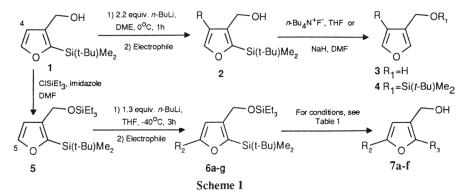


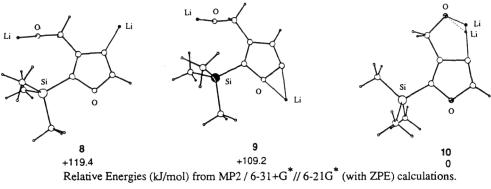
0040-4039(94)01054-4

A Facile Preparation of 2,4-Disubstituted Furans


James A. Nieman and Brian A. Keay*

Department of Chemistry, University of Calgary, Calgary, Alberta, Canada, T2N 1N4

Abstract: Treatment of 2-(*tert*-butyldimethylsilyl)-3-(triethylsilyloxymethyl)furan with 1.3 equiv. of *n*-BuLi (THF, -40°, 3h), followed by the addition of a variety of electrophiles provided 2,3,5-trisubstituted furans, which upon treatment with tetra-*n*-butylammonium fluoride afforded 2,4-disubstituted furans in moderate to excellent yields.


The preparation of 2,4-disubstituted furans is difficult due to the propensity of the furan ring to add electrophiles or lithiate in the C-2 and/or C-5 position(s). Previous syntheses of furan rings containing a 2,4-disubstituted pattern have involved: a) the synthesis of the furan ring from acyclic precursors;¹ b) electrophilic aromatic substitution of a 2-substituted (to give a 2,3,5-trisubstituted furan)^{2a} or 2,5-disubstituted furan ring followed by removal of the C-2 group;^{2b} or c) the direct C-5 lithiation of a 2,3-disubstituted furan followed by the removal of the initial C-2 group.³ Both a bromine atom^{2a,3a} and a phenylthio group.^{2b,3b,3c} have been successfully removed from the C-2 position of a 2,3,5-trisubstituted furan (i.e. replaced by a hydrogen atom) thereby producing a 2,4-disubstituted furan. We herein report an alternative lithiation route to 2,4-disubstituted furans, employing the *tert*-butyldimethylsilyl group as an easily removable group on the furan ring.

We have recently shown that 2-(*tert*-butyldimethylsilyl)-3-(hydroxymethyl)furan $(1)^4$ can be regiospecifically lithiated at C-4 by treatment with 2.2 equivalents of *n*-butyllithium (DME, 0°C, 1h).⁵ Addition of an electrophile provided furan 2, which was either desilylated⁵ (*n*-Bu₄NF, THF) to yield furan 3 or treated with NaH in DMF⁶ to provide furan 4 (Scheme 1). When the hydroxy group in furan 1 was protected with a

triethylsilyl group, to provide furan 5, a regiospecific C-5 lithiation occurred upon treatment with 1.3 equivalents of *n*-butyllithium (THF, -40°C, 3h).⁷ The C-5 lithiation was confirmed by the absence of a signal at δ 7.6 in the ¹H NMR spectrum of furan 6a (R₂=D) after quenching the anion of furan 5 with MeOD.

The difference in lithiation regiospecificity between furans 1 and 5 is probably due to two factors. Firstly, the Lewis basicity of the oxygen atom in the triethylsilyloxy group of furan 5 is lower than the Lewis basicity of the oxygen atom in the hydroxymethyl group of furan $1.^8$ Thus, the triethylsilyloxy group is a weaker *ortho*-lithiation director. Secondly, *ab initio* calculations on furans 8-10 (Scheme 2) indicated that furans 8 and 9 are 119.4 and 109.2 kJ/mol higher in energy, respectively, than the bridged dilithio compound $10.^9$ A bridged dilithio compound is not possible in furan 5, therefore, lithiation occurs at the more acidic C-5 site in furan $5.^{10}$

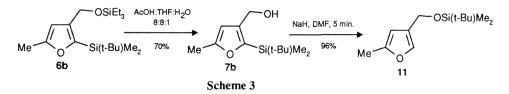
Scheme 2

Table 1: Results from the Lithiation and Subsequent Reactions of Furan 5.

	Electrophile	Compounds 6a-g (% Yield) ^a	Conditions	Compounds 7a-f (% Yield) ^a
1.	MeOD	6a R ₂ =D (95)	AcOH:THF:H ₂ O (8:8:1)	7a $R_2=D, R_3=Si(t-Bu)Me_2$ (77)
2.	Mel	6b $R_2 = Me$ (66)	AcOH:THF:H ₂ O (8:8:1)	7b $R_2 = Me, R_3 = Si(t-Bu)Me_2$ (70)
3.	ICH2CH=CH2	Not isolated ^b	AcOH:THF:H ₂ O (8:8:1)	7c R_2 =CH ₂ CH=CH ₂ , R_3 =Si(t-Bu)Me ₂ (54)
4.	DMF	6c R ₂ =CHO (88)	AcOH:THF:H ₂ O (8:8:1) n-Bu ₄ N ⁺ F ⁻ , THF	7d R_2 =CHO, R_3 =Si(t-Bu)Me ₂ (72) 7e R_2 =CHO, R_3 =H (83)
5.	CICONEt ₂	6d R_2 =CONE t_2 (92)	<i>n</i> -Bu ₄ N ⁺ F ⁻ , THF	7f $R_2 = CONEt_2, R_3 = H$ (68)
6.	ClSnBu ₃	6e $R_2 = SnBu_3$ (40)	AcOH:THF:H ₂ O (8:8:1)	decomposition ^C
7.	CICO ₂ Me	6f $R_2 = CO_2 Me (34)^d$	K ₂ CO ₃ /MeOH ^e	complex mixture

a) All yields are isolated unless otherwise noted.

b) The crude reaction mixture was treated directly with the AcOH:THF:H_2O mixture.


c) We found that 2-stannyl furans are very unstable in the presence of various types of acid or $n-Bu_4N^+F$.

d) The yield is based on the ¹H NMR integration of a mixture of **6f** and 5-(methoxycarbonyl)-3-(methoxycarbonyloxymethyl)-2-(*tert*-butyldimethylsilyl)furan (35%).

e) The above mixture (d) was treated with K₂CO₂/MeOH.

The C-5 anion of furan 5 was quenched with a variety of reactive electrophiles to provide furans 6a-f in moderate to excellent yields (Table 1, Scheme 1); however, treatment of the C-5 anion of furan 5 with the unreactive electrophile 3-chloro-1-iodopropane provided the expected 2,3,5-trisubstituted furan 6 in only 30% yield. Therefore, the scope of this reaction appears to be limited to reactive electrophiles. Normal workup involved the addition of a saturated solution of ammonium chloride. Immediate extraction of the mixture with diethyl ether provided 6a-f; however, if the solution was stirred longer than 15 minutes in the presence of the ammonium chloride, a mixture of furan 6 and the compound resulting from a loss of the triethylsilyl group was obtained. Complete removal of the triethylsilyl group occurred when furans 6 were treated with a mixture of AcOH:THF:H₂O (8:8:1); compounds 7a-d were isolated in good yields. Removal of both silyl groups could be accomplished by treating furans 6 with tetra-*n*-butylammonium fluoride (THF, r.t., 2h). Thus, furans 6c and 6d provided furans 7e and 7f, respectively (entries 4 and 5, Table 1).

It would be synthetically useful if the *tert*-butyldimethylsilyl group at C-2 (in furan 6) could also be used as a protecting group for the C-4 hydroxymethyl group (in 7a-7d) instead of removing both silyl groups with tetra-*n*-butyl ammonium fluoride. This idea is illustrated with compound 6b in Scheme 3. Treatment of furan 6b with AcOH:THF:H₂O provided furan 7b, which when mixed with NaH in DMF (r.t., 5 min.) provided 2-methyl-4-(*tert*-butyldimethylsilyloxymethyl)furan 11 in 96% yield via a [1,4] C \rightarrow O silyl rearrangement.⁶ The reuse of the *tert*-butyldimethylsilyl group makes our synthetic sequence very economical since the expensive tert-butyldimethylsilyl group has been used as both a blocking group in furan 5 and a protecting group in furan 11.

We have developed a new approach towards the synthesis of 2,4-disubstituted furans in which the silyl groups are easily removed or can be manipulated and used as a protecting group for the resulting C-4 hydroxymethyl group. A full account of the above work and other lithiation studies is currently underway.^{5,11}

Typical Experimental

To a mixture of furan 5 (249 mg, 0.761 mmol) in THF (9.4 mL) at -78°C under N₂ was added *n*butyllithium (1.3 equiv. of 2.5M in hexanes). After stirring the mixture for 3 hours at -40°C, iodomethane (5 equiv.) was added and the mixture was allowed to come to room temperature and stir overnight. The THF was removed *in vacuo* and diethyl ether (5 mL) and saturated ammonium chloride (5 mL) was added to the remaining solid. The ether was separated within 5 minutes, dried (Na₂SO₄), and removed to leave an oil, which was purified by distillation to provide furan **6b** in 66% yield.¹²

Acknowledgements

We thank the Natural Sciences and Engineering Research Council of Canada, the Merck Frosst Centre for Therapeutic Research (Pointe Claire, Quebec, Canada), and the University of Calgary for financial support.

References and Notes

- Bosshard, P.; Eugster, C.H. Adv. Hetero. Chem. 1966, 7 378; Dean F.M. Adv. Hetero. Chem. 1982, 30 168; Dean F.M. Adv. Hetero. Chem. 1982, 31 238; Sargent, M.V.; Dean F.M. Furans and their Benzo Derivatives: Reactivity, Synthesis and Applications. In Comp. Hetero. Chem. 1982, 3, 599.
- (a) Chiarello, J.; Joullie, M. Tetrahedron 1988, 44, 41; (b) Nolan, S.M.; Cohen, T. J. Org. Chem. 1981, 46, 2473.
- (a) Bock, I.; Bornowski, H.; Ranft, A.; Theis, H. Tetrahedron 1990, 46, 1199; (b) Goldsmith, D.; Liotta, D.; Saindane, M.; Waykole, L.; Bowen, P. Tetrahedron Lett. 1983, 24, 5835; (c) Tanis, S.P.; Head, D.B. Tetrahedron Lett. 1984, 25, 4451; see also (d) Lee, G.C.M.; Holmes, J.M.; Harcourt, D.A.; Garst, M.E. J. Org. Chem. 1992, 57, 3131.
- 4. Bures, E.J.; Keay, B.A. Tetrahedron Lett. 1987, 28, 5965.
- 5. Bures, E.J.; Keay, B.A. Tetrahedron Lett. 1988, 29, 1247.
- 6. Spinazze, P.G.; Keay, B.A. Tetrahedron Lett. 1989, 30, 1765.
- Replacement of the triethylsilyl group in furan 5 by a *tert*-butyldimethylsilyl group also resulted in lithiation at the C-5 position. However, selective cleavage of the Si-O bond in the resulting furan 6 was difficult due to concomitant removal of the C-2 silyl group (Si-C bond). The triethylsilyl group was chosen since it can be selectively removed in the presence of a *tert*-butyldimethylsilyl group, see: Hwu, J.R.; Wang, N. Chem. Rev. 1989, 89, 1599.
- Shambayati, S.; Blake, J.F.; Wierschke, S.G.; Jorgensen, W.L.; Schreiber, S.L. J. Am. Chem. Soc. 1990, 112, 697; Beak, P.; Kerrick, S.T.; Gallagher, D.J. J. Am.Chem. Soc. 1993, 115, 10628; Shepherd, B.D. J. Am. Chem. Soc. 1991, 113, 5581.
- Schleyer, P.v.R. Pure and App. Chem. 1984, 56, 151; Schleyer, P.v.R. Pure and Appl. Chem. 1983, 55, 355; Schubert, U.; Neugebauer, W.; Schleyer, P.v.R. J. Chem. Soc., Chem. Comm. 1982, 1184; Collum, D.B. Acc. Chem. Res. 1992, 25, 448; Romesberg, F.E.; Gilchrist, J.H.; Harrison, A.T.; Fuller, D.J.; Collum, D.B. J. Am. Chem. Soc. 1991, 113, 5751.
- 10. Gschwend, H.W.; Rodriguez, H.R. Org. Reactions 1979, 26, 1.
- 11. Keay, B.A.; Bures, E.; Spinazze, P.G.; Nieman, J.A.; Rauk, A.; Rogers, C.; Bontront, J.-L.J.; Hunt, I.R.; Mouck, M.; manuscript in preparation.
- 12. All compounds provided analytical and/or spectroscopic data consistent with their structures. Some representative examples are: Compound 6b: b.p. 88-94°C/0.04 torr; IR (neat) 1463, 1250 cm⁻¹; ¹H NMR (200 MHz, $CDCl_3$) δ 0.38 (s, 6H), 0.65 (q, 6H), 0.91 (s, 9H), 1.0 (t, 9H), 2.28 (s, 3H), 4.53 (s, 2H), 6.04 (s, 1H); ¹³C NMR (50 Mz, CDCl₃) δ -5.7, 4.5, 6.8, 17.4, 26.4, 57.3, 107.0, 137.6, 151.6, 156.1; EIMS m/z 340 (M⁺), 283 (M⁺-t-Bu); Anal. Calcd for C₁₈H₃₆O₂Si₂: C, 63.47; H, 10.65. Found: C, 63.84; H, 10.93. Compound 7b: m.p. 50-51°C; IR (neat) 3349, 1253 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 0.28 (s, 6H), 0.91 (s, 9H), 2.30 (s, 3H), 4.52 (s, 2H), 6.07 (s, 1H); ¹³C NMR (50 Mz, CDCl₃) δ -5.6, 13.7, 17.1, 26.3, 57.3, 106.7, 137.0, 153.0, 156.6; EIMS m/z 169 (M⁺-t-Bu). Compound 11 b.p. 88-94°C/20 torr; IR (neat) 1465, 1259 cm⁻¹; ¹H NMR (CDCl₃, 200 MHz) δ 0.09 (s, 6H), 0.92 (s, 9H), 2.27 (s, 3H), 4.53 (s, 2H), 5.96 (s, 1H), 7.19 (s, 1H); ¹³C NMR (50 Mz, CDCl₃) δ -5.2, 13.5, 25.9, 30.4, 57.6, 105.6, 126.5, 136.8, 152.6; EIMS m/z 226 (M⁺). Compound 6c: b.p. 88-99°C/0.04 torr; IR (neat) 1688, 1092 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 0.33 (s, 6H), 0.68 (q, 6H), 0.98 (s, 9H), 1.02 (t, 9H), 4.63 (s, 2H), 7.30 (s, 1H), 9.67 (s, 1H); ¹³C NMR (50 Mz, CDCl₃) δ -6.0, 4.4, 8.8, 15.2, 28.3, 58.7, 120.7, 138.9, 158.8, 161.9, 176.0; EIMS m/z 354 (M⁺); HRMS calcd for C₁₈H₃₄O₃Si₂: 354.2046. Found: 354.2041. Compound 7d: b.p. 96-101°C/0.04 torr; IR (neat) 3433, 1678, cm⁻¹; ¹H NMR (200 MHz, CDCl₃) § 0.36 (s, 6H), 0.94 (s, 9H), 1.6 (bs, 1H, -OH), 4.64 (s, 2H), 7.33 (s, 1H), 9.68 (s, 1H); ¹³C NMR (50 Mz, CDCl₃) δ -5.9, 17.3, 26.2, 56.5, 120.7, 136.1, 156.3, 163.2, 178.1; EIMS m/z 240 (M⁺), 183 (M⁺-*t*-Bu). Compound 7e: b.p. 62-70°C/0.02 torr; IR (neat) 3439, 1693, cm⁻¹; ¹H NMR (200 MHz, CDCl₃) & 3.05 (bs, 1H, -OH), 4.57 (s, 2H), 7.24 (s, 1H), 7.63 (s, 1H), 9.54 (s, 1H); ¹³C NMR (50 Mz, CDCl₃) δ 55.7, 120.7, 126.4, 145.3, 153.1, 178.1; EIMS m/z 126 (M⁺); HRMS calcd for C₆H₆O₃: 126.0317. Found: 126.0308.

(Received in USA 12 April 1994; revised 26 May 1994; accepted 27 May 1994)