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Abstract

This paper presents a method for valuing power derivatives using a supply-demand

approach. Our method extends work in the field by incorporating randomness into

the base load portion of the supply stack function and equating it with a noisy

demand process. We obtain closed form solutions for European option prices

considering two different supply models: a mean-revertingmodel and a Markov

chain model. The results are extensions of the classic Black-Scholes equation.

The model provides a relatively simple approach to describethe complicated price

behaviour observed in electricity spot markets and also allows for computationally

efficient derivatives pricing.
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1. introduction

Electricity is essential for the normal course of life for almost every human in

the industrialized world. The distribution of power to households and businesses

is a complicated process involving significant engineeringdesign and planning.
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Complexities from both engineering and financial perspectives are largely caused

by the inability to store electricity economically. This lack of storage causes elec-

tricity markets to have the most complicated spot price behavior of all the energy

markets, ((6), (15)). In order to construct a reasonable model for the electric-

ity spot price it is necessary to account for as many of the price peculiarities as

possible.

The standard approach to handling the behaviour of electricity markets has

normally consisted of increasing the complexity of standard financial models.

That is, a common approach is to use variations of mean-reverting jump diffu-

sion, (MRJD), models to try to capture the price dynamics within the electricity

markets. (See (6) and (11) for an overview). However, increasing the complex-

ity of these models has some negative effects: i) they begin to lose mathematical

tractability, ii) they become increasingly more computationally demanding, and

iii) they are difficult to calibrate. A relatively new approach is to incorporate fun-

damental drivers, such as temperature and supply constraints into the dynamics

of electricity spot prices. Indeed, a number of these “Hybrid Models” have been

proposed in the past. (See: Anderson (2), Barlow (3), Davison et. al. (8), and

Eydeland and Wolyniec (10)). Their main drawback, as noted by Weron (16), for

instance, is the amount of time these models take to calibrate. Therefore, they

suffer from some of the same disadvantages as complex MRJD models. If time

for pricing and calibration is of minimal concern then thesemodels work well;

however, when time is of great importance, such as on a trading floor, then these

disadvantages are critical.

The goal of this paper is to create a model that captures the dynamics of the

electricity markets and can also remain mathematically trackable. We shall be
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using a model similar to that of Barlow (3). This sets the stage for reduced form

supply-demand type modeling, and as it has the added benefit of being relatively

simple in mathematical terms, the parameters can be easily estimated. Our model

includes some extensions which makes the Barlow model more realistic. For in-

stance, we use Fourier analysis to find the deterministic behavior in the demand

and supply portions of the model. On the supply side of the model we use a two

step method to determine the supply stack. 1) We modify a method outlined by

Elliott et. al. in (9) to model the baseload portion of the supply stack, and 2)

we consider a case when the baseload follows a mean-reverting process. We also

develop a price dependent function which represents the “peak-load” portion of

supply. Our dynamics solve many of the issues found in standard pricing models

and is fully scalable up to a high level of complexity, such asthat used by Ander-

son, (2), or Eydeland and Wolyniec, (10). More importantly our model is easy to

implement when compared to some of the complex MRJD models and it yields

closed form pricing equations for derivatives.

The paper is organized as follows: Section two focuses on thedevelopment

of the price model, section three investigates the implications for option pricing,

section four discusses the estimation of the model. Sectionfive looks at the empir-

ical results of the model, and section six concludes the paper and provides some

suggestions for future work.

2. Model Construction

By observing Fig. 1, it is obvious that the modeling of electricity spot be-

haviour is very different from modeling stock prices. Likewise, from Table 1 we

can see that the first four moments of baseload peak supply anddemand are much
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Figure 1: Daily prices of the Alberta electricity spot pricemarket and the closing prices of an

electricity generator, TransAlta

more ‘normal’ than the first four moments of the electricity spot price. Con-

sequently, we base our model on the premise that supply equals demand, from

which an equilibrium price can be determined. This type of pricing is consistent

with standard economic arguments and allows an intuitive exploration of price

construction. In doing so we are also able to avoid trying to construct a reduced

form model for the extreme spot price behaviour observed in Fig. 1. Our first step

is to model the demand portion. We then construct the supply curve and from the

combination of these, obtain a price process.
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Price Supply Demand

Mean 92.1956 7636.1646 8027.4981

Stdev 80.8988 339.9402 417.2096

Skewness 3.6229 -0.3112 -0.0125

Kurtosis 21.7703 2.6280 2.404

Table 1: Market parameters for price, supply, and demand over 2005-2006, where baseload supply

is defined as all supply bid into the stack at$50 per MWh or less.

2.1. The Demand Side

Power demand is highly sensitive to human behaviour which depends on such

variables as the time of day and heating and cooling seasons.Though it is common

to use the term ‘seasonal’ in other markets such as natural gas, electricity markets

may be better thought of as multi-cyclical, rather than seasonal. The price of

power is effected not only by the seasons but also by the working and sleeping

habits of consumers over the course of months, weeks, days, and hours. This type

of behaviour is fairly predictable or deterministic and should be modeled as such.

Therefore, we suppose that system demandD(t) has dynamics:

D(t) = f(t) + D̂(t) . (1)

Heref(t) is the deterministic component that can be estimated via signal pro-

cessing methods or other techniques, andD̂(t) is demand minus the deterministic

portion. In this paper we develop a model that assumesD̂(t) follows a mean-

reverting process described by the solution of the following stochastic differential

equations (SDE):
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dD̂(t) = κ(µ− D̂(t))dt+ σdBd(t) . (2)

HereBd(t) is standard Brownian motion,σ is the “volatility” of demand,κ is

the speed of mean-reversion andµ is the long term mean.

Solving (2) forD̂ yields:

D̂(t) = e−κt[D̂(0) + µ(eκt − 1)] +

∫ t

0

σeκ(s−t)dBd(s) . (3)

Substituting (3) back into (1) gives a model for the total demand in the system.

D(t) = f(t) + e−κt[D̂(0) + µ(eκt − 1)] +

∫ t

0

σeκ(s−t)dBd(s) . (4)

Thus, total demand is normally distributed with mean

E[D(t)|F0] = f(t) + e−κt[D̂(0) + µ(eκt − 1)] = µD(t) .

and varianceV [D(t)|F0] = (1 − e−2κt)
σ2

2κ
= σD(t) .

Equation (4) describes the demand at any timet. As demand is almost inelas-

tic, (demand does not change with price), we use the valueD(t) as the market

demand.
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2.2. The Supply Side

We suppose that the supply side3 is composed of two distinct components,

the “baseload” and the “mid and peaking load”. These will be modeled sepa-

rately. Each of these components varies in time and quantitywhich allows for a

dynamical simulation and derivative pricing environment.There are two choices

of randomness we wish to explore for the supply side. The first, (see (9) for a sim-

ilar approach), is a model which uses a Markov chain to describe baseload noise

dynamics. The second is a model which uses mean-reversion for the baseload.

In each case, we assume that base supply also has a cyclical component. It fol-

lows that suppliers must increase supply to meet demand and,since demand has a

strong cyclical component, then so should supply.

Thus, we model supply as,

S(t, P (t)) = Sb(t, P (t)) + Sk(t, P (t)) . (5)

HereSb(·) is the baseload portion of system supply, andSk(·) is the mid to

peaking, (high cost), portion of the system supply curve.P (t) is the price of

power at timet.

It can be costly to stop baseload power stations so they are usually run at a

certain capacity for long periods of time, except for maintenance outages and other

planned stoppages. Therefore, we assume that the baseload portion of supply does

not vary with price and is a function only of timeSb(t). The high cost portion of

3Throughout the paper, our analysis is done with price as the independent variable so that in

price/quantity space, price is along the horizonal axis, and quantity is represented by the vertical

axis, as in Fig. 2.
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the supply has more flexibility and is able to adjust to price at a much faster rate.

Thus, it is natural to have the high cost portionSk(P (t)) depend on price.

We would like our supply curve to have the following economically sensible

requirements.

1. Supply increases with Price,∂S
∂P

≥ 0

2. The capable marginal increases in supply are decreasing in price ∂2S
∂P 2 ≤ 0

For simplicity we assume a basic model forSk(·) that satisfies the above con-

cavity requirement, and takeSk(P (t)) = b log(cP (t) + ξ).

Then

S(t, P (t)) = aSb(t) + b log(cP (t) + ξ) . (6)

Here,a, b, c andξ are real positive constants. The supply function has the

additional benefit that when pricesP (t) are at the market minimum4, the only

supply available is from the baseload portion. For instance, if the market minimum

price is zero then the portion of the supply stack that is bid in at the minimum price

is aSb(t) + b log(ξ). The next two sections will be concerned with developing

the models for the baseload portion of the supply function. From Fig. 2 the

logarithmic function used here does seem a reasonable choice for the concave

portion of the supply curve and thus we will use the same high cost portion of the

function throughout the rest of the paper.

4Because of the non storable nature of electricity, producers sometimes have to pay to dispose

of any excess power, inducing a negative price.
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2.2.1. The Markov Chain Model

We supposes that the generators, (suppliers), who provide baseload do so in

a fairly predictable manner except in some circumstances where there might be a

plant failure. Therefore, we model the baseload portion of the supply stack using

a method similar to that outlined in (9). However, we deviatefrom their method

which models the number of baseload suppliers using a homogeneous Markov

chain. Instead we use a Markov chain to describe the noise in the baseload supply.

SupposeG = {Gt, t ≥ 0} is a Markov chain whose state space is the set of unit

vectors,

{e1, e2, . . . , en}, ei = (0, . . . , 1, . . . , 0)′ ∈ R
N .

Suppose thatA, the transition rate matrix ofG is independent of time. Then,

Gt = G0 +

∫ t

0

AGsds+Mt . (7)

WhereMt is a martingale.

Using (7) we can establish a simple way of describing the noise in baseload

supply. From that we can establish the baseload curve at any time t.

We suppose the baseload has dynamics:

Smc
b (t, P (t)) = B(t) + 〈α,Gt〉 . (8)

Here,B(t) is the deterministic component of supply,α = (α0, α1, . . . , αN−1) ∈
R

N are supply weights that affect the price when the chain is in agiven state.

Therefore, we have a total supply curve given as:

S(t, P (t)) = aSb(t, P (t))+Sk(t, P (t)) = a(B(t)+ 〈α,Gt〉)+ b log(cP (t) + ξ) .

(9)
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2.2.2. The Mean Reverting Model

In this setting, instead of using a Markov chain to model the randomness of

the baseload, we now suppose that it follows a mean revertingprocess.

Under this setting the baseloadSmr
b (t) = B(t) + S1

b (t) where,B(t) is the

deterministic portion of baseload andS1
b is the solution of the mean reverting

stochastic differential equation:

dS1
b (t) = κs(µs − S1

b (t))dt+ σsdBs(t). (10)

Then,

Smr
b (t) = B(t) + S1

b (t)

= B(t) + e−κst[Sb
1(0) + µs(e

κst − 1)] +

∫ t

0

σse
κs(ν−t)dBs(ν) .

(11)

So, in the mean-reverting model, we have base supply normally distributed,

with mean

E[Smr
b (t)|F0] = B(t) + e−κst[Sb

1(0) + µs(e
κst − 1)] = µmr(t) .

and varianceV [Smr
b (t)|F0] = (1 − e−2κst)

σ2
s

2κs
= σmr(t) .

This gives the equation for the supply curve as:

S(t, P (t)) = B(t) + e−κst[Sb
1(0) + µs(e

κst − 1)]

+

∫ t

0

σse
κs(ν−t)dBs(ν) + b log(cP (t) + ξ) .

(12)

2.3. Equilibrium Price

We now use the above supply and demand equations to obtain a market price

for powerP (t). In equilibrium,
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D(t) = S(t, P (t)) = aSb(t, P (t)) + Sk(t, P (t)) . (13)

The market clearing condition (13) can be used to solve for the priceP (t) at

any timet. One noticeable issue with this model is that it does not necessarily

put caps and floors on the price. In power markets both price caps and floors do

exist depending on various markets. For instance, in the Alberta market, there is

an upper bound at$999.99 and a lower bound of$0 per Megawatt hour. For other

markets, there may be no price caps or floors, or they may be more extreme values

then those of Alberta.

In this paper we will be looking at average peak power prices which are of-

ten well within the market caps and floors. Thus, we avoid creating a piecewise

type of function for which it would be extremely difficult to obtain closed form

solutions.

For simplicity we assume a basic model ofSk(t, P ) that meets the concavity

conditions, and use the market clearing equation,

D(t) = aSb(t) + b log(cP (t) + ξ) (14)

to obtain a solution for the price:

P (t) =
1

c
(exp(−aSb(t) −D(t)

b
) − ξ) . (15)

Exploring this model we see that price decreases as each of the parameters

a, b, c andξ increases. Likewise, as one would expect, asSb increases, price falls,

and asD increases we obtain a price increase. Therefore, large price movements

occur when the distance between baseload supply and market demand increases.
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Thus, we have derived a model which appears to address most ofthe required

attributes that are observed in the power spot markets.

3. Derivatives Pricing

Derivatives are an important part of the energy markets. Forinstance, it is

nearly impossible to buy and hold electric power so derivative contracts are used

extensively. Standard risk neutral pricing arguments, (e.g. cost of carry), are not

appropriate in the case of power markets, given the inability to store the underly-

ing. Consequently, we price all of the derivatives under thephysical or real world

measure.

3.1. The Price of a European Call Option

We price claims using the stochastic discount factor, (SDF), approach as in

(7). The price of a claimg(·) at timet is the discounted expected payoff under the

physical measure at some timeT > t ≥ 0 in the future,

V (t) = E[
m(T )

m(t)
g(T )|Ft] .

HereFt is the information known at timet, m(·) is the SDF, andg(·) is the

claim on the underlying.

For simplicity we suppose that the SDF is a riskless bond withconstant interest

rater, minus the market price of risk variable5, γ. If g is a European call option

with strike priceK, then the price of the call at timet, is:

5More complicated versions of the discount factor can be used, and given the large literature

on term structure one can easily extend this model.
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V (t) = e−(r−γ)(T−t)E[(P −K)+|Ft] = e−(r−γ)(T−t)

∫ ∞

−∞
(P −K)+dF (P ) .

HereF (P ) is the cumulative density function ofP .

This leads the following results for the price of a call, using either model:

Proposition 1. With a total system demand following the mean reverting process

(4) and supply given by the Markov chain model (12), the priceof a European call

option for the price of powerP with strike priceK, expiry timeT and a discount

factor that is a deterministic riskless bond with interest rater − γ, whereγ is the

market price of risk,

Vt = e−(r−γ)(T−t)〈Ct, e
A(T−t)Gt〉. (16)

Here

Ct = (C1
t , . . . , C

N
t )′

where

Ci
t =

1

c
(e−λi+µz+σ2

z/2Φ(d1) − (ξ + cK)Φ(d2)),

and

d1 =
µz + σ2

z − λi − log(cK + ξ)

σz

d2 =
µz − λi − log(cK + ξ)

σz
= d1 − σz

µz =
µD(T − t)

b

σ2
z =

σD(T − t)2

b2

λi =
a(B(T − t) + αi)

b
.
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αi is the weight parameter in statei.

Proof.

Vt = e−(r−γ)(T−t)

∫ ∞

−∞
(
1

c
(exp(−aS

mc
b (T − t) −D(T − t)

b
) − ξ) −K)+dF (P ) .

(17)

For each of thei states of the Markov chainG we have,

P i
t =

1

c
(exp(−a(B(t) + αi) −D(t)

b
) − ξ)

where

P̄t = (P 1
t , . . . , P

N
t )′

and Pt = 〈P̄t, Gt〉 .

We must find:

E[e−(r−γ)(T−t)(PT −K)+|Ft] = e−(r−γ)(T−t)E[(PT −K)+|Ft]

= e−(r−γ)(T−t)E[E[(〈P̄t, Gt〉 −K)+|FB
t ∨ FG

T ]|Ft] ,

whereFB
t = σ{Bu : u ≤ t} andFG

t = σ{Gu : u ≤ t}. Note that,

E[Gt|Gs] = eA(t−s)Gs,

and consider,

E[(〈P̄t, GT 〉 −K)+|FB
t ∨ FG

T ] .

15



Suppose thatGT = ei.

We then first evaluate:E[(P i
T −K)+|FB

t ∨ {GT = ei}]

Now:P i
T =

e−λieZ − ξ

c

whereλi =
a(B(T ) + αi)

b

andZ =
D(t)

b
∼ N(

µD

b
,
σ2

D

b2
) = N(µz, σ

2
z).

Consequently,

P i
T > K when

e−λieZ − ξ

c
> K

So, Z > log[eλi(cK + ξ)] = y

Ci
t = e−(r−γ)(T−t)E[Ci

T |FB
t ∨ {GT = ei}]

Letm = e−(r−γ)(T−t), then,

Ci
t = mE[(P i

T −K)+|FB
t ∨ {GT = ei}]

= m

∫ ∞

y

(
e−λieZ − ξ

c
−K)

1√
2πσz

exp(−(Z − µz)
2

2σ2
z

)dZ

= m

∫ ∞

y

1

c
√

2πσD(t)
e−λieZ exp(−(Z − µz)

2

2σ2
z

)dZ −m(ξ/c+K)(1 − Φ(
y − µz

σz
))

= m
e−λi

c

∫ ∞

y

1√
2πσz

eZ exp(−(Z − µz)
2

2σ2
z

)dZ −m(ξ/c+K)(1 − Φ(
y − µz

σz
)).

Completing the square,
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Ci
t

m
=
e−λi+µz+σ2

z/2

c

∫ ∞

y

1√
2πσz

exp(−(Z − µz − σ2
z)

2

2σ2
z

)dZ − (ξ/c+K)(1 − Φ(
y − µz

σz
))

=
e−λi+µz+σ2

z/2

c
(1 − Φ(

y − (µz + σ2
z)

σz
)) − (ξ/c+K)(1 − Φ(

y − µz

σz
)).

Now since,1 − Φ(x) = Φ(−x)

Ci
t

m
=
e−λi+µz+σ2

z/2

c
(Φ(

µz + σ2
z − λi − log(cK + ξ)

σz

)) − (ξ/c+K)(Φ(
µz − λi − log(cK + ξ)

σz

))

=
e−λi+µz+σ2

z/2

c
(Φ(

µz + σ2
z − λi − log(cK + ξ)

σz
) − (ξ/c+K)Φ(

µz − λi − log(cK + ξ)

σz
)) .

Therefore,

(〈PT , GT 〉 −K)+ = 〈C̄T , GT 〉

whereC̄T = (C1
T , . . . C

N
T )′.

Consequently,

E[(PT −K)+|Ft] = E[(〈P̄T , GT 〉 −K)+|Ft]

= E[〈C̄T , GT 〉|Ft] (∗∗)

= E[E[〈C̄T , GT 〉|FB
t ∨ FG

T ]|Ft]

and

E[〈C̄T , GT 〉|FB
t ∨ FG

T ] = 〈E[C̄T |FB
t ∨ FG

T ], GT 〉

= 〈Ct, GT 〉

17



whereCt = (C1
t , C

2
t , . . . , C

N
t )′

Then(∗∗) gives

E[〈C̄T , GT 〉|Ft] = 〈Ct, e
A(T−t)Gt〉.

Proposition 2. With a total system demand following the mean-reverting process

(4) and supply given by the mean reverting model (12), the price of a European

call option for the price of powerP with strike priceK, expiry timeT and a

discount factor that is a deterministic riskless bond with interest rater−γ, where

γ is the market price of risk,

Vt =
e−(r−γ)(T−t)

c
[eσ2

z/2−µzΦ(d1) − (ξ +Kc)Φ(d2)] . (18)

Where,

d1 =
σ2

z − µz − log(ξ +Kc)

σz

d2 = −µz + log(ξ +Kc)

σz
= d1 − σz

µz =
aµsm(T − t) − µD(T − t)

b

σ2
z = (

σD(T − t)

b
)2 + (

aσsm(T − t)

b
)2

Proof. The price of the claim, is the expected discounted payoff.

Vt = e−(r−γ)(T−t)

∫ ∞

−∞
(
1

c
(exp(−aS

mr
b (T − t) −D(T − t)

b
) − ξ) −K)+dF (P ) .

(19)
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In our model we have bothSmr
b andD are independently normally distributed.

Thus we have the difference between two normal random variables.

Let ,

Z =
aSmr

b −D

b

∼ N(
a

b
µsm − 1

b
µD, (a/b)

2σ2
sm + (1/b)2σ2

D)

= N(µz, σ
2
z).

Then (19) becomes,

Vt =
e−(r−γ)(T−t)

c

∫ ∞

−∞
(exp(−Z) − (cK + ξ))+ 1√

2πσz

exp(−(Z − µz)
2

2σ2
z

)dZ

= Ψ

∫ ∞

−∞
(exp(−Z) − (cK + ξ))+ 1√

2πσz

exp(−(Z − µz)
2

2σ2
z

)dZ.

Then the integrand is non-zero when,

Z < − log(ξ +Kc) = y.

Thus,

Vt = Ψ

∫ y

−∞
(exp(−Z) − (cK + ξ))

1√
2πσz

exp(−(Z − µz)
2

2σ2
z

)dZ

= Ψ[

∫ y

−∞

1√
2πσz

exp(−Z) exp(−(Z − µz)
2

2σ2
z

)dZ

−
∫ y

−∞
(cK + ξ)

1√
2πσz

exp(−(Z − µz)
2

2σ2
z

)dZ].

Writew = Z−µz

σz
. Then,

Vt = Ψ[

∫ y

−∞

1√
2πσz

exp(−Z) exp(−(Z − µz)
2

2σ2
z

)dZ −
∫ y−µz

σz

−∞
(cK + ξ)

1√
2π

exp(−w
2

2
)dw]

= Ψ[

∫ y

−∞

1√
2πσz

exp(−Z) exp(−(Z − µz)
2

2σ2
z

)dZ − (cK + ξ)Φ(
y − µz

σz

)].
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HereΦ(x) = 1√
2π

∫ x

−∞ exp(−x2

2
)dx.

Completing the square in the two exponentials,

Vt = Ψ[

∫ y

−∞

1√
2πσz

exp(−(Z − (µz − σ2
z))

2 + 2µzσ
2
z − σ4

z

2σ2
z

)dZ − (cK + ξ)Φ(
y − µz

σz
)]

= Ψeσ2
z/2−µz

∫ y

−∞

1√
2πσz

exp(−(Z − (µz − σ2
z))

2

2σ2
z

)dZ − Ψ(cK + ξ)Φ(
y − µz

σz
).

Writing ψ = Z−(µz−σ2
z)

σz
, we have:

Vt = Ψeσ2
z/2−µz

∫
y−(µz−σ2

z)

σz

−∞

1√
2π

exp(−ψ
2

2
)dZ − Ψ(cK + ξ)Φ(

y − µz

σz
)

= Ψeσ2
z/2−µzΦ(

y − (µz − σ2
z)

σz

) − Ψ(cK + ξ)Φ(
y − µz

σz

).

Consequently, the price of a call option under the mean-reverting model is,

Vt =
e−(r−γ)(T−t)

c
[eσ2

z/2−µzΦ(d1) − (ξ +Kc)Φ(d2)] .

where,

d1 =
σ2

z − µz − log(ξ +Kc)

σz

d2 = −µz + log(ξ +Kc)

σz
= d1 − σz,

under the conditions thatξ +Kc > 0 andc > 0.

3.2. Finding the Market Price of Risk

Suppose we have a Forward contract with a delivery priceF at some timeT

priced as follows.
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F (t) = E[
m(T )

m(t)
P (T )|Ft] = e−(r−γ)(T−t)E[P (T )|Ft].

Then γ =
log(F (t)) − log(E[(P (T ))|Ft]) + r(T − t)

T − t
.

(20)

So

E[P (T )|Ft] =
1

c
E[exp(−aSb(T − t)

b
) exp(

D(T − t)

b
)|Ft] −

1

c

=
1

c
exp(

µD(T − t)

b
+
σD(T − t)2

2b2
)E[exp(−aSb(T − t)

b
)|Ft] −

1

c

=
1

c
exp(

µD(T − t)

b
+
σD(T − t)2

2b2
)E[exp(−aSb(T − t)

b
)|Ft] −

1

c
.

This provides a formula for both the Markov chain and Mean-reverting supply

models.

For the Markov chain model

E[P (T )|Ft] =
1

c
exp(

µD(T − t)

b
+
σD(T − t)2

2b2
)E[exp(−aSb(T − t)

b
)|Ft] −

1

c

=
1

c
exp(

µD(T − t)

b
+
σD(T − t)2

2b2
)E[exp(−aS

mc
b (T − t)

b
)|Ft] −

1

c

=
1

c
exp(

µD(T − t)

b
+
σD(T − t)2

2b2
)〈exp(−aα

b
), exp(A(T − t))Gt〉 −

1

c
.

For the mean reverting model

E[P (T )|Ft] =
1

c
exp(

µD(T − t)

b
+
σD(T − t)2

2b2
)E[exp(−aSb(T − t)

b
)|Ft] −

1

c

=
1

c
exp(

µD(T − t) − aµsm(T − t)

b
+
σD(T − t)2 + a2σsm(T − t)2

2b2
) − 1

c
.

Using these results and (20), in each case a market price of risk can be deter-

mined according to the specific model selected. This allows the the parameters of
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the model to be estimated with real world data, and then use derivatives, (in this

case, the forward curve), to obtain the market price of risk.Once the market price

of risk is obtained, the price of various other derivative contracts can be obtained

using standard asset pricing arguments.

4. Estimation

In this section we describe the estimation of our model. There are a number

of steps that should be taken to obtain a logical calibration. The first is to estimate

the parameters for demand and baseload supply. We wish to extract the cyclical

components within both the demand and supply and we do this byfitting two

sinusoids to the data. We then use spectral analysis to determine how many more

sinusoids are required to extract other cyclical components. After this is done,

we fit our mean reverting and Markov chain processes to the decycled data. This

gives us the parameters for both demand and baseload supply.Finally we use

non-linear regression to find the remaining values.

4.1. Cycle Extraction

Much of the cyclical behavior of electricity prices is due tothe fact that elec-

tricity can not be economically stored, (other than using hydroelectric dams). This

prevents inventories from being accumulated to smooth rapid price movements.

Consequently, power prices are highly sensitive to electricity demand. For in-

stance, in much of North America there are two extreme seasons, winter and sum-

mer, where electricity demand is much different and prices react accordingly.

In the winter, days are shorter requiring increased use of electrical lighting. In

addition, homes and businesses often require heating during the winter months.
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Though much of the heating in North America comes from eithernatural gas or

heating oil, electric heaters do exist and are used. Coupledwith the fact that there

are increasing numbers of natural gas fired generators coming online, this also

drives up the cost of production during winter, given that natural gas prices are

also historically higher in the winter months. In the summerthe increased de-

mand comes from the use of air conditioning units. Though many consider these

two cycles the most dominant, there are also several others that are significant,

including weekly, daily, and intra-daily cycles in demand.

During the week there are low and high times for electricity demand. Week-

days require more electricity than the weekends or holidays. These are considered

weekly cycles. The working hours in the day cause electricity demand to rise,

while the late evening and early morning hours see reduced demand. These are

considered intra-day cycles.

There are several methods authors have used model the cyclical components

within electricity prices. Cartea and Figueroa (5) use a Fourier curve fit to account

for the seasonal components and Burger et al. (4) use a load forecast to determine

the seasonal component. A sinusoidal method is used by Pilipović (15). She

considers seasonal effects and suggests modeling them by using two sinusoidal

functions with frequencies that correspond to both annual and semi-annual cycles

within the spot prices. Her approach is both intuitive and sensible, as it accounts

for two of the most prominent cycles within electricity prices, the extreme sea-

sons within a year. Unfortunately, there are limitations with this approach, as the

seasons may not be purely simple sinusoidal and may instead require a greater
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number of frequencies to account for a more complex seasonalcurve. In addition,

as discussed above, there are other cycles that may need to beaccounted for.

The method we propose is a combination of the method used by (15) and the

inclusion Fourier analysis to identify the number of sinusoids that will need to be

used to extract the cyclical component for higher frequencies such as weekly or

daily cycles. We construct an extension of a usual method forseparating determin-

istic signals from noise using the discrete Fourier transform (DFT). The (DFT), or

the fast Fourier transform (FFT), which is an optimized version of the DFT (12),

is used extensively throughout the sciences. Engineers, for example use it to iden-

tify the frequency at which a signal is being transmitted andthen design a filter

to isolate the frequency and suppress the unwanted noise that has contaminated

the signal. This method of cycle detection provides severalbenefits: 1) It allows

for visual interpretation of the dominant cycles seen in electricity prices. 2) The

number of cycles can be properly identified, which is helpfulgiven the different

characteristics in different regions. 3) Complicated curve fitting techniques are

not required to model the cyclical component. 4) The Fouriertransform is very

popular, is used in a variety of disciplines, and is easy to access in a wide range

of computational packages. Lastly, 5) the cyclical and stochastic components can

be modeled separately which is useful in many circumstances. Alvarado and Ra-

jaraman (1) proposed the use of a similar method for electricity price volatility.

However, they use the DFT without considering stationarity. This is of concern

when using Fourier methods, (see (13)). We circumvent this by simply fitting a

curve, as in (15), to capture the seasonal, (annual and semi-annual), portion of

the prices. We then difference the residuals and use the DFT to determine the
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remaining cyclical components6.

4.1.1. The Seasonal Component

Recall that demand is,

D(t) = f(t) + D̂(t),

wheref(t) is the cyclical component. We assume that

f(t) = fS(t) + fW (t) + fD(t).

Here,fS(t) is considered the seasonal component,fW (t) the weekly compo-

nent, andfD(t) is the daily component.

We let,

fS(t) = a sin(2πt/365 − ta) + b sin(4πt/365 − tb) + ct+ d (21)

with a sin(2πt/365−ta) representing the yearly variations, andb sin(4πt/365−
tb)

7 representing the semi-yearly variations seen in electricity prices. Here:

• a andb are the amplitude parameters

• ta is the annual centering parameter

• tb is the semi-annual centering parameter

• c andd are standard intercept and slope parameters

For the supply seasonal estimation, we also use (21).

6We cannot use this method to extract the seasonal component as differencing the data acts like

a high pass filter and renders the low frequency components (seasonal components) undetectable.
7These equations would change toa sin(2πt/(365 · 24) − ta) if one is to use hourly data.
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4.1.2. Higher Frequency Components

Our next step is to considerfW (t) andfD(t) components of the data,again

exploiting the power of the Fourier transform.

Write

h(t) =
d(f(t) − fS(t))

dt
, (22)

which represents the cyclical function containing the weekly and daily cycles.

We take the Fourier transform ofh and look at its power spectral density for an

indication of how many cyclical components we have in our data. For a more so-

phisticated method of cycle extraction, which handles noise floor estimation and

spectral smoothing see the methods outlined in (1) and (14)8.

Consequently, we can obtain the number of harmonics required for both Weekly

and Daily cycles:

fw =

N
∑

n=1

wn sin(2π
n

365 · 7 + twn
) (23)

fD =
N

∑

n=1

dn sin(2π
n

365 · 24
+ tdn

). (24)

4.2. Findinga, b, c andξ

Our method to find the parameters is simply to use of non-linear regression to

minimize the pricing errors associated with fitting the model. That is, we use the

price equation (15),

P (t) =
1

c
(exp(−aSb(t) −D(t)

b
) − ξ) .

8However, both (1) and (14) ignore issues with non-stationarity.
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and execute a non-linear regression to obtain the results for the parameters. Us-

ing this approach requires the use of iterative numerical optimization routines.

However, many popular computational packages have the ability to allow for easy

implimentation9.

4.3. Estimating the Noise

4.3.1. The Markov Chain Model

The Markov Chain model requires us to estimate various states of the noise

and then find the transition matrix and the associated weightparameters. Formally,

we define certain levels representing different states. We might say that there is an

normal state of the noise, and we would count the number of observations that the

noise was in that state. Likewise, we would do the same for other states. Similarly,

we observe the number of transitions between states. Consequently, we can obtain

an estimate for our transition matrix.

The entries in the transition matrix are

πj,i = P (Gk+1 = ej |Gk = ei), (25)

giving an estimate for the transition matrixΠ, where

Π =



















π1,1 π1,2 . . . π1,n

π2,1 π2,2 . . . π2,n

...
...

. . .
...

πn,1 πn,2 . . . πn,n



















= eAδt . (26)

9In this paper we use the ‘nlinfit’ command within the computational package MATLAB to

conduct the non-linear regression.

27



Hereδt is the time step used when estimating the parameters.

For each statei we estimate theαi by taking the average of the data points

within the state. That is for all observations in statei we take the arithmetic mean

of those observations to determineαi:

αi =
1

n

n
∑

ti=1

Xti .

Here,{Xti} is the set of data observations within statei given the entire sample

spaceXt.

4.3.2. The Mean Reverting Model

The mean reverting model is a continuous time analog of the standard AR(1)

model and can be estimated using least squares or maximum likelihood methods.

We use maximum likelihood estimation to estimate the parameters associated with

the SDE:

dXt = κ(µ−Xt)dt+ σdBt

having the solution,

Xt = e−κt[X0 + µ(e−κt − 1)] +

∫ t

0

σeκ(t−s)dBs .

Discretizing we obtain an AR(1) process given by:

Xt+1 = a+ bXt + σ̂ǫt
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a = µ(1 − e−κδt)

b = e−κδt

σ̂2 = σ2 (1 − e−2κδt)

2κ
.

This has the transition density,

f(Xt+1|Xt; a, b, σ̂) =
1√

2πσ̂2
exp(

(Xt+1 −Xtb− a)2

2σ̂2
) .

Maximizing over the logarithm off(·) yields the results we desire.

5. Empirical Results

The goal of this paper is to establish a model which captures the complicated

dynamics present in electricity spot markets. We have chosen as test data the

Alberta power market, which is a rather small market by global standards. The

choice of the Alberta market for study is two fold: firstly, there is a wealth of

publicly available data10, and secondly, Alberta is the first market in North Amer-

ica which has established an emissions market. This will allow researchers to

investigate the behaviour of electricity markets in response to emission prices.

There are, however, some disadvantages to studying the Alberta market. The

price volatility is almost unprecedented when compared to other markets. This

has to do with the lack of diversified generation units withinthe market, and an

essentially Base to Peak, (lack of mid supply available), bid stack. Additionally,

10Historical data can be downloaded from the Alberta Electricity System Opera-

tor (ASEO) website: http://www.aeso.ca/ and facts about the market can be found at

http://www.energy.gov.ab.ca/OurBusiness/electricity.asp .
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there is a lack of any available derivatives data, given the small size of the market,

so the market does not have a liquid options market. However,it does have a

liquid OTC Forward market.

5.1. The Market Data

For our sample estimates we look at 2 years’ of daily peak (8:00-23:00) data.

The data set begins January 1 2005 and ends in December 2006. This provides

730 data points for estimation. We use daily on-peak averages for computational

convenience and the fact that many derivative contracts arewritten on blocks of

on-peak hour hours. However, the method can be extended to include hour by

hour analysis.

Our method depends on trying to accurately approximate the dynamics of both

supply and demand within the market, Fig. 3 represents the onpeak demand and

baseload supply11. It is clear that there is a seasonal component to the base supply.

Additionally, an interesting plot can be found in Fig. 4 which represents the supply

surface. It is a visual representation of the price-quantity relationship of supply

over time. As mentioned earlier, we avoid the common way of plotting price

versus quantity and instead plot quantity versus price. We can then see how that

relationship ‘moves’ over time. From this supply surface plot we can observe that,

as we have assumed in our model, the structure, or shape, of the concave portion

of the supply curve seems to be stable over time. Thus our assumption of time

invariance in the non-baseload portion of the supply curve seems to be valid.

11We define baseload supply as all capacity bid into the system at $50 per MWh or less.
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Figure 3: On-peak demand and baseload for the Alberta market
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Figure 4: On-peak Alberta supply stack with $25 per MWh partitions for the years 2005-2006

5.2. Estimation Results

5.2.1. Deterministic Component

As stated above, we are only concerned with daily price behaviour and, thus,

will not need to account for intra daily cycles in the supply and demand data. Tak-

ing the FFT of (22) we can observe in Fig. 5 that there are threeweekly harmonics

that need to be captured for demand and two for the supply. This implies that the

seasonal components for both supply and demand have the following functional

form:
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f(t) = fS(t) +

3
∑

n=1

wn sin(2π
n

365 · 7 + twn
) (27)

B(t) = fS(t) +

2
∑

n=1

wn sin(2π
n

365 · 7 + twn
). (28)

The model parameters forf(t) andB(t) can be found in Table 2:

Variable Supply Demand

a 262.5 328.9

b 158.8 195.7

c 0.5737 0.8824

d 7427 7706

w1 -149.3 216.8

w2 93.62 136.9

w3 47.78

ta -187.7 -10.97

tb -5.324 -5.324

tw1 6.544 9.612

tw2 2.011 58.51

tw3 0.0578

Table 2: Estimated parameters for deterministic componentfor demand and baseload supply

5.2.2. Supply Shaping Parameters: a, b, c, andξ

To establish the shaping parameters used in the supply function, we ran a non-

linear regression on the equilibrium pricing equation to obtain the estimates for
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a, b, c andξ12. These can be found in Table 3. The error within the estimatesof

c andξ is very large. However, this is not that unexpected given thelarge jumps

in price. Indeed there are almost discontinuous jumps in thesupply stack, from

baseload to the peaking portion of the curve.

Variable Estimated Value

a 1.115± 0.0853

b 685.89± 298.7774

c 0.0049± 0.0050

ξ 0.0832± 0.2130

Table 3: Estimated Parameters for supply model

12The null hypothesis that the price data and the difference between supply and demand con-

tained a unit root was rejected after conducting an Augmented Dickey Fuller test.
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5.2.3. The Noise

In the Markov model we use a Markov chain to represent the noise in base

load supply. We arbitrarily chose three states: a ‘high’ state, a ‘normal’ state, and

a ‘low’ state. To find the transition matrix, we historicallydefine a high state to

be, when the de-cycled noise is1.5 standard deviations above the historical mean.

Similarly the low state is when the noise is1.5 standard deviations below the

historical mean. The normal state is the state in between thehigh and low states.

The weight parameters are calculated by grouping those observations which are in

each of the states, and then averaging them. That is, for eachhistorical observation

that was considered in the high state, we would take the arithmetic mean of the

collection of these observations to determine the weight parameterα for the high

state. Similarly the weight parameters are determined for the other states. Here,

state 1 is the normal state, state 2 is the high state and state3 is the low state. The

transition matrix is estimated to be

Π =













0.9164 0.4783 0.6327

0.0331 0.5217 0

0.0505 0 0.3673













and

α = (4.8954, 429.2737,−457.0059)′.

For the mean-reverting noise model we have the results of applying the Maxi-

mum likelihood estimation methods to the de-cycled noise asprovided in Table 4:

Using our estimation results we run a Monte Carlo simulationfor the three
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Variable Estimated Value Supply Estimated Value Demand

κ 0.2723 0.1371

µ -2.0789 1.4883

σ 188.8025 133.1162

Table 4: Estimated Parameters for Mean-Reverting supply model and Mean-Reverting portion of

Demand

years 2005, 2006, and 2007. We simulated 1000 sample paths and then calcu-

lated the first four central moments of the averaged sample paths. The results are

provided in Table 5. The models perform reasonably well whencompared to stan-

dard models used in Finance. However, we cannot capture the extreme Skewness

and Kurtosis seen in the Alberta market. This is possibly dueto the smooth log

function we have used. The Alberta market has almost no mid pricing plants so

there is a rapid increase in price from base to peak, with onlya small deviation

in quantity. Thus, an extremely complicated supply function would perhaps be

needed. We assume that in larger markets our model will be applicable and, as

the Alberta market matures and adds a greater mixture of supply generation, we

believe that this model should become a better proxy. Similarly, different estima-

tion techniques or a larger data sample may provide better results then the ones

obtained here.

Our next step is to price some Call options using our estimated parameters.

5.3. Derivatives Pricing

Our calibration period was the time period of January 1, 2005to December

31, 2006. Using our estimates we now combine them with the results from Propo-

sitions 1 and 2 to price some European Call options. Since we would like to use
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20051 20061 20071 20052 20062 20072 20053 20063 20073

Mean 85.39 99.00 84.26 97.57 117.88 111.62 95.49 108.57 112.24

Std. 57.04 98.80 83.84 63.24 78.68 71.91 72.91 78.30 85.17

Skewness 1.77 3.51 4.80 1.90 2.52 2.05 2.30 2.64 2.12

Kurtosis 7.24 17.91 29.67 8.019 13.57 10.76 11.93 15.64 11.47

Table 5: Simulation results for years 2005 (in sample), 2006(in sample), and 2007.1 indicates

market data,2 indicates results from the Markov chain model, and3 are the results using the

Mean-reverting model.

only public data for this paper, we choose a range for the market price of risk in

our pricing scenarios13.

We wish to price European Call options where we assume that the strike price

is $92. (This is the nearest whole number to the mean on-peak power price for

the 2005 to 2006 sample). We use various values for the marketprice of risk and

the expiry time. We allow the market price of risk to take on values from0% up

to 20% continuously compounded yearly, with5% increments. We also look at

expiry times from 90 days up to one year away. The risk free rate is assumed to

be5%.

Using our current parameters, the mean reverting model commands a higher

premium than does the Markov chain model. However, this can clearly change

13As shown in Section 3, one can easily obtain the market price of risk from current forward

curve quotes that are available to virtually every trader inthe power markets. Additionally, es-

timations of time varying market price of risk parameters can also be calculated with modest

enhancements.
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T-t=90 T-t=120 T-t=210 T-t=270 T-t=365

γ=0.00 3.0792 16.6157 14.5388 73.5757 71.0398

γ = 0.05 3.1174 17.0305 14.9631 76.3480 74.6821

γ = 0.10 3.1561 17.4556 15.3998 79.2247 78.5111

γ = 0.15 3.1953 17.8914 15.8492 82.2097 82.5365

γ = 0.20 3.2349 18.3380 16.3118 85.3073 86.7682

Table 6: Call option prices for Markov chain supply model

T-t=90 T-t=120 T-t=210 T-t=270 T-t=365

γ=0.00 10.2942 27.5875 25.2781 83.5000 80.8677

γ = 0.05 10.4219 28.2762 26.0158 86.6462 85.0139

γ = 0.10 10.5512 28.9821 26.7751 89.9109 89.3726

γ = 0.15 10.6821 29.7056 27.5565 93.2986 93.9548

γ = 0.20 10.8146 30.4472 28.3608 96.8140 98.7720

Table 7: Call option prices for mean reverting supply model

depending on the assumptions used when estimating the states and the weight

parameters for the Markov chain. There is noticeable seasonality in the call prices

as well as an obvious increase in call prices near the end of the year, (270 days

and 365 days), for both models. This indicates that the modelis indeed pricing

the expected increase of the spot price during these times ofthe year.

6. Conclusion

In this paper we have presented a hybrid model that uses a supply demand

approach for price electricity derivatives. We were able tocapture most of the

dynamics exhibited in the power markets and find closed form solutions for Eu-
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ropean call options. Our goal was to provide a model that captured the price

dynamics of power while remaining simple enough to yield closed form solutions

for derivatives. We believe that models such as the one we have proposed are

of benefit to those operating in the power trading market, andrepresent a class

of model that can be used rather than the standard Black-Scholes model or its

variants. Admittedly the model is more complex than the standard financial mod-

els. However, we believe that the model is still simple enough to be used on a

day-to-day basis by practitioners.

Our results are promising and we tested them on an the extremely volatile Al-

berta market. There are many areas of future research: exploring the implications

of imposing hard price floors and caps in the model would be of interest. Addi-

tionally more complex supply functions may be appropriate and might yield better

statistical results.
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