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Abstract 

A disk that rolls without slipping is an example of an integrable nonholonomic me-

chanical system. The equations of motion for the disk can be found by the use of 

Lagrange multipliers and Lagrange's equations of motion. However, the coafigüra-

tion space of the rolling disk R2 x SO (3) admits the group action E (2) x SO (2). In 

the paper Nonholonornic Reduction [2] by L. M. Bates and J. Aniatycki, they have 

a reduction theorem for nonholonomic mechanical systems. With this technique the 

rolling disk can be reduced to a problem on a four dimensional manifold A1 with a 

nondegenerate non-closed two-form. 

By partially integrating the differential equations on 1, one realizes that the 

reduced dynamics on if is foliated by a two parameter family of Hamiltonian systems 

on the cotangent bundle of an open interval with one degree of freedom, where the 

two free parameters correspond to two conserved quantities. 
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Chapter 1 

Reduction 

1.1 History 

Mechanics is an important part of mathematics today. Since Newton has published 

his three laws of motion in Principia in 1687, there has been steady progression in 

the area of mechanics. 

In statics, the principle of virtual work states that a mechanical system is in 

equilibrium if the virtual work SW done by the force F = (Fi,... , F,) for all possible 

virtual displacements 6z = (6vi,... , 5x,) which do not violate the given constraints 

is zero. 

SW=>F5x=O, (1.1) 

These constraints can be holonomic or nonholonomic, however, Bernoulli originally 

stated the principle of virtual work for holonornic constraints in 1717. Holonomic 

constraints can be written as a integrable one-form where as nonholonomic con-

straints cannot. D'Alembert realized that the virtual work done by the forces of 

constraint is zero. This is known as d'Alembert principle. This led to a generaliza-

tion of the principle of virtual work to dynamics by including the force of inertia 

with the other forces. Thus Newtons equations can be written in the form 

(1.2) 

where the force F = (Fi,.. . , F) do not include the forces of constraint and the 
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virtual displacements 6x = (6x1,... , Sx,) do not violate the given constraints. This 

work was done in 1743 in his book Traite' de dyr&arniqte. 

Lagrange made several contributions to the area of mechanics. One contribution 

is the method of Lagrange multipliers dealing with problems involving constraints. 

Instead of solving equation (1.2) for all possible variations 6x satisfying the con-

straints, one can solve the following equivalent problem. If the k constraint one-forms 

are 
fi 

A5dx, for j=l,...,k, (1.3) 

and the A,'s are the Lagrange multipliers then for all possible variations 6x we have 

(1.4) 

Another contribution is the idea of generalized coordinates and configuration space. 

The advantage of generalized coordinates is that the fewest number of coordinates 

are needed to describe the configuration of a mechanical system. A mechanical 

system with m degrees of freedom and k holonomic constraints can be written as 

a mechanical system with n - k degrees of freedom and no constraints. Because 

nonholonomic constraints involve a relationship between the velocities, we cannot 

eliminate a coordinate. Another advantage of generalized coordinates is that the. 

equations of motion are not dependent upon the coordinates chosen. Therefore, a 

Hamiltonian system with n. degrees of freedom and k nonholonomic constraints, in 

generalized coordinates q = (qi,.. . , qn), equation (1.4) becomes 

''dOT OT Ic \ 
(1.5) 

_a4i qs 1 

where T is the kinetic energy of the mechanical system. A variation of these equations 

are Hamilton's equations, whereby the system of second order differential equations 
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is changed into a system of first order differential equations by the Legendre trans-

formation. Most of this work was published by Lagrange in Mechanic Analytique in 

1788. 

With the development of variational calculus, we have the creation of other varia-

tional principles. Euler derived equation (1.5) by the methods of variational calculus. 

Thus equation (1.5) is sometimes referred to as the Euler-Lagrange's equations of 

motion. Hamilton's principle for a mechanical system with conservative forces and 

holonomic constraints states that the variation of the integral 

Ft2 

61=6] Ldt=0, (1.6) 
t'. 

where L is the Lagrangian. function. Hamilton's principle does not work for nonholo-

nomic constraints. 

Before reduction was accomplished, the theory of Lie groups and group actions 

on symplectic manifolds were needed. These theories were developed in the 1800's. 

1.2 Nonholonomic reduction 

The idea of reduction is to reduce the number of degrees of freedom a mechanical sys-

tem has by taking advantage of the symmetries. With holonomic constraints it was 

realized that for every holonomic constraint a mechanical system had the number of 

degrees of freedom can be reduced by one. However this is not possible for nonholo-

nomic constraints. Due to the difficulty of handling nonholonomic constraints the 

first attempts at reduction were for holonomic Hamiltonian systems with symmetry. 

Meyer-Marsden-Weinstein [5] [4] came up with a reduction method for a holonomic 

Hamiltonian system with symmetry. This was accomplished by taking a Hamilto-
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than system on a symplectic manifold and quotienting by the group actions of the 

symmetries to get a reduced Hamiltonian system on a smaller symplectic manifold. 

This theory is fully explained in Foundations of Mechanics by Abraham and Marsden 

[1]. However, this theory does not apply to nonholonomic Hamiltonian systems. 

In the paper Nonholonornic reduction [2] by L. M. Bates and J. gniatycki, they 

have a reduction technique for nonholonomic Hamiltonian systems. A disk that rolls 

without slipping is an example of a nonholonomic Hamiltonian system, which is 

integrable. Because the configuration space Q of the disk admits a fairly large sym-

metry group E (2) x SO (2), it is an excellent example to test their reduction theory. 

In applying their method, the rolling disk can be reduced from a nonholonomic 

Hamiltonian system with five degrees of freedom to a problem on a four dimensional 

manifold A? with a nondegenerate non-closed two-form. By partially integrating the 

differential equations on A? one realizes the reduced dynamics on 2 is foliated by 

a two parameter family of Hamiltonian systems on the cotangent bundle of an open 

interval with one degree of freedom, where the two free parameters correspond to 

two conserved quantities on 2. 



Chapter 2 

The theory of nonholonomic reduction 

2.1 Nonholoriomic Hamiltonian systems 

A holonomic Hamiltonian system (F, w, h) consists of a manifold F, a Hamiltonian 

function h, and a symplectic two-form w. The equations of motion for such a system 

are satisfied by integral curves of a vector field X on F, such that 

X..jw=dh. (2.1) 

Usually F = T*Q, where Q is the configuration space of the system and w is the 

canonical syinpiectic two-form. 

A nonholonomic Hamiltonian system (F, w, h, ) with Ic linearly independent 

nonholonomic constraint one-forms on Q can be written as 

k 

X.jw = dh +E Aalr*oa, 
a=1 

where the constraint forms satisfy 

(2.2) 

(2.3) 

Here ir : TQ —p Q is the cotangent bundle projection and A. are the Lagrange 

multipliers. 

In the theory developed in [2], the first goal is to write the equations of motion 

for a nonholonomic Hamiltonian system in such a way that we emulate equation 

(2.1). Weber [10] noticed the constraint one-forms define a constraint manifold and 

5 
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a horizontal distribution H. In [2] it is shown that restricting the two-form w to this 

distribution H is non-degenerate. Then restricting equation (2.2) to this distribution 

H becomes 

X..JWH = dHh, (2.4) 

where WH is the restriction of w to the distribution H and dHh is the restriction of 

dh to the distribution H. The second goal is to develop a theory of reduction that 

results in a set of reduced equations on a reduced manifold 2 which mimics equation 

(2.4). 

The proofs of propositions and theorems in this section are given in [2]. The 

propositions and theorems are stated in the notation of a nonholonomic Hamiltonian 

system (F, w, h, q). 

Proposition 1 (Conservation of energy) Let c(t) be an integral curve for X E TP. 

Then h(c(t)) is constant in t. 

Because of the constraints q" there are some states in P that are not possible. 

This is where Weber noticed that the constraints define quite naturally a submamfold 

M of P. This constraint manifold M is defined by the kernel of the k linearly 

independent constraint one-forms cba on Q. 

M = {p E P I (0 a  (p) , £_1 (p)) = 0, a = 1, .$ (2.5) 

where the map £ : TQ —i P = TQ is the Legendre transformation and ir : P —+ Q 

is the cotangent bundle projection. Define the distribution F by 

F = {v E TP I v) = 0, a = 1, ..., k}. (2.6) 



7 

Now define a distribution H representing the set of admissible velocities and accel-

erations a mechanical system can have without violating the constraints by 

H=FflTM. (2.7) 

Theorem 2 The restriction of w to H, denoted WH, is nondegenerate. 

Proposition 3 The Hamiltonian vector field X E TP is in the distribution H. 

The above proposition implies that the dynamics of a Hamiltonian system must 

satisfy the constraints. Let X be the vector field satisfying 

Ic 

X..jw = dh + ?ta1r*4a. (2.8) 
a=1 

Because of the Proposition (3), the vector field X is in the distribution H. Let WH 

be the restriction of the two-form w to the distribution H and dHh be the restriction 

of the one-form dh to the distribution H. Because the distribution H is in the kernel 

of the constraint forms, when we restrict equation (2.8) to the distribution H, we 

have 

X.JWH = dHh. (2.9) 

This makes sense, since X E H. Thus equation (2.9) now mimics equation (2.1) for 

a holonomic Hamiltonian system. 

2.2 Symmetries and reduction 

Let G be a Lie group acting on F, where the action of G on P is defined by the 

map : G x F - P. Suppose for all g E G the map : F —p P is defined by 
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c, (p) = 41 (9, p) for all p e P. The group G is symmetry group of the nonholonomic 

Hamiltonian system (F, w, h, 4), if for all g E G, the map does not violate the 

constraints, w= w, h = h0 9, and the distribution H defined by the kernel of the 

one-forms is invariant under the map . 

Let if be the space of C orbits in M. Assume 2 is a quotient manifold of M 

with projection map p: M —+ 2. 

2= M/G. (2.10) 

Vector fields and distributions on M pushdown to if. However, the two-form WH 

need not, because there may be infinitesimal symmetries XC such that 

XJWH j4 0. (2.11) 

Let V be the distribution on M tangent to the group orbits of C in M, where 

V is spanned by the infinitesimal symmetries generated by the action . Define the 

distribution U by 

U={UEHJWH(u,v)-0,VvE VnH}. (2.12) 

Now, U and V project to if and pV = 0. Define the reduced distribution i by 

iI=pU. (2.13) 

Theorem 4 The Hamiltonian vector field X is contained in U. 

Theorem 5 The restriction wj of w to the distribution U pushes down to a nonde-

generate form WR = p.wu on 11 . Furthermore 

= dii, (2.14) 

where ii = phM is the pushdown of the energy h restricted to M. 
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Note the original equation was 

X..JWH = dHh. (2.15) 

Using the symmetries to reduce the problem, we have an equation of the same type 

as (2.15) on the reduced manifold M 

JWR = dg/i. (2.16) 

2.3 The 2-dimensional Kepler problem 

Consider the 2-dimensional Kepler problem of the motion of two bodies in the plane 

under a mutual gravitational attraction. Suppose one body is fixed at the origin 

of R2. In polar coordinates (r, 0), the Hamiltonian system (F, w, h) for the Kepler 

problem is given on the phase space 

P = TQ = TS (.R x SO (2)), (2.17) 

with the canonical symplectic two-form 

w=d0Adpe+drAdpr, (2.18) 

and the total energy 
(p,2 + p62) 

_& 
2m 7. 

(2.19) 

Here, it is proportional to the gravitational constant. The two-dimensional Kepler 

problem is an example of a holonomic system with symmetry. Therefore, we hope 

the reduction method in [2] to give the same reduced Hamiltonian system as we 

would expect with the reduction method of Meyer-Marsden-Weinstein. 
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Because there are no constraints, M = F, H = TF, WH = w, and dHh = dh. 

Suppose X is the Hamiltonian vector field satisfying 

X.JWH = dHh. 

Since WH = w and dHh = dh, equation (2.20) becomes 

X..Jw = dh, 

(2.20) 

(2.21) 

which is the same equation we expect for a holonomic Hamiltonian system. Now the 

Hamiltonian vector field X satisfying equation (2.20) is given by 

X = Pr8r + + 0 + p9ôe, 
7Th (Lee ? Pr mr 

(2.22) 

where the integral curves of X are solutions to Hamilton's equations. 

The Kepler problem has 'an S symmetry which is given by the action S1 x P - 

P defined by 

(ci,r,p,9,pe) —4 Or, pr,O+a,Pe). 

Thus the infinitesimal generators of this action is the distribution 

By inspection 

(2.23) 

V= span {Oo}. (2.24) 

U={uETPw(u,v)=0,VvEVflTP} 

= span {Or,OprO9}• 

From equation (2.22), we see X E U. 

Let p: M  = PIS' be the projection map defined by 

p(r,pr,8,pe) = (r,pr,ps), 

(2.25) 

(2.26) 



11 

where 2 is the reduced manifold. Then p.V = 0 and 

= p.0 = span {Or, O,} (2.27) 

Thus we have the following Hamiltonian system (2, w, h) on the reduced manifold 

2, where the reduced two-form wR on Al is given by 

= di' A dp, 

and the total energy h on Al is given by 

-. 

r (PI, + 

The reduced vector field . on Al satisfying equation (2.14) is given by 

XPrOr ( 2 +7'° p\ 
M r3 r2 

(2.28) 

(2.29) 

(2.30) 

and . = P.X. Thus X is a vector field on the three dimensional manifold Al = 

T*R+ x R. Since o = 0, po is a constant. Therefore, we have a constant of motion 

on 2. Suppose we define a map f : N --+ Al by 

f(r)pr) = (r,pr,c), (2.31) 

where N = TR. If we pull back the Hamiltonian. system (2, wq., /i) to N by the 

map f we have the Hamiltonian system (Ne, cZ', ii), where Co = f:WR = wA and 

(P 2 + C2 /.Z 

Thus the reduced dynamics on Al is foliated by a one-parameter family of Hamilto-

nian system (Ne, &, i) with one degree of freedom, where the Hamiltonian system 

(Ne, , i) is the one given by the reduction of Meyer-Marsden-Weinstein. 
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2.4 The nonholonomic free particle 

A simple example of a nonholonomic system is the nonholonomic free particle. A 

particle is allowed to move freely in .R3 with coordinates x, y, and z, with the 

constraint p = yp. This example was given in [2], where the particle is assumed to 

have unit mass. Thus the nonholonomic free particle is given by the nonholonomic 

Hamiltonian system (F, w, h, ), where the phase space 

P = TR, (2.32) 

the canonical two-form 

w=daAdp+dyAdp+dzAdp, (2.33) 

the total energy 

h = (P!+p +p), 

and the one linearly independent constraint on R3 

(2.34) 

= dz - yd.2,. (2.35) 

The constraint manifold M is defined by 

M = { (XI y,z,px)py,pz) E TR3 I Pz = ypx}. (2.36) 

Now x, y, z, p, and Pv are a set of global coordinates on M, because M is a graph 

over these coordinates. Suppose i : M -p TR3 is the inclusion map defined by 

i(x,y,z,pz,py) = (XI y,z,p,)py,ypx). (2.37) 
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Note this map is in harmony with constraint Pz = YPx. Then pulling the nonholo-

nomic Hamiltonian system (F, w, h, ) back to M by the inclusion map i, we have the 

nonholonomic Hamiltonian system (M,WM , hM, 4), where the two-form WM = 

WM=dXAdPP3,dYAdZ+dyAdP+YdZAdp, 

the total energy hM = hoi 

hM = ((i. + 2) + 

and the constraint one-form 0 = i*cb on 

By definition, on M 

(2.38) 

(2.39) 

çb=dz — ydx. (2.40) 

H=ker{dz—idx} (2.41) 

= span {ya + 8x 0 y' 8 g apy  
The vector field X on M satisfying equation (2.9) is given by 

X = Px'3x + Py8y + YPx'9z  1 2PxPôpw (2.42) 

Thus integral curves of X are solutions to the equations of motion for the nonholo-

nomic free particle. 

The nonholonomic free particle admits the group action of the two dimensional 

translation group in the x-z plane. On F the action R2 X P - P is defined by 

(2.43) 

Note this action is in harmony with constraint p = YPX. Thus on M the action 

R2 x M - i M is defined by 

(xi,zi,x)y,z,p,p)__*(x+xi,y,z+zi,p,p11 ). (2.44) 
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Therefore, the infinitesimal generators of this action on M is given by the distribution 

Now 

and by definition 

V = span {o,8}. 

VflH= span {y8+O}, 

U ={uEHIwH(u,v)=O,VvEVnH} 

= span {yo + ox, (1 + y2)Oy - ZiPx0p, Opy }. 

From equation (2.42), we see X E U, because 

(2.45) 

(2.46) 

(2.47) 

X = P. (Y19. + O) + 1 ? ((i + 2) 0y - (2.48) 

Let p: M -+ if be the projection map defined by 

p(x)y,Z,px,py )(Y)px,py ), 

where the reduced manifold it1 is defined by 

2t1 = M/R2 = {(y,px,p) E R3}. (2.50) 

Thus pV = 0 and on the reduced manifold A( we have the distribution 

E=p*u= span {(1+y2) Oy _ypx5p,Op }. (2.51) 

(2.49) 

Thus we have a generalized Hamiltonian system (M, wa, h) on M, where wf, is de-

fined by the two spanning vector fields on ff 

WI ((i +y2) Oy - YPXOPC,OPY) = 1+y2, (2.52) 
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and the total energy on ft is 

(2.53) 

Then the reduced vector field 9 on M satisfying equation (2.16) is given by 

= PY09Y 1 (2.54) 

and 9 = P.X. Note that = 0. Thus p is a conserved quantity. 

If we look at the differential equation that is given by the vector field 9 and 

realize that 

dp y  
= dy - 1 + 

then we have the differential equation 

dp y  

Integrating this equation, we get 

C 

Px   

Suppose we define a map f : N - it? by 

/  C  

.' (y, p11) (¼' ii + y2 7PY 

(2.55) 

(2.56) 

(2.57) 

(2.58) 

where c is a constant and N = T*R. Pulling the generalized Hamiltonian system 

(it?, WRI i)on it? back to N by the map f, we get the Hamiltonian system (Ne, Co, 

where 

and 

&=fwR=dyAdv, (2.59) 

(2.60) 
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Moreover, 

is the vector field satisfying the equation 

and 

(2.61) 

= A l (2.62) 

= p1,81, - cy(1 + YT PY5Vr 

- 

- p1,'-,11 - i+Vv2PaP1,'1 

(2.63) 

Thus the reduced dynamics on 1t1 is foliated by a one-parameter family of Hamilto-

nian' systems (Ne, Co, i) with one degree of freedom. 



Chapter 3 

Nonholonomic reduction for the rolling disk 

3.1 The rolling disk 

A disk that rolls without slipping is a non-holonomic Hamiltonian system with 

symmetry, which is integrable. Thus it is an excellent example to apply the non-

holonomic reduction techniques given in Chapter 2. In the book, A Treatise on 

Analytic Dynamics [6], Pars uses Lagrange's equations and the method of undeter-

mined Lagrange multipliers for the non-holonomic constraints to find the equations 

of motion for the rolling disk. Therefore, we will be comparing our derivation with 

that of Pars. 

The coordinates Pars uses to describe the rolling disk are , i, 9, ç, and ,0. We 

will use the coordinates x and y for the center of the disk instead of and ,. As in 

the following diagram, the tilt of the disk is determined by the angle 9 as measured 

between the x-y plane and the plane containing the disk. When 9 = 0 or ir, the disk 

is lying flat on the x-y plane. Thus it is expected that our equations of motion should 

not be defined for these values of 9. The direction the disk is rolling is measured by 

the angle cp with respect to the positive x-axis. The rotation of the disk about the 

zi-axis, which is perpendicular to the plane containing the disk, is measured by the 

angle b. The configuration space Q for the disk is R2 x 50(3) and we will work on 

the open submanifold given by 0 <9 <ir, which will still be denoted by Q. 

17 
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rolling disk 

ZI 

x 

y 

rolling disk 

side perspective 

0 

Yl x-y plane 

Figure 3.1: Coordinates for the rolling disk 

The translational kinetic energy of the disk on TQ is given by 

KE = m(v+v+r2v  COS 2O). 

The rotational kinetic energy for the disk on TQ is given by 

RE = A(v +v  sin 28) + C1P i (v +v  COS 9)2. 

(3.1) 

(3.2) 

Here, A is the moment of inertia about the x1-axis or the y1-axis, which goes through 

the center of the disk and C is the moment of inertia about the z1-axis, which goes 

through the center of the disk. For our equations to be valid, we will assume a mass 

distribution such that the center of mass for the disk occurs at the center of the disk. 

Then the potential energy on TQ is then given by 

PE.= ragrsinO, (3.3) 
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where m is the mass of the disk and g is the acceleration due to gravity. Therefore, 

the Lagrangian 1: TQ - R for the rolling disk is 

1= 1M (v + v + r2vcos 29) + 1A (i4 + v  sin 2O) (3.4) 

+C (i,,1, + VW COB 9)2 - mgr sin 0. 

Consequently, the Legendre transformation £ : TQ - T*Q is given by 

PX = mv, 

PV = mv, 

P6 = (A+mr2 COS 20)ve, (3.5) 

pçp = Av  sin 20 + C COS 0(v,j, +v  COS 0), 

PO = C (v,1, + v cos 0). 

Thus the Hamiltonian h: P = TSQ - p R for the rolling disk is 

h= (3.6) 
2m 2 i12i 

-,- mgr sin 0. 

The two non-holonomic rolling constraints for the disk are 

01 = cos ço dx + sin cody - r sin  dO, 

2=— sin pdx+ COS cody+r COS 0dco+rth,b. 

These are the non-holonomic constraints derived by Pars in [6] on p. 120, where r is 

the radius of the disk instead of a. These constraints are linearly independent, since 

A 2 = dx A dy + other terms 36 0. 

Therefore, the nonholonomic Hamiltonian system (F, w, h, ) for the rolling disk 

is given on the phase space P = TQ, with the canonical two-form 

w= dxAdp+dyAdp+d0Adpe+dcoAdp+th,bAdp,,c,, (3.8) 
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where 

h— (3.9) 
- 2m 2 2A in 6 

+p + mgr sin 0, 

and 

01 = cos cc clx + sin cc dy - r sin 0 dO, 

02 = — sin dx+ Cos çody+r cos Odçc+rd1'. 

3.2 The equations of motion for the rolling disk 

(3.10) 

None of the theory in [2] depends upon being in phase space P = TQ. In the rolling 

disk there is an interesting case when the Legendre transformation is singular. This 

occurs when the moment of inertia a = 0. For this reason I have chosen to work in 
the tangent bundle TQ. This way I do not have to invert the Legendre transformation 

£ : TQ —i TQ. It is also much easier to work out the constraint manifold M in 

TQ then TQ. 

Let the constraint manifold M be a submanifold of TQ defined by the zero set 

of the constraints in 3.7. Thus 

M = {u E TQ I (6o(u),u) = 0,a = 1, 21, (3.11) 

where ir : TQ — p Q is the tangent bundle projection. Suppose u E TQ, where 

= V,19. +v8 + V886 +v49O +v5&, (3.12) 

then 

('oir(u),u) = vx Cos So + vv sin cc - rve sin  = 0, 

(2oir(u),u) = —vx sin çc +vy Cos cc +ry  COB O +rv4, = 0. 
(3.13) 
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Solving for v and vv, we have 

Va, = rve Sin 9Cos ço + rvl, COB 9 sin ço + rvp sin ço, (3.14) 

v, = rve sin  sin ço - rv, cos 9 cos cc - rv,,i, CO5 cc. 

Thus we can use x, y, 9, cc, st', V, v, and vip as a set of global coordinates for M, 

since M is a graph over the variables x, y, 0, cc, i,b, ye, v, and vip. 

Suppose we define the inclusion map i : M —* TQ by 

i(o) y, 0, cc, b, v6, v, v,p) = (x) y, 0, go, &, va,, vi,, ye, v, vip), (3.15) 

where va, and v, are defined by 3.14. To eliminate as many variables as possible, 

we can pull the nonholonomic Hamiltonian system (F, w, h, 0a ) back to M by the 

Legendre transformationL and the inclusion map i. Thus we have the nonholonomic 

Hamiltonian system (M, WM, hM, 0a) where the symplectic two-form WM is defined 

by 

WM = 

= mr (vô cos 0 cos go - v sin 9 sin go) dx 'A dO 

+mr (—ve sin 0 sin go + v cos 0cos go + v4, cos go) dx A dgo 

+mr sin 9Cos go dx A dye + mrcos 9sin go dx A dv + mr sin gQdx A dv,p 

+mr (ve Cos 0 sin go + v sin 0 cos go)dyA dO 

+mr (ye sin 9 cos go + v cos 9 sin go + vip sin go) dy A dgo 

+mr sin 0 sin gody A dye — mrcos 0cos cody A dv — mr Cos gody A dvip 

+(A+mr2 COS 29)d9A dye + (Asin 20+ a COS 2o)dgoA dv 

+Cdt,bAdvip+C Cos 0dgoAdvip+U Cos 0dbAdv 

+Uv  sin Od0 A dt?b + sin  (2(A— C)vcos9 — Cvip) dgoA dO, 

(3.16) 
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the Hamiltonian hM : M — p R is defined by 

hM = = j(A+mr2)vg 2 + }(C+mr2)(v,p+vcosO)2 

+Ai4 sin 29 + mgr sin 9, 

and the constraints Oa on Q are 

01 = cos cc dx + sin cc dy - r sin 9 dO, 

2=— sin cpdx+ cos cody+r cos 9dco+rdb. 

Let H be the distribution on M defined by 

(3.17) 

(3.18) 

H = {v E TM I v) = 0,a = 1, 21, (3.19) 

where i : M —i TQ is the inclusion map. The distribution H represents the set of 

admissible variations that do not violate the constraints. In the coordinates x, y, 9, 

W7 b, v, v, and v,p on M, we have 

H = span { X9, X0, X0 , 8 v., 0 vco, 8v, }' 

where 

X6 = r sin 9 cos cc O +,r sin 9 sin cc 8 + 8, 

X,=r cos 0 sin go8—r cos 0 cos co8+O, (3.21) 

Xpr sin co8—r cos coO+8IP. 

The distribution H is not integrable, because 

[X,XIP] =r cos cc8+r sin way, (3.22) 

[X,,[X,XIP]} = —r sin ço8+r cos çoay, 

are not linear combinations of vector fields in H. However, taking all possible lin-

ear combinations of the Lie brackets of the vector fields in H, we do obtain the 

distribution 

TM = span {a, av, 8, a, 8IP' iv., 8,, 8v }. (3.23) 
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Hamilton's equations on M is a vector field X € TM, such that 

2 

X..JWM = dhM + E 
a=1 

where 

(3.24) 

A M = (Av  cos 0 sin 0+ mgr cos 0 _(C+mr2)(v+v  cos 0)v  sin 0)d9 ip 

+ (A + mr2) v9dv9 + (Av sin 20 + cos 0 (C + mr2) (v,, + V cos 0)) dv 

+(C+mr2)(v&+v  cos 0)dv, 

the ) 's are the unknown Lagrange multipliers and 

01 = cos ço dc + sin cc dy - r sin 0 dO, 

s62=— sin cpdx+ cos cody+r cos 0dco+rdi,b. 

By Theorem 3, we know X E H. Thus let 

(3.25) 

(3.26) 

X - OX0 + cX + i4Xs, + i980. + + &frOv. (3.27) 

From the constraints, we already know that 

th = v. = rve sin 0 cos ço+rv49 cos 0 sin cc+rv,p sin c, (3.28) 

= vv = rv9 sin 0 sin W - ry cos 0 cos cc -  rvo  cos cc. 

Therefore, the only unknown variables are O, çb, t4, i9, 6,,and i). Because X6 = 

Oo+other terms, similarly for X, and Xp, we are justified in stating equation (3.27). 

By contracting on both sides of equation (3.24) with vectors in H, the following 
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equations hold 

(X.JWM,XO)= AvIp Cos 9 sin 9+ Mgr Cos 9 

- (C + mi'2) (v,,b + v cos 8) v,, sin 9, 

(XJWM,X,) = 0, 

= 0, (3.20) 

(X...JWM ,OV.) = (A+mr2)v., 

(X..JWM, o) = Av 29 + COB 8(0 + mi'2) (v,j, + v, cos 9), 

(X.JWM,OV,,I,) = (C+mr2)(v,1, +v  coo 9). 
Since the one-forms i*lr*? annihilate the distribution H, the terms involving the 

Lagrange multipliers in. (3.24) disappear. Now the linear equations in (3.29) are 

then solvable for 

o = Val 

= 

Vol 
A+rnr2 (Ai4cososino —(C+mr2)(vp+v, Cos O)v  sin 9 - mgr Cos 

Asn8(0 (+C059) 214 059) 

t)tp = ,2vov, Sin 9 - (C(vj, + v coo 9) - 2Av49cos 9)AsinO  

(3.30) 

since the restriction of wM to the distribution H is nondegenerate. The equations 

given by Pars in [6] on p. 122 are 

(A + mi'2) = AV2 cos 9 sin - (C + mr2) (v1,+ V COB 9)v sin  - mgr cos 9, 

(C+mr2).(VP +v, Cos 8) = mr2vv, sin 9, 

(Av. 29) = C (v,p + v cos 9) ve sin 6. 

(3.31) 
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We will now verify that (3.30) and (3.31) are equivalent. The first equation in (3.31) 

is easily derived from (3.30) since 

(A + mr2) = (A + mr2) i'g (3.32) 

= AvIp cos6sin9 —(C+mr2)(v,p.+vcos9)vsin9 

—mgr cos 9. 

The second equation in (3.31) is obtained as follows 

(C+mr2) (v,p+v  cos O) = (C+mr2)(p +&, cos 9 —ve sin 9) (3.33) 
Tt 

= (C+mr2) (C+2;;;2 vovsin9_ve sin 0) 

= mr2vv  sin 9. 

The third equation in (3.31) comes from 

(Av, sin 29) = Ai,, sin 29 + 2Avev sin  cos 9 Tt 
= (C (v,j, + v, cos 9) - 2Av cos 9) ve sin 9 + 2Avv sin  cos 9 

= C(v1, +v  cos 9)ve sin 9. 

(3.34) 

Therefore, the equations derived by Pars and our equations agree. 

Now, if we define WH to be the restriction of WM to the distribution H and dHhM 

to be the restriction of dhM to the distribution H, then 

X.JWH = dHhM, 

Thus equation (3.35) resembles the equations for a Hamiltonian system. 

3.3 Reduction by E (2) x SO (2) 

(3.35) 

On configuration space Q, the rolling disk admits the symmetry groups of the Eu-

clidean group E (2) and the rotation group SO (2). The Euclidean group involves 
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translations and rotations of the disk in the x-y plane and the rotation group involves 

rotations about the axis perpendicular to the plane containing the disk. If the action 

E (2) x SO (2) x Q -+ Q is defined by 

(xl, yj, a, f3) x, y, 9, WOO 

=(xcosa+y sin a +xi,x sin a —ycosa+yi3O,ço+a,b+/3), 
(3.36) 

then the infinitesimal generators of this action on Q is given by the distribution 

span {8, 8,, — Ya- + XOy + ar, 84. (3.37) 

Lifting these infinitesimal generators to TQ, we have the distribution 

span {O, Os,, + v8 + 8, o}. (3.38) 

On M, the infinitesimal generators of our symmetries are given by the distribution 

since 

V = 

is (8:) = 8x, 
i5(0)= Os,, 

i. (8w) = -vvOv. + vxOvv + 8, 

(3.39) 

(3.40) 

i5 (8,j,) = O. 

Now that we have our infinitesimal generators of our symmetry, we can proceed 

with the reduction. Therefore, 

VflH=span 
rcos 9 sin O - r cos 9 cos ço8 + 8, 

r sin 8—r coo ço8+8 
(3.41) 
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and 

Thus 

where 

U= fu  E HIcH(u,v)= O,Vv E VflH}. 

U = span {Y6,Y,, Yo, 8t,}, 

Yo= rsin9coscoO+rsin9sinco8+Oe 

+A8 ((C +mr2) (v,p + v,, COS 9) — 2Av, COS 9) 8p min 

1 ((C + mr2) (v,j, + V'0 cos 0) — Av (1 + cos 29)) 8t,, 
— A sinG 

1= r COS 0 sin oO—r COS 9 COS co8+O Asmr2 08C08 OO s 

+ ' mr2 mr2 COS 29 
1.. C+mr2 + Asin3G ) V &in0 

_______ mr2 
A.oVoOv,.+A.boVoC08 OOv. 

The distribution U is nonintegrable, because 

(3.42) 

(3.43) 

(3.44) 

[ov,,11]= ;, (cos88v_8v,), 

[a. 9,1 = Asi n0 (cos 9Ov# —au,.) + C+mr2 Sin 981 , (3.45) 

[Y,,1'.] =r COS co&,+r sin coay, 

= —r sin co8+r COS co 8 , 

are not linear combinations of vector fields in U. Taking all possible linear combina-

tions of Lie brackets of the above vector fields in U, we get the distribution 

TM = span {a, O, a, a, a, at,, as,,., }. (3.46) 

Let 2 = M/G be the reduced manifold with the projection map p: M —+ 2 

defined by 

p(x,y,9,,i/), Vol v,vtj) = (0) Vol vw,vmb). (3.47) 
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The reduced distribution R is defined by 

Fr =pU 

09 + Asin9 ((C' + mr2) (v,,b + v, cos 9) - 2Avç, OS 0) a, 

= span 

1 / 
Asin9 (C + mr2)(v1, + v4, COS 0) - Av,(1 + cos 29))  

1' rnr2 -- rnr2 COS 29   cos 0 (, + Ain29 ) V9 Sin 

rnr2 rn?2  
Aain et9 9vp + Asjn 9v9COS Ot.# , 

l0 
(3.48) 

Taking all possible linear combinations of the above vector fields we see that 

Fr = span {0, 0v9, 0v4,, 5v}. (3.49) 

The restriction wu of w to the distribution U pushes down to a non-degenerate form 

= pwu. The values of the two form wq are given by 

WM(A,B) Ye Y,I, Ove B 

Ye. 

YVI 

YIP 

ave 

0 

0 

—(A+mr2) 

0 

o (A+mr2) 0 

o 0 mr2v9 sin 0 

o 0 0 

—mr2v sin 9 0 0 

(3.50) 

A 

Note that WR is nondegenerate even if C = 0. Thus we have the generalized Hamil-

tonian system (d, wa-, /i), where the reduced two form wR on A1 is given by 



29 

C+mr2 a = ((C + mi'2) (v,j, + v cos 0) - Av (1 + cos 29)) 

- C+tnr2 (C (i,,1, + v cos 9) - 2Av, cos 0), 
- v.mr2 

c= 2A sin 0. 0.1 

and the reduced Hamiltonian J on if is given by 

h= }(A+mr2)v+.(C+mr2)(v,,b+v, COS 0)2 

+IAV2 sin 29 + mgr sin 0. 

Let X be the reduced vector field on if satisfying 

where dp)i is given by 

(3.52) 

(3.53) 

(3.54) 

dg/i= (Ai4 COB 0 sin 0 + mgr cos0 - (C + mi'2) (v,j, + v60 cos 0) v, sin 9) dO (3.55) 

+(A+  mi'2) v9dv9 

+ (Av, sin 29 + coB 0 (C + mr2) (vtp + V COB 0)) dv 

+(C+mr2)(v4, +v  Cos 9)dv&. 

Then the reduced vector field X is given by 

X = 089 + V98V9 + 8v + ii8v,j, (3.56) 

where 

e= V, 

V9=A+ r2 (AV cos 9 sin  - mgr cos 9 - (C + mi'2) (V'0+ v cos 0)v, sin 0) iP  

= XI -9  v,, Cos 0)-2Av  Cos 0), 

C+2mr2 
- C+mr3 V eV IP sin0 ___ _ (C (vp + v cos 0) - 2Av cos 0). 

(3.57) 

Moreover, 1 = p,X. 
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3.4 New coordinates for the reduced manifold i7t 

Suppose we perform the following change of coordinates on M, where 

po=(A+mr2)Vol 

Pr = (C + m'2) (v + V, COB 9) cos 9 + Av sin 29, (3.58) 

pp = (C + mr2) (v,j, + V cos 9). 

The idea for this change of coordinates came from the Legendre transformation. 

However, we use the Hamiltonian function hM on M instead of the Hamiltonian 

function h on P. Note that the map (6, Vol vç.,v,) - i (9,pe)p,p &) is nonsingular 

even when C = 0, In these new coordinates we find that the reduced distribution ii 

is given by 

C+mr2  00 + A,nO pp (cos 9 - 1) (o + COB oo,) 

R=span 
(A+mr2)P6 sin 0O, 

mr2  
(A+,nr2)PO sin 08,,, 

(3.59) 

I. (A+mr2)8 0. J 
and taking all possible linear combinations of vector fields in it gives the distribution 

TICI = 11 = span {a, ape I a,,,, a,,}. (3.60) 

Using (3.58), the reduced two form wR is given by 

A+mr2 
WIT = dO A dpo mr2po sin 9dp A dp 

Note that the reduced two form wR is not closed, since 

(3.61) 

= (A + mr2) COS 0A+mr2 A dp A dp& + mr2p . 9dp8 A dp A dp& (3.62) 
mr2pe Sin 20 
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is non zero. In these new coordinates the reduced energy h on M is given by 

1  
2(A+mr2)06+ 2(0 +mr2) + 2A Sin 29 (p - p,j.,cos9)2+ mgr sin 9, (3.63) 

where djh is given by 

dRi = (mgr cos 9 + A,Ü6P (p - p cos 9) -  (PP _ PO COS 
9)2) dO (3.64) 

+A+rnr2P9 1P6 + Aain36 (p9, —p,bco89)dp. 

+( (C+mr2)P - Aim26 - p COS 9)) dp,1,. 
1 cos9 ( 

The reduced Hamiltonian vector field X on M, satisfying 

= dii, (3.65) 

is given by 

where 

L..... 1 
V I+t,-,Tpej 

= 6190 + o,,, + ,,o,,.,. + 

cos9 ( 1 PP 
= Asin 36 - cos 9)2 - (p6, - P0 COS 9) - mgr COBAsirLO 9, 

r2 mr2 un 6  m 
= A(A+mr2)P6 cot O(p P4 ) C+mr2)A+mr2)P6PhIs 

mr2  
= csc 9(p - PO  cos 9) A(A+mr2)P6 . 

3.5 Integrating the equations 

(3.66) 

(3.67) 

From the differential equations (3.67) in the previous section, we can find a second 

order differential equation for p as a function of 9. In Rosenberg's book, Analytic 

Dynamics [8] the derivation of these equations are described as follows. Using 0 as 
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a new time parameter we obtain from (3.67) the equations 

_____ dp -  mr2  
______ mr2iht9  

PV = A+mr2 P9j- - A(A+mr2)P6 cot 9(p - cos 9) (C+mr2)(A+mr2)P6P 

_ dp& - _______ 

= A+mr2P9J - A(A+mr2)P9 CSC O(PP —pj, COS 9). 

Therefore, 
dpip 

- ,nr2 m 
- cot O(p - Pp cos 9) r2 sin8  (C+mr2)P' 

ap%1, - mr2 
- —  -cscO(p, —p1j COS 9). 

d8 A 

Differentiating the following equation 

dp,1, sin -10 = mr2 

we obtain 

(3.68) 

(3.69) 

(3.70) 

dpp - mi'2 I dp, •9c +cos9-- - -x- (3.71) 

d02 dO - mi'2 

- A ( (C.:7) p + P'0 sin o) 
Cmr2  

= A(C+mr)14' Sin 9. 

Thus 

a12 p'k + cot 9dp  Cmr2  
dO2 A(C+mr2)1 ' °' (3.72) 

which is an equation of the Legendre type. 

Let z = cos 29, then the differential equation (3.72) becomes 

11-3z\ dp,j,  0mr2  
2 ) dz 4A(C+mr2)P° (3.73) 

This is the same differential equation as in [8] on p. 339. Here (3.73) is satisfied by 

hypergeometric functions F (a, b; c; z) and F (a + 1, b + 1; C; z) where 

l+-y b= 1—'y 1 \J' Cmr2  
4 ,c= 1, and'y= A(O +mr2). (3.74) 
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Recall F (a, b; c; z) is defined by 

where 

00 (a) (b)  
F(a,b;c;z)=E z 

n0 (c) 
(3.75) 

(a)=a(a+l)(a+2) ... (a+n—l), (3.76) 

similarly for (b) and (c). Therefore, a general solution to the differential equation 

(3.72) is 

1+ /5+ -y S--v 2 /7 1 _ i'1 2 ___ ___ 

Po = f1F , ; cos + f2 cos OF ( ; .; cos o), (3.77) 

where fj and f2 are integration constants. Using equations (3.69), we can solve for 

p,, where 
A dpp 

Pço = -_-  sin 0+p  cos O. (3.78) 

Let N(11 sf2) be the cotangent bundle of an open interval (0, ir). Now define a map 

f(f1112) : N —+ if by 

where 

f(f11f2)(0,PO) = (0,p9)pc  AP) , 

A . i "so — sInv 
dO 
-   --rp,cosv, 

1, 11; 1; 20) + f2 COB OF (!p, !1; -; co 20). 
pb = f1F (  

Suppose we pullback the generalized Hamiltonian system (, wj, 7i) with the non-
degenerate non-closed two-form wq to N(11,12) by the map f(f,g2) Then we have 

the Hamiltonian system (N(11112)) c, ), where Co is a nondegenerate closed two-form 
defined by 

(3.79) 

(3.80) 

cfwft doAdpo, (3.81) 
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and the Hamiltonian iz. on N(ff2) is defined by 

1  
h = 2 (A + mr2) P9 + 2 (C + mr2) Pt1 + 2A sin 29 (p - p,, cos 9)2+ mgr sin 9, (3.82) 

where p, and p,j, are given by equations (3.80). 

Let .k be the vector field such that 

= A. (3.83) 

Solving for .k, we get 

where 

Gt99+P9Op, 

= (A+rnr)PO) 

Aq = Aim 38 (pçø pi cos 6)2 - Aiin8P'I (ps', - p,j, cos 9) - mgr cos 9, 

and 1 = f(fL,f2)*. Again p and pj, are given by equations (3.80). Therefore 

the reduced dynamics on At is foliated by a two parameter family of Hamiltonian 

systems (N(,1,12), , ii) with one degree of freedom, which are completely integrable. 

Since fi and f2 are integration constants, which can be written as a function of 9, p, 

p, and p, we have two conserved quantities on M. Once the Hamiltonian system 

(N(f1,f3),, i) is integrated we can reconstruct the dynamics on M by performing 

two more integrations, because the reduced vector field X on M is given by X = 

f2 )pX. 

(3.84) 

(3.85) 



Chapter 4 

Orbits for C=O 

4.1 Equations of motion for C=O 

The equations of motion for the rolling disk are still valid even if C = 0, because 

the two-form WH is nondegenerate for C = 0. Therefore, everything that has been 

stated previously is still valid even if C = 0. Suppose C = 0, then the differential 

equation in (3.72) becomes 

cfr + cot 9 dpo = 0. 
WT dO 

From the differential equation in (4.1) and equation (3.78), we have 

Pc', = f1 COS 9+12 (i +- coo 9lnIcscO— cot 9I), 

A = fi+f2lnIcocO— cot OI. 

(4.1) 

(4.2) 

Thus the Hamiltonian system (N(,1j2), z, i) on N(11112) is defined by the two-form 

= *wq = dO A dpe, (4.3) 

and by the Hamiltonian function ii on N(11,13) 

1  2 
2(A+mr)P6 + r (A+ f2 — lfl Icsc8 - cot 01)2 

+2Agifl3of2 + mgr sin 0. 

The vector field .k satisfying 

fLiCo = A l 
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(4.4) 

(4.5) 
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is given by 

_t =400+P8Op,, 

where 

(4.6) 

o = (A+rnr2)P8 (4.7) 
Ae Cos  :2 1 

= - fi (filnI CSC e— Cot OI+f2) — mgrcosO. 

For the rolling the Legendre transformation is singular for U = 0, however, the 

singular case C = 0 is just the limit of the nonsingular case C 54 0. As C 

- 1. Thus 

_f 10 ( Y=nr dO 

=ficos9+f2(1+jaos9 In Icsc9 —cot 9), 

P'P = lim (f1F 1!±1. !. 1. Cos 29) +f2 COS 9F ; COS 29)) 
'v—'0 4'' 

= fi +f2!lnIcscOcot9I. 

4.2 Infinitesimal symmetries for the constants f1and /2 

0, 

(4.8) 

As stated earlier, the integration constants 11 and 12 can be written as a function 

on ff. Thus we obtain 

fi (4.9) 

f2 = Pc. -  PO  cos 9 

A straightforward calculation shows that £fi = £Xf2 = 0. Therefore 11, f2 are 

two constants of motion for the generalized Hamiltonian system (ia, C0171 icr. 
In addition, we have conservation of the total energy i, where 

= 2(A+mr2)PO + - (Ii + f2 In Icsc9 - cot 91)2 

+2A29f2 +mgr sine. 

(4.10) 
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Thus we have a total of three constants of motions. Since wR is nondegenerate on 

, it makes sense to define vector fields on A1 such that 

= df1, (4.11) 

XfJWR = df2. 

Using the definitions of fl, f2, and wR, we obtain the vector fields 

- mr (p,—pj, COS 9) ape 
- A.inO 

,nr2p,am88 ,nr2 
A+,nr2 p— nj CSC o— Cot 9lX,2, 

Xf2 = —P4 OOp$ + mr2p A+mr3 sine (ô/ 4,+ cos 98p4). 
(4.12) 

Taking the Lie bracket of these two vector fields we see that the span of X11 and X13 

form an integrable distribution, because 

x12] = p,,& Xf, + (p sin 9 in I csc 9 - cot 9 1 + csc 9 (p, -  po  cos 9)) If, 
pe Ape 

(4.13) 

Because the distribution =span{.,1 , } represents a set of infinitesimal gener-
ators of a symmetry group on fl, one can question whether this symmetry group on 

Ai has any physical significance or can be lifted to M or P. 

4.3 Orbits 

For C=O, consider the Hamiltonian system (N(11112 ), c', where N(f1112) is the cotan-

gent bundle of the open interval (0, ir), where canonical two-form Co on N(11112) is given 

by 

&=dOAdpe, 

and the Hamiltonian function h on N(11112) is given by 

1  2 
2(AImr2)P8 + y (A+ f2!lfl Icsc9 - cot 91)2 

+2A3ef2 + mgr sin 9. 

(4.14) 

(4.15) 
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Our Hamiltonian vector field ± on N(J1j2) is given by 

= Oo,+I$aP., 

where 

1  
(A+mr2)P6 

COBO 2  1 
Po   Asrn39 f2 - A sin of2 (fi +f2!lnIcsc9_ cot 9I) — Mgr Cos 9. 

Suppose 12 0, then the Hamiltonian. function 7. on N(IL,12) is 

12 
h 2(A+mr2)P8+2mr2f1+m95mnO 

(4.16) 

(4.17) 

(4.18) 

and the Hamiltonian vector field .k on N(11,12) is 

X = (A +mr2)'°°° - mgr COB 9O,,, (4.19) 

For the case f2 = 0, the potential energy for the Hamiltonian system (N(1110), cZ', i) 

is given by Figure 4.1 and the corresponding phase diagram in Figure 4.2. From the 

phase diagram we can see the motion of the disk on N(11 ,o) is similar to the motion 

of a pendulum, except that the motion of the disk is restricted to the interval (0, ir). 

We can reconstruct the motion of the disk on 2, because we have the map 

1(11,12) : N(11112) - 2 Thus from equations (3.58) and (3.74), we have 

f2 

Vip = Asin2O' 
fi 12 (In Cos  

V IA =—+—Icsc9 —cot 9I  

rn,'2 A  sin29 

If fi = 12 = 0, then v, = vo = 0 and the disk is not rolling or spinning. From 

Figure 4.1, we can see there is a critical point at 9 = ir/2, pe = 0, which is a saddle. 

If 0 = ir/2, pe = 0, then the disk is standing vertically. If 0 0 ir/2, pe 0 0, then 

(4.20) 
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Figure 4.1: Potential energy for f2 = 0 
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Figure 4.2: Phase diagram for 12 = 0 
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the disk is falling over to one side or the other. However, if ft =A 0, then v = 0, 

and v1, = fl 0 0. In this case the disk is rolling in a straight line with constant 
mr2 

velocity. If 9 = ir/2, pe = 0, then the disk is standing vertically. If 9 0 ir/2, po 0 0, 

then the disk is falling over to one side or the other, while rolling. For this case there 

are no periodic orbits. 

If f2 0 0, the Hamiltonian function i on N(11,12) is given by 

1 
2(A+mr2)PO + (fi + f2!!.ln Icsc9 - cot 01 

+2Ajfl29f2 + mgr sin O. 

and the Hamiltonian vector field . on N(11 sf2) is given by 

where 

1  e= (A+mr2)P0 
• Cos  t2 I PG - A8in30J1 - 51fl9f1(f1_A_1nIcsc0 — Cot 8I+f2 ) mgr cos 0. 

)2 
(4.21) 

.k=Oo0+i09 9, (4.22) 

(4.23) 

For this case we have three possibilities. In the first case we have a weak gravitational 

field, where the potential energy is given by Figure 4.3, and the phase diagram is 

given by Figure 4.4. From the phase diagram in Figure 4.4, we see the rolling disk 

has one critical point, a center, and that all other orbits are periodic. Suppose the 

critical point occurs at 9 = ir/2 and pg = 0. If fi = 0, then v, = Aj20 and v1,1, = 0. 

This corresponds to the disk spinning at one point. If fi 0 0, then v, 0 0 and 

vp 0 0. Thus the disk is rolling around in circles while standing vertically. If the 

critical point does not occurs at 9 = ir/2 and pg = 0, then v 0 and V1p 36 0. Here 

the disk is rolling around in circles with a constant angle 0 0 ir/2. 



42 

1000 

100 

10 

0.5 2 2.5 3 0 

Figure 4.3: Potential energy for f2 0 and a weak gravitational field 
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Figure 4.4: Phase diagram for f2 96 0 and a weak gravitational field 
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Figure 4.5: Potential energy for f2 54 0 and a strong gravitational field 

As the gravitational field increases, the potential energy of the Hamiltonian sys-

tem (N(11,12 ), iZ, ii), will eventually have a strict local minimum and a horizontal 

inflection point. Therefore, we will have two critical points, where one is a center 

and the other is a cusp. This is the second possibility. 

With a strong gravitational field, the cusp will bifurcate into two critical points, 

where one is a saddle and the other is a center. Thus there is a total of three 

critical points. This is the third and last possibility. The potential energy for this 

example is given by Figure 4.5, and the phase diagram is given by the Figure 4.6. 

Two of the critical points are centers while the third critical point is a saddle. This 

case is particularly interesting, since there are two nonperiodic orbits. Along these 
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Figure 4.6: Phase diagram for f2 0 and a strong gravitational field 
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orbits 0 approaches a constant and p - p 0 as t -* ±00. Therefore, the path of 

the disk becomes circular, if the saddle does not occur at 0 54 ir/2. If the saddle 

point occurs at 0 = ir/2 and Ii = 0, the disk will then approach the motion of a 

disk spinning at one point vertically since 0 -* ir/2, po + 0, v i a A sin 29  

constant and v,p - 0. If the saddle point is at 9 = ir/2 and Ii 0 0, then the 

disk will asymptotically approach the motion of a disk going in circles standing up 

vertically since 0 - p 7r/2, pg - p 0, and v, vp both approach a non-zero constant. 



Chapter 5 

Conclusion 

5.1 Summary 

From the first example, the two-dimensional Kepler problem, we see that the non-

holonomic reduction techniques discussed in [2] agrees with the.holonomic reduction 

of Meyer-Marsden-Weinstein. 

Using the reduction method given in [2], the rolling disk reduces from a nonholo-

nomic Hamiltonian system (F, w, h, ) with five degrees of freedom to a generalized 

Hamiltonian system (M, wq, /i) on a four dimensional reduced manifold i5i1 with 

a nondegenerate non closed two-form wR. By partially integrating the differential 

equations for the rolling disk on 11, one sees the reduced dynamics on A1 is foliated 

by a two parameter family of Hamiltonian systems (N(f1,12 ), c,, h) with one degree 

of freedom, where N(11 sf2) is the cotangent bundle of an open interval. 

Because the two-form WH was nondegenerate for the case C 0, the equations of 

motion for the rolling disk are still valid even though the Legendre transformation was 

singular. From here, we were able to establish some of the dynamics on M by using 

the map 1(12,12) : N(11112) —4 M to reconstruct the dynamics from the completely 

integrable Hamiltonian system (N(11 ,12)' , i). Since the equations of motion for the 

rolling disk where still valid even though the Legendre transformation was singular, 

one should check to see if the theory could be modified to handle nonholonomic 

Hamiltonian systems with a singular Legendre transformation. 
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As well, nothing is known about the dynamics of the rolling disk on ft for the 

case C 0 0. For further investigations, one should see whether the symmetry group 

defined by the set of infinitesimal generators IV =span{t11, f2 } on M has any 
physical significance and whether this symmetry can be lifted to M or P. 
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