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ABSTRACT 

A numerical technique for 2-D elastic wavefield modeling in a stratified medium 

is presented. A cylindrical source waveform is decomposed into Fourier plane waves. 

Plane wave potentials, P and S, are advanced in depth by phase shift across each layer of 

the stratified system. Every Fourier plane wave is propagated through a computation grid 

and all multiples and mode conversions can be computed in a phase shift cascade. 

At an interface. the four incoming potentials are related to the four scattered 

potentials by the 4x4 scattering matrix. in which scattering coefficients are computed 

using the Zoeppritz equations. The explicit use of the scattering matrix allows a 

partitioned modeling which can also be depth dependent. 

After cascading, options for free-surface effects and displacement conversions are 

made. The seismograms are obtained by inverse Fourier transformation. A connection 

between phase shift cascade to the propagator method is explored. 
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CHAPTER 1 

Introduction 

1.1. Thesis organization 

This thesis is organized as follows. In chapter I ,  some background of seismic 

forward modeling and brief discussions of other modeling methods are given. Due to its 

close relation to phase shift cascade. mathematical expressions of the propagator matrix 

method are clearly described. Chapter 2 contains a complete derivation of phase shift 

cascade from the elastic equations of motion. The point source of compressional waves is 

described as a superposition of Fourier plane waves. From the explicit formulation in 

section 2.3, it is clear that by modifying the scattering matrix. many physical phenomena 

can be separately analyzed from any depth. The implementation of the numerical 

modeling is entirely out lined. Feature comparison to the propagator matrix method is 

discussed at the end of this chapter. 

In chapter 3,  phase shift cascade is examined and the results are discussed. 

Section 3.1 considers the case of a horizontally layered earth model and its response to a 

vertically traveling plane wave, the simple one-dimensional probiem. The results are also 

compared with the conventional method normally used in industry. In the remaining two 

parts, synthetic seismograms are presented for the 2D elastic case in a layered earth 

model. The results achieved from the simplest models, a single interface, are displayed in 



the second part, 3.2. This resolved a lot of programming problems and gives an important 

verification of this work. A technique to deal with one of the most serious problems, 

spatid wraparound, was developed and implemented at this phase. In part 3.3 a realistic 

model, from real (Blackfoot 08-08) well log data, was used and some applications of 

wavefield separations are presented. The run time and memory requirement are analyzed 

and improved upon working with this data set. Some other technical and programming 

problems also showed up at this stage. Some of them are solved, some suppressed. A few 

techniques and extensions are discussed in chapter 4, along with the conclusions. The 

package of elastic modeling in the Matlab environment, to synthesize 2-D seismic data in 

horizontally layered media by the phase shift cascade method, was written and is referred 

to as EZmo (Bastic modeling) throughout the thesis. 

1.2. Introduction 

1.2.1. Background 

The goal of geophysics is to use all available data to derive an indirect description 

of the earth's subsurface as completely as possible. In the seismic method. forward 

modeling plays a significant role in data interpretation to estimate the earth's parameters 

in both exploration and global geophysics. Basically. seismic modeling generates 

artificial signals of reflections from impedance contrasts within the earth. In this way. a 

seismologist can produce a subsurface model that matches the actual data in some 

acceptable sense. 

Synthetic seismograms are commonly used for many applications including 

refining the subsurface model by relating the computed traveltimes and amplitudes with 

those of recorded seismic data (inversion), testing new processing techniques, and 

investigating seismic wave propagation theory. Before they were employed to achieve the 

offset dependent responses of increasingly complex geological models, they were 

commonly used as a means to simulate the normal incidence reflection response. 



The numerical computation of synthetic seismograms is mostly based on the 

solution of the equations of motion of an elastic medium. Exact analytical solutions of 

these equations for seismic wave propagation in complex. variable velocity structures are 

unknown (Dohr, 1985). However, in a few simple cases there are some variable analytic 

solutions. The construction of 2-D seismograms is possible with several existing 

numerical methods. They all have varying degrees of computing time and memory 

requirements. accuracy and implernentional ease, and have different assumptions and 

constraints. Therefore a suitable method has to be chosen for a particular result in order to 

optimize the time and memory needed to the desired details of the synthetics. There is yet 

no algorithm which is applicable in all situations (Dohr. 1985), however these procedures 

can complement each other. In general there are two main approaches to create elastic 

seismograms: ray theory based and wave equation based methods. Under ray theory, a 

high frequency approximation is required if the ray series is to converge rapidly. Based 

on the wave equation, there are numerous methodologies. However a few main 

algorithms are briefly discussed in the next section. Wave equation modeling gives very 

realistic results which are difficult to analyze whereas the raytracing is very versatile but 

unlikely to produce all real effects. 

This thesis will present a new method of elastic modeling. plmse shift cizsccldr, 

which combines many of the best features of ray trace and wave equation schemes. The 

phase shift cascade is closely related to the propagation matrix method which has been 

widely used and is summarized in section 1.4. Both methods can be used to compute 

seismograms for a layered earth with no lateral variation in properties. A line or point 

source can be constructed by the superposition of a sufficiently large number of plane 

waves in the Fourier domain. Short descriptions cf other matrix methods are also given in 

section 1.3. 

1.2.2. Ray tracing 

Typically this technique computes amplitude and traveltime for a particular event 

by tracing its trajectory from a source to a receiver. For instance, SYNTH (Lawton and 



Howell, 1992, Margrave and Foltinek, 1995), an elastic modeling package developed at 

the University of Calgary, uses Snell's law for ray paths and the Zoeppritz equations for 

amplitudes. As such it is very flexible in allowing effects to be turned on and off. 

Compared to the other existing methods, ray tracing has found the more popular 

applications in seismic prospecting due mainly to its' fast computation and its' 

intuitiveness and flexibility. It can also synthesize the propagation of high-frequency 

seismic waves in rather complicated laterally varying structures. Considerable utility has 

come from the ability to investigate wave modes separately, including multiply reflected 

waves with any number of reflections, transmissions and conversions. However the 

numerical procedure is usuaily based on one-by-one events. A model with very thin 

layering and high velocity contrasts. which will produce many internal multiples and 

mode conversions, is difficult to treat with simple ray methods. 

There are many techniques with varying levels of approximation in the ray tracing 

approach. More details of those classifications are found in Dohr (1985, chapter I by 

Cerveny) and Cerveny et al. ( 1977). Because of the high-frequency requirement, most of 

the ray techniques are best suited for models with smooth features compared to the 

prevailing wavelength. In situations which do not meet this condition, though simple ray 

tracing is commonly used, it is necessary to remember that it may yield inaccurate results. 

The ray method has been used to study head waves extensively by Cerveny and 

Ravindra ( 197 1 ). Krebes and Le ( 1994) presented an application for inhomogeneous 

plane waves and cylindrical waves in anisotropic anelastic media. Wave propagation in 

anelastic media has been investigated using complex rays by Heam and Krebes (1990), 

and Krebes and Slawinski (1  99 1). 

1.2.3. Finite difference methods 

Among the techniques available for the purpose of forward modeling, the finite 

difference (and finite element) method is a direct numerical solution of the equations of 

motion. The output is not biased by any physical approximation. Highly accurate 

numerical solutions to the elastic wave equation can be generated for most subsurface 



configurations of exploration interest. However, since this method is based directly on the 

equations of motion without physical approximations. finite differencing generates every 

event possible, e.g. multiples, converted waves, head waves, diffracted waves, etc. Hence 

the results can be difficult to interpret because the technique provides very little physical 

insight and flexibility. 

The basic idea is to approximate the derivatives in the equations of motion as 

differences between values of the motion fields at points on a space-time grid. A good 

introduction to the theory and application of this method is given by Kelly et al. ( 1976), 

and Bording and Lines ( 1997). An alternative technique to finite differencing. 

pseudospectral methods can be found in Fomberg (1987). The technique uses Fourier 

methods to build higher order approximations to the derivatives in the equations of 

motion. 

One of the main problems. which naturally occurs in this kind of numerical 

method. is cumulative error. From initial values. the recursive computation of the 

algorithm can amplify small roundoff errors in certain circumstances. Accuracy requires 

that the ratio of temporal to spatial grid sizes. AtlAr, be small enough to over sample all 

wavelengths of the wavefield. Another problem involves nonphysical reflections arising 

from artificial boundaries in the spatial grid. In order to avoid this problem, the numerical 

edges should be sufficiently expanded so that the spurious reflections do not arrive at the 

receivers during the time interval of interest, or absorbing boundary conditions (Clayton 

and Enquist 1977) can be implemented. 

1.3. Variety of matrix algorithms 

1.3.1. Matrix method 

The matrix method is based on a reformulation of the elastic wave equation for 

displacement into an equation which is first order in depth derivatives with displacement 

and stress as unknowns. The unknowns are grouped into a vector called the displncernent- 

stress vector or motion vector. In this method, the complexity of the wave propagation 



problem is reduced by assuming that the elastic properties depend only on depth. For this 

vertically heterogeneous earth model, coupled ordinary differential equations involving 

displacement and traction elements are derived from the equation of motion. The 

solutions to such a system of equations can be expressed by the product integral, or 

propagator, of the matrix of coefficients (Gilbert and Backus, 1966). 

1.3.2. Thornson-Haskell method 

A very first application of the matrix method was given by Thomson (1950) and 

corrected by Haskell (1953) for the layered earth model. However, a practical problem 

arises specifying the radiation condition by which certain waves are suppressed at 

infinity, rather than by a constraint on the motion-vector directly. This is because the 

presence of upgoing and downgoing wave types in the lower half-space needs to be 

related to the motion-stress ~ec tor  (Aki and Richards, 1980, p.277). Thus, at large 

horizontal wave numbers. these wave types have grown or decayed exponentially with 

depth. This problem is a concern of the other following matrix applications. 

1.3.3. Propagator matrix method 

The propagator matrix method (Fuchs and Muller, 1971, Kennett and Kerry. 1979 

and 1980) considers a stratified medium equivalent to a single composite layer (or layer- 

stack) between two half-spaces. The total response, including all multiple reflections. 

mode-converted waves and refracted waves, is computed in t e n s  of normalized total 

upgoing and downgoing waves or. so-called overall reflection and transnlission 

coefficients. Such coefficients are defined for the whole region embedded between 

uniform half spaces and then produced by relating the wave systems in the upper and 

lower half spaces. Thus, for example, an initial condition of only a unit incident P-wave 

from the topmost of the layer-stacks may be applied. The efficient calculation procedure 

progresses from the base of the layering towards the surface, to avoid numerical problems 

associated with growing solutions of the differential equations at depth (Kennett and 

Keny, 1979). 



The numerical integration of plane wave reflection coefficients, to synthesize a 

point source, is carried out in the frequency-slowness domain. The seismograms of 

displacement responses are obtained after multiplication with the source spectrum and 

inverse Fourier transformation. 

The advantage of the propagator matrix method lies in the inclusion of all 

mu1 ti pies and converted waves from the reflecting zone. Therefore the synthetic 

seismograms have high accuracy. Its disadvantages are long computing times (if  the 

reflection response has a long duration) and algorithmic inflexibility which requires all 

modes to be computed. A package for AVO modeling (CRUST) has been developed by 

Frasier ( 1980) based on a propagator matrix scheme to enable some offset effects to be 

turned on and off for pre-critical amplitude analysis. 

1.3.4. Reflectivity method 

This method has been developed by Fuchs (1968, 1970) and Fuchs and Muller 

( 197 1 ) based on the matrix method of Thornson-Haskell originally to generate synthetic 

amplitude information for crustal studies. It is thus an application of the propagator 

technique, to compute the overall responses from a particular portion of the composite 

homogeneous stacked layers in terms of a total reflection coefficient. In the practical 

application of the method, only the reflection responses from deeper zones of the entire 

layered earth model are calculated. Sometimes the region of interest lies deep in a layered 

medium whereas the reflections from the upper portion can be neglected or calculated 

separately. These deep reflections endure transmission losses and time shifts from a stack 

of layers above the reflecting medium which must be taken into account (Fuchs and 

Muller, 197 1). Originally by Fuchs and Muller ( 197 1 ), composite reflection coefficients 

for the layered region are constructed by the propagator matrix for potentials, which can 

include all multiples and mode conversions. 



1.4. Mathematical outline of propagator matrix theory 

1.4.1. Matrix formulation of the equations of motion 

The methodology involves spherical wave decomposition and the calculations are 

camed out in the frequency-ray parameter (horizontal-slowness) domain. The 

displacement and stress are directly used as the motion-stress vector of the wave system. 

The evolution of the stress-displacement field with depth is developed by the propagator 

matrix. This method is most closely related to phase shift cascade. So we explore it here 

in some detail. The ultimate goal is to show explicitly how the propagator matrix is 

related to the scattering matrix used in phase shift cascade. 

The matrix approach has been extensively developed for the three-dimensional 

seismic problem that includes a11 P. SV and SH components for body and surface waves. 

Nonetheless the discussion here is limited to the two-dimensional P-SV problem for 

simplicity. It should be mentioned that the derivation in this section is adapted from 

Kennett ( 1983). 

For plane waves in a vertically inhomogeneous medium, the equation of motion 

and constitutive relation can be combined in such a way that only first-order depth 

derivatives of stress and displacement are needed (Aki and Richards. 1980). 

where, for a P-SV system, f = f(z) is a column vector giving the depth dependence of 

particle displacement and stress and A is a 4x4 matrix, with entries depending on elastic 

properties of the medium, horizontal slowness p, and frequency a. An explicit formula 

for A is given by Aki and Richards ( 1980. p. 164) for a uniform layer. For this system of 

plane waves, the motion wavefields at an offset x and time t, can be considered such that 

the (x,t) dependence is only via a factor eiWP"'": 



This column vector, which is made up from vertical and horizontal components of 

displacements and stresses, u,, ir,. r,:, r,, is called a motion vector or a displacement- 

stress vector. For a homogeneous layer there are four possible eigen-solutions for 

equation ( I -  I )  (Aki and Richards. 1980. p. 166) in the P-SV motion system: downgoing P. 

downgoing S ,  upgoing P and upgoing S (with various vertical phase Factors referred to a 

common reference level z=O). Their denotations are given as motion vectors Dpeik:;~', 

Dre"", u~~-""' and Us e-"s', respectively. Let a matrix F have columns consisting of 

those different solutions, 

where the vertical wave number for P waves k,  is defined by 

and k, is similarly obtained by replacing the P wave velocity a in equation (1-4) with the 

S wave velocity P. Then the matrix F also satisfies equation ( 1 - 1 )  on column-wise basis 

and is called an integral matrir of ( 1 -  I )  by Gilbert and Backus ( 1966) or afiindizmental 

matrir by Kennett (1983). It can be explicitly factored into a matrix E, made up from four 

eigen vectors, times a diagonal matrix A containing the vertical propagation phase 

factors. 



Therefore, the complete solution f to the Equation ( I  - I ) ,  at any depth can be stated as a 

linear combination of all four different solutions. 

where 

and 

The complex scalar amplitude and propagation phase factors of each solution are given in 

a weighting matrix w and a diagonal matrix A. respectively. The weight matrix 

components come from matching boundary conditions. 

1.4.2. Propagator-ma trix method 

A special case of the propagator matrix approach according to Gilbert and Backus 

(1966) was introduced as the Thomson-Haskell method. In their method, the vertically 

heterogeneous medium is replaced by a stack of homogeneous layers overlaying a 

homogeneous half-space, Figure (1-1). An alternative derivation, other than that used 

here which is based mostly on Kennett (1983), is to derive a propagator matrix as a 

function of the elastic property matrix A of each layer as given in Aki and Richards 

(1980). The approximation of taking A(z) constant within a given depth interval, i.e. a 



homogeneous layer, simplifies the propagator matrix expression into an exponential of 

the constant matrix A. which can either be expanded as a Taylor series or evaluated by 

Sylvester's formula (Aki and Richards. 1980). 

In the vertically heterogeneous medium, a propagator matrix. P(z,,~, z,~), is a 4x4 

matrix which extrapolates a stress-displacement wave system at a depth zn to another 

wave system at another depth :, as 

The inversion of P(z,,,, z,,), on the other hand, also relates those two wave fields, however 

in the opposite direction: 

f ( z n )  = P-I(:,*:,, )f(znl) = P(zn 9 Zm )f(:",). ( 1 - 1  i )  

Therefore propagator equations can be used in either up or down directions, to relate the 

complete wave systems from above to below or vice versa. Their propagator matrices are 

an inverse to each other. The propagator solution thus does allow a complete 

specification of the seismic wavefield. An important property of the propagator matrix 

for such heterogeneous media. is that an overall propagator can be split at any 

intermediate level (Aki and Richards. 1980. p.276) as 

n-l 

This chain rule relation also holds in media with elastic discontinuities. Since the 

seismic boundary conditions that f is continuous across an interface ensure the continuity 

of P(zm, t). Hence the overall propagator is just a matrix product of the propagator 

matrix of each layer between the levels z, and z,,. Due to this property, the approximation 

of a stack of many homogeneous layers, usually called the layered earth model, for the 

vertical heterogeneous medium can be derived. Later in this chapter, the wave potentials 

will be introduced into the derivation to simplify the mathematics. The propagator matrix 



method is also applicable in the case where the elastic properties of any layer vary 

smoothly with depth, when the WKBJ approximation is used (Kennett, 1983). 

Figure I - I .  Horizontal layered earth model between two uniform 
half spaces with numbering system for layers and 
interfaces. Upward and downward propagator 
matrices are also shown. 

1.4.3. Homogeneous layer propagator matrix 

Let both :;and :,, be located within the same homogeneous layer immediately 

below and above zk+i, respectively, in which their E matrices and weighting matrices w 

are the same. Then, substituting equation (1-6) into ( 1 - 10) leads to 

If this is to be true for arbitrary w then the term in brackets must vanish. Thus F satisfies 

an equation like ( I -  10) on a column wise basis and P can be solved using equation ( 1-5) 

for 

where 



Using equation ( 1 -8), this phase shift expression becomes 

where kt = :k+, - :k. For a homogeneous layer k, E and E" matrices are given by Aki 

and Richards as 

and 

where all of the elastic parameters, including density p, in these expressions are to be 

evaluated in a particular layer k. The other plane wave parameters can be found as 

kx the horizontal slowness or ray parameter: p = - 
0 

- k,  the vertical slowness for P waves: 6 - - 
0 

the vertical slowness for S waves: q=- k, 
0 



Thus the propagator equation in ( 1 - 10) for a homogeneous medium becomes 

The operation of this propagator matrix can be considered such that the E-' matrix 

decomposes the motion vector f into up and down going of P and S waves for the phase- 

shift matrix Ak and then the E matrix recomposes those waves into a vector of total 

displacements and stresses at a new level :,, . Therefore the propagator matrix in a 

uniform medium can be recognized as n phase-shift extrapolator for a motion vector. It 

can be considered as a generalization of an approach for 1-D media using Z transforms 

outlined by Robinson ( 1967). 

1.44. Interface propagator matrix 

The particle motion and stress at any depth should be continuous, to maintain 

non-cavitation and stabilization throughout the medium. Therefore the motion propagator 

matrix at a depth 3 has to be a unit matrix, even though the elastic properties of medium 

may change discontinuously. This is an important constraint for the propagator matrix 

that 

At a layer interface, the propagator matrix between the wave systems immediately above 

and below the interface holds the continuity of particle displacement and stress in both 

horizontal and vertical directions. Propagation equation ( I - 10) to downward continue the 

total wavefields across an interface at z k ,  becomes 

f(z;) =P(~;,:;)f(z;)=P,(z,)f(z;).  ( 1-24) 

Since the boundary conditions require continuity off across the interface, we must have 

Similarly, the inverse propagator in the upward direction is: 



Though the motion-stress interface propagator must be the identity matrix at an 

interface, the elastic wavefields immediately above and below the interface have different 

eigen-vector weights. That is, their decomposition in terms of up and down going P and S 

wavefields generally changes. The analysis of this effect is possible through the use of a 

"wavefield" propagator, Q, to be introduced in equation ( 1-29) from ( 1-28). 

The interface propagator describes the continuity of the total seismic wavefield 

between two levels through the discontinuities in the elastic parameters. These 

propagators satisfy the boundary conditions, at an interface k, for the total wavefields. In 

phase-shift cascade. a similar description for interface conditions between incident and 

scattered wave potentials is given as n scattering matrix which is stated later on in 

equation (1-39). Nonetheless this interface propagator is more powerful because it is 

developed from the total wavefields. at a fixed depth. That means it includes all the 

possible incident waves and the resultant waves. Therefore a propagator matrix across a 

homogenous layer from above the top to below the bottom will produce every possible 

multiple and converted mode. 

In order to visualize this effect. we have to consider closely the formula of the 

interface propagator matrix. For simplification, the expression will now be derived in 

terms of the scalar plane-wave displacement-potentials ad, Yd, (Pa and Y, for the 

downgoing P. downgoing S, upgoing P and upgoing S, respectively. This reduces the 

number of wavefield elements and also allows comparison to the phase shift cascade. The 

conversion of a wave potential to the motion vector is merely a multiplication by a 

constant 4x4 matrix D whose elements are plane wave spatial derivatives and elastic 

parameters. Thus the vector f can be written as 

and the propagator equation for wave potentials is expressed from substitution of (1-27) 

into (1- 10) to get 



The potential propagator matrix Q, also called the wavefield propagator, is defined in 

terms of the motion propagator matrix as 

or the P matrix can be expressed in term of the Q matrix as 

Therefore. in a uniform medium, the layer propagator for potentials can be given 

by substituting (1-14) into (1-30) as 

Note that the terms DE'E, and Ei'D, are diagonal matrices and are the inverses of one 

another. This can be understood by considering Di'E,. Each column of the matrix E is 

an eigen vector of up or downgoing of P or S waves (equation 1-7). The inverse matrix D- 

' decompose a motion vector into its equivalent potentials (see equations 1-27 and 1-2) 

Since each eigen vector of E is a pure wave, it must come from a single potential for up 

or downgoing P or S. Thus the application of Dil to Ek produces a diagonal matrix 

whose diagonal elements are the potentials for each eigen vector (eigen potentials). The 

same consideration is applicable to the term E;'D,. Then the three terms of D;'E,, & 

and E;'D, in equation ( 1-32) are freely commutable and consequently the expression for 

Q in a homogeneous layer becomes simply a phase shift matrix 



which is given in equation ( 1- 16). 

It will be shown later in chapter 2 that. in phase shift cascade method. this 

homogeneous-layer propagator equation is comparable to phase-shift extrapolation 

equations combined in a matrix fonn. For the rest of this chapter, this homogeneous layer 

propagator is broken-down into four 2x2 matrices. Then, with phase delay and phase 

advance matrices identified as 

respectively, the phase shift propagator can be now expressed as 

where Q is a 2x2 zero matrix. While at an interface :k, the downward wave propagator 

becomes (from 1-30 and 1-25) 

Q~(:~,Z;) = D-~(~~)P~( :~)D( : ; )  = D;' ( 1-37) 

or the upward wave propagator 

Compared to the motion propagator matrices P for a homogeneous layer in 

equation (1-14), Q in (1-34) is as well a phase shift propagator, because both potential 

and motion-stress vectors are constant plane waves in such medium. However the 

formula of homogeneous layer propagator P must contain a decomposition and 

recomposition factors for the phase shift application. The interface propagators PI, in (1- 

25) and (1-26), and QI, in (1-37) and (1-38), are also different due to the potential-to- 

displacement conversion matrix D which changes with the elastic properties of the 

medium. To write a more explicit formula for the interface wavefield propagator matrix, 



QI(zt),  first consider the scattering equation given by Aki and Richards ( 1980, p. 144- 15 1 ) 

at interface between two homogeneous layen: 

Here TIR are potential transmission/reflection coefficients for incident and resultant wave 

types as specified by their subscripts. P or S. The over-bar indicates coefficients of an 

incident wave from below the boundary. In the P-SV problem of a displacement plane 

wave incident on a plane surface. Aki and Richards ( 1980, p. 150-15 1)  have given the 

explicit formulae for every element of this scattering matrix. These formulae are known 

as the Zoeppritz equations and are easily modified for potentials. This scattering equation 

describes how each of the four scattered waves. going out from above and below the 

boundary, are related to each of the four incident waves, coming into the boundary also 

from both directions. The scattering matrix can be partitioned into four 2x2 submatrices, 

which are designated by a bold letter for a particular scattering coefficient. There are 

either reflection or transmission elements in a coefficient matrix. For example. 

Then, in a compact representation, the scattering equation becomes 

Thus all the interrelations between incident waves and scattered waves are 

available. Considering each half of the scattering equation, the scattered downgoing 

waves below the interface k at ;k+ are given as 



So, in the upper layer k, the downcoming waves are given by 

The other half of the scattering expression represents the upgoing waves at zk. as 

Substitution into this representation with [., Ik- from equation ( 1-43) gives 

Then, at a depth :k, the complete wave potentials in the upper layer k are described in 

terms of potential components in the lower layer (k+ I ) by combining ( 1-43) and ( 1-45) as 

The sequence of physical effects for any individual term is to be read from right to left. 

Thus a matrix of a single interface wavefield propagator for potentials to propagate the 

total waves through a welded boundary in upward direction can be written as 

With a similar analysis, the downward interface propagator matrix is 



If the elastic properties of the medium are continuous at zk: T = T = I and 

R = Ti: = 0. - where I is the unit matrix of appropriate dimensionality. Then these two 

interface propagators satisfy 

I 

I 

C .  - 

(a). Up and down interface propagators (b). Scattering matrix. 
between two uniform half spaces. 

Figure 1-2. Pictorial comparison between the interface propagator 
matrix and the scattering matrix. 

Thus the interface propagator, QI, for a single interface embedded between two 

half spaces is merely a reformulation of the scattering matrix. The interface propagator 

relates wave systems above the interface to those below. while the scattering matrix 

relates the incident waves to scattered waves (Figure 1-2). 

1.4.5. Composite scattering coeficients from propagator matrix 

Nonetheless in a composite layer model, since all wavefields are taken into 

account, the propagator matrix includes all multiple scattering effects at any level. Let the 

scattering coefficients of stacked interfaces from the mth to the nth be designated by a 

square bracket around the coefficient letter with a subscript mn, e.g. a total reflection 

[R,l [Rsp1 
mati. [R]~. = [ Imn. In principle. if every incident plans wave a the 

[R,,I [R,l 

boundary is given, the complete scattered waves can be achieved merely using the 

scattering equation, 1-39. 



The simplest case of stacked layers is a homogeneous layer inserted between the 

two half spaces, at zk and zk+l. So instead of a single interface as the previous example, 

here is a two-interface composite model that produces overall reflection and transmission 

coefficients. Note that unless the minus sign is indicated, the wave systems f(zk+,) are 

immediately below zt+l, to omit the plus sign. Then similar to the single interface case, 

the wave potentials in the upper half space at are represented as an upward propagation 

from the lower half space at a+, 

- [TI-' [W] 
[Rl [TI-' [TI - [RI [TI-'[EI 

In term of the wavefield propagator from equation 1- 19: 

Due to the propagator chain rule from equation ( 1 - 12), this potential propagator 

can also be expanded into a product of interface propagators and a layer propagator: 

When the homogeneous layer propagator from ( 1-36) and interface propagator from ( I - 
47) are substituted, this becomes 



The result of matrix multiplication is elementally equated to the potential propagator in 

equation (1-50) and ( 1-52) in order to recover the expression of those overall scattering 

coefficients as follows: 

Therefore the composite transmission coefficient is 

From the expression 

the composite reflection coefficient is obtained: 

In a similar procedure, the wave potentials in the lower half space at rt+, are 

related to those at in the upper half space as 

Then the downward propagator Q(zk+, , zk) is defined and applied with the chain 

rule expansion: 



while 

Substitute the layer propagator and interface propagator into the expansion and equation 

( 1-60) becomes 

The overall transmission and reflection matrices of the incidence from below can be 

obtained again by matching the matrix elements between equation ( 1-59) and (1-62): 

The composite coefficient matrices for incidence from below have similar structures to 

the related ones for incidence from above. It is the presence of the phase delay factor. 

A;, in these expressions that makes them frequency dependent. Thus though the 

Zoeppritz equations are independent of frequency, the composite reflection and 

transmission coefficients are not. 

Most details about scattering coefficients both of the single interface and the layer 

stackshave already been discussed by Kennett (1983, ch.5-6). As stated previously, the 

objective of this study is to understand the basic similarities and differences between 

major modeling methods and the phase shift cascade. One major difference between the 



propagator matrix method and phase shift cascade lies here in the use of the inverse 

matrix or a reverberation operator, appearing in every coefficient formula. 

The reverberation operator (Kennett, 1983. p. 13 l), [I - A ~ ~ , A ; R , , ,  r' generates 

all internal reflections and mode conversions in a layer bounded between kth and (k+l)th 

interfaces. The operator can be expanded in a power series as 

Each successive term, other than the leading term. introduces a further internal reaction 

between 3 and ra+l by including two more layer effects (phase delays) and one of each 

interface effect from the upper and lower bounds. The development of the composite 

transmission coefficient from interfaces k and (k+l) is shown in Figure 1-3 as an 

example. The total response to an incident field can be considered as the sum of 

contributions from each term in the series. If the series is truncated after a finite number 

of terms then such approximation only includes a finite number of internal 

reverberations. The phase shift cascade method is equivalent to a finite truncation of this 

series. 

The construction of overall coefficient matrices for the whole stack of 

homogeneous layers can be done in either recursive or propagator schemes (Kennett. 

1983, ch.6). They both produce all peg-leg events possible from every layer. 



Figure 1-3. Composite transmission coefficient of a homogeneous 
layer embedded in between the uniform half spaces 
shown multiple scattering effects from the 
reverberation operator. 

1.4.6. Example of propagator matrix application 

The overall wavefields in layer m- I at 2, and can be related to those in layer n at 

zn, where z,,> z,,~ as 

If every propagator P(ik,  Q+~) transfers the whole wavefield from the bottom of layer k up 

through the interface k to the bottom of layer k-1, by the application of the propagator 

chain rule, it is merely a product of the h ~ h  interface upward propagator and the kth 

inverse layer propagator 

In the opposite direction, the propagator equation is written as 



An application of propagator technique is LO compute the overall responses from 

composite homogeneous stacked layers embedded between uniform half spaces or a free 

surface. In the lower uniform region, a radiation condition is imposed that the wavefield 

should only be downward traveling waves or evanescent waves decaying with depth. 

depending on the horizontal slowness (Kennett. 1983, p.158). The reflection and 

transmission coefficients are defined by relating the up and downgoing wave amplitudes 

in the upper and lower half spaces starting with the radiation conditions. The coefficient 

matrices are constructed under the basis of efficient recursive schemes, which can be 

derived from the chain rule for the wave-propagator. 

A simple procedure for calculating the response of a stratified elastic half space to 

the stimulation of a P source in the upper half space can be conducted as follows. Let the 

initial condition which represents a unit  amplitude downgoing P waves at the top of the 

stacked layers be 

The arriving P and S responses at the surface are then separated into total R,, and Rps. At 

the stratification bottom. the radiation condition is also set up to exclude the upcoming 

waves. Therefore the boundary conditions for the harmonic plane waves at ,-, in the (m- 

1)th layer and at L in layer n are reduced to 

The surface displacement now is expressed in terms of the downgoing wavefields at z0 as 



There are four equations with four unknowns. A particular coefficient can be directly 

obtained. The explicit formulae for every element of the inverse E*' matrix is given by 

Aki and Richards ( 1980, p. 167) for P-SV problem as in equations 1 - 17 and 1 - 18. 



CHAPTER 2 

Theory of 2-D elastic seismogram 
construction by the phase shift cascade 

method 

2.1. Basic Wave Equations 

The elastic wave equation for a homogeneous and isotropic medium is a vector 

equation of motion written as 
-- 

pii = (A+p)V(V.u)+pV'rc  (2- 1 ) 

where ti is a particle displacement vector, 1 andp are the Lame elastic parameters and 

p is the density of material the wave is traveling through. By Helmholtz's theorem we 

represent the displacement field (Lay and Wallace, 1995, p.54) as 

u = V $ + V x l y = u p + u s  (2-2) 

where @ is a curl-free scalar potential field (7 x @ = 0) and yl is a divergenceless vector 

potential field (v-y = 0).  P-wave displacement ( u p )  is obtained from V# and S-wave 

displacement ( u, ) from vx y . Substituting equation (2-2) into equation (2- I) ,  using the 

vector identity (Bath and Berkout, 1984, p.9) 



-- - - 
V2u = v(v . u ) - (VXVXU)  (2-3) 

and assuming A. p, p constant separates the elastic wave equation into two wave 

equations for P-wave and S-wave potentials 

6 = a2v1# (2-4) 

(2-5) 
where 

and 

where 

Equation (2-4) is a scalar wave equation for # and uses the P-wave velocity, a . The 

vector wave equation in (2-5) has a vector solution and uses P . the shear wave 

velocity. Thus, the potentials in the wave equation are separated into P and S 

components, each of which involve one wave velocity at a time. Therefore, i t  is simpler 

to solve the elastic wave equation using potentials for the elastic displacement than 

directly. Once the potentials are determined, displacements can be computed from 

equation (2-2). 

2.2. Solutions for Potentials 

In two dimensions with Cartesian coordinates (see Aki and Richards. 1980. p. 128- 

129, for complete discussions), the vector potential for an SV-wave has only one 

component, W = (0, ly (x. z ,  t),O) , with displacement 

When equation (2-8) is substituted into (2-6), the vector wave equation in (2-6) is 

reduced to a scalar form as 

y(x, z, t) = p 'V2yf(x, 2 , t )  . (2-9) 

For a P-wave, @ = @(x, z ,  t) and the displacement is 



Now the solution to equation (2-4) will be developed using a Fourier method. The 

P-wave potential is represented as a Fourier plane wave superposition by 

where o is an angular frequency and k t  is an angular horizontal wavenumber. In this 

expression, cP is the Fourier spectrum of $ and represents the contribution of each 

Fourier plane wave, e j [ k t  r - u r )  . to the construction of @ .  A wave equation for a plane wave 

@ can be derived by substituting equation (2- 1 1 ) into equation (2-4) .  After some 

manipulation and assuming a is constant, we obtain 

This can only be satisfied for all k ,  and o, by requiring the term in brackets to vanish. 

Thus 

where k .  is an angular vertical wavenumber given by 

Equation (2-13) is an ordinary differential equation for the spectrum cP. Its general 

solution can be verified by substitution to be 

where k .  is the positive square root of (2-14). Here, A and B represent the strengths of 

waves traveling in the +z direction (downward) and -2 direction (upward) respectively. 

Since equation (2- 13) is a second order differential equation, two such undetermined 

quantities are expected to be calculated from the boundary conditions for a particular 



problem. Finally, a general solution for the P-wave potential of equation ( 2 4 )  is obtained 

by substituting equation (2-15) into (2- 1 1) to get 

$(+, z , t )  = (+)?I - It j ( ~ ( k , , ~ ) e ' ~ ~ '  + B(k,, ,  o)e -ik:: )& ~ ~ & . C - W O  clk ,do 
-0 (2- 16) 

Note that the sign convention for Fourier transforms follows that used in solving wave- 

propagation problems relevant to seismology by Aki and Richards ( 1980, p. 129- 130). In 

equation (2- 16), the exponential term. for positive real k ,  and k., is a plane wave 

propagating in the direction of increasing I and 2. When k .  is imaginary, the exponential 

in (2-16) changes from a complex sinusoid to a growing or decaying real exponential. 

Therefore, the sign of the imaginary k .  is chosen to be positive so that these waves are 

not physically increasing with vertical distance. Plane waves associated with this 

imaginary k.are called evanescent waves. Thus. in summary, k. is given by 

In a similar process, equation (2-6) can be solved for the S-wave potential. 

y(.v, , - , t )  , and expressed in the Fourier domain as: 

and in the space-time domain as 

where k. has essentially the same interpretation as for the P-wave in equation (2-17) 

except that the velocity changes from a to P : 



Considering a monochromatic plane P wave at a depth : in a homogeneous 

medium. @ ( k , ,  :,a) , equation (2- 15) suggests it contains two wavefields, downgoing 

and upgoing: 

@(~ , . z . o )  =@, , (k , , z ,a )  + @ , , ( k , . ~ , o )  (2-2 1 ) 

where 0, is the first te rm associated with + k. in equation (2-15) and cPu the second 

term with - k.. If :=;+&-& is substituted into the right-hand-side of equation (2- 15) 

each wave component of O(k , ,  :.o) can be traced upward or downward in depth (and 

backward or forward in time). over a depth interval A:. Suppose we want to express the 

histories of both wave components. @ ( k c .  :.a) has to be arranged in terms of 

downcoming waves from above. cP,,<(z -&), and upcoming waves from below, 

@, (,- + &) . After some basic manipulations of equations (2- 15) and (2-2 l), the history 

of a plane P wave at a depth z is restored to predict @(k,. 2, o) as 

On the other hand, a backward derivation is obtained to bring back @ ( k , ,  ,-,a) in terms 

of a downgoing wave at ,-+& and an upgoing wave at :-& as 

which has been used in phase shift migration (Gazdag, 1978). 

The term elkz& in equation (2-22), which is called the phase shift extrapolator, 

delays the phase of a,, ( I )  for @(, ( z  + &) and of 4, (z) for (z - Az) , according 

to a depth interval &. Equation (2-22) is then used to extrapolate a downgoing 

component from z + Az and an upping component from 2 - & for a forward modeling 



of @ ( k . , , z , w ) .  The forward phase-shift equation for an S wave is achieved by the same 

consideration from equation (2- 18) and written as 

Y ( k , ,  z ,  a) = Ydc ( r  - Az)e ;A:& + yl,'. ( Z  .+ 

where Y ( k , , z , m )  = Y J ( k . , , z , w )  +' f ' , , (k , , z ,u)  

and k .  for S wave is given by equation (7-20). 

2.3. Scattering Considerations 

In the phase-shift cascade merhod. equation (7-22) is used for a P-wave and (2- 

24) for an S wave to recursively extrapolate each Fourier plane wave from a surface 

source downward to reflectors and from reflectors upward to the surface. Four possible 

wave fields in equation (2-15) and (1- 18), corresponding to up and downgoing P and S 

potentials, are maintained along the calculation path. At every interface, the complex 

amplitudes A, B. C, and D must be redetermined by four boundary conditions for four 

unknowns. Fortunately, this work has been formulated into a set of amplitude ratios of 

resulting waves to their incident waves. These ratios are called reflection and 

transmission coefficients. In terms of displacements, the Zoeppritz equations are derived 

for these 16 coefficients in a P-SV plane wave system at a plane interface (Aki and 

Richard, p.144). The system consists of four possible incident waves and their four 

resulting scattered waves as shown in Figure 2- 1. 



Figure 2- 1. Incoming and outgoing P and S potentials at a 
computation node 

In Figure(2- 1 ), denotation "d' is for down and "14" for up in the directions of propagation. 

"c" for coming or incident waves and "g" for going or resultant waves as their current 

status. In order to solve this P-SV problem, these four boundary conditions are applied 

for each incident wave: 

continuity of vertical displacement : U, = U, 
rdiurn I mdiunl2 

continuity of horizontal displacement ZU, = W ,  
medium l m ~ l l  i u r d  

continuity of normal stress : c5, = c 5 ,  

continuity of tangential stress : 
medium1 medium2 

where U symbolizes a displacement magnitude for a monochromatic component of the 

Fourier transform of i i .  The complete results for all incident waves and full discussion are 

given in Aki and Richards, p. 144- 15 1. The reflection coefficients are modified and 

summarized in a scattering matrix in the following text. The Zoeppritz equations 

determine the displacement amplitudes of the reflected and refracted plane waves. In 

order to apply them to the wave potentials which are preferred to work with, an amplitude 

relation between displacement and potential, given by Aki and Richards (p.139), is 

required 



where A, , A, and A, are the amplitudes of total displacement. P-wave potential and S- 

wave potential, respectively, for a plane wave. Equation (2-30) can be obtained by taking 

spatial derivatives of the wave potential for the displacement as written in equations (2-8) 

and (2-10) of P and S waves. For Fourier plane waves, these spatial derivatives are 

merely vertical andlor horizontal wavenumbers with 90 degree phase shifts. Then the 

vector magnitude of displacement is computed and using equation (2-14) gives the 

relationship in (2-30). Since the reflection coefficients are amplitude ratios of scattered 

waves to incident waves. the coefficients obtained from Zoeppritz equations can be 

modified for potential by multiplying by a ratio of a scattering velocity to an incident 

velocity. Let subscripts i and s indicate a type (P or S) of an incident and a scattered 

waves, respectively and v is a velocity (a,. a,, p,, and, p,) of the subscripted wave for 

the medium 1 or 2 in which it is traveling. Then a general relation between reflection or 

transmission coefficients for potential and displacement can be written as 

Thus, the algorithm is expressed completely in terms of elastic potentials with 

displacements computed at the end, if desired. 

Now the relation between four outgoing potential wavefields (on the left-hand 

side of the equation) and four incoming potential wavefields at an interface can be 

expressed by a matrix equation as 

In this expression, TV is, for example, the transmission coefficient for an S wave 

converting to a P wave where the S wave is an incident from above and zp is similar 



except that the S wave is incident from below. The scattering matrix summarizes all 

possible reflection and transmission coefficients in  a (4x4) matrix where each row 

represents four contributions from the four incident waves to a particular type of resultant 

wave. This explicit formulation allows us to acquire various desired physical results with 

selective contributions. This is a major advantage of the phase shift cascade over other 

wave equation based methods. For example, if it  is required to have merely P and 

converted primaries and to suppress 1111 multiples, those reflection coefficients of the 

upcoming waves in scattering matrix shall be set to zero. Then equation (2-32) becomes 

If mode conversions are not desired: 

If, at some nodes, primaries are preferable without mode conversion. equation (2-33) is 

combined with (2-34) to give 

In case that only P-S converted primaries should be designed for, the scattering matrix 

expression becomes: 



There are many possibilities that similar manipulations of the scattering matrix 

can isolate or exclude some other physical effects. Some examples of this application are 

shown in section 3.3. 

2.4. Source Representation 

In the real world, it is impractical to generate plane waves but, mathematically, it 

is difficult to deal directiy with spherical waves. Fortunately. for a horizontally 

homogeneous medium, we can use Fourier analysis to decompose the spherical wave of 

the real world into a sum of harmonic plane waves in our numerical world. However. the 

boundless span with constant amplitude of a harmonic plane wave could give us an 

enormous energy. which is not physical. For a realistic source. to have finite energy. we 

implement the Wey 1 integral (Brekhovskikh, 1980, p.228-23 1 ). It describes a point 

source in a three-dimensional spectral domain by defining a radial-dependent amplitude 

attenuation for each plane wave for a harmonic spherical wave expansion. The potential 

for a spherical wave emanating from a point source in a homogeneous material is given 

by the Weyl integral: 

where R = 4- and k = ,/-. The plus or minus sign of 

k. corresponds to direction of wave propagation in positive or negative depth, 

respectively, as discussed earlier. 

A pulsed spherical wave is realized by multiplying a harmonic spherical wave in 

this expression with a complex wavelet spectrum and summing harmonic spherical waves 

in equation (2-37) over frequency (Typl and Hubral, 1987, p.40). It is equivalent to 

convolving an impulsive spherical wave with a wavelet in the time domain. In two 

dimensions, we can summarize an expression for a wave potential for a pulsed point 

source in a form parallel to the wave solution in (2-16) by setting k ,  = 0 



bv(t) * -j e i ( k r - ~ t )  - OD - .  
i -  r 1 i(kt.c-k::-wr 

= ($1 j w i ~  ji- + - e  
r )dk.,dw , 

-0 -Q1 - k: k;  

(2-38) 
W where an inverse Fourier transform over o is performed explicitly. Substitute k = - in 
v 

the exponential argument on the left-hand side of this equation and the integration 

becomes an impulsive cylindrical wave function: 

where ~ ( t )  is a wavelet function, CV(o) is a wavelet spectrum, r =&' + :' . and 

k = ,/kt + k.' . Compare equation (2-38) to the wave solutions in (2-16) for P wave and 

(2-19) for S wave. If a pulsed point source for a cylindrical P-wave is evaluated at the 

surface ( 2  = 0) and no attention is paid to the upgoing waves above surface, then a point 

source of P-wave becomes: 

@ ( k t  ,O. O) = A(k, . o)r''"~'-wr' 
and , ( B = O ) ,  

where 

L - 1 
S ( k , , o )  = - - 

and a source term k,, 

Therefore, the boundary condition on @ for a point source in 2-D is: 



The source term is evaluated at the surface for this boundary condition. Therefore the P- 

wave velocity in (2-45) is a, for the layer where the source is located. It is, then, 

independent of depth while the initial plane wave propagates up and down through the 

media. The wavelet term W ( w )  depends only on frequency. So these two functions can 

simply multiply to the output ( k ,  .a) spectrum at the end of the extrapolation process. An 

S-wave point source can be emanated, which with a similar consideration. a statement for 

such source term is 

where the velocity in equation (2-45) for k-, is P, . In the case both P and S sources are 

required, the source term is a combination of equation (2-46) and (2-47). 

The derivation of equation (2-37) suggests there must be inhomogeneous plane 

waves propagating in the horizontal plane with a vertical wavenumber which converges 

to zero at the critical angle, and most rapidly attenuates in the vertical direction. Such 

waves correspond to a complex angle of incidence (Bath and Berkout, 1984, p. 19 1 ). They 

have to be included for this expansion of cylindrical wave emanating from a point source 

into plane waves. This type of wave was referred to earlier as an evanescent wave, in the 

discussion of imaginary vertical wavenumbers, equation (2-1 7). The effects of this type 

of wave can be studied or turned on and off using phase shift cascade. There are also 

head waves, or conical waves or, sometimes, merely refractions which, in this method, 

associate to the same incident plane waves as the evanescent waves. They appear in a 

shot record after a critical distance where the waves are refracted at 90 degrees. Phase 

shift cascade produces these waves as shown in the experimental section 3.2 and might as 

well be turned off if ever required. 



2.5. Implementation of the algorithm 

A package to implement the phase shift cascade method for 2-D seismogram 

generation, Elmo, was written in the Matlab environment. The source codes of relevant 

programs in the package are available through the CREWES Project. At this stage, Elmo 

assumes that the source and receivers are at the same level, :=0. However an extension 

for a different level of source and receivers can be done easily. The plane-wave cascade 

in Figure 2-2 illustrates how Elmo tracks the travel path of a plane wave to reflectors and 

determine their physical interactions along every possible way within the grid that waves 

can propagate back to the receiver. Waters ( 198 1.  p. 13 1 ) originally used this diagram to 

describe a I-D normal incidence seismogram method. Comparison with Figure 1-3 shows 

graphically how the cascade is equivalent to a finite expansion of the reverberation 

operator. 

1 

2 

3 

4 
- primary (downward step) 
- secondary (upward step) 

5 

6 
Figure 2-2. Plane-wave cascade 



The proposed algorithm for Elmo can be summarized in pseudo-code as: 
initialize the model 
initialize output arrays 

foreach kx 
8 initialize the source wavefields as vectors of o 

for each & downward step 
r for each active upward node 

- propagate (phase shift) the four o vectors up and 
down to the next nodes 

- compute the four scattered o vectors with the scattering 
matrix 

end 
r sum any waves arriving at a surface node into the output arrays for 

P and S 
end 

end 
add appropriate free surface corrections 
resolve accumulated P and S wavefields at z=0 into horizontal and vertical 
displacement components 
inverse Fourier transforms over o and k ,  

Reduction to ID is quite simple and conceptually amounts to running the k, loop 

only once for k, = 0. Additional simplifications are that only two wavefields must be 

computed at each node and the Zoeppritz reflection and transmission coefficients become 

the simple normal incidence expressions. 

In the first step of the calculation, a compressional point source is initiated at 

z = 0 in (k, , o) domain, and yields @ ( k , ,  z = 0. o) in equation (2-46). On the 

computational grid in Figure 2-2, it is set up at (interface or downward stepl, upward 

step 1 )  which we shall call node( 1 , l ) .  The output (PL (z = 0) and Yl:c (z = 0) in (k, ,a) 

coordinates are zeros at this beginning node(l.1). The extrapolator in equation (2-22) is 

employed to downward continue each (k,  . o) component of @ to the second interface, 

node(2,2), by &, . Note: there is no wavefield to upward continue. In order to propagate 



a wavefield across a solid-solid interface, four boundary conditions in equation (2-26)-(2- 

29) are required. So equation (2-32) is applied to the potentials at node(2.2) setting 

and a,,, = ul, = Y,, = O ,  (2-49) 

Thus the four outgoing wavefields are established and ready to be propagated up and 

down separately to be the incoming wavefields of the next two nodes, (3.3) and (2,1), as 

shown in Figure 2-3. 

Figure 2-3. Computation step in plane wave cascade 

Figure 2-3 illustrates the procedure in the triangular computation grid where Elmo traces 

down one node along the downward step and then up. to cover every node on the upgoing 

path to the surface while keeping all downgoing scattered waves from every upward step 

for the next step-down iteration. Each event arrives at the surface (interface 1) and is 

summed into the output f-k spectra (a' andy'). Then the calculation continues at the 

next downward step and repeats the procedure along the upward step through the surface 

again. 

When every element of P- and S-potential spectra. cP:,(k-,,O,o) and 

Y;Jk, ,O,w) , are computed at the surface, surface reflections can be separately added for 

free-surface effects (Dankbaar, 1 985). Then the displacement conversion may be applied 

using 



which is developed from equation (2-2) using equations (2-8) and (2-10) with equations 

(2-16) and (2-19). In this expression i is a unit vector in the x direction and 6 in the z 

direction. 

2.6. Summary of phase shift cascade algorithm for Elmo 

In summary, after evaluating the wavefield for a P-wave point source at the 

surface, Elmo extrapolates every plane wave component downward across arbitrarily 

thick homogeneous layers to reflectors via the computation diagram in Figure 2-2 which 

produces every possible multiple and converted mode within the grid. Elmo computes the 

reflections, transmissions, and conversions at interfaces using modified-for-potential 

Zoeppritz equations. AII four incident waves are used to generate the four resultant waves 

for a full solution. At this stage, Elmo can include or exclude some physical effects with a 

properly reformed scattering matrix as illustrated in equations (2-33) to (2-36). This 

partitioned modeling can be depth dependent. The upgoing P and S waves From retlectors 

are propagated upward to the surface by applying the extrapolators and boundary 

conditions. Then the output component in the f-k domain is determined as a sum of the 

multiple arrivals of an individual potential wavefield at the surface. If freesurface effects 

are required, P- and S- potential reflections are added to the output plane before 

displacement conversions (again, if desired) and inverse Fourier transform to achieve a 

final result in the space-time domain 

2.7. Feature discussion of the propagator matrix method in comparison 

to phase shift cascade 

There are different orders of approximations and several possible manipulations 

of the propagator matrix method in performing forward modeling. The best-known 

application probably is the reflectivity method which computes synthetic seismograms 



for a portion of a plane layered earth, using displacement potentials. Due to its high 

accuracy, the reflectivity method is commonly used in global seismology, although in the 

exploration field, it has fairly limited application because of its long computing time 

requirement. 

The key strength of the propagator matrix application is the ability to include all 

internal scatterings in one closed-form matrix operation. Refracted waves also can be 

included in the synthetics using complex angle of incidence (Waters, 1992). Hence the 

accuracy of the amplitudes and phases of arrivals is very high. However, it cannot easily 

be extended to the lateral heterogeneous case because the reverberation operator implies 

lateral homogeneity. Moreover a long calculation time and wraparound problems are 

typical. 

The calculation diagram (Figure 2-2), in phase shift cascade, of each layer is 

equivalent to a Rnite expansion of the reverberation operator (Figure 1-3). High accuracy 

is still gained and also flexibility of independent computation at each scattering node is 

granted. Though the run time comparison for both methods is unavailable at the present, 

Elmo can be improved in several ways. due to its intuitive nature. The wraparound is also 

found in phase shift cascade and handled, rather easily for the spatial case and very 

possibly in temporal case. as will be discussed later in this thesis. 

The computation of the propagator matrix method is totally done in frequency 

domain. Though this leads to its best advantage as mentioned and is able to accommodate 

all frequency dependent effects, it is difficult to gain physical insight. In comparison, 

phase shift cascade is a straightforward procedure with explicit formulae which allow its 

most attractive feature of selective synthesizing of different scattered wavefields. 

Propagator matrix methods are mostly formulated and applied in the @,w) domain 

and an inverse Hankel transform is required to obtain the time domain seismogram. The 

plane wave sampling is systematic over the ray parameter, whereas over the k, axis it is 

irregular and courser at high frequency. Thus in time domain, it is lacking accuracy in 

delineation for a spherical or cylindrical composition, especially at far offset of deep 



reflections. Phase shift cascade works in the (k-r ,o)  domain and obtains the seismogram 

through an inverse 2-D Fourier transform. The plane wave integration is regular over k, 

and irregular over the ray parameter. Therefore the cylindrical wave in time domain is 

better formed by the inverse Fourier transform, according to the more complete plane 

wave distribution at any radius. 



CHAPTER 3 

Experimental Results and discussions 

3.1. Normal incidence synthetic seismograms (1-D) 

To test those concepts proposed in chapter 2. phase shift cascade is implemented 

in the 1-D acoustic case and compared to the method commonly used in the exploration 

industry (Berryman et al.. 1958. Waters. 1992. Ensley and Foltinek. 1993. Hubral et al., 

1980). Here the phase shift cascade for 1-D will be referred to as the depth domain 

method and the industry technique as the time domain method (it  is also often called the 

Goupillaud seismogram). The phrase "time domain" refers to the fact that the standard 

method requires the input model to have layer thicknesses chosen such that the two-way 

traveltime across each layer is constant. Usually the constant traveltime is taken to be the 

desired time sample rate of the output seismogram and the input model is taken from well 

logs which will be resampled to have constant layer travel times. Originally, this 

resampling was done to reduce computational times but theoretical justification for it is 

lacking. Phase shift cascade does not involve such a resampling, though like the time 

domain method, it can still compute all possible multiples. A major effect of the equal 

traveltime resampling is a strong smoothing of the well log reflectivity. This can be 

comprehended by considering that logs are usually sampled at about 1/3 meter intervals 

and supposing a typical velocity of 3000 m/s, obviously around ten depth samples are 



avenged to obtain .002 second layers. This averaging can be expected to alter the 

character of the seismogram. 

Primaries-plus-multiples synthetic seismograms created by the time domain 

method often are difficult to match to seismic data while primaries-only synthetics 

usually tie well. This may be due in part to the fact that seismic processing is designed to 

attenuate multiples but it may also indicate a problem with multiple generation in 

synthetic seismograms. Therefore the multiple generation is examined by phase shift 

cascade compared to the time domain algorithm. There are two simple acoustic- 

impedance situations considered. whose effects have been described by O'Doherty and 

Anstey(l971) and Waters(1992). These are monotonic changes in  impedance and 

alternating impedance changes (Figure 3-1). They are the two end members of a possible 

continuum of models which cause interbed multiples (07Doheny and Anstey, 197 1 ). 

They shall be called the step impedance model and the random impedance model 

respectively. 

Two versions of each model are used where the impedance is the same in each 

version. However, in one case, the density is held constant at 2500 kdm3 and in the other 

case velocity is kept constant at 2500 rn/s. The step model shows the impedance 

increasing at each depth interval (according to a linear function Imp=2500*( 1800+0.6*2)) 

while the random model has impedance fluctuations about the same trend. 

For the step model, the generated first-order multiples are opposite in  sign to the 

primary pulses. Though each multiple would be small, the total effect can become very 

large through the superposition of events from many layers. Since the primaries are 

steadily decreasing through transmission losses, the multiples will eventually dominate 

and could cause an apparent flip of polarity (Waters, 1992). 

The random model produces large reflection coefficients of alternating signs. 

Most of the first-order multiples generated by this model are relatively large and of the 

same polarity as the primaries. With enough layers, the amplitude of the composite 

multiples can surpass that of the primaries (Waters, 1992). 



Figure 3-1. Synthetic acoustic impedance models They give either density for the 
constant velocity model or velocity for the constant density model. The 
constant velocity or density is 2500 (in MKS units) 

The purpose in assuming constant velocity in the two impedance cases is to force 

all of the reflection coefficients to be exactly at output sample times. The depth interval 

for each layer is 50 meters and with constant velocity of 2500rn/s the time thickness of 

every layer will be 40ms which will fa1 l precisely on output sample times for the sample 

rate used (2ms). Therefore the time domain algorithm does not need to resampie the 

model and the results from both methods should be identical. The constant density 

models were chosen as a contrast to the constant velocity case. There is an expectation 

that the differences between the two methods will be very obvious in this case. Since the 

layer traveltime now fluctuates, the time domain algorithm must alter the depth layering 

considerably. 

Thus four synthetic acoustic impedance models are examined: ( I )  step model with 

constant density, (2) random model with constant density, (3) step model with constant 

velocity and (4) random model with constant velocity. In addition, real data results from 



the Blackfoot 08-08 well log are also represented. The density and velocity logs from 

Blackfoot 08-08 are shown in Figure 3-2. The Mannville coals, which are a known source 

of multiple problems are located between 1500- 1750m. 

1650 1 I I I I I I 
1 000 2000 3000 4000 5000 6000 7000 

Velocity (ds) or Density (kg/m3) 

Figure 3-2 Interval velocity and density of Blackfoot 08-08 well logs 

Figures 3-3, 3-5, 3-7 and 3-9 display responses of both algorithms to each 

artificial model. They are all band limited with a 50Hz Ricker wavelet to make the 

physical effects more apparent. At first glance, the differences between the two methods 

are difficult to distinguish. The 5Om layer thickness of these models are much larger than 

real well logs. The smaller layers is expected to give more obvious differences as shown 

with the red data example. To aid in  the comparison, Figures 3-4. 3-6, 3-8 and 3-10 are 

difference plots of primaries and multiples for each case. 
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Figure 3-3. Responses of the two methods for the constant density step model 
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Figure 3-4. Comparisons with difference plots for constant density step model. 
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Figure 3-5. Responses of the two methods for the constant density random model 
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Figure 3-6. Comparisons with difference plots for the constant density random model. 
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Figure 3-7. Responses of the two methods for the constant velocity step model 
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Figure 3-8. Comparisons with difference plots for the constant velocity step model. 
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Figure 3-9. Responses of the two methods for the constant density random model 
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Figure 3-1 0. Comparisons with difference plots for the constant velocity random model. 
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Figure 3-1 1. Responses of the two methods for the Blackfoot 08-08 weil log data 
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Figure 3-13. Amplitude spectra of primaries with multiples and primaries only from 
Blackfoot 08-08. 

Considering the step model, as expected, the primaries are all positive, multiples 

are negative and both are relatively small (Figures 3-3 and 3-7). From the comparison in 

Figure 3-4, there are slight differences of primaries and multiples between the time 

domain and depth domain solutions. On the other hand, for the constant velocity results 

in Figure 3-7 primaries and multiples produced by time domain and depth domain 

calculations are exactly alike, Figure 3-8, and more mathematically regular than in the 

constant density case. Notice that primaries and multiples in Figure 3-7 appear evenly 

along time axis while in Figure 3-4 only the primaries show systematic spacing. The 

multiples in Figure 3-4 are initially regular but then become chaotic. 



From Figures 3-5 and 3-6 of the random model, the relatively more chaotic nature 

of the multiples from the constant density model is again apparent. Comparisons of 

primaries and multiples between the two methods are given in Figure 3-6 for constant 

density and in Figure 3- 10 for constant velocity. All of the responses have large positive 

and negative amplitudes. In the constant density case, the differences of primaries 

between the two algorithms tend to come from the large reflection coefficient interfaces 

(Figure 3-6(a)).The two algorithms are more divergent for the random model than for the 

step model (compare Figures 3-6 and 3-4). As expected, the overall power of the 

multiples is much larger for the random model than for the step model. The multiples 

often exceed primaries in amplitude so that they reinforce. cancel out or even dominate. 

The greatest interest is with the real Blackfoot 05-08 logs, for which the responses 

of the time domain and depth domain techniques are given in Figure 3- 1 1. Unlike the 

synthetic examples. these are shown without a wavelet because the logs are very short 

and a normal wavelet removes most of the detail. The results of the two methods are 

surprisingly different. even for the primaries (Figures 3- 1 1 and 3- 12). The time domain 

method creates primaries with less amplitude range and much smoother multiples than 

the depth domain method does. These are due to the small depth interval for these logs 

(0.3m) and the rapid fluctuations of acoustic impedance (Figure 3-2). The time domain 

algorithm. whose time thickness (Ims) is now much larger than the true depth thickness. 

strongly avenges the log properties. Thus the very important detail of the logs is altered. 

Theoretically, if the logs are sampled finely enough in time, the time domain method 

should give the same result as the depth domain. It seems also likely that the differences 

between the two algorithms will be increasingly important for high resolution data. This 

can be a subject for future investigation. The results from the depth domain algorithm 

show higher amplitude primaries and severe multiples. The multiples are small in the 

early part but accumulate rapidly from .04s reaching the highest peak at .08s due to 

interbed multiples from the coals 

The other very interesting result from these synthetics are the spectral notches, in 

primaries plus multiples traces from both methods (Figure 3-13). Coulombe and Bird 

(1996) recently showed that interbed multiples created by the Mannville coals cause a 



notch at 50-70Hz in the spectra of real data. Also, by a formula given by O'Doherty and 

Anstey (1971), the calculated amplitude spectrum shows significant notches between 55- 

I 1OHz. There is good qualitative agreement between these and the results. The coals 

occur in Blackfoot 08-08 at about 1500-1750m (Figure 3-2) and there are two notches at 

60Hz and 90Hz in the amplitude spectra of primaries plus multiples (Figure 3-13). 

Though the time domain algorithm shows similar effects they are again different detail. 

3.2. 2-D Elastic seismograms from simple synthetic geological models 

The three synthetic layered models in Figure 3-14 were used to test and show 

results from Elmo. All experiments in 3.2 and 3.3 assume a cylindrical P-wave source 

and receivers located in a uniform layer immediately below a freesurface at :=O and the 

free surface effect is excluded. Above :=O every model has a half space of very low 

acoustic impedance and has the lower half space as the deepest layer of the model. In this 

section, there are two single-interface models with the same two layers but switching 

places. The third model has more layers and produces more complicated results. The 

density for every layer in all models is constant ( 1 .00g/cm3). 

Model #I Model #2 Model #3 Depth (m) 
0 

500 

Vs=150Om/s 
900 

1200 

Figure 3-14. Configuration of the three simple models 

The time sample rate for modeling was 4ms and the trace interval was 25m. 

Maximum offset for model # I  and #2 was 3200m and for model #3 2000m. An 

appropriate range of ray parameter is evaluated for every depth in these three models. A 

compressional wavelet with a Gaussian frequency spectrum was used as a source. 



The results for PS waves in term of potential and horizontal displacement have 

polarity reversal at the negative offset in every model. Figure 3- 15(b), 3-15(d), 3- 18(b) 

and 3- 18(d). 

The synthetic potentials and displacements from model #I, which has a lower 

velocity layer on top (vpl<vs2<vp2). show PPP and PPS headwaves in both P and S 

arrivals as marked in Figure 3-15. The results from model #2 which has a higher velocity 

layer on top. do not show headwavrs. Figure 3-18. There are phase changes in 

supercritical reflections of the results from model# 1, Figure 3- 15. These imply phase shift 

cascade produces headwaves which correspond to ray parameters within the model range. 

The Zoeppritz equations thus give the correct amplitude and phases for the reflection 

coefficients and plane wave superposition then correctly constructs such waves here. 

Taking advantage of scattering matrix manipulation. cylindrical reflection 

coefficients can be obtained by dividing actual reflections by reference reflections. Figure 

3-16. A reference PP reflection was computed by the same procedure and parameters as 

the actual wave but only with Rpp=l (or Rps=l for a reference PS) at a particular 

reflector, for every plane wave. Then tnveltimes for the reflection have been raytraced 

for amplitude interpolation of the actual wave and the reference waves. Two methods of 

amplitude determination were conducted at this stage: Sinc-function interpolation of 

Hilbert envelope and instantaneous phase or Sinc-function interpolations of the real and 

imaginary parts of the analytic trace. The Hilbert envelope gives data magnitude at the 

specific traveltime. The Sinc function interpolation is required to compute a result at the 

present ray-traced traveltime. The cylindrical reflection coefficient is then estimated by 

dividing the actual amplitude by the reference amplitude. Due to two different amplitude 

extractions, we can get both amplitude and instantaneous phase information or both ma1 

and imaginary parts of the constructed reflection coefficients They are plotted together 

with the analytic results from Zoeppritz equations at different offsets in Figure 3-17 (a) 

and (b) for rnodel#l. The phase information are plotted in the multiplication of r radian 

and shifted down 0.4~ in order to be shown in the same chart as the amplitude 

information. For model#2, only the real part of the reflection coefficient from Zoeppritz 



equations is shown in Figure 3-19, because the imaginary part is zero. There are 

correlation trends in every case but the maximum coefficient from model# 1 is shifted to 

farther offset and smoothed compared to plane wave coefficients. Amplitude maxima 

associated with critical angles also appear shifted to farther offsets than predicted from 

the Zoeppritz equations. This has been observed and discussed previously by Rendleman 

and Levin ( 1988) and Krail and Brysk ( 1983). Further references can also be found in 

Cerveny and Ravindra ( I97 l )  and Cerveny et a1 (1977). 

The potential responses from the third model, PP primaries plus multiples. PP 

primaries, PS primaries plus multiples and PS primaries. are displayed in Figure 3-20. 

With this type of plotting, some very f ne events can be seen and thus it aids the study of 

wavefield separation better than the common wiggle trace plot at some points. However 

all Figures in 3-20, especially the full responses of P and S waves in (a) and (c), still 

show spatial wraparounds as a result of using Fourier transform for the integration of 

plane waves with boundless span. To reduce this unwelcome effect. some attenuation was 

applied to a few plane waves surpassing a maximum horizontal slowness. Some small 

amounts are already applied to plane waves within a necessary range of horizontal 

slowness for results in Figure 3-20. The attenuation is increased and applied to a wider 

range for the full response of displacement fields, vertical and radial components, in 

Figure 3-21. An extreme plane-wave reduction with an exaggerated extent is visible in 

Figure 3-22. The method for attenuation is to turn the elastic problem into a strongly 

visco-elastic for the range of plane waves to be attenuated. This is accomplished by 

adding an imaginary component to the elastic constants and is described more fully in 

section 4.1. 

As for this model, #3, the code calculated for 275 wavenumbers and 348 

frequencies through 4 interfaces and 4 algorithm steps within 160seconds. 

There are numerous events comprised in those records responded to only four 

interfaces. The number of only PP and PS primaries in Figures 3-20(b) and 3-20(d) can 

be counted together to 170 events, as illustrated by a diagram in Figure 3-24. However 



some events arrive in the same time and some have too low amplitude compared to other 

events in the same record. 

(a) P potential 

S-potcnual from model4 1 

(b) S potential 

(c) Vertical displacement (d) Horizontal displacement 

Figure 3-1 5. Potential and displacement responses from model #1 
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Figure 3-1 7. Extracted reflection coefficients from synthetic data of model #1 
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figure 3-1 8. Potential and displacement responses from model #2 

Cytndnal rnleaIon acfflatnt Irum mocelr 1 

*""I 

Figure 3-1 9. Extracted reflection coefficients from synthetic data of model #2 



(a). P-potential primaries plus multiples 
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Figure 3-20. P and S potentials from model #3 with a narrow transition range and 
very low attenuation. 
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(b). Vertical displacement of primaries. 
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(d). Horizontal displacement of primaries. 

Figure 3-21. Vertical and horizontal displacements from model #3 with a narrow 
transition range and very low attenuation 
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(b) Full response in horizontal displacement 

Figure 3-22. Vertical and Horizontal displacements from model #3 with moderate 
range of Butteworth filter and rather high attenuation. 
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Figure 3-23. Vertical and Horizontal displacements from model #3 with wide range 
of Butterworth filter and high attenuation. 



Figure 3-24. Computation diagram showing number of primary events along each 
path arriving at the surface, which are the power of two of the number of 
scattering nodes within the traveling path 

3.3. Examples of selective modeling with depth partitioning 

As is commonly accepted, the wave equation methods produce all (or almost all) 

seismic effects in forward modeling. An intuitive understanding of each individual effect 

is often lacking. From the perspective of phase shift cascade. all events that share the 

same arrival path (upcoming) to receivers (Figure 2-2) have the same number of 

scatterings. There are numerous events using such paths added up together, though most 

of them have different traveltimes. The total count for events on a single route from 

source to receiver, without any incidence waves other than the source-direct 

downcomings, is a power of two of the number of nodes within that path. If there are 

other incident waves, all the total scattering numbers from those paths must be summed 

to deduce the number of overall events. As an illustration, the total number of primaries. 

with mode conversion in both transmission and reflection, from a five-layer model as 

counted in Figure 3-24 is 2+8+32+ 128= 170. 

Phase shift cascade offers the possibility to study any given event separately by 

manipulating the scattering matrix. By varying the scattering matrix within the grid, the 

manipulation can be depth dependent. There is a model partitioning facility in Elmo that 

divides the entire model into three depth zones and then different modified scattering 

matrices are used in each division. Thus, different effects of wavefields are generated 

from those zones. This tool is very useful to study the variety of events within a particular 



zone of interest. The complication of an entire geological model, in that case, is 

simplified. Secondary scattered wavefields such as multiples can be isolated by 

subtracting two models, one with the desired secondary wavefieid and one without. 

A few examples of the wavefield separations from a particular depth range were 

constructed based on the real well log data. The Blackfoot 08-08 well log was used again. 

for comparison with ID case of section 3.1. The logs, density, P- and S-velocity, were 

blocked into 17 layers and. conceptually. three zones are recognized in Figure 3-25. Coal 

beds dominate zone B which generates multiples and converted waves tending to obscure 

the lower target, the Glauconitic channel sands in zone C. All wavefield simulations were 

generated assuming a P-wave source so all S-wave recordings represent mode 

conversions. A 2ms sample rate and -5 m receiver interval were also used. 

Density and interval velocity for P-wave and S-wave 

l3O01- 

Figure 3-25. A 17-layer model blocked from density and dipole sonic logs of 
Blackfoot 08-08 well. 
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Figure 3-26. The vertical and radial components of displacement are in Figure 3-27. The 
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package of surface multiples is also obvious on the P wave potential. The displacements 

show significant S-wave energy on the vertical channel and P wave energy on the radial 

channel. This is probably more event mixing than on the real data because a low-velocity 

near-surface layer was not part of the model. A wavefield separation into primaries and 

multiples of potentials and displacements is shown in Figures 3-28, 3-29, 3-30 and 3-3 I .  

Note that the interbed multiples on the P and S potentials are rather small except for 

several events which probably are related to the coals of zone B. 

It is fairly difficult to analyze all events in  those records. Hence some interesting 

areas were separately investigated. The region of Mannville coal beds, zone B in Figure 

3-25, was chosen to produce various wave effects. The effects from a limited zone are 

also based upon their incident waves. That means there are still influences from 

conditions. or scattering matrices. set outside the zone of interest. Among many 

possibilities included, here are tests of some partitioned modelings from zone B with two 

zoned external biases. 

In the first example. the full response of zone B is generated from primaries-with- 

conversions in zones A and C. The result is represented separately in Figures 3-32 and 3- 

33 which show double plots of primaries from all three zones and only multiples from 

zone B, in P and S potentials respectively. An illustrative explanation for multiple 

isolation is drawn in Figure 3-36. Thus the multiple field here can be considered as a 

composite produced from primary transmissions through zone A and primary reflections 

from zone C, as incident waves, both with mode conversion. 

In another case from zone B, there only is an incident wave of non-converted PP 

transmissions through the upper region and also no conversions on the receiver-arrival 

paths. The consequences of zone C are excluded. The full response is compared with 

primaries-without-conversions and the isolated multiples are shown in Figures 3-34 and 

3-35, for P and S arrivals. Figure 3-37 shows a descriptive picture of this construction. 

Compared to the results of the previous case, the multiples are apparently dissimilar, 

though they both correspond to the same region. There are a few factors for the difference 

between them. Zoned internal and external mode conversions, incoming waves from both 



above and below the region, and scattering orders within zone B are the main ones. 

Especially complex are several types of mode conversions: P-to-S, S-to-P, reflecting, 

transmitting, in-primaries, in-multiples, downgoing and upcoming conversions. We can 

see from equation 2-32 that they comprise half of the scattering matrix. The significance 

of each type of conversion depends on offsets and elastic contrasts at interfaces. 

Considering the numbers of primaries-only from zone B in these both examples, there are 

14 primaries. the number of interfaces within zone B multiplied by 2, for both P and S 

arrivals in the second one. Whereas there are 27+29+2"+2"+2'5+2'7+2" P and S 

primaries from zone B comprised in Figure 3-32 and 3-33 of the first example. Some of 

them appear at the same times, and many are very close, on the records. There are also 

many that certainly have very weak amplitudes. 

Figure 3-32 shows that the strongest P-wave internal-multiples from zone B 

appear in the record at the same time as the primaries from the Channel. between 1.4 to 

1.6 seconds. The results shown in Figure 3-33 suggest those strong multiples may be 

induced not only from zone B but also the external factors that more likely from below 

andor the higher-order multiples. S-wave internal multiples of zone B, Figure 3-32, have 

less amplitude effects to the S primaries from the Channel. 
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Figure 3-26. Full responses of P and S potentials from 17-layer model of Blackfoot 
08-08. 

Figure 3-27. Full responses from 17-layer model of Blackfoot 08-08 in vertical and 
horizontal displacements.' 
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Figure 3-28. Primaries and multiples of P potentials from entire 17-layer model of 
Blackfoot 08-08. 

Figure 3-29. Primaries and multiples of S potentials from entire 17-layer model of 
Blackfoot 08-08. 
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Figure 3-30. Primary reflections from entire 17-layer model of Blackfoot 08-08 logs 
in vertical and horizontal displacements. 
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Figure 3-31. Multiples only from entire 17-layer model of Blackfoot 08-08 in 
vertical and horizontal displacements. 
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Figure 3-32. P primaries from the whole model and P multiples generated from 
zone 6 
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Figure 3-33. S primaries from the whole model and S multiples generated from 
zone 6. 
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Figure 3-34. Genuine PP primaries and multiples generated from zone B with a 
scheme in Figure 3-36. 

Figure 3-35. Genuine PS primaries and SS multiples generated from zone B with 
a scheme in Figure 3-37. 
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Figure 3-37. Modeling scheme for the selective results in 
Figure 3-34. 
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Figure 3-36. Modeling scheme for the selective results in 
Figure 3-33. 
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CHAPTER 4 

Facilities and extendibility of Elmo and 
Conclusions 

4.1. Elmo facilities and possible extensions 

This section provides information for Elmo users and for further development of 

this method. Various techniques, employed in Elmo or suggested for future work, are 

thoroughly explored. 

4.1.1. Wraparound in space 

It is well known that the attempt to solve many problems using Fourier analysis in 

the frequency-wavenumber domain can lead to significant alaising problems. This is also 

one of the major problems for phase shift cascade, i.e. wraparound of seismic data in both 

time and space axes. The Fourier transform proposes plane wave decomposition for the 

forward operation and plane wave integration for the inverse. When there are some 

certain plane-waves that can not penetrate through a layer, due to a critical angle, the 

range of integration is reduced. However such plane waves, though isolated spikes in o 

k, coordinates, are widespread over the time-space domain. These infinite span plane 

waves will give a perfect integration, here to form the plane into a sphere or cylinder, if 

they all have compatible "neighbors" along at both sides (i.e. there is a complete set of 



them). The neighbors mean the adjacent horizontal-slowness plane waves in the 

summation. If not. the reconstruction and cancellations are incomplete. Therefore the 

limited reconstruction of plane waves. for hyperbolic reflections of a cylindrical or a 

spherical waveform. mostly affects the .r-t results in the form of the spatial wraparound of 

infinite span plane waves. 

One of the techniques used in Elmo to deal with this spatial wraparound is to 

attenuate the reflections at far offsets. By this technique the plane waves which directly 

develop the far offsets of reflections are fractionally weighted. The amount of such 

attenuation for each plane wave is determined by a Butterworth filter. The filter 

commences at a given horizontal slowness, corresponding to a user-prescribed proportion 

of the maximum offset. In this manner. the main parts of reflections are least disturbed. 

The attenuation is implemented by making the elastic parameters complex which means 

that beyond the prescribed horizontal slowness. a visco-elastic model is actually 

computed. 

4.1.2. Estimation of plane wave integration of reflections 

Elmo uses raytracing for PP-waves to estimate a suitable ray parameter range for 

every reflection in a model. The calculation zone in the f-k plane for each layer is thus 

minimized. This assumes the evanescent waves are all filtered on transmission at 

boundaries. This is not always true. However, only a few plane waves at high incident 

angles, for the far offset construction of the deeper reflections, are usually sacrificed. 

The higher the impedance contrast and the finer the layer, the more plane waves are 

missed during modeling. If the information is wanted, the full calculation can always be 

conducted. 

4.1.3. Depth-dependent masking matrix for scattering manipulation 

The facility for scattering matrix control with model partitioning of Elmo was 

introduced and some figurative examples were also provided in section 3.3. Practically, 

two depth levels are specified to divide the entire model into three consecutive zones. 

Then three 4x4 masking matrices for those zones are assigned in which elements are 1 



and 0. They correspond to the "on" and "off' coefficients structured in the scattering 

matrix in equation 2-32. This simplifies the code because Elmo always computes all 

scattered modes and then applies the appropriate mask to isolate selected wave fields. 

4.1.4. Wraparound in time 

The common problem, caused by the inverse Fourier transform from frequency to 

time, is that some long travel-time multiples, with significantly high amplitude, wrap 

back into earlier time, especially where the freesurface is concerned. It is difficult to 

know when or if there is a wraparound with amplitudes high enough to distort the output. 

A common way to control this time domain wraparound is to choose a sufficient record 

length. However this leads to another problem of very long computation time and 

insufficient memory. Another possible way is to switch off the downward reflections and 

upward transmissions at the free surface. 3.1, or some particular set of top boundaries, 

zk=t ..... m, which is the assumed trouble maker. The full response [R],, can be obtained 

from a multiplication of the total reflection [R],,,n, from the entire region beneath such a 

multiple-free zone. by finite expansion of reverberation operator between these zones and 

of the upward composite transmission [TI,,,, . The expansion of the reverberation operator 

[I - A:-, R,,,A:-, [a],, and an expression for [TI,,,, were given in section 1.4.5 by 

equation ( 1-66) and ( 1 -64), respectively. A similar mathematical description for this 

procedure was also given previously for a composite reflection coefficient, 

MI,,, =[TI, ,~[RI,  +~~l,,~,-,~,~:-,[~l,,,~~l,, + 

[77,,~:-, R,A:-, ral,,~:-, R,A:-, [ ~ l l , [ ~ l , .  + ... 

Each term may be computed separately in the frequency domain and then they 

can be accumulated into the total results later in time domain. Therefore some part of the 

temporal wraparound can be excluded from the summation. For the surface reverberation, 

setting m=2 so [Ell2 is the surface downward reflection El , [TI,, is a product of one- 



st 
way phase advance in the 1 layer and the upward freesurface transmission AFT. and a 

matrix of the full response from below is [RIzn 

4.15. Order-of-multiple control 

With the ordinary plane-wave cascade diagram, Figure 2-2. phase shift cascade 

compute5 a certain number of scatterings at an interface. dependent on the total number 

of interfaces in the layered model. The scattering number grows by one, from one count 

at the deepest reflector, up to the topmost. This means the intrabed multiples have the 

highest order in the top layer, equal to the number of layers in the model. There are only 

primary reflections from the bottommost interface. The strategy of this original grid, in 

brief, calculates and includes every event which has the number of scatterings less than a 

certain integer. dependent on the geological model. If a certain order of multiple 

reflections from every boundary are required. a variation of the plane wave cascade 

diagram is suggested in Figure 4- I .  

The computation should be traced downward through the bottom of model while 

parameters of upgoing waves for all of the adjacent nodes are maintained. This process 

then repeats with the number of the maximum multiple order and the upward 

continuation through the surface or detectors from every unfinished node can be done 

after that. A diagram for this calculation is shown, Figure 4-1, as though the ordinary 

grids are appended together. 



1 

2 

3 

4 

5 

6 

7 

8 
0 scattering node 

9 u V w 

Figure 4-1. plane wave cascade for order-of-multiple control 

4.1.6. Miscellaneous 

As a feasible extension, frequency-dependent effects can be easily simulated. such 

as absorption. Phase shift cascade can properly take into account the diversity of 

absorption with both frequency and depth, assuming the absorption coefficient varies 

linearly with frequency. Anisotropic and anelastic cases are also possible in the f-k 

domain by this method. It can also be extended to 3-D simulation. 

Another problem with phase shift cascade is the need to block the logs to a small 

number of layers due to run time and memory limitations. This causes a loss of detail 

similar to the time domain I-D seismogram of section 3.1. This can be addressed by 

several methods including the brute force computation of more layers or the replacement 

of blocked log segments by composite reflection and transmission coefficients. 

4.2. Conclusions 

The seismic problem is to determine the structure and properties of the interior of 

the earth based upon seismic data obtained at the surface. To study the features on 

recorded seismograms as they relate to the properties of the subsurface, mathematical 

modeling is a major tool. There are several methods of elastic modeling already available 

to obtain synthetic data. However they are all different in terms of limitations, accuracy, 



computing time, analytical ease and other factors. An appropriate method must be chosen 

with acceptable cost still giving the information required. A new numerical approach 

called phase shift cascade is presented here which offers new flexibility for synthetic 

seismograms in layered 2-D media. 

The 1-D acoustic modeling of phase shift cascade (or the depth domain 

algorithm), works well and gives qualitatively correct results for synthetic models and 

also for the real data from Blackfoot 08-08. The time domain algorithm. commonly used 

in industry. produces results similar though not identical to the depth domain method. For 

a constant velocity model. the two methods are exactly equivalent. However. in the more 

realistic variable velocity setting they can give quite different results. For real log data. 

the time domain method requires an extra small time interval to maintain all of the 

original log information. From the results, at a normal sample rate (2ms), the time 

domain method created notably different primaries compared to the depth domain 

method. This is a direct consequence of the time averaging. However the methods have 

an acceptable correlation for many purposes. On the other hand, the solutions of 

multiples created from the same logs by the two methods are very different. 

Both results support the conclusion of Coulombe and Bird (1996) that a series of 

coal beds causes notches in the amplitude spectrum of the seismograms. It seems quite 

likely that interbed multiples cause (or at least accentuate) these notches. 

In the 2-D elastic case, phase shift cascade generates realistic synthetic amplitudes 

and traveltimes with head waves for potential and displacement seismograms. It is fast 

and stable. Cylindrical reflection coefficients are obtainable and show distinct departure 

from plane wave coefficients for post critical reflections. Multiples and mode conversions 

are controlled via the scattering matrix. The scattering matrix manipulations can vary 

with depth. 

The separation of a complex seismic wavefield into primaries and multiples for 

both P and S waves can be a valuable exploration tool. In this case it was found that PP 

interbed multiples from a coal bed fall on top of the Glautonite channel and this increases 

exploration risk. 



Spatial and temporal wraparound is a serious problem for phase-shift cascade 

modeling, and is caused by the utilization of the Fourier transform. Nonetheless, the 

attenuation for plane waves at high angle of incidence using numerical viscosity 

suppresses wraparound in space. Evanescent waves can be alternatively included in the 

output model. A partial time-domain convolution, of a reverberation operator of the high 

impedance contrast zone to the composite reflection of region below such zone, is 

suggested to avoid the wraparound in time. 

The algorithm is intuitive, stable, very extendible and gives realistic results. It has 

advantages from both main modeling categories. raytracing and wave equation 

simulations. This method is a good tool to conveniently study various complicated cases 

that need insightful and realistic modeling, such as thin layers with high impedance 

contrasts. 
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