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Abstract 

Many discrete event simulation studies involve the simulation of queueing systems. 

Two major problems arise in the simulation of queueing systems: f k t ,  the modeling of a 

queueing system can be an extremely complex and error-fraught endeavor; and second3 

the simulation of the system can be computationally intensive. 

This thesis addresses these two problems from the aspects of modeling effectiveness 

and execution efficiency. An object-oriented (00) simulation package called QueKit has 

been developed in order to facilitate the modeling process and retain good efficiency in 

both sequential and pardel executions. This package provides an 00 event-driven mod- 

eling framework. It allows the emphasis on modeling the objects that provide s e ~ c e s  in a 

queueing system (server architecture) and the emphasis on modeling the objects that need 

services (client architecture) to be applied seamlessly in a single simulation model. This 

server-client architecture enables the application programmer to adjust the balance 

between modeling effectiveness and execution efficiency when developing a simulation 

model for sequential execution. It is expected to enable more natural parailelism to be 

exploited fiom the real system when developing a simulation model for parallel execution. 

This may result in better modeling effectiveness as well as better execution efficiency than 

either the server architecture or the client architecture solely applied in a model when run- 

ning on a parallel machine. 
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Chapter 1 

Introduction 

Simulation is a methodology for imitating the operation of a real-world system (or 

process) over time. A simulation invoives the generation of an artificial history of the state 

of a system over time in order to draw inferences concerning the operating characteristics 

of that system. Simulation is widely used for analysis, performance evaluation, tests of 

sensitivity and cost effectiveness, forecasting, training, and decision making. Jh fact, sim- 

ulation can be used for analyzing any model of arbitrary complexity. The complexity of 

the model is Limited only by the modeler's ability, the power of the method to represent the 

system under study, and the capacity of a computer to load and run the simulation pro- 

gram. Experiments with the real system are often out of the question due to the high cost 

or potential danger. Analytical methods are usually limited to relatively simple systems so 

that they cannot be used for analyzing some complex systems which are mathematically 

intractable. Simulation can be used for studying any system whose behavior can be 

described in terms of a model. In contrast to the continuous simulutiorz that studies a sys- 

tem in which the system state changes continuously over time, discrete event simulation 

(DES) is the simulation of a system in which the system state changes only at discrete 

points of time. Discrete event simulation has come to be an important methodology for 

understanding and predicting the behaviors of many complex systems. Parallel discrete 

event simulation (PDES) refers to the execution of a DES model on a parallel computer. 

1.1 Discrete Event Simulation and Parallel Discrete Event Simulation 

From the view of a DES modeler, a system is a collection of entities that interact with 

each other over time to accomplish one or more goals. Each entity in a system is an ele- 

ment which may require explicit representation in a simulation model. An attribute is a 

property of an entity. For instance, patients, beds, and theaters may be three kinds of enti- 



ties in a hospital system. The patient's age, gender, the date of entering the hospital, etc., 

may be attributes of the patient. 

An entity may be dynamic in the sense that it may dynamically enter a system, may be 

dynamically destroyed when it leaves the system, and may move through the system to get 

service fiom other entities. An entity may be static in the sense that it may reside in a sys- 

tem £?om the beginning and it provides s e ~ c e s  for others. Thus in the Literature, the 

former entity is often called a dynmic enti@ because of its transient nature whereas the 

latter is often called a static entity because of its permanent nature [q. [n the hospital sys- 

tem, a patient is a dynamic entity. She may require a bed first when she enters the hospi- 

tal, acquire a theater to have an operation if there is one available, return the theater after 

the operation. Then she may stay in the hospital for some time, and finally return the bed 

and leave the hospital system. Beds and theaters are two kinds of static entities which pro- 

vide services for patient entities such as staying in the hospital and having an operation 

respectively. A static entity sometimes is also referred to as a resource which represents 

one or several identical entities which provide service in the system. 

The behavior of a system as it evolves over time is studied by developing a simulation 

model. A simulation model is an abstract representation of a system, usually containing 

structural, logical or mathematical relationships which describe the system in terms of sys- 

tem state, entities and their attributes, and so on. System sture is a collection of variables 

that contain all the information necessary to describe the system at any instant in time. 

A DES model assumes the simulated system only changes its state at discrete points 

of time. The simulation model jumps fiom o w  state to another upon the occurrence of 

each event. An event is an instaataaeous occurrence that may change the state of a system 

[3], e.g., an arrival of a new patient in a hospital system is an event. This event may cause 

the following changes for the system state: the total number of the patients in the system is 

increased by one; the number of bed resource may be decreased by one if a bed is assigned 

to the newly arrived patient. An event notice is a record of an event in a model. It contains 



all the information about the event which is to occur at the current or M e  time along 

with any associated data necessary to process the event. At a minimum, the record 

includes the event type and the event time. The event time corresponds to the actual time 

in the red system when the corresponding event would occur. An event notice is often 

simply called an event (which means an event object or event record) in a simulation 

model. An activity is a period of time between two distinct events. One event marks the 

beginning of the activity and mother marks the end of the activity. For example, in the 

hospital system, an operation may be an activity which starts with the "beginning of oper- 

ation" event and ends with the "end of operation" event. 

During a discrete event simulation, a model changes its state at discrete points of time 

upon the occurrence of events. The events are scheduled in chronological order on a list 

called the event list (orfitwe event list) so that the causality in a simulation is maintained. 

The causdity in a simulation is the rule that some changes of the system state must happen 

before others so that the simulation mimics the modeled system correctly 1131. That is, the 

order of processing events in a simulation cannot cause a scenario that future affects the 

past. The violation of this rule will cause the errors in a simulation, and errors of this type 

are called causuIity errors. It is obvious that causality errors in a simulation will never 

happen when events are processed in a chronological order in sequential execution. How- 

ever, this may not be true for a simulation on a parallel computer becaw events cannot be 

processed in a chronological order on different processors unless special hardware and/or 

software mechanisms are provided to ensure the causality is maintained. 

W1th the development of distributed and shared memory multiprocessor systems, 

great progresses in techniques for efficiently executing DES on distributed and parallel 

machines has been made for over a decade. Parallel discrete event simulation (PDES) has 

attracted great interest in recent years because it has exposed a lot of challenges for people 

to achieve high efficiency of DES on distributed and parallel computers. 



In PDES, the logical process view is a dominant modeling h e w o r k .  With the LP 

view, a system to be modeled is usually viewed as a physical system which is composed of 

some number of physical processes that interact at various points in simulated time [I 51. A 

physicaZ process (PP) is an element that performs a certain logical hc t ion  in the real sys- 

tem, e.g., a theater may be a PP in the above hospital system. Each PP in the system is 

mapped to a logical process (LP) in a model. An LP is a software object or a procedure 

that mimics the behavior of a PP in the modeled system. The LPs in a PDES model are 

assigned to different processors on a parallel computer to be processed concurrently in 

order to speed up the simulation. AU interactions between PPs are modeled by times- 

tamped messages sent between the corresponding LPs which may reside on different pro- 

cessors. A message is a timestamped construct in PDES that carries an event notice 

passing fiom one LP to another to model the interactions betmeen two LPs. A message is 

sometimes also called an event or event message when it is on an event list. Messages in 

the LP view are used either to synchronize the actions of two LPs or to pass information 

from one LP to another. 

The synchronization of LPs in a model is concerned with ensuring the causality is 

maintained in PDES. That is, the correct order of processing events in PDES is ensured in 

order to yield the same results as the sequential execution in which events are processed in 

a chronological order. Synchronization algorithms in PDES are broadly fall into two cate- 

gories: conservative and optimistic. Conservative approaches strictly avoid the possibility 

of any causality error (i.e., future affects the past) ever occurring. On the other hand, opti- 

mistic approaches use detection and recovery mechanism: every LP progresses at its own 

speed without concern of causing causality error. However, if causality errors are detected, 

a rollback mechanism is invoked to recover [15]. 

1.2 Object-Oriented Modeling and Simulation 

The object-oriented (00) approach has been probably associated with discrete event 

simulation fiom the very beginning. Many people consider Sirnula [14], one of the first 



simulation languages, as the first real 00 programming language. The 00 approach has 

become an important methodology in the software development since 1990s [8]. 00 mod- 

eling is a way of thinking about problems using models composed of software objects that 

represent real-world objects. A model is built by organizing a collection of these software 

objects that incorporate both data structure and algorithmically defined behavior. 00 sim- 

ulation uses this kind of model to conduct experiments in order to study the dynamics of 

the modeled system. The key contriiution of 00 methodology for simulation is the map- 

ping between real-world objects and software objects [13]. 

00 modeling and simulation are closely related to 00 programming (OOP) [34]. 

OOP is a design and programming disciphe that focuses on the objects (i-e., software 

objects) rather than functions that make up the software system. In OOP, an object is a dis- 

tinguishable component of a program while a class is a template for a group of objects that 

have the same characteristics. An object has a set of attributes (i.e., data) that define its 

state and a set of interface bctions (i.e., methods) for accessing the state. OOP focuses 

first on identifying objects that make up the software system. The classes and interfaces 

are then defined and implemented. A program is M y  written for creating and manipulat- 

ing the objects through their interfaces. 

Similarly, 00 modeling and simulation involves identifying physical processes (PPs) 

that make up the system to be modeled, and mapping these PPs into object classes. The 

methods are written for these classes in order to present the PPs' behaviors including 

interactions. Then all circumstances that can lead to changes in the state of the system are 

identified and characterized as events. These events are tied to simulation time by means 

of their scheduled event time. Finally, a program is written for creating and manipulating 

these objects and events along the progress of the simulation time, and it is executed in 

order to get the simulation results [22]. 

00 programming provides convenient facilities for soAware development using the 

concepts of encapsulation, inheritance, and polymorphism. Encapsulation allows wrap- 



ping all data and bct ions  together inside a class and protects them fkom any unautho- 

rized access. Encapsulation permits a simulation package to keep all data and operations 

in a safe way so that the detailed information of the package is hidden from the user. It 

also promotes modular design of a simulation package. Inher ime allows a new class 

(child class) to be defined as an extension or refinement of another class (parent class). 

This child class is said to be derived fitom its parent class (or base class). The child class 

not only can inherit all or some of the features of its parent, but also can add new features 

of its own. Inheritance provides a facility that allows the simulation objects to be succes- 

sively refined as a simulation program is developed in a parsimonious way [28]. Polymor- 

phism is the ability to overload the meaning of an operator or method that meets the need 

of a newly defined child class. In a simulation package, this allows one method call to 

have different meanings to different members in a class hierarchy. Both inheritance and 

polymorphism promote software reuse by taking advantage of previously defined classes 

while still providing mechanism for tailoring these classes to specific applications. 

1.3 Motivation and Objectives 

A great deal of DES and PDES studies involve the modeling of queueing systems. 

This is because any system that involves amving demands requiring access to a finite- 

capacity resource may be characterized as a queueing system 1201. That is, any system 

may be termed a queueing system if it involves entities that need senice f?om a resource 

which has a limited capacity. Here, entities can refer to people such as customers in a baok 

system, or refer to objects such as broken machines that need to be fixed. The resource can 

refer to a person such as a clerk in a bank, or refer to an object such as a printer for print- 

ing files. A queueing system may be modeled as a queueing network as it usually involves 

entities moving through a network of queues waiting for service PSI. A queue in a queue- 

ing system is a collection of associated entities that are waiting for the senice fkom a 

resource and which are ordered in some logical fashion such as first-come-first-served 

(FCFS). From retail service systems to telecommunications systems, it is apparent that 

many real-world systems can be classified as queueing systems. Many of these queueing 



systems are so complex that only high fidelity DES is able to capture their dynamic char- 

acteristics. 

There are two major problems in the simulation of queueing systems. First, the devel- 

opment of a DES model is very difficult when the real system to be modeled is compli- 

cated. Second, the necessity for repetitive sample generation for statistical analysis and the 

testing of numerous alternatives can make DES very computationally intensive. Solutions 

to the tim problem have been addressed over decades in the general DES community 

through numerous simulation languages and packages. These simulation languages and 

packages provide modeling &meworks that facilitate the con~b~ction of complex mod- 

els. Solutions to the second problem have also been explored for decades in the PDES 

community through many techniques on how to speed up simulation execution on parallel 

and distributed machines. Moreover, object-oriented (00) techniques are also widely used 

in both communities in order to facilitate the simulation development process. The focus 

and objectives are different between the two communities, and little work has been done 

on the intersection of these two problems 127. 

The research presented in this thesis aims to address these problems by systematically 

studying the above issues and developing an 00 modeling and simulation package for 

simulating queueing systems. This package will be cded QueKit in the thesis. There are 

two gods in the development of QueKit. The first goal is to provide a comprehensible 

framework for conceptual guidance in the design and development of simulation models 

for queueing systems. The second goal is to achieve high efficiency both in sequential exe- 

cution and in parallel execution. Thus the fist goal addresses the modeling effectiveness 

issue and the second goal addresses the execution efficiency issue. Although QueKit has 

been designed to support parallel execution, the scope of this thesis is limited to the imple- 

mentation and evaluation of a sequential version. 



1.4 Overview of Thesis 

The modeling effectiveness issw concerning the development of a simulation soft- 

ware for a queueing system is addressed from three dimensions in this thesis: modeling 

fkmework, model architecture, and object orientation. The chosen framework and model 

architecture in the modeling process will largely affect the execution efficiency in the sim- 

ulation. Thus the modeling effectiveness issue is discussed with the execution efficiency 

issue together throughout the entire thesis. The organization of the thesis is as following. 

Chapter 2 discusses the modeling effectiveness issue from the first two dimensions: 

modeling framework and model architecture. It surveys several current modeling frame- 

works related to queueing system simulation, including event-driven, the process view, 

and the logical process view. The modeling power and execution efficiency of each mod- 

eling Wework  is discussed and compared to others. Two model architectures, server 

architecture and client architecture, associated with the modeling of queueing systems are 

then presented. Their relationships to the above modeling frameworks and object orienta- 

tions are also discussed. Finally, fourteen problems that commonly occur in the modeling 

of queueing systems are discussed. Some of them are addressed with simple examples in 

terms of modeling b e w o r k  and model architecture. 

In Chapter 3, the necessity of providing a simulation package that facilitates the 

model design and development is discussed. The current approaches to developing an 00 

simulation package are then presented fiom the third dimension, i.e., object orientation. 

Some packages related to queueing system simulation are surveyed with the discussion of 

the object orientation, modeling power, and execution efficiency of each. 

The design and implementation of an 00 simulation package - QueKit - are presented 

in Chapter 4. The package is outlined first. The modeling framework provided by QueKit 

is discussed with its object orientation. Then the design of the base layer of QueKit is dis- 

cussed with base classes and their interfaces. The server architecture supported by the base 

layer is also discussed. The necessity of developing an extended layer is discussed fol- 



lowed by the presentation of the extended classes and interfaces. Other two architectures 

(client architecture and server-client architecture) supported by the extended layer are also 

presented. Finally, some implementation issues are discussed. 

Chapter 5 reviews the fourteen common modeling problems defined in Chapter 2 and 

presents two benchmark systems used for the preliminary evaluation of both QueKit mod- 

eling power and its execution efficiency. Eight models are used for modeling these two 

systems, and designs of these models are presented. The modeling and simulation results 

are then discussed in terms of modeling power and execution efficiency. 

Chapter 6 sketches the summary and conclusions as well as contributions presented in 

the thesis, and suggests some future work in this research. 



Chapter 2 

Modeling Queueing Systems 

The major task in the simulation of a system is to come up with a model that captures 

the dynamic behavior of the system. Modeling is to abstract from reality a description of a 

dynamic system, i.e., to create a model that represents the system [13]. An application pro- 

grammer usually has to follow a certain modeling framework in order to construct a simu- 

lation model. The modelingfiamavork, or conceptuul f amework, or world model view, is 

a structure of concepts under which a modeler is guided to represent a system in the form 

of a model [I]. Specifically, the modeling m e w o r k  is the way of presenting a model and 

the way of implementing its event-scheduling mechanism [q. The chosen modeling 

framework determines how the modeler must view the system to be modeled and how a 

model can be constructed. 

This chapter discusses the issues of effectively modeling queueing systems Born two 

dimensions: modeling framework and model architecture. The current modeling fhme- 

works related to queueing system simulation are reviewed. Their modeling power and 

execution efficiency are analyzed. The current approaches to modeling queueing systems 

are then presented in terms of model architecture. And finally, some common modeling 

problems for queueing systems are discussed. 

2.1 Current Modeling Frameworks 

The contemporary modeling fhmeworks for general discrete event simulation (DES) 

are event-driven [9], activity-scanning [29], and the process view [ 141. The dominant mod- 

eling tiamework for parallel discrete event simulation (PDES) is the ZogcaZ process (LP) 

view [IS]. 



2.1.1 Concepts and Definitions 

The event-d*en view emphasizes the scheduling of all  events. This means that no 

provision is made for making a state change by tests on model state; ifa state change is to 

occur, it must occur by explicit scheduling of an event Therefore, when using the event- 

driven view, a modeler first needs to identify all types of events. Then for each type of 

event, the modeler writes a event routine that gives a detailed description of the state 

changes that take place when that type of event occurs. The simulation evolves over time 

by processing the events, i.e., executing the corresponding event routines, in increasing 

order of their occurrence time. The simulation terminates when the pre-defined condi- 

tion(~) is(are) satisfied, e-g., the simulation end time is reached. 

The activipscanning view chooses the next event (i.e., the occurrence of a state 

change in the system) based on both the scheduled time and condition testing. This makes 

the activity-scanning view best suitable for the simulation models such as animations in 

which the system states change continuously. Thus it is seldom used in discrete event sim- 

ulation, and it will not be discussed in the thesis any more. 

Aprocess is a timesrdered sequence of events and activities that describe the Life- 

time actions of one or more entities in a system. It is clear that the concept of a process is 

a level of abstraction higher than event. A model with the process view is composed of a 

set of processes that describe the actions of the active entities in the system being mod- 

eled. The active entities are those entities whose behaviors are of interest in the system to 

be modeled. Unlike the event-driven view, the total history of an active entity can be 

described by a single brocess) routiw which also contains the passage of simulated time 

in the process view. Languages implementing the process view require the modeler to 

write process routines which are quite different from event routines. Event routines occur 

in zero time while process routines may contain the passage of simulated time. 

Actually, the process view can be split into two types: process interaction and process 

description (or transaction flow) [6]. In the process interaction view, e.g., provided in Sim- 



ula [14], each process represents a single active entity. A system is modeled as a collection 

of processes interacting with each other while cooperating in an action or competing for 

system resources. The process routines usually require special mechanisms called co-rou- 

tines provided by a simulation language for interrupting and suspending the execution of a 

routine, and resuming its execution at a later simulated time under the control of an inter- 

nal event scheduler [q. For modeling a queueing system, dynamic entities are mostly 

modeled as processes and static entities are modeled as resources except in a few cases 

related to the producer/consumer problems [S]. The co-routine mechanism is the charac- 

teristics of the process interaction view. 

On the other hand, the process description view, egg., provided in GPSS [30], is a spe- 

cial case of the (possibly) more general process interaftion view [I. It provides a way of 

representing a system's behavior fiom the viewpoint of dynamic entities (modeled as 

transactions) moving through the system. A process routine here contains a set of blocks 

(i.e., constructs provided by a simulation language) which delineates everything that hap- 

pens to a group of dynamic entities as they move through the system. The interactions 

among those transactions cooperating for an action or competing for system resources are 

handled automatically by the simulation language which utilizes the process description 

view. It is easy to understand and put the emphasis on modeling the dynamic entities in the 

simulation a queueing system. The programmer doesn't need to be concerned with arrang- 

ing the transactions to join and to depart fiom the queues in the model because these 

queueing operations are automatically handled by the underlying simulation language. 

The LP view is the dominant modeling framework used in parallel discrete event sim- 

ulation (PDES). With the L P  view, any system being modeled is viewed as a system which 

consists of some number of physical sub-systems called physical processes (PPs) interact- 

ing in some manner. Each PP is mapped to a software object or procedure called logical 

process (LP) in a simulation model which consists of a collection of LPs. The interactions 

between PPs are modeled as (event) messages passing between the corresponding LPs. 



The LP view is widely used as the h e w o r k  for model construction in PDES 

because it often r e d s  in the most efficient model execution in parallel. Fujimoto [IS] 

notes that this LP methodology allows application programmers to partition the simulation 

state variables into a set of disjoint states in merent LPs, and ensures that no event 

accesses the state in more than one LP. This partition permits "minimal" processor syn- 

chronization, and thus has become a de facto standard for PDES paradigms [27l. 

The LP view has a close relationship with the objectsriented (00) modeling because 

of the close mapping between PPs and LPs. A model with the LP view is usually used with 

the event-driven view [lq or with the process interaction view [22]. Thus the LP view is 

essentially the eventdriven view or the process interaction view in parallel simulation 

with the constraint that no LP can access the state of other LPs except through messages. 

2.1.2 Modeling Power Versus Execution Efliciency 

The modeling power of a modeling methodology or tool, e.g., a modeling fiamework, 

or a simulation package, is the measure of how powerfU to construct a model with that 

methodology or tool. It includes two aspects: comprehensibility and flexibility. The com- 

prehensibility is about how easy a model can be constructed with that methodology or 

tool, and how comprehensible the model will be. The flexibility is about how flexible the 

methodology or tool can cover a wide range of scenarios for modeling a particular prob- 

lem. For simplicity, the discussion about the modeling power of a modeling methodology 

in this section is also applicable to a modeling tool, and so is the discussion about the exe- 

cution efficiency. 

There is not any formal method to measure the modeling power of a methodology. 

One method is to approximately measure the relative modeling power of different meth- 

odologies by comparing the comprehensibility of the models for modeling the same sys- 

tem. For instance, if one model is obviously more comprehensible than another one, then 

the modeling power of the methodology used in the first model can be considered greater 

than that used in the second model from the aspect of comprehensibility. 



If the above two models are built with programming languages, counting the source 

code lines in the models may help to measure the comprehensibility of the two models. 

One model can be considered more comprehensible than another if the number of source 

code lines in the first model is less than that of the second model. This is because it usually 

means a model is easier to understand if it contains less source code lines though this is 

not always true. Thus this method of comparing the number of source code lines between 

two models is very weak. It can only be a secondary method for comparing the compre- 

hensibility of two models. 

Another method is to approximately measure the relative modeling power of different 

methodologies by comparing their flexibility to cover a broad range of scenarios for mod- 

eling the same system. One methodology can be considered more powerful than another 

fkom the aspect of flexibility if it can cover a wider range of scenarios for modeling the 

system. 

The execution eficiency of a modeling methodology is the measure of how fast a 

model using that methodology can be executed on a machine. Unlike the modeling power. 

the execution efficiency of a modeling methodology can be accurately measured. For 

modeling a specific problem, one methodology can be considered more etficient than 

another if the execution time of a model using the first methodology is less than that of 

another model using the second methodology in the same simulation environment includ- 

ing hardware and supportive software. 

From the discussion in the previous section, the process view has several advantages 

over the event-driven view. First of all, the process view provides a more natural modeling 

framework for modeling queueing systems. This is because the entire experience of a 

dynamic entity as it flows through a system or the life cycle of a static entity as it pro- 

cesses dynamic entities over time can be clearly described in a single process routine 

instead of being scattered in several routines. Furthermore, when this approach is imple- 

mented in a simulation language, the powem primitives provided in the language auto- 



matically translate certain situations commonly occurring in a simulation model into the 

corresponding event logic. As a result, a model using this approach may require signifi- 

cantly fewer Lines of code than its counterpart one using the event-driven approach. 

However, the complex assignment of resources to entities can be difficult to model 

because the programmer does not have easy ways to access the queues that are attached to 

the resources. Moreover, for the process description view, the kquent re-scans of the 

entire suspended event chain cause serious computational inefficiency. This is becaw the 

size of the suspended event chain which models those dynamic entities failing to get the 

resources increases along with the increase of the model size. For the process interaction 

view, the context switching between multiple processes also causes serious computational 

inefficiency. 

The event-driven view, on the other hand, avoids the above problem of computational 

inefficiency by placing on the programmers the burden of working out when conditional 

actions can take place. This is because identifying an event and envisioning the Vow" of 

a dynamic entity through the system takes imagination and an understanding of the 

entity's interaction with possibly many events affecting it [a. The event-driven view is 

thus more welcome for skillfbl DES modelers whose major concerns are the computa- 

tional efficiency. 

Therefore, the execution efficiency of the event-driven view is usually better than that 

of the process view, but the process view is usually easy to use, and the resulting model is 

easy to understand. Thus the modeling power of the process view is usually greater than 

that of the event-driven view in the aspect of comprehensibility. 

However, it is largely depends on the primitives provided by a simulation package 

that the process view supported by the package are flexible enough to cover a broad range 

of scenarios for a specitic modeling problem. For some mature languages and packages 

which support the process view, e-g., Simula and GPSS, their modeling power are greater 

than that of others which support the event-driven view in both aspects of comprehensibil- 



ity and flexibility. This is because the primitives provided in these languages and packages 

are flexible enough to cover a wide range of scenarios for a specific modeling problem. 

This may not be always true for other simulation languages or packages. Therefore, the 

modeling power of the event-driven view may be greater than that of the process view in 

the aspect of flexibility if the primitives provided in the latter are not enough to support a 

wide range of scenarios for modeling the same system. 

In PDES, the simulation model is composed of some LPs which represent the corre- 

sponding physical processes (PPs) in the system. These LPs are mapped onto seveml inde- 

pendent processing elements (PEs) in order to execute the model on a parallel machine. It 

can be viewed that the global event List in the conventional DES is divided into several 

event sub-lists in PDES. Each event sub-list is handled by a distinct processor indepen- 

dently. An event (message) moves £iom a queue of one LP to the event sub-list handled by 

one processor, and then migrates to a queue of another LP possibly handled by another 

processor in order to perform an interaction between two LPs. 

As discussed in Sec. 2.1.1, the LP view is essentially the event-driven view or the 

process interaction view with the constraint that no LP can change the state of another LP 

except through messages. Thus the execution efficiency of the LP view associated with the 

event-driven view in the sequential execution is not as good as that with the conventional 

event-driven view because of the constraint of accessing s h e d  variables in the LP view. 

Similarly, the execution efficiency of the LP view associated with the process interaction 

view in the sequential execution is also not as good as that with the conventional process 

interaction view. 

However, the close mapping between PPs and LPs in the LP view enables 00 tech- 

niques to be easily applied in the modeling process using the LP view. This tends to make 

the LP view easier to use and the resulting model easier to understand. Therefore, the 

modeling power of the LP view associated with the eventdriven view is greater than that 

of the conventional event-driven view. And similarly, the modeling power of the LP view 



associated with the process interaction view is greater than that of the conventional pro- 

cess interaction view. 

2.2 Approaches to Modeling Queueing Systems 

This section discusses the cunent two approaches, server architecture and client 

architecture, to modeling queueing systems from the viewpoint of model architecture. 

From the concepts mentioned in the previous chapter, entities in a queueing system fall 

into two categories: (dynamic) entities in the &st category need services from other 

(static) entities while entities in the second category provide these services. For simplicity, 

entities in the first category are referred to as tokens and entities in the second category are 

referred to as servers in the rest of this chapter. 

Two types of models for simulation design are used in the discussion of the 

approaches: functional model and declarative model. A fkctional model represents a 

modeled system as a directional flow of a signal among transfer hct ions  (boxes) [13]. 

The modeled system is seen as a set of boxes communicating with messages or signals. 

For any functional model presented in this thesis, boxes represent service objects (servers, 

sources, and sinks) while messages or signals represent tokens in a model. A declarative 

model represents a modeled system by describing its dynamics over time. The event graph 

is a kind of declarative model [13], and it is used for the discussion of model design in the 

thesis. 

2.2.1 Server Architecture 

One way to construct a model for a queueing system is to put the emphasis on the 

token processes being done at each server. A server functions as an active controller that is 

in charge of alIocating/dea.Uocating resources to a token, scheduling the token's activities, 

and eventually routing the token to another server. Tokens are passive objects that flow 

through a network of servers to get services. 



For example, a computer system is composed of a CPU and four disks'. A fixed num- 

ber of tasks of two difFerent classes execute in the system. The activities of a task are alter- 

nated between the CPU and a disk which is randomly and uniformly chosen from one of 

the four disks. There are nO number of class 0 tasks which have a mean CPU execution 

time of 10 ms (milliseconds), and nl class 1 tasks which have a mean CPU execution time 

of 5 ms. CPU execution times for both classes are exponentially distributed. CPU requests 

of class 1 tasks have preemptive priority over those of class 0 tasks. The latter is pre- 

empted and queued, and the CPU is assigned to the class 1 task. The interrupted task 

resumes its CPU execution when there is no more class 1 task requesting the CPU. The 

disk requests of both classes are also exponentially distributed with a mean of 30 ms. 

Tasks completing disk service return to the CPU queue, cycling in this way indefinitely. 
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Fig. 2.1 CPU-Disk System 
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I. This system comes horn the MHMacDougall's "Cenml Server Queueing Network" example [23] with 
a little modification. 



The server architecture for modeling this CPU-Disk system is shown with a b c -  

tional model below. Both CPU and four disks are modeled as servers. Tasks are modeled 

as tokens. 

In the server architecturey serves are active objects in the sense that they control both 

resource management and tokens' activities. A server decides when and how to allocate 

resources to tokens and arranges their activities. This kind of passive token versus active 

server approach is convenient for modeling the scenario in which a master controller in a 

server takes care of everything: allocating resources to a token, scheduling the completion 

of a senice for the token, and eventually routing (sending) the token to another server. 

However, the description of the server's behavior will become quite complicated when a 

token needs multiple resources in an activity and resource allocation strategies are differ- 

ent (eg., one is based on first-come first-serve (FCFS) and another is based on tokens' pri- 

orities). The use of the server architecture in this situation will make the model 

complicated and hard to understand. 

I , server , 

(tokens) 

CPU 

servers 

Diskl - 

Fig. 2.2 Functional Model for the CPU-Disk System (Server Architecture) 

Thus the server architecture is suitable for modeling computer systems and communi- 

cations systems in wbich it can be viewed that a master controller in a server controls 



everything. In these systems, jobs, processes, and packages can be modeled as tokens; 

printers, CPUs, and routers can be modeled as servers. 

The declarative model of the CPU-Disk system is shown below. A block in the graph 

indicates an event in which the bold text shows the event type while the rest of the text 

shows the actions upon the occurrence of the event. A solid arrow represents an activity in 

the same object while the dashed arrow represents an activity between different objects. 

An activity may involve scheduling another event, i.e., the event indicated by the head of 

an arrow which marks the end of the activity. In the following figure, for example, the 

"start a service for a token" event in a disk will schedule a c%sh a senrice" event to occur 

in the same disk object at the end of the service activity. 

events in the CPU: 

\ atoken ) 

the CPU 
start a a semce: 
for a token the token to a disk 

Fig. 2.3 Declarative Model for CPU-Disk System (Server Architecture) 

A model with the server architecture is usually implemented with the event-driven 

view, it may be implemented with the process interaction view as well [3 11. When imple- 

mented with the event-driven view, each server may change its state upon the following 

events: the arrival of a token, the completion of a service for a token, and so on. When 

implemented with the process interaction view, each server can be modeled as a process. 



Each process may take tokens fiom the token pool of its upstream servers where tokens 

have finished s e ~ c e s  in those servers, then process them, and put them into the token 

pool for its downstream server. 

2.2.2 Client Architecture 

Actually, in most queueing systems, it is often a token itself, not a centralized server 

controller, which decides where the token should go, when it requests a resource, and how 

long it keeps the resource. Moreover, the management of different resources may be inde- 

pendent of each other, not controlled by a central controller. This comes to the need for 

decentralizing the control fimctionality in a single server object into two parts: one for 

tokens' activity control and another for resource management- 

server server server server server 

(tokens) 

Fig. 2.4 Functional Model for the CPU-Disk System (Client Architecture) 

The above figure shows that the client architecture in which the modeling emphasis is 

shifted fiom serven to tokens. A server is passive in the sense that it only controls 

resource allocation/deallocation but has no control on tokens' activities or how long 

resources will be possessed by tokens. A token decides how long it possesses the resource 

in the server and when it returns the resources by communications with the serven. The 

declarative model is shown below. 



events for a task: 
preempted 
by a token 

Fig. 2.5 Declarative Model for the CPU-Disk System (C Kent Architecture) 

In contrast to the previous server architecture, the total Wetime activities of a task are 

described in a single function of for a task instead of being scattered in several hctioos 

witbin CPU and disks (shown in Fig. 2.3). Therefore, a model with the client architecture 

is suitable for implementing with the process view though it can be implemented with the 

event-driven view as well. The CPU and disks can be modeled as resources, and tasks can 

be modeled as transactions in the process description view, or modeled as processes in the 

process interaction view. Thus the lifetime activities of a task can be descnied in a single 

process routine. 

2.3 Common Modeling Problems 

Although there are numerous modeling problems in the simulation of queueing sys- 

tems, only fourteen of them that are commonly encountered will be discussed below. 

Resource sharing: A server provides service for a group of tokens alternatively, and 

the senrice amount of any token can get may depend on the total number of tokens in the 

group. For instance, the requests from the terminals in a time-sharing system will pro- 

cessed in a round robin fashion in order to guarantee the reasonable response time for the 



users. This system can be constructed with the server architecture. The requests can be 

modeled as tokens, the central server and terminals can be modeled as servers. 

Pmmption: Preemption happens when an activity of a token is intermpted by 

another token with a higher priority. A token is intermpted while it is being s e ~ c e d .  It 

moves back to a wait queue with its service demand possibly reduced. Its position is taken 

over by another higher priority token in the system. This scenario is called preemption. 

The former token is called the preempted token and the latter is called the preempting 

token. For example, a phone call may be intemqted by a higher priority emergency call, 

and it may continue after the emergency c d  is finished. The server architecture can be 

used for modeling this system. The phone can be modeled as a server and the calls can be 

modeled as to kens. 

Breakdown: The ability of providing services of a server is lost for some time due to 

an internal or external event in a queueing system, and then is regained later. During this 

down time, any token which is in a s e ~ c e  may be intermpted. It may continue its remain- 

ing service or restart the interrupted senrice fiom the beginning once the broken-down 

server recovers. Breakdown happens when the status of a server is changed by internal or 

external events. One example is that a printing job will stop when a printer is out of paper 

and start again to continue the printing once the paper is fed in. The server architecture can 

be used for the model construction here. Jobs can be modeled as tokens and the printer can 

be modeled as a server. 

Both preemption and breakdown are related to the activity interruption (or called can- 

cellaton) of tokens. The difference between the two is that the interruption is caused by 

another token in the former case while it is caused by a change of status in a sewer in the 

latter case. 

Loss: A token may leave its modeled system because its Lifetime has been expired at a 

certain point before it can finish its journey of activity in the system. For example, a box of 

decayed fresh fruits fiom inland may be thrown away before it is loaded on an airplane for 



export. The server architecture is suitable for modeting this system. Airplanes can be mod- 

eled as servers and the boxes of f i t s  can be modeled as tokens. 

Dropping: A token may be discarded from its modeled system if the length of the 

waiting line for a server reaches a certain point. An example of this scenario is that low 

priority cells are discarded in a ATM switch when the number of cells in the corresponding 

b e e r  reaches its threshold point, e-g., the threshold point is half of the buffer capacity. 

The server architecture is preferable for the model construction in modeling this system 

where A I M  cells can be modeled as tokens and the switches can be modeled as servers. 

ATM cells start travelling fiom source semen, move through a network of switch servers, 

and finally reach the destination servers. 

Both loss and dropping are situations where a token leaves its modeled system prema- 

turely. The difference between the two is that the time when the token leaves the system is 

pre-defined or predicted in the first case but not in the second case. 

Balking: A token fails to join any queue in a system because of some reasons. A sim- 

ple example is that a customer decides to leave a bank before she joins any wait queue 

because all the queues seem too long for her/him and she has no patience for waiting in 

any queue. 

Migration: A token changes fiom one wait queue to another while it is waiting for a 

service. For instance, a customer in a shopping center switches to another wait line 

because she thinks that Line is serviced faster. 

Reneging: A token leaves the wait line before it reaches the server for service. For 

example, a person who is waiting for accessing a banking machine leaves the wait Line 

because she has no patience to wait any more or she has another more important business 

to do. 

Afiinity: Among several available servers, some tokens may only choose a specific 

one to wait for senices A simple example is that some customers only wait for their 



favorite barbers to have their hair cut. The model for this system can be constructed with 

the client architecture in which customers can be modeled as tokens and barbers can be 

modeled as resources. A customer token can request a resource according to hidher own 

choice and has hidher hair cut. 

Grouping: A server starts a service only when the number of tokens waiting for its 

service reaches a certain point Then it takes in some or all of the tokens and starts services 

for them simultaneously. For instance, a tourist bus begins a tour only when the waiting 

tourists are enough to fill at least half of its capacity. 

Routing: A token is sent by a server to another one after it gets serviced, or a token 

chooses another server after it finishes the service in the current server. The former is the 

case that a server routes a token while the latter is the case that a token routes itself in the 

system. For example, a packet of information is routed by a series of network nodes to the 

destination in a computer network. Another example is that a person goes shopping by car. 

She needs to buy many items including food, medicine, clothes, and so on. She makes 

the decision, possibly dynamically, on which order to visit a sequence of stores. 

Tandem queueing: The transfer of a token f?om a server to another one starts only 

when the second server is able to accept the token, i.e., there is a room in the second server 

for accommodating a token. Otherwise the token has to wait in the fim server until a room 

is available in the second server. One example is that the parts in an assembly line have to 

wait in the area of the current station before being transferred to the next station when 

there are rooms available for them over there- 

Multiple resources: A token needs several servers simultaneously for an activity. A 

simple example is that the repairing procedure can only be conducted for a broken 

machine when a mechanic is not busy and the equipment is available. The client architec- 

ture is suitable for the model construction here. Broken machines can be modeled as 

tokens, mechanics and the equipment can be modeled as servers. A broken machine can 

request a mechanic and the equipment before the repairing procedure can start. 



Entity Transformation: An entity changes its role between a dynamic entity and a 

static entity in a queueing system, For instance, a machine in a factory system is a static 

entity when it provides service for refining parts one by one that arrive at the machine. 

When the machine breaks down, it needs to be fixed by a mechanic who is in charge of the 

fixing work for all machines in the factory. That is, the machine changes to a dynamic 

entity which needs service fiom others when it is broken down. The machine fimctions as 

a static entity and starts to work for parts refinement again after it is fixed by the mechanic. 

This problem can be modeled with server architecture. A part is modeled as a token 

which moves through a set of machines in order to finish a series of refinement processes. 

A machine is modeled as a server that takes the parts fiom its wait queue, operates on 

them, and passes them to a machine at the next refinement stage. A mechanic is also mod- 

eled as a server. A special token models a breakdown event of a machine. The machine 

changes its status &om available into unavailable when the special token arrives at the 

machine. Then the special token is sent to the mechanic server by the broken-down 

machine server. The mechanic server keeps it for some time (modeling the passage of ser- 

vice time), and sends it back to the machine server indicating that the fixing job is done. 

Upon receiving this special token, the machine server changes its status back to available 

and starts its service again. 

2.4 Summary 

This chapter discusses the modeling issues tiom two dimensions: modeling frame- 

work and model architecture. 

First of all, the current modeling h e w o r k s  including event-driven, the process 

view, and LP view are reviewed in this chapter. The process view can be split into two 

type: process interaction and process description (or transaction flow). The analysis of the 

modeling power versus the execution efficiency of these three ~ e w o r k s  are then dis- 

cussed. It is concluded that the modeling power of the process view is generally greater 

than that of the event-driven view whereas the execution efficiency of the event-driven 



view is better than that of the process view. The LP view is essentially the event-driven 

view or the process interaction view with the constraint that no LP can access the state 

information ofanother LP except through messages. That is, messages should be used for 

accessing any shared variables in the LP view. Thus the execution efficiency of a model 

built with the LP view in a sequential environment is not as good as that with the event- 

driven view or the process interaction view due to the constraint of accessing shared vari- 

ables in the LP view. However, the mapping between PPs and LPs in the LP view results 

in the close relationships between the LP view and the real-world systems. This enables 

the model that uses the LP view to be easy to build and easy to understand. Hence, the 

modeling power of the LP view associated with either the event-driven view or the pro- 

cess interaction view is greater than that of the event-driven interaction view or the pro- 

cess view, respectively. 

The current two approaches, server architecture and client architecture, to modeling 

queueing systems are also discussed fiom the viewpoint of model architecture. The server 

architecture focuses on modeling servers, i.e., the entities that provide senice for others, 

in a queueing system. It emphasizes how a server allocatedde-allocates resources to a 

token, how it controls the token's activities, and finally routes the token to another server. 

A model with the server architechwe is usually implemented with the eventdriven view, it 

may be implemented with the process interaction view as well. On the other hand, the cli- 

ent architecture focuses on the modeling of the Lifethe activities of a token moving 

through the system. It puts the emphasis on describing the lifetime activities of a token in 

a chronological order as it moves through the system. This description is written in a sin- 

gle function in which the token actively requests resources before conducting an activity 

and returns the resources after the activity. A model with the client architecture is usually 

implemented with the process description view or process interaction view, it may be 

implemented with the event-driven view as well. 



Finally, fourteen modeling problems that commonly exist in the simulation of queue- 

ing systems are addressed with simple examples. Some of them are also discussed in 

terms of model architectures. 



Chapter 3 

Packages for Queueing System Simulation 

Although some general-purpose languages such as C* can be used to construct sim- 

ulation models, they cannot provide the modeling fhmeworks discussed in Chapter 2 for 

conceptual guidance. Those modeling frameworks have been provided by many simula- 

tion packages based on general-purpose languages. The major advantage of using a simu- 

lation package is that it automatically provides most of the features needed in 

programming a simulation model. It thus results in a significant decrease in programing 

time (and wudy project cost) in a simulation process [21]. 

There are numerous of simulation packages for modeling queueing systems as many 

discrete event simulations @ES) involve the simulation of queueing systems. Object-ori- 

ented (00) techniques have been widely used in the design and development of these sim- 

ulation packages. This chapter surveys some packages related to the simulation of 

queueing systems and discusses theu object orientation and modeling power as well as 

execution efficiencies. 

3.1 Approaches to 00 Simulation Package Design 

Object-oriented simulation has great intuitive appeal because it is easy to view a real- 

world system as being composed of objects [18]. 00 concepts are applicable to simulation 

software development at the following levels [2]: 

Abstraction: 00 techniques 1171 are applied in the analysis of the modeled system 

from the viewpoint of the real-world concepts. The easy mapping between real- 

world objects and software objects is emphasized at this layer. 

Design: 00 techniques such as encapsulation, inheritance, and polymorphism are 

applied in the overall software design. The software robustness, extensibility, 

maintainability, etc., are major concerns at this layer. 



Implementation: 00 programming (OOP) techniques such as encapsulation, 

inheritance, parameterized typing, etc., which may be related to a specific OOP 

language, are used for the implementation of the simulation sohare. 
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Fig. 3.1 Role of 00 Techniques 

There are three approaches to developing an 00 simulation package. The first one is 

to develop a data-driven simulator which can provide a set of simulation constructs at the 

abstract level for model co~l~truction. With a data-driven simulator, a model can be built 

with a set of data that are formatted and provided by the user. The data is fed into the sim- 

ulator through its interface such as a graphical user interface (GUI). The second approach 

is to provide those constructs by developing a simulation language as an extension of a 

general-purpose language, e.g., Simula is an extension of ALGOL language. The last 

approach is to provide those constructs by creating a library of simulation classes in an 

00 language such as C* [32] or Simula [14]. Some packages use the data-driven simula- 

tor approach combined with either language extension or Library-based approach in order 

to take a full advantage of 00 techniques. 

For the data-driven simulator approach, the user would be able to build simulation 

models by easily taking advantage of the close mapping between the simulation constructs 

and objects in the system to be modeled. There is no programming involved when using a 

data-driven simulator. The user can concentrate on the model design, model construction, 

and data analysis, rather than programming and debugging. 

The limitation of this approach is that it lacks the flexibility to handle a wide range of 

applications. For instance, the need of a new simulation construct for a particular model- 



ing problem may result in the user waiting for the simulation developers to add the con- 

struct into the simulator. This is because a data-driven simulator fails to take a fbll 

advantage of 00 techniques such as inheritance, polymorphism, parameterized typing, 

and so on. That is, the data-driven simulator approach only applies 00 techniques at the 

abstraction level, not yet at the design and implementation levels shown in Fig. 3.1. 

On the other hand, both language extension and library-based approaches have the 

flexibility to cover a larger range of applications than the data-driven simulator. The lan- 

guage extension approach also has the advantage that the compiler or pre-processor can 

provide strict type checking and code optimization capabilities. However, it has the disad- 

vantage of requiring the user to learn a new language and perhaps an entire new set of pro- 

gramming development tools. The primary advantage of the library-based approach is that 

the user can continue to use a familiar programming environment, and have N1 accessi- 

bility to the features of the base language. 

The packages using either of these two language approaches usually apply 00 tech- 

niques at the design and implementation levels, but not all of them M y  apply 00 tech- 

niques at the abstraction level. For instance, some packages provide a construct called an 

event (or a message) to model an entity that needs service fiom others in a queueing sys- 

tem. To model the passage of service time of the entity in a server is accomplished by 

sending an event (or a message) to arrive at the server at a later time which indicates the 

senrice is completed. Some events (or messages) in a simulation model even don't model 

any real-world objects, they are there just for the simulation purpose (e.g., an LP queries 

infomation in another LP). There are lots of these events (or messages) being sent around 

in a simulation model, and this usually creates confusion for engineers trying to under- 

stand and construct a model. 

Therefore, it is important to apply 00 techniques at all three levels when developing 

an 00 simulation package because this will result in a package that is easy to use as well 



as flexible enough to cover a wide range of applications. Thus the object orientation can be 

used for the evaluation of the modeling power of a simulation package. 

3.2 Packages for Object-Oriented Simulation 

Several packages related to simulating queueing systems are discussed in this section. 

Packages for sequential simulation including ~ r o ~ h e s ~ l  and HIT [4] are surveyed fol- 

lowed by the discussion of the packages for both sequential and parallel simulation klud-  

ing PROSIT, SimKit, and AIM-TN. 

3.2.1 Packages Only for Sequential Simulation 

Prophesy is a simulation package intended for queuing analysis and work flow pro- 

cesses. While oriented to simulate computer networks, Prophesy can support simulation of 

practically any other queuing and work flow problem. The hdamental objects of the 

Prophesy metaphor are Resources, Procedures, Profiles, and Messages. 

Resources: These are permanent entities in a simulation with a finite capacity and 

capable of receiving simulation messages, processing them, and delivering them to 

another resource. Each resource object may represent a single resource, or a cluster of 

cooperating resources, alI represented by a single icon in the GUI. A cluster of resources 

can be made to act upon a single receive queue (tightly coupled resources), or it might 

define a cluster of independent resource instances acting on separate queues. 

Procedures: Procedures are permanent objects called by any Resource. Procedures 

define a sequence of events that represent the resource's work flow in a chronological 

order. 

Profiles: Profiles are permanent objects associated with a resource. Profiles specify 

the performance characteristics of the attached resource. 

I. The information about Prophesy comes from the web site: http://www.csn.net/abstraction~ 



Messages: Messages are created as dynamic objects while the simulation executes. 

Messages are created according to the model specifications, and deleted when no longer 

needed. 

Therefore, the modeling fknework provided by Prophesy package is event-driven 

view. The server architecture is used for model constructions, and the Resources hc t ion  

as servers. Thus Prophesy may have good execution efficiency. 

Another software tool HIT supports model-based performance evaluation of comput- 

ing and communications systems. Specification of dynamic, dimeteevent, stochastic sys- 

tems is achieved by particular language-based and graphics-based description options. 

The concept about queues in HIT is different fiom others, and thus is interesting. HIT 

defines a queue as an autonomous object which has four "areas" with possibly limited 

capacity. These areas are arrival area, entry area, service area, and exit area. The arrival 

area holds unlimited arriving jobs. The entry area with possibly Limited capacity holds the 

jobs waiting for service. The s e ~ c e  area is the place to hold the jobs being seniced and 

has possibly limited capacity. The exit area holds unlimited jobs with completed service. 

Accordingly, there are four procedures to control job transitions between these areas [4]. 

Accept procedure is responsible for accepting the jobs £kom the arrival area into the entry 

area of the queue. Schedule is responsible for controlling the job transfer between entry 

and service areas. Dispatch procedure assigns service time to jobs. OfEeer procedure selects 

jobs permitted to leave the queue. 

Therefore, the server architecture is provided for the model construction in HIT. Here 

queues hction as servers and jobs function as tokens. HIT may have a great modeling 

power as its language-based approach using an OOP Sixnula which provides the process 

view, as its host language. 



33.2 Packages for Both Sequential and Parallel Simulation 

PROSIT [26] is a sequential and distributed object-oriented workbench for discrete 

event simulation. It provides an Object-Oriented framework for discrete event simulation. 

It contains a set of simulation and modeling classes. Simulation classes are those dealing 

with the simulation phase whereas modeling classes are those used to build models. These 

two kinds of classes are base classes. To mask the simulation paradigm to the final user of 

the simulator, a set of Library classes are provided for a specific field of application. These 

classes, gathered in a library, will allow the user to build a model at a higher level of 

description. With PROSIT, the user builds a model with dedicated class Libraries and user 

defined classes. Without code modification, the simulation can be executed in a sequential 

or distributed (in both optimistic and conservative variants) way. 

PROSIT is devoted to the development of a discrete event simulation system, 

designed from the ground up with distributed execution in mind [24]. Its design is based 

on the object-oriented paradigm. C* is used for both the simulator as well as simulation 

model construction. This means PROSIT is a package using the Library-based approach. 

The system provides both conservative and optimistic mechanism to synchronize pro- 

cesses [lo]. It also provides the suspension (for a simulation time period) and re-activation 

of execution for processes [I 11. 

Two architectures are chosen for model construction in PROSIT: server architecture 

and customer architecture. These two architectures correspond to the server architecture 

and the client architecture mentioned in Chapter 2 respectively where customers are the 

same as tokens. 

With the server architecture, the user describes a model as a set of servers which pro- 

vide different kinds of service for customers. Customers are received by a server, get ser- 

viced, and then are sent to other servers. The "active" objects in the model are the servers. 

They decide what to do with the customers being processed and where the customers 

should be sent. 



The customer architecture changes the control of execution fkom the server to the cus- 

tomer. A customer profile (type) represents a set of customers whose behavior is statisti- 

cally identical [24]. The customers Wetime behavior will be described by a single method 

that will be activated for each instance of customer of that type. The PROSIT simulator 

supports migrating a process from one processor to another. The customer process will 

migrate to the processor where a server resides when it needs to get the service fiom that 

server. This migration balances the workload among processors. 

A PROSIT simulation can be thought as a collection of concurrently active objects 

interacting via service calls in simulated time. An activity is an action performed by an 

active object and corresponds to the member hc t ion  behave(). An activity has a duration 

in simulated time. It can halt and be reactivated later. An activity terminates when the cor- 

responding function finishes. Thus a co-routine mechanism similar to that in Simula [14] 

is provided in PROSIT. An active object executes its main activity, the behave0 function, 

in an autonomous way, independently of, and concurrently with, other active objects [3]. 

Active objects can also have secondary activities which are attached to other bctions. All 

activities are NMing concurrently in the simulated time (all activities are running pseudo- 

concurrently in the sequential version) [3]. 

There are seven possible states for an active object: initialized, running, sleeping, 

blocked, suicided (prematurely terminated by itsell), killed (prematurely terminated by 

other objects), and finished. An object enters the initialized state when the active object is 

created in a C* constauctor, then is automatically managed by the kernel and ready to be 

activated. Its activation time for process is scheduled at this state. The object enters its 

Nnning state when its activation time is reached. During its lifetime, the object can either 

be in a ruaning state (i.e., currently executing or consuming time), in a blocked state (i.e., 

the main activity is blocked due to a synchronous request), or in a sleeping state (it has put 

itself in idle-wait state, waiting to be reactivated by another object). The object is consid- 

ered to be dead when its main activity has terminated. There are three kinds of death: fin- 

ished (Le., normal termination of the main activity), suicided (the object terminates itself 



prematurely), and killed (the object is terminated by another object using the termination 

primitive). 

PROSIT may have a great modeling power as it uses the process view with either the 

server architecture or the customer (client) architecture for modeling. However, the ineffi- 

ciency of the process view may make PROSIT less efficient. 

SimKit [16] is a C++ class library that is designed for very f a  discrete event simula- 

tion. SimKit presents a simple logical process view of simulation enabling both sequential 

and parallel execution without code changes to application models. The interactions 

between LPs in a simulation model are represented by messages (events) passing between 

them. This event-driven logical process view enables efficient scheduling of events via 

invocation of the corresponding LP's event-processing member bct ion rather than the 

more costly context-switching required in the process view [1q. 

The SimKit class library contains only three classes: sk-simulation for simulation 

control, sk-lp for modeling sub-space behavior and state transitions, and sk-event for 

modeling the interaction between the logical processes. A simulation model is constructed 

by deriving LPs fiom skJp class and messages (events) fiom sk-ev class. The program- 

mer also needs to instantiate a single instance of sk-simulation class in order to invoke the 

run time simulation kernel. 

An execution of a model starts and ends with a single thread of control executing on a 

single processor [16]. It goes through the following six phases: program initialization, 

model global initialization, LP initialization, simulation execution, LP termination, and 

simulation clean-up. 

The execution starts fiom the program idtiahtion phase in which the program 

main() hct ion is initialized and a single sk-sitnulatim object is instantiated. The 

sk - simulation is initialized and all LPs in the model are instantiated in the second phase - 
SimKit and model global initialization. Allocation of LPs to processors is static and may 



be optionally specified by the modeler via the LPs constructor [lq. The second phase 

ends with passing control to the simulation run time system. In the third phase LP initial- 

ization, al l  LPs' initiaiue member hct ions  are invoked for execution- The initial events 

are usually scheduled in these LPs' initialization member functions. Then the model exe- 

cution is controlled by the Simulation kemel in stage four - simulation execution. Events 

are passed to the corresponding LPs by invoking their process member hctions. The 

simulation execution stage ends either because the simulation end time is reached or an 

error occurs. All LPs' terminate member functions are executed then in stage five - LP ter- 

mination. Finally the simulation kernel retwns the control back to the main() hc t ion  of 

the application in simulation clean-up phase. 

The library-based approach is used for the development of SimKit so that 00 tech- 

niques are used at both design and implementation levels. However, the generality of the 

LP view makes SimKit good for the application in general discrete event simulation, but 

not so good for the simulation of queueing systems. This is because SimKit doesn't pro- 

vide enough high level constructs such as queue for modeling queueing systems. 

ATM T&c and Network (ATM-TN) system is a high fidelity simulator which char- 

acterizes ATM network behaviors at cell level. The simulator incorporates three classes of 

ATM traffic source models: an aggregate ethemet model, an MPEG model and a World 

Wide Web transactions model. Six classes of ATM switch architectures are modeled 

including output buffered, shared memory buffered and cross bar switch models, and then 

multistage switches which can be built £?om these three basic models [33]. The simulator 

is built with C++ language and the interfaces provided by SimKit. The event-driven logi- 

cal process view with 00 methodology is used in the construction of the simulator. ATM- 

TN is a highiy efficient simulator dedicated to the simulation of A'IU networks, thus it 

cannot be used for the simulation of general queueing systems. 



3.3 Summary 

The major advantage of using a simulation package over a general-purpose language 

is that it automatically provides a modeling Mework  for the model constructionC It also 

provides most of the features needed in programming a simulation model. It thus results in 

a significant decrease in programming time (and usually project cost) in a simulation pro- 

cess. The use of 00 techniques has the potential for developing a simulation package that 

is easy to use because it contains close abstraction of the real-world concepts. This chapter 

discusses the approaches to developing the simulation software fiom the third dimension, 

object orientation. 

There are three levels for 00 techniques applicable in developing a simulation pack- 

age: abstraction, design, and implementation. There are also three approaches to develop- 

ing of an 00 simulation package: data-driven simulator, language extension, and Library- 

based approach. The data-driven approach are usually successll in applying 00 tech- 

niques at the abstraction level, but not at the design and the implementaion level. The lan- 

guage extension and the library-based approaches have the potential to apply 00 

techniques at all three levels. 

Packages related to queueing system simulation in the literature usually apply 00 

techniques at the abstraction level, or at design and implementation level. Some of them 

such as PROSIT applies 00 techniques at all three levels, but they suffer fiom the ineffi- 

ciency problem because they use the costIy context switching mechanism to provide the 

process view. 

ATM-TN is an efficient data-driven simulator that is dedicated to the modeling and 

simulation of ATM networks. It thus cannot be used for modeling other queueing systems. 

SirnKit is a library-based simulation package built with an OOP language. It provides 

a very simple and efficient LP view for modeling and simulation various DES problems 

both in sequential execution and in parallel execution. However, the modeling constructs 



(or simulation primitives) provided in SimKit are only at the simulation level, not at the 

application level when they are used for modeling a queueing system. That is, SimKit 

does not provide enough high level simulation constructs such as queue and server for the 

simulation of queueing systems. Thus SimKit is a good candidate for developing a pack- 

age at a higher level for 00 modeling and simulation of queueing systems. 



Chapter 4 

QueKit: An 00 Simulation Package for Queueing Systems 

The goal of QueKit is to provide an object-oriented (00) environment for queueing 

system simulation that facilitates the modeling process while retaining efficiency both in 

sequential execution and in parallel execution. 00 techniques are used for designing Que- 

Kit application programer's interfaces (API) to strive for ease of use. The logical process 

(LP) methodology is used for implementing the QueKit package so that models in QueKit 

can be executed efficiently both in sequential and in pardel environment. 

An 00 modeling framework provided by QueKit is presented by discussing QueKit 

base classes, its server modeling architecture, and its simulation classes in this chapter. An 

extended layer of QueKit is then outlined with the description of QueKit extended classes 

and its other two modeling architectures. Finally, some implementation issues are dis- 

cussed followed by a brief summary. 

4.1 Ovemew of QueKit 

The "core" objects in ~ u e ~ i t l  are Tokens, Sets and Servers. Tokens represent those 

entities that need services from other entities while Servers represent other entities that 

provide these services in a queueing system. Tokens flow through a network of Servers to 

obtain services fiom those Servers in a QueKit model. Sets are places for keeping Tokens 

in some logical fashion such as first-come-first-serve (FIFO). A Server has two Sets: a 

wait Set for holding Tokens that amve at the Server and are waiting for service, and a ser- 

vice Set for holding Tokens that are currently being serviced. 

- - - - -- - - - - - 

1. The information comes from the web site: http~/www.wne~cdtelesim/quekit.hml. 
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Fig. 4. I QueKit O v e ~ e w  

The four '%ore9' methods of a Token are keep (servicelime), move (destset), send 

(destserver, delay), and cancel 0. The keep method is invoked for a Token which resides 

in a Set to initiate an activity of a wait or service interval. The underlying event which 

ends such a Token's senice or wait interval always occurs within the same Server. The 

move method moves a Token between different Sets in the same Server with no delay. The 

send method moves a Token from one Server to another (possibly the same) Server with a 

time delay that represents its transit time. The cancel method explicitly cancels a Token's 

current activity, initiated either by keep or by send method. None of these four methods 

can be ovemdden by the user. 

In a QueKit model, a Token either resides in a Set, uniquely defined by currentSet0, 

or is in transit between Servers. A Server's schedule (7bken) method is invoked when a 

Token arrives at the Server as a result of a previous send, or when a previously initiated 

keep to perform a senice or complete a wait has elapsed. An invocation of the schedzile 

function may transfer Tokens between the wait Set and service Set, may preempt current 

s e ~ c e s ,  may initiate new Token services, and may send Tokens to other Servers. 

The user will typically override a Server's schedule method to model different senice 

strategies in a QueKit model. The w r  may also extend a Token into a class of hisher own 



needs which is more powerfid and/or more specific than the base Token by adding more 

methods that a schedule method can invoke. 

The class Server is derived fiom class Entity which models a sub-system of the mod- 

eled system (it is essentially an LP) and contains no Set. The Source and Sink classes are 

also derived from Entity. The class Entity has an initialize 0 method which is expected to 

create the initial Tokens in a model and schedule their movement. It also has a terminate 0 
method which is expected to do some clean-up work such as collecting the final statistics 

after a simulation. Class Sewer, Source, a d  Sink all inherit these two methods. However, 

both initialize and terminate do nothing in the base Entity class. Thus the user may over- 

ride the initidlire method of a Server to get the initialized Tokens unless using Source 

objects in a model. The terminate method may be overwritten by the w r  for the collec- 

tion of the final statistics. 

Class QueSimulation is in charge of the simulation control in QueKit. The user needs 

to instantiate a single instance of QueSimulation class in order to invoke the run time sim- 

ulation kernel. 

The model execution starts and ends with a single thread of control executing on a 

single processor in QueKit in the same way as in SimKit [lq. Six phases are involved in a 

model execution: program initialization, QueKit and model global initialization, Entity 

initialization, simulation execution, Entity termination, and simulation clean-up. 

The execution starts fiom the program initialization phase in which the program main 

function is initialized and a single QueSimulation object is instantiated. The QueSimula- 

tion is initialized and all Entities in the model are instantiated in the second phase - QueKit 

and model global initialization. Allocation of Entities to processor is static and may be 

optionally specified by the modeler via the Entity constructors. The second phase ends 

with passing control to the simulation run time system. In the third phase Entity initializa- 

tion, all Entities' (including Servers, Sources, etc.) initialize member hct ions are 

invoked for execution. The initial Tokens are usually created and scheduled for actions in 



these Entities' initialization member functions. Then the model execution is controlled by 

the simulation kernel in stage four - simulation execution. Tokens are activated for actions 

in the corresponding Entities by invoking Entities' schedule member firnctions. The simu- 

lation execution stage ends either duo to the simulation end time is reached or duo to an 

error occurs. AU Entities' terminate member f'unctions are executed then in stage five - 
Entity termination. Finally the simulation kernel returns the control back to the rnnin h c -  

tion of the application in simulation clean-up phase. 

4.2 Object-Oriented Event-Driven Modeling Framework 

The main driving force for developing QueKit is to strive for much greater ease of use 

than the SimKit [16] package. Specifically, it is to provide an 00 environment in simula- 

tion of queueing systems for the user at the abstraction level in addition to the design and 

implementation levels provided in SimKit. This will allow the user to easily map the real- 

world objects into the software objects without having too much knowledge about simula- 

tions. Meanwhile, QueKit also aims to preserve the high efficiency of SimKit as much as 

possible. 

SimKit provides a very simple and efficient logical process (LP) fhmework for gen- 

eral discrete event simulation [lq. The SimKit API has been used for developing QueKit 

because of its simplicity and efficiency. The library-based approach of SimKit provides 

the Ml accessibility to its base 00 language (C++ or Java) so that 00 techniques such as 

inheritance, polymorphism, parameterized typing, etc., can be applied at the design and 

implementation levels. The library-based approach is also used in the development of 

QueKit, and QueKit is built at the application level of SimKit. This development strategy 

enables all 00 techniques which are applicable in SimKit applicable in QueKit as well. 

Moreover, QueKit provides a set of high level model definition primitives specifically for 

queueing system simulation so that 00 techniques are applicable to the model abstraction 

level. Thus 00 techniques are applicable in QwKit at all three levels including abstrac- 

tion, design, and implementation so that QueKit has greater modeling power than SimKit 

in the simulation of queueing systems. 



In the QueKit environment, entities which need services in a system are modeled as 

Tokens and entities which provide s e ~ c e s  for others are modeled as Servers. A QueKit 

model can be viewed as a collection of objects (Tokens, Servers, etc.) which are the 

abstract representations of the objects in the system being modeled. The schedule (Token) 

method of a Server describes a series of actions the Server performs whenever an event 

occurs such as the completion of a service for a Token in the Server. 

In a banking machine system, for instance, customers are d y  modeled as (event) 

messages and the banking machine is modeled as an LP in many 00 packages providing 

the LP view. To model the passage of service time when a customer is being serviced by 

the banking machine, the machine LP sends the customer (event) message arriving to 

itself after some delay. The model is depicted below. This shows that the LP view does not 

l l l y  apply 00 techniques at the abstraction level. That is, the user has to describe an 

object's behavior from the simulation domain h e a d  of the problem domain. It thus 

causes confusion and ~ c u l t i e s  for engineers who have not much knowledge about sim- 

ulations when they build simulation models with the LP view. 

customer 2 (modeling the passage 
of service time) 

customer message customer at service 

arriving at customer queue '7' leaving the system 
the system banking machine LP 

Fig. 4.2 Logical Process Modeling View 



In QueKit, however, customers are modeled as Tokens and the baoking machine is 

modeled as a Server. To model the passage of service time when a customer being ser- 

viced by the banking machine, Tokrrkeep (Time) method will do the job. The customer 

object just resides inside the service Set of the machine Server until it is activated again by 

the Server::scheduIe (Token) method after the service time has passed. 

There is no event or message object being sent back and forth in any QueKit model. 

This is different from many current 00 simulation packages which provide event-driven 

or LP view. Events or messages which are necessary in a simulation are transparent fiom 

the view of the user in QueKit. 

customer Token customer at service banking machine Server 

arriving at 
the system 

customer queue leaving the 

customer Token.keep (serviceTime) 

___3 

system 

Fig. 4.3 00 EventODriven Modeling View 

4.3 Base Layer 

The base layer of QueKit is developed on top of SimKit. It contains base classes for 

modeling a queueing system and simulation classes for simulation control and statistics as 

well as trace information collections. The class hierarchy is shown below. These classes 

support the server modeling architecture. 
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Fig. 4.4 Class Hierarchy of QueKit Base Layer 

4.3.1 Base Classes 

The basic classes contain Token, Set, Entity, Queue, Server, Source, and Sink. 

A Token models an entity that needs services fiom other entities in a queueing sys- 

tem. A Set models a place for holding Tokens. An Entity models a sub-system in a queue- 

ing system, i.e., it is essentially an LP. 

Queue is derived fiom Set and is a special Set provided by QueKit A Queue models a 

place for holding Tokens in a priority order beginning fkom the highest priority. 

A Source models an object which injects Tokens into the system in a pattern such as 

exponential distribution inter-arrival time. A Sink models an object which absorbs Tokens 

when they exit the system. 

Server is derived fiom Entity and it models a sub-system that provides senrice for 

other entities in a queueing system. A basic Server has two Sets: a Queue with infinite 

capacity as its wait Set for holding the Tokens waiting for services and a Queue with 

capacity of one as its senice Set for holding the Token being serviced. 

The functionality of the base Server::schedule (%ken) method is very simple. It puts 

the newly arrived Token into its wait Set if the service Set is full. Otherwise it puts the 



Token into the service Set, lets it keep for one time unit for modeling the service activity. 

Then it drops the Token after the completion of the service, and schedules the service for 

another Token in its wait Set The basic Server::schedule (Token) method intends to 

present a sample implementation for the user to show how a Server bctions as a behav- 

ior controller for both Tokens' activities and resource management. It does not intend to 

provide an implementation that can be used directly by the user. Thus the user often needs 

to override this basic implementation in order to provide a specific fimctionality related to 

hisher application problem. 

The following are the base classes and their interfaces. 

class Token // entities that require services from others 

Token 0 11 constructors 
Token (String type) 
Token (TokenStats stats) 
Token (String type, TokenStats stats) 

int id 0 
S h g  type 0 
double priority 0 
Set currentset 0 

11 unique Token identifier 
I/ Token's type 
// Token's priority 
// Token's current location or null if sent 

void keep (double t) I/ scheduling an activity for the Token, i.e., 
/I the Token wilI be activated after time t. 

void send (Entity dest, double delay) I/ Token sent to destination Entity dest 
// and arrives there after time delay 

Token move (Set destSet) I/ Token moves &om currentSet0 to deaSet 
N in an Entity, returns the dropped Token. 

void cancel 0 // explicitly cancel Token's current activity, 
/I the previous keep (...) and send (...). 

class Set // place for keeping Tokens in an Entitv 

Set 0 // constructors 
Set (Entity owner) 
Set (Setstats stats) 
Set (Entity owner, Setstats stats) 



int id 0 
string type 0 
int capacity 
int numTokens 0 
Entity ownerEntity 0 
boolean fitllo 

// unique Set identifier 
// Set type 
// max # Tokens in Set, can be infinite 
N current number of tokens in the Set 
// current Entity which owns this Set 
// true if numTokens 0 = capacity 0 

abstract Token put (Token tk) N put tk into Set, return the dropped Token 
I/ (could be tk) if Set has a finite capacity. 

abstract Token get 0 N get a token out of the Set 
abstract Token get (Token token) /I get a specific token out of the Set 
abstract Token find (String type) N find a token with the specific type 
abstract Token find (int id) I/ find a token with the specific id 

class Queue extends Set I/ a Set in which Tokens are kept in a ~rioritv order 

Token put (Token token) N put a token into the Set 
Token get 0 // get a token out of the Set 
Token get (Token token) N get a specific token out of the Set 
Token £ind (String type) N find a token with the specific type 
Token find (int id) N find a token with the specific id 

Token first () N get first Token in the Queue 
Token last 0 N get last Token in the Queue 
Token next (Token tk) // get the Token next to tk in the Queue 
Token prev (Token tk) // get the Token before to tk in the Queue 

class Entity extends SimKit.LP // abstract logical processes (LP) 

Entity () /I constructors 
Entity (EntityStats stats) 

int id 0 N unique Entity identifier 
abstract void schedule (Token tk) N called on Token entry, exit or the 

N completion of any task or service 

class Server extends Entity // semce nodes in a network of servers 

Server (Set waitset, Set serveset) // constructors 
Server (Entity Stats stats) 
Server (Set wait Set, Set serveset, Entity Stats stats) 

Set waitset 0 N server's entry and wait area 



N (default is a Queue). 
Set serveset 0 // server's service area where keeping the 

N Tokens being s e ~ c e d  (defadt is a Queue). 
void schedule (Token dc) // a simple scheduler for docation resource 

// to Tokens, is usually overridden by user 

class Source extends Entity // for injecting Tokens into the system 

Source (Class clas) N constructors 
Source (Class clas, String type) 
Source (Class clas, String type, double pl) 
Source (Class clas, String type, double pl, double p2) 

S h g  type 0 

Class template 0 

double pl 0 

double p2 0 

double startTiime () 
Entity destination () 
double delay 0 

N Source type: "Detend', "Uniform", 
N "EXP", "?rJormalJ'. 
/I the template of the dynamic entities 
N which are injected into the system. 
// parameter 1 for inter-arrival time: 
N "Determ" - fixed inter-arrival time; 
// iCUniform" - lower bound; 
N "EXE'" - mean, 'Wormal" - mean. 
// "Uniform" - upper bound; 
N 'Wormal" - standard deviation. 
// start time for functioning 
I/ default destination Entity for the Source 
// delay from Source to destination Entity 

void schedule (Token tk) N injecting a Token into the system and 
// scheduling the time for the next Token 

class Sink extends Eat& // for absorbing Tokens in the svstem 

int totdN~fllTokens 0 N total # of Tokens absorbed so far 
void addTotaNumTokens (int n) // adding n to the totaNumTokens 
void schedule (Token tk) /I counting for the totallrlumTokens, 

N may be ovemdden by the user 

4.3.2 Simulation CIasses 

Simulation classes in QueKit are used for conducting a simulation such as controlling 

the simulation process, collecting statistics and so on. They include QueSimulaton, Trace, 

Stats, TokenStats, Sets tats, and Entity Stats. 



QueSimuIaton is used for the simulation control. It is derived fiom class Simulation 

in SimKit. There is only one instance of QueSimulation can exist in a simulation. A simu- 

lation starts when the m 0 method of this instance is cded in the main hc t ion  of the 

application program. The user ofien overrides its initialize 0 method to instantiate all Enti- 

ties in a simulation. Then the simulation control is handed to the underlying simulation 

kernel. The terminate 0 method is called by the kernel when the simulation is ended 

because the simulation end time is reached or an enor is occurred. The terminate (I 

method is often overridden by the w r  to collect final statistics of a simulation. 

Trace class is designed for collecting trace information about Tokens' activities. The 

information about a Token's movement in the model during a simulation can be collected 

by setting up the Token's trace attributes. This is done by calling the method Token::set- 

Tracing (attributes). There are four attributes for tracing: EntityEntryTrace, EntityErit- 

Trace, SetEntryTrace, SetEritTrace. They can be set up simultaneously by bitmap or 

operation in Token:.-setTracing (attributes). The information about the Token's activities 

related to any Resource can be collected by setting other four attributes: MsgEntityEn- 

tryTrace? MsgEntityExitTruce. MsgSetEntryTrace, MsgSeffitTrace. 

Stars is the base class for class TokenStats, SetStats, EntityStats. Any Token can col- 

lect some basic statistics by attaching a TokenStats object. Accordingly, SetStats object is 

for the statistics collection in a Set, and EntityStats object is for the statistics collection in 

an Entity. 

The main statistics collected by a TokenStats object for a Token are the number of 

Entities it passed, number of wait Sets as well as number of service Sets it entered. It also 

includes the average time and standard deviation of the rime for the Token having stayed 

in any Entity, any wait Set, and any service Set in the model. 

The main statistics collected by a SetStats object for a Set are number of Tokens 

passed, number of Tokens dropped in the Set, maximum and average Set occupancy, mean 

and standard deviation of the time for Tokens staying in the Set. 



The main statistics collected by an EntityStats object for an Entity are number of 

Tokens passed, average and standard deviation of a Token staying in the Entity. 

class QueSimdatiom extends Simulation // simulation control 

Entity getEntity (int id) 
Enum getEntities 0 

/I get an Entity with the id 
N get the Entity List 

class Trace N trace class for collecting trace information about Tokens 

Trace 0 // constructors 
Trace (String name) 

int id 0 
String fileName 0 

N unique Trace identifier 
// trace file name 

void print (String info) // output a Line of information to the trace file 

class Stats // base class for coUecting statistics 

Stats 0 // constructor 

int id 0 // unique Stats identifier 

class Tokeastats extends Stats // for collecting stats for Tokens 

Tokens tats (To ken token) // constructor 

Token owaerToken 0 I/ the Token that the Stats object belongs to 
int nunwaitsets 0 
int numServeSets () 
int numEntities 0 
double 10calWaitTiie 0 
double IocalServeTiie 0 
double global WaitTiie 0 
double globalServeTWie 0 
double meanSetWaitTime 0 
double stdvSetWaitTiie 0 
double meanSetServeT0ie 0 
double stdvSetServeT0ie 0 
double meanhtity WaitTiie 0 
double stdvEntityWaitTiie 0 



double meanEntityServeTme 0 
double stdvEntityServeTiie 0 

void reset 0 
void resetLocal0 

void entry (Entity e) 
void exit (Entity e) 
void entry (Set s) 
void exit (Set s) 

class SetStats extends Stats N for collectine stats for Set 

Setstats (Set set) /I constructor 

Set ownerset () I/ the Set that the Stats object belongs to 
int maxoccupancy 0 
int meanOccupancy 0 
int throughput 0 
int n d r o p p e d  0 
double utilization 0 
double meanServeTime 0 
double stdvServeTiie 0 

void entry (Token tkn) 
void exit (Token tka) 

class EntityStats extends Stats // for collecting stats for Entity 

Entity Stats (Entity entity) N constructor 

Entity ownerEntity 0 /I the Entity that the Stats object belongs to 
int throughput 0 
double meanServeTime 0 
double stdvServeTiie 0 

void entry (Token tkn) 
void exit (Token tkn) 

4.3.3 Sewer Architecture 

A model is mainly composed of Tokens and Servers in the server architecture. Tokens 

model the entities that need services &om other entities, and Servers model entities that 



provide those services. In the server architecture, Tokens flow through a network of Serv- 

ers to get services from these Servers. Servers are active objects in the server architecture 

for both resource management and Tokens' activity control. A Server decides when and 

how to allocate resources to Tokens and arranges their activities through its schedule 

(Token) method. 

Entities 

Server Server 

CPU Disk1 

I Server 
I r .  Disk2 -P 

I computer system 
L,,,,-,-,, ,,,, 

Fig. 4.5 Timesharing System 

For instance, in a small timesharing system [19], there are 16 user terminals con- 

nected to a minicomputer system with two disks. A user thinks for some time, sends a 

request to the computer system, and waits for the system response. When the response is 

received, the user thinks again and then initiates another request. The process of a request 

may cost several CPU and disk operations alternatively in the computer system. There- 

fore, this timesharing system can be modeled with the server architecture shown above. 

The CPU and two disks are modeled as Servers. Terminals (sub-systems) are modeled as 

Entities and users' requests are modeled as Tokens. 

4.4 Extended Layer 

The above passive Token vs. active Server approach in the server architecture is con- 

venient for modeling the scenario in which a master scheduler in a Server takes care of 



everything: allocating resources to a Token, scheduling the completion of a sentice for the 

Token, and eventually routing (sending) the Token to another Server. When a Token needs 

more than one resource simultaneously in an activity and the allocation strategies of these 

resources are different, e.g., one is based on first-come fmt-serve (FCFS) and another is 

based on Tokens' priorities, the schedule (Token) of the Server will become quite compli- 

cated and lack clarity. 

For example, in a hospital system [q, there are limited beds in the hospital ward for 

accepting patients. A patient is admitted to the ward ifthere is a bed available, otherwise s/ 

he has to wait for a bed. She stays in the ward for some time for the treatment. She may 

need an operation after the treatment. There is only one theatre in the hospital. The patient 

has to stay in the ward for a while after the operation and then returns hidher bed and is 

discharged fiom the hospital. The system is illustrated below. 

Fig. 4.6 Hospital System Diagram 

With QueKit server architecture, patients can be modeled as Tokens in the hospital 

system. However, the theatre and the ward cannot be modeled as different Servers because 

a patient who is in an operation st i l I  reserves hidher bed in the ward. Thus the ward and 

the theatre have to be modeled as a single Server shown as following. 
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Fig. 4.7 Hospital System (Server Architecture) 

There are drawbacks for modeling the hospital system in above server architecture. 

Since the management of the ward and the theatre in the hospital may be relatively inde- 

pendent of each other. With the server architectwe, al l  patients's activities and resource 

allocation/deallocation of beds and the theatre are forced to be described in a single func- 

tion (Hospital Server's schedde method). The results are: (1) the Hospital Server's sched- 

ule method is relatively complicated; (2) the natural p a d e l  activities in the system are 

forced to be totally serialized in a simulation even if the model is run on a parallel 

machine. 

The extended layer of QueKit will solve this problem by separating the functionality 

of a Server into two parts, one for the resource management and another for the Tokens' 

activity management. This layer contains the following classes that are derived fiom Que- 

Kit base classes. 

4.4.1 Extended Classes and Interfaces 

Extended classes include Job, Client, and Resource. Job is derived fiom Token. A Job 

models an active entity that request services fiom other entities in a queueing system. Cli- 

ent is derived fiom Entity. A Client models a behavior controller for a set of Jobs that 

behave in the same way. The schedule method of a Client describes how these Jobs get 

resources and conduct their activities in a chronological order during their lifetime or 



period of their Lifetime. A base Client has a host Set for holding the Jobs which behave in 

the same way while they are in the host Set. 

Resource is derived fkom Server and it models a sub-system for a single sort of entity 

which provides service for other entities. A Resource is a specialized Server and it is only 

responsible for handling the resource allocatioddeallocation requests £?om Jobs. 

The base functionality of the Resource::schedule (Token) method is dedicated to the 

alIocation/deallocation of the resource. Upon receiving a Message (derived from Token) 

for resource request, it sends the Message back to its host Entity when the resource is 

enough, otherwise it puts the Message into its wait Set. Upon receiving a Message for 

resource retum, it recovers its resource amount and drops the Message. The user can over- 

ride this base fhctionality in order to provide more complicated one for hidher applica- 

tion problem. 

class Job extends Token // active entities that muire service fmm others 

N requesting a specific amount resource from res with a specific priority, 
// default amount = 1.0, default priority = 0. 
void requestRes (Resource res) 
void requestRes (Resource res, double amount) 
void requestRes (Resource res, double amount, double priority) 

N preempting a specific amount resource from res with a specific priority, 
// default amount = 1.0, default priority = 0. 
void preemptRes (Resource res) 
void preemptRes (Resource res, double amount) 
void preernptRes (Resource res, double amount, double priority) 

// returning a specific amount resource to res, default amount = 1 .O. 
void fieeRes (Resource res) 
void fieeRes (Resource res, double amount) 

class Client extends Entity /I activity controller for Jobs 

Set hostset 0 
void end 0 

// host Set for all Jobs in the Client 
N mark the end of the Lifetime of Client, 
N and destroy it. 



class Resource estends Server // sub-wstem for resource aUocation/deallocation 

double capacity 0 
double amount 0 

/ I  maximum amount of resource 
N current amount of resource 

void schedule (Token msg) N allocating!deallocatiag resource to the 
// Token associated to msg 

4.4.2 Client Architectare 

A model is mainly composed of bbs, Resources, and Clients in the client architec- 

ture. Client class is derived from Entity class as described above. A Client class provides a 

behavior control profile which represents the lifetime activities of a group of Jobs whose 

behaviors are statistically identical. The behavior of the group of Jobs is described by the 

schedule method of a Client class. A typical schedule method is the description of a series 

of actions about Jobs' lifetime activities in a chronological order. Resource class is also 

derived fiom Entity class. A Resource object functions as a passive resource controller in 

the sense that it only controls resource allocation/deallocation but has no control on Jobs' 

activities and how long resource will be possessed by Jobs. Thus the schedule method of a 

Resource object is dedicated to resource allocation/deallocation. In a Client, a Job decides 

how long it possesses the resource by its keep m m e )  method and returns the resource by 

its PeeRes (Resource) method later. 

The following model of the above hospital system depicts this kind of distributed con- 

trol in which the management of an independent resource is handled in a Resource object 

and the lifetime activities of the same kind of Jobs are handled in a single Client object. 

The solid lines are the routes of Jobs and the dashed Lines indicate the communications 

between Clients and Resources. 
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Fig. 4.8 Hospital System (Client Architecture) 

The above model is easier to build than the model shown in Fig. 4.7 because the com- 

plexity of the schedule method of the single Hospital Server in Fig. 4.7 is distributed in 

four objects (PatientACLient, PatientBClient, Beds, and Theatre). Furthermore, the above 

model exploits more natural parallelism of the system than the model shown in Fig. 4.7 

because the four objects can be dispatched into at most four different processors and exe- 

cuted in parallel. 

Nevertheless, the execution of a model built with the client architecture is not as effi- 

cient as that with the server architecture in sequential environment. This is because at least 

two Messages (two events involved) for a resource allocation and one Message (one event 

involved) for a resource deallocation are needed in a Client while only one invocation of 

schedule (Token) in a Server (one event involved) can allocate and deallocate several 

resources. 

Therefore, there are trade-offs between the clarity of model presentation and the exe- 

cution efficiency of model when choosing an architecture for model construction. When 

the allocation of resources is simple, i.e., the assumption of a master controller for 

resource allocation/deallocation is close to the situation in reality, the server architecture is 

preferred. This is because it guarantees good execution efficiency while preserving good 



clarity for the model. On the other hand, when the allocation of resources is complex, e.g., 

the allocatioddeallocation of those resources are independent of each other with merent 

strategies such as FIFO and priority, the client architecture is preferred In this case, the 

hctionality of the complex schedule method of a Server is decomposed into three p-: 

(1) a simple schedule method in a Client which chronologically describes the lifetime 

activity of Jobs in a straightforward way; (2) a dedicated resource controller in a Resource 

for handling the allocation/deallocation requests fiom lobs; (3) communications between 

Clients and Resources via Messages. (2) and (3) are mostly provided by the QueKit pack- 

age. Thus the work of the application programmer spent on model construction and 

debugging will be greatly reduced and the model will be more readable so that the produc- 

tivity of the software development is increased fkom the view point of the sohare engi- 

neering. 

Hence, part of the model execution efficiency seems to be scarified for good model 

clarity in the client architecture. However, the decompositioa of the functionality of a cen- 

tralized Server results the model inheriting more natural parallelism fiom the modeled 

system. This is because a Job's activity is independent of resource allocation/deallocation 

to another Job so that they can be handled simultaneously in a parallel environment. Thus 

the model execution efficiency for a model built with the client architecture may be equiv- 

alent to or better than that of a model built with the server architecture for modeling the 

same system when running in a parallel environment. 

4.4.3 Server-Client Architecture 

Using one of the above architectures solely in a model construction may not be 

enough to exploit all potential parallelism of a red system being modeled while preserv- 

ing good model clarity. The server-client architecture allows both server and client archi- 

tectures to be applied seamlessly in constructing a single QueKit model. 
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Fig. 4.9 Server-Client Architecture 

In the server-client architecture, the lifetime activity of a lob is divided into several 

periods in a chronological order according to the way how resources are handled in the 

real system and the clarity of describing the handling of these resources in the schedule 

methods. Each activity period is described in a schedule method of a Server or a Client. 

Jobs flow through a network of Servers and Clients to get services and complete their We- 

time journey. As depicted in Fig. 4.9, a Job may start from a Server, travels through a 

series of Servers to get senices. Then it is sent to a Client, experiences a sequence of 

activities inside the Client, and is finally sent to another Server. This pattern may repeat 

until the Job finishes its lifetime journey and is absorbed in a Server or a Client. 



4.5 Implementation Issues 

The QueKit package is built upon the SimKit package. Therefore, any primitive in 

QueKit is implemented at the application level of SimKit The pseudo-code for imple- 

menting three methods of Token class and two methods of Job class are presented in this 

section. 

Both simulated delay (Token::keep (lime)) and event cancellation (Token::cancelo) 

are associated with process (Evenr) method in Entity class. This method is inherited from 

Entity's parent class LP in SimKit for handling events. It is defined as a final method so 

that it cannot be overridden by the application programmer. In this method, the 

Entity.-:schedule (Token) hc t ion  is invoked only when the processed event is effective, 

i.e., its associated Token has not cancelled the event This is done by comparing the event 

identification number of the processed event and the event identification number recorded 

in the associated Token. The processed event is effective only when these two numbers are 

the same. Otherwise, the processed event has been cancelled either implicitly by multiple 

Token::keep (Erne) or explicitly by Token::cancel@ 

public void process (Event ev) { 

QEvent Qev = (QEvent)ev; 

N ignores any canceled event, only activates the Token which is associated 

// with an effective event (i.e., there is a Token currently associated with it) 

if (Qev.tokeno.id0 = Qev.id0) 

schedule (Qev.token0); 

1 

Fig. 4.10 Pseudo-Code for Entity::process (Event) 

4.5.1 Simulated Delay 

Since the 00 event-driven view is used in QueKit, the event object is transparent to 

the user, thus any activation of a Token by Entity::schedule (Token) is associated with a 



process of an event object inside an Entity. The simulated delay (Tokenrrkeep (Erne)) is 

usually for modeling the passage of a specific amount of time. For the three base classes in 

QueKit, i.e., Token, Entity, and Set, only Token can be associated with the simulated delay 

primitive. This is because Entity::keep (lime) can only be implemented in the process 

view as the context switching is necessary for controlling the passivation and activation of 

a process to model the passage of time. And Set::keep @me) makes no sense here as a Set 

is only a place for holding Tokens. 

Token::keep (lime) models a Token to be engaged into an activity for a specific 

amount of time in an Entity, e.g., the Token is being s e ~ c e d  in a Server. A Token must 

reside in a Set of an Entity when it is engaged in an activity- An Entity can have multiple 

Tokens being engaged in their activities simultaneously, and each of which is associated to 

an effective event. A Token can have only one outstanding keep effective. Although a 

Token can issue multiple keeps, the latest keep will make its previous keep ineffective. 

void T0ken::keep (Time keepTme) ( 

if ((keepTime < 0) or (currentset = null)) ( 

error handling 

) else { 

QEvent ev = new QEvent (this);// associate the event with this Token 

eventId = ev.ido;// record the effective event id 

// schedule the event arriving at its owner Entity after time keepTime 

ev.send-and-delete (ownerEntity0, currTiie0 + keepT'ixne) ; 

Fig. 4.11 Pseudo-Code for Token::keep (Tie) 



4.5.2 Token Movement 

There are two types of movement for a Token in a QueKit model. One is modeling a 

Token moving fiom one Entity to another. For instance, a Token is routed to another 

Server after it finished the service in the current Server. This is done by invoking 

Token::send (Entity. lime). It causes the Token to be sent tc a specific Entity and reach that 

Entity after the specific time of delay. 

void T0ken::send (Entity dest, Time delay) ( 

$((delay < 0) or (dest = null)) { 

error handling 

) else { 

remove the Token fiom its current Set if it is in a Set 

QEvent ev = new QEvent (this);// associate the event with this Token 

eventId = ev.id0; N record the effective event id 

// schedule the event arriving at its destination Entity after time delay 

ev.send-and-delete (dest, currTime0 + delay); 

Fig. 4.12 Pseudo-Code for Tokenxsend (Entity* Time) 

Another type of movement is modeling a Token moving back and forth between dif- 

ferent Sets in the same entity. Token::move (Set) causes a Token to be moved into a spe- 

cific Set in an Entity. This type of movement does not involve any delay as the first type, 

i.e., a Token reaches the destination Set immediately after it leaves the current Set. If any 

non-zero delay should be modeled in the movement between different Sets in the same 

Entity, or the movement is between different Sets in different Entities, Token::send (Entity, 

Time) should be used instead of Token::move (Set). 



Token Token:.move (Set set) ( 

Token token = null; 

if ((set = null) or (set.ownerEntity0 != currentSet.ownerEntity0)) { 

error handling 

} else ( 

if (currentset != null) 

currentSet.get (this);// remove Token fiom its current Set 

token = set.put (this);// put Token into the Set set 

return token; 

Fig. 4.13 Pseudo-Code for Token::move (Set) 

4.5.3 Event Cancellation 

The traditional approach to event cancellation is to remove the event to be cancelled 

directly from the event list so that the cancelled event will never be processed in the 

h e .  This mechanism is very simple and efficient, but it makes some software packages 

like SimPack [12] unable to be used in a p d e l  systern based on T i e  Warp paradigm. 

void Token: :cancel (Token token) ( 

if ((token.currentSet = null) 11 (token-currentset != null) && \ 

(currentActiveEntity = token.ownerEntity0)) 

// make the Token not associating to any event (-1 is a invalid event Id) 

token.eventId = - I ; 
I 

Fig. 4.14 Pseudo-Code for Token: :cancel (Token) 

The approach used in QueKit is to make the event cancellation transparent for both 

underlying simulation kernel as well as the application prognunmer. That is, the event 



cancellation is handled inside QueKit in a simple way: QueKit simply ignores the can- 

celled events whenever these events are encountered (shown in Fig. 4.1 1). A Token's 

activity can only be canceled by its owner Entiv, i.e, the Entity which scheduled the 

event by invoking Token::keep mme) or T&n::send (Enrt~ delay) before. 

4.5.4 Resource Allocation/DealIocation 

A Resource functions as a shared variable in a QueKit model. Thus any access to a 

Resource should be via messages in an LP view. 

The following methods of a Job are associated to the resource allocation/deallocation: 

requestRes (Resource), requestRes (Resource, amount), requestltes (Resource, amount, 

priority), preemptlks (Resource), preemptRes (Resource, mount), preemptRes (Resource, 

amount, priority), jFeeRes (Resource), PeeRes (Resource, amount). Messages are w d  for 

the communications between Resources and other Entities for resource allocation/deallo- 

cation. However, messages are also transparent from the user. 

Job::requestRes (Resource, amount, priority) causes a Message sent to the specific 

Resource for requesting the specific amount of resource at a specific priority. The default 

amount is one unit and default priority is zero if they are not specified. A message sent 

fiom a Job to a Resource functions as a representative of the Job competing for the 

resource in the Resource object. 

void Job::requestRes (Resource res, double amount, double priority) { 

Message msg; 

if ((amount <= 0) and (res = null)) { 

error handling 

) else { 

N create a Message associated with this Job and its owner Entity, 

// set its type to "QK-Request" and let it carry the requested amount 

msg = new Message ("QK-Request", ,s, ownerEntity, amount); 

msg . seflriority (priority); 
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msg.send (res, currnme());l'/ send the Message to the resource Entity 

Fig. 4.15 Pseudo-Code for Job:xequestRes (Resource, amount, priority) 

Job::preemptRes (Resource, amounr, priority) causes a Message sent to the specific 

Resource for preempting the specific amount of resource at a specific priority. 

void Job : : preemptRes (Resource res, double amount, double priority) { 

Message msg; 

if ((amount * 0) and (res = ad))  ( 

error handling 

} else { 

// create a Message associated with this Job and its owner Entity, 

/I set its nlpe to "QK-Preempt" and let it carry the requested amount 

msg = new Message CbQK_Preempt", this, ownerEntity, amount); 

msg.setPriority (priority); 

msg.send (res, currTiie0);// send the Message to the resource Entity 

Fig. 4.16 Pseudo-Code for lob::preemptRes (Resource, amount, priority) 

Job::-eeRes (Resource, amount) causes a Message sent to the specific Resource for 

returning the specific amount of resource. The defadt amount is one unit if it is not speci- 

fied, 

void Job::fieeRes (Resource res, double amount) { 

if ((amount <= 0) and (res = null)) ( 

error handling 

) else { 



N create a Message associated with this Job and its owner Entity, 

// set its type to "QK-Retum" and let it carry the requested amount 

Mesage msg = new Message ("QK-Return", this, ownerEntity, amount); 

msg.send (res, currTiie0);ll send the Message to the resource Entity 

1 
} 

Fig. 4.17 Pseudo-Code for Job::fieeRes (Resoruce, amount) 

4.6 Summary 

QueKit aims to provide an 00 design and implementation environment for queueing 

system simulation to facilitate the modeling process. QueKit also support efficient sequen- 

tial execution, as well as the potential for parallel execution. The Library-based approach is 

used for the development of QueKit so that 00 techniques can be applied at abstraction, 

design, and implementation level. The modeling framework provided in QueKit is 00 

event-driven. Dynamic entities are modeled as Tokens or Jobs and static entities are mod- 

eled as Servers or Resources. The LP view is used for the implementation of QueKit so 

that it can be executed in a parallel environment either optimistically or conservatively. 

Three architectures are provided by QueKit for the model construction: server architec- 

ture, client architecture, server-client architecture, 



Chapter 5 

Preliminary Evaluation of QueKit 

Fourteen modeling problems mentioned in Chapter 2 will be revisited here for the 

preliminary evaluation of the QueKit abstraction. Moreover, two benchmark systems will 

be described in detail for a prelimiaary evaluation of the QwKit abstraction, as well as, its 

perfomance. Different QueKit architectures are also used for the model constructions in 

order to compare the modeling power and execution efficiency among these architectures. 

Furthermore, both systems are also modeled with the SimKit application programmer's 

interface (API) for comparison. 

5.1 Revisiting the Common Modeling Problems 

All the common modeling problems listed in Chapter 2 are revisited with examples in 

this section in order to show how QueKit can be used to solve these problems. Event 

graphs are used as declarative models to describe the dynamics of these problems. 

Resource Sharing: This problem has been addressed with an example in Sec. 4-33  

(Fig. 4.5 Timesharing System). The server architecture is used there. Actually the client 

architecture can also be used for modeling this system except the execution efficiency will 

not be as good as that of the server architecture. W1th the client architecture, the CPU and 

two disks are modeled as Resources. Sixteen terminals are modeled as Clients and user 

requests are modeled as Jobs. The following declarative model indicates the life cycle of a 

terminal Client. It actually describes the schedule method of a terminal client. 

A block in a declarative model represents an event in which the bold text shows the 

event type while the rest of the text shows the actions upon the occurrence of the event. 

More details about actions in an event block are described with the QueKit application 

programmer's interface (API) in a declarative model. As in Chapter 2, a solid arrow in any 

declarative model represents an activity within an object while a dashed arrow represents 



an activity involving different objects. One event block marks the beginning of the activity 

at the tail of the arrow, and another event block marks the end of the activity at the head of 

the arrow. 

@tiate a request: requestkeep (think~me)) Client: 
I 
\L no 

nbh thinking: requestaquestRes (CP finish a request? 
I < > 

tart CPU service: requestkeep (serveTime 
I 

6nish CPU service: request-fkeRes (CPU) (- request.requestRes (disk) 
\1 

rt disk service: requestkeep ( s e rveke  
C 
9 

(6-h disk service: requeafreeRes (disk) > 
Fig. 5.1 Declarative Model for the Tiisbaring System (QueKit Client Architecture) 

A request Job in the above figure is kept for i'thinkT'me" to model the user's thinking 

time in the "initiate a request" event. It then requests to access the CPU when the thinking 

activity, which is represented by the first top-down anow, is finished. The request initiates 

a CPU activity* which is represented by the second top-down arrow, once it gets the CPU. 

It releases the CPU and requests a disk when the CPU activity is fished. A "start disk 

service" event occurs once the request gets the disk. A ' W s h  disk service" event occurs 

when the disk service activity is finished. The request Job will be back to request the CPU 

again if its process is not completed, otherwise it will be back to model another user's 

thinking activity again. 

Preemption: This problem will be addressed with the CPU-Disk system in Sec. 5.2. 



Grouping and Loss: There is a truck with capacity of 50 boxes in a transportation 

system to eanspoa goods fiom city A to city B. It takes 3 hours for the truck with goods 

travelling fiom City A to B and 2.5 hours for the empty truck travelling back to City A 

fiom City B. Suppose the truck starts &om City A. Assuming that a box of goods arrives at 

the city A at an inter-arrival time exponentially distributed with mean of 0.1 hours. The 

truck has to wait until it is l l l y  loaded, and then begin its trip fiom city A. It takes 30 min- 

utes to load/unload the truck in city A/B. Goods may decay anytime and decayed goods 

are thrown away. The Lifetime is exponentially distributed with mean of 10 hours. 

The server architecture is suitable for modeling this system. A box of goods is mod- 

eled as a Token, the truck is modeled as a Server with a service Set of capacity of 50. The 

storage place in city A (StorageA) is also modeled as a Server while the storage place in 

city B (StorageB) is modeled as an Entity because it is simple. A special signal can be used 

to model the arrival of the empty truck at City A. This signal also idorms City A that the 

truck is ready for loading. The declarative model is shown below. It shows the schedule 

member functions for Entity StorageA, Server StorageB, and Server truck respectively. 

The Lifetime iimit of a box of goods can be recorded inside the boxes Token when it 

arrives at city A. The StorageA Server will throw away the decayed goods whenever the 

truck is ready for loading and the number of boxes is enough for loading the truck. The 

actual loading activity will begin when there are still enough boxes for loading after 

cleanup of all of the decayed goods. The StorageB Entity can collect the following five 

statistics by testing the time period when the Lifetime of a box of goods expires: 1) number 

of boxes decayed before loading; 2) number of boxes decayed during the Loading process 

in City A; 3) number of boxes decayed during the transportation fiom City A to City B; 4) 

number of boxes decayed during the unloading process in City B; 5) number of boxes 

transferred in good shape. A box of goods is decayed before loading if its lifetime limit is 

shorter than its loading time. A box of goods is decayed in transit in city AA3 if its lifetime 

limit falls in loading/unloading activity. A box of goods is decayed during the transports- 



tion if its lifetime Limit fds  in the activity of the mp fiom city A to B. Othenvise, the box 

of goods is wanderred to city B in good shape. 

I events in Server truck: 
I r - - - - - - -  1 

& 

x arrives: boxmove (serveset I events in Entity StorageB: 
if (serveSetO.fW()) o I 

I \  box-keep (3 .O) I 

I I I 

k arrives to City B, start 
1 

p&g: box.keep (0.5) I Cbox  arrives: collect statistics f i o h  , I 
I information in the box. \L 

.A I / 6 h  the unloading: I 
'C - , , , , , , , for all boxes in the serveset(): I 

boxsend (storageB, 0.0) I 
1 I * 

rt going back to City A: I 

signalsend (StorageA, 2.5) I 
I I 

events in Server StorageA: 

cbor arrives: 
box.move (waitset()) 
if ((wait SetO.numTokens0 = 50) 

&& (truckStatus = "ready")) ( 
clean up al l  decayed boxes in the 
waitset0 before currTiieO+O.5, 
if (waitSet0.numTokensO >= 50) 

box-keep (0.5) 

& 
4he signal arrives: 
clean up all decayed boxes in the 
waitset0 before currTieO+O.S, 
if (waitSetO.nurnTokens() < 50) 

truckstatus = "ready" 
else // stmr Iocrding 

signal-keep (0.5) 
I 

h i s h  the loading: / for 50 tmxes in the waitset(): ( I i 
I box.send (truck, 0.0) 

truckstatus = "not ready" 

Fig. 5.2 Declarative Model for the Transportation System 

Routing and Dropping: An ATM network can be used for studying these two prob- 

lems. Suppose the simplified output buffer switches are used in this network. The routing 



of an ATM cell in a switch is done by looking up the virmal path identifier (VPI) table. A 

cell will be discarded (dropped) by the switch if the output b e e r  is full. The server archi- 

tecture is suitable for modeling this system. An ATM cell is modeled as a Token. A switch 

is modeled as an object in which each input poa is modeled as an Entity and each output 

port is modeled as a Server. The declarative model is shown below. 

events in an input port Entity: events in an output port Server: 
I 
I /.cell arrives: 
I if (portstatus = "busyyf) { 

arrives: cellmove (waitseto) 
look up VPI table, update the 

I 1 else { 
infomation in the cell, A +  

I 
ceU.move (serveset()) 

ll.send(outputPort,internalDela~ I ceU.keep (transmissionDelay ) 
portstatus = "busy" 

T 1 i t  

Fig. 5.3 Declarative Model for the ATM Network 

Tandem ~ u e u e i n ~ ' :  Faulty units are sent for repairing to a special section in a fac- 

tory. The repairing is carried out in two stages - first the unit is stripped down, and then it 

is rebuilt. 

Each operation has its own work station. Work station A (stripping) can work on two 

units at a time while work station B (rebuilding) on one unit at a time. But storage is limo 

ited, and at most 4 units can be queued in front of station A, and 2 in fiont of station B. I f  

1. This system comes from G-M-Birtwistle's book [S] with a little modification. 



4 units are already queued in front of station B, a newly arrived faulty unit is subcon- 

tracted. When a strip job is completed, the unit is automatically moved to the area in front 

of station B when there is a room over there. Otherwise, station A is blocked until a space 

events in Server StationA: , events in Server StationB: 

a faulty part arrives: & if (serveSeto.fU0) ( 
if (waitSetO.fd.@) 

// subcontracted 
partsend (sink, 0.0) 

else 
part-move (waitset()) 

) else { 
part-move (serveset()) 
part.keep (StripTie) 

/finish the stripping: \ 

if (StationBStatus 0 fXl) { 
part send (Stations, delay) 
part = waitSeto.get0 

) else ( 
signalsend (StationB, 0.0) 
parttype = "done" 
part = null 

4 
.1 

part 0 null? d 

<fad@ part arrives: 
if (serveSet().fUO) { 

partmove (waitset()) 
) else { 

+ 

part-move (serveSet0) 
partkeep (rebuidTie) 

\ 1 
I 

I 
I 

I 

for (the cbdoney' part(s)) 
I I 

J - - - - - - - J  

I 
I 

I \L 
I fa signal  arrives: include the \ 

Fig. 5.4 Declarative Model for Factory System 

I 
I 

Somation about the available 
room(s) into the signal, 

I \ signal.send (Station&O.O) ) 
I 1 

I 



The server architecture is suitable for modeling this system. The faulty units are mod- 

eled as Tokens, two repair stations are modeled as Servers. The station A Server has a 

waitset with capacity of 4 and a serveset with capacity of 2. The station B has a waitset 

with capacity of 2 and a serveset with capacity of one. A special signal Token is used for 

modeling the communications between the two station Servers. The declarative model is 

shown in Fig. 5.4. 

Affinity: Customers arrive at a barber shop at an inter-arrival time exponentially dis- 
' 

tributed with a mean of one minute. There are four barbers providing s e ~ c e s  for the cus- 

tomers. The incoming customers usually choose the shortest waiting list to wait for senice 

fiom a barber. However, about 10% customers favor Barber #2 because she is the most 

skillful one in the shop. These special customers are determined to wait for service fiom 

hidher no matter how long hidher waiting List is. 

events in the barber shop Server: 

\L 

&hh the senice: -, 

customer.send (outDoor S ink, 0.0) 
if (waitSet[2] .empty()) 

customer = wait Set [k] .get0 
else 
\ customer = waitSet[2].getO 

1 

6specia1 customer arrives: 
6 customer arrives: 

i = index of min len for waitSet[1,4] 
if (serveSet[i] . U O )  ( 

customer.move (waitset [i J) 
) else { 

customermove (serveset [i]) 
customer.keep ( s e ~ c e T i i e )  

if (serveset [2] .WIO) { 
customer.move (waitSet[Z]) 

) else { 
customer.move (semeSet[Z]) 
customer.keep (serviceTime) 

4f 

ky 
customer.send (outDoorS ink, 0.0) 
if (waitSet[i].emptyO) 

customer = waitset@] .get0 
else 

customer = waitSet[i].getO 
1 

1 

+ 

Fig. 5.5 Declarative Model for the Barber Shop System 

d 



The server architecture is  suitable for modeling this system. Customers are modeled 

as Tokens and the barber shop is modeled as a Server here. There are four Queues as the 

waiting Sets with infinite capacity in the Server. Each Queue models a list of customers 

waiting for a specific barber. There are also other four Queues as the senice Set with 

capacity of one in the Server. Fout Tokens in these queues model the four customer who 

are in the services. The declarative model is shown in Fig. 5.5. 

Balking, Migration, and Reneging: There are two checkout counters in a grocery 

story. Suppose customers always choose the shortest line to wait for checking out. If the 

number of people in the shortest line is more than 6, there is 10% probability for a newly 

arrived customer giving up the checking out and leaving. Also suppose there is 30% prob- 

ability for a customer leaving herlhis waiting Line and giving up the checkout if she has 

waited in the line for a long time (maxWatTiie) when neither of the waiting lines is not 

empty. Otherwise sfhe will migrate to the empty waiting line when the maxWaitTime is 

passed. 

The server architecture is used here. Customers are modeled as Tokens, the checkout 

system is modeled as a Server. In the Server, there are two Queues with infinite capacity as 

the waitsets for modeling two waiting queues for the two checkout counters respectively. 

There are also two Queues (checkout[l] and checkout[2]) with the capacity of one for 

modeling two checkout counters respectively. The declarative model is shown below. 



events in the 
grocery store 
Server: 

/; customer arrives: 
i = index of min length for (checkout[l], checkout[2]) ' 
if (checko@i] .empty()) { 

customer-move (checkout [i]) 
customerkeep (seniceTie) 

} else if ((waitSet[i].numTokensQ < 7) 1 ( @rob() > 0.1)) { 
customermove (waitSet[i]) 
if @rob() < 0.3) //for migration 

customerkeep (MaxWaitnme) 
}else { ll balking 

customer-send (outDoorSink, 0.0) 
1 I 

/finish the service: 
customer.send (outDoorSinlc, 0.0) 
if (waitSet[i] .empty()) 

customer = waitSet@c].getO 
else 
\ customer = waitSet[i].getO 

I 

customer.send (out~oor~ink, 0.0) 
) else ( N migrction (waitSet[kl= 0) 

customecmove (wait Set @c 1) 
1 

Fig. 5.6 Declarative Model for the Grocery Store System 

Multiple Resources: The server architecture is suitable for modeling this kind of 

problems when the multiple resources required in an activity are actually managed by a 

controller. For example, a computing job needs the CPU, some memory, and some disk 

space. The operating system controls the management of these resources. Thus the jobs 

can be modeled as Tokens and the operating system can be modeled as a Server that is in 

charge of the management of the CPU, memory, and disk resources. On the other hand, 

the client architecture is suitable for modeling those problems in which the resources are 

independently managed. A harbor system will address this problem in Sec. 5.2. 



events in a machine Server: 

f a  part arrives: 
if(serveSet0fuug) ( 

> part.move (waitset()) 
) else ( 

part.move (serveseto) 
pakeep  (serveTiie) 

# 

I 

/breakdown s' a1 arrives: \ 
ifcseIcVe~eto.E~) 1 

signalmove (waitset()) 
) else ( 

signalmove (serveset()) 
Signal~equestRes (mechanic) 

Fig. 5.7 Declarative Model for the Factory System 

BreakDown and Entity Transformation: The server-client architecture is used for 

modeling the factory system mentioned in Sec. 2.3. Parts are modeled as Tokens, 

machines are modeled as Servers and the mechanic is modeled as a Resource. A machine 

Server has a wait Set with infinite capacity for holding parts waiting for service, and a ser- 

vice Set with capacity of one for holding the part being serviced. Suppose a machine is 

able to complete a service before a breakdown event happens. A breakdown event for a 

machine Server is modeled as a Job which randomly and periodically arrives at the 

machine Server to cause it to be broken down. lt will restore the machine to the normal 

status after it is fixed by the mechanic. The breakdown event Job functions as a special 

signal that has a higher priority than parts arriving at a machine Server. The declarative 

model is shown above. 

In summary, QueKit can model al l  the above problems that commonly exist in the 

simulation of queueing systems in a way that is very close to the dynamic behaviors of the 



modeled systems. The user has to identify the objects that require senices f?om others and 

the objects that provide these s e ~ c e s .  Then the former objects can be modeled as Tokens 

or Sobs and the latter objects can be modeled as Servers or Resources depending on what 

architecture is chosen. The Client class may be used for describing the lifetime activities 

or periods of Lifetime activities for Jobs ifthe client architecture or the server-client archi- 

tecture is applied. Finally, the schedule member functions of these Servers and Clients are 

written. They describe how the Servers handle the s e ~ c e s  for the incoming Tokens and 

route them to other Servers after services, and how the Clients describe the Jobs' activities 

in a chronological order to model the Jobs flow through the modeled system. These 

Tokens, Jobs, Servers, Clients, and Resources are gathered together with a single QueSim- 

ulation object to form a complete model that is ready to execute after proper parameters 

are set up for a simulation run. 

Among the three QueKit architechues, the server architecture is flexible enough to 

model all of above fourteen problem scenarios. It will only make a model more compli- 

cated and result in an unnatural description of the modeled system when multiple indepen- 

dent resources are involved in a single activity. This is because it forces these independent 

resources to be managed under a single Server controller which does not exist in reality. 

On the other hand, the client architecture is suitable for modeling systems that involve 

multiple independent resources. 

5.2 Benchmark Models 

The CPU-Disk system and the Harbor system are presented in this section. These two 

systems are chosen for evaluation in detail because the CPU-Disk system covers preemp- 

tion while the Harbor system covers requesting multiple independent resources in an 

activity. Preemption is related to event cancellation. The client architecture is suitable to 

be applied in the modeling of a system that requires multiple independent resources in an 

activity. Therefore, all the basic classes (Token, Set, Entity, Queue, Server, Source, and 

Sink) and extended classes (Client and Resource) will be used in modeling these two sys- 



terns. Both functional and declarative models are used for the design of the simulation 

models in this section. 

5.2.1 CPUDisk System 

The model description is in Sec. 22.1 (refer to Fig. 2.1). Four models are built for this 

system. One model is built with the SimKit API for comparison. Three models are built 

with the QueKit API: first one is built with the server architecture; second one is built with 

the serverclient architecture (source code of is at Appendix C); last one is built with the 

client architecture. The same statistics are collected in all four models. Although any 

parameter for nO or nl can be used for the experiments, in this study, nO is six and nl is 

two in the above four models. 

Fig. 5.8 Functional Model for the CPU-Disk System (Server Architecture) 

In the server architecture, tasks are modeled as Tokens, the CPU is modeIed as a 

Server. Tasks of class 0 have a priority 0 while tasks of class 1 have a priority 1. The CPU 

has a Queue with infinite capacity as the waitset which holds the tasks waiting for ser- 

vices, and has a priority queue with capacity of one as the serveset which holds the task 

being serviced. The four disks are modeled as a single Server. It has four priority queues 

with infinite capacity as the waitsets which hold the tasks waiting for services for the four 

disks respectively. It has also four priority queues with capacity of one as the servesets 

which holds the tasks being s e ~ c e d  for the four disks respectively. In the CPU schedul- 

ing, a preempted task of class 0 will increase its priority from 0 to 0.5, record its remaining 

service time, and move back to the waitset of the CPU. This will guarantee that it is 

placed ahead of any other task of class 0 and after any task of class 1. The preempted task 

will restore its priority to 0 when it finishes its service in the CPU. The functional model is 



depicted below. The solid Lines are the routes of the tokens The declarative model was 

shown in Fig. 2.3. 

In the client architecture, tasks are modeled as Jobs. The CPU is modeled as a 

Resource with capacity of one. Each of the four disks is also modeled as a Resource with 

capacity of one. The tasks with priority of one can preempt the CPU while the tasks with 

priority of zero can only request the CPU. The preemption is automatically handled in the 

CPU Resource. The functional model is depicted in Fig. 5.9. The dashed Lines indicate the 

communications between Taskclient and Resources. The declarative model was shown in 

Fig. 2.5. 

For the model with QueKit server architecture or SimKit API, there are two kinds of 

events for the CPU/Disk scheduling: a task requests for senice from CPU/Disk and the 

completion of a service in CPUDisk. For the model with QueKit client architecture, there 

are five kinds of event for the tasks' activities: 1) requestiaghenuning the CPU; 2) com- 

pleting a service in the CPU; 3) releasing the CPU and requesting one of the disks; 4) 

completing a service in the disk; 5 )  releasing the disk and going back to I). 

Resource Resource Resource Resource Resource 

- -  I / 

Fig. 5.9 Functional Model for the CPU-Disk System (Client Architecture) 



In the server-client architecture, tasks are still modeled as Jobs and four disks are 

modeled as Resources as that in the above client architecture. The CPU, however, is mod- 

eled as a Server as that in the server architecture. The life cycle of a task is divided into 

two periods: one starts h m  the time waiting for a CPU service and another starts fiom the 

time waiting for a disk service. The first period is modeled with the server architecture and 

the second period is modeled with the client architecture. The following are the ~ c t i o o a l  

model and declarative model- 

Resource Resource Resource Resource 

( j ; > _  ( j )  (j?) @G) 

Fig. 5.10 Functional Model for the CPU-Disk System (Server-Client Architecture) 



events in Server CPU: 
fa  task arrives: 

if (task.priority0 > taskl.priority0 in the seneset 
taskl setPriority (0.5) 
record the remaining service time into taskl 
taskl move (waitseto) - -  1 
task-move (serveset()) 
taskkeep ( se~ceTi i e )  

} else { 
taskslove (waitset()) 

4 
finish the service: 

I \ task = waitSetO.get0 

ves 

\L 
(start a service: task.keep (serve~ie)) 

i 

\1 
I 

h disk semce: task-fieeRes (dis I 
- - - - A  

task.send (CPU,O.O) 

Fig. 5.1 1 Declarative Model for the CPU-Disk System (Server-Client Architecture) 

The CPU-Disk System is simple and thus suitable to use all three QueKit architec- 

tures for modeling. Therefore, there are not much differences of modeling power among 

these three architectures for modeling this system. However, the execution efficiency will 

be different for using these architectures. The results will be discussed in Sec. 5.3. 



5.2.2 Harbor System 

There are two jetties and three tugs in a harbor for servicing incoming boats'. Boats 

arrive at the harbor at an inter-arrival time exponentially distributed with the mean of 18 

time units. They must pass an inspector for security check before each of them can request 

for a jetty for docking. The time for the inspector to check a boat is also exponentially dis- 

tributed with the mean of 3 time units. When a jetty is available, a boat may dock and start 

to unload. When this activity is completed, the boat leaves the jetty and sails away. Two 

tugs are required for docking and only one tug is required for leaving. Assume that tug 

maneuvers take 2 time units, and unloading takes 14 time units. 

Four simulation models are built for this system. One model is built with SimKit API 

for comparisons. Three models are built with the QueKit MI, one with the server archi- 

tecture, one with the server-client architecture (source code is at Appendix D), and another 

with the client architecture. Same statistics are collected in the four models. 

In the server architecture, boats are modeled as Tokens. The inspector is modeled as a 

Server having a priority queue as the waitset with infinite capacity and another priority 

queue as the serveset with capacity of one. The harbor is modeled as a Server with a ser- 

vice Set for holding the boats being serviced and two wait Sets, one for holding the boats 

waiting for the tug and another for holding the boats waiting for jetties. The tug and jetties 

are modeled as two integer variables in the harbor Server representing the resources. The 

bctional and dec tarative models are shown below. 

Server Sink 
Harbor - 

Fig. 5.12 Functional Model for the Harbor System (Server Architecture) 

I. This system comes fiom G.M,Birtwistle's "Port System" example [5] with a little modification. 



events in Server Harbor: events in Server Inspector: 

fa boat arrives: 
\ 

if(serveSet().fi.dlO) ( 
boat.move (waitset()) 

+ ) else ( 
boatmove (serveset()) 
boat-keep (3 .O) 

I I 
finish the inspection: I I 
boat.send (Harbor, 0.0) J I 

I 
I 

/a boat arrives: 
-. 

$((jetty > 0) &&(tug > 1)) ( 
jetty=jetty- l,tug=tug-: 
boatmove (serveset()) 
boat-keep (2.0) // docking 

1 else $(jetty > 0) ( 
jetty =jetty - 1 
boat.move (tugQ) 

) else { 
boat.move (jettyQ) 

J /' 
I 

Bnish the docking: 
tug = tug + 2 
boat.keep (1 4.0) // unlo 
boat = tugQ.first0 

Fig. 5.13 Declarative Model for the Harbor System (Server Architecture) 

I 

(finish the leaving: 
tug=tug+l,jetty=jetty+ 1 

tug=tug- 1 iftiettyQ-em~tyO) ( 

In the client mchiiecture, boats are modeled as Jobs. The inspector is modeled as a 

boatkeep (2.0) // leaving 
) else { 

Resource with capacity of one. ktties are modeled as a Resource with capacity of two, 

and tugs are modeled as a Resource with capacity of three. The lifetime activities of a boat 

are described in a Boatclient object. In the functional model shown below, the solid lines 

are the routes of the boats, and the dashed lines indicate the communications between 

Boarclient and Resources. 

> if(tugQ is not empty) 
boat = tugQ.ht0 

boat-move (tugQ) ) else { 
boat = jettyQ.get0 

1 
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Fig. 5.14 Functional Model for the Harbor System (Client Architecture) 

Resource Resource Resource 

(lorp2j (F) J?) 
\ 

Source % J . &  H . Sink 

events in Client BoatClient: 

boats > Boatclient 

( a boat arrives: boatrequestRes (inspector) ) 
I 

boats 

\L 
start an ias pection : boat-keep (3 .O) 

I 

(Jobs) Client (Jobs) 

\L 
oish an inspection: boat.f?eeRes (inspecto 

boatxequestRes (jetty) 
I 
(L 

get a jetty: boatxequestltes (tug, 2) 
\1 

start docking: boatkeep (2.0) 
I 

.L 
( finish unloading: boat.requestRes (tug) ) 

I 
.L 

s ta r t  leaving: boat.keep (2.0) 
I + 

f finish the leaving: boatheRes (tug) \ 

Fig. 5.15 Declarative Model for the Harbor System (Client Architecture) 

In the server-client architecture, boats are again modeled as Jobs. The inspector is 

modeled as a Server having a queue with infinite capacity as the wait Set and a queue with 



capacity of one as the service S ~ L  Jetties and tugs are st i l l  modeled as Resources with 

capacity of two and three respectively. 

Resource Resource (F) (F) 

Fig. 5.16 Functional Model for the Harbor System (Server-Client Architecture) 

\ / 
3l fd Sink 

events in Server inspector: I 

I events in Client Boatclient: 

3 

is h an inspection: boat. fieeRes (inspecto 
6 boat a w e s :  boat.requestRes (jetty) 

get a jetty: boat.requestRes (tug, 2) 
J 

start docking: boat-keep (2.0) 
II 

Bnish docking, start unloading: 
boat.fkeRes (tug, 2) 
boat-keep (14.0) 

I ( finish unloading: boat.requestRes (tug) 1 
. - 

Fig. 5.17 Declarative Model for the Harbor System (Server-Client Architecture) 

Client 
(Jobs) 

Boatclient --ex> 



The Lifetime of a boat is divided into two periods: one starts from waiting for the 

inspection, another starts h m  requesting a jetty after the inspection. The first activity 

period of a boat is modeled in the server architecture in which the Inspector server con- 

trols the s e ~ c e s  for boats and routes them to the Boatclient. The second activity period 

of a boat is described in a chronological order by the Boatclient object below. The h c -  

tional model and the declarative model are shown above. 

The above three declarative models show the dynamics of the three simulation mod- 

els built with three QueKit architectures respectively. Subjectively, the model with the cli- 

ent architecture shown in Fig. 5.15 is easier to understand than the model with the server 

architecture shown in Fig. 5.13. This is because the former describes the lifetime activities 

of a boat in a chronological order that is very close to the sequence of activities that occur 

during a boat's lifetime within the harbor system. The latter, however, describes these 

activities in two Servers in which the event logic is merent fiom the problem description. 

This subjective view of the client architecture is close to Biawistle's presentation of the 

"process view" of simulation which is often considered as o w  of the most natural ways to 

construct a model. Therefore, the modeling power of the client architecture is greater than 

that of the server architecture in the aspect of comprehensibility when multiple resources 

are required during a single activity. For the same reason, the modeling power of the 

server-client architecture is between that of the server architecture and the client architec- 

ture. 

5.3 Modeling and Simulation Results 

The simulation models are constructed with the QueKit API (Java version). Thus the 

simulation experiments are executed sequentially. The results for the CPU-Disk system 

and the Harbor system are illustrated in the following graphs and tables. An overhead (%) 

is the measure of a QueKit model execution time comparing to the execution time of the 

corresponding SimKit model. It is calculated with the following formula for each QueKit 

architecture: 



Overhead (%) = LOO (QueKit Run Tune - SirnKit Run Tie) / SimKit Run T i e  

Performrncc ofthe Models for CPUUDisk System 

SiPhtioa Time (unit = as) 

*mm-Cliem Arch 
U e m r  Arch 

Fig. 5.18 Performance of the Models for CPU-Disk System 

Overhead (%) to SimKit (CPU-Disk System) 

+Server-Cliem Arch 

Simohtion Tiw (unit = ms) 

Fig. 5.19 Model Overhead (%) to SimKit Model (CPU-Disk System) 



Perfbrmrnec of the Models for brbor System 

+server-Client Arch. 
-&Server Arch. 
*SimKit 

Fig. 5.20 Performance of the Models for Harbor System 

Overhead (K) to SimKit (Harbor System) 

Simrbtion Time 

Fig. 5.21 Model Overhead (%) to SimKit Model (Harbor System) 

The above four figures show that the execution efficiency of QueKit server architec- 

ture is not as good as that of SimKit, but it is much better than that of QueKit client archi- 



tectute. The execution efficiency of QwKit server-client architecture is somewhere 

between that of QueKit server architecture and QueKit client architecture. The position 

depends on the distribution of the server architecture portion and the client architecture 

portion applied in a model. From the declarative model Fig. 5.1 1 (QueKit server-client 

architecture for the CPU-Disk system), 315 events for a life cycle of a Job belong to the 

client architecture portion. However, 719 events for a We cycle of a Job belong to the cli- 

ent architecture portion f?om Fig. 5.17 (QueKit server-client architecture for the harbor 

system). This observation is consistent with the simulation results shown in the following 

graphs. The execution efficiency of the server-client architecture is much closer to that of 

the client architecture for the harbor system than that for the CPU-Disk system. 

TABLE 1. Simulation Results for the CPU-Disk System 

TABLE 2. Simulation Results for the Harbor System 

I Simulation 
Time 

(unit = ms) 

200000 

#of Events in 
the SimKit 

Model 

45936 

- - 

Simulation 
Time 

(unit = ms) 

From the above two tables, the number of events in the QueKit models with the server 

architecture is the same as that in the corresponding SimKit models. Thus the overhead of 

#of Events in 
the SimKit 

Model 

# of Events ia the 
QueKit Model 
(Server Arcb.) 

#of Events in the 
QueKit Model 
(Server Arcb.) 

45936 

#of Events in the 
QueKit Model 

(Server-Client Arcb.) 

# of Events in the 
QueKit Model 

(Server-Client Arcb.) 

79298 

#of Events in the 
QueKit Model 
(Client Arcb.) 

#of Events in the 
QueKit Model 
(Client Arch.) 

933 17 



the model' with QueKit server architecture is only caused by the following two factors: I) 

making events transparent to the user in QueKit; and 2) statistics and trace collection in 

QueKit because there is still overhead for testing whether statistics and trace are needed or 

not even if they are not needed in a simulation at all. The overhead caused by these two 

factors are unavoidable for any *Kit model. It is at the average of 39% for the model of 

CPU-Disk system and at the average of 62% for the model of the harbor system shown in 

the tables below. 

TABLE 3. Modeling and Simulation Results for the CPU-Disk System 

Model Architecture 

SimKit Model 

1 QueKit Model (Client Arch) 1 122 I 2 14 I 

QueKit Model (Server Arch.) 

QueKit Model (Server-Client Arch.) 

TABLE 4. Modeling and Simulation Resalts the Harbor System 

Lines of Source Code 

240 

Average Overhead (%) 

0 

147 

13 1 

39 

155 

Model Architecture 

SimKit Model 

I QueKit Model (Client Arch.) I 85 I 387 1 

QueKit Model (Server Arch.) 

QueKit Model (Server-Client Arch-) 

For the models with the client architecture or the server-client architecture in QueKit, 

the number of events are more than one and half times but less than three times of the 

number of events in the corresponding SimKit models. This is the drird factor that causes 

the overhead for the client and server-client architectures in addition to the two factors 

mentioned above. For the CPU-Disk system, the overhead caused by this third factor is 

116% on average for the server-client architecture and 175% on average for the client 

architecture. For the harbor system, this part of overhead is 265% on average for the 

server-client architecture and 325% on average for the client architecture. This overhead is 

expected to be minimized by optimization techniques in the future. 

Lines of Source Code 

L96 

As mentioned in Chapter 2, the comparison of the modeling power between different 

approaches comes from the comparison of the comprehensibility and flexibility of the 

Average Overhead (% ) 

0 

114 

97 

62 

327 



models using these approaches. The more compreheanile and more flexible a model are, 

the greater the modeling power of the approach used in the model will be. Thus the model- 

ing power of different approaches is discussed in terms of the model comprehensibility 

and flexibility below. 

For modeling the CPU-Disk system, the simulation model with QueKit server archi- 

tecture is more comprehensible than the corresponding SimKit model. This is because the 

simulation event objects are totally transparent in the QueKit model whereas they are so 

pervasive in the SimKit model that they block the sight of the modeler from clearly view- 

ing the model. For the same reason, the simulation model with QueKit server architecture 

is more comprehensible than that with SimKit API for modeling the harbor system. 

For the models built in QueKit, the model with QueKit client architecture is more 

comprehensible than the model with QueKit server architecture for modeling the 

CPU-Disk system. This is because the lifetime activities of a task are described in a single 

schedule h c t i o n  of Taskclient class in the model with QueKit client architecture instead 

of being scattered in two schedule fhctions of CPU and Disk classes. 

It may not be so convincing fiom modeling the CPU-Disk system that a model with 

QueKit client architecture is more comprehensible than that with QueKit server architec- 

ture because both architectures are suitable for modeling this system. However, the differ- 

ence of comprehensibility between Merent QueKit architectures are more clear in 

modeling the harbor system. This is because the harbor system is suitable for applying the 

client architecture or the server-client architecture since multiple resources are involved in 

a single activity in the system. The model with QueKit client architecture Fig. 5.15 or 

QueKit server-client architecture Fig. 5.1 7 is much more comprehensible than the model 

with QueKit server architecture Fig. 5.13. This is because the activities of a boat can be 

clearly described in a chronological order in the client architecture, and this is very close 

to the scenario in the real system. 



It is also mentioned in Chapter 2 that the comparison of the source code lines in d i  

ferent models using different approaches to modeling the same problem can help the com- 

parison of the comprehensibility of these approaches for that problem. The less the source 

code lines are in a model, the more comprehensible the approach used in the model will 

be. In TABLE 3 and TABLE 4 only the actual lines of effective source code are counted, 

i.e., comment lines, blank lines, and continued lines h r n  the previous Line in the source 

file are not included over there. The iaformation about the source code lines can be seen in 

the Appendix C (QueKit server-client architecture for the CPU-Disk system) and Appen- 

dix D (QueKit server-client architecture for the harbor system) at the end ofthe thesis. 

Therefore, both TABLE 3 and TABLE 4 shows that models built with QueKit client 

architecture have the greatest comprehensibility and models built with SimKit have the 

least comprehensibility. Models built with QueKit server-client architecture are less com- 

prehensible than those built with QueKit client architecture whereas they are more com- 

prehensible than those built with QueKit server architecture. 

Furthermore, these two tables also show that there are trade-offs between the compre- 

hensibility and the execution efficiency for a specific model. The more comprehensible a 

model is, the worse the model execution efficiency will be, and vice versa. This is actually 

an advantage of QueKit A model with modest complexity can be built with any of the 

three architectures in QueKit. The sewer architecture is preferred for an experienced user 

when the execution efficiency is the major concern in a simulation. The model is mostly 

built with the server-client architecture. The user can adjust the balance between the 

model execution efficiency and model comprehensibility by adjusting the distribution of 

the portion for applying the server architecture and the client architecture in the model. 

From the aspect of flexibility, QueKit server architecture has the same flexibiiity as 

SimKit for modeling various queueing systems. This is because it uses a simple scheme to 

make events transparent fiom the application programmer while still preserving other 

hctionality of SimKit so that it can provide an 00 event-driven modeling framework. 



Therefore, QueKit has a greater modeiing power than SimKit in the simulation of queue- 

ing systems. However, QueKit client architecture is not as flexible as QueKit server archi- 

tecture because sub-classes cannot be derived from the Resource class. Although many 

Resource classes can be provided withk QueKit, there will always be situations when a 

new Resource class type is needed Thus the client architecture can not be flexible enough 

to cover all  of resource management paradigms in queueing systems. 

5.4 Summary 

QueKit has greater modeling power for queueing systems than SimKit. This is 

because it provides an 00 event-driven modeling fiamework rather than the LP modeling 

fiamework in SimKit. That is, the modeling classes provided by QueKit are at the higher 

level and mote specific to modeling queueing systems, and thus more close to the real 

world objects. This results in the model built in QueKit more comprehensible. Moreover, 

the simple scheme to make events transparent fiom the application programmer enables 

QueKit to preserve all the hctionality of SimKit except the direct manipulation of 

events. It results in QueKit having the same flexibility as SimKit to cover a wide range of 

scenarios in the simulation of various queueing systems. However, the model execution 

efficiency in QueKit is not as good as that of SimKit duo to this event hiding scheme. 

Among the three modeling architectures in QueKit, a model built with the client 

architecture will be more comprehensible than the one built with the server architecture. 

However, the server architecture is more flexible than the client architecture in the model- 

ing a wide range of scenarios in a queueing system. Moreover, the execution efficiency of 

the server architecture is better than that of the client architecture. Thus the server archi- 

tecture is preferred for an experienced user when the execution efficiency is the major 

concern in a simulation. The client architecture is preferred for a less experienced user 

when the model comprehensibility is more important in a simulation. Nevertheless, a user 

has to come to the server architecture if the client architecture is not flexible enough to 

model a specific queueing scenario in an application. 



The 00 event-driven modeling Mework  provided in QueKit enables the server 

architecture and client architecture to be applied seadessiy in a single simulation model. 

This results in the server-client architecturet The execution efficiency of the server-client 

architecture is somewhere between the above two architectures according to the distribu- 

tion of the servet architecture portion and the client architecture portion applied in a 

model. Theefore, there are trade-offs between the model comprehensibility and the exe- 

cution eficiency when choosing an architecture for queueing system simulation in Que- 

Kit. The greater the model comprehensibility is, the Less the model execution efficiency 

will be, and vice versa, 

The overall execution overhead of QueKit compared to SimKit is caused by three fac- 

tors. Making events transparent to the user is the fim factor that causes overhead in Que- 

Kit. The second factor is the generality in the statistics and trace collection in QueKit 

because there is still overhead for testing whether statistics and trace collection are needed 

even if they are not needed as all. The last factor is that there are more simulation events in 

a model with QueKit client architecture, or server-client architecture, than that in the cor- 

responding model with Quest  server architechue. 

The first two factors cause the overhead in a model with QueKit server architecture. 

All three factors cause the overhead in a model with QueKit client architecture or server- 

client architecture. 



Chapter 6 

Conclusion 

Many discrete event simulation @ES) studies involve the modeling of a real-world 

queueing system. There are two major problems in the simulation of queueing systems: it 

is very dif£icult to come up with a simulation model when the system to be modeled 

becomes large and complex; and a simulation of such complex systems can be very corn- 

putationally intensive. 

This chapter summarizes the results and the contribution of the thesis in the course of 

solving these two problems, and concludes with topics for futUre work. 

6.1 Summary and Conclusions 

The above two problems have been addressed by the general discrete event simda- 

tion @ES) community and parallel discrete event simulation (PDES) community for 

decades. Numerous simulation packages have been developed in order to provide the 

modeling frameworks that facilitate the construction of complex models. A lot of tech- 

niques on how to speed up simulation execution on parallel and distributed machines have 

also been explored. Furthermore, objectsriented (00) techniques have also been widely 

used in these two comrn~ t i e s  in order to facilitate the simulation development process. 

The focus and objectives are different between the two communities, and little work has 

been done on the intersection of these problems. This is the focus of the thesis. 

The above problems are discussed fiom two aspects in this thesis: modeling effective- 

ness and execution efficiency. The modeling effectiveness issue is addressed fkom three 

dimensions: modeling framework, model architecture, and object orientation. Since the 

chosen h e w o r k  and model architecture in the modeling process will largely affect the 

execution efficiency in the simulation, the modeling effectiveness issue is discwed with 

the execution efficiency issue together throughout the entire thesis. 



An application programmer usually has to follow a modeling fnunework to construct 

a model. The modeling b e w o r k  can provide conceptual guidance for the modeler in the 

simulation process. The current modeling fhmeworks for queueing systems are event- 

driven, the process view, and the logical process (LP) view. The process view can be split 

into two types: process interaction and process description (or transaction flow). 

The modeling power of a modeling fiamework is concerned with the comprehensibil- 

ity of the resulting model and the flexibility to cover a wide range of modeling scenarios. 

The following two conclusions can be drawn fiom the analysis of the above three frame- 

works. 

(1) The modeling power of the process view is generally greater than that of the 

event-driven view whereas the execution efficiency of the event-driven view is better than 

that of the process view. 

(2) The LP view is less efficient in its access to variables that are shared by more than 

one LP. This foUows the constraint that state information of an LP cannot be accessed 

from outside of that LP except through exchanging (event) messages. 

(3) The LP view offers part of the modeling power of the process view. This is accom- 

plished by making all state information private within the LPs of a model, and by associat- 

ing all events with some LPs. This is in contrast to the event-driven view where all events 

relate only to the overall system and all state information is global. 

From the viewpoint of model architecture, there are two approaches to modeling 

queueing systems: server architecture and client architecture. The server architecture 

emphasizes the modeling of (static) entities (modeled as servers) that provide services for 

others while the client architecture emphasizes the modeling of (dynamic) entities (mod- 

eled as tokens) that need services from others in a queueing system. The following are the 

two conclusions fkom the study of model architectures. 



(1) The server architecture focuses on how a sewer manages the resource allocation/ 

deallocation to/fiom tokens, and how the server controls the activities of these tokens, and 

how it routes the tokens to other servers afier s e ~ c e .  A server is active in the server archi- 

tecture in the sense that it functions as a dominant controller which controls everything 

within its area. A token is passive in the sense that it is passively processed by servers. 

This kind of passive token vs. active server architecture is suitable for modeling a queue- 

ing systems such as computer systems and communications networks. 

(2) The client architecture focuses on when a token requests a resource, how it con- 

ducts an activity, and when it returns the resource and moves on to another activity. That 

is, the client architecture emphasizes modeling the lifetime activities of a token moving 

through the system in a chronological order. A token is active io the client architecture in 

the sense that it can actively requedretum resources and controls its own activities. A 

server is passive in the sense that it only functions as a resource controller which manages 

the resource allocation/deallocation, but it has no control over the activity of any token. 

This kind of active token vs. passive server architecture is suitable for a queueing system 

in which a token needs more than one resource that are independently managed. 

The use of 00 techniques makes a simulation package easy to use and easy to main- 

tain because it supports the close correspondence between a model and real-world system. 

There are three levels for the 00 concepts applicable to the development of simulation 

packages: abstraction, design, and implementation. There are also three approaches to 

developing an 00 simulation package: data-driven simulator, language extension, and 

library-based approaches. The data-driven approach is usually successful in applying 00 

techniques at the abstraction level, but not at the design and implementaion levels. The 

language extension and library-based approaches have the potential to apply 00 tech- 

niques at all three levels. 

For the packages related to queueing system simulation in the literature, data-driven 

simulators usually apply 00 techniques at the abstraction level. Whereas, the language 
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extension or the library-based packages usually apply 00 techniques at the design and 

implementation levels. Some of them, such as PROSIT, may apply 00 techniques at all 

three levels, but they d e r  from inefficiency problems because they use a costly context 

switching mechanism in order to provide the process view. 

SimKit is a library-based simulation package built with an 00 language. It provides a 

very simple and efficient LP event-driven view for modeling and simulating various DES 

problems both in sequential execution and in parallel execution. However, the modeling 

constructs (or simulation primitives) provided in SimKit are only at the simulation level, 

not at the application level when they are used for modeling a queueing system. Thus Sim- 

Kit was chosen as the environment for developing a package at a higher level for 00 

modeling and simulation of queueing systems. 

An 00 simulation package for queueing system simulation called QueKit has been 

defined in this thesis. QueKit aims to provide an 00 design and implementation environ- 

ment for queueing system simulation that facilitates the modeling process while retaining 

good execution efficiency in both sequential and parallel executions. QueKit is built on 

top of SimKit. The library-based approach is also used for the development of QueKit so 

that 00 techniques can be applied at abstraction, design, and implementation levels. The 

modeling framework provided in QueKit is an 00 event-driven view. Entities that need 

services from others in a queueing system are modeled as Tokens or Jobs while entities 

that provide these senices are modeled as Servers or Resources. Although the current 

implementation of QueKit only supports sequential execution, the strategy of developing 

QueKit on top of SimKit enables any QueKit model to be executed within a parallel envi- 

ronment including optimistic and conservative approaches. 

Three architectures are provided by QueKit for the model construction: server archi- 

tecture, client architecture, server-client architecture. The server architecture is supported 

by the modeling and simulation constructs in the base QueKit layer. Both client architec- 



ture and server-client architecture are supported by the modeling and simulation con- 

structs in the extended QueKit layer. 

A model with QueKit server architecture is mainly composed of Tokens and Servers. 

Tokeus flow through a network of Servers to obtain service and finally Leave the system. A 

Server has two Sets, one is the service Set that holds the Tokens being serviced, and 

another is the wait Set that holds the Tokens waiting for services. A Server decides the 

strategy for senicing Tokens thmugh its schedule (Token) method. This kind of passive 

Token vs. active Server architecture is suitable for modeling those systems such as com- 

munications networks which can be viewed that servers controls everything. 

A model with QueKit client architecture is mainly composed of Jobs, Clients, and 

Resources. A Jobs models an active entity that can request services from others. A 

Resource models a passive entity that provides those s e ~ c e s .  The entire Lifetime activi- 

ties of a Job is described in a Client schedule method. A Job decides when and where to 

request the service fkom Resources, and how long to keep the resource(s). A Resource is 

passive in the sense that it only responds to the requests fkom Jobs for resource allocation/ 

deallocation, and it has no control on the Jobs' activities like a Server. 

The server-client architecture allows both QueKit server architecture and QueKit cli- 

ent architecture to be applied seadessly in a single simulation model. It is unique in Que- 

Kit. It has some advantages that will be presented Mow. 

For modeling the same queueing system, it is easier to build a model in QueKit and 

the resulting model will be more comprehensible that any model built in SimKit. This is 

because QueKit provides an 00 event-driven modeling framework rather than the LP 

framework provided in SimKit. Moreover, QueKit is the same flexible as SimKit in mod- 

eling queueing systems because it preserves all the hctionality of SimKit except the 

direct manipulation of event objects. Therefore, QueKit has a greater modeling power 

than SimKit in the queueing system simulation. However, the model execution efficiency 



in QueKit is not as good as that of SimKit due to the hiding of event objects fkom the 

application programxner. 

Among the three QueKit modeling architectures, the modeling power of the client 

architecture is greater than the server architecture in the aspect of comprehensibility, but 

less than the server architecture in the aspect of flexibility. The modeling power of the 

server-client architecture is between these two extremes. The execution efficiency of the 

server architecture is better than that of the client architecture. The execution efficiency of 

the server-client architecture is somewhere between these two extremes according to the 

distribution of the server architecture portion and the client architecture portion applied in 

a model. 

Therefore, there are trade-offs between the modeling power and the execution effi- 

ciency when choosing an architecture for queueing system simulation in QueKit. For 

modeling a complex system, the more comprehensible a model is, the less the model exe- 

cution efficiency wiU be, and vice versa. Thus the server architecture is preferred for an 

experienced user when the execution efficiency is the major concern in a simulation. The 

client architecture is preferred for a less experienced user when the model comprehensibil- 

ity is more important in a simulation unless the client architecture is not flexible enough to 

cover the queueing scenario in the simulation. 

The following three factors are responsible for the overall execution overhead of Que- 

Kit comparing to SimKit. The first one is to make events transparent to the user in QueKit. 

The second one is the overhead for statistics and trace collection because there is still 

overhead for testing whether those collections are needed or not even if they are not used. 

The last one is the extra number of events in a model with QueKit client architecture or 

server-client architecture compared to the corresponding model with QueKit server archi- 

tecture. 

The fim two factors cause the overhead in a model with QueKit server architecture. 

All of the three factors are responsible for the overhead in a model with QueKit client 



architecture or server-client architecture. The overhead is expected to k minimized in the 

future. 

6.2 Thesis Contribution 

The main contribution of this thesis is the design and implementation of an 00 event- 

driven M e w o r k  for queueing system simdation so that both the server architecture and 

the client architecture can be applied seamlessly in a single model. This approach of 

server-client architecture allows the user to adjust t&e balance between modeling effec- 

tiveness and execution efficiency in sequential execution. This is accomplished by adjust- 

ing the distribution between the server architecture portion and the client architecture 

portion applied in a model. Moreover, the flexiiility of this server-client architecture is 

expected to permit more natural parallelism in a queueing system to be exploited in a sim- 

ulation when running in parallel. This may result in a model with the server-client archi- 

tecture that has better modeling effectiveness, as well as, better execution efficiency. 

6.3 Future Work 

The weakness of QueKit server architecture is that a model built with it is less com- 

prehensible than the ow built with the client architecture. More constructs such as sched- 

uler that cover various queueing operations (round robin, priority, etc.) are expected to be 

developed in order to enhance model comprehensibility. 

The QueKit client architecture is weak in the aspect of flexibiLity to cover a wide 

range of queueing scenarios. More constructs are needed to be developed in order to sup- 

port various resources. 

The modeling and simulation experiments in QueKit presented in Chapter 5 show 

promising results. These experiments were only conducted in sequential execution as the 

current Java version of QueKit can only support sequential execution. Therefore, a C++ 

version of QueKit is expected to be developed in the future in order to run simulations in 

parallel. The modeling power for the three architectures in parallel execution will remain 



the same as in sequential execution. This is because the parallel simulation models are 

almost identical to the corresponding sequential models except for the addition of state 

saving calls for optimistic parallel execution. The interesting experiments will be about 

how to adjust the model architecture between QueKit server architecture and QueKit cli- 

ent architecture in order to get better modeling effectiveness and execution efficiency. 
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Appendix A 

Functional Model Notation 

Resource 

Communications Between 
Route for TokendJobs Resource and EntitylServerfCLient 

> + - - - - - -  + 

Appendix B 

Declarative Model Notation 

1. Representing an activity which is a period of time between two distinct events. One event 
marks the beginning of the activity at the tail of the arrow, and another marks the end of 
the activity at the head of the arrow. 

2. Representing the scheduling of an event pointed to by "yes" ifthe condition is satisfied, 
otherwise, doing nothing or scheduling an event pointed to by %d7. 

-- 

~ctivi# in the 
Event Block Same Object 

fvent ~ype: > 
action# 1 
acti0&2 

0 

Activity Involving 
Different Objects - - - - - - - -  +' 

action#n 
Boundary Between 
DifEerent 0 bjects 



Appendix C 

Model for the CPU . Disk System 

(QueKit Server-Client Architecture) 

1. import Utility.*; 
2. import Queffik*; 

3, class Taskextends Job ( 
4, static EXP CPUTiieHigh = new EXP (5); 11 mean = 5 ms. 
5. static EXP CPUTieLow = new EXP (10); I1 mean = 10 ms. 
6. static EXP DiskTme = new EXP (50); /I mean = SO ms. 

7. static int numTows; /I total # of tours 
8. static double totalTourTime; I/ total tour time of all tasks 

9. private int stageseq, 
10. disklndex; // record the disk index 
I I. private double serviceStacq // start time for a senrice 
12. demand = -1 .O, I/ the remain CPU service time if > 0 
13. myPtiority, I/ task priority 
14. tourTme; I/ record a tour start time 
15. public Task (String type, double prio) ( 
16. super(type); 
17. myf riority = prio; 
1 8. setPriority(prio); 

} 
19. public int seqo ( return stageseq; ) 
30. public int disklndex 0 ( return diskhdex; ) 
3 1. public void seqIncO ( stageSeq*; ) 
22. public void seqDec(int n) ( stageSeq --- n; } 
23. public void resetSeq0 ( stageSeq = 0; } 
24. public double toul"une 0 ( return tourTiie; } 
25. public void setDiskhdex (kt i) { diskhdex = ((i c 0) 11 (i > 3)) ? disbdex : i; ) 

26. public double CPUSewiceDemandO ( 
27. if (demaad -= 0) ( N not a preempted task 
28. if (priorityo > 0) 
29. demand = CPUTrmeHigh.nextEXPDouble0; 
30. else 
31. demand = CPUTirneLow.nextEXPDouble(); 

1 
32- return demand; 

1 



3 3. public double DiskSe~ceDemandO { return Di~k~ne.nextEXPDouble0; ) 
34. public double startTiime0 { re- sewicestart; ) 
35. public void setStartnine (double t) ( secviceStart = t; ) 
36. public void resetCPUServiceDemand 0 ( demand = -1 -0; ) 
37. public void setCPUServiceDemand (double t) ( demand = t; ) 
38. public void resetRiority0 ( setPriority (mypriority); ) 
39. public void setTourTiie (double t) ( tourlime = t; ) 

) // end of class Task 

42. class TaskClient extends Client ( 
43. static Uniform diskladex = new Uniform (0,3); 
44, public TaskClient 0 ( super 0; ) 

45. public void scheduie (Token token) ( 
Task task = 0ask)token; 
if (taskcurrentSet0 = null) 

hostSet0.put (task); 
task-seqInc0; 
switch (task.seq0) ( 

case 2: 
task-setDisklndex (disWndex~extUniformInt0); 
tasbquestRes (S imControl.dis k (tas kdis khdexo]); 
break; 

case 3: 
tas k.keep (tas k.DiskServiceDemand0); 
break; 

case 4: 
taskkRes (SimControl.disk [taskdisklndex0]); 
Tas kmunTourscf-; 
Task~totaiTourTiie += QueS'unuIation.currTiie() - task-tourTiie 0; 
tasksetTourTiie (QueSimulation.currTiie0); 
task3esetSeq 0; 
tas k-resetPriority0; 
task-send (SimControl.cpu, 0.0); 

1 
} 

) // end of TaskClient 

67. class CPU extends Server ( 
68. static int no, n 1; // # of nO tasks, nl task 

69, public CPU (int v 1, int v2) ( super 0; no = v 1; n 1 = v2; ) 



70. public void initialize() ( 
7 1. Task task = null; 

// initialize all nO and nl tasks 
72. for (int i=O; i < no; i++) { 
73. task = new Task ("a0 taskn, 0); 
74. msk.send (this, 0.0); 

1 
75. for (ht i=O; i < nl ; i*) { 
76. task = new Task ("a 1 task", 1); 
77. tasksend (this, 0.0); 

1 
1 

78. pubIic void schedule (Token token) { 
79. 

80- 
81. 
82. 
83. 
84. 
85. 

86. 

87. 
88. 

89. 

90. 
91. 
92. 
93. 

94. 
95. 
96. 
97. 

98, 
99, 
LOO. 
101. 
102. 

103. 
104. 
105. 

Task task, newTask = (Task)token; 

witch (newTask.seq0) { 
case 0: // a task requests the CPU 

newTaskseqhc0; 
if(serveSetO.fill0) { 

task = (Tas k)((Queue)serveSetO).las@; 
if(newTask.priority0 > taskpriorityo) ( // preempt the CPU 

// cancel task's current activity 
task-cancel 0; 
/ I  increase task's priority and put it back to the waitset 
task-setPriority (0.5); 
tasksetCPUSewiceDemand (taskCPUServiceDemand0 

- QueSimulation.cmT"imeQ + taskstartTiie0); 
taskmove (waitset()); 

/I token preempt the CPU and get served 
newTaskmove (serveset()); 
newTas k keep (newTas k.CPUSenriceDemand0); 

) else { 
newTaskmove (waitSet0); 

1 
) else { //token gets the service ifserveset0 not @I1 

newTask-move (serveSet0); 
new Taskset StartTiie (QueSimulation.cunTiie(-j); 
newTask.keep (newTaskCPUServiceDernand0); 

) 
break; 

case I: // a task leaves the CPU after service 
newTas k.resetCPUSecviceDernandO; 
newTasksetRiority (0); 
newTasksend (SimControl.taskClient, 0.0); 

task = (Task)((Queue)waitSet0).firstO; 
if (task != null) ( 

task-move (serveset()); 



106. task.setSfa~Tie (QueSimulation.cucrTii~); 
107. taskkeep (taslcCPUServiceDemand0); 

1 
) // end of switch 

) N end of schedule 

108. public void terminate 0 ( 
109. System.out.printla ('Tsk nO = "+no+" Task nl = "+nl+ 

" Total number of task tours = "+Task.nmTours+" Ave. tour time = "+ 
Task.totalTourTm~ashumTou~s); 

1 
) // end of class CPU 

1 12.class SimControl extends QueSimulation ( 
1 13. double Endrime; 
114, static Resource 0 disk = new Resource [4]; 
I IS. static CPU cpu; 
1 16. static Taskclient taskclient; 

117. publicstaticvoidmain(Stringargv~) ( 
1 18. Arguments args = new Arguments(argv); 
1 19. new SimControl (args)w(); 

1 

120. public SimControl (Arguments args) { 
12 1. =per(args); 
1 .  String val = args.retrieve("EndTiie"); 
123. if (val != null) ( EndTime = @ouble.valueOval)).doubleValu~; ) 

1 

124. public void initialize0 { 
125. QueSimulation.dbgPrht(" CPU-Disk System Simulation initialize()"); 
126. QueS imulation.seEndTme(EndTune); 
127. cpu = new CPU (6,2); 
128. taskclient = new Taskclient 0; 
9 for(inti=O;i<4;it+) 
130. disk[rJ = new Resource (1); 

1 
13 1. public void terminate0 { QueS'unu1ation.dbgPrint ("Sirnilation terminated,"); } 

) // end of SimControl 



Appendix D 

Model for the Harbor System 

(QueKit Server-Client Architecture) 

2. public class Boat extends Job ( 
3. private int seqNum;// stage sequence # 
4. private double arriveT;// time when the boat arrives at the harbor 
5. public Boat 0 ( 
6- super ("Boat"); 
7. aniveT = QueSimulation.currrune(); 

1 
8. public final int seqo { re- seqNwn; ) 
9. public find void incSeq 0 ( seqNum"; ) 
10. public double arrive'llieo { return arriveT; ) 

) N end of Boat 

1 1. import QueKk*; 

12. class Inspector extends Server { 

13. public void schedule (Token token) { 
14. Boat boat = (Boat)token; 
15. boatkcSeqQ; 

switch (boat.seq0) { 
case 1: I/ stage # 1 -- a boat arrives for inspection 

if (serveSetO.fidIO) ( 
boat.move (waitset()); 

1 else ( 
boat.move (serveset()); 
boatkeep (3.0); 

1 
break; 

case 2: /I stage #2 - a boat finishes the inspection 
boatsend (SimControl.boatClient, 0.0); 
boat = (Boat)((Queue)waitSetQ).firstO; 
if (boat != null) { 

boatmove (serueseto); 



29. boatkeep (3.0); 
1 

I 
1 

) N end of Inspector 

30. import QueKit*; 

3 1. cIass BoatClient extends Client { 
32. static Resource jetty, tug; 
33. static Boatsink sink, 
34. public Boatclient 0 { super(); ) 

35. public void initialize 0 { 
36. jetty = new Resource (2); 
3 7. tug = new Resource (3); 

1 
38. public void schedule (Token token) { 

Boat boat = (Boat)token; 
if (boat.currentSet0 = null) 

hostset @put (boat); 
boathcSeq0; 
switch (boatseqo) { 

case 3 : 
boat.requestRes (jetty); 
break; 

case 4: 
boat.requestRes (rug, 2); 
break; 

case 5: 
boat.keep (2.0); 
break; 

case 6: 
boat.f?eeRes (tug, 2); 
boat-keep ( 14.0); 
break; 

case 7: 
boamquestRes (tug); 
break, 

case 8: 
boa~keep (2.0); 
break; 

case 9: 
boat-keRes Oetty); 
boa~fieeRes (tug); 
boatsend (sink, 0.0); 

1 
) // end of schedule 

) // end of BoatClient 



67. import QueKit*; 

68.class Boatsink extends Sink ( 
69. private double totdTiie; 
70. public BoatSink 0 ( super 0; ) 

7 1. public void schedule floken token) { 
72. Boat boat = (8oat)token; 
73. totalTie += QueSimulation.cmTiie() - boat.arriveTiule(); 
74. addTotaNumTokens (I); 

l 
) // end of Sink 

75. import SimKit.*; 
76. import Quefit?; 

77. class SimControl extends QueSimulation ( 
78. static Inspector inspector; 
79. static Boatclient boatclient; 
80. static Source source; 
8 1. double EndTiune; 

82. public static void main (String argvfl) { 
83. Arguments args = new Arguments(argv); 
84. new SimControl (args).run(); 

1 
85. public SimControl (Arguments args) { 
86. super(args); 
87. String val = arg.retrieve("EndTiie"); 
88. if (val != null) { Endrune = @ouble.valueOf(val)).doub1eValueO; ) 

l 

89. public void initializeO ( 
90. QueSimulation.dbgPrint(" Harbor System Simulation initializeow); 
9 1. QucSimulation.setEndTiie(fEndT~me); 

92. boatclient = new Boatclient 0; 
93. inspector = new inspector 0; 
94. source = new Some ((new Boat O).getClassO, "EXP", 18.0); 
95. source.setDestination (inspector); 
96. BoatClientsink = new BoatSink 0; 

1 

97. public void terminate0 { QueSimu1ation.dbgPrint (" Simulation terminated"); ) 
) I/ end of SimControl 




