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Abstract

A disk that rolls without slipping is an example of an .integra.ble nonholonomic me-
chanical system. The equations of motion for the disk can be found by the use of
Lagrange multipliers and Lagrange’s equations of motion. However, the configura-
tion space of the rolling disk R? x SO (3) admits the group action E (2) x SO (2). In
the paper Nonholonomic Reduction [2] by L. M. Bates and J. Sniatycki, they have
a reduction theorem for nonholonomic mechanical systems. With this technique the
rolling disk can be reduced to a problem on a four dimensional manifold M with a
nondegenerate non-closed two-form.

By partially integrating the differeﬁtia.l equations on M, one realizes that the
reduced dynamics on M is foliated by a two parameter family of Hamiltonian systems
on the cotangent bundle of an open interval with one deéree of freedom, where the

two free parameters correspond to two conserved quantities.

iii



Acknowledgements

As a child I remember having a talent for mathematics. I was usually the first
person to finish my mathematics test in elementary school. Only when I arrived
at the University of Calgary did I realize the true diversity of mathematics. In
particular how intertwined mathematics and physics are in explaining our universe.

I would like to thank my family for putting up with my short periods of insanity
and my supervisor J. Sniatycki for encouraging me to pursue my master degree. I
would also like to thank L. M. Bates and R. Cushman for several suggestions and
ideas that I used during the editing of my thesis. As well, I would like to thank all
the first year students at the University of Calgary for making calculus so enjoyable

to teach.

iv



Table of Contents

Approval Page i
Abstract | iii
Acknowledgements ' iv
Table of Contents v
List of Figures vi
1 Reduction 1
11 History.. . . . ... i e 1
1.2 Nonholonomicreduction . ... ..................... 3
2 The theory of nonholonomic reduction ' 5
2.1 Nonholonomic Hamiltoniansystems . . . .. .............. 5
2.2 Symmetriesandreduction ... .................. R
2.3 The 2-dimensional Kepler problem . . ................. 9
2.4 The nonholonomic free particle . .......... e e e 12
3 Nonholonomic reduction for the rolling disk 17
31 Therollingdisk . . ... ..... ... ..., 17
3.2 The equations of motion for the rolling disk . . ............ 20
3.3 Reductionby E(2)xSO(2)........ e e 25
3.4 New coordinates for the reduced manifold M . . .. ... .. ... .. 30
3.5 Integrating theequations . ... ..................... 31
4 Orbits for C=0 35
4.1 Equations of motionfor C=0 ... ................... 35
4.2 Infinitesimal symmetries for the constants fiand fo . . ... ... .. 36
4.3 Orbits . . . . . L e e 37
5 Conclusion “ 47
5.1 Summary . . . .o i e e e e e e e e e e e e e 47
Bibliography ' 49



3.1

4.1
4.2
4.3
4.4
4.5
4.6

List of Figures

Coordinates for the rolling disk . . ... ............. ... 18
Potential energy for fo=0 . ... ... ... ... ... .. ... .. 39
Phasediagramfor fo=0.. ... ... .. ... ... ... 40
Potential energy for f; # 0 and a weak gravitational field . . . . . .. 42
Phase diagram for f, # 0 and a weak gravitational field . . . . . . .. 43
Potential energy for f» # 0 and a strong gravitational field . . .. .. 44
Phase diagram for fs # 0 and a strong gravitational field . . ... .. 45

vi



Chapter 1

Reduction

1.1 History

Mechanics is an important part of mathematics today. Since Newton has published
his three laws of motion in Principia in 1687, there has been steady progression in
the area of mechanics.

In statics, the principle of virtual work states that a mechanical system is in

equilibrium if the virtual work §W done by the force F = (Fj,: -, F,) for all possible

virtual displacements 6§z = (6z,, -, éz,) which do not violate the given constraints
is zero.
n
oW = EF,-&::; =0. (1.1)
=1

These constraints can be holonomic or nonholonomic, however, Bernoulli originally
stated the principle of virtual work for holonomic constraints in 1717. Holonomic
constraints can be written as a integrable one-form where as nonholonomic con-
straints cannot. D’Alembert realized that the virtual work done by the forces of
constraint is zero. This is known as d’Alembert principle. This led to a generaliza-
tion of the principle of virtual work to dynamics by; including the force of inertia
with the other forces. Thus Newtons equations can be written in the form

n

‘Z_; (m&; — F;) éz; = 0, | - (1.2)

where the force F = (Fy,:-+, F,) do not include the forces of constraint and the
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virtual displacements 6z = (64, -+ ,62,) do not violate the given constraints. This
work was done in 1743 in his book Traité de dynamique.

Lagrange made several contributions to the area of mechanics. One contribution
is the method of Lagrange multipliers dealing with problems involving constraints.
Instead of solving equation (1.2) for all possible variations 6z satisfying the con-
straints, one can solve the following equivalent problem. If the k constraint one-forms

are

EA;jd:c,-, forj=1,-+,k, (1.3)

=1

and the );’s are the Lagrange multipliers then for all possible variations 6z we have

n k
Z (m:z:, - F; — E /\5A.~j) éz; = 0. (1.4)

=1 j=1
Another contribution is the idea of generalized coordinates and configuration space.

The advantage of generalized coordinates is that the fewest number of coordinates
are needed to describe the configuration of a mechanical system. A mechanical
system with n degrees of freedom and k holonomic constraints can be written as
a mechanical system with n — k degrees of freedom and no constraints. Because
nonholonomic constraints involve a relationship between the velocities, we cannot
eliminate a coordinate. Another advantage of generalized coordinates is that the.
equations of motion are not dependent upon the coordinates chosen. Therefore, a

Hamiltonian system with n degrees of freedom and %k nonholonomic constraints, in

generalized coordinates ¢ = (g1, ,gn), equation (1.4) becomes
»(ddT 8T k

where T is the kinetic energy of the mechanical system. A variation of these equations

are Hamilton’s equations, whereby the system of second order differential equations



is changed into a system of first order differential equations by the Legendre trans-
formation. Most of this work was published by Lagrange in Méchanic Analytique in
1788.

With the development of variational calculus, we have the creation of other varia-
tional principles. Euler derived equation (1.5) by the methods of variational calculus.
Thus equation (1.5) is sometimes ref;arred to as the Euler-Lagrange’s equations of
motion. Hamilton’s principle for a mechanical system with conservative forces and

holonomic constraints states that the variation of the integral

t2
§I=6[ Ldt=0, (1.6)

4
where L is the Lagrangian function. Hamilton’s principle does not work for nonholo-
nomic constraints.
Before reduction was accomplished, the theory of Lie groups and group actions

on symplectic manifolds were needed. These theories were developed in the 1800’s.

1.2 Nonholonomic reduction

The idea of reduction is to reduce the number of degrees of freedom a mechanical sys-
tem has by taking advantage of the symmetries. With holonomic constraints it was
realized that for every holonomic constraint a mechanical system had the number of
degrees of freedom can be reduced by one. However this is not possible for nonholo-
nomic constraints. Due to the difficulty of handling nonholonomic constraints the
first attempts at reduction were for holonomic Hamiltonian systems with symmetry.
Meyer-Marsden-Weinstein [5] [4] came up with a reduction method for a holonomic

Hamiltonian system with symmetry. This was accomplished by taking a Hamilto-



nian system on a symplectic manifold and quotienting by the group actions of the
symmetries to get a reduced Hamiltonian system on a smaller symplectic manifold.
This theory is fully explained in Foundations of Mechanics by Abraham and Marsden
[1]. However, this theory does not apply to nonholonomic Hamiltonian systems.

In the paper Nonholonomic reduction [2] by L. M. Ba.te; and J. $niatycki, they
have a reduction technique for nonholonomic Hamiltonian systems. A disk that rolls
without slipping is an example of a nonholonomic Hamiltonian system, which is
integrable. Because the configuration space @ of the disk admits a fairly large sym-
metry group F (2) x SO (2), it is an excellent example to test their reduction theory.
In applying their method, the rolling disk can be reduced from a nonholonomic
Hamiltonian system with five degrees of freedom to a problem on a four dimensional
manifold M with a nondegenerate non-closed two-form. By partially integrating the
differential equations on M one realizes the reduced dynamics on M is foliated by
a two parameter family of Hamiltonian systems on the cotangent bundle of an open
interval with one degree of freedom, where the two free parameters correspond to

two conserved quantities on M.



Chapter 2 |

The theory of nonholonomic reduction

2.1 Nonholonomic Hamiltonian systems

A holonomic Hamiltonian system (P,w, k) consists of a manifold P, a Hamiltonian
function h, and a symplectic two-form w. The equations of motion for such a system

are satisfied by integral curves of a vector field X on P, such that
X w = dh. (2.1)

Usually P = T*Q, where Q is the configuration space of the system and w is the
canonical symplectic two-form.
A nonholonomic Hamiltonian system (P,w, h,¢?) with k linearly independent
nonholonomic constraint one-forms ¢ on @ can be written as
k
X_aw =dh+ ) Aam*¢®, (2.2)
a=]1

where the constraint forms satisfy

$LA...A8*#0. (2.3)

Here w : T*Q — @ is the cotangent bundle projection and A, are the Lagrange
multipliers.

In the theory developed in [2], the first goal is to write the equations of motion
for a nonholonomic Hamiltonian system in such a way that we emulate equation

(2.1). Weber [10] noticed the constraint one-forms define a constraint manifold and
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a horizontal distribution H. In [2] it is shown that restricting the two-form w to this
distribution H is non-degenerate. Then restricting equation (2.2') to this distribution

H becomes

X_JwH = dgh, (2.4)

where wy is the restriction of w to the distribution H and dgh is the restriction of
dh to the distribution H. The second goai is to develop a theory of reduction that
results in a set of reduced equations on a reduced manifold A which mimics equation
(2.4).

The proofs of propositions and theorems in this section are given in [2]. The
propositions and theorems are stated in the notation of a nonholonomic Hamiltonian

system (P,w, h, ¢%).

Proposition 1 (Conservation of energy) Let c(t) be an integral curve for X € T'P.

Then h(c(t)) is constant in t.

Because of the constraints ¢® there are some states in P that are not possible.
This is where Weber noticed that the constraints define quite naturally a submanifold
M of P. This constraint manifold M is defined by the kernel of the k linearly

independent constraint one-forms ¢% on Q.

M= {p €P| <¢a°7r (P) a‘C—l (P)> =0,a=1,.., k}a (2‘5)

where the map £ : TQ — P = T"*Q) is the Legendre transformation and 7 : P — @
is the cotangent bundle projection. Define the distribution F by

F={veTP|(n*$*v)=0,a=1,..,k}. (2.6)



Now define a distribution H representing the set of admissible velocities and accel-

erations a mechanical system can have without violating the constraints ¢ by
H=FNTM. (2.75

Theorem 2 The restriction of w to H, denoted wy, is nondegenerate.

Proposition 3 The Hamiltonian vector field X € TP is in the distribution H.

The above proposition implies that the dynamics of a Hamiltonian system must

satisfy the constraints. Let X be the vector field satisfying

k
X w=dh+ Y dam*s®. (2.8)
a=1

Because of the Proposition (3), the vector field X is in the distribution H. Let wy
be the restriction of the two-form w to the: distribution H and dgh be the restriction
of the one-form dh to the distribution H. Because the distribution H is in the kernel
of the constraint forms, when we restrict equation (2.8) to the distribution H, we

have

X dwy = dgh. (2.9)

This makes sense, since X € H. Thus equation (2.9) now mimics equation (2.1) for
a holonomic Hamiltonian system.
2.2 Symmetries and reduction

Let G be a Lie group acting on P, where the action of G on P is defined by the
map & : G X P — P. Suppose for all g € G the map &, : P — P is defined by



®, (p) = ®(g,p) for all p € P. The group G is symmetry group of the nonholonomic
Hamiltonian system (P,w, h, ¢*), if for all g € G, the map &, does not violate the
constraints, w= ®;w, h = ho®,, and the distribution H defined by the kernel of the
one-forms ¢ is invariant under the map ®,.

Let M be the space of G orbits in M. Assume M is a quotient manifold of M

with projection map p: M — M.
M = M/G. (2.10)

Vector fields and distributions on M pushdown to M. However, the two-form wy

need not, because there may be infinitesimal symmetriés X¢ such that
Xewy # 0. (2.11)

Let V' be the distribution on M tangent to the group orbits of G in M, where
V is spanned by the infinitesimal symmetries generated by the action ®. Define the
distribution U by
U={ue H|wg(uv)=0,Yve VNH}. (2.12)
Now, U and V project to M and p,V = 0. Define the reduced distribution H by
H=p,U. . (2.13)

Theorem 4 The Hamiltonian vector field X is contained in U.

Theorem 5 The restriction wy of w to the distribution U pushes down to a nonde-

generate form wg = pwy on H. Furthermore
X _qwg = dgh, (2.14)

where h = p,hys is the pushdown of the energy h restricted to M.



Note the original equation was
X dwy = dgh. (2.15)

Using the symmetries to reduce the problem, we have an equation of the same type

as (2.15) on the reduced manifold M

X_Jwg = dgh. (2.16)

2.3 The 2-dimensional Kepler problem

Consider the 2-dimensional Kepler problem of the motion of two bodies in the plane
under a mutual gravitational attraction. Suppose one body is fixed at the origin
of R?. In polar coordinates (r,8), the Hamiltonian system (P,w, k) for the Kepler

problem is given on the phase space
P=T*'Q="T"(R"x50(2)), (2.17)

with the canonical symplectic two-form

w = df A dps + dr A dp,, (2.18)
and the total energy
| NI AN
k= o (p + o - (2.19)

Here, p 18 proportional to the gravitational constant. The two-dimensional Kepler
problem is an example of a holonomic system with symmetry. Therefore, we hope
the reduction method in [2] to give the same reduced Hamiltonian system as we

would expect with the reduction method of Meyer-Marsden-Weinstein.
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Because there are no constraints, M = P, H = TP, wy = w, and dgh = dh.

Suppose X is the Hamiltonian vector field sa.tisfyixllg
X dwy = dgh. (2.20)
Since wy = w and dih = dh, equation (2.20) becomes
X 1w = dh, (2.21)

which is the same equation we expect for a holonomic Hamiltonian system. Now the

Hamiltonian vector field X satisfying equation (2.20) is given by
1 P, b 1

where the integral curves of X are solutions to Hamilton’s equations.
The Kepler problem has'an S* symmetry which is given by the action S? x P —»
P defined by
(a7, Pry 0,06) — (7, 00,0 + Of,pg). - (2.23)

Thus the infinitesimal generators of this action is the distribution
V = span {05} . (2.24)

By inspection
U={ueTP|w(uv)=0,Yve VNTP} (2.25)
= gpan {0y, Op,, 06} .
From equation (2.22), we see X € U.
Let p: M — M = P/S! be the projection map defined by

[ (1‘, Pr, 0:?0) = (7‘, pryp@) ’ (2.26)
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where M is the reduced manifold. Then p.V =0 and
H = p,U = span {6, 5, } (2.27)

Thus we have the following Hamiltonian system (M , WHr, l-z,) on the reduced manifold

M, where the reduced two-form wg on M is given by
wg =dr Adp,, (2.28)
and the total energy 2 on M is given by
he L ( 2 +p‘2’) - % (2.29)

The reduced vector field X on M satisfying equation (2.14) is given by

1 P M
X = “n";prar + (F"’ ﬁ' ap,., ’ (2'30)

and X = p,X. Thus X is a vector field on the three dimensional manifold M =
T*R* x R. Since py = 0, ps is a constant. Therefore, we have a constant of motion

on M. Suppose we define a map f.: N. — M by

fe (7‘, Pr) = (r)pf1 c) ) . (231)

where N, = T*R*. If we pull back the Hamiltonian system (M , Wi, 7:.) to N. by the
map f. we have the Hamiltonian system (Nc,(’b, 7;), where @ = f*wz = wg and

- 1 c ©

h = hefe = 2m('+r ) Ty
Thus the reduced dynamics on M is foliated by a one-parameter family of Hamilto-
nian system (N,_., w, 7z) with one degree of freedom, where the Hamiltonian system

(Nc,d), ﬁ) is the one given by the reduction of Meyer-Marsden-Weinstein.



12
2.4 The nonholonomic free particle

A simple example of a nonholonomic system is the nonholonomic free particle. A
particle is allowed to move freely in R® with coordinates z, y, and z, with the
constraint p; = yp,. This example was given in [2], where the particle is assumed to
have unit mass. Thus the nonholonomic free particle is given by the nonholonomic

Hamiltonian system (P,w, k, ¢), where the phase space

P=T'R, (2.32)
the canonical two-form
w = dz A dp, + dy A dp, + dz A dp,, : (2.33)
the total energy
) |
h=g (22 + 2} +72), (2.34)

and the one linearly independent constraint on R3
¢ = dz — ydz. (2.35)
The constraint manifold M is defined by
M = {(2,9,2,Per Py s) € T*R® | p. = ypa}. (2.36)

Now z, y, 2, p., and p, are a set of global coordinates on M, because M is a graph

over these coordinates. Suppose i : M — T*R3 is the inclusion map defined by

i(m’ y’zvpz,py) = (w’ Yy 2y Pzy Py, sz) . (2'37)
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Note this map is in harmony with constraint p, = yp,. Then pulling the nonholo-
nomic Hamiltonian system (P, w, k, ¢) back to M by the inclusion map 7, we have the

nonholonomic Hamiltonian system (M, was, har, ¢), where the two-form wys = i*w
wy =dz Adp, — p'zdy Adz + dy A dpy + ydz A dp,, (2.38)
the total energy has = hot

hay = % ((1+9%) 02 +22), (2.39)

and the constraint one-form ¢ = i*$ on R3
¢ = dz — ydz. (2.40)

By definition, on M
H = ker{dz — ydz} o (241)

= span {y@, + 0z, Oy, Op,, 3,,,}
The vector field X on M satisfying equation (2.9) is given by

X = p;0: + py0, + yp.0; — PzPyOp, - (2.42)

v
1+
Thus integral curves of X are solutions to the equations of motion for the nonholo-
nomic free particle.

The nonholonomic free particle admits the group action of the two dimensional

translation group in the z-z plane. On P the action R? x P — P is defined by

(331, 21,T,Y, zapzapyypz) — ((B +21,¥,2+ zl,P:p,py,Pz) . (243)

Note this action is in harmony with constraint p, = yp,. Thus on M the action

R? x M — M is defined by

(mlv 21,%,Y, Z,Pz,Py) — (.’B + T1,Y,2+ zl,P:c,Py) . (244)
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Therefore, the infinitesimal generators of this action on M is given by the distribution

V =span {0;,0;}. (2.45)
Now
V N H = span {yd, + 8.}, (2.46)
and by definition
U={ueH|wyg(uv)=0Yve VNH} - (2.47)

= span {y0; + 8z, (1 + %) 0y — yP=0p, Oy, } -

From equation (2.42), we see X € U, because

X =p; (yaz + ax) + 1 -I*’-yyz ((1 + yz) ay - yp;,ap,) . (2°48)

Let p: M — M be the projection map defined by

p(2,Y,2,P2,0y ) = (¥, P29y ), (2.49)

where the reduced manifold M is defined by
M = M/R?* = {(y,p:,p,) € B*}. (2.50)

Thus p,V = 0 and on the reduced manifold M we have the distribution

H = p,U = span {(1 + y2) Oy — YPz0p,, a,,v} . (2.51)

Thus we have a generalized Hamiltonian system (M Y Wi, 7;) on M, where wy is de-

fined by the two spanning vector fields on A

wg ((1 + yz) Oy — ypz0p,, 6}7:/) =1+ (2.52)
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and the total energy A on M is
;1 2\,2 , . 2\.
h—-2—((1+y)pz+py). (2.53)
Then the reduced vector field X on M satisfying equation (2.16) is given by

X =p,8, - 'i’f*_y‘?l’zpyap- (2.54)

and X = p,X. Note that p, = 0. Thus p, is a conserved quantity.
If we look at the differential equation that is given by the vector field X and

realize that

. dp Y
e =pye = __ Y, o, 2.
Pz = Py Iy 14 ygp Py (2.55)

then we have the differential equation

dp. _ Y
o 1+y2p,. (2.56)

Integrating this equation, we get

(44
T+

Pz = (257)

Suppose we define a map f, : N, — M by

fe(y,py) = (y,—\/-l-%,;,py) ; (2.58)

where ¢ is a constant and N, = T*R. Pulling the generalized Hamiltonian system
(M Wi, 7;) on M back to N, by the map f., we get the Hamiltonian system (Nc, @, 7z),
where

@ = flwg = dy A dv,, (2.59)

and

= fh= % (¢ +752). | (2.60)
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Moreover,

X =p,8, ' (2.61)

is the vector field satisfying the equation

Xoao=dh, (2.62)
and
. -3
fauX = pyay —cy (1 + y2) 2 Pyau. (263)
= pyOy — 1z P=py0s,

_%.
Thus the reduced dynamics on M is foliated by a one-parameter family of Hamilto-

nian systems (Nc,&'), 7L) with one degree of freedom.



Chapter 3

Nonholonomic reduction for the rolling disk

3.1 The rolling disk

A disk that rolls without slipping is a non-holonomic Hamiltonian system with
symmetry, which is integrable. Thus it is an excellent example to apply the non-
holonomic reduction techniques given in Chapter 2. In the book, A Treatise on
Analytic Dynamics [6], Pars uses Lagrange’s equations and the method of undeter-
mined Lagrange multipliers for the non-holonomic constraints to find the equations
of motion for the rolling disk. Therefore, we will be comparing our derivation with
that of Pars.

The coordinates Pars uses to describe the rolling disk are ¢, 7, 8, ¢, and . We
will use the coorciinates z and y for the center of the disk instead of { and . Asin
the following diagram, the tilt of the disk is determined by the angle § as measured
between the z-y plane and the plane containing the disk. When 6 = 0 or =, the disk
is lying flat on the z-y plane. Thus it is expected that our equations of motion should
not be defined for these values of . The direction the disk is rolling is measured by
the angle ¢ with respect to the positive z-axis. The rotation of the disk about the
z1-axis, which is perpendicular to the plane containing the disk, is measured by the
angle 9. The configuration space Q for the disk is R? x SO(3) and we will work on
the open submanifold given by 0 < 6 < 7, which will still be denoted by Q.

17



rolling disk

rolling disk

side perspective

6

x-y plane

X4

Figure 3.1: Coordinates for the rolling disk

The translational kinetic energy of the disk on T'Q is given by

KE = -;-m (v: + v} + v} cos’ﬂ) .

The rotational kinetic energy for the disk on T'Q is given by

1 : 1, - 2
RE = EA (vg + v} sin 20) + EC (vy + v, co86)".

18

(3.1)

(32)

~ Here, A is the moment of inertia about the z;-axis or the y;-axis, which goes through

the center of the disk and C is the moment of inertia about the 2;-axis, which goes

through the center of the disk. For our equations to be valid, we will assume a mass

distribution such that the center of mass for the disk occurs at the center of the disk.

Then the potential energy on T'Q is then given by

PE .= mgrsin,

(33)
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where m is the mass of the disk and g is the acceleration due to gravity. Therefore,

the Lagrangian [ : T'Q — R for the rolling disk is

I= im (vﬁ + v2 + r2v} cos 20) +14 ('vg + v} sin’ﬂ)
+10 (vy + v, cos )* — mgrsin 6.
Consequently, the Legendre transformation £ : TQ — T*Q is given by
Pz = MYy,
py = my,
ps = (A + mr? cos 26) vy,
pe = Av,8in 20 + C cos 0 (vy + v, cosb),
py = C (vy + v, co86).
Thus the Hamiltonian A : P = T*Q — R for the rolling disk is
h= 2 (p2+p3) + 1 (A+mr? cos?6)™ 3 + grkorg (py — Py co8 B)’
+2+1(5p§, + mgrsiné.
The two non-holonomic rolling constraints for the disk are
¢ = cos p dz + sinp dy — rsin § d,
¢? = —sinp dz + cos p dy + 7 cos 6 dp + r dip.

(34)

(3.5)

(3.6)

(3.7)

These are the non-holonomic constraints derived by Pars in [6] on p. 120, where 7 is

the radius of the disk instead of a. These constraints are linearly independent, since

¢! A ¢? = dx A dy + other terms # 0.

Thergfore, the nonholonomic Hamiltonian system (P, w, h, $*) for the rolling disk

is given on the phase space P = T'*Q), with the canonical two-form

w =dz Adp; + dy Adp, + df A dps + dp A dp, + dip A dpy,

(3.8)
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where

h= g (P2 +P}) + §(A+mr?cos®0)™ p} + 5rkms (pe — Py cos)’  (3.9)
+§10—p$ + mgrsiné, .
and

! = cospdz + sinpdy — rsiné df,
¢ @ @dy (3.10)

¢* = —sinp dz + cospdy + rcos f dp + r dyp.
3.2 The equations of motion for the rolling disk

None of the theory in [2] depends upon being in phase space P = T"*Q. In the rolling
disk there is an interesting case when the Legendre transformation is singular. This
occurs when the moment of inertia C' = 0. For this reason I have chosen to work in
the tangent bundle T'Q. This way I do not have to invert the Legendre transformation
L:TQ — T*Q. It is also much easier to work out the constraint manifold M in
TQ then T*Q.

Let the constraint manifold M be a submanifold of T'Q defined by the zero set

of the constraints in 3.7. Thus
M={ueTQ| (¢%n(u),u) =0,a=1,2}, (3.11)
where 7 : TQ — @ is the tangent bundle projection. Suppose v € T'Q, where
U = 0,0, + vy 0y + V909 + v,0, + vy 0y, (3.12)

then

¢tom (u),u) = vyco8¢p + vysing — rvgsingd =0,
(¢rom (u),u) ¢ +vysing —ryg (313)

(@%om (u) yU) = —vz8inp +vycosp + rv,co86 +rvy =0.
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Solving for v, and v, we have

Vs = 1vg 8in 6 co8 ¢ + Tv,, cos @ sin ¢ + rvy sin @, (3.14)
vy == Vg 8in § sin ¢ — rv,, cos § cos ¢ — rvy cos .
Thus we can use z, y, 0, ¢, ¥, vg, vy, and vy a8 a set of global coordinates for M,
since M is a graph over the variables z, y, 0, ¢, ¥, vy, v,, and vy.

Suppose we define the inclusion map ¢ : M — T'Q by

i(ma ¥,6, \'Z) %, ve, Ve vt/') = (wa ,9, P, Y, Uz, Vyy Vgy Vg, 'U,p), (3°15)

where v, and vy are defined by 3.14. To eliminate as many variables as possible,
we can pull the nonholonomic Hamiltonian system (P,w, h,¢*) back to M by the
Legendre transformati'onﬂ and the inclusion map 7. Thus we have the nonholonomic
Hamiltonian system (M, was, has, ¢°),where the symplectic two-form wys is defined

by , -

wy =*Llw
= mr (vgcos §cos @ — v, sin G sinp)dz A df
+mr (—vg sin 0 sin ¢ + v, cos 8 cos @ + vy cos @) dz A dp
+mr sin 6 cos ¢ dz A dvg + mr cos fsin p dx A dv, + mrsinpdz A dvy
+mr (vgcos fsinp + v, sinfcos ) dy- A df
+mr (vgsin 8 cos ¢ + v, cos Fsin @ + vy sin ) dy A dip
+mr sin sin p dy A dvg — mr cos 6 cos o dy A dv, — mr cosp dy A dvy
+ (A + mr? cos 20) df A dvg + (Asin?6 + C cos20) dp A dv,
+Cdip A dvg + C cos 8 dip A dvy, + C cos 8 dp A du,,

+Cv,8in0d6 A dip + sin 6 (2(A — C) v, cos 6 — Cvy) dip A df,
(3.16)
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the Hamiltonian has : M — R is defined by
hat = *Lh = 3(A+mr?)vd +1(C + mr?) (vy + v, cos 6)? (3.17)
+} Av? sin *0 + mgrsin 6,
and the constraints ¢% on Q are

@' = cos p dx + sinp dy — rsin § df,

(3.18)
¢? = —sinp dz + cosp dy + rcos 8 dp + rdyp.
Let H be the distribution on M defined by
H={veTM| (i*r*¢*v) =0,a=1,2}, (3.19)

where i : M — T'Q is the inclusion map. The distribution H represents the set of
admissible variations that do not violate the constraints. In the coordinates z, y, 6,

®, ¥, vs, vy, and vy on M, we have

B = 508 { Xo, Xy, Xy, Oups oy By | (3.20)
where
X¢ = rsinfcosp 8, + rsin 0 sin ¢ 0, + O,
X, =rcosfsinpd, —rcosf cospdy+ 0y, (3.21)
Xy = rsinp 8, — r cos ¢ Oy + Oy.

The distribution H is not integrable, because

Xo, Xyl = rcos 8 + rsinp 0y,
[Xe, Xy] p p Oy (3.22)
[Xe, [ X, Xy]] = —rsin 8 + rcos p By,
are not linear combinations of vector fields in H. However, taking all possible lin-
ear co_mbina.tions of the Lie brackets of the vector fields in H, we do obtain the

distribution
TM = span {8z, 8y, 0, Oy, Oy, Bugy s, Ouy } - (3.23)
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Hamilton’s equations on M is a vector field X € T™ , such that

2
X dwpy = dhpr + E Ast*m* P, (3.24)

a=1

where

dhy = (Av: cos 8sin 6 + mgr cos § — (C + mr?) (vy + v, cos 6) vy, sin 0) df
+ (A + mr?) vgdvg + (Av, sin?8 + cos 8 (C + mr?) (vy + v, cos §)) dv,,
+(C + mr?) (vy + v, cos ) duy,

(3.25)
the A,'s are the unknown Lagrange multipliers and
} = cospdx + sinp dy — rsinf df
¢ @ @ dy , (3.26)
#? = ~sinp dx + cos @ dy + r cos § dp + r dip.
By Theorem 3, we know X € H. Thus let
X = 6Xg + ¢Xp + Xy + 0600, + 0p0u, + 0400y - (3.27)
From the constraints, we already know that
& = v, = rvg sin 6 cos ¢ + rv,, cos 0 sin ¢ + rvy sin p, (3.28)

Y = vy = rvg 8in 0 8in ¢ — rv,, cos § cos ¢ ~ rvy cos p.

Therefore, the only unknown variables are 4, @, P, s, ¥y,and vy. Because Xy =
0Os+other terms, similarly for X, and X, we are justified in stating equation (3.27).

By contracting on both sides of equation (3.24) with vectors in H, the following
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equations hold

(Xdwp, Xp) = Av} cos §sin 6 + mgr cos §
~(C + mr?) (vy + v, cos 6) vy, 8in 6,

(Xawpm, X,) =0,

(Xawn, Xy) =0, (3.29)

(Xawng, 8,,) = (A + mr?) v,

<X_le, 60¢> = Av, sin 20 + cos § (C' + mr?) (vy + v, cos §),

<X_JwM, 3.,,,,) = (C + mr?) (vy + v, co86).
Since the one-forms :*r*¢® annihilate the distribution H, the terms involving the
Lagrange multipliers in (8.24) disappear. Now the linear equations in (3.29) are

then solvable for

é=va,
P = Vg,
P = vy,

Vo = gy (Av: cos 0sin § — (C + mr?) (vy + v, cos 8) v, 8in 6 — mgr cos 9) )
Uy = ¥ (C (vy + vy co8 §) — 24v, cosb),

vy = %%‘;-vgvv sin 6 — %282 (C (vy + v, co8 ) — 2Av,, cos 6).

(3.30)
since the restriction of wys to the distribution H is nondegenerate. The ‘equations

given by Pars in [6] on p. 122 are

(A+mr?)é = Av? cos 0sin 8 — (C + mr?) (vy + v, cos 6) v, sin 6 — mgr cos b,
(C + mr?) -gt- (vy + vy cos 6) = mrivgu, sin b,

gt- (Av, sin 30) = C (vy + v, cos §) vgsin 6.
(3.31)
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We will now verify that (3.30) and (3.31) are equivalent. The first equation in (3.31)

is easily derived from (3.30) since
(A + mr’) 6 = (A +mr?) (3.32)
= Av]cosfsinf — (C + mr?) (vy + v, cos 8) v, sin .
—mgr cosf.

The second equation in (3.31) is obtained as follows

(O’ + mrz) -% (vg + vy co8 8). = (C + mr?) (vy + ¥, cos 6 — vgsin ) (3.33)
= (C + mr?) (%i‘f"':‘—:,ivgv,, 8in 6 — vg sin 0)
= mrivgv, sin b.

The third equation in (3.31) comes from

% (A% sin 29) = A, sin 26 + 2 Avgv,, 8in 6 cos §
= (C (vy + v, cos 8) — 2A4v,, cos ) vg 8in 6 + 2Avgv,, sin 6 cos §

= C (vy + v, cos ) vgsin b,
(3.34)

Therefore, the equations derived by Pars and our equations agree. -
Now, if we define wy to be the restriction of wys to the distribution H and dghas

to be the restriction of dhas to the distribution H, then
X_.Iw}; = dHhM, (3.35)

Thus equation (3.35) resembles the equations for a Hamiltonian system.

3.3 Reduction by E(2) x SO (2)

On configuration space Q, the rolling disk admits the symmetry groups of the Bu-
clidean group E (2) and the rotation group SO (2). The Euclidean group involves
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translations and rotations of the disk in the z-y plane and the rotation group involves
rotations about the axis perpendicular to the plane containing the disk. If the action

®:E(2) x SO(2) x Q — Q is defined by

<I>(m1,y1,a,ﬂ,m,y,0,90,¢) (3 36)

=(zcosa+ysina+zy,zsina—ycosa+y1,6,p +a,¥ + B),

then the infinitesimal generators of this action on Q is given by the distribution
span {8z, 0y, —y0: + €0y + 0,04} . (3.37)
'Lifting these infinitesimal generators to T'Q, we have the distribution
span {8z, 8y, —v,B,, + V200, + 0, 0} - (3.38)

On M, the infinitesimal generators of our symmetries are given by the distribution

V = span {0z, 0y, 0y, 0y} , (3.39)
since
44 (0z) = Bz
(0) =& (3.40)
i (0p) = —vy0,, + vz0,, + 0y,
14 (Oy) = 0Oy.

Now that we have our infinitesimal generators of our symmetry, we can proceed

with the reduction. Therefore,

rcos@sinpd; — rcosfcosp by, + 0,
V N H =span i PoT O ) (3.41)

rsin(paz;rcostpa,,+6¢



and
U={u€ H|wyg(uv)=0,YveVnH}.
Thus
U = span {Yy,Y,,Yy,8,,} ,
where

Yy = rsinfcosp 0, + rsinbsinpd, + 0
s ((C+mr2) (vy + vy cos8) — 24v,, cos §) B,,
~—1a=5 ((C + mr?) (vy + v, cos8) — Av, (1 + cos 26)) Ouys
Y, = rcosfsinpd; —rcosfcospd,+ 0, —mvgcosoaw
+ (p2r + 2EE450) vosin 6 3,

Y, =rsingd, — rcospdy + Oy — mvaa,,, + f.{%vgcowaw.

The distribution U is nonintegrable, because

[Bup, Yy] = 27 (cos 8 8y, — B, ) »
[Bon: Y] = 3525 (008 880y = By,) + g sin b B,

[Ye,Yy] =rcospd, + rsinpdy,
Yy, Yy, Yyl] = —rsing 0, + rcos 9,

27

(3.42)

(3.43)

(3.44)

(3.45)

are not linear combinations of vector fields in U. Taking all possible linear combina-

tions of Lie brackets of the above vector fields in U, we get the distribution

TM = span {8;, 8, 8y, Oy, Oy, Oug, Ouyy Ouy } -

(3.46)

Let M = M/G be the reduced manifold with the projection map p: M — M

defined by

4 (zyy’ 6,0, ¥, ve, Ve, v'/’) = (01 vg,v¢,v¢) .

(3.47)
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The reduced distribution H is defined by

H=pU
9 + o= ((C + mr?) (vy + v, cos §) — 24v, cos §) 3,
— a5 ((C + mr?) (vy + v, cos 8) — Av, (1 + cos %6)) d,,,,

v

— 2 2 2 cos 2 .
= span | — o0 cos 0, + (pmer + Ets?) vesin 60s,,
mr

mr2 2
— Ao g060u, + Foige c0s 00,

O,

(3.48)

Taking all possible linear combinations of the above vector fields we see that
H = span {8, Ovs, Ovy, vy} . (3.49)

The restriction wy of w to the distribution U pushes down to a non-degenerate form

wg = pwwy. The values of the two form wy are given by

wu (4, B) Ye Yy Oue Y, B
Y, - 0 0 (A +mr?) 0
Yy 0 0 0 mrvg sin 6
(3.50)
O, —(A+mr?) 0 0 0
Y, 0 —mr?vg sin @ 0 0
A

Note that wy is nondegenerate even if ¢ = 0. Thus we have the generalized Hamil-

tonian system (M s Wi, 7z), where the reduced two form wgz on M is given by

wg = (A+mr?) df Adve +adf A dv, +bd8 A dvy + cdvy A dv,, (3.51)
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a= ?,'L"’:‘:; ((C + mr?) (vy + v, cos 8) — Av, (1 + cos 29)),
b= %‘%‘;’;— (C (vy + v, cos 0) — 2Av, cos §), (3.52)
c = Sme Aging.,
and the reduced Hamiltonian & on M is given by
h= L(A+mr?)v}+1(C+mr?)(vy+v,cos6) (3.53)
+3Av3 sin 20 + mgrsin 6.

Let X be the reduced vector field on M satisfying
X _iwg = dgh, (3.54)
where dgh is given by

dgh = (Av2 cos§sinf + mgrcos§ — (C +mr?) (vy + vy cos6) v, sin ) df  (3.55)
+ (A + mr?) vedug
+ (Av,sin26 +'cos 8 (C +mr?) (vy + v, cos 8)) dv,
+ (C + mr?) (vy + v, cos 6) dvy.

Then the reduced vector field X is given by
X= éaa + vgOvg + 'l'l,,a'v‘,, + 1),/,31),;,, (3.56)

where
6 = vy,
Vo= Tt (Av: cos §8in § — mgr cos § — (C + mr?) (vy + v, cos 8) vy, sin 0) )
Vp = otz (C (vy + v, co86) — 2Av, cos b),

Dy = %‘;—vgv‘, sin § — 222 (O (vy, + v,, cos §) — 24v,, cos §) .
(3.57)

Moreover, X = p,X.
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3.4 New coordinates for the reduced manifold M

Suppose we perform the following change of coordinates on M, where

pe = (A +mr?) vy,

po = (C +mr?) (vy + v, cos 8) cos § + Av, sin 36, (3.58)

py = (C + mr?) (vy + v, cos 8).
The idea for this change of coordinates came from the Legendre transformation.
However, we use the Hamiltonian function hps on M instead of the Hamiltonian
function h on P. Note that the map (6,vg,v4,vy) — (6, ps, Py, py) is nonsingular
even when €' = 0. In these new coordinates we find that the reduced distribution A

is given by

3\

4
0p + %"%’p.ﬁ (cos§ —1) (6,,“, + cos 06,,,) )
\ ,
N me sin 00,,,
H = span < a*""’jp ? i » (3.59)
— ATy Pe 8in 60,
| (A+ mr?) 8.

/

and taking all pos.sible linear combinations of vector fields in H gives the distribution
TM = H = span {69,6,,,,6,,,,6“} . (3.60)
Using (3.58), the reduced two form w g is given by

2
wg = db A dpg — 2T 7dpy A dpy (3.61)

mrpg sin
Note that the reduced two form wg is not closed, since

_ (A+mr?)cos A+ mr?
~ mrlpgsin 20 46 N dpy A dpy + mr3pksin f

dwg dpg A dp, A dpy (3.62)
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is non zero. In these new coordinates the reduced energy k on M is given by

1 24 — py co8 §)® +mgrsin b, (3.63)

LY g

2(C + mr’)p¢ 2Asin 29 ¥

where dgh is given by

dgh = (mgr cos 6 + ri—py (pp — pycos f) — =% 9 2255 (pp — py cos 0)2) dd (3.64)
+ s P Ao + 275 (P — py 08 6) dp,

+ (roasmyPs — 2225 (e — pu c089)) dpy.

The reduced Hamiltonian vector field X on M, satisfying
X _iwg = dgh,  (3.65)

is given by
X = éa@ + $60py + b0, + /3.#6,,,, (3.66)

where

6 = Zrmrpo)

cos §

po = 5255 (po — py c08 6) — 5y (pp — py co8 8) — mgr cos 6, (3.67)

mrnn

o = mmfmpg cot 8 (p, — py cos ) — CFme)(A+mrT) POPY:
P = Tamrypo csc B (py — py cos 6) .

3.5 Integrating the equations
From the differential equations (3.67) in the previous section, we can find a second

order differential equation for py as a function of §. In Rosenberg’s book, Analytic

Dynamics [8] the derivation of these equations are described as follows. Using 6 as
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a new time parameter we obtain from (3.67) the equations

M d mr® sin
P = Tz j" = iy Po <ot 8 (pp — py co8 8) — Rl s popy, (3.68)
py = A+mr= Pe~ip A(A+,..,-=)P9 cscf (p, — py cosb).
Therefore,
d
’;f me” cot 8 (p, — py cos 6) — B ERLp,, (3.69)
;;’ A csc 8 (p, — py cos b).
Differentiating the following equation
dpy
sin 6 —— iy (p,, py cos b), (3.70)
we obtain
2
s1n0dd202 + cos Odgg’ = m;‘ (‘ZP; — cos addO + py sin 0) (8.71)
2
mr
= 1 (~Eamfype + posino)
— _ Cme? 6
= Wﬂ,ﬁ sin 6.
Thus :
oy dpy _ Cmr?
a7 T T G )™ (3.72)

which is an equation of the Legendre type.
Let z = cos 24, then the differential equation (3.72) becomes

d’p,;, 1-32\dpy  Cmr? _
2(1 - z) ( 2 ) dz  4A(C+ mr’)p”b =0 (3.73)

This is the same differential equation as in [8] on p. 339. Here (3.73) is satisfied by

hypergeometric functions F (a, b; c; z) and F (a + 1,b + 1;¢; z) where

14y, 1= 1 __7 Cmri
== ,b= T =5 a.nd'y—Jl A+ mr), (3.74)
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Recall F (a, b; c; z) is defined by

Flobio) =3 Sl (3.75)
where
(a),=a(a+1)(a+2):--(a+n-1), (3.76)

similarly for (b),, and (c),. Therefore, a general solution to the differential equation

(3.72) is

_ l1+91—-9 'yl 2) (5+75 7.3 ,)
py = LF ( 724 g cos 0 ) + facos§F Y ,2,c030, (3.77)

where f; and f; are integration constants. Using equations (3.69), we can solve for
Py, Where

A

Pp = ;—;——slna

25+ Pwcos 6. (3.78)

Let N, .1,) be the cotangent bundle of an open interval (0,7). Now define a map
fist): N — M by
f(.ﬁ.fz) (07 PO) = (0, PG)PwPlﬁ) ) ‘ (3.79)

where

dpy
Pe —A;smﬂ 7 +p¢c030

(3.80)
Py = le( ,—'l, 2,cos’&) + facos§F (5—'-'4'1, 5: ,2,C0820)

Suppose we pullback the generalized Hamiltonian system (M ,WH, ﬁ) with the non-
degenerate non-closed two-form wy to Ny, 5) by the map fi4,5). Then we have
the Hamiltonian system (N( fruf2)1 @, 71.), where & is a nondegenerate closed two-form
defined by

W= fwg =db Adps, (3.81)



and the Hamiltonian k& on Ny, 4,) is defined by

1 2

T — 1 2 1
h= 2(A+mr’)p0+ 2(C’+mr2)p'/'+ 2Asin 26 (P

where p, and py are given by equations (3.80).
Let X be the vector field such that

X4 = dh.

Solving for X, we get

where

6= ) Po)
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— py cos )* + mgrsin 6, (3.82)

(3.83)

(3.84)

(3.85)

. : 2 ‘
po = 735%5 (Pe ~ Py c086)" — Py (py — py cos ) — mgr cos b,

and X = f(f;,fz)-X . Again p, and py are given by equations (3.80). Therefore

the reduced dynamics on M is foliated by a two parameter family of Hamiltonian

systems (N(Jc1 Ja)r @, 7:.) with one degree of freedom, which are completely integrable.

Since fi and f; are integration constants, which can be written as a function of 8, p,

Py, and py, we have two conserved quantities on M.

Once the Hamiltonian system

(N(fJl J2)r @, 71,) is integrated we can reconstruct the dynamics on M by performing

4 — — -
two more integrations, because the reduced vector field X on M is given by X =

f(fl'fz)‘j‘



Chapter 4

Orbits for C=0

4.1 Equations of motion for C=0

The equations of motion for the rolling disk are still valid even if C' = 0, because
the two-form wy is nondegenerate for C = 0. Therefore, everything that has been
stated previously is still valid even if C = 0. Suppose C' = 0, then the differential

equation in (3.72) becomes

d*py dpy

From the differential equation in (4.1) and equation (3.78), we have

Pe = frcosb + f3 (1+%3c0801n|csc0—cot0|) ,
py = fr + f2®~In|csc § — cot ] .

(4.2)

Thus the Hamiltonian system (N(fhfz),a),;b) on N(4,1,) is defined by the two-form
@ = frwg = df A dpy, (4.3)

and by the Hamiltonian function % on Ny, 4,)

h= TP + TmE (f1 + f22 = 1n|cscd — cot 0|)2 (4.4)
+51azg f3 + mgrsiné.
The vector field X satisfying
Xoo = dh, (4.5)

35
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is given by

X =68+ ps0,,, (4.6)
where

N | .
o= @hmrnyPor 4.7
pe = ﬁ%ff - g1 (f1%31n|csc0—-— cot 8] +f3) — mgrcosd.

For the rolling the Legendre transformation is singular for C = 0, however, the

singular case C' = 0 is just the limit of the nonsingular case C' # 0. As C — 0,

4 — 1. Thus

d
= lim [ A sing2P¥ 4 :
P _‘Yhm0 ( ~ysinf 79 T Pucos 0)

= ficosb + f3 (1+”‘Tf2<':0801n|csc0—cot0|),

py = .Ylif.lo (le (l'?, 1= 1 cos 20) + facos§F (5—11'1, 821, 3: cos 20))

=fi + fg%’iln|cscl9 —cot 4.

(4.8)

4.2 Infinitesimal symmetries for the constants fiand f;

As stated earlier, the integration constants f; and f; can be written as a function
on M. Thus we obtain

2
= py — 2= (p, — py cos §)1n |cscf — cot 6
fr=py— = (pp — pycosf)ln| | (19)
fa=py — py cosd
A straightforward calculation shows that Lz fi = Lgfa = 0. Therefore fi, fa are
two constants of motion for the generalized Hamiltonian system (M yWE, 72,) on M.

In addition, we have conservation of the total energy &, where -

1 2
= suieyed + 5ir (A + 2% Infosc — cot ] (4.10)

+ 5175 f3 + mgrsin 6.
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Thus we have a total of three constants of motions. Since wg is nondegenerate on

M, it makes sense to define vector fields on M such that

Xpdwg =d
-.fx 7 if1, (4.11)
XpJdwg = dfs.
Using the definitions of fi, f2, and wg, we obtain the vector fields
Xy, = P2 (py — py cos§) Bpg — %“}‘-’Qap,, ~ 22 1n |cac§ — cot 8] Xy, (812)

Xs, = —pysinf Opg + '"—f% (8py + cos 8 0p,).
Taking the Lie bracket of these two vector fields we see that the span of Xy, and Xy,

form an integrable distribution, because

[
[Xﬁ,Xf,] —p¢£ 5 + A (p¢sm01n|csc9—cot0|+csc0(p,,, py cos 8)) Xy,

Pe

(4.13)

Because the distribution V =span{)_( 1y X f,} represents a set of infinitesimal gener-
ators of a symmetry group on M, one can question whether this symmetry group on

M has any physical significance or can be lifted to M or P.

4.3 Orbits

For C=0, consider the Hamiltonian system (N(,,1,), @, k), where N(4,,4,) is the cotan-
gent bundle of the open interval (0, 7), where canonical two-form & on N4, 1, is given
by

& = df A dps, (4.14)

and the Hamiltonian function & on N(4,.1,) i8 given by

- 2
b= syt + i (A + 25 Infosc 6 — cot 6)]) (4.15)

+gat=zg f2 + mgrsiné.
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Our Hamiltonian vector field X on N(4,.1.) is given by
X =084+ p6 6, (4.16)

where

1
T (4.17)

. cosf 1 d
pe= Asin"'of2 - A::;inof2 (f1 + fa" In|cscd COWI) mgr cos 6.

é

Suppose f; = 0, then the Hamiltonian function % on Ny, 150) 18

1 2

h= 2(A+mr3)p0

1, ,
+ o fi + mgrsin, (4.18)

and the Hamiltonian vector field X on Ni4,.1,) i8

1

X = mpgao — mgr cos 60,,, (4.19)

For the case fa = 0, the potential energy for the Hamiltonian system (N4 0), @, k)
is given by Figure 4.1 and the corresponding phase diagram in Figure 4.2. From the
phase diagram we can see the motion of the disk on Ny, ) is similar to the motion
of a pendulum, except that the motion of the disk is restricted to the interval (0, ).

We can reconstruct the motion of the disk on M , because we have the map

fisut2) : Nigiga) — M Thus from equations (3.58) and (3.74), we have

v —_12_

P_A . 20’

v "‘————fsm+-f—2 In |csc 8 — cot 6] — cos 6 (420)
YT A sin20 /)’

¥ fi = f = 0, then v, = vy = 0 and the disk is not rolling or spinning. From
Figure 4.1, we can see there is a critical point at § = 7/2, pgs = 0, which is a saddle.

I 6 = n/2, pg = 0, then the disk is standing vertically. If § # 7/2, ps # 0, then



Potential Energy

Figure 4.1: Potential energy for f, =0
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the disk is falling over to one side or the other. However, if f; # 0, then v, = 0,
f1

and vy = ——— # 0. In this case the disk is rolling in a straight line with constant
velocity. If 0 = 1/2, pg = 0, then the disk is standing vertically. If 8 # 7 /2, py # 0,
then the disk is falling over to one side or the other, while rolling. For this case there

are no periodic orbits.

If f; # 0, the Hamiltonian function & on N(s,,1) is given by

b= (A+mr2)/’0 + 2m,-2 (fl + f2 ?In |csc 8 — cot 9|) (4.21)
.+§74T29f2 + mgrsind.

and the Hamiltonian vector field X on N(s,,1,) is given by
X =60p + p9 0, L (4.22)

where

1
6= ———py,
(A+mr)’* (4.23)

= 80 f2 — s (fl"‘—A—Tzln|csc0 — cot 8] + fz) ~ mgr cos 6.

For this case we have three possibilities. In the first case we have a weak gravitational
field, where the potential energy is given by Figure 4.3, and the phase diagram is
given by Figure 4.4. From the phase diagram in Figure 4.4, we see the rolling disk
has one critical point, a center, and that all other orbits are periodic. Suppose the
critical point occurs at § = 7/2 and py = 0. If f; =0, then v, = A_s%ﬁ and vy = 0.
This corresponds to the disk spinning at one point. If f; # 0, then v, # 0 and
vy # 0. Thus the disk is rolling around in circles while standing vertically. If the
critical point does not occurs at § = /2 and py = 0, then v, # 0 and vy, # 0. Here

the disk is rolling around in circles with a constant angle 8 # = /2.
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Figure 4.3: Potential energy for f; # 0 and a weak gravitational field
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Phase diagram for f, # 0 and a weak gravitational field

Figure 4.4
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Figure 4.5: Potential energy for f, # 0 and a strong gravitational field

As the gravitational field increases, the potential energy of the Hamiltonian sys-
tem (N( fruf2)s @ 7;), will eventually have a strict local minimum and a horizontal
inflection point. Therefore, we will have two critical points, where one is a center
and the other is a cusp. This is the second possibility.

With a strong gravitational field, the cusp will bifurcate into two critical points,
where one is a saddle and the other is a center. Thus there is a total of three
critical points. This is the third and last poésibility. The potential energy for this
example is given by Figure 4.5, and the phase diagram is given by the Figure 4.6.

Two of the critical points are centers while the third critical point is a saddle. This

case is particularly interesting, since there are two nonperiodic orbits. Along these
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Figure 4.6: Phase diagram for f; # 0 and a strong gravitational field
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orbits @ approaches a constant and py — 0 as ¢t — £oo. Therefore, the path of
the disk becomes circular, if the saddle does not occur at 6 # w/2. If the saddle

point occurs at § = 7 /2 and f; = 0, the disk will then approach the motion of a
fa

Asin?d 2

constant and vy, — 0. If the saddle point is at § = /2 and fi # 0, then the

disk spinning at one point vertically since § — = /2, py — 0, v, —

disk will asymptotically approach the motion of a disk going in circles standing up

vertically since § — ©/2, pg — 0, and v, vy both approach a non-zero constant.



Chapter 5

Conclusion

5.1 Summary

From the first example, the two-dimensional Kepler problem, we see that the non-
holonomic reduction techniques discussed in [2] agrees with the.holoﬁomic reduction
of Meyer-Marsden-Weinstein.

Using the reduction method given in [2], the rolling disk reduces from a nonholo-
nomic Hamiltonian system (P,w, k, ¢*) with five degrees of freedom to a generalized
Hamiltonian system (M ,Wa, 7@) on a four dimensional reduced manifold A with
a nondegenerate non closed two-form wg. By partially integrating the differential
equations for the rolling disk on M, one sees the reduced dynamics on M is foliated
by a two parameter family of Hamiltonian systems (N(_,r1 J2)r @ 7;) with one degree
of freedom, where N(4, 1, is the cotangent bundle of an open interval.

Because the two-form wy was nondegenerate for the case C = 0, the equations of
motion for the rolling disk are still valid even though the Legendre transformation was
singular. From here, we were able to establish some of the dynamics on M by using
the map fs,.5) : Nipi,z) — M to reconstruct the dynamics from the completely
integrable Hamiltonian system (N(f1 f2)) @, 7;) Since the equations of motion for the
rolling disk where still valid even though the Lege.ndre transformation was singular,
one should check to see if the theory could be modified to handle nonholonomic

Hamiltonian systems with a singular Legendre transformation.
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As well, nothing is known about the dynamics of the rolling disk on M for the
case C # 0. For further investigations, one should see whether the sy@netry group
defined by the set of infinitesimal generators V =spa,n{)-{ 1 X f,} on M has any
physical significance and whether this symmetry can be lifted to M or P.
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