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Abstract 

In this thesis, we propose several quantitative evaluation methods for magnetic 

resonance imaging (MRI) post-processing algorithms. The methods include a set 

of metric measurements that compare a corrected data set or image with a stan-

dard data set or image; and a newly designed computer observer receiver operator 

characteristics (ROC) analysis. We test our evaluation methods with two types of 

applications. The first is amplitude modulation motion artifact suppression in MRI. 

The second application is constrained modeling used in MRI image reconstruction, 

which is previously d eveloped in our lab. The test results suggest that our computer 

ROC analysis has great potential in the area of quantitative evaluation of imaging 

algorithms and applications. 
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Chapter 1 

Introduction 

Magnetic resonance imaging (MRI) is a powerful imaging tool for medical applica-

tions. One of the shortcomings of MRI is distortion in the final images introduced 

during data acquisition. These distortions degrade the quality of images and make 

diagnosis more difficult. The origin of the distortions varies. Two examples are the 

ringing and blurring caused by data truncation, and the ghosting caused by motion 

during data acquisition. These distortions can be seen in Figure 1.1. 

A brain image with ringing and blurring An abdomen image with ghosting 

Figure 1.1: Sample images with distortions 

Over the past years, many computer post-processing algorithms have been de-

veloped to reduce MR image distortions. In our laboratory, we investigated the use 

of autoregressive moving average (ARMA) modeling ([SNHW86J and phase correc-
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tion ([MSNC93]) in reducing truncation artifacts. Recently we developed various 

signal processing algorithms to remove amplitude modulation (AM) motion artifacts 

([ZSC94]). One problem we encountered, as shared by many researchers ([BMW86], 

[FBSM87], [Han88], [Han9O], [HY91], [Gra]), is that it is difficult to compare the per-

formance of different post-processing algorithms. There are frequently no suitable 

standard images and procedures for quantitative performance evaluation. 

In this thesis, we attempted to establish standard images and procedures that 

can be used to evaluate performance of different post-processing algorithms in image 

processing. Our emphasis has been on evaluating MR image processing techniques. 

However, the analysis procedures are general enough that they can be applied to 

other image processing applications. Our test phantoms were generated mathemati-

cally in the spatial frequency domain and reconstructed to produce MR images. The 

reason that it is invalid to generate phantoms in the image domain directly will be 

explained in this thesis. 

There are two broad types of evaluation procedures discussed in this thesis. The 

first type of procedure uses difference measures between the corrected images and 

a standard image. The second type attempts to analyze clinical relevancy of the 

images using a computer observer. 

We then evaluated the appropriateness of these procedures for MR image process-

ing in three areas of application - discrete Fourier transform (DFT) reconstruction of 

MR images, amplitude modulation (AM) motion artifact removal and image recon-

struction using modeling. Both mathematical phantom and modified medical data 

were used for testing. 
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1-.1 Amplitude Modulation Motion Correction in MRI 

Compared to other imaging techniques, MRI is superior in its flexibility of imaging 

plane, resolution and contrast ([WSK88]). The main disadvantages of MRI are its 

high implementation and operation costs and long imaging time. Long imaging time 

decreases the throughput of the equipment, and introduces- various motion artifacts 

to the image. Compared to computer tomography (CT), which may be accomplished 

in milliseconds, a typical Mill spin-echo scan takes 2 to 10 minutes. During the scan, 

even if the patient stays completely still, periodic motions (cardiac, respiratory) and 

fluid flow in the blood vessels still exist (see Figure 1.1 right hand side image). These 

movements produce artifacts in the image that degrade its quality. Reducing the 

effect of motion remains an important topic in MRI research ([HYR91b], [HY92b], 

[MPS+93]). 

Most of the existing motion correction techniques, such as cardiac gating and 

gradient moment nulling, require instrumentation monitoring or new RF pulse se-

quences ([AW9O]). Our research interest lies in developing post-processing techniques 

that utilize only the information contained in the motion degraded image. The main 

advantage of such post-processing techniques is that they do not require the data 

acquisition procedures to be altered. 

In conventional Fourier MR imaging, the artifacts from periodic motion usually 

appear as ghosting, i.e., a series of blurred versions of the object are superimposed on 

the object ([Woo86]). A simplified model of ghosting considers motion degraded im-

ages as amplitude modulated original images ([HYR91b], [MPS93]). Based on this 

model, we developed an initial series of simple post-processing motion suppression 
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algorithms. 

After obtaining encouraging results during this initial research phase, we tried to 

evaluate our algorithms relative to those developed by other researchers. It was at 

this point that we found that there were no quantitative image evaluation methods 

or standards. Such methods are crucial for evaluating research results. 

Meanwhile, the absence of an accurate motion model, and the irrelevancy of 

developing our own physical motion model, impaired further investigation in the 

motion suppression area. We therefore decided to devote the remainder of the thesis 

project to developing quantitative evaluation methods for MR image processing. The 

various AM motion suppression algorithms we had developed provided an excellent 

application with which to test our evaluation methods. 

1.2 Quantitative Evaluation Methods 

Quantitative evaluation methods are crucial for a convincing comparison of algo-

rithms. We did a literature survey of such methods in MRI research and did not find 

many of them. Most of the performance evaluations of MRI algorithms presented in 

the literature were subjective visual evaluations. Often corrected images using pro-

posed algorithms were displayed beside the original image. A conclusion was drawn 

that the algorithm was successful if the corrected images exhibited fewer artifacts 

and less distortion than the original distorted image. 

This subjective approach is sufficient when obvious differences in the images can 

be perceived. However, when comparing different algorithms, the subtle differences 

in image quality may be hard to detect visually, especially in reproduced images. The 
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lack of evaluation standards motivated us to develop methods that can quantitatively 

assess MR image quality. Such a method should yield a figure of merit (FOM) that 

could be easily compared across algorithms. Furthermore, it should suggest which 

algorithm makes clinical diagnosis easiest. 

An extended literature search showed that in other fields of image processing, 

researchers have proposed some quantitative methods to judge the quality of im-

ages ([FBSM87], [Han88], [llan9O], [11091], [11Y91], [LLG92], [M11N94], [FHN+94]). 

Based on this literature search, we attempted to develop two categories of quantita-

tive evaluation methods suitable for MRI. 

1. The first category is a set of quantitative image metrics that measure the 

difference between a corrected image and a standard image to give an FOM. 

Difference measures can be taken using either image or frequency domain data. 

2. The second category is a series of procedures performing clinical image analysis 

using a computer observer. 

These methods were tested using various DFT reconstruction algorithms, the AM 

motion suppression algorithms developed early in this thesis project, and alternative 

MRI reconstruction algorithms previously developed in our lab. 

1.3 Project Scope 

This thesis project consists of developing and testing quantitative image evaluation 

methods in MRI. The evaluation methods include: 
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• A set of mathematical measuremerits indicating the differences between cor-

rected and standard data in frequency and image domain. 

• A computer observer approximating the visual process that human observers 

employ to determine the presence or absence of a feature in an image. 

The methods are tested using three MRI applications: 

• DFT reconstruction: Discrete Fourier transform is applied to a series of in-

creasingly truncated MR data sets to obtain MR images of the same size. The 

effect of truncation in the images are evaluated using our methods. 

• AM motion artifact suppression: A series of new correction algorithms based 

on the AM motion model are developed during this thesis project. The motion 

suppression algorithms are applied on both real MR image and mathematical 

phantoms with simulated motion and evaluated with our proposed methods. 

• ARMA modeling in reconstruction: Image reconstruction is conventionally 

achieved using a 2D Fourier transformation. With truncated MR data sets, 

The Fourier transform introduces ringing and blurring in reconstructed im-

ages. The use of ARMA modeling ([LBC92]) in image reconstruction has 

visually improved the quality of MRI images. We quantitatively evaluate the 

existing reconstruction algorithms using our criteria. 

1.4 Thesis Organization 

The thesis is organized into three main parts. 
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In the first part, Chapters 2 and 3, we present the background of MRI motion 

suppression and the AM motion suppression algorithms developed during this thesis 

project. 

The next three chapters, Chapters 4, 5 and 6, are devoted . to introducing our 

quantitative evaluation methods. Chapter 4 is a summary of the literature survey we 

did on existing image evaluation methods. The metric measurements we developed 

for image evaluation are described in Chapter 5. In Chapter 6, we present a computer 

receiver operator characteristics (ROC) analysis developed in this thesis project. 

The last part of the thesis include results using our proposed quantitative eval-

uation methods (Chapter 7). We wrap up the thesis with a brief conclusion and 

suggestions for future work in Chapter 8. 
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Chapter 2 

Motion in MRI 

In this chapter, we first present the principles of magnetic resonance imaging (MRI) 

in a simplified fashion. Some background knowledge of motion in MRI is then in-

troduced. We also include a summary of existing techniques for motion artifact 

suppression in MRI. 

2.1 Fundamental Principles of MRI 

MRI is based on nuclear magnetic resonance (NMR). In this section we present the 

physics of MRI in a greatly simplified fashion, following the articles in [WSK88] and 

[Reh91]. 

2.1.1 The nuclear magnetic resonance phenomena 

According to Jagannathan ([Reh91]), the protons in the nuclei of atoms possess a 

magnetic field, the nuclear magnetic dipole. For any individual nucleus, the direction 

of this dipole is naturally random. In the presence of an external magnetic field B0, 

the nuclei tend to precess about the direction of B0 and the net magnetization 

produced by the dipoles lies in the direction of B0. We can represent the state of 

the ensemble of nuclear dipoles by a net magnetization vector M0 in the direction 

of the external magnetic field (Figure 2.1 (a)). This "macro" representation using 

M0 makes it easier to visualize -NMR signals and will be employed to introduce MRI 
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principles. A quantum mechanical interpretation can be found in "NMR Imaging in 

Biomedicine" ([MM82]) and will not be discussed here. 

When an electro-magnetic radiation (B1 in Figure 2.1 (a)) with an appropriate 

energy (frequency) is applied to the nuclei under the influence of an external magnetic 

field, the net magnetization M0 will change direction (Figure 2.1 (a)). The frequency 

required to excite a nucleus from its ground state is called the resonance frequency, 

or Larmor frequency, of the nucleus. The resonance frequency can be expressed by 

the Larmor equation: 

wo=y*Bo (2.1) 

where w0 is the Larmor frequency and B0 is the external magnetic field strength. y 

is a constant called the gyro-magnetic ratio, which is different for different nuclei. 

The Larmor frequency w0 is usually in the MHz or radio frequency (RF) range. The 

value depends on the external magnetic field strength, the nuclei and their chemical 

environment. 

2.1.2 The NMR signal 

When an external magnetic field is present, the initial net magnetization M0 is 

parallel to the external magnetic field B0, along the z-axis in Figure 2.1 (a). An 

RF magnetic pulse (a strong radio frequency field) produced by an RF coil on the 

x-axis can tip M0 away from the z-axis. The duration and power of the RF pulse 

determines the direction of M0 after the pulse. If a so called 900 pulse is applied, 

the net magnetization M, lies in xy-plane after excitation (Figure 2.1 (b)). The 

longitudinal or z-magnetization M0 is thus transformed into a transversal or xy-

magnetization 
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X 

X (o) transversal relaxation 

Y 

B1 (RFpu1se) 

(a) longitudinal magnetization 

components of Mxy 

X 

Mxy 

Y 

(b) transversal magnetization 

Z 

(d) longitudinal relaxation 

Figure 2.1: Illustration of net magnetization and relaxation 

When the RF field is removed, the dipoles tend to return to their initial states 

(relaxation), causing the net magnetization to go back to M0. Two simultaneous 

processes exist during relaxation: transversal relaxation and longitudinal relaxation. 

Transversal relaxation is characterized by the decay of transversal magnetization 

Since the resonance frequencies of nuclei vary due to their local environment, 

the dipoles precess at different frequencies. As a result, the xy-magnetization M5, 

initially aligned by the RIP pulse splits into magnetizations in different directions 

(Figure 2.1 (c)), and the resultant M,,y diminishes. Meanwhile, longitudinal magne-

tization increases from 0 to M0 (Figure 2.1 (d)), because of longitudinal relaxation. 

The magnetic dipoles rotating in the xy plane can be made to produce a voltage 

signal in the receiver coil. Due to transversal relaxation, the magnitude of the voltage 

signal decays with time, as shown in Figure 2.2. The complex signal in Figure 2.2 is 

called a free induction decay (FID) signal. The Fourier transform of the time domain 
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Real 

decay envelope 

Imaginary 

t 

Figure 2.2: The free induction decay signal that can be collected during the relaxation 
of exited nuclei 

FID yields the NMR signal. An MRI data set is a collection of different FID signals. 

2.1.3 The MRI image 

To acquire an MRI image, we have to encode spatial information into the NMR 

signals. Spatial encoding is achieved by using three orthogonal magnetic gradients: 

x-, y- and z-gradient, denoted by G, Gy and G. If a gradient magnetic field 

exists, the Larmor frequency (2.1) will depend on the position of the nuclei along the 

gradient field. Normally, the z-gradient and the frequency of the RF pulse specifies 

which image plane to excite. The x-gradient provides frequency encoding of spatial 

locations along the x-axis of the image. The y-gradient provides phase encoding of 

spatial locations along the y-axis of the image. The combination of x- and y-gradients 

allow accurate mapping of the contribution to the NMR signal from each location in 

the excited slice. 

The data acquired in MRI forms an array of time-domain FID signals. The time 

domain is often called k-space or the frequency domain as the FID signals represent 

frequency information of the MR signals. A 2D inverse Fourier transform is required 
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An MR data set in the frequency domain 

to reconstruct the image from the data acquired. One set of MR data in both 

frequency and image domain is show in Figure 2.3. 

The data set in the image domain 

Figure 2.3: A sample MRI data set of a thigh in both frequency and image domain 

In the next section, we'll use the principles of MRI to discuss the production of 

motion artifacts in MR images. 

2.2 AM Motion Artifacts in MRI 

To visualize the origin of motion artifacts in MR images, we adopt the following 

formalism proposed by Xiang et al. ([X1193]). 

For a 2D MR image, the data set that is collected during data acquisition is a 

2D array containing spatial frequency components of the object being imaged. We 

call the 2D spatial frequency domain k-space. The two spatial frequency axes are 

denoted by k and k, also called frequency and phase encoding axis, respectively. 
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Since motion in MRI causes the MR images to change with respect to time, to 

understand motion, we have to take into consideration the time elapsed during data 

acquisition. At each instance in time, a 2D spatial frequency component matrix (MR 

data set) is needed to produce an MR image showing the instantaneous state of the 

image subject. To completely describe the image subject during data acquisition, 

we need one 2D MR data set at each time instance. Therefore, the MR data needed 

to produce a complete representation of an image subject during data acquisition 

would be a 3D block of spatial frequency components, as illustrated in Figure 2.4. 

The horizontal axes are k and k and the vertical axis is time (t). 

t 

t6 

t5 

t4 

t3 

t2 

I WE RE ME 

s. 

11 
11 

k t1 x 

ky 

Figure 2.4: An imaginary 3D MR data block required to produce instantaneous MR 
images at any given time during data acquisition 

At anyparticular time, a data sheet perpendicular to the time axis will represent 

the 2D spatial frequency components of the image subject at that time. Ideally, 

the 3D data block should have infinitely many such data sheets in order to generate 
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images of the subject at all time instances. Such a 3D MR data block is impossible 

to collect in real life. 

Figure 2.4 showed a few discrete 2D data sheets at time intervals tO to t6, each 

being taken time TR apart. If we ignore the time required to collect the MR data, 

we can acquire a series of such discrete 2D data sheets to approximate the 3D data 

block. 

In real life, the time required for data collection normally could not be ignored. 

During conventional MR data acquisition, at each frequency encoding excitation, 

one data line along the k direction will be collected. The time required to do that 

is relatively short and can be neglected. Therefore one horizontal line of data is 

collected at each time instance. However, the phase-encoding (k direction) repeti-

tion time (TR) is relatively long and the time required to collect this data can't be 

neglected. As a result, the horizontal lc data lines move up the time axis with each 

phase encoding. When the scan is finished, we have collected an oblique data sheet 

in the 3D data block. One such oblique data sheet 1s illustrated in Figure 2.5. 

If no motion exists during the scan, all the horizontal data sheets in Figure 2.4 

are identical. The oblique data sheet, which consists of lines of data from different 

horizontal sheets, is then identical to all the horizontal data sheets as well. If motion 

exists, the horizontal data sheets are different at different times and the oblique data 

sheet is different from any one of the horizontal sheets. When such an oblique data 

sheet is reconstructed to produce an MR image, motion artifacts will be introduced. 

• To illustrate the introduction of motion artifacts, we look at two paths to recon-

struct an MRI image with motion artifacts (Figure 2.6). The path we use in real life 

to reconstruct an image is to take a 2D inverse discrete Fourier transform (DFT) of 
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Figure 2.5: A 2D oblique MR data sheet actually acquired in conventional MRI 

the oblique data sheet ((a) to (c) in Figure 2.6). The second path of reconstruction 

is imaginary, used here to explain how motion artifacts emerge. The theoretical 

background of the second reconstruction path is Fourier's projection-slice theorem, 

which states that the Fourier transform of a 2D plane passing through the origin is 

equivalent to the projection of the 3D-Fourier transformed space with the projection 

direction normal to the 2D plane. This equivalence provides an alternative path for 

the conventional MRI image reconstruction ((a) to (b) to (d) in Figure 2.7). If a 

3D data block exists we can first 3D Fourier transform the block and then take a 

projection of the transformed block at the right angle to obtain the resulting image. 

Figure 2.7 shows an imaginary 3D Fourier transformed data block (as in Figure 2.6 

(b)) with motion. The axes are spatial position x and y and temporal frequency W. 

The center plane is the DC plane which represents a time-averaged magnetization 

(image) during data acquisition. The AC planes above and below the DC plane 
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contain information on the temporal variations during data acquisition. If no motion 

occurs during data acquisition, there will be no signal components outside the DC 

plane. For pseudo-periodic movements such as cardiac and respiratory motion of the 

patients, the AC components are located at discrete horizontal levels. The position 

of the AC components depends on the frequency and harmonics of the motion. When 

such a 3D space is projected to obtain the 2D image, the discrete AC components 

will result in ghosting artifacts in the y direction in the reconstructed image. 

Figure 2.7 shows the ghosting artifacts of the moving part in the final image. In 

one simplified model of motion, the ghosts can be interpreted as amplitude modulated 

side bands of the moving object. In this thesis, we developed our motion suppression 

algorithms using this AM motion model and obtained good initial results. 

The AM model itself is a grossly over-simplified motion model that does not 

hand1 the more complicated phase distortions introduced in actual sample motion. 

We used the AM model to correct ghosting in some real motion images and did not 

obtain encouraging results. Nevertheless, the motion suppression algorithms provide 

an excellent test ground for our quantitative evaluation methods developed later in 

this thesis. 

2.3 Existing Motion Suppression Techniques 

Motion suppression has been an important research topic in MRI. Various methods 

have been developed to suppress motion artifacts. The following is a brief list of 

existing motion suppression algorithms surveyed by Xiang and Henkelman ([X1193]), 

Runge and Wood ([RW88]), Arvanitis and Watson ([AW9O]). Please refer to these 
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articles for more detailed information. 

1. Techniques which restrain the motion of the patients 

Physical restraint and breath holding are both effective methods to reduce the 

amount of artifacts. They are easy to implement. However, they are not always 

possible with all data acquisition and are not comfortable for the patients. 

2. Techniques which modify the pulse sequence applied to acquire the k-space 

data 

Averaging was one of the earliest and easiest approaches. This technique re-

peats each phase encoding step more than once and averages the data sets. 

Averaging reduces the ghosts by phase dispersion ([XH93]). 

If the total time of the repeated acquisition of each phase encoding step equals 

the period of the motion, the averaged data will have a null ghost ([XH93]). 

Such a technique is called pseudo-gating. 

Gradient moment nulling uses specially designed gradients between the RF 

pulses to eliminate motion that occurs between these two pulses. 

Spatial pre-saturation pulses can be used to saturate the tissue on each side of 

the imaging slice before phase encoding Pre-saturation reduces the ambient 

signals that come into the imaging slice during the motion and thus reduces 

the artifacts. 

Researchers are also developing some ultra-fast pulse sequences that record the 

spatial frequency components in k-space in a different fashion. With these 

sequences typical scan time can be reduced, resulting in images that contain 
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less motion artifacts. However, these pulse sequences give rise to tissue contrast 

that radiologists are not familiar with. In addition most of these techniques are 

still under research. Implementing these new pulse sequences on commercial 

machines will require considerable expertise and training. 

3. Techniques which modify the data acquisition rate 

Gating monitors the pattern of the pseudo-periodic motion and acquires data 

only during a certain part of the motion cycle. Ghosts can be reduced since, 

for each phase encoding step, the object being imaged is roughly in the same 

position. 

Ordered phase encoding method also monitors the motion and re-orders the 

phase encoding steps so that the apparent motion becomes much slower. 

4. Post-processing techniques 

These techniques utilize the information contained in the motion degraded 

image and apply mathematical manipulations to the data to achieve specific 

goals. The main advantage of post-processing techniques is that they do not 

require additional time, instrumentation or new RF pulse sequences. We found 

two types of post-processing techniques in the lIterature: 

• Mathematically modeling the motion ([MPS93}, [ZFW93], [A094]). 

Using the model, image artifacts are suppressed with standard signal pro-

cessing methods. 

• Using a priori information such as region of support, realness, etc. and 

applying a least square method to find an optimal solution that supports 
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the a priori information ([HYR91b], [RTS92], [HY92b]). 

In this thesis project, we are interested in post-processing techniques utilizing a 

mathematical model. 

2.4 Summary 

In this chapter, we first introduced the principles of MRI. Motion in MRI was then 

explained and illustrated using Xiang's model ([X1193]). A survey of existing MR 

motion suppression algorithms was given. 

In the next chapter, we present several AM motion suppression algorithms' and 

their implementation. 
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Chapter 3 

AM Motion Suppression Algorithms 

In this chapter, we present a series of motion suppression algorithms we have de-

veloped based on the amplitude modulation (AM) motion model proposed by Mitsa 

([MPS93]). The algorithms include the Mitsa algorithm ([MPS93]), the ARMA al-

gorithm ([ZSCö4]), the Direct algorithm ([ZSC94]) and the Adaptive algorithm. We 

present both theoretical background and implementation details for each algorithm. 

3,1 The Mitsa Algorithm 

3.1.1 Background 

Mitsa et al. ([MPS93]) proposed a motion suppression algorithm based on an 

amplitude modulation motion model. The AM model was derived from movement 

of a point source in the slice selection direction (z-direction). Mathematically, the 

MR signal acquired from such a moving object can be described as: 

00 
S(K, K) = M(K, K)[1 + >: 1m cos( 2'bK   + q)] (3.1) 

MO NyAK 

where S(KIJ, K) and M(K, K) are the amplitude modulated and raw data in the 

Fourier domain, respectively. K and K are k-space indices from -128 to 127. Other 

variables are related to the characteristics of the motion and MRI data acquisition. 

(mo refers to the intrinsic strength of a stationary point source. Amn is the change 

in mass due to the nth harmonic of the periodic motion. Nb is the number of 
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movement cycles per entire scan. AK are the steps by which K is incremented. 

N is the number of phase encoding steps. 4 is the phase of periodic motion with 

respect to the start of data acquisition for the nth harmonic.) 

Equation 3.1 basically states that periodic motion of a single slice in the slice 

selection direction can be modeled as amplitude modulation of the raw data in the 

frequency domain with a motion kernel along the phase encoding direction. Mitsa 

stated that the ghosting artifacts could be modeled as scaled and shifted versions of 

the moving objects. The effect of this amplitude modulation on the power spectrum 

of the MR data is that the DC power peak is shifted, scaled, and superimposed on 

the spectrum in the phase encoding direction. If these extra power peaks could be 

identified and suppressed in the original data, the amplitude modulation could be 

corrected. This corrected data can then be used to reconstruct an image with less 

artifacts. 

To identify and then correct for this amplitude modulation, Mitsa's algorithm 

follows these steps: 

1. Project the magnitude of the raw data along the x-direction to form one line 

of projection data with respect to positions in the y-direction. 

2. Take the inverse discrete Fourier transform (DFT) of the projection data to 

obtain the power spectrum of the projection data. 

3. Identify the extra energy peaks in the power spectrum that are related to 

the motion artifacts. In Mitsa's implementation, this is done picking out the 

points that are more than two standard deviations above a threshold in the 

power spectrum. 
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4. Apply a notch filter to the power spectrum of the projection data to eliminate 

the identified motion peaks. In Mitsa's implementation, the filter gain is unity 

for all points except for a four-point window around each peak, where the gain 

is determined so as to bring the local mean to the neighborhood mean. 

5. Fourier transform the filtered data to obtain an estimate of the projection data 

without motion artifacts. 

6. The ratio of projection with motion and without motion yields an estimate of 

the motion kernel. The motion kernel represents the amplitude modulation 

that had been applied to the original data. 

7. Divide each row of the raw complex valued data by the motion kernel to obtain 

corrected data. 

8. Reconstruct the motion corrected image by applying a 2D DFT on the cor-

rected data. 

Figure 3.1 shows a block diagram of the Mitsa algorithm. 

3.1.2 Implementation 

We will illustrate Mitsa's algorithm by simulating, and then correcting, AM motion 

artifacts using a mathematical abdominal phantom. The phantom image (with added 

Gaussian noise) is shown in Figure 3.2. Problems with ensuring proper generation 

of the phantom will be discussed in Chapter 6. 
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Figure 3.1: A block diagram of the Mitsa algorithm for AM motion suppression 
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Figure 3.2: An abdomen phantom with added noise to be used for all the AM motion 
suppression algorithms 

Motion Simulation 

Following the mathematical model in equation 3.1, we simulated periodic motion 

using Mitsa's motion kernel: 

G(Ky) = I + 0.5sin( 2i + 0.785) + 0.l5sin( 2irK + 1.57) + 0.05sin( 2irK + 3.141) 

(3.2) 

The amplitude of the sine terms decreases for higher harmonics. Only three terms in 

equation 3.1 were used: the dominant harmonics. The phase of the periodic motion 

with respect to the start of data acquisition was varied for different harmonics. 

The simulated kernel was plotted in Figure 3.3. We ensured that no synchronous 

sampling ([SMC+93]) were associated with the motion artifact, unlike the motion 

artifact introduced in the work by Zoroofi et. al. ([ZST95]). 

This kernel was then applied on the abdomen phantom without noise to simulate 
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Figure 3.3: Simulated motion kernel used in the Mitsa algorithm 

motion. The complex k-space data was multiplied by the motion kernel line by line. 

Noise was added to the motion corrupted data file. A 2D DFT was then applied to 

obtain the motion corrupted image (Figure 3.4). 

Figure 3.4 exhibits ghosting artifacts'. These artifacts are what we would expect 

to see in real motion corrupted images. The artifacts can blur or hide image details 

which may be essential for diagnosis. 

Projection of the Data 

In the AM model, motion results in extra energy peaks in the phase encoding di-

rection (k direction). In order to identify these peaks, Mitsa took projection of 

the magnitude data in the k direction. To obtain a sharper DC peak and a bet-

ter scaling scheme, the middle 31 columns of data with large DC components were 

removed. 

The no motion (original) and motion corrupted projection data are shown in 
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Figure 3.4: The abdomen phantom with simulated motion, showing ghosting arti-
facts 

Figure 3.5. The projection data is folded where points 0 to 127 correspond to k 

points 0 to 127 in conventional MR data files, points 128 to 255 correspond to - 

128 to -1 in conventional MR data files. From Figure 3.5 we can see the effect of 

amplitude modulation distortion. The motion corrupted projection has the same low 

frequency components as the original 'projection but also has high frequency terms 

demonstrated as ripples in the projection. 

3.1.3 Power spectrum of the projection 

An inverse DFT was performed on the projection data to obtain the power spectrum. 

The power spectra of the no motion and motion projections are shown in Figure 3.6. 

Only half (128 points) of the symmetrical power spectrum need to be shown. The 

three extra peaks in the corrupted data are related to the motion we simulated. 

From Figure 3.6, we can clearly identify the extra power peaks associated with 
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Figure 3.5: Sample projection data of no motion and motion corrupted abdomen 
phantom 
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Figure 3.6: A comparison of power spectra of the motion and no motion projection 
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AM motion. However, locating the position and width of the peaks automatically 

was not an easy task. In this project we used a thresholding algorithm to detect 

the center and width of the peaks. Thresholding is more suitable in our case than 

difference operators which pick out all the peaks, since only those peaks that are well 

above the base line in the power spectrum can be motion peaks. Our thresholding 

algorithm first calculates the global mean Mean and standard deviation Siddev of 

the power spectrum excluding the DC peak. The algorithm then identifies a peak 

when more than two adjacent points satisfy the criteria: 

Si - Mean> M * Stddev (3.3) 

where Si is the magnitude of the data and M is an adjustable constant. The al-

gorithm assumes that the point in the peak that has a maximum magnitude is the 

center of the peak. Changing the constant M will change the strictness by which we 

define a peak. A large value of M may lead to failure in identifying smaller motion 

peaks; a smaller M may lead to false motion peak identification. We found that the 

appropriate value of M needs to be be determined by trial and error with each type 

of projection data. In this example we used a M value of 40. 

Design of the notch filter 

After the motion peaks were located, a filtering operation is necessary to remove 

them. The first notch filter we used was a direct application of Mitsa's notch filter. 

The notches in the filter are designed to bring the projection power spectrum mag-

nitude at points in the power peaks down to the mean magnitude of the neighboring 

points. The neighboring points are those points in the projection power spectrum 

that are adjacent to the power peaks but not in the power peaks. The average mag-
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nitude of these points are called the neighborhood mean magnitude. The notches in 

the filter power spectrum had an odd number of points. For each point we calculated 

the ratio of neighborhood mean magnitude and the magnitude of that point in the 

projection power spectrum. The center point of the notch had a gain of that ratio, 

while other points in the notch had gains half of that ratio. All points outside the 

notches had a gain of 1. 

The notch filter we designed to remove the motion peaks is shown in Figure 3.7. 

Due to Mitsa's design simplicity, the notches had sharp edges. These sharp edges 

introduced unnecessary discontinuities into the power spectrum which might lead to 

distortions in the reconstructed motion kernel ([11ar78]). 
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Figure 3.7: A sample notch filter using the Mitsa design for out abdomen phantom 

The power spectrum of the filtered signal is shown in Figure 3.8, together with 

the power spectrum of projection without motion. 
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Figure 3.8: The notch-filtered power spectrum as a no motion estimate of the pro-
jection power spectrum. The actual no motion projection power spectrum (dashed 
line) is also shown for comparison 

Motion Kernel 

Mitsa assumed that the notch-filtered spectra data was an estimate of the projec-

tion power spectrum without motion (Figure 3.8). This no motion estimate power 

spectrum was Fourier transformed to generate an estimate of the projection without 

motion, which was compared to the actual projection without motion in Figure 3.9. 

The motion kernel could then be extracted by dividing the motion corrupted 

projection by the estimate of the projection without motion. The extracted motion 

kernel and the original kernel are shown in Figure 3.10. 

Data Correction 

After the motion kernel was extracted, it could be used to correct the data. Motion 

corrupted data at a specific K value was corrected by dividing by the corresponding 
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Figure 3.9: The notch filtered projection as an estimate of the no motion projection. 
The actual no motion projection (dashed line) is also shown for comparison 
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Figure 3.10: A sample motion kernel extracted using the Mitsa algorithm, compared 
to the original motion kernel (dashed line) used to simulate motion 
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value of the kernel at the same K. The corrected image is shown in Figure 3.11. 

Figure 3.11: The corrected abdomen phantom using the Mitsa algorithm 

Most of the noticeable motion artifacts were removed. The image was restored. 

Nevertheless we observed some residual motion artifacts in Figure 3.11. The residual 

artifactscame from the difference between the extracted kernel and the actual applied 

kernel. These differences are very apparent in Figure 3.10. 

3.1.4 Problems with Mitsa's method 

Overall, Mitsa's method worked well with our mathematical phantom. However, we 

found some problems with it: 

o The motion peaks can be quite wide in some images. If the motion peaks 

overlap each other as could occur for slow movement, it would be hard for us 

to identify and thus remove the motion peaks. 
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• With low signal to noise ratio (SNR) images, some peaks could be buried in 

noise and not detected. 

• The Mitsa notch filter introduced discontinuity into the projection power spec-

tra, which might lead to distortions in the kernel estimate and hence in the 

corrected data and reconstructed image. 

• The simple thresholding peak detection method did not always accurately de-

tect peaks. Better automation of peak detection was needed. 

In the following sections, we discuss our proposed AM motion suppression meth-

ods to overcome these problems. 

3.2 ARMA Modeling for Motion Artifact Removal 

To increase the resolution of the projection power spectra for easier identification 

of the motion peaks in the Mitsa algorithm, Dr. Smith suggested that we use au-

toregressive moving average (ARMA) modeling to generate the power spectra. We 

expected that the ARMA generated power spectra would have better resolution, so 

that more accurate peak identification would be possible. 

3.2.1 Background of ARMA modeling 

ARMA modeling is a parametric modeling technique. It is widely used in many signal 

processing fields such as speech analysis, communication spectral analysis, seismic 

signal analysis, etc. ARMA modeling was first introduced to MR image reconstruc-

tion by Smith et al. [SNHW86]. Conventionally, MR images are reconstructed using 
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a 2D DFT on the acquired data. Since the acquired data is a 2D truncated array 

of spatial frequency components of the object being imaged, it can be viewed as the 

result of a full spatial frequency component set multiplied by a rectangular window. 

As a result, the DFT reconstructed image is equivalent to the true image convolved 

'with a sinc function ([GW87]). This convolution leads to ringing artifacts in the 

image and a loss in resolution. Modeling algorithms were proposed to reduce the ef-

fect of windowing, thus reducing ringing artifacts and improving resolution. ARMA 

modeling was one of the successful algorithms. 

In essence, after a DFT of the data in the less truncated direction, each row or 

column of the MRI data set can be considered as a subset of the infinite output of an 

infinite impulse response (IIR) filter excited by a delta function. In order to describe 

our digital hR filter and its input and output, we adopt the Z-transform notation 

in digital filtering. The Z-transform is a generalization of the Fourier transform 

which allows us to treat exponential inputs. It is commonly used in digital signal 

processing. 

The Z-transfer function of the filter is a ratio of two polynomials, B(Z) and A(Z): 

H(Z) =  (3.4) 

In signal processing, a moving average filter (MA) has the transfer function of 

HMA(Z) = B(Z). An autoregressive (AR) filter has a transfer function of HAR(Z) = 

1/A(Z). Thus the filter used here is an autoregressive, moving average filter. A sim-

plified block diagram of the process was shown in Figure 3.12. 

Smith's algorithm has the following steps [SNHW86]: 

1. Each row or column of the data is split into Hermitian and anti-Hermitian 
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Figure 3.12: An illustration of the ARMA filtering concept 

series to account for data symmetry. 

2. Each series is modeled as the output of the ARMA filter. The acquired data 

is used to determine the AR and MA filter coefficients, respectively. 

3. The Fourier transform of the infinite data set is estimated from the filter coef-

ficients for the Hermitian and anti-Hermitian series. 

A more detailed block diagram of the transient error reconstruction algorithm (TERA) 

is shown in Figure 3.13. 

The AR and MA coefficients are determined separately. For the AR filter, we 

can write the input and output equation as: 

p 

(3.5) 

where ai is the ith AR coefficient, p is the order of the filter, Xn is the desired output 

of the filter, and e, is the forward prediction error. Equation 3.5 represents a classic 

prediction problem. The goal is to find a set of ai's that minimize the error using 

some algorithm, such as a least square algorithm. 

Since the excitation signal is a delta function, the following simple relationship 

holds between the MA coefficients bn and the error 6: 

(3.6) 
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Figure.3.13: A block diagram of the ARMA reconstruction algorithm 
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Therefore if the error sequence is known, the MA coefficients are known. 

Finally, the image line is calculated by: 

FT[x] = (B(Z))/(A(Z))FT() 

= (FT[e})/(FT[a]) 

Equation 3.7 shows that the image can be reconstructed using only the ARMA 

coefficients. Even though the AR and MA coefficients a and b are of finite lengths, 

the resulting image line FT[x] can have infinitely many terms. As a result, we have 

implicitly extrapolated the higher frequency data components using modeling. 

ARMA modeling has been shown to successfully reduce ringing artifacts and 

improve resolution of MR images. It is very flexible regarding the kind of data it is 

used on. It is also computationally efficient ([LBC+92]). 

3.2.2 Application of ARMA modeling to AM motion suppression 

One problem with the Mitsa algorithm is that the projection power spectrum is 

generated using DFT. The finite length of the projection data implies a rectangular 

window applied on the acquired data, leading to widening of the motion peaks and 

loss of resolution. Widened peaks make accurate motion peak identification difficult. 

ARMA modeling's success in reconstruction is due to its ability to extrapolate 

higher spatial frequency components. Extrapolation leads to better resolution and 

less ringing artifacts in reconstructed images. If used in generating the projection 

power spectrum, ARMA modeling can be expected to improve the resolution of 

the power spectrum, thus sharpening the motion peaks and making them easier 

for accurate identification ([ZSC94]). The ARMA generated power spectrum of the 
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projection data is shown in Figure 3.14. The power spectrum is zoomed four times 

in Figure 3.15 to better show the sharpened motion peak. 

arma - 

fft 

p 

Figure 3.14: ARMA generated power spectrum of the projection data (solid line), 
compared to DFT generated power spectrum (dashed line) 

Figure 3.16 shows the effective extrapolation of modeling on the no motion pro-

jection estimate. Instead of the sharp cutoff at high frequency range (dotted line), 

we can see an extrapolation of the projection data. Such extrapolated projection 

data yielded a power spectrum with sharper peaks. 

3.2.3 BH3 filter applied in the ARMA spectrum 

Mitsa's original notch filter was based on neighborhood magnitudes. The filter was 

not smooth and might introduce discontinuity into the filtered power spectrum. In 

signal processing we normally want to minimize such distortions ([11ar78]). Some 

low distortion filters have been proposed in the literature to enhance performance in 

40 



ama - 

f ft 

Figure 3.15: A closer look of the middle power peak in the power spectrum. The 
ARMA generated power peak (solid line) is sharper than the DFT generated one 
(dashed line) 
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Figure 3.16: Extrapolation of the projection data using ARMA modeling to generate 
the projection power spectrum (solid line), compared to that using DFT (dashed line) 
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this respect. 

One of the low distortion windows proposed is the three term Blackman and Har-

ris (BR) window. This window has been shown to introduce minimal discontinuity 

([11ar78]). The mathematical expression of this window is: 

G(i)=1—(Ao+Ai*COS( 2iri  )+ A2*COS( 2ir2i )) 
2Wh+l 2Wh+l 

(3.8) 

where G(i) is the BH filter gain for the ith point inside the window, and A0, A1, A2 

are coefficients to control the gain of the notch. Wh is the half-window size, in 

number of points. 

The BR notch filter we used to remove motion peaks is plotted in Figure 3.17. 

Note that it has smooth stop-bands. 
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Figure 3.17: A sample Blackman-Harris notch filter we used to suppress the motion 
peaks in the projection power spectrum 
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3.3 The Direct method 

One of the shortcomings of the Mitsa algorithm is that its performance is sensitive 

to image details and noise. In an attempt to reduce the effect of image details and 

noise, we designed the Direct method to extract only the DC and motion peaks. All 

the data points in the spectrum outside these peaks were set to zero. Thus amplitude 

modulation was considered while all other image information was ignored. A block 

diagram of the method is shown in Figure 3.18. We hoped that, by discarding the 

effect of image details and noise, we would be able to extract better defined motion 

peaks and obtain a better motion kernel. 
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Figure 3.18: Block diagram of the Direct method 

 Motion 
kernel 

To obtain an estimate of the projection data with motion, we first identify the 

motion peaks in the ARMA generated power spectrum using our thresholding algo-

rithm (Section 3.1.3). A BI-I3 filter with a series of narrow pass-bands (Figure 3.19, 

lower) was then used to extract the DC peak and all the motion peaks. The pass-

band gain was set to 1, to extract the peaks; The stop band gain was set to 0, to 
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discard all the frequency components outside the peaks. This assumption is valid 

only for sharp peaks. We used ARMA modeling to generate the power spectra in 

order to get appropriate sharper peaks. The filtered power spectrum (Figure 3.20) 

was then Fourier transformed to obtain motion corrupted projection data without 

details (Figure 3.21). 

The estimate of projection data without motion was obtained by Fourier trans-

forming the DC peak. The DC peak was extracted by applying a B113 filter with only 

one narrow passband around DC (Figure 3.19 upper). The filtered power spectrum 

and projection estimate were shown in Figure 3.20 and Figure 3.21. The motion 

kernel was then calculated by the ratio of projection estimate with and without 

motion. 

motion estimate filter - 
no motion estimate filter 

---------------------------------------------------

Figure 3.19: Sample BH3 passband filters for the Direct method. The top one is 
intended to filter the DC peak only; The bottom one is adjusted to filter both the 
DC and motion peaks 
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Figure 3.20: Sample filtered power spectra in the Direct method 
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Figure 3.21: Sample projection estimates in the Direct method 
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3.4 The Adaptive Algorithm 

The ARMA algorithm improved the accuracy of peak identification in the Mitsa 

algorithm and thus improved the quality of motion suppressioh. However, complete 

peak detection automation was not realized. The thresholding algorithm for peak 

detection used in the above algorithms needed tuning by trial and error. Another 

peak detection algorithm ([Sez9O]) was tested and yielded little improvement. Per-

formance of all the algorithms were largely sensitive to the choice of width and center 

of the power peaks. To completely automate peak detection and reduce the sensi-

tivity of the algorithm to peak identification, we proposed the adaptive algorithm. 

Adaptivity in this case was exploited to automatically find the peaks and suppress 

them. 

3.4.1 Background 

Adaptive filtering techniques have been widely used in communications to solve prob-

lems with a changing nature. Most of the applications involve restoring distorted 

signals (noisy, modulated, dispersed, etc.). Usually a subset of the distorted signal 

is compared to a known reference signal. Both signals are used to train an adaptive 

filter so as to minimize the difference or error signal in some way. The filter coeffi-

cients are fixed after the training and the filter is used to restore the distorted signal. 

(See Figure 3.22) 

Adaptive filtering algorithms can be categorized into three groups based on the 

derivation of the algorithms [llay9l]. The third category consists of three different 

classes of algorithms, depending on the structure used for implementation. 
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Figure 3.22: Adaptive filtering concept 

• Methods based on the Wiener filter theory (LMS algorithm) 

• Methods based on the Kalman filter theory 

• Methods of Least Square fit: 

- Recursive least-squares (RLS) algorithm 

- Least-squares lattice (LSL) algorithm 

- QR decomposition least-squares algorithm 

error 
signal 

Based on experience in 1D adaptive signal processing in communications ([Zen94]), 

the RLS algorithm was chosen as the algorithm to be implemented. The RLS al-

gorithm gives fast convergence rate, low steady state error, and is computationally 

inexpensive. 

3.4.2 The Adaptive algorithm for AM motion suppression 

We will first formulate the motion suppression problem in adaptive filtering terms. 

The projection data with motion is an amplitude modulated data set. The objective 
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is to remove the amplitude modulation using an adaptive filter. The filter must first 

be trained using the AM data and some 'estimate of the desired projection data. 

The procedures for our adaptive algorithm can be summarized as follows: 

1. Using the k-space motion corrupted data, project the magnitude of each com-

plex pair in the x-direction. 

2. Inverse Fourier transform the projection data to obtain the corresponding 

power spectrum. 

3. Low-pass filter the power spectrum to obtain only the DC and low frequency 

terms. A three term Blackman and Harris filter is used since it introduces 

minimum distortion. 

4. Fourier transform the filtered DC and low frequency data to generate an esti-

mate of the desired projection data. 

5. Initialize and train a transversal filter using the RLS algorithm. The input to 

the filter is the motion corrupted projection data. The estimate of the desired 

projection data is used as the desired signal. 

6. Once the filter tap weights are determined, process the motion corrupted pro-

jection data using the filter, to yield the estimated projection data without 

motion. 

7. Use the ratio of the projection' data with and without motion to obtain the 

motion kernel. 

8. Correct the motion corrupted raw data using the motion kernel. 
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9. Reconstruct the image by applying a 2D DFT on the corrected data. 

The next section discusses in detail the RLS algorithm we used to implement our 

adaptive motion suppression algorithm. 

3.4.3 The RLS algorithm 

The RLS algorithm is a deterministic (as opposed to statistical) adaptive filtering 

algorithm using a transversal filter structure. Based on the method of least squares, 

we minimize the sum of squared errors, where the error is defined as the difference 

between a desired signal and the actual filter output. The desired signal is usually a 

known sequence used as a training signal to determine the filter tap weights. 

Minimization of the normal equation 

U(n) 
-1 

u(n-1) 
•1 

u(n-1) u(n.M 
-I 

u(n-M+1) 

d(n) 

Figure 3.23: A transversal filter with M tap weights 

The filter structure, input and output signals are shown in Figure 3.23. At iteration 

n, u(m) and y(n) are the input and output of the filter, d(n) is the desired signal, 
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e(n) is the error signal, wi is the ith filter tap weight, and Z' denotes a unit time 

delay in the filter. The output signal y for an M-tap filter is: 

M-1 

y(i) = W(k)u(i - k + 1) 
k=O 

(3.9) 

= WTü(i) 

where (i) is the input vector and WT is the transpose of the weight vector. 

The error signal e is: 

e(i) = d(i) - y(i) 

(3.10) 

= d(i) - TTTii(i) 

The object function J to be minimized is: 

i2 

J= e2(i) (3.11) 

where ii <= i <= i2 is the window for the least square estimate. J can be calculated 

as [Ses94]: 

J = {d 2(i) - 2TTTü(i)d(i) + Tü(i) T(i)T] 
j=11 

i2 i2 i2 

= Ed 2(i) - 2T/T[ ü(i)d(i)] + WT[ u(i)?T(i)]TXT 
i=il i=il i=il 

To simplify the above expression, we define: 

R = u(i)IT(i) 

= ü(i)d(i) 

D = d2(i) 

i=il 
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Therefore, 

J=D_2TX7T +WTRW 

To minimize the object function J, we need: 

1. A necessary condition' 

2. A sufficient condition 

(3.14) 

OJ/oW = 0 (3.15) 

92J/t92W> 0 

To satisfy the necessary condition, we have: 

(3.16) 

VJ = VD - 2V(WT) + V(WTRTiT) 

= —2 + 2RW (3.17) 

=0 

i.e. 

(3.18) 

Equation 3.18 is called the deterministic normal equation. 

The sufficient condition can be simplified as follows: 

V(VJ) = V[-2-J-2RT'T] 

= 2R (3.19) 

>0 
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Since the cross-correlation matrix of the input R is positive definite for any real 

signals, this condition is naturally satisfied. As a result, the normal equation is the 

one that we must solve. 

Recursion 

Due to the difficulty of solving the normal equation directly, recursive techniques are 

used instead. The RLS algorithm is such an recursive algorithm. This algorithm 

updates the filter tap weights as shown below ([5es94]): 

1. Calculate the input correlation matrix at time ri: 

R(n) = R(n - 1) + u(n)J(n) (3.20) 

2. Calculate the cross-correlation vector at time n: 

(m) = - 1) + d(m)ü(m) (3.21) 

3. Invert R(n) to obtain R-1(n) 

4. Calculate the filter tap weights at time n: 

T'/(n) = R 1(n)(m) (3.22) 

For the matrix inversion in step 3 we use the matrix inversion lemma: 

[A + BCD]' = A' - A 1B(DA'B + C')'DA' (3.23) 
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In our problem, from equation 3.20, we set: 

A = R(n-1.) 

B = 

c=1 
(3.24) 

D = uT(m) 

and the matrix inversion can be calculated as: 

R-1(n) = - 1) - - 1)u(n)[uT(m)R(n - 1)ü(n) + 1]_1uT(n)R_l(n - 1) 

= - 1) - (R1(n - 1)u(n)uT(n)R_l (n - 1))/(1 + üT (n)R_1(n - 1)ü(n)) 

(3.25) 

For convenience, we define: 

P(n) = R-1(n) 

= P(n - 1) - (P(n - 1)fi(n)üT (n)P(n - 1))/(1 + üT(n)P(n - 

= P(n - 1) - (PT(n - 1)ü(n)uiT (n)P(ry - 1))/(1 + üT (n)P(n - 1)ü(n)) 

(3.26) 

since, for a symmetric correlation matrix, P(n - 1) = PT( - 1). 

To simplify the equation, we define another variable: 

K(n) P(n -  1)ii(n)  

- 1+ÜT(n)P(n_l)ü(n) 

Using equation 3.27 to further simplify equation 3.26, we get: 

P(n) = P(n— 1) - k(rt)uiT(n)P(n - 1) 
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K(n) can also be calculated from equations 3.27 and 3.28: 

k(n)[1 + üT (n)P(n - 1)ü(ri)] = P(n - 1)u(n) (3.29) 

k(n) = - 1) - k(rt)üT(n)P(n, - 1)] 

(3.30) 

= P(n)ü(n) 

The solution for the normal equation is: 

W = R'(n)(n) 

= P(n)(rt) 

= [P(ri - 1) - k(n)üT (n)P(n - 1)][(n - 1) + ü(n)d(r&)] 

= TT(n - 1) + k(n)[d(n) - jT()7( - 1)] 

(3.31) 

= 17(n - 1) + k(n)a(n) 

where a(n) = d(n) - (n)TiT(n - 1). a(n) is the error term we use to minimize the 

mean-squared error. 

Summary of the RLS algorithm 

The standard RLS algorithm was applied in this project. The following summarizes 

the algorithm based on the above derivation. The algorithm includes the initial-

ization of variables at iteration N = 0 and update of variables at each subsequent 

iteration N = n. 
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1. At N = 0, set up the following initial conditions: 

P(0) = (3.32) 

where I =identity matrix, 6 << 1; 

W(0) = 0 1 (3.33) 

2. At each step N = n, n E positive integers: 

P(n —1)ü(n)  
K(n) = 1 (3.34) + üT(n)P(n - 1)i(n) 

P(n) = P(n - 1) - f<(n)uiT(n)P(n - 1) (3.35) 

a(n) = d(n) - W T (n 1)u(m) (3.36) 

TT(n) = T7(n — 1) - K(n)a(n) (3.37) 

At each iteration, we adjust the tap weight vector TT(n) by adding the scaled 

error term to W(n - 1). 
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3.4.4 Implementation 

The filter training signals 

The image we used in this project was the abdomen phantom shown in Figure 3.2, 

on page 26. The same motion kernel as in the Mitsa algorithm was used to simu-

late motion. A projection operation was then performed on the motion corrupted 

abdomen phantom. The projection data was used as the input signal for transversal 

filter training. 

We used the DC and low frequency components of the motion corrupted projec-

tion data as an estimate of the desired projection data. These frequency components 

contain information of the shape of the images without details. Our simulated AM 

motion corruption has little effect in this frequency range. A three term Blackman-

Harris window was used to filter out the first 15 terms in the power spectrum. The 

filtered power spectrum is then Fourier transformed to produce an estimate of the no 

motion projection. We use this estimate as the desired signal to train the adaptive 

transversal filter. 

Both the desired and input signal for filter training are plotted in Figure 3.24. 

Filter training 

The filter structure used in our algorithm was a 9-tap transversal filter as shown in 

Figure 3.23. The length of training depended on the application. In this project, the 

RLS algorithm was efficiently implemented and was computationally inexpensive. As 

a result, we trained our 9-tap transversal filter with the whole data set. The frequency 

response of the trained filter is shown in Figure 3.25. The valleys in the frequency 

spectrum corresponded to the location of extra energy peaks in the motion corrupted 
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Figure 3.24: The desired (dashed line) and input (solid line) signals to the adaptive 
transversal filter for training 

projection power spectrum. The trained adaptive filter automatically identified all 

three motion peaks. The adaptive filter also identified a non-motion peak in the high 

frequency range of the projection data. The effect of suppressing this extra peak is 

not clear to us. 

Motion correction 

Once the filter tap weights were determined, the motion corrupted data was sent 

through the filter and the output was used as a projection without motion. The 

ratio of projection data with and without motion was used for the estimated motion 

kernel. The motion kernel was then used on the original motion corrupted data to 

correct for the motion. 

3.5 Performance 
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Figure 3.25: Frequency spectrum of the RLS filter after training to suppress the 
motion peaks 

We present the motion corrected images produced with different algorithms in Fig-

ure 3.26. To the untrained eye there appears to be little visual differences between 

the corrected images. However, if we compare the motion kernels determined by the 

algorithms (Figure 3.27), there is considerable differences in the algorithms. 

How do we compare the performance of different algorithms? Is there a con-

vincing way to demonstrate which algorithm would perform the best under clinical 

conditions, for example when looking for lesions? The lack of convincing evaluation 

methods has been a long standing problem in image processing. Without proper 

evaluation methods, improvement of algorithms is hard to prove. 

Meanwhile, a few difficulties blocked me from further investigating motion sup-

pression in M1U. The AM model we used was over-simplified. When we applied 

our algorithms based on this model on a real motion corrupted abdomen image, the 
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Figure 3.26: Motion corrected images 
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Figure 3.27: Motion kernels extracted using the different motion suppression algo-
rithms 
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results were disappointing (Figure 3.28), but not unexpected. Figure 3.28 shows the 

motion corrupted abdomen image on the left hand side and the motion corrected 

image using the Adaptive algorithm on the right hand side. The ghosting artifacts 

were not removed. We need better motion models to handle real motion in MRI. 

Such models were not available from my literature survey. I thought of using the 3D 

motion model presented in Chapter 2 for 3D data processing. However, we did not 

have access to an MRI machine and acquiring 3D data was impossible. Developing 

our own motion model was also impossible due to my lack of physics and medical 

background. It was at this point that we decided to devote the rest of the thesis to 

developing quantitative evaluation methods. 

Figure 3.28: A real motion corrupted MRI abdomen image (left) and the abdomen 
image after motion suppression (right) using the Adaptive algorithm based on the 

simplified AM model 

In the next part of the thesis, we set out to investigate quantitative evaluation 

methods that would yield convincing algorithm performance results. We hope that 
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our effort will help to set up an integrated environment for developing and evaluating 

MRI post-processing algorithms. 

3.6 Summary 

We presented four motion suppression algorithms and their implementation in this 

chapter. The algorithms are: the Mitsa algorithm, the ARMA algorithm, the' Direct 

algorithm and the Adaptive algorithm. The last three algorithms were proposed to 

improve the performance of the Mitsa algorithm. However, we need better evaluation 

methods to be able to examine the differences in performance of these algorithms, 

and to determine if the differences are numerical or clinical. 
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Chapter 4 

The Image Quality Evaluation Problem 

Quantitative evaluation of image quality has been a long-standing problem. Ide-

ally, we'd like to obtain a figure of merit (FOM) to indicate how good an image is 

for a given clinical task. Two approaches have been commonly used in the medi-

cal society([Wag86]). One involves physical characterization of the equipment and 

images, which includes measuring the modulation transfer function (MTF), signal 

to noise ratio (SNR), etc. Usually, these measurements can be taken quite easily. 

However, the clinical relevance of such measurements is difficult to determine. The 

other approach is clinical receiver operator characteristics (ROC) analysis based on 

signal detection theory (SDT). ROC analysis yields clinically relevant results for im-

age evaluation. However, a large database of clinical cases is required in order to 

perform this analysis. Such a database is hard to acquire. In addition, one such 

costly test is usually valid for a narrow range of clinical cases only. An alternative 

to clinical evaluation is phantom ROC analysis. Phantom study can be meaningful 

when proper procedures are followed. 

In this chapter, we present a survey of existing approaches for quantitative eval-

uation of algorithms and techniques in image processing. 
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4.1 Some Standard Metrics 

The intuitive approach to image qualityevaluation is physical measurement. ,Phys-

ical measurements include such factors as contrast, resolution, signal to noise ratio 

(SNR), etc. When distortions are assessed, measures based on the mean squared 

error (MSE) between the original image and the distorted or corrected image can 

be used. Usually, the SNR and resolution are determined during data acquisition 

and are not affected much by post-processing algorithms. However, contrast and 

MSE-based metrics can be used to quantify distortions in the images and evaluate 

algorithm performance. 

4.1.1 Contrast 

Contrast is an important measure for medical images since it affects clinical diagnosis 

directly. It can be defined as: 

- Jo -4 
Jo + lb 

(4.1) 

where J is the average intensity of an object and 4 is that of the background. 

Contrast can be used to compare different algorithms for lesion detection. Higher 

contrast normally leads to more efficient diagnosis and so, it is preferable. 

4.1.2 MSE based metrics 

The MSE for a M by N image can be defined as: 

MSE = (f (X, y) - fo(x, Y))2/ (MN) (4.2) 
XEM YEN 
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where f and fo are some pixel measurements (magnitude, energy, etc.) of the two 

images to be compared ([11a181]). 

MSE can be normalized with respect to the total energy in one reference image 

as: 

NMSE = XEMYEN(f(x,y) - MX, M' 
>IEM E IEN(fO(x, y))2 

(4.3) 

By using the absolute values rather than the squared ones, we also have the normal-

ized error: 

NE = EaEMYEN If(x,y) - fo(r,y)l  
,EM>YEN Ifo(x,y)I 

(4.4) 

The MSE based metrics can be used in various measurements as long as both the 

image to be measured and a reference image exist. They are easy to calculate and 

yield a FOM that can be used to compare different images. 

4.1.3 Diffenergy 

The diffener.qy method was first proposed by Smith ci al. ([MSNC93], [Yan93]) to 

measure the success of modeling in MRI reconstruction. It was used on the frequency 

domain data files. Two data files were compared on a point by point basis. Diffenergy 

is a FOM indicating the total difference between the two data files. For algorithm 

evaluation, we can compare the corrected data file, with the reference (uncorrupted) 

data file. A smaller diffenergy indicates closer resemblance of the corrected data to 

the reference data. 

Diffenergy was designed to overcome problems image domain measurements may 
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have when comparing reconstruction algorithms. Image domain measurements cal-

culate the differences in reconstructed images. Usually the reference or standard 

image is the DFT reconstructed image from a full MR data set. However, the "full" 

data set is windowed during data acquisition, and the standard image reconstructed 

from it may have artifacts. Thus when a modeled image is compared to the standard 

image the results may be inaccurate, as the modeled image may be better than the 

standard one. Diffenergy compares the data in the frequency domain to avoid this 

problem. 

Yang ([Yan93]) defined a global normalized diffenergy (GDF) when comparing 

modeling reconstruction algorithms: 

Fc€M >y€N(frnodel [XI [Y] - fre  [XI [y])2  
GDF = (4.5) 

>IEM EYEN(ffrunc [XI [Y] - frej[XI[y])2 
where fmodel[X][Y] and f,runc[][y] are the real or imaginary parts of a point in the 

modeled and truncated data files, respectively, and fref [x] [y] representi reference file. 

A smaller GDF indicates better recovery of high frequency components in image 

reconstruction from short data sets. However, a large GDF is obtained when a large 

localized error exists, even though most of the data appeared be well modeled. Yang 

further defined a localized diffenergy (LDF) which localized the error: 

LDF = E YEN(fmO1[x1['1 - fref[XI[Y])2,M  (4.6) 
mEM > yEN(ftrüflC [XI [Y] - 1re1[X][y}) 

where M is the minimum number of common rows in all data files. If the recon-

structed data has a large GDF and a small LDF, it is likely that a localized area of 

the data was not successfully reconstructed. 
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4.2 Receiver Operator Characteristics (ROC) 

The ROC methodology is based on signal detection theory (SDT). An ROC analysis 

attempts to answer the question, "how effective is a particular imaging procedure?" 

The results of an ROC analysis provide an index of accuracy of the imaging system 

and an estimate of the probabilities of observer decisions. ROC analysis incorporates 

the human factor in the imaging procedure. It is more meaningful than pure physical 

measures since the ultimate goal in imaging is to assist in human diagnosis. 

In this section, we first lay out the basics of signal detection theory. ROC analysis 

is then introduced and its limitations discussed. 

4.2.1 Signal Detection Theory 

Derived from war-time development of radar systems, signal detection theory uses 

mathematical and statistical approaches to solve some problems in psychophysics. 

One of the most popular approaches models an ideal-observer. In this scenario, a 

specific task is defined - often to detect a. known, low-contrast signal in a noisy envi-

ronment. Data from different imaging systems is collected and analyzed to determine 

how well an ideal observer with knowledge of the signal parameters can perform the 

stated task. The performance of the observer can be summarized by ROC curves or 

some metrics, e.g., the area under the ROC curve. The metrics are taken as a figure 

of merit (FOM) and the highest FOM corresponds to the best performing imaging 

system. 

To further illustrate SDT with the above ideal-observer example, we present some 

mathematical terms. In a detection problem with only two events and two responses, 
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there are four event-response pairs. Let T and F stand for true and false responses. 

Let s stand for conditions in which a signal exists. Let n stand for conditions in 

which a signal does not exist. We have: 

Term Symbol Description 

True Positive Tis 

False Negative FIs 

False Positive Tin 

True Negative Fin 

A hit - the signal existed, and was detected 

A miss - the signal existed, but was not detected 

A false alarm - the signal did not exist, 

but was detected 

A correct rejection - the signal was absent and 

was not detected 

Let PQ denote the probability of an event. In statistical terms, if a signal exists, 

we have: 

P(TIs) + P(Fls) =1 

If a signal does not exist, we have: 

(4.7) 

P(TIn) + P(FIn) =1 (4.8) 

We can calculate P(TIs) from P(Fs) since their sum is 1, and vice versa. The 

same holds for P(TIn) and P(FJn). Therefore, to completely characterize a system, 

we need to know only one of the following two probability pairs: 

1. True Positive Fraction (TPF) P(TIs) and False Positive Fraction (FPF) P(TIn) 

(hit and false alarm) 

2. False Negative Fraction (FNF) P(Fls) and True Negative Fraction (TNF) 

P(FIn) (miss and correct rejection) 
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In clinical applications, the first pair is typically used. TPF represents the sensi-

tivity of the system [Met86]: the fraction of patients who have the disease in question 

and who are correctly diagnosed as 'positive'. FPF represents the specificity: the 

fraction of patients without the disease who are incorrectly diagnosed as 'positive'. 

The sensitivity and specificity pair meaningfully describes diagnostic performance. 

The pair has been used in clinical ROC. analysis ([Ega75], [Met86]). 

4.2.2 ROC analysis' 

Metz ([Met86]) listed some requirements for a meaningful ROC analysis: 

• Diagnostic truth: the diagnostic positive and negative states have to be 

properly identified. 

• Sampling issues: a proper sample of patients and observers should be used 

for the analysis to be meaningful. 

• Diagnostic alternatives: a traditional ROC analysis deals with cases where 

only two diagnostic states, positive andnegative, exist. 

These requirements should be satisfied before we proceed with the analysis. 

A key result in ROC analysis is an ROC curve. One typical ROC curve was 

shown in Figure 4.1. Details on generating an ROC curve will be presented in the 

following paragraphs. The ROC curve indicates clinical performance by plotting 

TPF (sensitivity) against FPF (specificity). Each TPF and FPF pair represents 

the hit ratio at a given false alarm rate. Both TPF and FPF range from 0 to 1. A 

higher ROC curve or larger area under the curve would indicate better discrimination 
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capacity. The area under the curve may also be used as an FOM to summarize the 

result of an ROC analysis. 

Figure 4.2 illustrates the process required to generate an ROC curve. The hori-

zontal axis represents a detectability index that radiologists use for diagnosis. This 

index can be contrast, size or location of certain features in the image, etc. A 

threshold of the detectability index is the criterion above (or below) which positive 

diagnosis is issued. The two curves shown are the probability density functions of the 

detectability index for negative and positive patients, also called frequency curves. 

For ideal discrimination of the patients, there should be no overlapping of the two 

curves. However, in real life, a positive diagnosis based on any detectability index 

can arise from either a positive patient or a negative patient. A better algorithm 

or technique should result in a larger hit ratio (TPF) at any given false alarm rate 

(FPF). 

To geneate an ROC curve we need multiple values of TPF and FPF. The thresh-

old detectability index is varied and multiple TPF and FPF are calculated one pair 

at a time. At each threshold setting, TPF is calculated as the fractional area un-

der the positive patient frequency curve above (or below) the threshold. FPF is 

the fractional area under the negative patient frequency curve above (or below) the 

threshold. By varying the threshold, we can gather multiple pairs of TPF and FPF 

and plot an ROC curve. 

In practice, ROC data gathering requires a large database of medical cases and 

human observers. Two different experimental approaches can be used: 
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Figure 4.1: A typical ROC curve 
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Figure 4.2: Sample frequency curves and thresholding methods used to calculate 
TPF and FPF pairs for the ROC curve. TPF and FPF are shown for threshold d. 
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1. yes/no method. The observer views a series of images sequentially at a 

certain threshold and is required to give a yes/no response for each image. One 

pair of TPF and FPF is obtained after a sequence. The process is repeated 

using different thresholds, obtaining more data points for the ROC curve. 

2. rating method. The observer is required to select one of the several confidence 

categories (definite, possible, etc.). One sequence will yield multiple pairs of 

TPF and FPF. Apparently this is the more efficient method ([Met86]). 

After a sufficient number of data points are obtained, a curve fitting algorithm can 

be employed to generate a smooth ROC curve. 

ROC analysis is widely used in evaluating medical imaging methods. Most pa-

pers in the literature are concerned with radiologic imaging, such as radiography, 

mammography, CT, ultrasonography and SPECT. 

4.2.3 Limitations 

The major limitation of signal detection theory based ROC analysis is that it over-

simplifies the complex perceptual tasks that humans perform. The task in ROC 

analysis is usually detection, with known signals and simple noise models. In real 

life, the tasks could be estimation or classification, with completely unknown sig-

nals and noise. With SDT we are normally dealing with the simplest task, signal 

and noise models. The simplicity of the test limits the applicable range of the per-

formance evaluation. Nonetheless, the ROC analysis is statistically representative 

of clinical decision making. However, it requires a large database of patients and 

observers, which may lead to high costs and long analysis time. 
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4.3 Phantom Study 

To increase the efficiency of ROC analysis, phantoms can be used instead of real 

patient images ([Wag86]). This approach applies when an observer is given an image 

of a simple test phantom and must discriminate where certain shapes appear in the 

image. Two steps should be carefully monitored in the design of phantom studies: 

1. Phantom generation. Realistic phantoms, based on the specific imaging 

method, are needed instead of simplistic mathematical images. Realistic phan-

toms are especially important in MRI, since the data is collected in k-space. 

Proper phantom generation in MRI will be discussed in detail in Chapter 6. 

2. Statistical distribution. Phantom studies have to fulfill certain requirements 

to be statistically sound. Designers should take into consideration the sample 

size, the distribution of normal and abnormal samples, the distribution of lesion 

intensity, etc.. 

Phantom studies can be carried out by either human observers or computer ob-

servers. Phantom study by human observer is usually used to generate ROC curves. 

Computer observers are relatively new in image evaluation and some of the computer 

observer based techniques will be discussed in the next sections. 

4.4 Computer Observers 

To reduce the time and money required to carry out ROC analysis, computer ob-

servers were introduced. Ideally, we would like to apply some artificial intelligence 
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(AT) so that the computer can emulate the performance of a human observer. How-

ever, the complexity of AT makes this type of application prohibitively complicated 

at the present time. A more realistic approach is to use a certain metric which has 

already been proven, to have medical relevance. Two types of approaches can be 

found in the literature: 

• Development of metrics that have a high correlation to a comparative human 

observer ROC analysis. 

• Designing a new metric or figure of merit (FOM), based on a specific task, to 

evaluate the performance of different algorithms. Repeat the experiment on a 

statistically significant set of phantoms and evaluate the algorithms based on 

the resulting FOMs. 

The following sections present a few examples from the literature that are relevant 

to this project. 

4.4.1 A perceptual image quality measure 

Hall ([Hal81]) proposed a perceptual image quality measure, perceptual MSE (PMSE), 

which is an MSE computed in a transformed space. The preprocessor used to obtain 

the data for PMSE is related to the human vision system (HVS). This measure has 

been reported to have close correlation to a comparative ROC analysis, indicating 

that it may be suitable as a metric for computer observers. We implemented this 

measure and the details are shown in Chapter 5. 
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4.4.2 Evaluation method based on task performance 

Hanson ({Han9O]) developed a methodology to evaluate image reconstruction algo-

rithms based on task performance. His method attempted to judge an algorithm by 

how well one could perform a defined visual task using reconstructed images. The 

method simulated the entire imaging process. Defined representative scenes and cor-

responding data sets were generated randomly. A specific task was then performed 

using the reconstructed images. Finally, the accuracy of the task performance was 

evaluated. The basic steps of this method are: 

1. Define the class of scenes to be imaged. 

2. Define the geometry of the measurements, including noise. 

3. Define the task to be performed on the images. 

4. Define the method of task performance, including the computer observer or 

human observer. 

5. Create a representative scene and the corresponding data by a Monte Carlo 

simulation (pseudo-random selection of the uncertain and variable parameters). 

6. Reconstruct the scene with the algorithm being tested. 

7. Perform the specified task, using the reconstructed images. 

8. Repeat the above three steps a sufficient number of times to obtain results. 

9. Evaluate the task performance, using an ROC curve or other metrics. 
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Hanson demonstrated the methodology in an evaluation of algebraic reconstruc-

tion technique (ART). The task was simplified to detecting a possible disk at known 

locations of the background. The mean magnitude of the reconstruction over the 

area of the disk was used as a decision variable. Frequency graphs of the decision 

variable evaluated at positions where a low-contrast disk was known to exist and 

where none existed were plotted. An ROC curve was generated from the frequency 

graphs by setting different decision thresholds and calculating the TPFs and FPFs. 

The area under the ROC curve was an effective index of performance ([Met86]). 

Other computer observer techniques include those proposed in [FBSM87], [11091], 

[HY91], [LLG92], [FHN+94]. 

4.5 Summary 

We presented a literature survey of the existing quantitative evaluation methods in 

medical imaging. Some standard metrics were found to be used to generate quan-

titative results when evaluating different algorithms and techniques. ROC analyses 

yield more clinically relevant results. Computer observers have also been used to 

reduce evaluation costs. 
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Chapter 5 

Performance Evaluation Metrics 

We now present a set of metrics we developed to quantitatively evaluate the perfor-

manceof different MRI motion suppression and reconstruction algorithms. In most 

cases, a reference (image or data) is needed to calculated the metrics. In the case 

of motion suppression, our reference is the original phantom data/image before mo-

tion simulation. In the case of MR image reconstruction, our reference is a full (not 

truncated) MR data set or image reconstructed from the full data set. 

5.1 Contrast 

For MRI images, the magnitude image is normally used by radiologists for diagnosis. 

Contrast in an MRI magnitude image can be defined as: 

Contrast=   (5.1) 

where S0 is the mean magnitude of an object and Sb is that of the background. 

We defined the background as the area contained in a box surrounding an object 

excluding the object. (See detailed contrast calculation in Figure 6.2 in chapter 6.) 

In our project, we measured the contrast of simulated lesions in the phantom 

before and after applying our post-processing algorithms. A larger contrast value 

indicates easier recognition of features in the images. 
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5.2 Kernel Error 

Kernel error is designed for post-processing algorithms using a mathematical model. 

Researchers often use a mathematical model to simulate distortions in the images 

and then apply the model to correct for simulated distortions. In our case, we used a 

motion kernel as our model. All our algorithms extracted the motion kernel and used 

it to correct the motion. The success of the correction depended on the accuracy 

with which the extracted kernel approximated the kernel we used to simulate motion. 

Ideally the extracted motion kernel should be identical to the motion kernel used to 

simulate motion. Accordingly, a measure of the difference between the extracted and 

original kernels could be a measurement of algorithm performance. A smaller kernel 

error value indicates better performance. 

5.2.1 Kernel mean squared error - KMSE 

Since the kernel inverse was used to multiply the motion corrupted data in the 

correction, the mean squared error of the kernel inverse (KMSE) is defined as 

1 M1 

KMSE = Wkerextr  - 1/kerôrjg[i])2 (5.2) 

where M is the number of points in the kernel, and 1/ker[i] is the value of the kernel 

inverse (1/kernel) at the ith point. The original kernel used to simulate motion 

(kerorjg) is used as the reference here. keretr is the kernel extracted using different 

algorithms. 

For a particular reference kernel, a smaller KMSE indicates better performance of 

the algorithm used to extract the kernel. In order to compare results from different 
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kernels, we need to normalize KMSE by the total energy of the original kernel inverse. 

We denote this normalized KMSE as KNMSE: 

-  '(1/keretr[i] - 1/kerorig[i])2  
KNMSE 

- M-1(1 'k .9 j 1ifl1 )2 (5.3) , er0,.2  

KNMSE yields the kernel error as a fraction of the total reference kernel energy. 

KNMSE excludes the effect of reference kernel energy on KMSE. KNMSE should be 

used when comparing the performance of algorithms tested with different reference 

kernels. 

5.2.2 Weighted mean squared error - KWMSE 

Due to the nature of the MR.I data, the amplitude of the low frequency components 

in k-space is always greater than that of the higher frequency components. We 

found that a kernel error which appeared in the low frequency region had greater 

effect than one which appeared in the higher frequency region. In order to reflect 

this characteristic of MRI data, we defined a weighted MSE. First, a set of weights 

were calculated from the M by N motion corrupted data file: 

w(i)IM_1 -  j, _0  
i=O - M-1'N-1( (l V2 (5.4) 

L.ik=O L.j=O Smoy,3j) 

where Smo [Z][j] is the magnitude of the point (i,j) in the data file. The numerator 

is a sum of the energy in a row of data. The denominator is the total energy of the 

data. Each w[i] represents the fractional energy of the ith row in the data file. The 

weights w form an M by 1 vector. 

A weighted KMSE (KWMSE) can then be calculated: 
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M-1 

KWMSE = E (w[i] * (1/kerextr [i] - 1/kerorjg[i])2) 
i=O 

(5.5) 

This metric incorporates the effect of energy distribution in the MRI data set. 

The distortion in an energy concentrated area is emphasized while distortion in a 

low energy area is deemphasized. 

5.3 Diffimage 

The Diffimage (DI) measures the difference between the corrected image and a ref-

erence image. The reference image is assumed to have no artifacts. A Diffimage 

metric is calculated by the difference between the image produced by first distorting 

and then correcting the reference image, and the original reference image. The mean 

energy of the difference images were then obtained. A smaller value indicates closer 

resemblance of the corrected image to the reference image. When the reference im-

age contains distortion and artifacts itself, a large DI could mean that the corrected 

image has less artifacts than the reference image. Tinder such circumstances the 

Diffimage measure is not reliable. 

For an M by N image, Diffimage is defined as: 

DI =  EM yEN(1corr [XI [Y] - Irej [XI [y])2 
M*N 

(5.6) 

where Icorr[X][y] is the magnitude of the point (x, y) in the distorted and corrected 

image, and Iref[X][y] is a point in the reference image. 
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5.4 Diffdata 

Diffdata (DD) is based on the diffenergy measurement, which was first proposed 

by Smith et at. ([MSNC93], {Yan93]) to measure the success of modeling in MRI 

reconstruction. It is used on the frequency domain data files of the corrected and 

reference MRI images: 

DD = - Sref(X,Y))2 

M*N 
(5.7) 

where Scorr (X ) y) and .sref(x, y) are the real or imaginary components of the point 

(x) y) in the corrected and reference data files, respectively. 

Diffdata can be normalized by the mean diffenergy between the corrupted and 

reference data (NDD). After normalization, 100% will indicate no improvement. A 

smaller value indicates better performance. 

NDD = 
EaEMEy€N(.5orr(X,Y) - Sref(X,Y))2 100% (5.8) 

Y€M EyEN(8dstr(2) y) - 3re1(X) y))2 

where .scorr() y), 8rej'(X) y) and Sdsjr(X, y) are the magnitudes of the point (x, y) in 

the corrected, reference and distorted data files, respectively. 

Usually, Diffdata and Diffimage are related for the same images, since the fre-

quency domain data is the Fourier transform of the image. However, when the ref-

erence image contains artifacts, the Diffimage measure may be inaccurate. On the 

other hand, if an image has "super-resolution," the Fourier transformed frequency 

domain data set may contain data aliasing. The Diffdata measurement on aliased 

frequency domain data sets may not be reliable. Under these circumstances the two 

measures may yield different results. 
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5.5 A perceptual image quality measure 

This measure is based on the perceptual mean squared error (PMSE) measure pro-

posed by Hall ([111177] [11a180], [Ha181]). It is simply an MSE computed on images 

processed by a filter. The filter used to obtain the data for PMSE is related to the 

human vision system (HVS). A conceptual block diagram of the PMSE measure is 

shown in Figure 5.1. 

input 
image 1 

input 
image 2 

 IN- 2D natural log 
operation 

2D natural log 
operation 

2D BP HVS 

filter 

2D BP HVS 

filter 
V 

MSE 

Figure 5.1: Block diagram of the PMSE measurement 

Mathematically, 

PMSE = EXEM E VEN(z(x, y) - Zf(X, y))2 

EEM E yN(Zref (, y))2 

 PMSE 

where z(x, y) and zref(x, y) are intermediate variables calculated according to: 

z(x,y) = ln(f(x,y)) 0 htp(X,y) 

and 

(5.9) 

Zref(X, y) = ln(frej(x, y)) 0 hb(x, y) 

where f(x, y) and frej(X, y) are magnitudes of the images (corrected and reference) at 

points (x, y), in. denotes the natural log operation, 0 denotes a convolution operation, 

and hb(x, y) is a point spread function of the HVS. 

This metric has been applied on non-medical images ([Hal81]). Here we introduce 
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it to MRI images. The procedures for obtaining the PMSE are: 

• Perform a natural log operation on a processed magnitude image and a refer-

ence magnitude image. 

• Fourier transform the images into k-space and multiply the kspace data with 

the frequency response of a 2D HVS filter. 

• Inverse Fourier transform the k-space filtered data to generate filtered images. 

• Calculate the PMSE using the filtered images. 

5.5.1 The HVS model 

The main difficulty in implementing the PMSE measure is to define a 2D HVS 

filter. We searched the literature for a HVS model which has been proven to match 

experimental measurements, and is both clearly defined and documented. 

The model we found and used in our project was based on that developed by 

Barten [Bar92]. It was a comprehensive model accounting for effects of various pa-

rameters on the contrast sensitivity of the eye, including optical modulation transfer 

function (MTF) of the eye, internal noise (photon noise and neural noise) and ex-

ternal noise. The model had been shown to fit various physical measurements if 

its parameters are properly chosen. For a comprehensive explanation of the model, 

please refer to [Bar92]. The following provides a brief outline of the model: 

The overall contrast sensitivity function of the HVS system is: 

1 111T  1 1 
= + + + (_)2] Mt (1— F(u))2X02 O5M() X2 N 
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Some of the variables in equation 5.10 need to be further calculated: 

= ird2L  

d = 4.6 - 2.8tanh(0.4 log ) (5.12) 
1.6 

F(u) = 1 - [1 - exp(--)]°5 (513) 

M0 = exp(—ir2o2u2) (5.14) 

0' = + (C8hd3)2 (5.15) 

The variables are defined in Table 5.1. 

In our project, we tried to describe a typical viewing environment for MItT images. 

The values we used in our project are shown in Table 5.1. Most constants were fixed 

by Barten([Bar92]) using average values in typical cases. Only the following three 

parameters need to be adjusted according to different viewing conditions. 

• angular spatial frequency 

All the recorded frequency responses of HVS use cycles/degree as the unit for 

spatial frequency. Barten's model uses cycles/degree as well. Cycles/degree 

is the reciprocal of the optical viewing angle. In the literature, cycles/degree 

is only clearly defined in a sine-wave grating test where each test uses bar 

images at one specific spatial frequency. There is no clear description of how 

cycles/degree can be calculated or measured for the Fourier transform of an 

image. In our project, we made two assumptions before calculation so that we 

can use Barten's HVS model properly. The first one was that the eye always 
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Table 5.1: Description of variables 
Var Description Value Units 
k constant 3.0 
T temporal dimension of the image 0.1 s 
77 total quantum efficiency 2 % 
P constant 350 
I illuminance of the eye cd/rn2 
d diameter of the eye pupil 
L illuminance of object 
o noise density at high spatial frequency 3e-8 sec * deg  

F(u) MTF of the low pass filter 
u angular spatial frequency 
UO spatial frequency below which the attenuation 

of the contrast sensitivity takes place 8 cycles/deg 
Xo angular size of the picture deg 
X maximum angular size of the picture 12 deg 
N maximum number of cycles over which the 15 cycles 

eye can integrate the information 
M1,21t optical MTF of the eye 

radial standard deviation of 
the optical point-spread function 

0,0 value of o at small pupil sizes 0.75 arcmin 
Csph constant describing the spherical aberration effect 0.006 arcmin/mm3 
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points toward the center of the image. The second was that the highest spatial 

frequency term in k-space after DFT of the image equals to the reciprocal of 

the separation angle between two adjacent points in the digital image (angular 

resolution). The second assumption was based on sampling theory. With the 

first assumption, we were able to determine the angular size of the image and 

angles between two adjacent points. With the second assumption, we labeled 

our frequency domain data with the unit cycles/degree. 

1 
sizes distance •-_. 

anua size 

"--------
Figure 5.2: A sample viewing condition 

Figure 5.2 shows an example calculation. Suppose we were viewing an s cm 

image from d cm away. With the eye pointing at the center of the image, the 

angular size of the image will be 

(indegree) = tan'(.) (5.16) 

If the image has M by M pixels, then the highest frequency term of the image 

should be: 

fmax(incyc1es/degree) = 1/(tan' s/M (5.17) 
d " 

• angular size of the observed image 

As described in the last item, it is calculated as: 

angularSize = tan'(  size/2  
distance 
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Figure 5.3 showed frequency responses with different distances between the 

observer and the image, assuming each image was exactly the same size. 
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Figure 5.3: Spatial frequency response of Barten's HVS model at different viewing 
distance 

. illuminance 

Under normal viewing conditions, illuminance can range from 0.00001 to . 1000 

cd/rn2. Figure 5.4 shows the same curve with only illuminance varying. 

From Figures 5.3 and 5.4, we can see that the setting of parameters affect the 

shape of the HVS bandpass filter. We would expect the PMSE results to be different 

under different viewing conditions as well. In this project, we are not interested 

in investigating what effect different viewing conditions have on the HVS model. 

We will assume a typical viewing condition and use a fixed HVS filter in all our 

evaluations. 
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Figure 5.4: Spatial frequency response of HVS with varying illuminance 

With an average angular size of 6 degrees and illuminance of 34 cd/rn2 (the 

median of what was used in all the HVS experimental measures we found in the 

literature) the frequency response of the HVS system in this project is shown in 

Figure 5.5. 

The PMSE metric is essentially a metric of the image. For MRI images, we need 

to first reconstruct an image from the acquired data using appropriate reconstruction 

methods. After we obtain a reconstructed image with the best possible quality, we 

can calculate the PMSE using the procedures listed in Section 5.5. Figure 5.6 shows 

one line of MRI data with the corresponding HVS filter. Since the HVS filter is not 

defined at DC (where spatial frequency is 0 cycles/degree), we do not filter the DC 

value. Since a 2D Fourier transform on the image generates symmetrical positive 

and negative frequency components, both components are filtered by the same HVS 

filter. 
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Figure 5.5: Spatial frequency response of HVS in this project 
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Figure 5.6: One line of MRI data and the IIVS filter which will be used on this line 

of data 
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To extend the 1D HVS filter to 2D, we assume that the frequency response of 

the eye is invariant in all directions ([Hal8O]). Such a 2D HVS filter is shown in 

Figure 5.7. 

Figure 5.7: The 2D HVS filter used in this project 

5.6 Summary 

In this chapter, we listed all the metric measurements we assembled for MR image 

quality evaluation. The metric measurements included: contrast, kernel error, Dif-

fimage, Diffdata and a perceptual image quality measure. Kernel error is suited for 

evaluating motion suppression algorithms when a motion kernel is extracted. Dif-

fimage and Diffdata compare the differences between a processed data set and a 

standard data set in the image and frequency domain, respectively. The percep-

tual image quality measure incorporates the effect of the human vision system in 

90 



algorithm evaluation. These measurements will be used in Chapter 7 for algorithm 

evaluation. 
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Chapter 6 

A Novel Computer Observer ROC Analysis 

Our proposed method attempts to create a computer observer that would yield re-

ceiver operator characteristics (ROC) analysis results using mathematical phantoms. 

We took the following steps to set up the compuler observer. 

• Define the image scene to be used in the computer ROC analysis. 

• Define the task to be performed by the computer observer. 

• Define the variations used to obtain statistically significant results. 

• Define the approach to be employed by the computer observer to generate ROC 

curves 

We will discuss the key steps for this novel computer observer ROC analysis in this 

chapter. 

6.1 Phantom Generation 

Our computer ROC analysis is designed to be a general paradigm for computer 

automated quantitative evaluation of algorithms and techniques. The evaluation 

process starts from generating phantoms using the computer. We would like the 

phantoms to be realistic and representative of typical MR images. 

Throughout the literature, phantoms are mathematically generated in the image 

domain ([HY92b], [HYR91a], [TOS94], [RTS92]). However, for MRI applications 
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this may not be appropriate. To understand this, we use a 1D example to illustrate 

k-space data aliasing caused by an image domain defined phantom. 

In Figure 6.1, we assume that (a) is an image domain generated 1D phantom and 

(b) is its corresponding k-space data set. If (a) has mathematically defined sharp 

edges, its corresponding data set (b) has an infinite number of frequency components. 

In digital image processing, images are represented as arrays of discrete pixels. 

Therefore the continuous function shown in (a) is discretized, or sampled, to generate 

the digital phantom. Sampling functions in the image domain and k-space are illus-

trated in Figure 6.1 (c) and (d). 8x is the sampling rate. The higher the sampling 

rate (smaller 5x in (c)), the larger the separation between the delta functions in (d). 

(e) and (f) show the sampled signals. In the image domain, the sampled signal is the 

product of (a) and (c). In k-space, the sampled signal results from convolving (b) 

and (d). After convolution, the k-space data in (f) exhibit overlapping parts. This 

overlapping is called aliasing. In this case, the aliasing is on data in k-space and we 

call it data aliasing. 

If there are infinitely many frequency components in k-space, we cannot sample 

the image without k-space (data) aliasing. However, increasing the sampling rate in 

the image domain may lessen data aliasing, since the frequency data normally tends 

to zero as frequency increases. A higher sampling rate means less overlapping. A 

grossly over-sampled image domain generated phantom may exhibit very little data 

aliasing. 

The effect of data aliasing can be seen in the comparison of data generated in 

the frequency domain and image domain (Figure 6.2). The aliased data set is not 

realistic and may skew the ranking of image processing algorithms. 
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Figure 6.1: Data aliasing in image domain generated phantom 
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Frequency domain generated phantom Image domain generated phantom with aliasing 

Figure 6.2: Data aliasing in image domain generated phantom 

In our project, the phantoms were generated in k-space to avoid data aliasing. 

The phantom program accepts image domain descriptions of the phantom, calculates 

its FT, and then generates a truncated set of data in k-space. Due to the difficulty 

of calculating a close-form expression for the FT of an arbitrary shape, our phantom 

program only generates ellipses that do not partially overlap one another. The 

resulting phantoms lack realness when compared to clinical MR images. However, 

the phantoms are still representative of typical medical MR images. 

The abdomen phantom used throughout this thesis results in a 256 by 256 pixel 

image. All the parameters required to create the phantom are shown in Table 6.1. 

We gave each ellipse in the image a descriptive name to identify them. We assume 

the image has (0, 0) in the center and extends from —128 to 127 along the x- and 

y-axes. The intensity column indicates the intensity of each ellipse. Angle, X-center, 

Y-center, X-radius and Y-radius describe the geometry of each ellipse. 
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intensity X-center Y-center X-rad. Y-rad. Angle Desc. 
0.319 4.192 -56.596 8.909 5.240 0.000 spine 3 
0.319 2.096 -45.067 8.385 5.240 0.000 spine 2 
0.319 2.306 -30.394 11.529 7.337 .0.000 spine 1 
0.129 -1.887 -8.385 9.433 7.337 0.000 aorta 
0.262 35.635 -37.731 23.058 10.481 140.000 right kidney 
0.262 -37.731 -31.442 23.058 10.481 40.000 left kidney 
0.432 -48.212 23.058 49.260 23.058 28.000 liver 
0.494 46.115 18.865 41.923 19.913 150.000 stomach 
-0.987 -1.677 -3.144 101.663 67.077 0.000 anti-fat 
1.004 0.000 0.000 109.000 74.413 0.000 fat 

Table 6.1: AbdomenTi phantom parameters 

The reconstructed phantom image is shown in Figure 3.2 in Chapter 3 on page 

26. The phantom had no data aliasing. 

6.2 Lesion Detection 

We defined the task to be performed in this computer observer experiment as de-

tecting low contrast lesions in the abdomen phantom. Based on the advice of a 

pathologist (Carla Wallace, MRI Center of the Foothills Hospital), we selected 10 lo-

cations where lesions were most likely to occur. The locations were scattered among 

the simulated liver, kidneys and spine. In a real MR image with similar tissue con-

trast to our phantom, the intensity of a lesion would be lower than that of healthy 

tissues. We created negative intensity ellipses at the known locations to represent 

lesions and superimposed them on the phantom image. The parameters for the le-

sions are shown in Table 6.2. In order to simulate both the positive and negative 

conditions in an ROC analysis, we used a computer generated random number to 
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X-center Y-center X-rad. Y-rad. angle desc. 

-39.827 18.865 9.0 7.0 10.0 lesion 1 

-50.308 33.538 6.0 4.0 70.0 lesion 2 

-16.769 44.019 5.0 3.0 0.0 lesion 3 
-81.750 8.385 4.0 7.0 30.0 lesion 4 
-62.885 14.673 6.0 2.0 40.0 lesion 5 
31.442 -35.635 5.0 6.0 130.0 lesion 6 

46.115 -40.019 4.0 3.0 10.0 lesion 7 

-33.538 -37.731 7.0 3.0 22.0 lesion 8 

-40.019 -36.683 5.0 4.0 12.0 lesion 9 

3.144 -31.442 2.0 3.0 50.0 lesion 10 

Table 6.2: Lesion parameters in AbdomenTl phantom 

determine whether or not there should be a lesion at each known location. 

The intensity of the lesions was randomly selected so that it could be any number 

between 0 and -0.0735, not including 0. The lesions were placed so they overlap with 

organs. The actual intensity of the lesions was calculated as the sum of organ and 

lesion pixel intensity. A phantom with four random lesions is shown in Figure 6.3. 

After applying different reconstruction or correction algorithms to phantoms with 

lesions, we use the computer observer to perform lesion detection. The detectability 

index we chose is the contrast at known locations where lesions might occur. 

Contrast MI - Mb (6.1) 
2V.LI + IVIb 

where M1 is the mean intensity of a known lesion location and Mb is that of the 

background. The contrast was calculated according to the algorithm shown in Fig-

ure 6.4. The algorithm starts by creating a square surrounding the known location 

of a possible lesion. For each pixel in the square, we calculate to see if it's inside 
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Figure 6.3: A sample abdomen phantom with lesions 

the lesion or outside. Based on its position, we add the pixel to the inside group 

or the outside group. After all the pixels in the box are grouped, we calculate the 

mean intensity of both inside pixels and outside pixels and thus the contrast. If the 

contrast is above a threshold, the computer observer detects a lesion. 

6.3 Variations 

The ROC analysis requires variations when collecting data to plot the frequency and 

ROC curves. In AM motion suppression, we vary the following factors: 

1. Motion kernel: The motion kernel can be described as: 

K(y) = 1 + E M(n) . cos(2irN(m)K + qfl)] (6.2) 
n=-p 

The number of terms p, the amplitude of the modulation term M, the frequency 

of motion N and the phase q can all be varied. In our motion suppression 
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Inputs: The image file 
Outputs: Contrast at all possible lesion locations (known) 

Procedure CaicLesionContrast { 
allocate and load image array from file 
for( each possible lesion location) 

create a square surrounding the lesion 
sideOfSquare = 2+ max(X-rad, Y.-rad) 

totallnsidelntensity = total Outsidelntensity = 0.0 
totallnsidePixels = totalOutsidePixels = 0 
for( each pixel in the square) 

set pixel coordinates (x, y) relative to X-center and Y-center 
rotate x,y about (X-center,Y-center) the same angle as the lesion 
calculate a = (xrotated/X-rad)2 + (yrotaed/Yrad)2 
if e< 1.0) 

totallnsidelntensiiy+ = intensity(x, y) 
total lnsidePixel.sincrement 

if a >= 1.0) 
total Outsidelntensity+ = intensity(x, y) 
totalOutsidePixelsincrement 

next pixel 
meanlnsidelntensity = totallnsidelntensity/totallnsidePixels 
meanOutsidelntensity = totalOutsidelntensity/totalOutsidePixels 
contrast = (rneanlnsidelntensity - meanOutsidelntensity) / 

(meanlnsidelntensity + meanOutsidelntensity) 
next possible lesion location 

} 

Figure 6.4: The algorithm to calculate contrast at all possible lesion locations 
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algorithm evaluation, we vary the frequency of motion, N. 

2. Lesion contrast: The contrast of the simulated lesions are set at different 

levels. 

Data can be collected by varying one or more of the above factors. The resulting 

detectability index data is used to generate the ROC curve. In image reconstruction, 

only the lesion contrast was varied. 

One of the problems associated with motion kernel variation is synchronous sam-

pling, such as found in references [TOS94] and [ZST95]. Synchronous sampling 

occurs when data at the two ends of the finite data set are continuous. Synchronous 

sampling is usually due to improper placement of the data window. Since fast Fourier 

transform (FFT), the most commonly used DFT algorithm, assumes that all data 

sets are periodic with the finite windowed data having a length of one period, a syn-

chronously sampled data set produces sharper power spectrum peaks that are easier 

to identify and suppress ([SC95]). However, real MRI data sets are discontinuous at 

the two ends and the peaks in the power spectra are wider. The simulated motion 

kernel should contain the discontinuities at the two ends of the data to represent re-

alistic motion. In this project, we made sure that all variations of motion frequency 

are not synchronously sampled. 

6.4 ROC Curve 

After we generated phantoms with our variations, applied our algorithms and ob-

tained the lesion detection results from the computer observer, we were ready to plot 

ROC curves. The ROC curves were produced in two steps: 
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1. Plotting frequency curves. 

The computer records for each known lesion location whether or not a lesion 

was generated and the contrast at that location. Contrast was used as the 

detectability index. The frequency graphs were plotted with frequency (number 

of occurrences) as the y-axis and detectability index (contrast) as the x-axis. 

The frequency graph for each algorithm contains two curves: a frequency curve 

when there was a lesion at the known location and one when there was no lesion. 

In order to count the number of occurrences at a certain contrast, we digitized 

contrasts to discrete values at small intervals. The actual contrast recorded 

during computer observer lesion detection was rounded to the nearest discrete 

contrast value. The computer algorithm used to plot the frequency curves is 

shown in Figure 6.5. 

The frequency vs. contrast data files were then used to plot the frequency 

curves for each algorithm. A sample frequency graph is shown in Figure 6.6. 

In this project, the lesion area showed lower intensity than the surrounding 

healthy tissues. As a result, the frequency curve with lesion showed contrast 

mostly lower than zero. The frequncy, curve without lesions showed a peak 

centered around zero contrast, as expected. 

2. Plotting the ROC curves. 

To obtain an ROC curve, we set up multiple thresholds in the frequency graphs 

to calculate multiple pairs of TPF and FPF. For each thresholding contrast, 

TPF is calculated as the area (total frequency counts) to the left of the thresh-

old and under the frequency curve with lesions. FPF is calculated in the same 
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Inputs: Computer observer lesion detection results 
Outputs: Data file to plot frequency curves 

Procedure CalcFreq { 
initialize all the counters to be zero 
for( each algorithm) 

for( each possible lesion location) 
read flag (is there a lesion?) 
read contrast 
round contrast to nearest discrete contrast value 
if( flag == TRUE) 

TrueCount [Aig] [contrast] increment 

if ( flag == FALSE) 
FalseCount [Alg] [contrast] increment 

next lesion location 
next algorithm 

for( each algorithm) 
write to a file TrueCount and FalseCount vs. contrast 

next algorithm 

} 

Figure 6.5: The algorithm to plot frequency curves 
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Figure 6.6: A sample computer generated frequency graph 

way using the frequency curve without lesions. The TPF and FPF pairs are 

then used to plot the ROC curve. 

6.5 Summary 

In this chapter we proposed a novel computer ROC analysis for quantitative evalu-

ation of algorithms and techniques. The steps in setting up such an ROC analysis 

were discussed. We summarize our computer observer ROC analysis for algorithm 

evaluation as the following: 

1. Test phantom generation. A computer generated abdomen phantom is 

used as the background for lesion detection. Lesions at 10 known locations are 

created randomly. The intensity of a lesion is also randomly determined to 

generate different contrasts. 
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2. Algorithm application. The algorithms to be evaluated are applied on the 

phantom. Final images after algorithms have been applied are obtained. 

3. Contrast calculation. Contrasts are calculated at all the known lesion loca-

tions for each algorithm. 

4. Repetition. The above steps were repeated and for each know lesion location, 

we record whether or not a lesion is present and the contrast at that location. 

5. Frequency curve plotting. The lesion contrast data are used to generate 

frequency plots for each algorithm. 

6. ROC curve generation. Different thresholds are used to obtain multiple 

pairs of TPF and FPF's from the frequency plots. One ROC curves for each 

algorithm is plotted. 

Results were obtained using this methodology with AM motion suppression and 

ARMA reconstruction algorithms and are presented in Chapter 7. 
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Chapter 7 

Results 

In this chapter, we present some of our results and discuss the implications of those 

results. 

In the first section we provide some background information on why and how 

we performed our quantitative evaluation. Next we present some evaluation results 

obtained during testing of our computer ROC analysis. Statistical variations are 

studied and discussed. This section aims to answer some of the questions we had 

regarding the protocol used for our computer ROC analysis to compare different MR 

reconstruction algbrithms. 

The third part contains detailed quantitative evaluations of both the AM motion 

suppression algorithms and the TERA modeling reconstruction algorithms. All the 

evaluation methods discussed in Chapters 5 and 6, the metrics and the computer 

ROC analysis, were applied on both computer generated phantoms and real medical 

images. 

7.1 Background 

In this chapter, we use several different evaluation methods to quantitatively compare 

a number of different MR algorithms. Our purpose is to identify the method that 

offers the most realistic evaluation of the algorithms. The evaluation approaches we 

apply are the following: 
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• a computer observer receiver operator characteristics (ROC) analysis 

. Mean-Squared-Error (MSE) based measures, including 

- Diffdata (DD) - the MSE between the reconstructed and standard MR 

data measured in the frequency domain 

- Diffimage (DI) - the MSE between the reconstructed and standard MR 

image measured in the image domain 

- Perceptual MSE (PMSE) - the MSE between the reconstructed and stan-

dard MR images that are preprocessed by human vision system filters 

- Kernel MSE - the various MSE measures between reconstructed and ac-

tual motion kernels, applicable only to motion suppression algorithms 

The computer observer ROC analysis is designed to draw clinical rather than 

numerical conclusions about the quality of MR images. However, this analysis is 

computationally expensive. On the other hand, the various MSE based measures 

are quick to yield numerical results with no apparent medical implications. We 

would also like to investigate whether the simple, fast MSE measures are closely 

correlated to the slow, clinically valid, ROC method. 

7.1.1 Protocol for the computer observer ROC analysis 

To obtain reliable results, we establish a protocol to use our new computer ROC 

analysis for algorithm evaluation. The protocol must be justified in terms of statisti-

cal validity and the computer observer's ability to distinguish, in a similar way to a 

human observer. We evaluate the protocol using the DFT reconstructed MR images 
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of a series of increasingly truncated MRI data sets. We expect the computer ROC 

analysis to show the deterioration in image qualities as the truncation increases. 

Once the computer ROC analysis has been validated, we can have some confidence 

in using this technique to evaluate AM motion suppression algorithms and TERA 

reconstruction algorithms. 

After some initial tests, we designed a protocol to conduct our computer ROC 

analysis. The protocol includes the following steps: 

1. Generate a series of MR phantom data sets in the frequency domain with 

simulated lesions. The lesions randomly exist at known locations and have 

intensities randomly distributed between two thresholds. 

2. Apply the MR reconstruction algorithms to be evaluated to the data sets and 

calculate the contrast at known lesion locations in the images (lesion contrast 

data point). 

3. Collect 2000 lesion contrast data points for each reconstruction algorithm to 

be evaluated, using common MR data sets. 

4. Divide the 2000 lesion contrast data points to form 7 sets of partially overlap-

ping 500 points lesion contrast data. 

5. Generate ROC frequency plots for each of the 7 lesion contrast data sets. 

6. Plot ROC curves using the frequency plots and calculate the area under the 

ROC curves as a figure of merit (FOM) for each data set. 

7. Calculate the mean and standard deviation of our FOM, the area under the 

ROC curves, for all the reconstruction algorithms using the 7 data sets. 
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8. Compare the reconstruction algorithms based on the mean and standard devi-

ation of their FOM. 

In the next section, we present some of the initial test results to explain why we 

adopted the above protocol. 

7.2 Initial Tests for the Computer ROC Analysis Protocol 

Since ROC analysis is essentially a statistical study on signal detection, statistical 

characteristics,' such as s&nple size, mean and standard deviations, need to be ex-

amined to justify the meaning of the results. Merely presenting the results without 

providing any statistical perspectives is incomplete and the results can not be con-

vincible. In an attempt to properly set up oui computer ROC analysis protocol, we 

did a series of tests and the following are the results of the tests. 

7.2.1 Number of samples 

Our proposed computer ROC analysis generates simulated lesions at known locations 

using a random number generator. The intensity of a lesion could be any value 

between two thresholds. The analysis uses contrast at the lesion locations as the 

detectability index for plotting frequency curves and ROC curves. 

If an ROC data set contains predominantly simulated lesions with very low inten-

sity, it will be harder for the computer observer to detect the lesions, which results 

in a lower ROC curve and a smaller area under the ROC curve. To obtain unbiased 

ROC analysis results, we need our lesion intensities to cover the range of possible le-

sion intensities reasonably uniformly. This means we need a large number of samples 
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to establish the uniformity. However, using a very large sample to reduce standard 

deviation can be very time consuming. What is the optimal sample size needed? 

We did a literature survey on signal detection theory and ROC analysis ([Ega75], 

[Wha71], [GS66], [McN72], [Met86]) and found no analytical answer to this question. 

While writing up the thesis, we found a paper by Constable et. al. on ROC analysis 

for evaluating functional brain MR imaging and post-processing protocols [CSG9S]. 

Since the ROC method in that paper differs greatly from our method, we could not 

find useful hints in this paper either. A brief comment on the Constable et. al. paper 

will be included at the end of this chapter. 

In this project, we tried to answer this question by using different sample sizes for 

our ROC analysis and comparing the resulting FOMs and their standard deviation. 

We used two different reconstruction algorithms: DFT reconstruction on a truncated 

256 x 128 data set, and DFT reconstruction on a severely truncated 256 x 64 data 

set. 

We collected 4000 lesion contrast data points for each reconstruction using our 

computer observer ROC method. We then generated ROC curves using different 

number of lesion contrast data points (50, 100, 200, 300) 400, 500 and 1000). From 

the 4000 lesion contrast data points we obtained 80 sets of 50 points lesion contrast 

data, 40 sets of 100 points lesion contrast data, etc.. Our FOM, the area under ROC 

curves were calculated for each sample size. The mean and standard deviation of 

these FOM are shown in Table 7.1. We also plot the standard deviation of the FOM 

for the 256 x 128 and 256 x 64 point MR reconstruction in Figure 7.1. 

The standard deviation decreases, as expected, with larger sample size for both 

reconstruction of 256 x 128 and 256 x 64 MR data sets. The change in standard 
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Table 7.1: Mean and standard deviation of area under the ROC curve for different 

ROC sample size 

128 128 64 64 

data size number of 
data sets 

mean area 
under ROC 

standard 
deviation 

mean area 
under ROC 

standard 
deviation 

50 
100 
200 
300 
400 
500 
1000 

80 
40 
20 
13 
10 
8 
4 

0.917 
0.917 
0.917 
0.918 
0.917 
0.918 
0.918 

0.042 
0.032 
0.028 
0.019 
0.017 
0.014 
0.011 

0.868 
0.869 
0.869 
0.871 
0.870 
0.870 
0.870 

0.045 
0.029 
0.021 
0.019 
0.016 
0.010 
0.004 

200 400 600 
Number of ROC data points 

Figure 7.1: Decrease of standard deviation in FOM with increased ROC data size 
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deviation becomes less significant above 500 lesion contrast data points. 

Figure 7.1 shows a tradeoff between ROC sample size and the standard deviation 

of the ROC analysis. A larger ROC sample size takes longer to collect, but has a 

slightly smaller standard deviation. Usually, when comparing algorithms, the dif-

ference in FOM between algorithms should be greater than the standard deviations 

in order to say that the algorithms produce different results. Greatly increasing the 

ROC sample size can decrease the standard deviation, thus perhaps making two, 

algorithms with little difference in FOM distinguishable in theory. However, the dif-

ference in algorithms would be too small to detect visually by human observers from 

a single measurement, making the two algorithms indistinguishable in reality. There-

fore, increasing the ROC sample size to a very large number simply to distinguish 

the minute difference between algorithms makes no clinical sense. 

In our project, we choose 500 points lesion contrast data as our sample size. It has 

a small standard deviation (< 2%) and is much more computationally inexpensive 

than analyzing 1000 or more lesion contrast data points. We performed another 3 

sets of 8X500 ROC analysis for 256 x 128 DFT reconstruction to verify that the 

standard deviation is stable. The results are shown in Table 7.2. 

Table 7.2: Mean and standard deviation of area under the ROC curve for repeated 
8X500 points ROC analysis 

Test No. mean area 
under ROC 

standard 
deviation 

1 0.918 0.014 
2 0.914 0.008 
3 0.910 0.010 
4 0.926 0.008 
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7.2.2 Overlapping of data sets 

In order to shorten the time required to do the ROC analysis, we thought of using 

partially overlapping data sets, as illustrated in Figure 7.2, to calculate the mean 

and standard deviation of the FOM. 

ROC data points 

0 90 5?0 70 1000 120 1500 170 2000 

set 1 

set 2 

set 3 

set 4 
4 

set 5 

set 6 

set 7 

Figure 7.2: Overlap of data sets to calculate mean and standard deviation in a 
shorter period of time 

Using 2000 points lesion contrast data in total, we can only generate 4 groups of 

500 points lesion contrast data without overlapping. With overlapping we can gener-

ate 7 groups of 500 points data, giving a more realistic measure of the FOM and its 

standard deviation. However, there must be little correlation between the partially 

overlapping data sets for this overlapping approach to be valid. Usually, a decrease 

in standard deviation is an indication of correlation. If there is no correlation, the 

standard deviation calculated using overlapping data sets should be equivalent to 

that using non-overlapping data sets, but determined in a shorter period of time. 

We tested our assumptions with 256 x 128 and 256 x 64 DFT reconstruction 

and the results are shown in Table 7.3. The standard deviation did not change 

significantly with overlapping, which suggests that overlapping can be used to shorten 
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analysis time. 

Table 7.3: Standard deviation of area under the ROC curve for overlapping and 
non-overlapping 500 points ROC analysis 

128 128 64 64 
No. of 

data sets 
'mean area 
under ROC 

standard 
deviation 

mean area 
under ROC 

standard 
deviation 

non-overlapping 
overlapping 
overlapping 

8 
15 
8 

0.918 
0.917 
0.918 

0.014 
0.017 
0.014 

0.870 
0.869 
0.869 

0.010 
0.014 
0.009 

7.2.3 DFT reconstruction using MR data of different sizes 

Computer ROC analysis 

Would the computer ROC analysis of different reconstruction algorithms give similar 

results to the equivalent analysis by human observers? We did a computer ROC 

analysis with DFT reconstruction on increasingly truncated MR data. We truncated 

the original 256 x 256 data file to generate a series of 256 x 192, 256 x 128, 256 x 96, 

256 x 64 and 256 x 32 MR data sets. The reconstructed images all contain 256 x 256 

pixels. 

We know that larger MR data sets are reconstructed, using the DFT algorithm, 

to give images with better resolution and fewer truncation artifacts. ([HB87]). We 

would expect the computer ROC analysis to show this trend. The ROC analysis 

should also generate meaningful distinction in terms of the mean and standard devi-

ation of the FOM for the various algorithms. We performed the ROC analysis using 

500 lesion contrast data points. The mean and standard deviation are calculated 

using 7 groups of partially overlapping data sets. 
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The ROC curves for all the reconstruction algorithms are shown in Figure 7.3. 

The mean and standard deviation of the area under the ROC curves are presented 

in Table 7.4. We also plotted the mean with standard deviation as error bars versus 

the data truncation in Figure 7.4. 

0.2 0,4 0.6 
False PosItIve Fradion (FPF) 

0.8 

Figure 7.3: ROC curves of DFT reconstruction on increasingly truncated MR data 

From Figure 7.4, we can say that when we reconstructed 256 x 256 images from 

decreasingly truncated MR data sets, the reconstructed image quality, indicated 

by the area under the ROC curves, improved as we expected. The computer ROC 

analysis recognized a large difference between images reconstructed from 256 x 32 and 

256 x 64 MR data sets. The differences among images reconstructed from MR data 

of more than 256 x 128 are much smaller. The results comply with our knowledge 
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Table 7.4: Mean and standard deviation of area under the ROC curves for DFT 
reconstruction using MR data of different sizes 

number 
of rows 

mean area 
under ROC 

standard 
deviation 

32 0.675 0.014 
64 0.879 0.014 
96 0.915 0.012 

128 0.916 0.011 
192 0.937 0.009 

256 0.933 0.010 

I 

0.95 

0,9 

0.85 

0.8 

0.75 

0.7 

0.65 

0.6 

I 
/ 
/ 

II 

32 64 98 128 
MR data size (row) 

192 258 

Figure 7.4: Area under the ROC curves for DFT reconstruction using MR data of 
different sizes 
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and reinforced our confidence in the computer ROC analysis. 

Metric measurements 

We also calculated the applicable metric measurements, Diffdata (DD), Diffimage 

(DI) and perceptual mean squared error (PMSE), for the same DFT reconstructions. 

The measurements are taken using 10 phantom images with randomly added lesions. 

The results are shown as the mean value of the 10 measurements ± the standard 

deviation in Table 7.5. All three measurements are calculated against the full (256 x 

256) data/image sets. 

Table 7.5: Metric measurements of DFT reconstruction on increasingly truncated 

data files 
DI(e-3) DD PMSE 

192 0.505 ± 0.0001 33.126 ± 0.004 0.1570 ± 0.0001 

128 1.522 ± 0.0003 99.733 ± 0.009 0.226185 ± 0.000002 

96 2.334 ± 0.00002 152.99 ± 0.02 0.315923 ± 0.000004 

64 4.628 ± 0.001 303.29 ± 0.04 0.46942 ± 0.00004 

32 11.078 ± 0.004 726.0 ± 0.3 0.5451 ± 0.0003 

As the truncation increases all the MSE measures increase as expected. Diffim-

age and Diffdata show a similar change pattern among reconstructions as the ROC 

analysis, i.e. larger difference between 256 >< 32 and 256 x 64 reconstruction than 

the differences between reconstructions of the less truncated data sets. The PMSE 

measure shows a different change pattern than the ROC analysis. This is due to the 

effects of the human vision system (HVS) filter used in the PMSE measure. The 

IIVS filter emphasizes high spatial frequency components. The result of using this 

filter before calculating the MSE is that the change in image quality in the higher 
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frequency range is emphasized. This result is shown by larger difference between the 

less truncated reconstructions (256 x 192 and 256 x 128) than the more truncated 

reconstructions (256 x 64 and 256 x 32). We do not know which change pattern is 

more realistic at this point. 

An observation 

One interesting observation is that while we can not detect the differences visually in 

images reconstructed from 256 x 192 and 256 x 256 data files, the computer observer 

seems to consistently rank the 256 x 192 point reconstruction slightly higher than 

the 256 x 256 point one on common data sets. This is shown in Table 7.6 for four 

separate tests. Although the standard deviations for the 256 x 192 and 256 x 256 

reconstruction indicates that the difference in area under ROC is not significant, the 

consistency of the analysis results suggests that the computer observer is detecting 

something when the algorithms are used on a common data set. 

Table 7.6: Repetition of area under the ROC curves for DFT reconstruction using 
MR data of 192 and 256 rows 

192 192 256 256 
test 
No. 

mean area 
under ROC 

standard 
deviation 

mean area 
under ROC 

standard 
deviation 

1 
2 
3 
4 

0.937 
0.952 
0.933 
0.944 

0.009 
0.005 
0.004 
0.015 

0.933 
0.950 
0.928 
0.941 

0.010 
0.007 
0.005, 
0.015 

One possible hypothesis to explain why 256 x 192 point reconstruction might be 

better than 256 x 256 point reconstruction is that the high frequency components of 

MR data sets typically contain more noise than useful information. By truncating 
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the high frequency components to produce the 256 x 192 reconstruction, we may 

have reduced noise but not significantly reduced the information contained in the 

MR data. Perhaps the ROC analysis is sensitive enough to pick up this. 

We did another set of ROC analysis on common data to test our hypothesis. The 

reconstruction algorithms are: 

• 256 x 256 point DFT reconstruction 

• 256 x 192 point DFT reconstruction, where the data is zero padded to generate 

a 256 x 256 image 

• 256 x 192 point DFT reconstruction, where the data is noise padded to generate 

a 256 x 256 image 

We expect that the zero padded 256 x 192 reconstruction would perform the best, 

since it has the least amount of noise in the high frequency regions. The noise padded 

256 x 192 reconstruction would have a ROC value closer to the the 256 x 256 recon-

struction. The computer ROC analysis seems to agree with our hypothesis (Table 

7.7). If the ROC analysis is capable of detecting this effect we can place additional 

confidence in the approach. 

Table 7.7: Mean and standard deviation of area under the ROC curve for 256 and 
192 point reconstructions 

reconstruction description mean area 
under ROC 

standard 
deviation 

192 point, zero padded DFT 
192 point, noise padded DFT 

256 point DFT 

0.938 
0.936 
0.933 

0.011 
0.011 
0.012 
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7.2.4 Summary 

In this section we have investigated and set up a protocol to use our computer ROC 

analysis. We determined initially: 

• the sample size of our ROC analysis. 

• the method to group the lesion contrast data and calculate the mean and 

standard deviation of the FOM. 

. the validity of the computer ROC analysis. 

We have also taken a set of metric measurements for comparison to the ROC analysis 

results. The measurements rank the algorithms in the same way as the computer 

ROC analysis, but does not show the same change pattern. 

We can now evaluate the AM motion suppression algorithms and TERA recon-

struction algorithms to see whether the computer ROC analysis can detect differ-

ences between algorithms. We also wnt to investigate the correlation between our 

computer ROC analysis and the fast MSE based measures. 

7.3 Detailed Quantitative Evaluation Examples 

We will now use our quantitative evaluation methods on two examples: AM motion 

suppression and TERA reconstruction. We preseiit the metrics measurements as 

well as the ROC analysis. 
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7.3.1 AM motion suppression 

• In this section we quantitatively evaluate the AM motion suppression algorithms 

discussed in Chapter 3. Four algorithms are being compared: the Mitsa algorithm, 

the ARMA algorithm, the Direct algorithm and the Adaptive algorithm. We evaluate 

the performance of the algorithms on both low noise and high noise phantoms. For 

each set of phantoms, we first present, the computer ROC analysis results, followed 

by the metric measurements. 

Low noise phantoms 

Mathematical phantoms are usually generated with zero background noise. In real 

MR images, there is always a certain amount of noise acquired during data collection. 

To make the phantoms as realistic as possible, we add Gaussian noise to the phantom. 

The amount of noise added is such that the signal to noise ratio of the phantom is 

similar to that of a real medical image. For the low noise phantoms, we measured 

the signal to noise ratio of a typical low noise MR image and added noise to the 

phantom accordingly, - 

The computer observer BLOC analysis 

Using the low noise abdomen phantom, we obtained 2000 lesion contrast data points 

and processed them in 7 groups of 500 point for the ROC analysis. To illustrate the 

procedures of our ROC analysis, we present the frequency graphs in one of 500 point 

ROC analysis in Figures 7.5 to 7.10 for the different reconstruction algorithms. The 

x-axis of 'the frequency graphs are broken into small ranges of contrast. The y-axis of 

these graphs indicates the number of occurrences, or frequency at a certain contrast 

range'. - 
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Figure 7.5: Frequency graph for the no motion low noise phantom 
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Figure 7.6: Frequency graph for the motion corrupted low noise phantom 
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Figure 7.7: Frequency graph for Mitsa corrected low noise phantom 
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Figure 7.8: Frequency graph for ARMA corrected low noise phantom 
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Figure 7.9: Frequency graph for Direct corrected low noise phantom 
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Figure 7.10: Frequency graph for Adaptive corrected low noise phantom 
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Comparing the frequency graphs in Figure 7.5 and Figure 7.6, we notice that in 

Figure 7.5 (without motion) there is less overlap between the no-lesion (negative) and 

lesion (positive) curves. Better separation of the no lesion and lesion frequency curves 

leads to better lesion detection. All the motion suppression algorithms reduced the 

overlapping of curves compared to that in Figure 7.6. 

The resulting mean ROC curves from all 7 sets of ROC analysis are shown in 

Figure 7.11. The error bars show the standard deviation among 7 sets of ROC 

analysis . 
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Figure 7.11: ROC curve for no motion low noise phantom, motion corrupted low noise 
phantom, and motion corrected low noise phantom using our motion suppression 
algorithms 

As we can see, there is a large difference in area under the ROC curve between the 
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corrected phantoms and the motion corrupted phantom. However, the difference in 

performance of AM motion suppression algorithms is harder to detect. We calculated 

the area under the ROC curves and listed the results in Table 7.8. The differences 

between algorithms are smaller than 1%. We think that if all the algorithms are 

compared using common data with low noise, the ARMA algorithm probably out-

performs the other algorithms. However, in terms of the standard deviations there 

is a borderline difference in performance of all the motion suppression algorithms in 

this case, as indicated by the ROC analysis. 

Table 7.8: Area under the ROC curves for motion suppression on low noise phantoms 

motion no motion Adaptive ARMA Direct Mitsa 

mean area under ROC 0.670 0.931 0.909 0.911 0.905 0.902 
standard deviation 0.043 0.012 0.015 0.013 0.013 0.014 

Metrics 

The metrics that can be applied to the AM motion suppression algorithms include: 

• Diffimage (DI) - the mean squared error (MSE) between the reconstructed and 

standard MR images measured in the image domain. 

• Diffdata (DD) - the MSE between the reconstructed and standard MR data 

sets-in the frequency domain. 

• Kernel mean squared error (KMSE) - the MSE between the reconstructed 

motion kernel and the original motion kernel. 
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• Kernel weighted mean squared error (KWMSE) - the weighted MSE between 

the reconstructed and original motion kernels. The weights represent the en-

ergy distribution of the MR data in the frequency domain. 

• Perceptual mean squared error (PMSE) - the MSE between reconstructed and 

standard MR images that are preprocessed by human vision system (HVS) 

filters. 

Using our set of metrics, we evaluated and ranked the AM motion suppression 

algorithms we developed. The test phantoms are the abdomen phantom with low 

Gaussian noise added. We generated 10 phantoms with randomly added lesions at 

know locations. The measurements in Table 7.9 show the mean value ± standard 

deviation over the resulting 10 test images. 

The ranking from the metric measurements are quite consistent. All the metric 

measurements favor the Adaptive algorithm. The Mitsa algorithm has consistently 

been ranked the worst. 

High noise phantoms 

The high noise phantoms are produced by adding Gaussian noise to the noise free 

mathematical phantom until the signal to noise ratio is comparable to that of a real 

high noise MR image. The noise added is approximately 5 times the noise added to 

produce the low noise phantoms. 

The computer observer ROC analysis 

The resulting ROC curves from our ROC analysis are shown in Figure 7.12. The 

area under the ROC curves are shown in Table 7.10. 
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Table 7.9: Metric measurements of motion suppression on low noise phantoms 
motion Adaptive ARMA Direct Mitsa 

DI(e-4) 137 2.2 3.6 4.4 4.9 
± 1 ± 0.1 ± 0.4 ± 0.2 ± 0.9 

rank 1 2 3 4 
DD 895 14.6 24 29 32 

±7 ±0.7 ±2 ±1 ±6 
rank 1 2 3 4 
KMSE(e-2) 2.6 2.8 2.8 3.9 

± 0.2 ± 0.1 ± 0.1 ± 0.4 
rank 1 2 2 4 
KWMSE(e-3) 1.27 2.5 3.1. 3.6 

± 0.09 ± 0.3 ± 0.2 ± 0.8 
rank 1 2 3 4 
PMSE(e-2) 57.5 8.4 8.9 9.0 11 

± 0.6 ± 0.2 ± 0.6 ± 0.7 ± 1 
rank 1 2 2 4 

Table 7.10: Area under the ROC curves for motion suppression on high noise phan-
toms 

motion no motion Adaptive ARMA Direct Mitsa 
mean area under ROC 0.640 0.856 0.699 0.668 0.669 0.668 
standard deviation 0.024 0.023 0.019 0.020 0.021 0.021 
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Figure 7.12: ROC curve for no motion high noise phantom, motion corrupted high 
noise phantom, and motion corrected high noise phantom using our motion suppres-
sion algorithms 
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With large amount of noise added, all the motion suppression algorithms perform 

less successfully, as expected. There is no difference in area under ROC for ARMA, 

Direct and Mitsa algorithms. All three algorithms made small improvement in terms 

of ROC results compared to the motion corrupted data. However, the Adaptive 

algorithm outperforms all the other algorithms. 

One interesting phenomena is that the adaptive algorithm emerges above all the 

other algorithms. One explanation for the better performance of the adaptive algo-

rithm is that noise corrupt the motion peaks and in turn the relationship (amplitude 

modulation) between the motion peaks and the DC peak. The algorithms that work 

directly on extracting this relationship are affected most and their performance de-

teriorate most. The adaptive algorithm uses the DC and low frequency components 

of the corrupted signal as an estimate of the desired signal and filters the corrupted 

signal to produce the desired signal. Since the DC and low frequency components 

are less affected by noise, the adaptation not only suppressed the motion peaks, but 

also reduced the noise effect. This can be seen in Figure 7.13. As a result, the 

adaptive algorithm performs better than the other motion suppression algorithms in 

the presence of large noise. 

Metrics 

The metric measurements for high noise phantoms are shown in Table 7.11. 

With the high noise phantoms all the measurements rank the Adaptive algo-

rithm the best. This favor for the Adaptive algorithm confirms what was shown by 

the computer ROC analysis. The ranking of the other three algorithms are rather 

consistent among the metric measurements. 

129 



20 40 60 80 100 120 

PS of motion corrupted projection with noise - 

PS of motion corrupted projection without noise 
PS of adaptively corrected projection with noise   

Figure 7.13: The noise suppression effect of the adaptive algorithm 

Table 7.11: Metric measurements of motion suppression on high noise phantoms 

motion Adaptive ARMA Direct Mitsa 

DI(e-3) 13.68 3.7 5.9 7.6 5.9 
± 0.01 ± 0.2 ± 0.2 ± 0.5 ± 0.2 

rank 1 2 4 2 

DD 898 242 385 495 384 
±8 ±13 ±16 ±30 ±11 

rank 1 2 4 2 
KMSE(e-1) 1.94 2.04 2.8 2.08 

± 0.03 ± 0.02 ± 0.8 ± 0.02 
rank 1 2 4 3 
KWMSE(e-2) 4.4 6.1 7.8 6.1 

± 0.2 ± 0.2 ± 0.7 ± 0.1 
rank 1 2 4 2 
PMSE(e-1) 4.4 1.56 2.31 3.7 2.29 

± 0.2 ± 0.05 ± 0.03 ± 0.5 ± 0.06 
rank 1 2 4 2 
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7.3.2 TERA reconstruction algorithms' 

In this section, we tested our evaluation methods with TERA reconstruction algo-

rithms. The Ti-weighted abdomen phantom was used. The data file was truncated 

from 256 x 256 to 256 x 128. We first did an ROC analysis using different model 

orders with TERA reconstruction and selected an optimum model order. TERA al-

gorithm was then applied with the pre-selected model order. The resulting modeled 

image was zoomed to 256 x 256. This image was compared to DFT reconstructed 

images of 256 x 256 (long) and 256 x 128 (short). 

The constrained TERA (CTERA) algorithm was also tested. This algorithm 

uses Sigma-filtered data as the input to the TERA algorithm. It has been shown to 

improve the performance of TERA algorithm [Yan93]. 

The low noise and high noise phantoms are generated using the same approach 

as in motion suppression. 

ARMA model order 

We did this computer ROC analysis to see if the computer observer can tell the 

differences between TERA reconstruction algorithms using different model orders. 

We used 5, 10, 15, 20, 25 and 30 as our TERA model order on the low noise phan-

tom. The resulting ROC curves are shown in Figure 7.14. The mean and standard 

deviation of area under the ROC curves are shown in Table 7.12. 

The results in Table 7.12 show that TERA reconstruction using model order 15, 

20 and 25 performed better than using model order 5, 10 and 30. Model order 20 

is optimal in this analysis. These results are consistent with our experience in de-

termining model orders. It agrees with the results Yang obtained using Normalized 
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Figure 7.14: ROC curves of TERA reconstruction algorithms using different model 
orders on low noise phantoms 

Table 7.12: Area under the ROC curves for TERA reconstruction using different 
model orders on low noise phantoms 

TERA model order mean area under ROC standard deviation 
long 0.939 0.011 
short 0.917 0.013 
5 0.920 0.012 
10 0.912 0.013 
15 0.932 0.014 
20 0.939 0.011 
25 0.932 0.011 
30 0.919 0.014 
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Diffenergy measurement ([Yan93]). Our computer ROC analysis in this case man-

aged to track the little differences ARMA modeling order can make in MR image 

reconstruction using common data sets. 

In the following sections, TERA reconstruction algorithm will be applied with 

model order 20. 

Low noise phantoms 

Computer Observer ROC Test 

With the low noise phantoms, the area under the ROC curves are shown in Table 

7.13. We also show the mean ROC curves of all 7 500 point ROC analysis in Fig-

ure 7.15. "short" denotes DFT reconstruction of 256 x 128 point data file. "long" 

denotes DFT reconstruction of 256 x 256 point data file. "TERA" and "OTERA" 

denote modeling reconstruction from 256 x 128 point data file. 

Table 7.13: Area under the ROC curves for TERA reconstruction on low noise 
phantoms 

short long TERA CTERA 
mean area under ROC 0.884 0.929 0.929 0.930 
standard deviation 0.018 0.007 0.006 0.007 

/ 

From figures in Table 7.13, we see that TERA and CTERA constructed images 

from short data sets are significantly better than DFT-reconstructed images from 

short data sets, and are as good as DFT-reconstructed images from long data sets. 

Metrics 

The metrics applicable to this application are DD, DI and PMSE. Since the recon-

struction algorithms do not extract a kernel, the kernel related MSE metrics are not 
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Figure 7.15: ROC curve for all reconstructions on low noise phantoms 
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applicable. The results on low noise phantoms are shown in Table 7.14. 

Table 7.14: Metric measurements of TERA and CTERA reconstruction on low noise 
phantoms 

Short TERA CTERA 
DI(e-3) 1.522 ± 0.0001 1.054 ± 0.009 1.005 ± 0.003 
DD 99.731 ± 0.006 69.1 ± 0.6 65.9 ± 0.2 
PMSE 0.2262 ± 0.0001 0.1942 ± 0.0005 0.187 ± 0.001 

From the metrics, we notice that TERA and CTERA reconstructed images from 

short data sets are closer to the images reconstructed from the long data set than 

DFT-reconstructed images from short data sets. However, since we are comparing 

to the images DFT.-reconstructed from the long data sets, we will not be able to tell 

if TERA or CTERA reconstruct better images from short data sets than DFT from 

the long data sets. All three measurements rank CTERA higher than the TERA 

algorithm for this phantom, which is the same as what we get from the computer 

ROC analysis. 

High noise phantoms 

Table 7.15: Area under the ROC curves for TERA reconstruction on high noise 
phantoms 

short long TERA CTERA 
mean area under ROC 0.845 0.866 0.858 0.867 
standard deviation 0.008 0.009 0.010 0.010 

We present the mean ROC curves of all 7 500 point ROC analyses and the area 

under ROC curves in Figure 7.15 and Table 7.13, respectively. The TERA and 

CTERA reconstructed images from the short data sets again have similar quality to 
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Figure 7.16: ROC curve for all reconstructions on high noise phantoms 
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the DFT-reconstructed images from the long MR data sets. With high noise, the 

CTERA reconstruction seem to perform better than TERA on common data sets. 

Metrics 

Table 7.16: Metric measurements of TERA and CTERA reconstruction on high noise 
phantoms 

Short TERA CTERA 
DI(e-3) 7.388 ± 0.000 8.708 ± 0.006 8.697 ± 0.009 
DD 484.15 ± 0.02 570.7 ± 0.4 570.0 ± 0.6 
PMSE 0.2429 ± 0.0002 0.2486 ± 0.0001 0.2472 ± 0.0004 

If we only look at the metric measures, we might draw the conclusion that TERA 

and CTERA reconstructed images have worse quality than DFT reconstructed im-

ages using short MR data sets. However, if we look at the ROC analysis results this 

is not true clinically. In this sense the computer ROC analysis is superior, able to 

generate an clinical indication of image quality. 

7.4 Computer ROC Analysis Using a Real Medical Image 

We also tested our motion suppression algorithms on a real medical image with 

a simulated lesion added to it. The background image was a section of a thigh. 

The lesion was added to a fixed location, as shown in Figure 7.17. As in other ROC 

analyses, the lesion was generated in the frequency domain. It was then added to the 

frequency domain data of the thigh. A random variable was used to decide whether 

the lesion should be added or- not. The intensity of the lesion was also randomly 

determined between two thresholds. Since we are only using this analysis as an 
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Figure 7.17: The thigh image with simulated lesion 

quick example on how to use the computer ROC analysis on real medical images, we 

did not consult a radiologist on the lesion simulation process. The lesion is simply 

superimposed on the image and retains much of the structure of the underlying tissue 

without the lesion. For a practical computer ROC analysis using medical images, 

the lesion simulation process should be carefully designed so that the lesions can be 

as realistic as possible. 

All the AM motion suppression algorithms were then applied on the thigh image 

with lesion. Contrasts at the lesion location were calculated and recorded. 2000 

lesion contrast data points are collected and devided into 7 sets of overlapping 500 

lesion contrast data points. The mean ROC curves for all 7 sets of data are shown 

in Figure 7.18. The mean and standard deviation of area under the ROC curves was 

calculated and shown in Table 7.17. The metric measurement results from 10 thigh 

images with a randomly added lesion are shown in Table 7.18. 
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Figure 7.18: ROC curves of AM motion suppression algorithms using the thigh image 

with a simulated lesion 

Table 7.17: Area under the ROC curves for motion suppression on a real medical 
image with a simulated lesion 

motion no motion Adaptive ARMA Direct Mitsa 
mean area under ROC 0.946 1.000 0.988 0.964 0.965 0.962 
standard deviation 0.007 0.000 0.006 0.007 0.008 0.006 
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Table 7.18: Metric measurements of motion suppression on medical thigh image with 

a simulat 
motion Adaptive ARMA Direct Mitsa 

DI(e-4) 171 2.4 3.1 3.0 5.6 

± 8 ± 2.7 ± 1.2 ± 1.0 ± 2.1 

DD 1126 16 20 20 36 

±55 ±17 ±8 ±7 ±14 

KMSE(e-2) 5.8 3.1 1.0 1.5 
± 2.2 ± 1.1 ± 0.1 ± 0.4 

KWMSE(e-3) 1.2 1.6 1.6 3.0 

± 1.3 ± 0.6 ± 0.5 ± 1.1 

PMSE(e-2) 32 2.5 1.4 1.3 1.9 

± 3 ± 0.5 ± 0.3 ± 0.3 ± 0.5 

The metric measurements have relatively large standard deviations. It is difficult 

to rank the algorithms based on these metric measurement results. 

The ROC analysis results favor the Adaptive algorithm. This ROC analysis 

extends the area of application of our computer ROC analysis method. Algorithms 

can be compared using real medical images as the background and simulated lesions 

can be added to them. However, the process of lesion simulation needs to be carefully 

designed so that the images with lesions are realistic. 

7.5 Comments on other computer ROC analysis using in 

MRI 

While writing up this thesis, a paper on ROC analysis for evaluating functional brain 

MR imaging and post-processing protocols was published [CSG9S]. In this paper, 

Constable et. al. obtained multiple real MR images and superimposed on the images 
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activation signals of various intensity. Different computer post-processing algorithms 

were applied to detect the activation signals pixel by pixel. The "strictness" of the 

detection criterion was varied and the true positive fraction (TPF) and false positive 

fraction (FPF) of activated pixels were calculated to generate an ROC curve for 

each post-processing algorithm. The ROC results from different types of images 

were averaged and shown with error bars. From the ROC curves the post-processing 

algorithms were ranked. 

The pixel based activation detection in [CSG95] is specific to functional MR 

imaging and is quite different from our location based lesion detection. We think 

that our lesion detection task is more general and could be applied to a wide range of 

MR images and post-processing application evaluations. The ROC curves in [CSG95] 

also have different meanings than our ROC curves. As shown in Figure 7.19, the error 

bars represent repeatability of results, since the standard deviations are calculated 

using images of different subjects. Our standard deviation indicates variations in 

results from test to test using the same phantom with added lesions. With major 

differences between our ROC analysis approach and that of Constable et. al., we 

can not compare the ROC results. We think Constable's ROC analysis'is specific to 

functional MR imaging while our ROC analysis is more general. 

Although Constable et. al. used the ROC approach to generate quantitative 

evaluation results, they did not show how the ROC results may change when the 

number of images and the number of types of images are varied. Thus we think 

the results would only be valid for the specific case in this paper and could not be 

generalized. In addition, if activation signals were generated in the image domain and 

superimposed on the real MR images, the resulting images are not realistic ([SC94], 
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false activation rate 

Figure 7.19: A sample ROC plot from Constable's paper ([CSG95]) 

Page 6.1 of this thesis). In real MR images we can not have shapes with infinitely 

sharp edges. Such unrealistic MR images may generate unreliable ROC results. 
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Chapter 8 

Conclusions 

8.1 Project Summary 

During this thesis project, two main areas were explored: quantitative evaluation 

methods and AM motion suppression. 

8.1.1 Quantitative evaluation methods 

In magnetic resonance imaging and other medical imaging fields, image processing 

algorithms are developed to enhance the quality of images, or fulfill other medical 

requirements. Currently it is difficult to obtain an objective comparison of how well 

algorithms satisfy medical requirements. In this project, we attempted to provide 

researchers with a variety of quantitative algorithm evaluation methods, including: 

• Mean-Squared-Error (MSE) based measures, including 

- Diffdata (DD) - the MSE between the reconstructed and standard MR 

data measured in the frequency domain 

- Diffimage (DI) - the MSE between the reconstructed and standard MR 

image measured in the image domain 

- Perceptual MSE (PMSE) - the MSE between the reconstructed and stan-

dard MR images that are preprocessed by human vision system filters 
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- Kernel MSE - the various MSE measures between reconstructed and ac-

tual motion kernels, applicable only to motion suppression algorithms 

• a computer observer receiver operator characteristics (ROC) analysis 

We first compiled the set of MSE based measures to compare algorithm perfor-

mance using a standard data/image set. The metrics provide numerical results that 

lack medical relevancy. We then designed a computer observer ROC analysis to give 

quantitative comparisons of medical performance. 

Our computer ROC analysis provides a paradigm for algorithm comparison. Us-

ing our computer ROC analysis method, researchers can design their own phantom 

with lesions added at known locations, apply the image processing algorithms to be 

evaluated, and obtain ROC curves for each algorithm. They can also add lesions to 

actual medical images, rather than to synthetic images. 

We tested our ROC method using different motion suppression and reconstruction 

algorithms in MRI. The results show a consistent ranking of algorithm performance 

by the computer ROC analysis. We included some problematic observations made 

during our experiments to illustrate that various factors can affect the result of the 

ROC analysis. 

Used properly, the computer ROC analysis can be a powerful and efficient tool for 

quantitative algorithm evaluation in medical imaging. It is flexible in selection of the 

imaging scene. The computer ROC method is much cheaper and faster than human 

ROC analysis. It gives clinically meaningful results. With continued development, 

including the use of more complex signal models and better machine recognition, it 

may be used to replace human ROC analysis. 
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8.1.2 AM motion suppression 

A simplified motion model was used and a series of motion suppression algorithms 

were developed based on that model. All the algorithms effectively removed the sim-

ulated motion. The introduction of ARMA modeling in generating the power spec-

trum increased the resolution of the power spectrum and made peak detection more 

accurate. The adaptive algorithm was flexible, completely automated and robust in 

the presence of noise. However, the simplified motion model could not describe real 

life motion in MRI. Better mathematical motion models are needed. Nevertheless, 

our motion suppression exercise indicates that, with an accurate mathematical model 

of an artifact, computer post-processing algorithms can efficiently correct artifacts 

and enhance medical image quality. 

8.2 Future Work 

8.2.1 Motion suppression 

In the area of motion suppression, the amplitude modulation model has been inves-

tigated extensively. We have shown that the simplified AM model could not account 

for real life motion in MRI. To solve the overall motion problem in MRI using post-

processing, we need a generalized motion model that gives an accurate and complete 

description of MRI motion. With such a model, post-processing may be the easiest 

motion suppression technique to implement, requiring no change in instrumentation 

or pulse sequences. 

Since motion in MRI is inherently a 3D problem (k-space and time), we can also 

try to suppress motion artifacts using 3D signal processing. The conventional MRI 
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data collection techniques, such as those using the spin-echo pulse sequence, collapse 

the 3D information into 2D. To obtain 3D information, we have to design new data 

collection methods that acquire a series of 2D data sets. The data collection method 

suggested in reference [LR93] acquires a series of short 2D data sets. This method can 

be combined with modeling to generate a larger 3D data set. 3D signal filters could 

then be used on the 3D MR data acquired to suppress motion. This 3D approach 

will involve new pulse sequence design and design of multi-dimensional filters. 

8.2.2 Quantitative evaluation methods 

The computer observer used in this project has excellent potential in the area of 

quantitative evaluation for both research algorithms and clinical applications. It has 

the advantages of low cost and fast evaluation. Future work can be carried out in 

the following areas: 

• Generation of more realistic medical phantoms. The current model only sup-

ports non-interceptive ellipses.. More shapes and fewer restrictions would better 

represent real medical images. 

• More sophisticated analysis to generate FOMs using the ROC curves. The to-

tal area under the ROC curve is not a sufficient FOM under all circumstances. 

Sometimes certain segments of the ROC curve mean more clinically than oth-

ers. The ROC curve analysis should take into account cost factors associated 

with treating falsely identified patients and missing out unidentified patients. 

This was brought to our attention during the thesis defense. After the thesis 

defense we did some preliminary ROC curve analysis to evaluate algorithms at 
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a small false alarm rate. We measured the mean area under the ROC curves in 

Figure 7.3, on page 114 at FPF of 5%, 10% and 20% and compared that with 

the total area under the ROC curves (FPF=100%). The results are shown in 

Table 8.1. 

Table 8.1: Mean and standard deviation of partial and total areas under the ROC 
curves for DFT reconstruction using MR data of different sizes 

No. of rows FPF=5% FPF=lO% FPF=20% FPF=100% 
32 0.011 ± 0.001 0.025 ± 0.003 0.063 ± 0.005 0.675 ± 0.014 
64 0.031 ± 0.002 0.064 ±'0.004 0.141 ± 0.007 0.879 ± 0.014 
96 0.038 ± 0.001 0.077 ± 0.002 0.162 ± 0.005 0.915 ± 0.012 
128 0.037 ± 0.001 0.075 ± 0.002 0.158 ± 0.004 0.916 ± 0.011 
192 0.043 ± 0.001 0.086 ± 0.002 0.175 ± 0.003 0.937 ± 0.009 
256 0.043 ± 0.001 0.086 ± 0.002 0.174 ± 0.004 0.933 ± 0.010 

This preliminary ROC curve analysis show that based on parial or total areas 

under the ROC curves, the ranking of algorithms are not much different. This 

results show that more in-depth ROC curve analysis is needed in the future 

studies to interpret the ROC curves better. 

• Further tests on the computer observer. If possible, correlation between the 

computer observer and human observers should be calculated. We may need 

to carry out extensive ROC analysis by both human and computer observers 

using the same images. 

• A more sophisticated computer observer should be developed. Our computer 

observer performs the simplest type of tasks in the signal detection scenario. 

A future computer observer could be developed using: 
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- A complex signal model. The signals in our project are the lesions in the 

images. Here, the lesions appear at known locations. More realistically, we 

need to recognize shapes and be able to classify them. The development 

of signal models may involve image segmentation and classification. 

- A complex decision-maker. Here, the decision of whether or not a lesion 

exists is based only on contrast. However, human decision-makers under-

take complex visual and psychological processes before reaching a decision. 

Better understanding of these processes will add artificial intelligence to 

our computer observer and make it more convincing. 

With the development of artificial intelligence and computer vision, we hope that 

one day, our computer observer will be trusted like a human observer. Until that day, 

extensive research needs to be carried out to better understand human intelligence. 
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