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and most daily human activities. This fact and the emergence of highly parallel, distributed computer
systems, has led many scientists to attempt distributed simulations that involve the concurrent execution
of model components. A commonly used technique for distributed simulation is the decomposition of a
model into communicating, sequential processes, where processes communicate only through message
passing. There are no shared variables and there is no central process that provides message routing or
process scheduling. The goals of distributed solutions are to speed up simulation by exploiting the
parallelism inherent in many real systems and their models, and to get more accurate measurement of
parallel behaviour.

In this paper, we are interested in process communication mechanisms and programming languages
which support distributed, discrete event simulation. These topics are addressed in the following two
sections, respectively. Finally, we conclude that a Prolog-like language in conjunction with the Time
Warp mechanism offers potential advantages over other approaches.

2. COMMUNICATION MECHANISMS

Traditionally, discrete-event simulation is performed by maintaining an event list which is used to
synchronize and schedule different cooperating activities. In a distributed simulation there is no central
controller. Once a simulation model has been decomposed into processes, one has to solve the problems of
synchronizing these processes so that events occur in a correct order. The first key notion is simulation
time, which plays a special logical role. The concept of time is fundamental to determine the order in
which events occur. Methods of distributed simulation using a central clock have been proposed|1][2)].
However more attractive suggestions use distributed clocks[3][4](5][6]. The other key notion is inter-process
communication, which can be broadly divided into two classes, synchronous and asynchronous methods.
With synchronous methods all processes in the simulation progress forward in simulation time together, in
synchrony, with no process ahead in time of any other. In contrast, an asynchronous methods permit some
processes to go ahead in time while others lag behind. In any case, there must be some mechanism for
ensuring that all the events in a simulation are processed in correct order. Asynchronous methods try to
exploit the maximum parallel execution of processes within a simulation model. An interesting relationship
(not necessarily for all the cases) has been seen between central clock schemes and synchronous methods
and between distributed clocks schemes and asynchronous methods. Chandy[7] uses two terms to
distinguish these systems. The former is called “Time driven simulation system” and the later “Time
exchange simulation system”. In the rest of this section, we restrict discussion to the time exchange
simulation systems.

2.1. LOGICAL CLOCKS

The proverb: “A person with one watch knows what time it is; a person with two or more watches is
never sure.” is commonly accepted, e.g., Lamport[3]. He notices that it is sometimes impossible to say
that one of two events occurred first in a distributed system: “...Most people would probably say that an
event a happened before an event b if a happened at an earlier time than b. They might justify this
definition in terms of physical theories of time. However, if a system is to meet a specification correctly,
then that specification must be given in terms of events observable within the system. If the specification
is in terms of physical time, then the system must contain real clocks. Even if it does contain real clocks,

there is still the problem that such clocks are not perfectly accurate and do not keep precise physical
time.”



Lamport carefully reexamined the events in a distributed system and found that real-time temporal
order, simultaneity, and causality between events bear a strong resemblance to the same concepts in
special relativity. From the “space -time diagram” in his paper, he showed that the real-time temporal
relationships “happens before” and “happens after” only form a partial order. So he introduced logical
clocks to extend this partial order to a total order. Being able to totally order the events can be very
useful in implementing a distributed system.

Each process has an associated logical clock which is used to assign a number to an event, where the
number is thought of as the timestamp at which the event occurred. A process can execute a command
timestamped T when it has learned of all commands issued by all other processes with timestamps less
than or equal to T. This method allows one to implement any desired form of multiprocess
synchronization in a distributed system. However, there are two shortcomings. The first problem is that
there is a large volume of communication traffic among processes because each process has to broadcast its
request to all other processes, and receive the same amount of acknowledgements when it executes a
command related to synchronization. Second, a process must know all the commands issued by other
processes, so that the failure of a single process will be fatal.

Although Lamport’s work did not concentrate on distributed discrete-event simulation, it does help
in understanding the basic problems of multiprocess systems and the importance of logical clocks.

2.2. THE NETWORK PARADIGM

Most past work on distributed simulation has been based on the network paradigm[4][5](7][8]. In
this paradigm, objects are represented as a collection of parallel processes acting as nodes in a network.
Each directed line in the network represents an one way communication channel between two processes
(nodes). The crucial issue in distributed simulation is that of simulating time on multiple processes.
Chandy[7] suggests using “time exchange” method instead of using a central clock which drives all the
processes. Each process has to associate with it a local clock which moves forward in time in an
asynchronous manner, and tells how far the associated process has progressed in the simulation. The key
points of their method are the following:

(1). There is a separate clock (time) associated with each line connecting processes (nodes).

(2). Processes communicate only by passing messages that include time stamps.

(3). Each process attempts to move the output clocks as far ahead in time as possible, based upon

currently available information.

(4). The output message on a line may state that no event will arrive on that line between the

current clock-time and some future time. The use of a no-event message is crucial to the correct

operation of distributed simulators.

(5). Since the sequence of clock times on a line are monotone increasing, merging of two lines at a

process can be achieved using the well known merging algorithm.

Idealy, if each process (node) in the simulation were assigned to a different processor and all could
execute concurrently, then we would achieve an optimal n-fold speedup over the single processor case.
Unfortunately, it is not always true in real simulations. For example, frequently a process will have one or
more of its input lines with no currently available information (empty queue) when it tries to receive the
next message. When this happens it must wait until all of its input lines are not empty, and then select
the next message with correct time order. In this case, two severe problems might arise, that is, deadlock
and memory over- flow problems. Chandy proposed a mechanism that directly deals with both
problems(5]. First, he requires that each message queue have a bounded length. In addition to blocking
whenever one of its input line is empty, a process must also block whenever it sends a message along an
output line where the message queue at the other end is full. Second, the distributed simulations always
run with a deadlock detection algorithm, as soon as a deadlock situation has been detected, a deadlock



breaking algorithm is activated.

The network paradigm proposed a distributed solution for simulation problems which are typically
solved in a sequential manner. It showed that the time required to run a distributed program for the
specific problem of queuing network simulation is generally less than the time required to run
corresponding sequential programs. This efficiency is achieved since there is no global process which could
be a bottleneck. However, the concurrency is limited by blocking when the input queue is empty or the
output queue is full. The technique for solving the memory overflow problem exacerbates the deadlock
problem. Since a process can block while either sending or receiving, a deadlock situation can occur
around any undirected cycle in the simulation network, rather than just in the directed cycles.

2.3. THE TIME WARP MECHANISM

It sometimes makes sense to have processors performing computations that may never be needed if
indeed the possibility that they are used will speed the execution of a given computation. This idea is
called the “Never Wait Rule” which states that it is better to give a processor a task that may or may not
be used than it is to let the processor sit idle. Before Jefferson’s innovative work[6]{9], nearly all the
proposals for distributed simulation involved conservative synchronization mechanisms. In a word,
conservative mechanisms involve “waiting” - waiting for synchronization of sender and receiver, or
waiting to make decisions that correctness can be proved at some check points. In other words, these
proposals do not obey the “Never Wait Rule”. The Time Warp mechanism never involves waiting.
Jefferson uses the term Virtual Time in connection with the Time Warp mechanism to be synonymous
with simulation time and describes the main idea as follows: “...A Virtual Time system is a distributed
system that executes in coordination with an imaginary global virtual clock that ticks virtual time.
Virtual time is a temporal coordinate system used to measure computational progress and define
synchronization. increasing virtual receive time order as long as it has any messages left. All of its
execution is provisional, however, because it is constantly gambling that no message will ever arrive with
a virtual receive time less than the one stamped on the message it is now processing. As long as it wins
this bet execution proceeds smoothly. The novelty is that whenever the bet is lost the process pays by
rolling back to the virtual time when it should have received late message. The situation is quite similar
to the gamble that paging mechanisms take in the implementation of virtual memory: They are
constantly betting with every memory reference that no page fault will occur. Execution is smooth as long
as the bet is won, but a comparatively expensive drum read is necessary when it is lost.”

In the Time Warp paradigm, each process always charges ahead, blocking only when its input queue
is exhausted, and then only until another messages arrives. Whenever a message with a timestamp “in the
past” arrives at a process’s input queue, the Time Warp mechanism automatically restores that process to
a state from a virtual time earlier than the timestamp of the late message, cancels any side effects that it
may have caused in other processes, and then starts the process forward again. Although some
computational effort is “wasted” when a projected future is thrown away, a conservative mechanism
would keep the process blocked for the same amount of time, so the time would be “wasted” anyway.
According to the Never Wait Rule, the Time Warp mechanism can speed up almost any large simulation
by exploiting the concurrency within it.

A question here is: to what extent we can win via this type of gambling? If we always lose, even if
we do not waste time on synchronizations, we have to pay a lot of costs for rollback actions. Like the
paging systems, the Time Warp mechanism is also based on the Locality Assumption. Locality manifests
itself in both time and space. Temporal Locality is locality over time. Spatial locality means that nearby
items tend to be simular. Locality is observed in operating system environments, particularly in the area
of storage management. It is an empirical property rather than a theoretical one. It is never guaranteed
but is often highly likely. Actually, locality is quite reasonable in distributed simulation systems, when



one considers the way programs are written and communication is organized. In particular, temporal
locality means that if process A sends a message to process B, it is most likely that process A sends
another message to, or receives a reply from process B in the near future, and that such subsequent
messages will have increasing timestamps. For example, the communication between an event generating
process and an event consuming process. Spatial locality means that the communication connections
between processes are most likely stable. The success of the Time Warp mechanism is based on this
locality assumption, even though it has not been tested experimentally.

In this section, we outlined the fundamentals of the Time Warp mechanism. Further details can be
found in [6][9]. Tt appears that the Time Warp mechanism is an attractive paradigm for distributed
simulation. It is deadlock free, completely transparent to the programmer, and seems to have significant
advantages over conservative mechanisms. However, there are problems which need further exploration.
One problem is the state-saving and rollback mechanisms. In the case of rollback, the rollback mechanism
must hold a state queue which saves copies of the process’s past states, ordered by the local virtual time.
State-saving is a low level system activity. In general, what should be saved and what should not, is not
known, as Jefferson discussed in [6]. The entire data space of a process is saved each time, which is not
only space-consuming, but also time-consuming.

3. DISTRIBUTED PROGRAMMING LANGUAGES

Traditionally, programming languages for discrete-event simulation are sequential or pseudo-
concurrent languages. Discrete systems generally involve contention for scarce resources, with queues
developing where system components must wait for resources to become available. Further, delays
between state changes are usually determined statistically, with the exact interval selected according to
some random number distribution. Some of the more popular discrete simulation languages are GPSS|10],
SIMULA[11], and SIMSCRIPT[12]. These kinds of languages are procedural, i.e., a program explicitly
specifies the steps which must be performed to reach a solution. Another kind of language has recently
been used in simulation, i.e., T-Prolog[13]. It is a declarative or descriptive language, i.e., it is only

necessary to describe the problem in terms of statements and rules that define relationships among the
objects in question.

Recently, many proposals have been put forward for distributed programming, including CSP[14],
DP(15], PLITS|16], E-CLU[17], *MODI18|, Cell[19], Soma[20], NIL[21], ADA[22], PARLOGI23] and
Concurrent Prolog[24]. These languages all support concurrent computation. One issue for distributed
systems is designating which actions can be executed concurrently. Almost all these languages use explicit
processes to show concurrency, although they may use different names for the same concept. In this
section, we shall briefly survey these languages by dividing them into two groups, i.e., the procedural and
declarative programming languages.

3.1. THE PROCEDURAL PROGRAMMING LANGUAGES

The distributed procedural languages inherit most features from conventional programming
languages. These include support for abstraction, particularly abstract objects, support for modularization,
including separate compilation of modules, support for sequential execution fow control, support for
strong data types and data encapsulation, and support for error and exception handling. However, as a
distributed program resides and executes at communicating, but geographically distinct, nodes of a
network, a distributed programming language must provide the functions of distribution and
communication. The latter constitute the major difference from conventional programming languages.



Distribution means process dynamics which describes the change in number and variety of processes
through the execution of a distributed program. Two methods are commonly used to create new processes.
Some languages allow programs to create new processes during execution (dynamic processes). The
syntactic mechanisms supporting dynamic process creation are explicit allocation and lexical program
elaboration. Languages with explicit allocation have a statement to create a new process, such as Ada,
NIL and PLITS. Lexical elaboration creates processes by combining declarations with recursive program
structures. That is, if procedure P declares process A and then calls itself recursively, the recursive
invocation of P creates another copy of A. Cell, Ada, and PLITS create new processes by lexical
elaboration. Another method is that languages require that all processes be defined at system creation
(static processes), such as CSP, DP, *MOD, and Soma. The dynamic process creation is more flexible than
the static one, but the later is easier to understand.

The differences that distinguish distributed programming languages from sequential ones center on
communication and synchronization among processes. As we discussed in Section 2, the key notion among
languages is the issue of synchronous versus asynchronous communication. In a synchronous scheme, every
communication request is matched by a reception; a process cannot send the second message until the first
one has been handled. In an asynchronous scheme, processes send messages without regard to their
reception; a process is free to send a message and continue computing. PLITS and Soma use an
asynchronous communication scheme. NIL provides both synchronous and asynchronous communication.
The rest adopt synchronous communication. Other issues in distributed programming languages are
communication connection and message control. These two issues have a close relationship for establishing
communication among processes. Communication connection is a naming problem. Three different
syntactic forms - ports, names and entries, are used to channel communication. Communication through a
special typed symbol is communication through a port. A port can be referenced by communicating
processes through global declaration or ownership transfer. *MOD, PLITS, NIL, Soma and E-CLU use
ports (possibly using other names such as “mailbox”). Several languages - Ada, Cell, and DP, focus
communication on an entry in the called process. A called process can have several entries and accept
requests from them in an order determined by program control. CSP uses process names to communicate
directly. In order to exchange messages, two processes must identify each other by their names in input
and output statements. In this case, even though the communication connection looks explicit, the lack of
anonymous communication makes it difficult to build program libraries. Message control concerns the
actions that processes take to communicate, including the facilities they have for choosing a
communication partner and segregating incoming messages. For example, CSP treats processes as equals.
It introduces asymmetric unidirectional message flow. Input guards provides concurrency control.
Alternative commands combined with input guards can automatically segregate incoming messages. Other
languages specify roles for the “calling” and “called” processes. Ada, Cell and PLITS allow the called
process some freedom in choosing which request to serve. All incoming messages are segregated into
groups by entry queues.

Some discrete event simulation systems have already been built based on some of these languages{1]
[25]. Since they adopt synchronous communication and a central clock for simulation time, additional
work is required to exploit the concurrency of the parallel simulation model.

3.2. THE DECLARATIVE PROGRAMMING LANGUAGES

A declarative programming language is a logic programming language in the sense that its
statements are interpreted as sentences of a logic. The ancestor of these languages is Prolog which was
developed about 10 years ago. Prolog has been very popular in Europe and is now targeted as the core
language of the Japanese Fifth Generation Computer Project. Several advantages to the use of Prolog-like
languages for simulation are summarized as follows|26]:

(1) They provide declarative semantics based on logic in addition to the usual procedural semantics.



(2) Program and data are identical in form and can therefore be easily manipulated.

(3) Arguments of procedures are not fixed as input or output parameters as in other programming
languages and procedures may have multiple inputs and outputs.

(4) Backtracking is used to find a complete set of solutions for a given problem. This also results in a
high-level form of iteration.

(5) The basic elements (atoms, variables and compound terms) provide a general and flexible data
structure superior to the arrays and records used in conventional programming languages.

(6) The language designs are well suited to parallel search and are, therefore, excellent candidates for
future powerful computers incorporating parallel processing.

(7) Programs are usually significantly shorter than programs written in imperative programming
languages (typically 5-10 times shorter).

T-Prolog is an extension of Prolog to define a goal oriented discrete simulation. It provides facilities
similar to those found in conventional simulation languages. The basic features in T-Prolog are the
notions of process and the system internal clock. T-Prolog adopts dynamic process creation and allows
processes communicating with each other during their execution. The attraction of T-Prolog is the use of
backtracking to automatically modify the model until the simulation exhibits some desired behaviour.
However, a problem with T-Prolog is that all processes are driven by a central clock which acts as a
bottleneck in a distributed system.

Two other varieties of Prolog are PARLOG(23] and Concurrent Prolog[24]. They are parallel logic
programming languages featuring both AND-parallelism and OR-parallelism. PARLOG relations are
divided into two types: single-solution relations and all-solutions relations. A conjunction of single-solution
relation calls can be evaluated in parallel with shared variables acting as communication channels for the
passing of partial bindings. Only one solution to each call is computed, using committed choice
nondeterminism. A conjunction of all-solutions relation calls can be evaluated without communication of
partial bindings, but all the solutions may be found by an or-parallel exploration of the different
evaluation paths. PARLOG uses mode declarations to determine the communication constraints on
processes. Concurrent Prolog is very similar with the single-solution component of PARLOG. They both
use guarded clauses, committed choice nondeterminism, and the ability to have variables in messages. The
major difference is in the way the interprocess communication constraints are expressed. In Concurrent
Prolog, programs do not have fixed modes of use. Instead, variables shared between goals serve as the
process communication mechanism.

The first implementations of PARLOG and Concurrent Prolog have been built on Prolog. Current
implementation efforts are directed toward both parallel and conventional sequential machines. It seems
that PARLOG and Concurrent Prolog have a very definite advantage in execution speed, but this depends
on the emergence of suitable parallel processing machines.

4. DISCUSSION

Practical simulation work involves defining a project and its goals, specifying the model,
implementing it as a working computer program, verifying and validating, experimenting with the model,
and producing documentation. The development of a large simulation model is a complex and difficult
task. In many research areas, expensive computers are devoted almost exclusively to simulation. It is
therefore becoming an increasing important research goal to speed up simulations by exploiting the
concurrency inherent in them.



The interprocess communication mechanisms and programming languages discussed in this paper
span the important ideas for distributed simulation. When we seek an ideal distributed discrete simulation
language system, we are drawn to the following questions: What set of communication primitives can best
describe the run-time behavior of our system? What interprocess communication mechanisms built from
these primitives best support distributed simulation? What language constructs are suitable to describe
simulation models which can be efficiently implemented with these primitives while leaving the
programmer unaware of the lower level run-time environment? Of course, we hope that this system has:
the flexibility that comes from dynamic process creation, the concurrency that comes from asynchronous
communication, the explicit naming facility that not only makes a program easy to understand but also
makes it easier to develop large programs and libraries, and powerful expressive facilities that can
decrease development time.

Comparing different interprocess communication mechanisms, we focus our attention on the Time
Warp mechanism. Based on the Never Wait Rule and the Locality Assumption, the Time Warp
mechanism can speed up almost any large simulation by exploiting the concurrency within it. Clearly,
discrete simulation is one of the most appropriate applications of the Time Warp paradigm, because the
virtual times (simulation times) of events are completely under the control of the user. However, the
simulation programmer does not need to know that his program is running under the Time Warp
mechanism. He uses the same conceptual methodology for building a concurrent, object-based simulation
as he uses for sequential, object-based simulation. These advantages are not without cost. As Jefferson [6]
expected, the Time Warp mechanism uses several times as much memory as other methods in order to
achieve maximum speed up. The major memory cost is due to state saving. The Time Warp mechanism
has no knowledge about what should be saved and what should not, and thus the entire data space of a
process is saved. If a process manipulates a large amount of data, say, a matrix with 100%¥100 integers, the
memory will be exhausted very soon by saving several successive states. One may argue that the cost of
state saving can be reduced if only a few own variables that represent the whole state are saved instead of
saving the entire data space. In this case, the responsibility is placed on the user. The programmer has to
isolate a set of representative variables from his own data domain, then present them through some
linguistic declarations to the Time Warp system. The defect of this scheme is the destruction of
transparency.

Re-examining the programming languages discussed in Section 3, we found that the backtracking
facility of a Prolog-like language offers a possible way to overcome the shortcoming of non-knowledgeable
state saving. When Prolog rolls back and re-satisfies a goal, it returns to the most recently instantiated
variables and attempts to instantiate them with alternative values. If this is not possible it backs-up
further to the next most recently instantiated variables, etc. Thus, the set of variables changed on a given
computation path is completely known. This knowledge can be used to determine the exact amount of
information that must be saved for any given execution path. In other words, state saving in Prolog is
based on knowledge. Therefore, a Prolog-like language combined with the Time Warp mechanism not
only reduces the cost of state saving, but also keeps the system completely transparent.

In addition, having its foundation in logic, a Prolog-like language encourages the programmer to
describe problems in a manner that facilitates checking for correctness and consequently reduces the
verification, i.e., the debugging, effort. A Prolog-like language can be used as a tool both for model
specification and program implementation. Since Prolog provides general, flexible data structures and
procedures which may have multiple inputs and outputs of dynamically defined types, we do not need any
extra facilities such as entries, ports, or alternative commands for sorting and segregating incoming
messages. For example, we can write a universal “Queue” process in a Prolog-like language, which can
direct messages with arbitrary data structures between senders and receivers. We can write a message
processing procedure with different arguments (set of clauses) and Prolog will automatically search for the
matching clause. Thus, we believe that a Prolog-like programming language in conjunction with a run-
time kernel based on the Time Warp mechanism offers potential advantages over other approaches.



A programming environment that supports the development of distributed software, i.e. Jade, was
developed during 1982-85 that is now in use at a number of universities and research institutes. Jade
provides an integrated set of tools for monitoring, debugging and graphically animating the execution of
distributed programs. Early in 1985 we began work on a version of Time Warp that is based on the Jade
environment which has now been completed. A major goal of this Jade Time Warp system is to enable
studying different mechanisms for state saving and rollback within the context of different programming

languages. Our next step is to develop a Time Warp Prolog system that uses Prolog backtracking to
accomplish rollback.
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