC theory
gives larger and sharper peaks at short range than those ob-
tained with the PY approximation. Furthermore, for a/b

=3 and 5 (Figs. 14 and 15, respectively) and high density
the HNC result for 4 ??°(r) is longer ranged than the PY
function. A further discussion of the A °(#) projection and
its importance in determining the stability limit of the iso-
tropic phase is given below.

The basis set dependence of the HNC result for 4 22°(r)
at a/b = 3 and p* = 0.24 is shown in Fig. 16. It is apparent
from the figure that although all three basis sets give similar
functions, the height of the first peak does exhibit some de-
pendence upon basis set. This is mainly due to the fact that
projections of the type 2™ (r) do not decrease rapidly in
magnitude with increasing m. Again the PY solutions show
very little basis set dependence with basis sets I and I giving
near identical results.

C. Stability of the isotropic phase

The condition for the stability of the isotropic phase rel-
ative to the nematic state can be expressed in the general
form>!!

1.5

1
1.0

h™(r)

0.54

T T
2.0 2.5
r/b
FIG. 13. The function 4 22°(r) for a/b = 2 obtained with basis set II. The
curves are as in Fig. 7.
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4.4 h™(r)

FIG. 14. The function 4 22°(r) for a/b = 3 obtained with basis set II. The
solid-1, solid-2, dotted, and long-dash curves are HNC results for
p* =0.27,0.26, 0.24, and 0.14, respectively. The short-dash and dash—dot
curves are PY results for p* = 0.24 and 0.14, respectively.

1oL a0y >0 (32)
(2m+1)3/2p >V,

where m30. It is important to emphasize that Eq. (32) de-
termines the spinodal line and not the thermodynamic coex-
istance curve for the isotropic and nematic phases. This
means that Eq. (32) does not give the thermodynamic iso-
tropic—nematic transition density, but it does establish the
limit beyond which the isotropic phase cannot exist evenas a
thermodynamically metastable state.

In Appendix A it is shown that for molecules of axial
symmetry one has the exact relationship

& (0)

1— [fmmO/(2m + 1)3/2]p Emm()(o) '
It is interesting to note that this equation which we obtained
previously for specific P,(cos B) potentials® is in fact valid
for all axially symmetric models. A more general result for
particles of arbitrary symmetry is obtained in Appendix A.
Equation (33) allows us to easily understand the physical
significance of Eq. (32). It is obvious that, as the denomina-
tor on the left hand side of Eq. (32) tends to zero,
h™° (0) » « . Hence Eq. (32) simply expresses the fact that

hmm(0) = (33)

3 ] h™(r)

3.
r/b

FIG. 15. The function A 22°(r) fora/b=>5 obtained with basis set II. The
curves are as in Fig. 9.

2.5 h™(r)

1.0 1.5 20 25 3.0
r/b

FIG. 16. The basis set dependence in & >2°(r) for a/b = 3 and p* = 0.24.
The curves are as in Fig. 10.

the isotropic phase must become unstable as the angular cor-
relations become of infinite range. In practice, we find both
for simple P, (cos B) models® and in the present calculations
for ellipsoids, that the stability limit of the isotropic phase is
determined by the divergence of & 22°(0).

Experimentally, this phenomena is observed in mea-
surements of the static Kerr constant.??! For axially sym-
metric nondipolar particles such as the present model the
Kerr constant is defined by**

fzzo L
K=p4 [1+—5—5/—2h22°(0)] (34a)
fzzo -1
= pA [1 - -53—/2-5220(0)] , (34b)

f BAK™
— 128
4
kY
2\
00 02 04 06  p*

FIG. 17. The reduced inverse Kerr constant 84K ~' as a function of den-
sity. The values of a/b for the different curves are given on the plot. The
calculated and extrapolated HNC curves are represented by solid and dot-
ted lines, respectively. The dashed curves denote the calculated PY results.
The solid arrows indicate the Monte Carlo liquid — solid transition densities
(Ref. 9). The Monte Carlo isotropic —nematic transition density (Ref. 9)
for a/b = 3 is indicated with dashed arrow. A dashed arrow also marks the
isotropic - nematic transition predicted by the y expansion (Ref. 9) for
a/b=>3:.
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1 r*h™(r) |

r/b

FIG. 18. The function %4 >2°(r) for a/b = 2 obtained with basis set II. The
curves are as in Fig. 7.

where 4 depends upon molecular parameters,” and Eq.
(34b) is obtained with the aid of Eq. (33). It is clear from
this definition that X must diverge and K ~' -0 as the iso-
tropic phase becomes unstable.

In Fig. 17 the quantity B4K ~'is plotted as a function of
p*. Fora/b = 2 and 3 the density of the liquid — solid transi-
tion as reported by Frenkel and Mulder® is marked with
solid arrows. The Monte Carlo result® for the isotropic—ne-
matic transition density at a/b = 3 is indicated by a broken
arrow. As noted above, Monte Carlo results are not available

for a/b =5, but the isotropic-nematic transition density
predicted® by the y expansion is also marked with a broken
arrow. It is obvious from Fig. 17 that, as we would expect,
the rate at which S4K ~! approaches zero increases rapidly
with increasing values of a/b. It is also apparent that the PY
curves fall more slowly than the corresponding HNC results.
For a/b = 2 both the extrapolated HNC and PY curves fail
to reach zero before the liquid—solid transition density.
Hence the theoretical results strongly suggest that the iso-
tropic phase is stable throughout the liquid regime and this is
in fact consistent with the Monte Carlo calculations. At a/
b = 3 the extrapolated HNC curve does cross zero before the
freezing density. Thus the HNC theory does predict the exis-
tence of a nematic phase. Furthermore, the value of p* at
which 4K ~! = 0 is close to the density of the isotropic—

S. r*h™(r)

FIG. 19. The function 7k 22°(r) for a/b = 3 obtained with basis set I1. The
curves are as in Fig. 14.

1 r’h™(r)

6. 8.
r/b

FIG. 20. The function 72k 22°(r) for a/b = 5 obtained with basis set II. The
curves are as in Fig. 9.

nematic transition given by Frenkel and Mulder.® The ex-
trapolated PY result, on the other hand, does not reach zero
before the freezing transition and thus in the PY approxima-
tion the isotropic phase remains stable. Ata/b = 5 the HNC
result for 4 22°(0) also diverges and B4K ~* falls rapidly to
zero, predicting a nematic phase at very low density in good
agreement with the y expansion.

In order to obtain a physical picture of what is happen-
ing in these fluids as the isotropic phase becomes unstable,
we have plotted 7*h #*°(r) for a/b = 2, 3, and 5 in Figs. 18~
20, respectively. This is clearly the correct function to plot
since its integral with respect to  determines % 22°(0). We
note that for a/b = 2 both the HNC and PY functions oscil-
late about zero and rapidly decay. Ata/b = 3 and 5 the PY
curves continue to behave in a similar manner. However, the
HNC result at higher densities changes quite dramatically
and one can clearly see the development of a long-range cor-
relation. This correlation is associated with the tendency to
form parallel configurations and it is the growth of this cor-
relation with density which eventually leads to the diver-
gence of / 22°(0) and to the instabilty of the isotropic phase.
Another illustration of this is given in Fig. 21 where we have
plotted % 22°(k) fora/b = 3. The rapid increase in the small
values as p* is increased is evident in the figure. Similar plots
of the PY results do not exhibit this behavior.

h™ (k)

60 . -
50. |
40. -
30.
20.

FIG. 21. HNC results for the Fourier transform & 22°(k) for a/b = 3 ob-
tained with basis set II. The solid, dotted, and dashed curves are for
p* =0.27, 0.24, and 0.14, respectively.
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IV. CONCLUSIONS

In this paper it is shown how the HNC and PY integral
equation theories can be solved for fluids of hard nonspheri-
cal particles. Such models differ significantly from those
considered in our earlier calculations!™ in that they are de-
fined by pair potentials which are discontinuous in orienta-
tional space. The formulation described in the present article
takes proper account of this discontinuous behavior.

Numerical solutions of the HNC and PY theories have
been obtained for systems of hard ellipsoids of revolution.
Different models characterized by length-to-breadth ratios
of a/b = 1.25, 2, 3, and 5 have been considered and results
are reported for a wide range of densities. Wherever possible
comparisons are made with previous Monte Carlo calcula-
tions.>!° It is found that in general the PY virial and HNC
compressibility equations give very similar and reasonably
accurate results for the equation of state. This differs from
the hard sphere case where the PY compressibility route
provides the most accurate values at high density. We also
note that the PY (¥) and HNC(C) results are more accurate
than the y expansion® at a/b = 3.

Unfortunately, the Monte Carlo studies of ellipsoids
have provided very little information about the pair distribu-
tion function, g(r,9,,%2,). For a/b = 3 we do compare the
HNC and PY results for the radial distribution function,
g°°(r), with the Monte Carlo curve reported by Perram et
al.’® This serves to show that the HNC, PY, and Monte
Carlo curves are all at least roughly similar in shape.

We have also investigated the orientational stability of
the isotropic phase for ellipsoids of varying dimension. This
is done by calculating the static Kerr constant which in the
language of the present paper is related to z 22°(k = 0) [cf.
Eq. (34a) ). As theisotropic phase becomes unstable / 22°(7)
becomes long-ranged such that both 4 22°(0) and the Kerr
constant diverge. Physically, this is due to the growth of
long-ranged angular correlations favoring parallel orienta-
tions. It is found that for a/b = 3 the HNC theory predicts
that the isotropic phase becomes unstable at a density which
is considerably lower than the Monte Carlo freezing transi-
tion. Furthermore, the density at which the instability oc-
curs is quite close to the density of the isotropic—nematic
transition observed in the computer simulations.” The HNC
results also indicate an orientational instability at rather low
density for the a/b = 5 case in accord with the prediction of
the y expansion.

The PY approximation, on the other hand, does not ex-
hibit the rapid growth in the long-ranged orientational cor-
relations evident in the HNC results. Thus for a/b = 3 the
PY calculations do not predict a nematic phase. This also
seems to be true for a/b = 5. Thus it appears that, at least for
fluids of hard ellipsoids, the PY theory is not capable of pro-
ducing the long-ranged orientational correlations which
lead to isotropic—nematic phase transitions. This is perhaps
not very surprising since we cannot expect the PY closure,
which simply sets c(12) = 0 for all nonoverlapping configu-
rations, to give an accurate account for long-range correla-
tions.

In summary, we conclude that the HNC theory gives a
reasonably good description of fluids of hard ellipsoids. It

predicts a nematic phase and should be particularly useful
for studying phenomena related to the growth of long-
ranged angular correlations in the pretransitional region.
The PY theory is less interesting for the reasons given above.
Further, investigations of these theories for other fluids of
hard nonspherical particles are being carried out and the
integral equation techniques are being extended into the ne-
matic regime.
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APPENDIX A: THE OZEQUATION AT k=0. DERIVATION
OF EQS. (24) AND (33)

In manipulations of the OZ equation it is sometimes
convenient to choose

M =JCm+D2n+1) (A1)

in Eq. (6d). In the y-transform language of Blum'? the OZ
relationships can then be expressed in the form

ﬁ,'xx(k) =pY 2' (—)x+w

"M = -

X[Npm Gy +Crm (k) ]Cm, (K,

BViuY HYLY — V%Y
(A2a)
where
~ m+n (m n
Cm (k) = ( )&"‘:’ k), A2b)
X =\ —x OF ( ¢
~ man fm  p I\~
Mo k) = ( )i . (a2
K lefm-a\ —Xx O KE

Now for hard particles it is clear from Eq. (8b) thatatk =0

the only nonzero Hankel transforms are those with / = 0.

Therefore, Eq. (A2b) immediately reduces to

~ m n 0

Cmn 0 = ( )~m:0 0
o= o

=0 ifms#n, (A3b)

where Eq. (A3b) follows from the properties of the 3-j sym-

bols (i.e., m, n, and / must satisfy the triangular inequal-

ities). Of course equations analogous to (A3a) and (A3b)

also connect N 7+ (0) and 07, (0). These relationships to-

nvx
gether with the formula'®

(m m 0)__(—)"'“)(
¥ —x O V2m 41

allow Eq. (A2a) (at k = 0) to be rewritten in the form

(A3a)

(A4)

—~ (_)m m
T (0) = —— (=)™
g \/2m+l vl‘_;m

X [77m0(0) + &mm(0) ], (0) .
If we now consider the case 4 = v = 0 Eq. (AS5) gives
7%2(0) = p[73X(0) + E(0) 18°(0) ,

(AS)

(A6)
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which is exactly analogous to the OZ equation at & = O for
systems of spherical particles. Using the definition

7(12) = h(12) —¢(12), (A7)

Eq. (A6) can be immediately rearranged to obtain Eq. (24).

In order to consider the stability condition defined by
Eq. (32) and to derive Eq. (33) we must consider the case
4 = v =0and m is even. Then using Eqs. (A5) and (A7)
and reintroducing f ™™ as an unspecified constant it is easy
to obtain the relationship:

h""”o(O) mmO(o)
fmmO o .

= (2m + 1)32 om 12 P Z hmm (0)¢™7,5(0), (A8a)

which can be rearranged to give
~mm0
A o (0)+7Y
hmmO(O) =
00 { [fmmO/(2m+ )3/2]p g.omo(o)}
(A8b)

where Yis just the sum on the right-hand side of Eq. (A8a)
with the v, = O term excluded. From Eqs. (32) and (A8b) it
follows that for molecules of any symmetry h™0(0) will
diverge as the isotropic phase becomes unstable. Also for
axially symmetric molecules where only projections of the
type h 2!(r) are allowed it is obvious that ¥ =0 and Eq.
(A8b) becomes Eq. (33).

APPENDIX B: THE NUMERICAL CALCULATIONS OF
THE A7, (r) FOR HARD ELLIPSOIDS OF REVOLUTION

For ellipsoids of revolution, Eq. (12b) can be written in
the form

Imigmal (r) = d¢ sin 6, d@, sin 6, dO,
ov
X O™ (12)d™"'(12) , (B1l)
where
cos 8, = i, f, (B2)
cos 6, = i, f, (B3)
cos ¢ = (i, X£)-(i, XF) . (B4)

In Egs. (B2)-(B4) £ =r/|r|, where r is the vector joining
the centers of ellipsoids 1 and 2, and §, is a unit vector direct-
ed along the major axis of ellipsoid /. Equation (B1) can be
rewritten in the form

2 u
Immigma (r) = f d¢ f sin 6, d6,
0 0

A
X [f sin 8, d8, ®™(12)®™""'(12)

(¢}

+ | sin 6, a0, ®™(12)d™"" (12)]

8,

(B5)
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where 6, and 8, are the angles determining the overlap re-
gion. For fixed values of ¢ and &, one can verify that no
overlaps occur if 8, < 8, <6,.

In order to evaluate the three-dimensional integral in
Eq. (B5) numerically it is convenient to proceed as follows.
First a grid of N points is choosen for each angular variable.
Then for each grid point the contact distance o(6,,6,,¢) is
found by solving the equation

¥(0,0,,0,,6) =0 (B6)

where V¥ is the contact function defined in Ref. 6. The o
values are tabulated for each grid point.

For the required values of 7 (i.e., b < r < a) the integrals
over ¢ and 8, can be carried out using a convenient quadra-
ture formula (Simpson’s rule was used in the present work)
on the grid points selected above. The limits 6, and 6, on the
0, integration are determined by the overlap condition

0(01102’¢) >r' (B7)

For fixed 8,, ¢, and r precise values of 8, and 6, are found by
inverse interpolation on the contour ¢(68,,6,,4) = r using
the results tabulated earlier. The 6, integrations can then be
performed.

Obviously, the accuracy of this procedure will depend
upon the number of grid points used. For ellipsoids, tests
with known integrals (i.e., at r = g and 7 = b) indicate that
N = 41 is sufficient to give values of 4 %,.(#) which are
accurate to at least four significant ﬁgures. This is compara-
ble to the accuracy in numerical solutions of the integral
equations.
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