THE UNIVERSITY OF CALGARY

Object-Oriented Simulation for
Queueing Systems

by
Xiaoming Li

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE
DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

April, 1997

© Xiaoming Li 1997

i~l

oy Selabiqreraiorae
Qﬁ.‘gggﬁc"gm ::qwtmo br:gligtgmphiques
395 Wi Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your file Votre rélicence
Our fle Notre référence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of his/her thesis by any means vendre des copies de sa thése de
and in any form or format, making quelque maniére et sous quelque
this thesis available to interested forme que ce soit pour mettre des
persons. exemplaires de cette thése i la
disposition des personnes intéressées.
The author retains ownership of the L’auteur conserve 1a propriété du
copyright in his/her thesis. Neither droit d’auteur qui protége sa thése. Ni
the thesis nor substantial extracts la thése ni des extraits substantiels de
from it may be printed or otherwise celle-ci ne doivent étre imprimés ou
reproduced with the author’s autrement reproduits sans son
permission. autorisation.
0-612-20836-2

Canadi

Abstract

Many discrete event simulation studies involve the simulation of queueing systems.
Two major problems arise in the simulation of queueing systems: first, the modeling of a
queueing system can be an extremely complex and error-fraught endeavor; and second,

the simulation of the system can be computationally intensive.

This thesis addresses these two problems from the aspects of modeling effectiveness
and execution efficiency. An object-oriented (OO) simulation package called QueKit has
been developed in order to facilitate the modeling process and retain good efficiency in
both sequential and parallel executions. This package provides an OO event-driven mod-
eling framework. It allows the emphasis on modeling the objects that provide services in a
queueing system (server architecture) and the emphasis on modeling the objects that need
services (client architecture) to be applied seamlessly in a single simulation model. This
server-client architecture enables the application programmer to adjust the balance
between modeling effectiveness and execution efficiency when developing a simulation
model for sequential execution. It is expected to enable more natural parallelism to be
exploited from the real system when developing a simulation model for parallel execution.
This may result in better modeling effectiveness as well as better execution efficiency than
either the server architecture or the client architecture solely applied in a model when run-

ning on a parallel machine.

iii

Acknowledgments

I would like to thank my supervisor, Dr. Brian Unger, for his continuous support and
guidance during my research work. His patience and concerns gave me a constant encour-
agement in my research endeavor even from New Zealand via e-mail when he was on his
sabbatical leave last year. Dr. Brian Unger made an enormous contribution to this research
and thesis. His insights and suggestions made a substantial improvement to the literary
quality of this thesis.

Special thanks go to my lovely husband Zhong Chen. Thanks for his accompanying
me to the school when [worked on my thesis in many evenings. I would not finish this
work without his love and support. I would also like to thank my parents and my brother

for their great concerns from a remote place via phone calls and mails.

I’d like to thank my colleagues and friends, Fabian Gomes, Zhong-e Xiao, Steve
Franks, Husam Kinawi, and Jya-Jang Tsai for the helpful discussion with them. Espe-
cially, both encouragement and criticism from Dr. Fabian Gomes were very valuable to

my work.

Thanks to Raimar Thudt for his support of this research, and his many suggestions

regarding to the common modeling problems and solutions.

I’d like to thank Darcy Grant, Robert Fridman, Wayne Pearson, Brian Scowcroft,
Gerald Vaselenak, and Mark Stadel for their technical assistance.

iv

Dedication

To my father, Shufu Li,
my mother, Qunfang Wu,
and

my husband, Zhong Chen.

Approval Page ii
Abstract ifi
Acknowledgments iv
Dedication v
Table of Contents vi
List of Tables viii
List of Figures ix
Chapter 1 Introduction
1.1 Discrete Event Simulation and Parallel Discrete Event Simulation
1.2 Object-Oriented Modeling and SIimulation........coeeeeeeemnmrereccccecinncneransnnens 4
1.3 Motivation and ODbJECtiVES.......cccvereeorrcrrrerrrenseeriresrsssasiecsnesesensssassessonneses
1.4 OVErview Of TheSiSooreivmercrereerceiceessncrsenenessseeesasesassssessnensesesernsoscoss
Chapter 2 Modeling Queueing Systems 10
2.1 Current Modeling Frameworks.........c.ccceveeniniemnneereennnecnreceeenssccesessecsnacs 10
2.1.1 Concepts and Definitions.........ccc.cccereurreenrnee eerseemressasaneennaes 11
2.1.2 Modeling Power Versus Execution Efficiency.........ccoeeveceeennnenene. 13
2.2 Approaches to Modeling Queueing Systems.........cocovemreerecercercrcccncrucnnenn. 17
2.2.1 Server ArChiteCtureooeeevecremssersrmsnienescssesenessenesssssssssscssssssnnes 17
2.2.2 Client ArChiteCturecoceeverervsscsscrsnsnrsersuesnssnesessaersnnsanssssesssees 21
2.3 Common Modeling Problems...........cccocomemiimrrmrmrerennecrnesencsscsecsescenn. 22
2.4 SUMMATY c.ccoverreeeeerceccrissenscssssssessssnssesessessessarssssssssassasasssesssesessassssasensosaes 26
Chapter 3 Packages for Queueing System Simulation 29
3.1 Approaches to OO Simulation Package Designccecovveevecieeniccncccnnnnes 29
3.2 Packages for Object-Oriented Simulationceceeeeeerecrnenecnnnecinienen. 32
3.2.1 Packages Only for Sequential Simulation............cccevemevecerencenennes 32
3.2.2 Packages for Both Sequential and Parallel Simulation.................. 34
33 SUMIMATYo..eoeeeerieccirveennereresssssssssssnsressssssonsestssssssssissessssnrssnesassssssessassssan 38
Chapter 4 QueKit: An OO Simulation Package for Queueing Systemsccecessessses 40
4.1 Overview of QUEKL.........eooremirorrrerceenenscsntin e e eensreearees 40
42 Object-Oriented Event-Driven Modeling FrameworK.........cc.coverererennencs 43

Table of Contents

vi

4.3 Base Layer of QueKitcccrcrmrrrcercnersrcrsnnrennes 45

4.3.1 Base Classes 46

4.3.2 Simulation Classes 49

4.3.3 Server Architecture 52

44 Extended Layer of QueKit 53

4.4.1 Extended Classes and Interfaces 55

4.4.2 Client Architecture 57

4.43 Server-Client ArChiteCtureeoveeeeeerecereceeeccnerersessansoscorossees 59

4.5 Implementation Issues cevnsasananes 61

4.5.1 Simulated Delayc.cceceeieeieseecvnomrrncsrscsssiesssscssasassassssesassesses 61

4.5.2 Token MOVEMENLcoovimmreireereciiensensneneessesessesscsssssssarases 63

4.5.3 Event Cancelation.........ccoeeemeecrorrneorerneecnsronmrrecssonsnmanssseosossonss 64

4.5.4 Resource Allocation/Deallocationcceeeveceveecrnrerrerercecsseencn 65

4.6 SUMMALYoocreeerreecmrecsrerrersnserssernnssressssesessssaseasans 67
Chapter 5 Preliminary Evaluation of QueKit 68
5.1 Revisiting the Common Modeling Problems.......c..ccoooeereneevinnircnences 68

5.2 Benchmark Models eeteseansesanerensessasasntaereesraranarsasensenas 78

5.1.1 CPU_Disk System79

5.1.2 Harbor System reveeessstresrnoessneressstesaasnrennneeesronares 83

5.3 Modeling and Simulation Results ereremseseriesaeeeraeartesantnsananenssases 87

54 Summary.... eeceesessessesnessassasarasansase reeeersurnernressenarassessensarans 94
Chapter 6 Conclusion 96
6.1 Summary and COonCIUSIONScccceeeeceocrereieennrrerreeesreeressseerersssesssesersssnsns 96

6.2 Thesis Contribution resteseresnersenresensresasssessesssaraeasentesens 102

6.3 FULUIE WOLK ..c...oeeeeeeeecceeecrcerierecnenesesetaecnaesesenesnssesssnssnsereessresssrees 102
Bibliography 104
Appendix A Functional Model Notation 107
Appendix B Declarative Model Notation 107
Appendix C Model for the CPU_Disk System 108

(QuekKit Server-Client Architecture)
Appendix D Model for the Harbor System 112

(QuekKit Server-Client Architecture)

TABLE 1.
TABLE 2.
TABLE 3.
TABLE 4.

List of Tables

Simulation Results for the CPU_Disk System 90
Simulation Results for the Harbor System 90
Modeling and Simulation Results for the CPU_Disk System.................... 91
Modeling and Simulation Results the Harbor System............cccccoveueneen.e. 91

viii

Fig. 2.1
Fig. 2.2
Fig. 23
Fig.24
Fig. 2.5
Fig. 3.1
Fig. 4.1
Fig. 4.2
Fig. 4.3
Fig.4.4
Fig. 4.5
Fig. 4.6
Fig. 4.7
Fig. 4.8
Fig. 4.9
Fig. 4.10
Fig. 4.11
Fig. 4.12
Fig. 4.13
Fig. 4.14
Fig. 4.15
Fig. 4.16
Fig. 4.17
Fig. 5.1

Fig. 5.2
Fig. 5.3
Fig. 5.4
Fig. 5.5
Fig. 5.6
Fig.5.7
Fig. 5.8
Fig. 5.9
Fig. 5.10

List of Figures

CPU_Disk System 18
Server Architecture for CPU_Disk System .19
Declarative Model for CPU_Disk System (Server Architecture).............. 20
Client Architecture for CPU_Disk SyStemcoeevevecuveerevecemsecevessnesnnns 21
Declarative Model for CPU_Disk System (Client Architecture)............... 22
Role of OO Techniques 30
QueKit Overview .41
Logical Process Modeling View 44
OO Event-Driven Modeling View e d5
Class Hierarchy of QueKit Base Layer.........cooceceeeememveeererenennn. .46
Timesharing SyStem..........c.oeeeeeereeeeeeeeeceeeeeeeeeeeeeeeeesennnas 53
Hospital System Diagram ISR 7
Hospital System (Server Architecture) eeeesesssstssaresannesssanas 55
Hospital System (Client Architecture)............oeceeeeeecemeeeeeeeeeeeeeeeeeenennn 58
Server-Client ATCHItECIULEuceoeeereeeerreeetceceeeeeeemeeeeeeseseeeeeese o eseaes 60
Pseudo-Code for Entity::process (Event) .61
Pseudo-Code for Token::keep (Time)......cvveuveemeeemreccemreeeeeeeeenessesrerenans 62
Pseudo-Code for Token::send (Entity, TIme)........ooeeeecemeceeeeeerereeesrnn. 63
Pseudo-Code for Token::move (S€t).....ueeumeeemeeeeeeeereeeeeeeeeeeeeeeeeoeeeoseen 64
Pseudo-Code for Token::cancel (Token)........cceevemeeeveeeeeeemeemeeereeseoesnnn 64
Pseudo-Code for Job::requestRes (Resource, amount, priority)................ 66
Pseudo-Code for Job::preemptRes (Resource, amount, priority).............. 66
Pseudo-Code for Job::freeRes (Resource, amount)..............oeeenoe........ 67
Declarative Model for the Timesharing Systemccoeeeeeeeneonn..... 69
(QueK:it Client Architecture)
Declarative Model for the Transportation System..............coouvueeeemen....... 71
Declarative Model for the ATM Networkooeeeveeecevmereeeereeeseeeen. 72
Declarative Model for Factory System.........ceeeeeveeeceemeemererererseeeeseonnn 73
Declarative Model for the Barber Shop Systemcoeoeeeemeeremeeneen, 74
Declarative Model for the Grocery Store System............o.oveveveveeemoon. 76
Declarative Model for the Factory Systemooeevevemeveememememeeeen. 77
Functional Model for the CPU_Disk System (Server Architecture) 79
Functional Model for the CPU_Disk System (Client Architecture).......... 80
Functional Model for the CPU_Disk SYStemv.euemeeeeeemeeeerereenennon 81

(Server-Client Architecture)

Fig. 5.11

Fig.5.12
Fig. 5.13
Fig. 5.14
Fig. 5.15
Fig. 5.16
Fig. 5.17
Fig. 5.18
Fig. 5.19
Fig. 5.20
Fig. 5.21

Declarative Model for the CPU_Disk System.... 82
(Server-Client Architecture)

Functional Model for the Harbor System (Server Architecture) 83
Declarative Model for the Harbor System (Server Architecture)............... 84
Functional Model for the Harbor System (Client Architecture)................ 85
Declarative Model for the Harbor System (Client Architecture)............... 85

Functional Model for the Harbor System (Server-Client Architecture)86
Declarative Model for the Harbor System (Server-Client Architecture)...86

Performance of the Models for CPU_Disk System ...88
Model Overhead (%) to SimKit Model (CPU_Disk System,).................... 88
Performance of the Models for Harbor System..... 89
Model Overhead (%) to SimKit Model (Harbor System).......c.cccceeeveeneen. 89

Chapter 1

Introduction

Simulation is a methodology for imitating the operation of a real-world system (or
process) over time. A simulation involves the generation of an artificial history of the state
of a system over time in order to draw inferences concerning the operating characteristics
of that system. Simulation is widely used for analysis, performance evaluation, tests of
sensitivity and cost effectiveness, forecasting, training, and decision making. In fact, sim-
ulation can be used for analyzing any model of arbitrary complexity. The complexity of
the model is limited only by the modeler’s ability, the power of the method to represent the
system under study, and the capacity of a computer to load and run the simulation pro-
gram. Experiments with the real system are often out of the question due to the high cost
or potential danger. Analytical methods are usually limited to relatively simple systems so
that they cannot be used for analyzing some complex systems which are mathematically
intractable. Simulation can be used for studying any system whose behavior can be
described in terms of a model. In contrast to the continuous simulation that studies a sys-
tem in which the system state changes continuously over time, discrete event simulation
(DES) is the simulation of a system in which the system state changes only at discrete
points of time. Discrete event simulation has come to be an important methodology for
understanding and predicting the behaviors of many complex systems. Parallel discrete

event simulation (PDES) refers to the execution of a DES model on a parallel computer.

1.1 Discrete Event Simulation and Parallel Discrete Event Simulation

From the view of a DES modeler, a system is a collection of entities that interact with
each other over time to accomplish one or more goals. Each entity in a system is an ele-
ment which may require explicit representation in a simulation model. An artribute is a

property of an entity. For instance, patients, beds, and theaters may be three kinds of enti-

ties in a hospital system. The patient's age, gender, the date of entering the hospital, etc.,
may be attributes of the patient.

An entity may be dynamic in the sense that it may dynamically enter a system, may be
dynamically destroyed when it leaves the system, and may move through the system to get
service from other entities. An entity may be static in the sense that it may reside in a sys-
tem from the beginning and it provides services for others. Thus in the literature, the
former entity is often called a dynamic entity because of its transient nature whereas the
latter is often called a static entity because of its permanent nature [6]. In the hospital sys-
tem, a patient is a dynamic entity. S/he may require a bed first when s/he enters the hospi-
tal, acquire a theater to have an operation if there is one available, return the theater after
the operation. Then s/he may stay in the hospital for some time, and finally return the bed
and leave the hospital system. Beds and theaters are two kinds of static entities which pro-
vide services for patient entities such as staying in the hospital and having an operation
respectively. A static entity sometimes is also referred to as a resource which represents

one or several identical entities which provide service in the system.

The behavior of a system as it evolves over time is studied by developing a simulation
model. A simulation model is an abstract representation of a system, usually containing
structural, logical or mathematical relationships which describe the system in terms of sys-
tem state, entities and their attributes, and so on. System state is a collection of variables

that contain all the information necessary to describe the system at any instant in time.

A DES model assumes the simulated system only changes its state at discrete points
of time. The simulation model jumps from one state to another upon the occurrence of
each event. An event is an instantaneous occurrence that may change the state of a system
[3], e.g., an arrival of a new patient in a hospital system is an event. This event may cause
the following changes for the system state: the total number of the patients in the system is
increased by one; the number of bed resource may be decreased by one if a bed is assigned

to the newly arrived patient. An event notice is a record of an event in a model. It contains

all the information about the event which is to occur at the current or future time along
with any associated data necessary to process the event. At a minimum, the record
includes the event type and the event time. The event time corresponds to the actual time
in the real system when the corresponding event would occur. An event notice is often
simply called an event (which means an event object or event record) in a simulation
model. An activity is a period of time between two distinct events. One event marks the
beginning of the activity and another marks the end of the activity. For example, in the
hospital system, an operation may be an activity which starts with the “beginning of oper-

ation” event and ends with the “end of operation™ event.

During a discrete event simulation, a model changes its state at discrete points of time
upon the occurrence of events. The events are scheduled in chronological order on a list
called the event list (or future event list) so that the causality in a simulation is maintained.
The causality in a simulation is the rule that some changes of the system state must happen
before others so that the simulation mimics the modeled system correctly [13]. That is, the
order of processing events in a simulation cannot cause a scenario that future affects the
past. The violation of this rule will cause the errors in a simulation, and errors of this type
are called causality errors. It is obvious that causality errors in a simulation will never
happen when events are processed in a chronological order in sequential execution. How-
ever, this may not be true for a simulation on a parallel computer because events cannot be
processed in a chronological order on different processors unless special hardware and/or

software mechanisms are provided to ensure the causality is maintained.

With the development of distributed and shared memory multiprocessor systems,
great progresses in techniques for efficiently executing DES on distributed and parallel
machines has been made for over a decade. Parallel discrete event simulation (PDES) has
attracted great interest in recent years because it has exposed a lot of challenges for people
to achieve high efficiency of DES on distributed and parallel computers.

4

In PDES, the logical process view is a dominant modeling framework. With the LP
view, a system to be modeled is usually viewed as a physical system which is composed of
some number of physical processes that interact at various points in simulated time [15]. A
physical process (PP) is an element that performs a certain logical function in the real sys-
tem, e.g., a theater may be a PP in the above hospital system. Each PP in the system is
mapped to a /logical process (LP) in a model. An LP is a software object or a procedure
that mimics the behavior of a PP in the modeled system. The LPs in a PDES model are
assigned to different processors on a parallel computer to be processed concurrently in
order to speed up the simulation. All interactions between PPs are modeled by times-
tamped messages sent between the corresponding LPs which may reside on different pro-
cessors. A message is a timestamped construct in PDES that carries an event notice
passing from one LP to another to model the interactions between two LPs. A message is
sometimes also called an event or event message when it is on an event list. Messages in
the LP view are used either to synchronize the actions of two LPs or to pass information

from one LP to another.

The synchronization of LPs in a model is concerned with ensuring the causality is
maintained in PDES. That is, the correct order of processing events in PDES is ensured in
order to yield the same results as the sequential execution in which events are processed in
a chronological order. Synchronization algorithms in PDES are broadly fall into two cate-
gories: conservative and optimistic. Conservative approaches strictly avoid the possibility
of any causality error (i.e., future affects the past) ever occurring. On the other hand, opti-
mistic approaches use detection and recovery mechanism: every LP progresses at its own
speed without concern of causing causality error. However, if causality errors are detected,

a rollback mechanism is invoked to recover [15].

1.2 Object-Oriented Modeling and Simulation

The object-oriented (OO) approach has been probably associated with discrete event
simulation from the very beginning. Many people consider Simula [14], one of the first

simulation languages, as the first real OO programming language. The OO approach has
become an important methodology in the software development since 1990s [8]. OO mod-
eling is a way of thinking about problems using models composed of software objects that
represent real-world objects. A model is built by organizing a collection of these software
objects that incorporate both data structure and algorithmically defined behavior. OO sim-
ulation uses this kind of model to conduct experiments in order to study the dynamics of
the modeled system. The key contribution of OO methodology for simulation is the map-
ping between real-world objects and software objects [13].

OO modeling and simulation are closely related to OO programming (OOP) [34].
OQP is a design and programming discipline that focuses on the objects (i.e., software
objects) rather than functions that make up the software system. In OOP, an object is a dis-
tinguishable component of a program while a class is a template for a group of objects that
have the same characteristics. An object has a set of attributes (i.e., data) that define its
state and a set of interface functions (i.e., methods) for accessing the state. OOP focuses
first on identifying objects that make up the software system. The classes and interfaces
are then defined and implemented. A program is finally written for creating and manipulat-
ing the objects through their interfaces.

Similarly, OO modeling and simulation involves identifying physical processes (PPs)
that make up the system to be modeled, and mapping these PPs into object classes. The
methods are written for these classes in order to present the PPs’ behaviors including
interactions. Then all circumstances that can lead to changes in the state of the system are
identified and characterized as events. These events are tied to simulation time by means
of their scheduled event time. Finally, a program is written for creating and manipulating
these objects and events along the progress of the simulation time, and it is executed in

order to get the simulation results [22].

OO programming provides convenient facilities for software development using the

concepts of encapsulation, inheritance, and polymorphism. Encapsulation allows wrap-

ping all data and functions together inside a class and protects them from any unautho-
rized access. Encapsulation permits a simulation package to keep all data and operations
in a safe way so that the detailed information of the package is hidden from the user. It
also promotes modular design of a simulation package. nheritance allows a new class
(child class) to be defined as an extension or refinement of another class (parent class).
This child class is said to be derived from its parent class (or base class). The child class
not only can inherit all or some of the features of its parent, but also can add new features
of its own. Inheritance provides a facility that allows the simulation objects to be succes-
sively refined as a simulation program is developed in a parsimonious way [28]. Polymor-
phism is the ability to overload the meaning of an operator or method that meets the need
of a newly defined child class. In a simulation package, this allows one method call to
have different meanings to different members in a class hierarchy. Both inheritance and
polymorphism promote software reuse by taking advantage of previously defined classes
while still providing mechanism for tailoring these classes to specific applications.

1.3 Motivation and Objectives

A great deal of DES and PDES studies involve the modeling of queueing systems.
This is because any system that involves arriving demands requiring access to a finite-
capacity resource may be characterized as a queueing system [20]. That is, any system
may be termed a queueing system if it involves entities that need service from a resource
which has a limited capacity. Here, entities can refer to people such as customers in a bank
system, or refer to objects such as broken machines that need to be fixed. The resource can
refer to a person such as a clerk in a bank, or refer to an object such as a printer for print-
ing files. A queueing system may be modeled as a queueing network as it usually involves
entities moving through a network of queues waiting for service [25]. A queue in a queue-
ing system is a collection of associated entities that are waiting for the service from a
resource and which are ordered in some logical fashion such as first-come-first-served
(FCFS). From retail service systems to telecommunications systems, it is apparent that

many real-world systems can be classified as queueing systems. Many of these queueing

systems are so complex that only high fidelity DES is able to capture their dynamic char-

acteristics.

There are two major problems in the simulation of queueing systems. First, the devel-
opment of a DES model is very difficult when the real system to be modeled is compli-
cated. Second, the necessity for repetitive sample generation for statistical analysis and the
testing of numerous alternatives can make DES very computationally intensive. Solutions
to the first problem have been addressed over decades in the general DES community
through numerous simulation languages and packages. These simulation languages and
packages provide modeling frameworks that facilitate the construction of complex mod-
els. Solutions to the second problem have also been explored for decades in the PDES
community through many techniques on how to speed up simulation execution on parallel
and distributed machines. Moreover, object-oriented (OO) techniques are also widely used
in both communities in order to facilitate the simulation development process. The focus
and objectives are different between the two communities, and little work has been done

on the intersection of these two problems [27].

The research presented in this thesis aims to address these problems by systematically
studying the above issues and developing an OO modeling and simulation package for
simulating queueing systems. This package will be called QueKit in the thesis. There are
two goals in the development of QueKit. The first goal is to provide a comprehensible
framework for conceptual guidance in the design and development of simulation models
for queueing systems. The second goal is to achieve high efficiency both in sequential exe-
cution and in parallel execution. Thus the first goal addresses the modeling effectiveness
issue and the second goal addresses the execution efficiency issue. Although QueKit has
been designed to support parallel execution, the scope of this thesis is limited to the imple-

mentation and evaluation of a sequential version.

1.4 Overview of Thesis

The modeling effectiveness issue concerning the development of a simulation soft-
ware for a queueing system is addressed from three dimensions in this thesis: modeling
framework, model architecture, and object orientation. The chosen framework and model
architecture in the modeling process will largely affect the execution efficiency in the sim-
ulation. Thus the modeling effectiveness issue is discussed with the execution efficiency

issue together throughout the entire thesis. The organization of the thesis is as following.

Chapter 2 discusses the modeling effectiveness issue from the first two dimensions:
modeling framework and model architecture. It surveys several current modeling frame-
works related to queueing system simulation, including event-driven, the process view,
and the logical process view. The modeling power and execution efficiency of each mod-
eling framework is discussed and compared to others. Two model architectures, server
architecture and client architecture, associated with the modeling of queueing systems are
then presented. Their relationships to the above modeling frameworks and object orienta-
tions are also discussed. Finally, fourteen problems that commonly occur in the modeling
of queueing systems are discussed. Some of them are addressed with simple examples in

terms of modeling framework and model architecture.

In Chapter 3, the necessity of providing a simulation package that facilitates the
model design and development is discussed. The current approaches to developing an OO
simulation package are then presented from the third dimension, i.e., object orientation.
Some packages related to queueing system simulation are surveyed with the discussion of

the object orientation, modeling power, and execution efficiency of each.

The design and implementation of an OO simulation package - QueKit - are presented
in Chapter 4. The package is outlined first. The modeling framework provided by QueKit
is discussed with its object orientation. Then the design of the base layer of QueKit is dis-
cussed with base classes and their interfaces. The server architecture supported by the base

layer is also discussed. The necessity of developing an extended layer is discussed fol-

lowed by the presentation of the extended classes and interfaces. Other two architectures
(client architecture and server-client architecture) supported by the extended layer are also

presented. Finally, some implementation issues are discussed.

Chapter S reviews the fourteen common modeling problems defined in Chapter 2 and
presents two benchmark systems used for the preliminary evaluation of both QueKit mod-
eling power and its execution efficiency. Eight models are used for modeling these two
systems, and designs of these models are presented. The modeling and simulation results

are then discussed in terms of modeling power and execution efficiency.

Chapter 6 sketches the summary and conclusions as well as contributions presented in

the thesis, and suggests some future work in this research.

Chapter 2

Modeling Queueing Systems

The major task in the simulation of a system is to come up with a model that captures
the dynamic behavior of the system. Modeling is to abstract from reality a description of a
dynamic system, i.e., to create a model that represents the system [13]. An application pro-
grammer usually has to follow a certain modeling framework in order to construct a simu-
lation model. The modeling framework, or conceptual framework, or world model view, is
a structure of concepts under which a modeler is guided to represent a system in the form
of a model [1]. Specifically, the modeling framework is the way of presenting a model and
the way of implementing its event-scheduling mechanism [7]. The chosen modeling
framework determines how the modeler must view the system to be modeled and how a

model can be constructed.

This chapter discusses the issues of effectively modeling queueing systems from two
dimensions: modeling framework and model architecture. The current modeling frame-
works related to queueing system simulation are reviewed. Their modeling power and
execution efficiency are analyzed. The current approaches to modeling queueing systems
are then presented in terms of model architecture. And finally, some common modeling

problems for queueing systems are discussed.

2.1 Current Modeling Frameworks

The contemporary modeling frameworks for general discrete event simulation (DES)
are event-driven [9], activity-scanning [29], and the process view [14]. The dominant mod-
eling framework for parallel discrete event simulation (PDES) is the logical process (LP)
view [15].

10

11

2.1.1 Concepts and Definitions

The event-driven view emphasizes the scheduling of all events. This means that no
provision is made for making a state change by tests on model state; if a state change is to
occur, it must occur by explicit scheduling of an event. Therefore, when using the event-
driven view, a modeler first needs to identify all types of events. Then for each type of
event, the modeler writes a event routine that gives a detailed description of the state
changes that take place when that type of event occurs. The simulation evolves over time
by processing the events, i.e., executing the corresponding event routines, in increasing
order of their occurrence time. The simulation terminates when the pre-defined condi-

tion(s) is(are) satisfied, e.g., the simulation end time is reached.

The activity-scanning view chooses the next event (i.e., the occurrence of a state
change in the system) based on both the scheduled time and condition testing. This makes
the activity-scanning view best suitable for the simulation models such as animations in
which the system states change continuously. Thus it is seldom used in discrete event sim-

ulation, and it will not be discussed in the thesis any more.

A process is a time-ordered sequence of events and activities that describe the life-
time actions of one or more entities in a system. It is clear that the concept of a process is
a level of abstraction higher than event. A model with the process view is composed of a
set of processes that describe the actions of the active entities in the system being mod-
eled. The active entities are those entities whose behaviors are of interest in the system to
be modeled. Unlike the event-driven view, the total history of an active entity can be
described by a single (process) routine which aiso contains the passage of simulated time
in the process view. Languages implementing the process view require the modeler to
write process routines which are quite different from event routines. Event routines occur

in zero time while process routines may contain the passage of simulated time.

Actually, the process view can be split into two types: process interaction and process

description (or transaction flow) [6]. In the process interaction view, e.g., provided in Sim-

12

ula [14], each process represents a single active entity. A system is modeled as a collection
of processes interacting with each other while cooperating in an action or competing for
system resources. The process routines usually require special mechanisms called co-rou-
tines provided by a simulation language for interrupting and suspending the execution of a
routine, and resuming its execution at a later simulated time under the control of an inter-
nal event scheduler [6]. For modeling a queueing system, dynamic entities are mostly
modeled as processes and static entities are modeled as resources except in a few cases
related to the producer/consumer problems [5]. The co-routine mechanism is the charac-

teristics of the process interaction view.

On the other hand, the process description view, e.g., provided in GPSS [30], is a spe-
cial case of the (possibly) more general process interaction view [7]. It provides a way of
representing a system’s behavior from the viewpoint of dynamic entities (modeled as
transactions) moving through the system. A process routine here contains a set of blocks
(i.e., constructs provided by a simulation language) which delineates everything that hap-
pens to a group of dynamic entities as they move through the system. The interactions
among those transactions cooperating for an action or competing for system resources are
handled automatically by the simulation language which utilizes the process description
view. It is easy to understand and put the emphasis on modeling the dynamic entities in the
simulation a queueing system. The programmer doesn’t need to be concerned with arrang-
ing the transactions to join and to depart from the queues in the model because these

queueing operations are automatically handled by the underlying simulation language.

The LP view is the dominant modeling framework used in parallel discrete event sim-
ulation (PDES). With the LP view, any system being modeled is viewed as a system which
consists of some number of physical sub-systems called physical processes (PPs) interact-
ing in some manner. Each PP is mapped to a software object or procedure called logical
process (LP) in a simulation model which consists of a collection of LPs. The interactions

between PPs are modeled as (event) messages passing between the corresponding LPs.

13

The LP view is widely used as the framework for model construction in PDES
because it often results in the most efficient model execution in parallel. Fujimoto [15]
notes that this LP methodology allows application programmers to partition the simulation
state variables into a set of disjoint states in different LPs, and ensures that no event
accesses the state in more than one LP. This partition permits “minimal” processor syn-
chronization, and thus has become a de facto standard for PDES paradigms [27].

The LP view has a close relationship with the object-oriented (OO) modeling because
of the close mapping between PPs and LPs. A model with the LP view is usually used with
the event-driven view [16] or with the process interaction view [22]. Thus the LP view is
essentially the event-driven view or the process interaction view in parallel simulation

with the constraint that no LP can access the state of other LPs except through messages.

2.1.2 Modeling Power Versus Execution Efficiency
The modeling power of a modeling methodology or tool, e.g., a modeling framework,

or a simulation package, is the measure of how powerful to construct 2 model with that
methodology or tool. It includes two aspects: comprehensibility and flexibility. The com-
prehensibility is about how easy a model can be constructed with that methodology or
tool, and how comprehensible the model will be. The flexibility is about how flexible the
methodology or tool can cover a wide range of scenarios for modeling a particular prob-
lem. For simplicity, the discussion about the modeling power of a modeling methodology
in this section is also applicable to a modeling tool, and so is the discussion about the exe-

cution efficiency.

There is not any formal method to measure the modeling power of a methodology.
One method is to approximately measure the relative modeling power of different meth-
odologies by comparing the comprehensibility of the models for modeling the same sys-
tem. For instance, if one model is obviously more comprehensible than another one, then
the modeling power of the methodology used in the first model can be considered greater
than that used in the second model from the aspect of comprehensibility.

14

If the above two models are built with programming languages, counting the source
code lines in the models may help to measure the comprehensibility of the two models.
One model can be considered more comprehensible than another if the number of source
code lines in the first model is less than that of the second model. This is because it usually
means a model is easier to understand if it contains less source code lines though this is
not always true. Thus this method of comparing the number of source code lines between
two models is very weak. It can only be a secondary method for comparing the compre-
hensibility of two models.

Another method is to approximately measure the relative modeling power of different
methodologies by comparing their flexibility to cover a broad range of scenarios for mod-
eling the same system. One methodology can be considered more powerful than another
from the aspect of flexibility if it can cover a wider range of scenarios for modeling the

system.

The execution efficiency of a modeling methodology is the measure of how fast a
model using that methodology can be executed on a machine. Unlike the modeling power,
the execution efficiency of a2 modeling methodology can be accurately measured. For
modeling a specific problem, one methodology can be considered more efficient than
another if the execution time of a model using the first methodology is less than that of
another model using the second methodology in the same simulation environment includ-

ing hardware and supportive software.

From the discussion in the previous section, the process view has several advantages
over the event-driven view. First of all, the process view provides a more natural modeling
framework for modeling queueing systems. This is because the entire experience of a
dynamic entity as it flows through a system or the life cycle of a static entity as it pro-
cesses dynamic entities over time can be clearly described in a single process routine
instead of being scattered in several routines. Furthermore, when this approach is imple-

mented in a simulation language, the powerful primitives provided in the language auto-

15

matically translate certain situations commonly occurring in a simulation model into the
corresponding event logic. As a result, a model using this approach may require signifi-
cantly fewer lines of code than its counterpart one using the event-driven approach.

However, the complex assignment of resources to entities can be difficult to model
because the programmer does not have easy ways to access the queues that are attached to
the resources. Moreover, for the process description view, the frequent re-scans of the
entire suspended event chain cause serious computational inefficiency. This is because the
size of the suspended event chain which models those dynamic entities failing to get the
resources increases along with the increase of the model size. For the process interaction
view, the context switching between multiple processes also causes serious computational

inefficiency.

The event-driven view, on the other hand, avoids the above problem of computational
inefficiency by placing on the programmers the burden of working out when conditional
actions can take place. This is because identifying an event and envisioning the “flow” of
a dynamic entity through the system takes imagination and an understanding of the
entity’s interaction with possibly many events affecting it [6]. The event-driven view is
thus more welcome for skillful DES modelers whose major concerns are the computa-

tional efficiency.

Therefore, the execution efficiency of the event-driven view is usually better than that
of the process view, but the process view is usually easy to use, and the resulting model is
easy to understand. Thus the modeling power of the process view is usually greater than
that of the event-driven view in the aspect of comprehensibility.

However, it is largely depends on the primitives provided by a simulation package
that the process view supported by the package are flexible enough to cover a broad range
of scenarios for a specific modeling problem. For some mature languages and packages
which support the process view, e.g., Simula and GPSS, their modeling power are greater
than that of others which support the event-driven view in both aspects of comprehensibil-

16

ity and flexibility. This is because the primitives provided in these languages and packages
are flexible enough to cover a wide range of scenarios for a specific modeling problem.
This may not be always true for other simulation languages or packages. Therefore, the
modeling power of the event-driven view may be greater than that of the process view in
the aspect of flexibility if the primitives provided in the latter are not enough to support a

wide range of scenarios for modeling the same system.

In PDES, the simulation model is composed of some LPs which represent the corre-
sponding physical processes (PPs) in the system. These LPs are mapped onto several inde-
pendent processing elements (PEs) in order to execute the model on a parallel machine. It
can be viewed that the global event list in the conventional DES is divided into several
event sub-lists in PDES. Each event sub-list is handled by a distinct processor indepen-
dently. An event (message) moves from a queue of one LP to the event sub-list handled by
one processor, and then migrates to a queue of another LP possibly handled by another

processor in order to perform an interaction between two LPs.

As discussed in Sec. 2.1.1, the LP view is essentially the event-driven view or the
process interaction view with the constraint that no LP can change the state of another LP
except through messages. Thus the execution efficiency of the LP view associated with the
event-driven view in the sequential execution is not as good as that with the conventional
event-driven view because of the constraint of accessing shared variables in the LP view.
Similarly, the execution efficiency of the LP view associated with the process interaction
view in the sequential execution is also not as good as that with the conventional process

interaction view.

However, the close mapping between PPs and LPs in the LP view enables OO tech-
niques to be easily applied in the modeling process using the LP view. This tends to make
the LP view easier to use and the resulting model easier to understand. Therefore, the
modeling power of the LP view associated with the event-driven view is greater than that

of the conventional event-driven view. And similarly, the modeling power of the LP view

17

associated with the process interaction view is greater than that of the conventional pro-

cess interaction view.

2.2 Approaches to Modeling Queueing Systems

This section discusses the current two approaches, server architecture and client
architecture, to modeling queueing systems from the viewpoint of model architecture.
From the concepts mentioned in the previous chapter, entities in a queueing system fall
into two categories: (dynamic) entities in the first category need services from other
(static) entities while entities in the second category provide these services. For simplicity,
entities in the first category are referred to as tokens and entities in the second category are

referred to as servers in the rest of this chapter.

Two types of models for simulation design are used in the discussion of the
approaches: functional model and declarative model. A functional model represents a
modeled system as a directional flow of a signal among transfer functions (boxes) [13].
The modeled system is seen as a set of boxes communicating with messages or signals.
For any functional model presented in this thesis, boxes represent service objects (servers.
sources, and sinks) while messages or signals represent tokens in a model. A declarative
model represents a modeled system by describing its dynamics over time. The event graph
is a kind of declarative model [13], and it is used for the discussion of model design in the

thesis.

2.2.1 Server Architecture

One way to construct a model for a queueing system is to put the emphasis on the
token processes being done at each server. A server functions as an active controller that is
in charge of allocating/deallocating resources to a token, scheduling the token’s activities,
and eventually routing the token to another server. Tokens are passive objects that flow

through a network of servers to get services.

18

For example, a computer system is composed of a CPU and four disks!. A fixed num-
ber of tasks of two different classes execute in the system. The activities of a task are alter-
nated between the CPU and a disk which is randomly and uniformly chosen from one of
the four disks. There are n0 number of class 0 tasks which have a mean CPU execution
time of 10 ms (milliseconds), and n1 class 1 tasks which have a mean CPU execution time
of 5 ms. CPU execution times for both classes are exponentially distributed. CPU requests
of class 1 tasks have preemptive priority over those of class 0 tasks. The latter is pre-
empted and queued, and the CPU is assigned to the class 1 task. The interrupted task
resumes its CPU execution when there is no more class 1 task requesting the CPU. The
disk requests of both classes are also exponentially distributed with a mean of 30 ms.
Tasks completing disk service return to the CPU queue, cycling in this way indefinitely.

n0 class 0 tasks
nl class 1 tasks

CPU Disks

— O il

v

ts = 10 ms. (class 0)
ts=5ms. (class |)

v

td =30 ms.

Fig. 2.1 CPU_Disk System

L. This system comes from the M.H . MacDougall’s “Central Server Queueing Network” example [23] with
a little modification.

19

The server architecture for modeling this CPU_Disk system is shown with a func-
tional model below. Both CPU and four disks are modeled as servers. Tasks are modeled

as tokens.

In the server architecture, servers are active objects in the sense that they control both
resource management and tokens’ activities. A server decides when and how to allocate
resources to tokens and arranges their activities. This kind of passive token versus active
server approach is convenient for modeling the scenario in which a master controller in a
server takes care of everything: allocating resources to a token, scheduling the completion
of a service for the token, and eventually routing (sending) the token to another server.
However, the description of the server’s behavior will become quite complicated when a
token needs muitiple resources in an activity and resource allocation strategies are differ-
ent (e.g., one is based on first-come first-serve (FCFS) and another is based on tokens’ pri-
orities). The use of the server architecture in this situation will make the model
complicated and hard to understand.

server tasks servers

@ CPU (tokens) Diskl
tasks

(tokens) Disk2

Disk3

Disk4

Fig. 2.2 Functional Model for the CPU_Disk System (Server Architecture)

Thus the server architecture is suitable for modeling computer systems and communi-

cations systems in which it can be viewed that a master controller in a server controls

20

everything. In these systems, jobs, processes, and packages can be modeled as tokens;

printers, CPUs, and routers can be modeled as servers.

The declarative model of the CPU_Disk system is shown below. A block in the graph
indicates an event in which the bold text shows the event type while the rest of the text
shows the actions upon the occurrence of the event. A solid arrow represents an activity in
the same object while the dashed arrow represents an activity between different objects.
An activity may involve scheduling another event, i.e., the event indicated by the head of
an arrow which marks the end of the activity. In the following figure, for example, the
“start a service for a token” event in a disk will schedule a “finish a service” event to occur

in the same disk object at the end of the service activity.

events in the CPU:
preempt
a token
a token arrives: start a service finish a service: send
request the CPU for a token the token to a disk
A

events in a disk: |
start a service
for a token

Fig. 2.3 Declarative Model for CPU_Disk System (Server Architecture)

3

finish a service: seng
the token to the CPU

a token arrives:
request a disk

A model with the server architecture is usually implemented with the event-driven
view, it may be implemented with the process interaction view as well [31]. When imple-
mented with the event-driven view, each server may change its state upon the following
events: the arrival of a token, the completion of a service for a token, and so on. When

implemented with the process interaction view, each server can be modeled as a process.

21

Each process may take tokens from the token pool of its upstream servers where tokens
have finished services in those servers, then process them, and put them into the token

pool for its downstream server.

2.2.2 Client Architecture

Actually, in most queueing systems, it is often a token itself, not a centralized server
controller, which decides where the token should go, when it requests a resource, and how
long it keeps the resource. Moreover, the management of different resources may be inde-
pendent of each other, not controlled by a central controller. This comes to the need for
decentralizing the control functionality in a single server object into two parts: one for

tokens’ activity control and another for resource management.

server server server server Server

TaskControl

(tokens)

Fig. 2.4 Functional Model for the CPU_Disk System (Client Architecture)

The above figure shows that the client architecture in which the modeling emphasis is
shifted from servers to tokens. A server is passive in the sense that it only controls
resource allocation/deallocation but has no control on tokens’ activities or how long
resources will be possessed by tokens. A token decides how long it possesses the resource
in the server and when it returns the resources by communications with the servers. The

declarative model is shown below.

22

events for a task:

preempted
by a token

reempt
P CPU
start a service finish a service
in the CPU

request a disk
start a service
in a disk

Fig. 2.5 Declarative Model for the CPU_Disk System (Client Architecture)

(initially) request
the CPU

finish a service,
request the CPU

In contrast to the previous server architecture, the total lifetime activities of a task are
described in a single function of for a task instead of being scattered in several functions
within CPU and disks (shown in Fig. 2.3). Therefore, a model with the client architecture
is suitable for implementing with the process view though it can be implemented with the
event-driven view as well. The CPU and disks can be modeled as resources, and tasks can
be modeled as transactions in the process description view, or modeled as processes in the
process interaction view. Thus the lifetime activities of a task can be described in a single

process routine.

2.3 Common Modeling Problems

Although there are numerous modeling problems in the simulation of queueing sys-

tems, only fourteen of them that are commonly encountered will be discussed below.

Resource sharing: A server provides service for a group of tokens alternatively, and
the service amount of any token can get may depend on the total number of tokens in the
group. For instance, the requests from the terminals in a time-sharing system will pro-

cessed in a round robin fashion in order to guarantee the reasonable response time for the

23

users. This system can be constructed with the server architecture. The requests can be

modeled as tokens, the central server and terminals can be modeled as servers.

Preemption: Preemption happens when an activity of a token is interrupted by
another token with a higher priority. A token is interrupted while it is being serviced. It
moves back to a wait queue with its service demand possibly reduced. Its position is taken
over by another higher priority token in the system. This scenario is called preemption.
The former token is called the preempted token and the latter is called the preempting
token. For example, a phone call may be interrupted by a higher priority emergency call,
and it may continue after the emergency call is finished. The server architecture can be
used for modeling this system. The phone can be modeled as a server and the calls can be

modeled as tokens.

Breakdown: The ability of providing services of a server is lost for some time due to
an internal or external event in a queueing system, and then is regained later. During this
down time, any token which is in a service may be interrupted. It may continue its remain-
ing service or restart the interrupted service from the beginning once the broken-down
server recovers. Breakdown happens when the status of a server is changed by internal or
external events. One example is that a printing job will stop when a printer is out of paper
and start again to continue the printing once the paper is fed in. The server architecture can
be used for the model construction here. Jobs can be modeled as tokens and the printer can

be modeled as a server.

Both preemption and breakdown are related to the activity interruption (or called can-
cellaton) of tokens. The difference between the two is that the interruption is caused by
another token in the former case while it is caused by a change of status in a server in the

latter case.

Loss: A token may leave its modeled system because its lifetime has been expired at a
certain point before it can finish its journey of activity in the system. For example, a box of

decayed fresh fruits from inland may be thrown away before it is loaded on an airplane for

24

export. The server architecture is suitable for modeling this system. Airplanes can be mod-
eled as servers and the boxes of fruits can be modeled as tokens.

Dropping: A token may be discarded from its modeled system if the length of the
waiting line for a server reaches a certain point. An example of this scenario is that low
priority cells are discarded in a ATM switch when the number of cells in the corresponding
buffer reaches its threshold point, e.g., the threshold point is half of the buffer capacity.
The server architecture is preferable for the model construction in modeling this system
where ATM cells can be modeled as tokens and the switches can be modeled as servers.
ATM cells start travelling from source servers, move through a network of switch servers,

and finally reach the destination servers.

Both loss and dropping are situations where a token leaves its modeled system prema-
turely. The difference between the two is that the time when the token leaves the system is

pre-defined or predicted in the first case but not in the second case.

Balking: A token fails to join any queue in a system because of some reasons. A sim-
ple example is that a customer decides to leave a bank before s/he joins any wait queue
because all the queues seem too long for her/him and s/he has no patience for waiting in

any queue.

Migration: A token changes from one wait queue to another while it is waiting for a
service. For instance, a customer in a shopping center switches to another wait line
because s/he thinks that line is serviced faster.

Reneging: A token leaves the wait line before it reaches the server for service. For
example, a person who is waiting for accessing a banking machine leaves the wait line
because s/he has no patience to wait any more or s/he has another more important business

to do.

Affinity: Among several available servers, some tokens may only choose a specific

one to wait for services. A simple example is that some customers only wait for their

25

favorite barbers to have their hair cut. The model for this system can be constructed with
the client architecture in which customers can be modeled as tokens and barbers can be
modeled as resources. A customer token can request a resource according to his/her own
choice and has his/her hair cut.

Grouping: A server starts a service only when the number of tokens waiting for its
service reaches a certain point. Then it takes in some or all of the tokens and starts services
for them simultaneously. For instance, a tourist bus begins a tour only when the waiting
tourists are enough to fill at least half of its capacity.

Routing: A token is sent by a server to another one after it gets serviced, or a token
chooses another server after it finishes the service in the current server. The former is the
case that a server routes a token while the latter is the case that a token routes itself in the
system. For example, a packet of information is routed by a series of network nodes to the
destination in a computer network. Another example is that a person goes shopping by car.
S/he needs to buy many items including food, medicine, clothes, and so on. S/he makes

the decision, possibly dynamically, on which order to visit a sequence of stores.

Tandem queueing: The transfer of a token from a server to another one starts only
when the second server is able to accept the token, i.e., there is a room in the second server
for accommodating a token. Otherwise the token has to wait in the first server until a room
is available in the second server. One example is that the parts in an assembly line have to
wait in the area of the current station before being transferred to the next station when

there are rooms available for them over there.

Multiple resources: A token needs several servers simultaneously for an activity. A
simple example is that the repairing procedure can only be conducted for a broken
machine when a mechanic is not busy and the equipment is available. The client architec-
ture is suitable for the model construction here. Broken machines can be modeled as
tokens, mechanics and the equipment can be modeled as servers. A broken machine can

request a mechanic and the equipment before the repairing procedure can start.

26

Entity Transformation: An entity changes its role between a dynamic entity and a
static entity in a queueing system. For instance, a machine in a factory system is a static
entity when it provides service for refining parts one by one that arrive at the machine.
When the machine breaks down, it needs to be fixed by a mechanic who is in charge of the
fixing work for all machines in the factory. That is, the machine changes to a dynamic
entity which needs service from others when it is broken down. The machine functions as

a static entity and starts to work for parts refinement again after it is fixed by the mechanic.

This problem can be modeled with server architecture. A part is modeled as a token
which moves through a set of machines in order to finish a series of refinement processes.
A machine is modeled as a server that takes the parts from its wait queue, operates on
them, and passes them to a machine at the next refinement stage. A mechanic is also mod-
eled as a server. A special token models a breakdown event of a machine. The machine
changes its status from available into unavailable when the special token arrives at the
machine. Then the special token is sent to the mechanic server by the broken-down
machine server. The mechanic server keeps it for some time (modeling the passage of ser-
vice time), and sends it back to the machine server indicating that the fixing job is done.
Upon receiving this special token, the machine server changes its status back to available

and starts its service again.

2.4 Summary

This chapter discusses the modeling issues from two dimensions: modeling frame-

work and model architecture.

First of all, the current modeling frameworks including event-driven, the process
view, and LP view are reviewed in this chapter. The process view can be split into two
type: process interaction and process description (or transaction flow). The analysis of the
modeling power versus the execution efficiency of these three frameworks are then dis-
cussed. It is concluded that the modeling power of the process view is generally greater

than that of the event-driven view whereas the execution efficiency of the event-driven

27

view is better than that of the process view. The LP view is essentially the event-driven
view or the process interaction view with the constraint that no LP can access the state
information of another LP except through messages. That is, messages should be used for
accessing any shared variables in the LP view. Thus the execution efficiency of a model
built with the LP view in a sequential environment is not as good as that with the event-
driven view or the process interaction view due to the constraint of accessing shared vari-
ables in the LP view. However, the mapping between PPs and LPs in the LP view results
in the close relationships between the LP view and the real-world systems. This enables
the model that uses the LP view to be easy to build and easy to understand. Hence, the
modeling power of the LP view associated with either the event-driven view or the pro-
cess interaction view is greater than that of the event-driven interaction view or the pro-

cess view, respectively.

The current two approaches, server architecture and client architecture, to modeling
queueing systems are also discussed from the viewpoint of model architecture. The server
architecture focuses on modeling servers, i.e., the entities that provide service for others,
in a queueing system. It emphasizes how a server allocates/de-allocates resources to a
token, how it controls the token’s activities, and finally routes the token to another server.
A model with the server architecture is usually implemented with the event-driven view, it
may be implemented with the process interaction view as well. On the other hand, the cli-
ent architecture focuses on the modeling of the lifetime activities of a token moving
through the system. It puts the emphasis on describing the lifetime activities of a token in
a chronological order as it moves through the system. This description is written in a sin-
gle function in which the token actively requests resources before conducting an activity
and returns the resources after the activity. A model with the client architecture is usually
implemented with the process description view or process interaction view, it may be

implemented with the event-driven view as well.

28

Finally, fourteen modeling problems that commonly exist in the simulation of queue-
ing systems are addressed with simple examples. Some of them are also discussed in

terms of model architectures.

Chapter 3

Packages for Queueing System Simulation

Although some general-purpose languages such as C++ can be used to construct sim-
ulation models, they cannot provide the modeling frameworks discussed in Chapter 2 for
conceptual guidance. Those modeling frameworks have been provided by many simula-
tion packages based on general-purpose languages. The major advantage of using a simu-
lation package is that it automatically provides most of the features needed in
programming a simulation model. It thus results in a significant decrease in programming

time (and usually project cost) in a simulation process [21].

There are numerous of simulation packages for modeling queueing systems as many
discrete event simulations (DES) involve the simulation of queueing systems. Object-ori-
ented (OO) techniques have been widely used in the design and development of these sim-
ulation packages. This chapter surveys some packages related to the simulation of
queueing systems and discusses their object orientation and modeling power as well as

execution efficiencies.

3.1 Approaches to OO Simulation Package Design

Object-oriented simulation has great intuitive appeal because it is easy to view a real-
world system as being composed of objects [18]. OO concepts are applicable to simulation
software development at the following levels [2]:

e Abstraction: OO techniques [17] are applied in the analysis of the modeled system
from the viewpoint of the real-world concepts. The easy mapping between real-
world objects and software objects is emphasized at this layer.

» Design: OO techniques such as encapsulation, inheritance, and polymorphism are
applied in the overall software design. The software robustness, extensibility,

maintainability, etc., are major concerns at this layer.

29

30

¢ Implementation: OO programming (OOP) techniques such as encapsulation,
inheritance, parameterized typing, etc., which may be related to a specific OOP
language, are used for the implementation of the simulation software.

| Abstraction |

| OO techniques | ——>| Design |

| Implementation |

Fig. 3.1 Role of OO Techniques

There are three approaches to developing an OO simulation package. The first one is
to develop a data-driven simulator which can provide a set of simulation constructs at the
abstract level for model construction. With a data-driven simulator, a model can be built
with a set of data that are formatted and provided by the user. The data is fed into the sim-
ulator through its interface such as a graphical user interface (GUI). The second approach
is to provide those constructs by developing a simulation language as an extension of a
general-purpose language, e.g., Simula is an extension of ALGOL language. The last
approach is to provide those constructs by creating a library of simulation classes in an
0O language such as C++ [32] or Simula [14]. Some packages use the data-driven simula-
tor approach combined with either language extension or library-based approach in order
to take a full advantage of OO techniques.

For the data-driven simulator approach, the user would be able to build simulation
models by easily taking advantage of the close mapping between the simulation constructs
and objects in the system to be modeled. There is no programming involved when using a
data-driven simulator. The user can concentrate on the model design, model construction,

and data analysis, rather than programming and debugging.

The limitation of this approach is that it lacks the flexibility to handle a wide range of

applications. For instance, the need of a new simulation construct for a particular model-

31

ing problem may resuit in the user waiting for the simulation developers to add the con-
struct into the simulator. This is because a data-driven simulator fails to take a full
advantage of OO techniques such as inheritance, polymorphism, parameterized typing,
and so on. That is, the data-driven simulator approach only applies OO techniques at the

abstraction level, not yet at the design and implementation levels shown in Fig. 3.1.

On the other hand, both language extension and library-based approaches have the
flexibility to cover a larger range of applications than the data-driven simulator. The lan-
guage extension approach also has the advantage that the compiler or pre-processor can
provide strict type checking and code optimization capabilities. However, it has the disad-
vantage of requiring the user to learn a new language and perhaps an entire new set of pro-
gramming development tools. The primary advantage of the library-based approach is that
the user can continue to use a familiar programming environment, and have full accessi-

bility to the features of the base language.

The packages using either of these two language approaches usually apply OO tech-
niques at the design and implementation levels, but not all of them fully apply OO tech-
niques at the abstraction level. For instance, some packages provide a construct called an
event (or a message) to model an entity that needs service from others in a queueing sys-
tem. To model the passage of service time of the entity in a server is accomplished by
sending an event (or a message) to arrive at the server at a later time which indicates the
service is completed. Some events (or messages) in a simulation model even don’t model
any real-world objects, they are there just for the simulation purpose (e.g., an LP queries
information in another LP). There are lots of these events (or messages) being sent around
in a simulation model, and this usually creates confusion for engineers trying to under-

stand and construct a model.

Therefore, it is important to apply OO techniques at all three levels when developing
an OO simulation package because this will result in a package that is easy to use as well

32

as flexible enough to cover a wide range of applications. Thus the object orientation can be

used for the evaluation of the modeling power of a simulation package.

3.2 Packages for Object-Oriented Simulation

Several packages related to simulating queueing systems are discussed in this section.
Packages for sequential simulation including Prophesy! and HIT [4] are surveyed fol-
lowed by the discussion of the packages for both sequential and parallel simulation includ-
ing PROSIT, SimKit, and ATM-TN.

3.2.1 Packages Only for Sequential Simulation

Prophesy is a simulation package intended for queuing analysis and work flow pro-
cesses. While oriented to simulate computer networks, Prophesy can support simulation of
practically any other queuing and work flow problem. The fundamental objects of the

Prophesy metaphor are Resources, Procedures, Profiles, and Messages.

Resources: These are permanent entities in a simulation with a finite capacity and
capable of receiving simulation messages, processing them, and delivering them to
another resource. Each resource object may represent a single resource, or a cluster of
cooperating resources, all represented by a single icon in the GUI. A cluster of resources
can be made to act upon a single receive queue (tightly coupled resources), or it might

define a cluster of independent resource instances acting on separate queues.

Procedures: Procedures are permanent objects called by any Resource. Procedures
define a sequence of events that represent the resource’s work flow in a chronological

order.

Profiles: Profiles are permanent objects associated with a resource. Profiles specify

the performance characteristics of the attached resource.

[. The information about Prophesy comes from the web site: http://www.csh.net/abstraction/

33

Messages: Messages are created as dynamic objects while the simulation executes.
Messages are created according to the model specifications, and deleted when no longer

needed.

Therefore, the modeling framework provided by Prophesy package is event-driven
view. The server architecture is used for model constructions, and the Resources function

as servers. Thus Prophesy may have good execution efficiency.

Another software tool HIT supports model-based performance evaluation of comput-
ing and communications systems. Specification of dynamic, discrete-event, stochastic sys-
tems is achieved by particular language-based and graphics-based description options.

The concept about queues in HIT is different from others, and thus is interesting. HIT
defines a queue as an autonomous object which has four “areas” with possibly limited
capacity. These areas are arrival area, entry area, service area, and exit area. The arrival
area holds unlimited arriving jobs. The entry area with possibly limited capacity holds the
jobs waiting for service. The service area is the place to hold the jobs being serviced and
has possibly limited capacity. The exit area holds unlimited jobs with completed service.
Accordingly, there are four procedures to control job transitions between these areas [4]-
Accept procedure is responsible for accepting the jobs from the arrival area into the entry
area of the queue. Schedule is responsible for controlling the job transfer between entry
and service areas. Dispatch procedure assigns service time to jobs. Offer procedure selects

Jjobs permitted to leave the queue.

Therefore, the server architecture is provided for the model construction in HIT. Here
queues function as servers and jobs function as tokens. HIT may have a great modeling
power as its language-based approach using an OOP Simula which provides the process

view, as its host language.

34

3.2.2 Packages for Both Sequential and Parallel Simulation
PROSIT [26] is a sequential and distributed object-oriented workbench for discrete

event simulation. It provides an Object-Oriented framework for discrete event simulation.
It contains a set of simulation and modeling classes. Simulation classes are those dealing
with the simulation phase whereas modeling classes are those used to build models. These
two kinds of classes are base classes. To mask the simulation paradigm to the final user of
the simulator, a set of library classes are provided for a specific field of application. These
classes, gathered in a library, will allow the user to build a model at a higher level of
description. With PROSIT, the user builds a model with dedicated class libraries and user
defined classes. Without code modification, the simulation can be executed in a sequential
or distributed (in both optimistic and conservative variants) way.

PROSIT is devoted to the development of a discrete event simulation system,
designed from the ground up with distributed execution in mind [24]. Its design is based
on the object-oriented paradigm. C++ is used for both the simulator as well as simulation
model construction. This means PROSIT is a package using the library-based approach.
The system provides both conservative and optimistic mechanism to synchronize pro-
cesses [10]. It also provides the suspension (for a simulation time period) and re-activation

of execution for processes [11].

Two architectures are chosen for model construction in PROSIT: server architecture
and customer architecture. These two architectures correspond to the server architecture
and the client architecture mentioned in Chapter 2 respectively where customers are the

same as tokens.

With the server architecture, the user describes a model as a set of servers which pro-
vide different kinds of service for customers. Customers are received by a server, get ser-
viced, and then are sent to other servers. The “active” objects in the model are the servers.
They decide what to do with the customers being processed and where the customers
should be sent.

35

The customer architecture changes the control of execution from the server to the cus-
tomer. A customer profile (type) represents a set of customers whose behavior is statisti-
cally identical [24]. The customers lifetime behavior will be described by a single method
that will be activated for each instance of customer of that type. The PROSIT simulator
supports migrating a process from one processor to another. The customer process will
migrate to the processor where a server resides when it needs to get the service from that

server. This migration balances the workload among processors.

A PROSIT simulation can be thought as a collection of concurrently active objects
interacting via service calls in simulated time. An activity is an action performed by an
active object and corresponds to the member function behave(). An activity has a duration
in simulated time. It can halt and be reactivated later. An activity terminates when the cor-
responding function finishes. Thus a co-routine mechanism similar to that in Simula [14]
is provided in PROSIT. An active object executes its main activity, the behave() function,
in an autonomous way, independently of, and concurrently with, other active objects [3].
Active objects can also have secondary activities which are attached to other functions. All
activities are running concurrently in the simulated time (all activities are running pseudo-

concurrently in the sequential version) [3].

There are seven possible states for an active object: initialized, running, sleeping,
blocked, suicided (prematurely terminated by itself), killed (prematurely terminated by
other objects), and finished. An object enters the initialized state when the active object is
created in a C++ constructor, then is automatically managed by the kernel and ready to be
activated. Its activation time for process is scheduled at this state. The object enters its
running state when its activation time is reached. During its lifetime, the object can either
be in a running state (i.e., currently executing or consuming time), in a blocked state (i.e.,
the main activity is blocked due to a synchronous request), or in a sleeping state (it has put
itself in idle-wait state, waiting to be reactivated by another object). The object is consid-
ered to be dead when its main activity has terminated. There are three kinds of death: fin-

ished (i.e., normal termination of the main activity), suicided (the object terminates itself

36

prematurely), and killed (the object is terminated by another object using the termination

primitive).

PROSIT may have a great modeling power as it uses the process view with either the
server architecture or the customer (client) architecture for modeling. However, the ineffi-
ciency of the process view may make PROSIT less efficient.

SimKit [16] is a C++ class library that is designed for very fast discrete event simula-
tion. SimKit presents a simple logical process view of simulation enabling both sequential
and parallel execution without code changes to application models. The interactions
between LPs in a simulation model are represented by messages (events) passing between
them. This event-driven logical process view enables efficient scheduling of events via
invocation of the corresponding LP’s event-processing member function rather than the

more costly context-switching required in the process view [16].

The SimKit class library contains only three classes: sk_simulation for simulation
control, sk_lp for modeling sub-space behavior and state transitions, and sk_event for
modeling the interaction between the logical processes. A simulation model is constructed
by deriving LPs from sk_Ip class and messages (events) from sk_ev class. The program-
mer also needs to instantiate a single instance of sk_simulation class in order to invoke the

run time simulation kernel.

An execution of a model starts and ends with a single thread of control executing on a
single processor [16]. It goes through the following six phases: program initialization,
model global initialization, LP initialization, simulation execution, LP termination, and

simulation clean-up.

The execution starts from the program initialization phase in which the program
main() function is initialized and a single sk_simulation object is instantiated. The
sk_simulation is initialized and all LPs in the model are instantiated in the second phase -
SimKit and model global initialization. Allocation of LPs to processors is static and may

37

be optionally specified by the modeler via the LPs constructor [16]. The second phase
ends with passing control to the simulation run time system. In the third phase LP initial-
ization, all LPs’ initialize member functions are invoked for execution. The initial events
are usually scheduled in these LPs’ initialization member functions. Then the model exe-
cution is controlled by the simulation kemel in stage four - simulation execution. Events
are passed to the corresponding LPs by invoking their process member functions. The
simulation execution stage ends either because the simulation end time is reached or an
error occurs. All LPs’ terminate member functions are executed then in stage five - LP ter-
mination. Finally the simulation kernel returns the control back to the main() function of

the application in simulation clean-up phase.

The library-based approach is used for the development of SimKit so that QO tech-
niques are used at both design and implementation levels. However, the generality of the
LP view makes SimKit good for the application in general discrete event simulation, but
not so good for the simulation of queueing systems. This is because SimKit doesn’t pro-
vide enough high level constructs such as queue for modeling queueing systems.

ATM Traffic and Network (ATM-TN) system is a high fidelity simulator which char-
acterizes ATM network behaviors at cell level. The simulator incorporates three classes of
ATM traffic source models: an aggregate ethernet model, an MPEG model and a World
Wide Web transactions model. Six classes of ATM switch architectures are modeled
including output buffered, shared memory buffered and cross bar switch models, and then
multistage switches which can be built from these three basic models [33]. The simulator
is built with C++ language and the interfaces provided by SimKit. The event-driven logi-
cal process view with OO methodology is used in the construction of the simulator. ATM-
TN is a highly efficient simulator dedicated to the simulation of ATM networks, thus it

cannot be used for the simulation of general queueing systems.

38

3.3 Summary

The major advantage of using a simulation package over a general-purpose language
is that it automatically provides a modeling framework for the model construction. It also
provides most of the features needed in programming a simulation model. It thus resuits in
a significant decrease in programming time (and usually project cost) in a simulation pro-
cess. The use of OO techniques has the potential for developing a simulation package that
is easy to use because it contains close abstraction of the real-world concepts. This chapter
discusses the approaches to developing the simulation software from the third dimension,

object orientation.

There are three levels for OO techniques applicable in developing a simulation pack-
age: abstraction, design, and implementation. There are also three approaches to develop-
ing of an OO simulation package: data-driven simulator, language extension, and library-
based approach. The data-driven approach are usually successful in applying OO tech-
niques at the abstraction level, but not at the design and the implementaion level. The lan-
guage extension and the library-based approaches have the potential to apply OO
techniques at all three levels.

Packages related to queueing system simulation in the literature usually apply OO
techniques at the abstraction level, or at design and implementation level. Some of them
such as PROSIT applies OO techniques at all three levels, but they suffer from the ineffi-
ciency problem because they use the costly context switching mechanism to provide the

process view.

ATM-TN is an efficient data-driven simulator that is dedicated to the modeling and
simulation of ATM networks. It thus cannot be used for modeling other queueing systems.

SimKit is a library-based simulation package built with an OOP language. It provides
a very simple and efficient LP view for modeling and simulation various DES problems

both in sequential execution and in parallel execution. However, the modeling constructs

39

(or simulation primitives) provided in SimKit are only at the simulation level, not at the
application level when they are used for modeling a queueing system. That is, SimKit
does not provide enough high level simulation constructs such as queue and server for the
simulation of queueing systems. Thus SimKit is a good candidate for developing a pack-
age at a higher level for OO modeling and simulation of queueing systems.

Chapter 4

QueKit: An OO Simulation Package for Queueing Systems

The goal of QueKit is to provide an object-oriented (OO) environment for queueing
system simulation that facilitates the modeling process while retaining efficiency both in
sequential execution and in parallel execution. OO techniques are used for designing Que-
Kit application programer’s interfaces (API) to strive for ease of use. The logical process
(LP) methodology is used for implementing the QueKit package so that models in QueKit

can be executed efficiently both in sequential and in parallel environment.

An OO modeling framework provided by QueKit is presented by discussing QueKit
base classes, its server modeling architecture, and its simulation classes in this chapter. An
extended layer of QueKit is then outlined with the description of QueKit extended classes
and its other two modeling architectures. Finally, some implementation issues are dis-

cussed followed by a brief summary.

4.1 Overview of QueKit

The “core” objects in QueKit! are Tokens, Sets and Servers. Tokens represent those
entities that need services from other entities while Servers represent other entities that
provide these services in a queueing system. Tokens flow through a network of Servers to
obtain services from those Servers in a QueKit model. Sets are places for keeping Tokens
in some logical fashion such as first-come-first-serve (FIFO). A Server has two Sets: a
wait Set for holding Tokens that arrive at the Server and are waiting for service, and a ser-

vice Set for holding Tokens that are currently being serviced.

1. The information comes from the web site: http://www.wnet.ca/telesim/quekit.html.

40

41

the Token

amother server
er server
anoth —p] Server 2

a Token > Server 3
enters the
system

the Token

leaves the Server 4

Fig. 4.1 QueKit Overview

The four “core” methods of a Token are keep (servicelime), move (destSet), send
(destServer, delay), and cancel (). The keep method is invoked for a Token which resides
in a Set to initiate an activity of a wait or service interval. The underlying event which
ends such a Token's service or wait interval always occurs within the same Server. The
move method moves a Token between different Sets in the same Server with no delay. The
send method moves a Token from one Server to anothe- (possibly the same) Server with a
time delay that represents its transit time. The cancel method explicitly cancels a Token's
current activity, initiated either by keep or by send method. None of these four methods

can be overridden by the user.

In a QueKit model, a Token either resides in a Set, uniquely defined by currentSer(),
or is in transit between Servers. A Server's schedule (Token) method is invoked when a
Token arrives at the Server as a result of a previous send, or when a previously initiated
keep to perform a service or complete a wait has elapsed. An invocation of the schedule
function may transfer Tokens between the wait Set and service Set, may preempt current

services, may initiate new Token services, and may send Tokens to other Servers.

The user will typically override a Server’s schedule method to model different service

strategies in a QueKit model. The user may also extend a Token into a class of his/her own

42

needs which is more powerful and/or more specific than the base Token by adding more
methods that a schedule method can invoke.

The class Server is derived from class Entity which models a sub-system of the mod-
eled system (it is essentially an LP) and contains no Set. The Source and Sink classes are
also derived from Entity. The class Entity has an initialize () method which is expected to
create the initial Tokens in a model and schedule their movement. It also has a rerminate ()
method which is expected to do some clean-up work such as collecting the final statistics
after a simulation. Class Server, Source, and Sink all inherit these two methods. However,
both initialize and terminate do nothing in the base Entity class. Thus the user may over-
ride the initialize method of a Server to get the initialized Tokens unless using Source
objects in a model. The trerminate method may be overwritten by the user for the collec-

tion of the final statistics.

Class QueSimulation is in charge of the simulation control in QueKit. The user needs
to instantiate a single instance of QueSimulation class in order to invoke the run time sim-

ulation kernel.

The model execution starts and ends with a single thread of control executing on a
single processor in QueKit in the same way as in SimKit [16]. Six phases are involved ina
model execution: program initialization, QueKit and model global initialization, Entity

initialization, simulation execution, Entity termination, and simulation clean-up.

The execution starts from the program initialization phase in which the program main
function is initialized and a single QueSimulation object is instantiated. The QueSimula-
tion is initialized and all Entities in the model are instantiated in the second phase - QueKit
and model global initialization. Allocation of Entities to processor is static and may be
optionally specified by the modeler via the Entity constructors. The second phase ends
with passing control to the simulation run time system. In the third phase Entity initializa-
tion, all Entities’ (including Servers, Sources, etc.) initialize member functions are

invoked for execution. The initial Tokens are usually created and scheduled for actions in

43

these Entities’ initialization member functions. Then the model execution is controlled by
the simulation kernel in stage four - simulation execution. Tokens are activated for actions
in the corresponding Entities by invoking Entities’ schedule member functions. The simu-
lation execution stage ends either duo to the simulation end time is reached or duo to an
error occurs. All Entities’ rerminate member functions are executed then in stage five -
Entity termination. Finally the simulation kernel returns the control back to the main func-

tion of the application in simulation clean-up phase.

4.2 Object-Oriented Event-Driven Modeling Framework

The main driving force for developing QueKit is to strive for much greater ease of use
than the SimKit [16] package. Specifically, it is to provide an OO environment in simula-
tion of queueing systems for the user at the abstraction level in addition to the design and
implementation levels provided in SimKit. This will allow the user to easily map the real-
world objects into the software objects without having too much knowledge about simula-
tions. Meanwhile, QueKit also aims to preserve the high efficiency of SimKit as much as

possible.

SimKit provides a very simple and efficient logical process (LP) framework for gen-
eral discrete event simulation [16]. The SimKit API has been used for developing QueKit
because of its simplicity and efficiency. The library-based approach of SimKit provides
the full accessibility to its base OO language (C++ or Java) so that OO techniques such as
inheritance, polymorphism, parameterized typing, etc., can be applied at the design and
implementation levels. The library-based approach is also used in the development of
QueKit, and QueKit is built at the application level of SimKit. This development strategy
enables all OO techniques which are applicable in SimKit applicable in QueKit as well.
Moreover, QueKit provides a set of high level model definition primitives specifically for
queueing system simulation so that OO techniques are applicable to the model abstraction
level. Thus OO techniques are applicable in QueKit at all three levels including abstrac-
tion, design, and implementation so that QueKit has greater modeling power than SimKit

in the simulation of queueing systems.

44

In the QueKit environment, entities which need services in a system are modeled as
Tokens and entities which provide services for others are modeled as Servers. A QueKit
model can be viewed as a collection of objects (Tokens, Servers, etc.) which are the
abstract representations of the objects in the system being modeled. The schedule (Token)
method of a Server describes a series of actions the Server performs whenever an event

occurs such as the completion of a service for a Token in the Server.

In a banking machine system, for instance, customers are usually modeled as (event)
messages and the banking machine is modeled as an LP in many OO packages providing
the LP view. To model the passage of service time when a customer is being serviced by
the banking machine, the machine LP sends the customer (event) message arriving to
itself after some delay. The model is depicted below. This shows that the LP view does not
fully apply OO techniques at the abstraction level. That is, the user has to describe an
object’s behavior from the simulation domain instead of the problem domain. It thus
causes confusion and difficulties for engineers who have not much knowledge about sim-

ulations when they build simulation models with the LP view.

customer message —_

(modeling the passage
of service time) r

customer message customer at service

/ N\

A=A AU A

arriving at customer queue T leaving the system
the system banking machine LP

Fig. 4.2 Logical Process Modeling View

45

In QueKit, however, customers are modeled as Tokens and the banking machine is
modeled as a Server. To model the passage of service time when a customer being ser-
viced by the banking machine, Token::keep (Time) method will do the job. The customer
object just resides inside the service Set of the machine Server until it is activated again by
the Server::schedule (Token) method after the service time has passed.

There is no event or message object being sent back and forth in any QueKit model.
This is different from many current OO simulation packages which provide event-driven
or LP view. Events or messages which are necessary in a simulation are transparent from

the view of the user in QueKit.

customer Token customer at service banking machine Server

/ N e

A=A A A

arriving at customer queue l leaving the system
the system

customer Token.keep (serviceTime)

Fig. 4.3 OO Event-Driven Modeling View

4.3 Base Layer

The base layer of QueKit is developed on top of SimKit. It contains base classes for
modeling a queueing system and simulation classes for simulation control and statistics as
well as trace information collections. The class hierarchy is shown below. These classes

support the server modeling architecture.

~SimKit Modeling Class ; SimKit Simulation Class
|
AN
|

g

Stats

| SetStats| [TokenStats| [EntityStats |

)

=

[Queue] [Served [Source] [Sink]

Fig. 4.4 Class Hierarchy of QueKit Base Layer

4.3.1 Base Classes

The basic classes contain Token, Set, Entity, Queue, Server, Source, and Sink.

A Token models an entity that needs services from other entities in a queueing sys-
tem. A Set models a place for holding Tokens. An Entity models a sub-system in a queue-

ing system, i.e., it is essentially an LP.

Queue is derived from Set and is a special Set provided by QueKit. A Queue models a
place for holding Tokens in a priority order beginning from the highest priority.

A Source models an object which injects Tokens into the system in a pattern such as
exponential distribution inter-arrival time. A Sink models an object which absorbs Tokens

when they exit the system.

Server is derived from Entity and it models a sub-system that provides service for
other entities in a queueing system. A basic Server has two Sets: a Queue with infinite
capacity as its wait Set for holding the Tokens waiting for services and a Queue with

capacity of one as its service Set for holding the Token being serviced.

The functionality of the base Server::schedule (Token) method is very simple. It puts

the newly arrived Token into its wait Set if the service Set is full. Otherwise it puts the

47

Token into the service Set, lets it keep for one time unit for modeling the service activity.
Then it drops the Token after the completion of the service, and schedules the service for
another Token in its wait Set. The basic Server::schedule (Token) method intends to
present a sample implementation for the user to show how a Server functions as a behav-
ior controller for both Tokens’ activities and resource management. It does not intend to
provide an implementation that can be used directly by the user. Thus the user often needs
to override this basic implementation in order to provide a specific functionality related to
his/her application problem.

The following are the base classes and their interfaces.

class Token /[entities that require services from others
Token () // constructors
Token (String type)
Token (TokenStats stats)

Token (String type, TokenStats stats)

intid () // unique Token identifier

String type () // Token’s type

double priority () // Token’s priority

Set currentSet () // Token's current location or null if sent
void keep (double t) // scheduling an activity for the Token, i.e.,

// the Token will be activated after time t.
void send (Entity dest, double delay) // Token sent to destination Entity dest
// and arrives there after time delay

Token move (Set destSet) /l Token moves from currentSet() to destSet
// in an Entity, returns the dropped Token.
void cancel () /I explicitly cancel Token’s current activity,

// the previous keep (...) and send (...).

class Set // place for keeping Tokens in an Entity
Set () // constructors
Set (Entity owner)

Set (SetStats stats)
Set (Entity owner, SetStats stats)

48

intid Q) // unique Set identifier

String type // Set type

int capacity // max # Tokens in Set, can be infinite

int numTokens () // current number of tokens in the Set

Entity ownerEntity () // current Entity which owns this Set

boolean full () // true if numTokens () = capacity ()

abstract Token put (Token tk) // put tk into Set, return the dropped Token
// (could be tk) if Set has a finite capacity.

abstract Token get // get a token out of the Set

abstract Token get (Token token) // get a specific token out of the Set
abstract Token find (String type) // find a token with the specific type

abstract Token find (int id) // find a token with the specific id
class Queue extends Set // a Set in which Tokens are kept in a priority order
Token put (Token token) // put a token into the Set
Token get () /1 get a token out of the Set
Token get (Token token) /1 get a specific token out of the Set
Token find (String type) // find a token with the specific type
Token find (int id) // find a token with the specific id
Token first () /1 get first Token in the Queue
Token last () /1 get last Token in the Queue
Token next (Token tk) // get the Token next to tk in the Queue
Token prev (Token tk) /7 get the Token before to tk in the Queue
class Entity extends SimKit.LP /! abstract logical processes (LP)
Entity () // constructors
Entity (EntityStats stats)
intid () // unique Entity identifier

abstract void schedule (Token tk) // called on Token entry, exit or the
// completion of any task or service

class Server extends Entity // service nodes in a network of servers
Server (Set waitSet, Set serveSet) // constructors
Server (EntityStats stats)

Server (Set waitSet, Set serveSet, EntityStats stats)

Set waitSet () // server’s entry and wait area

Set serveSet ()

void schedule (Token tk)

49

/1 (default is a Queue).

// server’s service area where keeping the

// Tokens being serviced (default is a Queue).
// a simple scheduler for allocation resource
/1 to Tokens, is usually overridden by user

/I for injecting Tokens into the system

class Source extends Entity

Source (Class clas)
Source (Class clas, String type)

// constructors

Source (Class clas, String type, double pl)
Source (Class clas, String type, double p1, double p2)

String type O
Class template ()

double p1 ()

double p2 ()

double startTime ()
Entity destination ()
double delay ()

void schedule (Token tk)

class Sink extends Entity

// Source type: “Determ”, *“Uniform™,

// “EXP”, “Normal”.

// the template of the dynamic entities

// which are injected into the system.

// parameter 1 for inter-arrival time:

/] “Determ” - fixed inter-arrival time;

/! *“Uniform” - lower bound;

// “EXP” - mean, “Normal” - mean.

{/ “Uniform™ - upper bound;

// *“Normal” - standard deviation.

// start time for functioning

// default destination Entity for the Source
// delay from Source to destination Entity

// injecting a Token into the system and
// scheduling the time for the next Token

// for absorbing Tokens in the system

int totalNumTokens ()
void addTotalNumTokens (int n)
void schedule (Token tk)

4.3.2 Simulation Classes

// total # of Tokens absorbed so far
// adding n to the totalNumTokens
// counting for the totalNumTokens,
// may be overridden by the user

Simulation classes in QueKit are used for conducting a simulation such as controlling

the simulation process, collecting statistics and so on. They include QueSimulaton, Trace,

Stats, TokenStats, SetStats, and EntityStats.

50

QueSimulaton is used for the simulation control. It is derived from class Simulation
in SimKit. There is only one instance of QueSimulation can exist in a simulation. A simu-
lation starts when the run () method of this instance is called in the main function of the
application program. The user often overrides its initialize () method to instantiate all Enti-
ties in a simulation. Then the simulation control is handed to the underlying simulation
kernel. The terminate () method is called by the kernel when the simulation is ended
because the simulation end time is reached or an error is occurred. The terminate ()

method is often overridden by the user to collect final statistics of a simulation.

Trace class is designed for collecting trace information about Tokens® activities. The
information about a Token’s movement in the model during a simulation can be collected
by setting up the Token’s trace attributes. This is done by calling the method Token::set-
Tracing (attributes). There are four attributes for tracing: EntityEntryTrace, EntityExit-
Trace, SetEntryTrace, SetExitTrace. They can be set up simultaneously by bitmap or
operation in Token::setTracing (attributes). The information about the Token’s activities
related to any Resource can be collected by setting other four attributes: MsgEntityEn-
tryTrace, MsgEntityExitTrace, MsgSetEntryTrace, MsgSetExitTrace.

Stats is the base class for class TokenStats, SetStats, EntityStats. Any Token can col-
lect some basic statistics by attaching a TokenStats object. Accordingly, SetStats object is
for the statistics collection in a Set, and EntityStats object is for the statistics collection in
an Entity.

The main statistics collected by a TokenStats object for a Token are the number of
Entities it passed, number of wait Sets as well as number of service Sets it entered. It also
includes the average time and standard deviation of the time for the Token having stayed

in any Entity, any wait Set, and any service Set in the model.

The main statistics collected by a SetStats object for a Set are number of Tokens
passed, number of Tokens dropped in the Set, maximum and average Set occupancy, mean

and standard deviation of the time for Tokens staying in the Set.

51

The main statistics collected by an EntityStats object for an Entity are number of
Tokens passed, average and standard deviation of a Token staying in the Entity.

class QueSimulation extends Simulation // simulation control

Entity getEntity (int id) // get an Entity with the id
Enum getEntities () // get the Entity list

class Trace /[trace class for collecting trace information about Tokens

Trace () /I constructors

Trace (String name)

intid () // unique Trace identifier

String fileName () // trace file name

void print (String info) // output a line of information to the trace file
class Stats // base class for collecting statistics

Stats () // constructor

intid () // unique Stats identifier
class TokenStats extends Stats // for collecting stats for Tokens

TokenStats (Token token) /f constructor

Token ownerToken () // the Token that the Stats object belongs to

int numWaitSets ()

int numServeSets ()

int numEntities O

double localWaitTime ()

double localServeTime ()

double global WaitTime ()

double globalServeTime ()

double meanSetWaitTime ()

double stdvSetWaitTime ()

double meanSetServeTime ()

double stdvSetServeTime ()

double meanEntity WaitTime ()

double stdvEntity WaitTime ()

52

double meanEntityServeTime ()
double stdvEntityServeTime ()

void reset ()
void resetLocal ()

void entry (Entity ¢)
void exit (Entity e)
void entry (Set s)
void exit (Set s)

class SetStats extends Stats /[for collecting stats for Set

SetStats (Set set) // constructor

Set ownerSet () // the Set that the Stats object belongs to
int maxOccupancy ()

int meanOccupancy ()

int throughput ()

int numDropped ()

double utilization ()

double meanServeTime ()

double stdvServeTime ()

void entry (Token tkn)
void exit (Token tkn)

class EntityStats extends Stats {/ for collecting stats for Entity

EntityStats (Entity entity) // constructor

Entity ownerEntity () // the Entity that the Stats object belongs to
int throughput ()

double meanServeTime ()

double stdvServeTime ()

void entry (Token tkn)
void exit (Token tkn)

4.3.3 Server Architecture

A model is mainly composed of Tokens and Servers in the server architecture. Tokens

model the entities that need services from other entities, and Servers model entities that

53

provide those services. In the server architecture, Tokens flow through a network of Serv-
ers to get services from these Servers. Servers are active objects in the server architecture
for both resource management and Tokens’ activity control. A Server decides when and
how to allocate resources to Tokens and arranges their activities through its schedule
(Token) method.

Entities
terminall {. T _r_e—qu—est;(-fok-en;) - -;
I Server Server |
—»(terminal2) +X CPU Disk1 |
. : Server :
* | | Disk2 :
 computersystem ~————— _ .

Fig. 4.5 Timesharing System

For instance, in a small timesharing system [19], there are 16 user terminals con-
nected to a minicomputer system with two disks. A user thinks for some time, sends a
request to the computer system, and waits for the system response. When the response is
received, the user thinks again and then initiates another request. The process of a request
may cost several CPU and disk operations alternatively in the computer system. There-
fore, this timesharing system can be modeled with the server architecture shown above.
The CPU and two disks are modeled as Servers. Terminals (sub-systems) are modeled as

Entities and users’ requests are modeled as Tokens.

4.4 Extended Layer

The above passive Token vs. active Server approach in the server architecture is con-

venient for modeling the scenario in which a master scheduler in a Server takes care of

54

everything: allocating resources to a Token, scheduling the completion of a service for the
Token, and eventually routing (sending) the Token to another Server. When a Token needs
more than one resource simultaneously in an activity and the allocation strategies of these
resources are different, e.g., one is based on first-come first-serve (FCFS) and another is
based on Tokens’ priorities, the schedule (Token) of the Server will become quite compli-

cated and lack clarity.

For example, in a hospital system [6], there are limited beds in the hospital ward for
accepting patients. A patient is admitted to the ward if there is a bed available, otherwise s/
he has to wait for a bed. S/he stays in the ward for some time for the treatment. S/he may
need an operation after the treatment. There is only one theatre in the hospital. The patient
has to stay in the ward for a while after the operation and then returns his/her bed and is
discharged from the hospital. The system is illustrated below.

o = |
operation
(no ope) Ward

[
!
| Beds > Theatre |
PatientB I
(operation) R 2
atient
- Sink

Fig. 4.6 Hospital System Diagram

With QueKit server architecture, patients can be modeled as Tokens in the hospital
system. However, the theatre and the ward cannot be modeled as different Servers because
a patient who is in an operation still reserves his/her bed in the ward. Thus the ward and

the theatre have to be modeled as a single Server shown as following.

55

Sources

PatientA
(no operation)

Server patients Sink

. (Tokens) Patient
Hospital Sink

Fig. 4.7 Hospital System (Server Architecture)

There are drawbacks for modeling the hospital system in above server architecture.
Since the management of the ward and the theatre in the hospital may be relatively inde-
pendent of each other. With the server architecture, all patients’s activities and resource
allocation/deallocation of beds and the theatre are forced to be described in a single func-
tion (Hospital Server’s schedule method). The results are: (1) the Hospital Server’s sched-
ule method is relatively complicated; (2) the natural parallel activities in the system are
forced to be totally serialized in a simulation even if the model is run on a parallel

machine.

The extended layer of QueKit will solve this problem by separating the functionality
of a Server into two parts, one for the resource management and another for the Tokens’
activity management. This layer contains the following classes that are derived from Que-

Kit base classes.

4.4.1 Extended Classes and Interfaces

Extended classes include Job, Client, and Resource. Job is derived from Token. A Job
models an active entity that request services from other entities in a queueing system. Cli-
ent is derived from Entity. A Client models a behavior controller for a set of Jobs that
behave in the same way. The schedule method of a Client describes how these Jobs get

resources and conduct their activities in a chronological order during their lifetime or

56

period of their lifetime. A base Client has a host Set for holding the Jobs which behave in
the same way while they are in the host Set.

Resource is derived from Server and it models a sub-system for a single sort of entity
which provides service for other entities. A Resource is a specialized Server and it is only

responsible for handling the resource allocation/deallocation requests from Jobs.

The base functionality of the Resource::schedule (Token) method is dedicated to the
allocation/deallocation of the resource. Upon receiving a Message (derived from Token)
for resource request, it sends the Message back to its host Entity when the resource is
enough, otherwise it puts the Message into its wait Set. Upon receiving a Message for
resource return, it recovers its resource amount and drops the Message. The user can over-
ride this base functionality in order to provide more complicated one for his/her applica-

tion problem.

class Job extends Token /[active entities that require service from others

// requesting a specific amount resource from res with a specific priority,
// default amount = 1.0, default priority = 0.

void requestRes (Resource res)

void requestRes (Resource res, double amount)

void requestRes (Resource res, double amount, double priority)

// preempting a specific amount resource from res with a specific priority,
// default amount = 1.0, default priority = 0.

void preemptRes (Resource res)

void preemptRes (Resource res, double amount)

void preemptRes (Resource res, double amount, double priority)

// returning a specific amount resource to res, default amount = 1.0.
void freeRes (Resource res)
void freeRes (Resource res, double amount)

class Client extends Entity // activity controller for Jobs
Set hostSet () // host Set for all Jobs in the Client
void end () // mark the end of the lifetime of Client,

// and destroy it.

57

class Resource extends Server // sub-system for resource allocation/deallocation

double capacity () // maximum amount of resource
double amount () // current amount of resource
void schedule (Token msg) // allocating/deallocating resource to the

// Token associated to msg

4.4.2 Client Architecture

A model is mainly composed of Jobs, Resources, and Clients in the client architec-
ture. Client class is derived from Entity class as described above. A Client class provides a
behavior control profile which represents the lifetime activities of a group of Jobs whose
behaviors are statistically identical. The behavior of the group of Jobs is described by the
schedule method of a Client class. A typical schedule method is the description of a series
of actions about Jobs’ lifetime activities in a chronological order. Resource class is also
derived from Entity class. A Resource object functions as a passive resource controller in
the sense that it only controls resource allocation/deallocation but has no control on Jobs®
activities and how long resource will be possessed by Jobs. Thus the schedule method of a
Resource object is dedicated to resource allocation/deallocation. In a Client, a Job decides
how long it possesses the resource by its keep (Time) method and returns the resource by

its freeRes (Resource) method later.

The following model of the above hospital system depicts this kind of distributed con-
trol in which the management of an independent resource is handled in a Resource object
and the lifetime activities of the same kind of Jobs are handled in a single Client object.
The solid lines are the routes of Jobs and the dashed lines indicate the communications

between Clients and Resources.

58

Source patients Client
PatientA (Jobs) - - _
(no operation) PatientAClient patients
II\
Resource JResource
(Theatre) Beds
Source ~
PatientB : —
(operation) /parients PatientBClient
(Jobs) Client

Fig. 4.8 Hospital System (Client Architecture)

The above model is easier to build than the model shown in Fig. 4.7 because the com-
plexity of the schedule method of the single Hospital Server in Fig. 4.7 is distributed in
four objects (PatientAClient, PatientBClient, Beds, and Theatre). Furthermore, the above
model exploits more natural parallelism of the system than the model shown in Fig. 4.7
because the four objects can be dispatched into at most four different processors and exe-
cuted in parallel.

Nevertheless, the execution of a model built with the client architecture is not as effi-
cient as that with the server architecture in sequential environment. This is because at least
two Messages (two events involved) for a resource allocation and one Message (one event
involved) for a resource deallocation are needed in a Client while only one invocation of
schedule (Token) in a Server (one event involved) can allocate and deallocate several

resources.

Therefore, there are trade-offs between the clarity of model presentation and the exe-
cution efficiency of model when choosing an architecture for model construction. When
the allocation of resources is simple, i.e., the assumption of a master controller for
resource allocation/deallocation is close to the situation in reality, the server architecture is

preferred. This is because it guarantees good execution efficiency while preserving good

59

clarity for the model. On the other hand, when the allocation of resources is complex, e.g.,
the allocation/deallocation of those resources are independent of each other with different
strategies such as FIFO and priority, the client architecture is preferred. In this case, the
functionality of the complex schedule method of a Server is decomposed into three parts:
(1) a simple schedule method in a Client which chronologically describes the lifetime
activity of Jobs in a straightforward way; (2) a dedicated resource controller in a Resource
for handling the allocation/deallocation requests from Jobs; (3) communications between
Clients and Resources via Messages. (2) and (3) are mostly provided by the QueKit pack-
age. Thus the work of the application programmer spent on model construction and
debugging will be greatly reduced and the model will be more readable so that the produc-
tivity of the software development is increased from the view point of the software engi-

neering.

Hence, part of the model execution efficiency seems to be scarified for good model
clarity in the client architecture. However, the decomposition of the functionality of a cen-
tralized Server results the model inheriting more natural parallelism from the modeled
system. This is because a Job’s activity is independent of resource allocation/deallocation
to another Job so that they can be handled simultaneously in a parallel environment. Thus
the model execution efficiency for 2 model built with the client architecture may be equiv-
alent to or better than that of a model built with the server architecture for modeling the

same system when running in a parallel environment.

4.4.3 Server-Client Architecture

Using one of the above architectures solely in a model construction may not be
enough to exploit all potential parallelism of a real system being modeled while preserv-
ing good model clarity. The server-client architecture allows both server and client archi-

tectures to be applied seamlessly in constructing a single QueKit model.

60

Resource Resource o o o Resource
#1 0 #m
N /

R \
the Jobis N y t/helob is

routed to \ routed to
a Client m another Server ['Server 3

—

7 N
7 / ~
7 ~
Resource Resource) o o o Resource
#m+1 #m+2 #n
N\ e
N \

/ -
~ \ P the Job is

the Job) Yy routedto /7N
leaves the Servern|e— ¢ o o (% Client 2 | another Client

system,
7 ~
7 / N
’ ~
Resource Resource) , , o (Resource
#n+1 #n+2 #p

Fig. 4.9 Server-Client Architecture

a Job
enters the
system

In the server-client architecture, the lifetime activity of a Job is divided into several
periods in a chronological order according to the way how resources are handled in the
real system and the clarity of describing the handling of these resources in the schedule
methods. Each activity period is described in a schedule method of a Server or a Client.
Jobs flow through a network of Servers and Clients to get services and compiete their life-
time journey. As depicted in Fig. 4.9, a Job may start from a Server, travels through a
series of Servers to get services. Then it is sent to a Client, experiences a sequence of
activities inside the Client, and is finally sent to another Server. This pattern may repeat

until the Job finishes its lifetime journey and is absorbed in a Server or a Client.

61

4.5 Implementation Issues

The QueKit package is built upon the SimKit package. Therefore, any primitive in
QueKit is implemented at the application level of SimKit. The pseudo-code for imple-
menting three methods of Token class and two methods of Job class are presented in this

section.

Both simulated delay (Zoken::keep (Time)) and event cancellation (Token::cancel())
are associated with process (Event) method in Entity class. This method is inherited from
Entity’s parent class LP in SimKit for handling events. It is defined as a final method so
that it cannot be overridden by the application programmer. In this method, the
Entity::schedule (Token) function is invoked only when the processed event is effective,
i.e., its associated Token has not cancelled the event. This is done by comparing the event
identification number of the processed event and the event identification number recorded
in the associated Token. The processed event is effective only when these two numbers are
the same. Otherwise, the processed event has been cancelled either implicitly by multiple

Token::keep (Time) or explicitly by Token::cancel().

public void process (Event ev) {
QEvent Qev = (QEvent)ev;
// ignores any canceled event, only activates the Token which is associated
// with an effective event (i.e., there is a Token currently associated with it)
if (Qev.token().id() = Qev.id())
schedule (Qev.token());

Fig. 4.10 Pseudo-Code for Entity::process (Event)
4.5.1 Simulated Delay

Since the OO event-driven view is used in QueKit, the event object is transparent to

the user, thus any activation of a Token by Entity::schedule (Token) is associated with a

62

process of an event object inside an Entity. The simulated delay (Token::keep (Time)) is
usually for modeling the passage of a specific amount of time. For the three base classes in
QueK:it, i.e., Token, Entity, and Set, only Token can be associated with the simulated delay
primitive. This is because Entity::keep (Time) can only be implemented in the process
view as the context switching is necessary for controlling the passivation and activation of
a process to model the passage of time. And Set::keep (Time) makes no sense here as a Set
is only a place for holding Tokens.

Token::keep (Time) models a Token to be engaged into an activity for a specific
amount of time in an Entity, e.g., the Token is being serviced in a Server. A Token must
reside in a Set of an Entity when it is engaged in an activity. An Entity can have multiple
Tokens being engaged in their activities simultaneously, and each of which is associated to
an effective event. A Token can have only one outstanding keep effective. Although a

Token can issue multiple keeps, the latest keep will make its previous keep ineffective.

void Token::keep (Time keepTime) {
if ((keepTime < 0) or (currentSet = null)) {
error handling
} else {
QEvent ev = new QEvent (this);// associate the event with this Token
eventld = ev.id();// record the effective event id
// schedule the event arriving at its owner Entity after time keepTime

ev.send_and_delete (ownerEntity(), currTime() + keepTime);

Fig. 4.11 Pseudo-Code for Token::keep (Time)

63

4.5.2 Token Movement

There are two types of movement for a Token in a QueKit model. One is modeling a
Token moving from one Entity to another. For instance, a Token is routed to another
Server after it finished the service in the current Server. This is done by invoking
Token::send (Entity, Time). It causes the Token to be sent te a specific Entity and reach that
Entity after the specific time of delay.

void Token::send (Entity dest, Time delay) {

if ((delay < 0) or (dest == null)) {
error handling

} else {
remove the Token from its current Set if it is in a Set
QEvent ev = new QEvent (this);// associate the event with this Token
eventld = ev.id(); // record the effective event id
/1 schedule the event arriving at its destination Entity after time delay

ev.send_and_delete (dest, currTime() + delay);

Fig. 4.12 Pseudo-Code for Token::send (Entity, Time)

Another type of movement is modeling a Token moving back and forth between dif-
ferent Sets in the same entity. Token::move (Set) causes a Token to be moved into a spe-
cific Set in an Entity. This type of movement does not involve any delay as the first type,
i.e., a Token reaches the destination Set immediately after it leaves the current Set. If any
non-zero delay should be modeled in the movement between different Sets in the same
Entity, or the movement is between different Sets in different Entities, Token::send (Entity,
Time) should be used instead of Token::move (Set).

64

Token Token::move (Set set) {
Token token = null;
if ((set == null) or (set.ownerEntity() != currentSet.ownerEntity())) {
error handling
} else {
if (currentSet != nuil)
currentSet.get (this);// remove Token from its current Set
token = set.put (this);// put Token into the Set set

}

return token;

Fig. 4.13 Pseudo-Code for Token::move (Set)

4.5.3 Event Cancellation

The traditional approach to event cancellation is to remove the event to be cancelled
directly from the event list so that the cancelled event will never be processed in the
future. This mechanism is very simple and efficient, but it makes some software packages
like SimPack [12] unable to be used in a parallel system based on Time Warp paradigm.

void Token::cancel (Token token) {
if ((token.currentSet = null) || (token.currentSet != null) && \
(currentActiveEntity == token.ownerEntity()))
// make the Token not associating to any event (-1 is a invalid event Id)

token.eventld =-1;

Fig. 4.14 Pseudo-Code for Token::cancel (Token)

The approach used in QueKit is to make the event cancellation transparent for both

underlying simulation kernel as well as the application programmer. That is, the event

65

cancellation is handled inside QueKit in a simple way: QueKit simply ignores the can-
celled events whenever these events are encountered (shown in Fig. 4.11). A Token’s
activity can only be canceled by its owner Entity, i.e., the Entity which scheduled the
event by invoking Token::keep (Time) or Token::send (Entity, delay) before.

4.5.4 Resource Allocation/Deallocation

A Resource functions as a shared variable in a QueKit model. Thus any access to a

Resource should be via messages in an LP view.

The following methods of a Job are associated to the resource allocation/deallocation:
requestRes (Resource), requestRes (Resource, amount), requestRes (Resource, amount,
priority), preemptRes (Resource), preemptRes (Resource, amount), preemptRes (Resource,
amount, priority), freeRes (Resource), freeRes (Resource, amount). Messages are used for
the communications between Resources and other Entities for resource allocation/deallo-

cation. However, messages are also transparent from the user.

Job::requestRes (Resource, amount, priority) causes a Message sent to the specific
Resource for requesting the specific amount of resource at a specific priority. The default
amount is one unit and default priority is zero if they are not specified. A message sent
from a Job to a Resource functions as a representative of the Job competing for the

resource in the Resource object.

void Job::requestRes (Resource res, double amount, double priority) {
Message msg;
if ((amount <= 0) and (res = null)) {
error handling
} else {
// create a Message associated with this Job and its owner Entity,
// set its type to “QK_Request” and let it carry the requested amount
msg = new Message (“QK_Request”, this, ownerEntity, amount);

msg.setPriority (priority);

66

msg.send (res, currTime());// send the Message to the resource Entity

Fig. 4.15 Pseudo-Code for Job::requestRes (Resource, amount, priority)

Job::preemptRes (Resource, amount, priority) causes a Message sent to the specific

Resource for preempting the specific amount of resource at a specific priority.

void Job::preemptRes (Resource res, double amount, double priority) {

Message msg;

if ((amount <= 0) and (res = null)) {
error handling

} else {
// create a Message associated with this Job and its owner Entity,
/l set its type to “QK_Preempt” and let it carry the requested amount
msg = new Message (“QK_Preempt”, this, ownerEntity, amount);
msg.setPriority (priority);

msg.send (res, currTime());// send the Message to the resource Entity

Fig. 4.16 Pseudo-Code for Job::preemptRes (Resource, amount, priority)

Job: :freeRes (Resource, amount) causes a Message sent to the specific Resource for
returning the specific amount of resource. The default amount is one unit if it is not speci-
fied.

void Job::freeRes (Resource res, double amount) {
if ((amount <= 0) and (res = null)) {
error handling
} else {

67

// create a Message associated with this Job and its owner Entity,
// set its type to “QK_Return™ and let it carry the requested amount
Mesage msg = new Message (“QK_Return”, this, ownerEntity, amount);

msg.send (res, currTime());// send the Message to the resource Entity

Fig. 4.17 Pseudo-Code for Job::freeRes (Resource, amount)

4.6 Summary

QueKit aims to provide an OO design and implementation environment for queueing
system simulation to facilitate the modeling process. QueKit also support efficient sequen-
tial execution, as well as the potential for parallel execution. The library-based approach is
used for the development of QueKit so that OO techniques can be applied at abstraction,
design, and implementation level. The modeling framework provided in QueKit is OO
event-driven. Dynamic entities are modeled as Tokens or Jobs and static entities are mod-
eled as Servers or Resources. The LP view is used for the implementation of QueKit so
that it can be executed in a parallel environment either optimistically or conservatively.
Three architectures are provided by QueKit for the model construction: server architec-

ture, client architecture, server-client architecture.

Chapter §

Preliminary Evaluation of QueKit

Fourteen modeling problems mentioned in Chapter 2 will be revisited here for the
preliminary evaluation of the QueKit abstraction. Moreover, two benchmark systems will
be described in detail for a preliminary evaluation of the QueKit abstraction, as well as, its
performance. Different QueKit architectures are also used for the model constructions in
order to compare the modeling power and execution efficiency among these architectures.
Furthermore, both systems are also modeled with the SimKit application programmer’s

interface (API) for comparison.

5.1 Revisiting the Common Modeling Problems

All the common modeling problems listed in Chapter 2 are revisited with examples in
this section in order to show how QueKit can be used to solve these problems. Event

graphs are used as declarative models to describe the dynamics of these problems.

Resource Sharing: This problem has been addressed with an example in Sec. 4.3.3
(Fig. 4.5 Timesharing System). The server architecture is used there. Actually the client
architecture can also be used for modeling this system except the execution efficiency will
not be as good as that of the server architecture. With the client architecture, the CPU and
two disks are modeled as Resources. Sixteen terminals are modeled as Clients and user
requests are modeled as Jobs. The following declarative model indicates the life cycle of a
terminal Client. It actually describes the schedule method of a terminal client.

A block in a declarative model represents an event in which the bold text shows the
event type while the rest of the text shows the actions upon the occurrence of the event.
More details about actions in an event block are described with the QueKit application
programmer’s interface (API) in a declarative model. As in Chapter 2, a solid arrow in any

declarative model represents an activity within an object while a dashed arrow represents

68

69

an activity involving different objects. One event block marks the beginning of the activity
at the tail of the arrow, and another event block marks the end of the activity at the head of

the arrow.

terminal
Client:

@itiate a request: request.keep (thinlemeD<

L

(finish thinking: ~request.requestRes (CPU)

yes

Gtart CPU service: request.keep (serveTim_eD

finish CPU service: request.freeRes (CPU)
request.requestRes (disk)

start disk service: request.keep (serve’IimeD

l

@nish disk service: request.freeRes (disk))

Fig. 5.1 Declarative Model for the Timesharing System (QueKit Client Architecture)

A request Job in the above figure is kept for “thinkTime” to model the user’s thinking
time in the “initiate a request” event. It then requests to access the CPU when the thinking
activity, which is represented by the first top-down arrow, is finished. The request initiates
a CPU activity, which is represented by the second top-down arrow, once it gets the CPU.
It releases the CPU and requests a disk when the CPU activity is finished. A “start disk
service” event occurs once the request gets the disk. A “finish disk service” event occurs
when the disk service activity is finished. The request Job will be back to request the CPU
again if its process is not completed, otherwise it will be back to model another user’s
thinking activity again.

Preemption: This problem will be addressed with the CPU_Disk system in Sec. 5.2.

70

Grouping and Loss: There is a truck with capacity of 50 boxes in a transportation
system to transport goods from city A to city B. It takes 3 hours for the truck with goods
travelling from City A to B and 2.5 hours for the empty truck travelling back to City A
from City B. Suppose the truck starts from City A. Assuming that a box of goods arrives at
the city A at an inter-arrival time exponentially distributed with mean of 0.1 hours. The
truck has to wait until it is fully loaded, and then begin its trip from city A. It takes 30 min-
utes to load/unload the truck in city A/B. Goods may decay anytime and decayed goods
are thrown away. The lifetime is exponentially distributed with mean of 10 hours.

The server architecture is suitable for modeling this system. A box of goods is mod-
eled as a Token, the fruck is modeled as a Server with a service Set of capacity of 50. The
storage place in city A (StorageA) is also modeled as a Server while the storage place in
city B (StorageB) is modeled as an Entity because it is simple. A special signal can be used
to model the arrival of the empty truck at City A. This signal also informs City A that the
truck is ready for loading. The declarative model is shown below. It shows the schedule
member functions for Entity StorageA, Server StorageB, and Server truck respectively.

The lifetime limit of a box of goods can be recorded inside the boxes Token when it
arrives at city A. The StorageA Server will throw away the decayed goods whenever the
truck is ready for loading and the number of boxes is enough for loading the truck. The
actual loading activity will begin when there are still enough boxes for loading after
cleanup of all of the decayed goods. The StorageB Entity can collect the following five
statistics by testing the time period when the lifetime of a box of goods expires: 1) number
of boxes decayed before loading; 2) number of boxes decayed during the loading process
in City A; 3) number of boxes decayed during the transportation from City A to City B; 4)
number of boxes decayed during the unloading process in City B; 5) number of boxes
transferred in good shape. A box of goods is decayed before loading if its lifetime limit is
shorter than its loading time. A box of goods is decayed in transit in city A/B if its lifetime
limit falls in loading/unloading activity. A box of goods is decayed during the transporta-

71

tion if its lifetime limit falls in the activity of the trip from city A to B. Otherwise, the box
of goods is transferred to city B in good shape.

I events in Server truck:
|

J ------- A
I if (serveSet().full())
l box.keep (3.0)

! /truck arrives to City B, start

a box arrives: collect statistics from\ | unloading: box.keep (0.5)
the information in the box. l A
I /finish the unloading:

{ N for all boxes in the serveSet():

| box.send (storageB, 0.0)

|

I /start going back to City A:

| signal.send (StorageA, 2.5)

l — T
——————————— ————'—---———I—--————-I
events in Server StorageA: A

the signal arrives:
clean up all decayed boxes in the

|
I
I
waitSet() before currTime()+0.5, I
- if (waitSet().numTokens() < 50) |
(a box arrives: \ truckStatus = “ready” |
box.move (waitSet()) else // start loading |
if ((waitSet().numTokens() == 50) signal.keep (0.5)
&& (truckStatus = “ready”)) { T |
clean up all decayed boxes in the finish the loading:
. g
waitSet() before currTime()+0.5, for 50 boxes in the waitSet(: { | |
if (waitSet().numTokens() >= 50) box.send (truck, 0.0)
Q box.keep (0.5) j truckStatus = “not ready” :
}
T T |
v o o o e e e N >

Fig. 5.2 Declarative Model for the Transportation System

Routing and Dropping: An ATM network can be used for studying these two prob-
lems. Suppose the simplified output buffer switches are used in this network. The routing

72

of an ATM cell in a switch is done by looking up the virtual path identifier (VPI) table. A
cell will be discarded (dropped) by the switch if the output buffer is full. The server archi-
tecture is suitable for modeling this system. An ATM cell is modeled as a Token. A switch
is modeled as an object in which each input port is modeled as an Entity and each output

port is modeled as a Server. The declarative model is shown below.

events in an input port Entity: : events in an output port Server:
| /acell arrives: N\
| | if (portStatus =“busy”) {
a cell arrives: i | fseeu{move (waitSet())
e
:gtq:mu};t‘ilg lt;l lzll;, :flia te the -:- - cell.move (serveSet())
cell.send(outputPort,internalDelay)/ | c;gﬁgg’ﬂggi“fﬁ‘:;}?nnela”
P |
. D\ Y
|
[: finish the transmission:
e —— - — - — — r cell.send (destInPort, linkDelay)
i cell = waitSet().get()
I portStatus = “idle”
|
" ‘ yes
[]

Fig. 5.3 Declarative Model for the ATM Network

Tandem Queueing!': Faulty units are sent for repairing to a special section in a fac-
tory. The repairing is carried out in two stages - first the unit is stripped down, and then it

is rebuilt.

Each operation has its own work station. Work station A (stripping) can work on two
units at a time while work station B (rebuilding) on one unit at a time. But storage is lim-
ited, and at most 4 units can be queued in front of station A, and 2 in front of station B. If

1. This system comes from G.M.Birtwistle’s book [5] with a little modification.

73

4 units are already queued in front of station B, a newly arrived faulty unit is subcon-
tracted. When a strip job is completed, the unit is automatically moved to the area in front
of station B when there is a room over there. Otherwise, station A is blocked until a space
is freed.

signal.send (StationA,0.0)
I

yes

a signal arrives:

for (the “done” part(s))
part.send (StationB, delay)

part = waitSet().get()

events in Server StationA: . events in Server StationB:
maulty part arrives: : a faulty part arrives:
if (serveSet().fullQ) { I if (serveSet().fullQ) {
s if (wa/l/itSe;().ﬁJnl.lO)(g I } [;art.{move (waitSet()) e
subcontracte else
part.send (sink, 0.0) : part.move (serveSet())
els;:art move (WaitSet) I) part.keep (rebuidTime)
.move (Wi
} else { : v
part.move (serveSet()) | finish the rebuilding:
part.keep (stripTime) [part.send (doneSink, 0.0)
U ' part = waitSet().get()
finish the stripping: | v
if (StationBStatus <> full) { ! e
part.send (StationB, delay) !
part = waitSet().get() |
}else { A
signal.send (StationB, 0.0) I '
part.type = “done” | |
part = null | L
Q J [a signal arrives: include the
! | information about the available
i room(s) into the signal,
i
|
|
[
|

Fig. 5.4 Declarative Model for Factory System

74

The server architecture is suitable for modeling this system. The faulty units are mod-
eled as Tokens, two repair stations are modeled as Servers. The station A Server has a
waitSet with capacity of 4 and a serveSet with capacity of 2. The station B has a waitSet
with capacity of 2 and a serveSet with capacity of one. A special signal Token is used for
modeling the communications between the two station Servers. The declarative model is

shown in Fig. 5.4.

Affinity: Customers arrive at a barber shop at an inter-arrival time exponentially dis-
tributed with a mean of one minute. There are four barbers providing services for the cus-
tomers. The incoming customers usually choose the shortest waiting list to wait for service
from a barber. However, about 10% customers favor Barber #2 because s/he is the most
skillful one in the shop. These special customers are determined to wait for service from

him/her no matter how long his/her waiting list is.

events in the barber shop Server: :
a customer arrives:

/‘a special customer arrives: ~ i = index of min len for waitSet[1,4]

if (serveSet[2].full() { if (serveSet[il.full)) {
customer.move (waitSet[2]) customer.move (waitSet[i]) <
} else { | delsed

customer.move (serveSet[i])

customer.move (serveSet{2]) veor!
customer.keep (serviceTime)

customer.keep (serviceTime))

N\
) v

finish the service:

N

finish the service:

customer.send (outDoorSink, 0.0) customer.send (outDoorSink, 0.0)
if (waitSet{2].empty()) if (waitSet(i] -empty())

customer = WaitSet[k].get() customer = waltSet[k].get()
else else o

customer = waitSet[2].get() customer = waitSet[i].get()

€s

Fig. 5.5 Declarative Model for the Barber Shop System

75

The server architecture is suitable for modeling this system. Customers are modeled
as Tokens and the barber shop is modeled as a Server here. There are four Queues as the
waiting Sets with infinite capacity in the Server. Each Queue models a list of customers
waiting for a specific barber. There are also other four Queues as the service Set with
capacity of one in the Server. Four Tokens in these queues model the four customer who

are in the services. The declarative model is shown in Fig. 5.5.

Balking, Migration, and Reneging: There are two checkout counters in a grocery
story. Suppose customers always choose the shortest line to wait for checking out. If the
number of people in the shortest line is more than 6, there is 10% probability for a newly
arrived customer giving up the checking out and leaving. Also suppose there is 30% prob-
ability for a customer leaving her/his waiting line and giving up the checkout if s/he has
waited in the line for a long time (maxWaitTime) when neither of the waiting lines is not
empty. Otherwise s/he will migrate to the empty waiting line when the maxWaitTime is

passed.

The server architecture is used here. Customers are modeled as Tokens, the checkout
system is modeled as a Server. In the Server, there are two Queues with infinite capacity as
the waitSets for modeling two waiting queues for the two checkout counters respectively.
There are also two Queues (checkout[1] and checkout[2]) with the capacity of one for

modeling two checkout counters respectively. The declarative model is shown below.

76

events in the
grocery store
Server:

/’a customer arrives:
i = index of min length for (checkout[1], checkout[2])

if (checkout{i].empty()) {
customer.move (checkout[i])

Vv

customer.keep (serviceTime)
} else if ((waitSet[i].numTokens() < 7) || (prob() > 0.1)) {
customer.move (waitSet[i])
if (prob() <0.3) // for migration
customer.keep (MaxWaitTime)
telse { /1 balking
customer.send (outDoorSink, 0.0)
\ J
l y

else

finish the service: customer maxWaitTime is passe%
customer.send (outDoorSink, 0.0) if (waitSet[k].numTokens() > 0) {
if (waitSet[i].empty()) // reneging

customer = waitSet[k].getQ customer.send (outDoorSink, 0.0)

customer = waitSetfi].get() customer.move (waitSet[k])

} else { // migration (waitSet[k] = 0)

yes
customer <> null?

N

Fig. 5.6 Declarative Model for the Grocery Store System

Multiple Resources: The server architecture is suitable for modeling this kind of

problems when the multiple resources required in an activity are actually managed by a
controller. For example, a computing job needs the CPU, some memory, and some disk

space. The operating system controls the management of these resources. Thus the jobs

can be modeled as Tokens and the operating system can be modeled as a Server that is in

charge of the management of the CPU, memory, and disk resources. On the other hand,

the client architecture is suitable for modeling those problems in which the resources are

independently managed. A harbor system will address this problem in Sec. 5.2.

77

events in a machine Server:

a part arrives: breakdown s al arrives:
if (serveSet().full() { if (serveSet(). O) {
part.move (waitSet()) signal. move (waitSet())
} else § } else {
part.move (serveSet()) signal.move (serveSet())
part.keep (serveTime) szgnal.requestRes (mechanic)
}
finish the service: get the lnecllanic:
part.send (sink, 0.0) signal.keep (fixTime)
part = waitSet().get()
finish the fixing time:
signal.freeRes (mechanic)
ime

Fig. 5.7 Declarative Model for the Factory System

signal_send (this, availableTi

BreakDown and Entity Transformation: The server-client architecture is used for
modeling the factory system mentioned in Sec. 2.3. Parts are modeled as Tokens,
machines are modeled as Servers and the mechanic is modeled as a Resource. A machine
Server has a wait Set with infinite capacity for holding parts waiting for service, and a ser-
vice Set with capacity of one for holding the part being serviced. Suppose a machine is
able to complete a service before a breakdown event happens. A breakdown event for a
machine Server is modeled as a Job which randomly and periodically arrives at the
machine Server to cause it to be broken down. It will restore the machine to the normal
status after it is fixed by the mechanic. The breakdown event Job functions as a special
signal that has a higher priority than parts arriving at a machine Server. The declarative

model is shown above.

In summary, QueKit can model all the above problems that commonly exist in the

simulation of queueing systems in a way that is very close to the dynamic behaviors of the

78

modeled systems. The user has to identify the objects that require services from others and
the objects that provide these services. Then the former objects can be modeled as Tokens
or Jobs and the latter objects can be modeled as Servers or Resources depending on what
architecture is chosen. The Client class may be used for describing the lifetime activities
or periods of lifetime activities for Jobs if the client architecture or the server-client archi-
tecture is applied. Finally, the schedule member functions of these Servers and Clients are
written. They describe how the Servers handle the services for the incoming Tokens and
route them to other Servers after services, and how the Clients describe the Jobs’ activities
in a chronological order to model the Jobs flow through the modeled system. These
Tokens, Jobs, Servers, Clients, and Resources are gathered together with a single QueSim-
ulation object to form a complete model that is ready to execute after proper parameters

are set up for a simulation run.

Among the three QueKit architectures, the server architecture is flexible enough to
model all of above fourteen problem scenarios. It will only make a model more compli-
cated and result in an unnatural description of the modeled system when multiple indepen-
dent resources are involved in a single activity. This is because it forces these independent
resources to be managed under a single Server controller which does not exist in reality.
On the other hand, the client architecture is suitable for modeling systems that involve

multiple independent resources.

5.2 Benchmark Models

The CPU_Disk system and the Harbor system are presented in this section. These two
systems are chosen for evaluation in detail because the CPU_Disk system covers preemp-
tion while the Harbor system covers requesting multiple independent resources in an
activity. Preemption is related to event cancellation. The client architecture is suitable to
be applied in the modeling of a system that requires multiple independent resources in an
activity. Therefore, all the basic classes (Token, Set, Entity, Queue, Server, Source, and
Sink) and extended classes (Client and Resource) will be used in modeling these two sys-

79

tems. Both functional and declarative models are used for the design of the simulation

models in this section.

5.2.1 CPU_Disk System

The model description is in Sec. 2.2.1 (refer to Fig. 2.1). Four models are built for this
system. One model is built with the SimKit API for comparison. Three models are built
with the QueKit API: first one is built with the server architecture; second one is built with
the server-client architecture (source code of is at Appendix C); last one is built with the
client architecture. The same statistics are collected in all four models. Although any
parameter for n0 or nl can be used for the experiments, in this study, n0 is six and nl is

two in the above four models.

Server tasks Server
CPU (Tokens) Disks

Fig. 5.8 Functional Model for the CPU_Disk System (Server Architecture)

In the server architecture, tasks are modeled as Tokens, the CPU is modeled as a
Server. Tasks of class 0 have a priority 0 while tasks of class 1 have a priority 1. The CPU
has a Queue with infinite capacity as the waitSet which holds the tasks waiting for ser-
vices, and has a priority queue with capacity of one as the serveSet which holds the task
being serviced. The four disks are modeled as a single Server. It has four priority queues
with infinite capacity as the waitSets which hold the tasks waiting for services for the four
disks respectively. It has also four priority queues with capacity of one as the serveSets
which holds the tasks being serviced for the four disks respectively. In the CPU schedul-
ing, a preempted task of class 0 will increase its priority from 0 to 0.5, record its remaining
service time, and move back to the waitSet of the CPU. This will guarantee that it is
placed ahead of any other task of class 0 and after any task of class 1. The preempted task
will restore its priority to 0 when it finishes its service in the CPU. The functional model is

80

depicted below. The solid lines are the routes of the tokens. The declarative model was

shown in Fig. 2.3.

In the client architecture, tasks are modeled as Jobs. The CPU is modeled as a
Resource with capacity of one. Each of the four disks is also modeled as a Resource with
capacity of one. The tasks with priority of one can preempt the CPU while the tasks with
priority of zero can only request the CPU. The preemption is automatically handled in the
CPU Resource. The functional model is depicted in Fig. 5.9. The dashed lines indicate the
communications between TaskClient and Resources. The declarative model was shown in
Fig. 2.5.

For the model with QueKit server architecture or SimKit API, there are two kinds of
events for the CPU/Disk scheduling: a task requests for service from CPU/Disk and the
completion of a service in CPU/Disk. For the model with QueKit client architecture, there
are five kinds of event for the tasks” activities: 1) requesting/returning the CPU; 2) com-
pleting a service in the CPU; 3) releasing the CPU and requesting one of the disks; 4)
completing a service in the disk; 5) releasing the disk and going back to 1).

Resource Resource Resource Resource Resource
CPU (Diskl) Disk2

S— -
— ~ - —
— —

TaskClient

Client

Fig. 5.9 Functional Model for the CPU_Disk System (Client Architecture)

81

In the server-client architecture, tasks are still modeled as Jobs and four disks are
modeled as Resources as that in the above client architecture. The CPU, however, is mod-
eled as a Server as that in the server architecture. The life cycle of a task is divided into
two periods: one starts from the time waiting for a CPU service and another starts from the
time waiting for a disk service. The first period is modeled with the server architecture and
the second period is modeled with the client architecture. The following are the functional

model and declarative model.

Resource Resource Resource Resource

-
-

Server SN ¥ o
CPU tasks TaskClient
(Jobs) Client

Vv

Fig. 5.10 Functional Model for the CPU_Disk System (Server-Client Architecture)

82

r

events in Server CPU:

a task arrives:
task|1.setPriority (0.5)

task1.move (waitSet())

task.move (serveSet())

task keep (serviceTime)
} else {

task.move (waitSet())
\J

if (task.priority() > task1.priority() in the serveSet())

record the remaining service time into task1

~

{

J

finish the service:
task.send (TaskClient, 0.0)
task = waitSet().get()

D

task < null?

events in Cl.ient TaskClient:

yes

L — — — — (a task arrives: task.requestRes (dis@
i

b
(start a service: task keep (serveTime))

¥

finish disk service: task.freeRes (disk)\ _
task.send (CPU,0.0)

< — —

—_—

A

Fig. 5.11 Declarative Model for the CPU_Disk System (Server-Client Architecture)

The CPU_Disk System is simple and thus suitable to use all three QueKit architec-

tures for modeling. Therefore, there are not much differences of modeling power among

these three architectures for modeling this system. However, the execution efficiency will

be different for using these architectures. The results will be discussed in Sec. 5.3.

83

5.2.2 Harbor System

There are two jetties and three tugs in a harbor for servicing incoming boats'. Boats
arrive at the harbor at an inter-arrival time exponentially distributed with the mean of 18
time units. They must pass an inspector for security check before each of them can request
for a jetty for docking. The time for the inspector to check a boat is also exponentially dis-
tributed with the mean of 3 time units. When a jetty is available, a boat may dock and start
to unload. When this activity is completed, the boat leaves the jetty and sails away. Two
tugs are required for docking and only one tug is required for leaving. Assume that tug
maneuvers take 2 time units, and unloading takes 14 time units.

Four simulation models are built for this system. One model is built with SimKit API
for comparisons. Three models are built with the QueKit API, one with the server archi-
tecture, one with the server-client architecture (source code is at Appendix D), and another

with the client architecture. Same statistics are collected in the four models.

In the server architecture, boats are modeled as Tokens. The inspector is modeled as a
Server having a priority queue as the waitSet with infinite capacity and another priority
queue as the serveSet with capacity of one. The harbor is modeled as a Server with a ser-
vice Set for holding the boats being serviced and two wait Sets, one for holding the boats
waiting for the tug and another for holding the boats waiting for jetties. The tug and jetties
are modeled as two integer variables in the harbor Server representing the resources. The

functional and declarative models are shown below.

Source boats Server Server Sink

(Tokens) Ei%pem Harbor [—>(BoatSink

Fig. 5.12 Functional Model for the Harbor System (Server Architecture)

Y

I. This system comes from G.M.Birtwistle’s “Port System” example 5] with a little modification.

84

events in Server Inspector:

G boat arrives:
if (serveSet().fullQ) {
boat.move (waitSet())

~—> 1 else {
boat.move (serveSet())

-
boat.keep (3.0) I
} j |
[
I
.3

finish the inspection:
boat.send (Harbor, 0.0)
boat = waitSet().get()

.

events in Server Harbor:

/ a boat arrives:

if ((jetty > 0) &&(tug > 1)) {
jetty =jetty - 1, tug =tug - 2
boat.move (serveSet())
boat.keep (2.0) // docking

} else if (jetty > 0) {
jetty = jetty - 1
boat.move (tugQ)

} else {

finish the unloadmg
if (tug > 0) {
tug=tug-1

Lboat.move (jettyQ)
}

_/

finish the docking:

tug = tug + 2

boat.keep (14.0) // unloadin
boat = tugQ.first()

oat<> n

/" finish the leaving:

tug = tug + 1, jetty = jetty + 1

if(_lithtng{nptyO) {)

tugQ is not empty

} ell)::t{.keep (2.0) //leaving w b?at = tugQ.first()

else
boat.move (tugQ) boat = jettyQ.get()

\J _/

Fig. 5.13 Declarative Model for the Harbor System (Server Architecture)

In the client architecture, boats are modeled as Jobs. The inspector is modeled as a

Resource with capacity of one. Jetties are modeled as a Resource with capacity of two,

and tugs are modeled as a Resource with capacity of three. The lifetime activities of a boat

are described in a BoatClient object. In the functional model shown below, the solid lines

are the routes of the boats, and the dashed lines indicate the communications between

BoarClient and Resources.

A ,: f

:_A ﬁ ?IF&. %« W aﬂ%,,f/emﬂc? Eé\fbmﬁ

Ol (-

"L)F.me'"

—_——

(¥
<t
—
.\.

¢ .

—u€ly

'S !’-

Vi

.9_.%%,3 x %gﬁ, e

\

N

S

—

—\l"
-,,.

-
&
-

ig s.l

-

w{«ﬁ ,,w O (B

In t.. se-ve:-ci:

wer Tl

-

modeled : .

85

Resource Resource Resource
Source T~ b e Sink

BoatSource Boats | BoatClient
(Jobs) Client (Jobs)

Fig. 5.14 Functional Model for the Harbor System (Client Architecture)

events in Client BoatClient:

(_a boat arrives: boat.requestRes (inspector))

C start an inspection: boatkeep 3.0))

énish an inspection: boat.freeRes (inspector)
boat.requestRes (jetty)

C get a jetty: boat.requestRes (tug, 2))

L start docking: boat.keep (2.0))

v
finish docking, start unloading:
boat.freeRes (tug, 2)
boat.keep (14.0)

(__finish unloading: boat.requestRes (tug))

C start leaving: boat.keep (2.0) D

boat.freeRes (jetty)

v
C finish the leaving: boat.freeRes (tug)

Fig. 5.15 Declarative Model for the Harbor System (Client Architecture)

In the server-client architecture, boats are again modeled as Jobs. The inspector is

modeled as a Server having a queue with infinite capacity as the wait Set and a queue with

86

capacity of one as the service Set. Jetties and tugs are still modeled as Resources with

capacity of two and three respectively.

Resource Resource
Jetties
\ / .
Source Server y £ Sink
Inspector BoatClient BoatSink
boats Client
(Jobs)

Fig. 5.16 Functional Model for the Harbor System (Server-Client Architecture)

. .]
events in Server inspector: |

a boat arrives:)\ ; I

if (serveSet().fullQ) { |
boat.move (waitSet())

> } else {

boat.move (serveSet())

boat.keep (3.0)
U y,
A

finish the service:

boat.send (BoatClient,0.0)
boat = waitSet().get()

I
!
!
[
[
{
|
I

i C
| C

i
Yes |C
|

events in Client BoatClient:

|/Tinish an inspection: boat.freeRes (inspector)

boat.requestRes (jetty)

get a jetty: boat.requestRes (tug, 2))

start docking: boat.keep (2.0) D

boat.freeRes (tug, 2)

finish docking, start unloading:)

boat.keep (14.0)

(__finish unloading: boat.requestRes (tug))

start leaving: l’)oat.keep 2.0)

finish the leaving: boat.freeRes (tug)

boat.freeRes (jetty)

Fig. 5.17 Declarative Model for the Harbor System (Server-Client Architecture)

87

The lifetime of a boat is divided into two periods: one starts from waiting for the
inspection, another starts from requesting a jetty after the inspection. The first activity
period of a boat is modeled in the server architecture in which the Inspector server con-
trols the services for boats and routes them to the BoatClient. The second activity period
of a boat is described in a chronological order by the BoatClient object below. The func-

tional model and the declarative model are shown above.

The above three declarative models show the dynamics of the three simulation mod-
els built with three QueKit architectures respectively. Subjectively, the model with the cli-
ent architecture shown in Fig. 5.15 is easier to understand than the model with the server
architecture shown in Fig. 5.13. This is because the former describes the lifetime activities
of a boat in a chronological order that is very close to the sequence of activities that occur
during a boat’s lifetime within the harbor system. The latter, however, describes these
activities in two Servers in which the event logic is different from the problem description.
This subjective view of the client architecture is close to Birtwistle’s presentation of the
“process view” of simulation which is often considered as one of the most natural ways to
construct a model. Therefore, the modeling power of the client architecture is greater than
that of the server architecture in the aspect of comprehensibility when multiple resources
are required during a single activity. For the same reason, the modeling power of the
server-client architecture is between that of the server architecture and the client architec-

ture.

5.3 Modeling and Simulation Results

The simulation models are constructed with the QueKit API (Java version). Thus the
simulation experiments are executed sequentially. The results for the CPU_Disk system
and the Harbor system are illustrated in the following graphs and tables. An overhead (%)
is the measure of a QueKit model execution time comparing to the execution time of the
corresponding SimKit model. It is calculated with the following formula for each QueKit
architecture:

88

0
200000 400000 600000 800000 1000000 1200000

Simulation Time (unit = ms)

Overhead (%0) = 100 ® (QueKit Run Time - SimKit Run Time) / SimKit Run Time (EQ1)
Performance of the Models for CPU_Disk System
—@—Client Arch.
—8—Server-Client Arch.
—d~—Server Arch.
—¢~—SimKit
200000 400000 600000 800000 1000000 1200000
Simulation Time (unit = ms)
Fig. 5.18 Performance of the Models for CPU_Disk System
Overhead (%) to SimKit (CPU_Disk System)
250
—-
200
9 —
S 150 f====H LS —@—Client Arch.
s —8—Server-Client Arch.
g 100 frem e ——— e ———————— —&—Server Arch.
SO

Fig. 5.19 Model Overhead (%) to SimKit Model (CPU_Disk System)

Performance of the Models for Harbor System

200000 400000

600000 800000
Simulation Time

1000000 1200000

—&@~—Client Arch.
—&—Server-Client Arch.
~—&—Server Arch.
—¥—SimKit

Fig. 5.20 Performance of the Models for Harbor System

Overhead (%) to SimKit (Harbor System)

~n
[24]
o

Overhead (%Y%)
~r
o
S

200000 400000

600000 800000
Simuiation Time

1000000 1200000

—~4@—Client Arch.
—8—Server-Client Arch.
~&—Server Arch.

Fig. 5.21 Model Overhead (%) to SimKit Model (Harbor System)

89

The above four figures show that the execution efficiency of QueKit server architec-
ture is not as good as that of SimKit, but it is much better than that of QueKit client archi-

90

tecture. The execution efficiency of QueKit server-client architecture is somewhere
between that of QueKit server architecture and QueKit client architecture. The position
depends on the distribution of the server architecture portion and the client architecture
portion applied in a model. From the declarative model Fig. 5.11 (QueKit server-client
architecture for the CPU_Disk system), 3/5 events for a life cycle of a Job belong to the
client architecture portion. However, 7/9 events for a life cycle of a Job belong to the cli-
ent architecture portion from Fig. 5.17 (QueKit server-client architecture for the harbor
system). This observation is consistent with the simulation results shown in the following
graphs. The execution efficiency of the server-client architecture is much closer to that of
the client architecture for the harbor system than that for the CPU_Disk system.

TABLE 1. Simulation Results for the CPU_Disk System

Simulation | #ofEventsin | #of Events in the # of Events in the #of Events in the
Time the SimKit QueKit Model QueKit Model QueKit Model

(unit = ms) Model (Server Arch.) (Server-Client Arch.) (Client Arch.)
200000 45936 45936 79298 93317
400000 92013 92013 158854 186907
600000 137755 137755 237906 279722
800000 183028 183028 316067 371688
1000000 228978 228978 395443 464974
1200000 276345 276345 477206 561212

TABLE 2. Simulation Results for the Harbor System

Simulation | #ofEventsin | #of Events in the # of Events in the #of Events in the
Time the SimKit QueKit Model QueKit Model QueKit Model

(unit = ms) Model (Server Arch.) (Server-Client Arch.) (Client Arch.)
200000 90114 90114 191490 214020
400000 179566 179566 381576 426468
600000 266971 266971 567311 634055
800000 355839 355839 756152 845114
1000000 443353 443353 942124 1052962
1200000 532351 532351 1131240 1264330

From the above two tables, the number of events in the QueKit models with the server
architecture is the same as that in the corresponding SimKit models. Thus the overhead of

91

the model with QueKit server architecture is only caused by the following two factors: 1)
making events transparent to the user in QueKit; and 2) statistics and trace collection in
QueKit because there is still overhead for testing whether statistics and trace are needed or
not even if they are not needed in a simulation at all. The overhead caused by these two
factors are unavoidable for any QueKit model. It is at the average of 39% for the model of
CPU_Disk system and at the average of 62% for the model of the harbor system shown in
the tables below.
TABLE 3. Modeling and Simulation Results for the CPU_Disk System

Model Architecture Lines of Source Code | Average Overhead (%)
SimKit Model 240 0
QueKit Model (Server Arch.) 147 39
QueKit Model (Server-Client Arch.) 131 155
QueKit Model (Client Arch.) 122 214

TABLE 4. Modeling and Simulation Results the Harbor System

Model Architecture Lines of Source Code | Average Overhead (%)
SimKit Model 196 0
QueKit Model (Server Arch.) 114 62
QueKit Model (Server-Client Arch.) 97 327
QueKit Model (Client Arch.) 85 387

For the models with the client architecture or the server-client architecture in QueKit,
the number of events are more than one and half times but less than three times of the
number of events in the corresponding SimKit models. This is the third factor that causes
the overhead for the client and server-client architectures in addition to the two factors
mentioned above. For the CPU_Disk system, the overhead caused by this third factor is
116% on average for the server-client architecture and 175% on average for the client
architecture. For the harbor system, this part of overhead is 265% on average for the
server-client architecture and 325% on average for the client architecture. This overhead is

expected to be minimized by optimization techniques in the future.

As mentioned in Chapter 2, the comparison of the modeling power between different

approaches comes from the comparison of the comprehensibility and flexibility of the

92

models using these approaches. The more comprehensible and more flexible a model are,
the greater the modeling power of the approach used in the model will be. Thus the model-
ing power of different approaches is discussed in terms of the model comprehensibility
and flexibility below.

For modeling the CPU_Disk system, the simulation model with QueKit server archi-
tecture is more comprehensible than the corresponding SimKit model. This is because the
simulation event objects are totally transparent in the QueKit model whereas they are so
pervasive in the SimKit model that they block the sight of the modeler from clearly view-
ing the model. For the same reason, the simulation model with QueKit server architecture

is more comprehensible than that with SimKit API for modeling the harbor system.

For the models built in QueKit, the model with QueKit client architecture is more
comprehensible than the model with QueKit server architecture for modeling the
CPU_Disk system. This is because the lifetime activities of a task are described in a single
schedule function of TaskClient class in the model with QueKit client architecture instead
of being scattered in two schedule functions of CPU and Disk classes.

It may not be so convincing from modeling the CPU_Disk system that a model with
QueKit client architecture is more comprehensible than that with QueKit server architec-
ture because both architectures are suitable for modeling this system. However, the differ-
ence of comprehensibility between different QueKit architectures are more clear in
modeling the harbor system. This is because the harbor system is suitable for applying the
client architecture or the server-client architecture since multiple resources are involved in
a single activity in the system. The model with QueK:it client architecture Fig. 5.15 or
QueKit server-client architecture Fig. 5.17 is much more comprehensible than the model
with QueKit server architecture Fig. 5.13. This is because the activities of a boat can be
clearly described in a chronological order in the client architecture, and this is very close

to the scenario in the real system.

93

It is also mentioned in Chapter 2 that the comparison of the source code lines in dif-
ferent models using different approaches to modeling the same problem can help the com-
parison of the comprehensibility of these approaches for that problem. The less the source
code lines are in 2 model, the more comprehensible the approach used in the model will
be. In TABLE 3 and TABLE 4, only the actual lines of effective source code are counted,
i.e., comment lines, blank lines, and continued lines from the previous line in the source
file are not included over there. The information about the source code lines can be seen in
the Appendix C (QueKit server-client architecture for the CPU_Disk system) and Appen-
dix D (QueKit server-client architecture for the harbor system) at the end of the thesis.

Therefore, both TABLE 3 and TABLE 4 shows that models built with QueKit client
architecture have the greatest comprehensibility and models built with SimKit have the
least comprehensibility. Models built with QueKit server-client architecture are less com-
prehensible than those built with QueKit client architecture whereas they are more com-
prehensible than those built with QueKit server architecture.

Furthermore, these two tables also show that there are trade-offs between the compre-
hensibility and the execution efficiency for a specific model. The more comprehensible a
model is, the worse the model execution efficiency will be, and vice versa. This is actually
an advantage of QueKit. A model with modest complexity can be built with any of the
three architectures in QueKit. The server architecture is preferred for an experienced user
when the execution efficiency is the major concern in a simulation. The model is mostly
built with the server-client architecture. The user can adjust the balance between the
model execution efficiency and model comprehensibility by adjusting the distribution of
the portion for applying the server architecture and the client architecture in the model.

From the aspect of flexibility, QueKit server architecture has the same flexibility as
SimKit for modeling various queueing systems. This is because it uses a simple scheme to
make events transparent from the application programmer while still preserving other
functionality of SimKit so that it can provide an OO event-driven modeling framework.

94

Therefore, QueKit has a greater modeling power than SimKit in the simulation of queue-
ing systems. However, QueKit client architecture is not as flexible as QueKit server archi-
tecture because sub-classes cannot be derived from the Resource class. Although many
Resource classes can be provided within QueKit, there will always be situations when a
new Resource class type is needed. Thus the client architecture can not be flexible enough

to cover all of resource management paradigms in queueing systems.

5.4 Summary

QueKit has greater modeling power for queueing systems than SimKit. This is
because it provides an OO event-driven modeling framework rather than the LP modeling
framework in SimKit. That is, the modeling classes provided by QueKit are at the higher
level and more specific to modeling queueing systems, and thus more close to the real
world objects. This results in the model built in QueKit more comprehensible. Moreover,
the simple scheme to make events transparent from the application programmer enables
QueKit to preserve all the functionality of SimKit except the direct manipulation of
events. It results in QueKit having the same flexibility as SimKit to cover a wide range of
scenarios in the simulation of various queueing systems. However, the model execution

efficiency in QueKit is not as good as that of SimKit duo to this event hiding scheme.

Among the three modeling architectures in QueKit, a model built with the client
architecture will be more comprehensible than the one built with the server architecture.
However, the server architecture is more flexible than the client architecture in the model-
ing a wide range of scenarios in a queueing system. Moreover, the execution efficiency of
the server architecture is better than that of the client architecture. Thus the server archi-
tecture is preferred for an experienced user when the execution efficiency is the major
concern in a simulation. The client architecture is preferred for a less experienced user
when the model comprehensibility is more important in a simulation. Nevertheless, a user
has to come to the server architecture if the client architecture is not flexible enough to

model a specific queueing scenario in an application.

95

The OO event-driven modeling framework provided in QueKit enables the server
architecture and client architecture to be applied seamlessly in a single simulation model.
This results in the server-client architecture. The execution efficiency of the server-client
architecture is somewhere between the above two architectures according to the distribu-
tion of the server architecture portion and the client architecture portion applied in a
model. Therefore, there are trade-offs between the model comprehensibility and the exe-
cution efficiency when choosing an architecture for queueing system simulation in Que-
Kit. The greater the model comprehensibility is, the less the model execution efficiency

will be, and vice versa.

The overall execution overhead of QueKit compared to SimKit is caused by three fac-
tors. Making events transparent to the user is the first factor that causes overhead in Que-
Kit. The second factor is the generality in the statistics and trace collection in QueKit
because there is still overhead for testing whether statistics and trace collection are needed
even if they are not needed as all. The last factor is that there are more simulation events in
a model with QueKit client architecture, or server-client architecture, than that in the cor-

responding model with QueKit server architecture.

The first two factors cause the overhead in 2 model with QueKit server architecture.
All three factors cause the overhead in a model with QueKit client architecture or server-

client architecture.

Chapter 6

Conclusion

Many discrete event simulation (DES) studies involve the modeling of a real-world
queueing system. There are two major problems in the simulation of queueing systems: it
is very difficult to come up with a simulation model when the system to be modeled
becomes large and complex; and a simulation of such complex systems can be very com-

putationally intensive.

This chapter summarizes the results and the contribution of the thesis in the course of

solving these two problems, and concludes with topics for future work.

6.1 Summary and Conclusions

The above two problems have been addressed by the general discrete event simula-
tion (DES) community and parallel discrete event simulation (PDES) community for
decades. Numerous simulation packages have been developed in order to provide the
modeling frameworks that facilitate the construction of complex models. A lot of tech-
niques on how to speed up simulation execution on parallel and distributed machines have
also been explored. Furthermore, object-oriented (OO) techniques have also been widely
used in these two communities in order to facilitate the simulation development process.
The focus and objectives are different between the two communities, and little work has

been done on the intersection of these problems. This is the focus of the thesis.

The above problems are discussed from two aspects in this thesis: modeling effective-
ness and execution efficiency. The modeling effectiveness issue is addressed from three
dimensions: modeling framework, model architecture, and object orientation. Since the
chosen framework and model architecture in the modeling process will largely affect the
execution efficiency in the simulation, the modeling effectiveness issue is discussed with

the execution efficiency issue together throughout the entire thesis.

96

97

An application programmer usually has to follow a modeling framework to construct
a model. The modeling framework can provide conceptual guidance for the modeler in the
simulation process. The current modeling frameworks for queueing systems are event-
driven, the process view, and the logical process (LP) view. The process view can be split

into two types: process interaction and process description (or transaction flow).

The modeling power of a modeling framework is concerned with the comprehensibil-
ity of the resulting model and the flexibility to cover a wide range of modeling scenarios.
The following two conclusions can be drawn from the analysis of the above three frame-

works.

(1) The modeling power of the process view is generally greater than that of the
event-driven view whereas the execution efficiency of the event-driven view is better than

that of the process view.

(2) The LP view is less efficient in its access to variables that are shared by more than
one LP. This follows the constraint that state information of an LP cannot be accessed
from outside of that LP except through exchanging (event) messages.

(3) The LP view offers part of the modeling power of the process view. This is accom-
plished by making all state information private within the LPs of a model, and by associat-
ing all events with some LPs. This is in contrast to the event-driven view where all events

relate only to the overall system and all state information is global.

From the viewpoint of model architecture, there are two approaches to modeling
queueing systems: server architecture and client architecture. The server architecture
emphasizes the modeling of (static) entities (modeled as servers) that provide services for
others while the client architecture emphasizes the modeling of (dynamic) entities (mod-
eled as tokens) that need services from others in a queueing system. The following are the

two conclusions from the study of model architectures.

98

(1) The server architecture focuses on how a server manages the resource allocation/
deallocation to/from tokens, and how the server controls the activities of these tokens, and
how it routes the tokens to other servers after service. A server is active in the server archi-
tecture in the sense that it functions as a dominant controller which controls everything
within its area. A token is passive in the sense that it is passively processed by servers.
This kind of passive token vs. active server architecture is suitable for modeling a queue-

ing systems such as computer systems and communications networks.

(2) The client architecture focuses on when a token requests a resource, how it con-
ducts an activity, and when it returns the resource and moves on to another activity. That
is, the client architecture emphasizes modeling the lifetime activities of a token moving
through the system in a chronological order. A token is active in the client architecture in
the sense that it can actively request/return resources and controls its own activities. A
server is passive in the sense that it only functions as a resource controller which manages
the resource allocation/deallocation, but it has no control over the activity of any token.
This kind of active token vs. passive server architecture is suitable for a queueing system

in which a token needs more than one resource that are independently managed.

The use of OO techniques makes a simulation package easy to use and easy to main-
tain because it supports the close correspondence between a model and real-world system.
There are three levels for the OO concepts applicable to the development of simulation
packages: abstraction, design, and implementation. There are also three approaches to
developing an OO simulation package: data-driven simulator, language extension, and
library-based approaches. The data-driven approach is usually successful in applying OO
techniques at the abstraction level, but not at the design and implementaion levels. The
language extension and library-based approaches have the potential to apply OO tech-
niques at all three levels.

For the packages related to queueing system simulation in the literature, data-driven
simulators usually apply OO techniques at the abstraction level. Whereas, the language

g A

\AY

extension ->r ue ubr>

N

5 T NG AME SR AR

impleme .at:eo leve

three lev.- . =~ tt'w - iy

>

~

switching + - ~anaso

Simb Zis o Lovar 'r%

very sim . > wi effic o

u}.‘
B AN

problems "<t [s

(‘

y‘\'.

v

COD.StnlCt. -G0S MB. Q][_ 3

,..W
AR &

3
notat the . upltcath lev.yr?
Kit was »“c~mias .. ¢

LY

modeling .~ sirw o

An (J . _ulatd o
defined i inic th. 5.,

)
[

W

ment for - revein. vyster

good ex: .at v ew. Lk

Rt
3

\\\

A

\

topof S: ik [he °u,
that OO © “rigues can

modelin: “r~-riz.vork pn?
services -:otOrs -
that prov .o tacee . vi
impleme ati~ of O sl\’é
QueKite - o S 1u)

ronment ~ - T2 O[. .

Thre -V o
tecture, ¢! n: archite . I

by the m: ’'='{ g an< wm

99

extension or the library-based packages usually apply OO techniques at the design and
implementation levels. Some of them, such as PROSIT, may apply OO techniques at all
three levels, but they suffer from inefficiency problems because they use a costly context

switching mechanism in order to provide the process view.

SimKit is a library-based simulation package built with an OO language. It provides a
very simple and efficient LP event-driven view for modeling and simulating various DES
problems both in sequential execution and in parallel execution. However, the modeling
constructs (or simulation primitives) provided in SimKit are only at the simulation level,
not at the application level when they are used for modeling a queueing system. Thus Sim-
Kit was chosen as the environment for developing a package at a higher level for OO

modeling and simulation of queueing systems.

An OO simulation package for queueing system simulation called QueKit has been
defined in this thesis. QueKit aims to provide an QO design and implementation environ-
ment for queueing system simulation that facilitates the modeling process while retaining
good execution efficiency in both sequential and parallel executions. QueKit is built on
top of SimKit. The library-based approach is also used for the development of QueKit so
that OO techniques can be applied at abstraction, design, and implementation levels. The
modeling framework provided in QueKit is an OO event-driven view. Entities that need
services from others in a queueing system are modeled as Tokens or Jobs while entities
that provide these services are modeled as Servers or Resources. Although the current
implementation of QueKit only supports sequential execution, the strategy of developing
QueKit on top of SimKit enables any QueKit model to be executed within a parallel envi-

ronment including optimistic and conservative approaches.

Three architectures are provided by QueKit for the model construction: server archi-
tecture, client architecture, server-client architecture. The server architecture is supported

by the modeling and simulation constructs in the base QueKit layer. Both client architec-

100

ture and server-client architecture are supported by the modeling and simulation con-
structs in the extended QueKit layer.

A model with QueKit server architecture is mainly composed of Tokens and Servers.
Tokens flow through a network of Servers to obtain service and finally leave the system. A
Server has two Sets, one is the service Set that holds the Tokens being serviced, and
another is the wait Set that holds the Tokens waiting for services. A Server decides the
strategy for servicing Tokens through its schedule (Token) method. This kind of passive
Token vs. active Server architecture is suitable for modeling those systems such as com-

munications networks which can be viewed that servers controls everything.

A model with QueKit client architecture is mainly composed of Jobs, Clients, and
Resources. A Jobs models an active entity that can request services from others. A
Resource models a passive entity that provides those services. The entire lifetime activi-
ties of a Job is described in a Client schedule method. A Job decides when and where to
request the service from Resources, and how long to keep the resource(s). A Resource is
passive in the sense that it only responds to the requests from Jobs for resource allocation/

deallocation, and it has no control on the Jobs’ activities like a Server.

The server-client architecture allows both QueKit server architecture and QueKit cli-
ent architecture to be applied seamlessly in a single simulation model. It is unique in Que-

Kit. It has some advantages that will be presented below.

For modeling the same queueing system, it is easier to build a model in QueKit and
the resulting model will be more comprehensible that any model built in SimKit. This is
because QueKit provides an OO event-driven modeling framework rather than the LP
framework provided in SimKit. Moreover, QueKit is the same flexible as SimKit in mod-
eling queueing systems because it preserves all the functionality of SimKit except the
direct manipulation of event objects. Therefore, QueKit has a greater modeling power

than SimKit in the queueing system simulation. However, the model execution efficiency

101

in QueKit is not as good as that of SimKit due to the hiding of event objects from the
application programmer.

Among the three QueKit modeling architectures, the modeling power of the client
architecture is greater than the server architecture in the aspect of comprehensibility, but
less than the server architecture in the aspect of flexibility. The modeling power of the
server-client architecture is between these two extremes. The execution efficiency of the
server architecture is better than that of the client architecture. The execution efficiency of
the server-client architecture is somewhere between these two extremes according to the
distribution of the server architecture portion and the client architecture portion applied in

a model.

Therefore, there are trade-offs between the modeling power and the execution effi-
ciency when choosing an architecture for queueing system simulation in QueKit. For
modeling a complex system, the more comprehensible a model is, the less the model exe-
cution efficiency will be, and vice versa. Thus the server architecture is preferred for an
experienced user when the execution efficiency is the major concern in a simulation. The
client architecture is preferred for a less experienced user when the model comprehensibil-
ity is more important in a simulation unless the client architecture is not flexible enough to

cover the queueing scenario in the simulation.

The following three factors are responsible for the overall execution overhead of Que-
Kit comparing to SimKit. The first one is to make events transparent to the user in QueKit.
The second one is the overhead for statistics and trace collection because there is still
overhead for testing whether those collections are needed or not even if they are not used.
The last one is the extra number of events in a model with QueKit client architecture or
server-client architecture compared to the corresponding model with QueKit server archi-

tecture.

The first two factors cause the overhead in a model with QueKit server architecture.

All of the three factors are responsible for the overhead in a model with QueKit client

102

architecture or server-client architecture. The overhead is expected to be minimized in the
future.

6.2 Thesis Contribution

The main contribution of this thesis is the design and implementation of an OO event-
driven framework for queueing system simulation so that both the server architecture and
the client architecture can be applied seamlessly in a single model. This approach of
server-client architecture allows the user to adjust the balance between modeling effec-
tiveness and execution efficiency in sequential execution. This is accomplished by adjust-
ing the distribution between the server architecture portion and the client architecture
portion applied in a model. Moreover, the flexibility of this server-client architecture is
expected to permit more natural parallelism in a queueing system to be exploited in a sim-
ulation when running in parallel. This may result in a model with the server-client archi-

tecture that has better modeling effectiveness, as well as, better execution efficiency.

6.3 Future Work

The weakness of QueKit server architecture is that a model built with it is less com-
prehensible than the one built with the client architecture. More constructs such as sched-
uler that cover various queueing operations (round robin, priority, etc.) are expected to be

developed in order to enhance model comprehensibility.

The QueKit client architecture is weak in the aspect of flexibility to cover a wide
range of queueing scenarios. More constructs are needed to be developed in order to sup-

port various resources.

The modeling and simulation experiments in QueKit presented in Chapter 5 show
promising results. These experiments were only conducted in sequential execution as the
current Java version of QueKit can only support sequential execution. Therefore, a C++
version of QueKit is expected to be developed in the future in order to run simulations in

parallel. The modeling power for the three architectures in parallel execution will remain

103

the same as in sequential execution. This is because the parallel simulation models are
almost identical to the corresponding sequential models except for the additicn of state
saving calls for optimistic parallel execution. The interesting experiments will be about
how to adjust the model architecture between QueKit server architecture and QueKit cli-

ent architecture in order to get better modeling effectiveness and execution efficiency.

Bibliography

. Balci, O., Nance, R. E., Derrick, E. J., Page, E. H., Bishop, J. L., Model Generation
Issues in a Simulation Support Environment, Proceedings of WSC, 1990.

. Ball, P, Love, D., The Key to Object-Oriented Simulation: Separating the User and the
Developer, Proceedings of WSC, 1995.

. Banks, J., Carson, J. S., Nelson, B. L., Discrete-Event System Simulation, Prentice-Hall
International Series, 1996.

. Beilner, H., Sczittnick, M., Wysocki, Ch., Look at HIT, Demo Version, Document Ver-
sion 1.0.00, technical report, August 1995.

. Birtwistle, G. M., Discrete Event Modeling on Simula, The Macmillan Press Ltd.,
1979.

. Carson, J. S., Modeling, Proceedings of WSC, 1992.
. Carson, J. S., Modeling and Simulation World Views, Proceedings of WSC, 1993.
. Coad, P., Yourdon, E., Object-Oriented Design, Object International, Inc., 1991.

. Davies, R. M., O'Keefe, R. M., Simulation Modeling with Pascal. Prentice Hall Inter-
national (UK) Ltd., 1989.

10.Ferscha, A., Parallel and Distributed Simulation of Discrete Event Systems, McGraw-

Hill, 1995.

11.Ferrante, P., Mussi, P, Siegel, G., Mallet, L., Object Oriented Simulation: Highlights
on The PROSIT Parallel Discrete Event Simulator, in INRIA Research Report 2235,
April 1994.

104

105

12.Fishwick, P. A., SimPack: Getting Started with Simulation Programming in C and
C++, Proceedings of WSC, 1992.

13.Fishwick, P. A., Simulation Model Design and Execution, Prentice-Hall, Inc. 1995
14.Franta, W. R., The Process View of Simulation, Elsevier North-Holland, Inc., 1977.

15.Fujimoto, R. M., Parallel Discrete Event Simulation, Communications of ACM, Octo-

ber 1990.

16.Gomes, F., Franks, S., Unger, B., Xiao, Z., Cleary, J., Covington, A., Simkit: A High
Performance Logical Process Simulation Class Library in C++, Proceedings of WSC,
1995.

17.Hares, J. S., Smart, J. D., Object Orientation, John Wiley & Sons Ltd, 1994.

18.Joines, J. A., Roberts, S. D., Design of Object-Oriented Simulations in C++, Proceed-
ings of WSC, 1995.

19.Kheir, N. A., System Modeling and Computer Simulation, Marcel Dekker, Inc., 1988.
20.Kleinrock, L., Queueing Systems, Volume I: Theory, John Wiley & Sons, Inc. 1975.

21.Law, A. M., McComas, M. G., Simulation of Communications Networks, Proceedings
of WSC, 1995.

22.Lommow, G., Baezner, D., 4 Tutorial Introduction to Object-Oriented Simulation and

Sim++ ™ Proceedings of WSC, 1990.

23.MacDougall, M. H., Simulation Computer System, Massachusetts Institute of Technol-
ogy, 1987.

106

24 Mallet, L., Mussi, P., Object Oriented Parallel Discrete Event Simulation: The PROSIT
Approach, in Modeling and Simulation, Lyon, June 1993. Also in INRIA Research
Report 2232, April 1994.

25.Molloy, M. K., Fundamentals of Performance Modeling, Macmillan Publishing Com-
pany, a division of Macmillan, Inc. 1989.

26.Mussi, P., Siegel, G. Sequential Simulation in Prosit: Programming Model and Imple-
mentation, in INRIA Research Report 2713, November 1995.

27 Page, E. H., Nance, R. E., Parallel Discrete Event Simulation: a Modeling Mthodolog-
ical Perspective, PADS 1994.

28.Pidd, M., Object Orientation & Three Phase Simulation, Proceedings of WSC, 1992.

29.Pooch, U. W.,, Wall, J. A., Discrete Event Simulation: A Practical Approach, CRC
Press, 1993.

30.Schriber, T., Simulation Using GPSS, John Wiley, 1974.

31.Schwetman, H. D., Introduction to Process-Oriented Simulation and CSim, Proceed-
ings of WSC, 1990.

32.Stroustrup, B., The C++ Programming Language, (Second Edition), Addison-Wesly
Publishing Company, 1991.

33.Unger, B. W,, Gomes, F., Xiao, Z., Gburzynski, P., One-Tesfaye, T., Ramaswamy, S.,
Williamson, C., Covington, A., 4 High Fidelity ATM Traffic and Network Simulator,
Proceedings of WSC, 1995.

34.Wang, P. S., C++ with Object-Oriented Programming, PWS Publishing Company,
1994.

Appendix A

Functional Model Notation

Source/Sink

>

Route for Tokens/Jobs

>
re

Entity/Server/Client Resource

C

Communications Between
Resource and Entity/Server/Client

— — — — — —

D

Appendix B

Declarative Model Notation

Activity in the
Event Block Same Object
Event Type: >
action#1 Activity Involving
action#2 Different Objects Condition2
e |} T === > Satisfied?
» Boundary Between
action#n Different Objects

1. Representing an activity which is a period of time between two distinct events. One event
marks the beginning of the activity at the tail of the arrow, and another marks the end of
the activity at the head of the arrow.

2. Representing the scheduling of an event pointed to by “yes” if the condition is satisfied,
otherwise, doing nothing or scheduling an event pointed to by “no”.

107

Appendix C
Model for the CPU_Disk System
(QuekKit Server-Client Architecture)

JEEEESREREL X RS RES Task_java t#ttt#"ttt““‘tt‘t.“tt/

import Utility.*;
import QueKit.*;

g

3. class Task extends Job {

4. static EXP CPUTimeHigh = new EXP (5); // mean = § ms.
5. static EXP CPUTimeLow = new EXP (10); // mean = 10 ms.
6. static EXP DiskTime = new EXP (50); // mean = 50 ms.

7. static int numTours; // total # of tours
8. static double totalTourTime: // total tour time of all tasks

9. private int stageSeq,

10. diskIndex; // record the disk index

L. private double serviceStart, // start time for a service

12. demand =-1.0, // the remain CPU service time if > 0
13. myPriority, // task priority

14. tourTime; // record a tour start time

1S. public Task (String type, double prio) {
16. super(type);
17. myPriority = prio;
18. setPriority(prio);
}
19. public int seq() { return stageSeq; }
20. public int diskIndex () { return diskIndex; }
21. public void seqInc({ stageSeq++; }
22. public void seqDec(int n) { stageSeq -=n; }
23. public void resetSeq() { stageSeq =0; }
24. public double tourTime () { retun tourTime; }
25. public void setDiskIndex (int i) { diskindex =((i < 0) || (i > 3)) ? diskIndex : i; }

26. public double CPUServiceDemand() {

27. if (demand < 0) { // not a preempted task
28. if (priority() > 0)
29. demand = CPUTimeHigh.nextEXPDoubie();
30. else
31. demand = CPUTimeLow.nextEXPDouble();
}
32. return demand;
}

108

33. public double DiskServiceDemand() { return DiskTime.nextEXPDouble(); }
34. public double startTime() { return serviceStart; }
35. public void setStartTime (double t) { serviceStart=t; }
36. public void resetCPUServiceDemand () { demand =-1.0; }
37. public void setCPUServiceDemand (double t) { demand =t; }
38. public void resetPriority() { setPriority (myPriority); }
39. public void setTourTime (double t) { tourTime =t; }
} // end of class Task

/tt.t“‘t#‘tt‘.‘.t TaSKClient.java ‘.l‘ttt‘t.ltttt“‘tt/
40. import Utility.*;
41. import QueKit.*;

42. class TaskClient extends Client {
43. static Uniform diskIndex = new Uniform (0, 3);
44. public TaskClient) { super Q; }

45. public void schedule (Token token) {
46. Task task = (Task)token;

47. if (task.currentSet() = null)

48. hostSet().put (task);

49, task.seqInc();

50. switch (task.seq() {

Sl case 2:
52. task.setDiskIndex (diskindex.nextUniformint();
53. task.requestRes (SimControl.disk {task.diskIndex()]);
54. break;
55. case 3:
56. task.keep (task.DiskServiceDemand());
57. break;
58. case 4:
59. task.freeRes (SimControl.disk [task.diskIndex(]);
60. Task.numTours++;
61. Task.total TourTime += QueSimulation.currTime() - task.tourTime (;
62. task.setTourTime (QueSimulation.currTime(});
63. task.resetSeq (;
64. task.resetPriority();
65. task.send (SimControl.cpu, 0.0);
}
}
} // end of TaskClient

Yaddddiad 2 i 2 d CPU_java Lad i d il sl o d Sdd)

66. import QueKit.*;

67.class CPU extends Server {
68. static int n0, nl; /1 # of nO tasks, nl task

69. public CPU (int v1, int v2) { super); n0 =vl;nl =v2;}

109

70. public void initialize() {

71.

72.
73.
74.

75.
76.
77.

Task task = null;

// inilialize all n0 and nl tasks

for (int i=0; { < nO; i++) {
task = new Task ("n0 task”, 0);
task.send (this, 0.0);

}

for (int i=0; i <nl; i++)
task = new Task ("nl task", 1);
task.send (this, 0.0);

}

78. public void schedule (Token token) {

79.

80.
81.
82.
83.
84.
8S.

86.

87.
88.

89.

90.
91.
92.
93.

94,
9s.
96.
97.

98.
99.

100.
101.
102.

103.
104.
108.

Task task, newTask = (Task)token;

switch (newTask.seqQ) {
case 0: // a task requests the CPU
newTask.seqInc();
if (serveSetQ.full() {
task = (Task)}((Queue)serveSet()).last();
if (newTask.priority() > task.priority()) { // preempt the CPU

// cancel task’s current activity

task.cancel (;

// increase task's priority and put it back to the waitSet

task setPriority (0.5);

task.setCPUServiceDemand (task.CPUServiceDemand()
- QueSimulation.currTime() + task.startTime());

task.move (waitSet());

// token preempt the CPU and get served
newTask.move (serveSet());
newTask.keep (newTask.CPUServiceDemand());
} else {
newTask.move (waitSet());
}

} else { //token gets the service if serveSet() not full
newTask.move (serveSet());
newTask.setStartTime (QueSimulation.currTime());
newTask.keep (newTask.CPUServiceDemand());

}

break;

case 1: /! a task leaves the CPU after service

newTask.resetCPUServiceDemand();

newTask.setPriority (0);

newTask.send (SimControl.taskClient, 0.0);

task = (Task)((Queue)waitSet().first();
if (task '=null) {
task.mave (serveSet());

110

106. task.setStartTime (QueSimulation.currTime());
107. task keep (task. CPUServiceDemand());
}
} // end of switch
} // end of schedule

108. public void terminate () {

109. System.out.printin ("Task n0 = "+n0-+" Task nl = "+nl+
" Total number of task tours = "+Task.numTours+" Ave. tour time = "+
Task_total TourTime/Task.numTours);

}
} // end of class CPU

/t#.."t‘#t‘#‘ Smconu-ol.java “t“tt*““t‘ttt/

110.import SimKit.*;
111.import QueKit.*;

112.class SimControl extends QueSimulation {
113. double fEndTime;

114. static Resource [] disk = new Resource [4];
I15. static CPU cpu;

116. static TaskClient taskClient;

117. public static void main (String argv(]) {
118. Arguments args = new Arguments(argv);
119. new SimControl (args).run(};

}

120. public SimControl (Arguments args) {

121. super(args);

122. String val = args.retrieve("EndTime");

123. if (val '=null) { fEndTime = (Double.valueOf{val)).doubleValue(); }
}

124. public void initialize() {
125. QueSimulation.dbgPrint(" CPU_Disk System Simulation initialize()");
126. QueSimulation.setEndTime(fEnd Time);
127. cpu=new CPU (6, 2);
128. taskClient = new TaskClient ();
129. for(inti=0;i<4;i++)
130. disk[i] = new Resource (1);
}
131. public void terminate() { QueSimulation.dbgPrint ("Similation terminated.”); }
} /7 end of SimControl

111

Appendix D
Model for the Harbor System
(QueKit Server-Client Architecture)

/ttt#t**‘tt#‘Boat.java (ﬁle namc)#ttlttt‘t“tt“‘tﬁtl

L. import QueKit.*;

. public class Boat extends Job {
private int seqNum;// stage sequence #
private double arriveT;// time when the boat arrives at the harbor
public Boat) {
super ("Boat");
arriveT = QueSimulation.currTime();

NowswL

}

public final int seq() { return seqNum; }

public final void incSeq () { seqNum++; }

10. public double arriveTime() { return arriveT; }
} // end of Boat

© 90

/#tt#ttttﬁ‘#tt#t[nspector_java (ﬁ[e name)tttttt#ttt‘tt**/
11. import QueKit.*;
12. class Inspector extends Server {
13. public void schedule (Token token) {
14. Boat boat = (Boat)token;
15. boat.incSeq();

16. switch (boat.seq()) {

17. case 1: // stage #1 -- a boat arrives for inspection
18. if (serveSet().fullQ) {
19. boat.move (waitSet());
20. } else §
21. boat.move (serveSet());
22. boat.keep (3.0);
}
23. break;
24, case 2: // stage #2 ~ a boat finishes the inspection
25. boat.send (SimControl.boatClient, 0.0);
26. boat = (Boat)((Queue)waitSet(}).first();
27. if (boat !=null) {
28. boat.move (serveSet());

112

113
29. boat.keep (3.0);
}
}
}

} // end of Inspector

/ttttttt*t.“t#“taoatcﬁent_java (ﬁle Me)“ttt..‘#tttl
30. import QueKit.*;
31.class BoatClient extends Client {
32. static Resource jetty, tug;
33. static BoatSink sink;
34. public BoatClient () { super(); }

35. public void initialize () {

36. jetty = new Resource (2);
37. tug = new Resource (3);
}
38. public void schedule (Token token) {
39. Boat boat = (Boat)token;
40. if (boat.currentSet() = null)
41. hostSet ().put (boat);

42. boat.incSeq();
43. switch (boat.seq()) {

44, case 3:

45. boat.requestRes (jetty);

46. break;

47. case 4:

48. boat.requestRes (tug, 2);

49. break;

50. case §:

51. boat.keep (2.0);

52. break;

53. case 6:

54. boat. freeRes (tug, 2);

55. boat.keep (14.0);

56. break;

57. case 7:

S8. boat.requestRes (tug);

59. break;

60. case 8:

61. boat.keep (2.0);

62. break;

63. case 9:

64. boat.freeRes (jetty);

65. boat.freeRes (tug);

66. boat.send (sink, 0.0);
}

} // end of schedule
} // end of BoatClient

114

l“‘.."l“tt‘#‘Boatsink'java (ﬁle name)“““““tt'tt/
67. import QueKit.*;

68.class BoatSink extends Sink {
69. private double totalTime;
70. public BoatSink () { super O; }

71. public void schedule (Token token) {

72. Boat boat = (Boat)token;

73. totalTime += QueSimulation.currTime() - boat.arriveTime();
74. addTotalNumTokens (1);

}
} // end of Sink

[REEEEESREEREEREES "SimCoutrol.java (ﬁle name) tt"i"tt‘tt’tt/

75.import SimKit.*;
76.import QueKit.*;

77.class SimControl extends QueSimulation {
78. static Inspector inspector;

79. static BoatClient boatClient;

80. static Source source;

81. double fEndTime;

82. public static void main (String argv(]) {

83. Arguments args = new Arguments(argv);

84. new SimControl (args).run();
}

85. public SimControl (Arguments args) {

86. super(args);

87. String val = args.retrieve("EndTime");

88. if (val = null) { fEndTime = (Double.valueOf(val)).doubleValue(); }
}

89. public void initialize() {
90. QueSimulation.dbgPrint(" Harbor System Simulation initialize()");
91. QueSimulation.setEnd Time(fEndTime);

92. boatClient = new BoatClient ();

93. inspector = new Inspector (;

94. source = new Source ((new Boat ()).getClassQ, "EXP", 18.0);
95. source.setDestination (inspector);

96. BoatClient.sink = new BoatSink Q;

}

97. public void terminate() { QueSimulation.dbgPrint (" Simulation terminated™); }
} // end of SimControl

