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Abstract

This paper presents a method for valuing power derivatiggma supply-demand
approach. Our method extends work in the field by incorpogatatndomness into
the base load portion of the supply stack function and engatiwith a noisy
demand process. We obtain closed form solutions for Europgéion prices
considering two different supply models: a mean-revertimaglel and a Markov
chain model. The results are extensions of the classic Bhatloles equation.
The model provides a relatively simple approach to desthibeomplicated price
behaviour observed in electricity spot markets and alewalfor computationally
efficient derivatives pricing.
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1. introduction

Electricity is essential for the normal course of life fomalst every human in
the industrialized world. The distribution of power to hebslds and businesses

is a complicated process involving significant engineedegign and planning.
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Complexities from both engineering and financial perspestare largely caused
by the inability to store electricity economically. Thiskaof storage causes elec-
tricity markets to have the most complicated spot price tiehaf all the energy
markets, ((6), (15)). In order to construct a reasonableahtmt the electric-
ity spot price it is necessary to account for as many of theeppieculiarities as
possible.

The standard approach to handling the behaviour of eld@gtncarkets has
normally consisted of increasing the complexity of staddfmancial models.
That is, a common approach is to use variations of meantmeggump diffu-
sion, (MRJD), models to try to capture the price dynamic$inithe electricity
markets. (See (6) and (11) for an overview). However, irgirgathe complex-
ity of these models has some negative effects: i) they begiose mathematical
tractability, ii) they become increasingly more compuatilly demanding, and
iii) they are difficult to calibrate. A relatively new apprdais to incorporate fun-
damental drivers, such as temperature and supply cortstiaio the dynamics
of electricity spot prices. Indeed, a number of these “Hyliodels” have been
proposed in the past. (See: Anderson (2), Barlow (3), Daveto al. (8), and
Eydeland and Wolyniec (10)). Their main drawback, as notedberon (16), for
instance, is the amount of time these models take to cadibraherefore, they
suffer from some of the same disadvantages as complex MRI2Imolf time
for pricing and calibration is of minimal concern then thesedels work well;
however, when time is of great importance, such as on a gétbor, then these
disadvantages are critical.

The goal of this paper is to create a model that captures thardigs of the

electricity markets and can also remain mathematicallgkible. We shall be



using a model similar to that of Barlow (3). This sets the sthay reduced form
supply-demand type modeling, and as it has the added behbéing relatively
simple in mathematical terms, the parameters can be easilgaed. Our model
includes some extensions which makes the Barlow model nealestic. For in-
stance, we use Fourier analysis to find the deterministialaehin the demand
and supply portions of the model. On the supply side of theeha@ use a two
step method to determine the supply stack. 1) We modify a adetiutlined by
Elliott et. al. in (9) to model the baseload portion of the glypstack, and 2)
we consider a case when the baseload follows a mean-rayerticess. We also
develop a price dependent function which represents thak4mead” portion of
supply. Our dynamics solve many of the issues found in stainglécing models
and is fully scalable up to a high level of complexity, suchitesd used by Ander-
son, (2), or Eydeland and Wolyniec, (10). More importantly model is easy to
implement when compared to some of the complex MRJD modelstanelds
closed form pricing equations for derivatives.

The paper is organized as follows: Section two focuses oml¢welopment
of the price model, section three investigates the impboatfor option pricing,
section four discusses the estimation of the model. Sefitietooks at the empir-
ical results of the model, and section six concludes the pape provides some

suggestions for future work.

2. Model Construction

By observing Fig. 1, it is obvious that the modeling of eleity spot be-
haviour is very different from modeling stock prices. Like®, from Table 1 we

can see that the first four moments of baseload peak supplgeanend are much
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Figure 1: Daily prices of the Alberta electricity spot priggarket and the closing prices of an

electricity generator, TransAlta

more ‘normal’ than the first four moments of the electricifyos price. Con-

sequently, we base our model on the premise that supply £qeatand, from
which an equilibrium price can be determined. This type @fipg is consistent
with standard economic arguments and allows an intuitiy@agation of price

construction. In doing so we are also able to avoid tryingdstruct a reduced
form model for the extreme spot price behaviour observedgn Our first step
is to model the demand portion. We then construct the supphlecand from the

combination of these, obtain a price process.
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Price Supply| Demand

Mean| 92.1956| 7636.1646 8027.4981
Stdev| 80.8988| 339.9402 417.2096
Skewnessg 3.6229 -0.3112 -0.0125
Kurtosis| 21.7703 2.6280 2.404

Table 1: Market parameters for price, supply, and demand28@5-2006, where baseload supply
is defined as all supply bid into the stack$at per MWh or less.

2.1. The Demand Side

Power demand is highly sensitive to human behaviour whigledds on such
variables as the time of day and heating and cooling seasbosigh itis common
to use the term ‘seasonal’ in other markets such as natusaetgctricity markets
may be better thought of as multi-cyclical, rather than seak The price of
power is effected not only by the seasons but also by the wgrand sleeping
habits of consumers over the course of months, weeks, dag$iaurs. This type
of behaviour is fairly predictable or deterministic and slicdbe modeled as such.

Therefore, we suppose that system demat) has dynamics:

1)

Here f(t) is the deterministic component that can be estimated vigabjgo-
cessing methods or other techniques, &rd) is demand minus the deterministic
portion. In this paper we develop a model that assufaes follows a mean-
reverting process described by the solution of the follgngtochastic differential

equations (SDE):



~

dD(t) = k( — D(t))dt + odBy(t) . 2)
Here B,(t) is standard Brownian motion, is the “volatility” of demand is
the speed of mean-reversion gnd the long term mean.
Solving (2) forD yields:

A

D(t) = e ™[D(0) + pu(e — 1)] + /O t oe"5 " dBy(s) . (3)

Substituting (3) back into (1) gives a model for the total dewhin the system.

D(t) = f(t) + e ™[D(0) + p(e™ — 1)] + /O t oe"5dBy(s) . (4)

Thus, total demand is normally distributed with mean

E[D(t)|Fo] = f(t) +e™™[D(0) + p(e™ = 1)] = pn(1) -

and variancé’ [ D(t)|Fo] = (1 — 6‘2’“)5—/_€ =opl(t) .

Equation (4) describes the demand at any tim&s demand is almost inelas-
tic, (demand does not change with price), we use the val(¢ as the market

demand.



Mega Watts

Alberta Average Peak Supply Curve and System Demand, May 30th 2005

8300 T T T —————
— — — Supply Curve
System Demand

8200

8100 /

8000

~

©

o

o
T

7800

T
~

7700

7600

7500 ! ! !
0 200 400 600 800

Price per Mega Watt

Figure 2: Alberta average supply curve and system demandayn3d 2005

1000



2.2. The Supply Side

We suppose that the supply stde composed of two distinct components,
the “baseload” and the “mid and peaking load”. These will bedeled sepa-
rately. Each of these components varies in time and quantitgh allows for a
dynamical simulation and derivative pricing environmentere are two choices
of randomness we wish to explore for the supply side. The {sse (9) for a sim-
ilar approach), is a model which uses a Markov chain to desdraseload noise
dynamics. The second is a model which uses mean-reversighddaseload.
In each case, we assume that base supply also has a cyclepboent. It fol-
lows that suppliers must increase supply to meet demandsarwt demand has a
strong cyclical component, then so should supply.

Thus, we model supply as,

S(t, P(t)) = Sp(t, P(t)) + Sk(t, P(t)) - (5)

Here S,(-) is the baseload portion of system supply, &fd-) is the mid to
peaking, (high cost), portion of the system supply cur&) is the price of
power at time.

It can be costly to stop baseload power stations so they aralysun at a
certain capacity for long periods of time, except for manatece outages and other
planned stoppages. Therefore, we assume that the baseltad pf supply does

not vary with price and is a function only of tint(¢). The high cost portion of

3Throughout the paper, our analysis is done with price asrttiedendent variable so that in
price/quantity space, price is along the horizonal axis, guantity is represented by the vertical

axis, as in Fig. 2.



the supply has more flexibility and is able to adjust to prica much faster rate.
Thus, it is natural to have the high cost portigi( P(¢)) depend on price.
We would like our supply curve to have the following econoatlic sensible

requirements.

1. Supply increases with Pricgg >0

2. The capable marginal increases in supply are decreaspmire 57 < 0

For simplicity we assume a basic model f(-) that satisfies the above con-
cavity requirement, and take.(P(t)) = blog(cP(t) + &).
Then

S(t,P(t)) = aSy(t) + blog(cP(t) + &) . (6)

Here,a, b, ¢ and¢ are real positive constants. The supply function has the
additional benefit that when pricg3(t) are at the market minimuinthe only
supply available is from the baseload portion. For instaifitlee market minimum
price is zero then the portion of the supply stack that ist@tithe minimum price
is aSy(t) + blog(&). The next two sections will be concerned with developing
the models for the baseload portion of the supply functiomontFig. 2 the
logarithmic function used here does seem a reasonableechmi¢he concave
portion of the supply curve and thus we will use the same hagt gortion of the

function throughout the rest of the paper.

4Because of the non storable nature of electricity, produsemetimes have to pay to dispose

of any excess power, inducing a negative price.



2.2.1. The Markov Chain Model

We supposes that the generators, (suppliers), who prodseldiad do so in
a fairly predictable manner except in some circumstanceseviere might be a
plant failure. Therefore, we model the baseload portiormefsupply stack using
a method similar to that outlined in (9). However, we deviaten their method
which models the number of baseload suppliers using a honeoges Markov
chain. Instead we use a Markov chain to describe the noiseibdseload supply.
Supposes = {G;,t > 0} is a Markov chain whose state space is the set of unit
vectors,

{er,e9,...,en}, e, =1(0,...,1,...,0) € RV .

Suppose thatl, the transition rate matrix @¥ is independent of time. Then,
t
Gy = Gy +/ AG ds + M, . (7)
0

Wherel/,; is a martingale.
Using (7) we can establish a simple way of describing theenmisaseload
supply. From that we can establish the baseload curve airary.t

We suppose the baseload has dynamics:
Sy (t, P(t)) = B(t) + {a, Gy) - (8)

Here,B(t) is the deterministic component of supply= (ag, a1, ...,an_1) €
RY are supply weights that affect the price when the chain isgiven state.

Therefore, we have a total supply curve given as:

S(t,P(t)) = aSy(t, P(t)) + Sk(t, P(t)) = a(B(t) + (o, Gy)) + blog(cP(t) + &) .
9)
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2.2.2. The Mean Reverting Model

In this setting, instead of using a Markov chain to model gredomness of
the baseload, we now suppose that it follows a mean revegstimgess.

Under this setting the baselo&" (1) = B(t) + Si(t) where, B(t) is the
deterministic portion of baseload arff} is the solution of the mean reverting

stochastic differential equation:

dSy(t) = ks(prs — Sy (8))dt + o4dBy(t). (10)
Then,
Sy (t) = B(t) + Sy (t)

t (11

= B(t) + e ""S," (0) + ps(e™ — 1)) + / o.e""VdB,(v) .
0

So, in the mean-reverting model, we have base supply norrdatributed,

with mean

B[Sy (1)|Fo] = B(t) + e™*"[Sy(0) + ps(™" = 1)] = ptmr (1) -

2
and variancéd’[SI"" (t)|Fo] = (1 — e‘z“st);—s = () -
s

This gives the equation for the supply curve as:

S(t, P(t)) = B(t) + e[S (0) + (e = 1)]
¢ (12)
+ / o.e" V4B, (v) + blog(cP(t) + &) .

2.3. Equilibrium Price

We now use the above supply and demand equations to obtairkatrpace

for powerP(t). In equilibrium,

11



D(t) = S(t, P(t)) = aSy(t, P(t)) + Si(t, P(t)) . (13)

The market clearing condition (13) can be used to solve ferpttice P(¢) at
any timet. One noticeable issue with this model is that it does not sezrdy
put caps and floors on the price. In power markets both pripe aad floors do
exist depending on various markets. For instance, in therfdimarket, there is
an upper bound &999.99 and a lower bound df0 per Megawatt hour. For other
markets, there may be no price caps or floors, or they may be extreme values
then those of Alberta.

In this paper we will be looking at average peak power pricegkware of-
ten well within the market caps and floors. Thus, we avoidtorga piecewise
type of function for which it would be extremely difficult tdtain closed form
solutions.

For simplicity we assume a basic model%f(t, P) that meets the concavity

conditions, and use the market clearing equation,

D(t) = aSy(t) + blog(cP(t) + &) (14)

to obtain a solution for the price:

P(t) = exp(- 2P0, g (15)

Exploring this model we see that price decreases as eacle gfatameters
a, b, c and¢ increases. Likewise, as one would expectSamcreases, price falls,
and asD increases we obtain a price increase. Therefore, large pravements

occur when the distance between baseload supply and manketrdi increases.

12



Thus, we have derived a model which appears to address mds¢ aéquired

attributes that are observed in the power spot markets.

3. DerivativesPricing

Derivatives are an important part of the energy markets. ifkgance, it is
nearly impossible to buy and hold electric power so dereationtracts are used
extensively. Standard risk neutral pricing arguments. (eost of carry), are not
appropriate in the case of power markets, given the inghdistore the underly-
ing. Consequently, we price all of the derivatives underhsical or real world

measure.

3.1. The Price of a European Call Option

We price claims using the stochastic discount factor, (SEpproach as in
(7). The price of a claing(-) at timet is the discounted expected payoff under the
physical measure at some tirfie> ¢ > 0 in the future,

m(T)

V(t) = E[WQ(T)U'}] :

Here F; is the information known at time m(-) is the SDF, andj(-) is the
claim on the underlying.

For simplicity we suppose that the SDF is a riskless bond @atistant interest
rater, minus the market price of risk variabley. If g is a European call option

with strike priceK, then the price of the call at timegis:

SMore complicated versions of the discount factor can be umsed given the large literature

on term structure one can easily extend this model.

13



V(t)=e tIIDE(P - K)Y|F] = e I / (P~ K)TdF(P).

Here F'(P) is the cumulative density function &f.

This leads the following results for the price of a call, gseither model:

Proposition 1. With a total system demand following the mean revertinggssc
(4) and supply given by the Markov chain model (12), the prf@European call
option for the price of poweP with strike priceK’, expiry timel’ and a discount
factor that is a deterministic riskless bond with interestier- — ~, wherev is the

market price of risk,

V, = e II0(C, TG, (16)
Here
Ct: (Ctl,,CtN>/
where
Ci = Lt o 29 (d1) — (¢ + cK)B(d2)),
C
and
g1 = M + 02—\ —log(cK +¢)
— -
go = ez NizlosleK+E) o
o
_ pup(T —1t)
/”LZ - b
2 O'D(T — t)z
UZ == T

14



«; is the weight parameter in state

Proof.

For each of the states of the Markov chai@ we have,

Pti — %(exp<_a'(B(t) + :Z) B D(t)> . 5)

where

Pt:<Pt1,...,PtN)/
and Pt: <R€7Gt> .

We must find:

Ele™r0T=0(pp — K)T|F] = e IO E(Pr — K)T|F)

— TN BB[(P, Gy — K)FIFP v FE)|F.,

whereF? = o{B, : u < t} andF¢ = o{G, : u < t}. Note that,

E[GY|G,] = eA=9a,,

and consider,

E[((P, Gr) — K)Y|FP v Ff].

15



Suppose that:r = e¢;.

We then first evaluate?[( Py — K)T|FP v {Gr = e;}]

—AipZ _
Now: Pi = &% —° ¢
C
B(T ;
where); = UBIT) + o)
_ D(t) KD ‘7%7 2
andZ—TNN( b b2) N(,LLZ,O'Z).
Consequently,
P;. > K when
€_>\i€Z _é‘

> K
c

S0, Z > loglet(cK +¢&)] =

Cl = e VIDECLIFEV{Gr = e;}]

Letm = e~ —)T-1) then,

C! = mE[(P} — )+\.7:B VA{Gr = e}]

AigZ — 1 (Z — p,)?
- K I Y
m/ ) Joma, P50 A

= m/ WO-D)(?_M(?Z exp(—%)dZ — m(g/c + K)(l — @(y ;ZIUZ))
—)\ _ 2 _
= | et eIz - migjer 0 -0

Completing the square,

16



S G (Z — s — 02)? Y~ ps
= | e T iz — g )1 - ot
~Xitpa+o2/2 — 2 —
ST ey (e k- m( ),

c o, o,

Now since,l — &(z) = ®(—xz)

Ctz‘ 6—>\i+ﬂz+0'g/2

((I)(:uz +U§ B )‘z - lOg(cK ‘I’S))) - (g/c_'_ K)((I)(,Uz - )\z - 1Og(CK+§)

m c o, o,

_ e_A"'Jr”ZJrJg/Q((I)(Mz + 02 — )\ — log(cK + 5)) —(€Je+ K)@(Mz — Ai —log(cK +§)

c o, o,

)

) -

Therefore,

((Pr,Gr) — K)* = (Cr,Gr)

whereCr = (CL,...CNY.

Consequently,

E[(Pr — K)"|F] = E[((Pr,Gr) — K)"|F]
= E[(Cr,Gr)|F] (%)
= E[E[(Cr,Gr)|FP v Ff|F]

and

E[(Cr,Gr)|FP v FF] = (E[Cr|FP v FF], Gr)
= <Ct>GT>

17



WhereCt = (Ctla Ctza SRR CiN)/
Then(xx) gives
E[(Cr,Gr)|F] = (Cr, e’ TG).

O

Proposition 2. With a total system demand following the mean-revertinggss
(4) and supply given by the mean reverting model (12), theepof a European
call option for the price of powelP with strike price K, expiry time7 and a
discount factor that is a deterministic riskless bond witterest rate- — v, where

~ is the market price of risk,

e—(r=NT-t) | )
V, = f[e%/ “Hd(dy) — (€ + Kc)®(dy)] . (18)
Where,
g = 02—, —log(é€ + Kc)
1 o
dy —  ps +log(§+ Kc) 4o
P
_ a:usm(T - t) — MD(T B t)
Mz = b
op(T —t) a0 s (T — )

or = (

) (L

Proof. The price of the claim, is the expected discounted payoff.

v — o= (=) (T—1) /_Oo (l(eXp(—ang(T — t)b— D(T — t)) — &) - K)+dF(P) )
(19)

[e.9]

18



In our model we have both*" andD are independently normally distributed.

Thus we have the difference between two normal random asgab
Let,

aSy"" — D
b

a 1
~ N(g:usm - E:uDv (a/b)2c7§m + (1/6)202D)
= N(,Uz» 0’3)

Then (19) becomes,

J =

o~ (r=)(T=t) oo R
Vie e [ tel-2) = o ) ez
_ \If/_oo(exp(—Z) - <cK+g>>+¢%@ exp(—(Z;Tg‘%dz.

Then the integrand is non-zero when,

Z < —log(§+ Kc) =y.
Thus,

1 (Z — p)?
exp(——————)dZ

_ _ZO 1 . x _(Z_,Uz)z
vl en-zyen( iz

Vet [ en(-2) - (K + )

20?2
Y 1 (Z = p)?
— /_OO(CK+§) N exp(— 20 )dZ].

Write w = Z;—“ Then,

Y _ 9 y;gz 9
il 502 exp(—Z)esp(— E P a7 [ (e 6 exp(—

202 oo Vor 2
o Y 1 (Z - ,Uz)z Yy — Kz
— v / el Z)exp(— )z — (er + 0L

19



Here®(z) = \/% [* exp(—%)da.

Completing the square in the two exponentials,

o Y 1 (Z — (p — Ug))2 + Qﬂzag - Ug Yy — U

~ y 1 Z — (1, — 02))? o
:\11603/2 Mz/ \/%O_ GXp(—< (/;02 )) )dZ—‘I/(CK—Ff)(I)(y H )

0.
Writing ¢ = %“’2) we have:

y—(pz—02)

oz 2 —
V, = Weot/2n / L op(= 0047 — w(ek + e)o(L=Fe)

—0 vV 2T 2 P
— — g2 —
= w0 (‘if %)) ek 4+ gl t),

Consequently, the price of a call option under the meanriegemodel is,

e rNT=Y
Vi= [ 0(dy) — (€4 Ko)D(dy)]

where,

02 — . — log(¢ + Kc)

dy =
of
. +1 K
gy — M=t og(§ + Kc) —d— 0.,
Oz
under the conditions thgt+ K¢ > 0 andc > 0.
] 0]

3.2. Finding the Market Price of Risk

Suppose we have a Forward contract with a delivery pFicg some timel’
priced as follows.

20



m(T)

F(t) = B20) pr)| 7] = o000 BlP(1) 7).
m(t) (20)
Then  — BB 0) ~oa(B(PT)IF) T —1)
So
B(P(T)|F) = L Blesp(~ 22T =) ey PE =Dy
= L2820y T gl 220 )

This provides a formula for both the Markov chain and Mearergng supply
models.

For the Markov chain model

BP(T)|F) = L ep(M2E= L T ey Oy
= Lexp( 202 4 OO (- AT =y
1 ,uD(T—t) O'D(T—t)2 ax 1

— —exp(ME T TR exp(— 20, explA(T ~ 1)Go) — .

For the mean reverting model

BIP(D)|F) = Lexp(2E=0 1 720 210 pley ST =0y )
_ %exp('uD(T — 1) —ba,usm(T — 1) N op(T —t) +2£L2 Osm (T — 1) - % .

Using these results and (20), in each case a market pricekotain be deter-

mined according to the specific model selected. This allbmshe parameters of

21



the model to be estimated with real world data, and then useadiges, (in this
case, the forward curve), to obtain the market price of i@Gkce the market price
of risk is obtained, the price of various other derivativattacts can be obtained

using standard asset pricing arguments.

4. Estimation

In this section we describe the estimation of our model. &lze a number
of steps that should be taken to obtain a logical calibrafidme first is to estimate
the parameters for demand and baseload supply. We wishraceite cyclical
components within both the demand and supply and we do thigtng two
sinusoids to the data. We then use spectral analysis tagie®how many more
sinusoids are required to extract other cyclical companeAfter this is done,
we fit our mean reverting and Markov chain processes to thgctest data. This
gives us the parameters for both demand and baseload supipiglly we use

non-linear regression to find the remaining values.

4.1. Cycle Extraction

Much of the cyclical behavior of electricity prices is duethe fact that elec-
tricity can not be economically stored, (other than usingrbglectric dams). This
prevents inventories from being accumulated to smoothdrppce movements.
Consequently, power prices are highly sensitive to elgttrdemand. For in-
stance, in much of North America there are two extreme seasonter and sum-

mer, where electricity demand is much different and prieastaccordingly.

In the winter, days are shorter requiring increased usesatmétal lighting. In

addition, homes and businesses often require heatingglthenwinter months.

22



Though much of the heating in North America comes from eitiegural gas or
heating oil, electric heaters do exist and are used. Cowplbdhe fact that there
are increasing numbers of natural gas fired generators goarmihne, this also
drives up the cost of production during winter, given thaiuna gas prices are
also historically higher in the winter months. In the sumrtier increased de-
mand comes from the use of air conditioning units. Thoughyntamsider these
two cycles the most dominant, there are also several othatsate significant,

including weekly, daily, and intra-daily cycles in demand.

During the week there are low and high times for electriceynéind. Week-
days require more electricity than the weekends or holid@lgese are considered
weekly cycles. The working hours in the day cause elegiridémand to rise,
while the late evening and early morning hours see reducethde. These are

considered intra-day cycles.

There are several methods authors have used model theatyaimponents
within electricity prices. Cartea and Figueroa (5) use afeogurve fit to account
for the seasonal components and Burger et al. (4) use a loachit to determine
the seasonal component. A sinusoidal method is used byofitip(15). She
considers seasonal effects and suggests modeling themirgy tue® sinusoidal
functions with frequencies that correspond to both annodisemi-annual cycles
within the spot prices. Her approach is both intuitive anaksgge, as it accounts
for two of the most prominent cycles within electricity peg; the extreme sea-
sons within a year. Unfortunately, there are limitationwthis approach, as the

seasons may not be purely simple sinusoidal and may inséepdre a greater
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number of frequencies to account for a more complex seasana. In addition,
as discussed above, there are other cycles that may nee@dtodented for.

The method we propose is a combination of the method used®)ya(id the
inclusion Fourier analysis to identify the number of sindsdhat will need to be
used to extract the cyclical component for higher frequesisuch as weekly or
daily cycles. We construct an extension of a usual methosdparating determin-
istic signals from noise using the discrete Fourier tramsf(DFT). The (DFT), or
the fast Fourier transform (FFT), which is an optimized \@rof the DFT (12),
is used extensively throughout the sciences. Enginearaxéomple use it to iden-
tify the frequency at which a signal is being transmitted #reh design a filter
to isolate the frequency and suppress the unwanted noisbdkacontaminated
the signal. This method of cycle detection provides sevaakfits: 1) It allows
for visual interpretation of the dominant cycles seen ircieleity prices. 2) The
number of cycles can be properly identified, which is helgfiven the different
characteristics in different regions. 3) Complicated eutfitting techniques are
not required to model the cyclical component. 4) The Fournsform is very
popular, is used in a variety of disciplines, and is easy tes€ in a wide range
of computational packages. Lastly, 5) the cyclical andisstic components can
be modeled separately which is useful in many circumstartigarado and Ra-
jaraman (1) proposed the use of a similar method for elégtnzice volatility.
However, they use the DFT without considering stationarTtigis is of concern
when using Fourier methods, (see (13)). We circumvent thisifmply fitting a
curve, as in (15), to capture the seasonal, (annual and @emoial), portion of

the prices. We then difference the residuals and use the DFEtermine the
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remaining cyclical componerfts

4.1.1. The Seasonal Component

Recall that demand is,

D(t) = f(t) + D(t),

wheref (t) is the cyclical component. We assume that

f(t) = fs(t) + fw(t) + (D).
Here, fs(t) is considered the seasonal compongpt(t) the weekly compo-
nent, andf(t) is the daily component.
We let,

fs(t) = asin(27t/365 — t,) + bsin(47t/365 — t,) + ct +d (21)

with a sin(27t/365—t,) representing the yearly variations, arn (47t /365—

t,)’ representing the semi-yearly variations seen in elettrices. Here:
e ¢ andb are the amplitude parameters
e 1, is the annual centering parameter
e 1, is the semi-annual centering parameter
e c andd are standard intercept and slope parameters

For the supply seasonal estimation, we also use (21).

8We cannot use this method to extract the seasonal compadiffeaencing the data acts like

a high pass filter and renders the low frequency componegds@sal components) undetectable.
"These equations would changentsin(27t /(365 - 24) — t,,) if one is to use hourly data.
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4.1.2. Higher Frequency Components

Our next step is to considgfiy (¢) and fp(t) components of the data,again
exploiting the power of the Fourier transform.

Write
_d(f(t) — fs(t))
which represents the cyclical function containing the vigakd daily cycles.

(22)

We take the Fourier transform éfand look at its power spectral density for an
indication of how many cyclical components we have in ouad&br a more so-
phisticated method of cycle extraction, which handlesenéizor estimation and

spectral smoothing see the methods outlined in (1) and.(14)

Consequently, we can obtain the number of harmonics regdjfordoth Weekly

and Daily cycles:

Z wy, sin (2 LT 7 ) (23)

fp = Zd sin (27— 24 +tq,). (24)
4.2. Findinga, b, c and§
Our method to find the parameters is simply to use of non-liregression to
minimize the pricing errors associated with fitting the moddat is, we use the
price equation (15),

P(t) = Hexp(- 2P0 g

8However, both (1) and (14) ignore issues with non-statiityar
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and execute a non-linear regression to obtain the resulthéoparameters. Us-
ing this approach requires the use of iterative numericéihopation routines.
However, many popular computational packages have thigyabikllow for easy

implimentatior.

4.3. Estimating the Noise
4.3.1. The Markov Chain Model

The Markov Chain model requires us to estimate various stft¢he noise
and then find the transition matrix and the associated weitameters. Formally,
we define certain levels representing different states. Watsay that there is an
normal state of the noise, and we would count the number afrehsons that the
noise was in that state. Likewise, we would do the same farattates. Similarly,
we observe the number of transitions between states. Coestyg we can obtain
an estimate for our transition matrix.

The entries in the transition matrix are

Tji = P(Gk+1 = €j|Gk = ei)7 (25)

giving an estimate for the transition matiik where

71'171 71'1’2 P 71'17”
o1 T22 ... Ton

M- = Aot (26)
7Tn,1 7Tn,2 P Wn,n

%In this paper we use the ‘nlinfit command within the compiataal package MATLAB to

conduct the non-linear regression.
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Heredt is the time step used when estimating the parameters.

For each state we estimate they; by taking the average of the data points
within the state. That is for all observations in statee take the arithmetic mean

of those observations to determing

ti=1
Here,{ X;,} is the set of data observations within stagéven the entire sample

spacex;.

4.3.2. The Mean Reverting Model

The mean reverting model is a continuous time analog of dedstrd AR(1)
model and can be estimated using least squares or maximelhd&d methods.
We use maximum likelihood estimation to estimate the patare@associated with
the SDE:

dXt = K,(/,L - Xt)dt + UdBt

having the solution,

t
X =e " Xo+ ple™™ = 1)] + / o™ 4B, .
0

Discretizing we obtain an AR(1) process given by:

Xt+1 = a+bXt —|—0A'€t
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a=p(l—e")
b — 6—m5t
_ 2Kt
52 = 02(1 € )
2K

This has the transition density,

1 Xp( (Xt+1 — th — CL)2

2762 ¢ 267 )

Maximizing over the logarithm of (-) yields the results we desire.

f(Xt+1|Xt; a,b, &) =

5. Empirical Results

The goal of this paper is to establish a model which captiresomplicated
dynamics present in electricity spot markets. We have chesetest data the
Alberta power market, which is a rather small market by glaandards. The
choice of the Alberta market for study is two fold: firstlyetle is a wealth of
publicly available dat®, and secondly, Alberta is the first market in North Amer-
ica which has established an emissions market. This withaliesearchers to
investigate the behaviour of electricity markets in reg@io emission prices.

There are, however, some disadvantages to studying thetAlivarket. The
price volatility is almost unprecedented when comparedth@romarkets. This
has to do with the lack of diversified generation units witthie market, and an

essentially Base to Peak, (lack of mid supply available),dback. Additionally,

OHjstorical data can be downloaded from the Alberta EleitjricSystem Opera-
tor (ASEO) website: http://www.aeso.ca/ and facts abow tharket can be found at

http://www.energy.gov.ab.ca/OurBusiness/electriagy .
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there is a lack of any available derivatives data, given thallssize of the market,
so the market does not have a liquid options market. Howévdpes have a

liquid OTC Forward market.

5.1. The Market Data

For our sample estimates we look at 2 years’ of daily peak)(38:00) data.
The data set begins January 1 2005 and ends in December 28@6provides
730 data points for estimation. We use daily on-peak averfggecomputational
convenience and the fact that many derivative contractsvateen on blocks of
on-peak hour hours. However, the method can be extendedloda hour by
hour analysis.

Our method depends on trying to accurately approximateythardics of both
supply and demand within the market, Fig. 3 represents tpealndemand and
baseload supply. Itis clear that there is a seasonal component to the bagéysup
Additionally, an interesting plot can be found in Fig. 4 wihiepresents the supply
surface. It is a visual representation of the price-quamétationship of supply
over time. As mentioned earlier, we avoid the common way oftjplg price
versus quantity and instead plot quantity versus price. &vetisen see how that
relationship ‘moves’ over time. From this supply surfacetple can observe that,
as we have assumed in our model, the structure, or shapeg obtitave portion
of the supply curve seems to be stable over time. Thus oungsgn of time

invariance in the non-baseload portion of the supply cueesss to be valid.

We define baseload supply as all capacity bid into the systé®taper MWh or less.
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Figure 3: On-peak demand and baseload for the Alberta market
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Price—quantity space for Alberta supply stack
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Figure 4: On

5.2. Estimation Results

5.2.1. Deterministic Component

we are only concerned with daily price hehaand, thus,

As stated above

will not need to account for intra daily cycles in the supphdalemand data. Tak-

ing the FFT of (22) we can observe in Fig. 5 that there are theskly harmonics

that need to be captured for demand and two for the supplg iplies that the

seasonal components for both supply and demand have tbeviiog) functional

form:
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Spectral Power
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Figure 5: Frequency domain of system demand and baseloatysup
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3
t) + an sin(2 365 -+ tw,) (27)

)+ Z Wy, sin(2 LT 7 + tw, ) (28)

The model parameters fgi(t) and B(¢) can be found in Table 2:

Variable | Supply| Demand
a| 262.5| 3289

b| 158.8 195.7

c| 0.5737| 0.8824

d 7427 7706

wy | -149.3 216.8

wy | 93.62 136.9

w3 47.78

t, | -187.7\ -10.97

t, | -5.324| -5.324

tw, | 6.544 9.612

tw, | 2.011| 58.51
0.0578

Table 2: Estimated parameters for deterministic compoioertemand and baseload supply

5.2.2. Supply Shaping Parameters: a, b, c, &nd
To establish the shaping parameters used in the supplyidmnete ran a non-

linear regression on the equilibrium pricing equation téagbthe estimates for
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a,b,c and&t?. These can be found in Table 3. The error within the estimaftes
c and¢ is very large. However, this is not that unexpected giverldige jumps
in price. Indeed there are almost discontinuous jumps irstipply stack, from

baseload to the peaking portion of the curve.

Variable Estimated Value
a 1.115+ 0.0853
b | 685.89+ 298.7774
c| 0.0049+ 0.0050
13 0.0832+ 0.2130

Table 3: Estimated Parameters for supply model

12The null hypothesis that the price data and the differenteden supply and demand con-

tained a unit root was rejected after conducting an AugnteDtekey Fuller test.
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5.2.3. The Noise

In the Markov model we use a Markov chain to represent theenoivase
load supply. We arbitrarily chose three states: a ‘hightesta ‘normal’ state, and
a ‘low’ state. To find the transition matrix, we historicathgfine a high state to
be, when the de-cycled noiseli$ standard deviations above the historical mean.
Similarly the low state is when the noise is5 standard deviations below the
historical mean. The normal state is the state in betweehitieand low states.
The weight parameters are calculated by grouping thosedigmns which are in
each of the states, and then averaging them. That is, forrestcinical observation
that was considered in the high state, we would take thenaeitic mean of the
collection of these observations to determine the weigrdmatera for the high
state. Similarly the weight parameters are determinedhiemother states. Here,
state 1 is the normal state, state 2 is the high state and3sigtbe low state. The

transition matrix is estimated to be

0.9164 0.4783 0.6327
II=1 00331 05217 0
0.0505 0 0.3673

and

a = (4.8954, 429.2737, —457.0059)".

For the mean-reverting noise model we have the results dyiagghe Maxi-

mum likelihood estimation methods to the de-cycled noiggragided in Table 4:

Using our estimation results we run a Monte Carlo simulafmrnthe three
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Variable | Estimated Value Supply Estimated Value Demand

K 0.2723 0.1371
i -2.0789 1.4883
o 188.8025 133.1162

Table 4: Estimated Parameters for Mean-Reverting suppljeirend Mean-Reverting portion of

Demand

years 2005, 2006, and 2007. We simulated 1000 sample paththen calcu-

lated the first four central moments of the averaged samphespd@he results are
provided in Table 5. The models perform reasonably well wdempared to stan-
dard models used in Finance. However, we cannot capturetrese Skewness
and Kurtosis seen in the Alberta market. This is possibly tdude smooth log

function we have used. The Alberta market has almost no nmiathgrplants so

there is a rapid increase in price from base to peak, with ardynall deviation

in quantity. Thus, an extremely complicated supply funttieould perhaps be
needed. We assume that in larger markets our model will becapfe and, as
the Alberta market matures and adds a greater mixture ofi\ggeperation, we

believe that this model should become a better proxy. Sitpjldifferent estima-

tion techniques or a larger data sample may provide betseittsethen the ones
obtained here.

Our next step is to price some Call options using our estidhpéeameters.

5.3. Derivatives Pricing

Our calibration period was the time period of January 1, 2@0Becember
31, 2006. Using our estimates we now combine them with théteesom Propo-

sitions 1 and 2 to price some European Call options. Since ewddilike to use
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2005 | 2006 | 2007! | 20052 | 20062 | 2007* | 2005% | 2006% | 20073
Mean| 85.39| 99.00| 84.26| 97.57| 117.88| 111.62| 95.49| 108.57| 112.24
Std.| 57.04| 98.80| 83.84| 63.24| 78.68| 71.91| 72.91| 78.30| 85.17
Skewness 1.77| 3.51| 4.80| 1.90 2.52 2.05| 230, 264 212
Kurtosis| 7.24| 17.91| 29.67| 8.019| 13.57| 10.76| 11.93| 15.64| 11.47

Table 5: Simulation results for years 2005 (in sample), 2@0&ample), and 2007 indicates
market data? indicates results from the Markov chain model, andre the results using the

Mean-reverting model.

only public data for this paper, we choose a range for the etamice of risk in
our pricing scenarids.

We wish to price European Call options where we assume thatthke price
is $92. (This is the nearest whole number to the mean on-peakmprice for
the 2005 to 2006 sample). We use various values for the maricet of risk and
the expiry time. We allow the market price of risk to take otuea from0% up
to 20% continuously compounded yearly, will% increments. We also look at
expiry times from 90 days up to one year away. The risk free imassumed to
be5%.

Using our current parameters, the mean reverting model @mdma higher

premium than does the Markov chain model. However, this ¢aarly change

13As shown in Section 3, one can easily obtain the market priicisk from current forward
curve quotes that are available to virtually every tradethim power markets. Additionally, es-
timations of time varying market price of risk parameters edso be calculated with modest

enhancements.
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T-t=90 | T-t=120| T-t=210| T-t=270| T-t=365

~v=0.00| 3.0792| 16.6157| 14.5388| 73.5757| 71.0398
v=0.05] 3.1174| 17.0305| 14.9631| 76.3480| 74.6821
v=0.10 | 3.1561| 17.4556| 15.3998| 79.2247| 78.5111
v=0.15 | 3.1953| 17.8914| 15.8492| 82.2097| 82.5365
v=0.20 | 3.2349| 18.3380| 16.3118| 85.3073| 86.7682

Table 6: Call option prices for Markov chain supply model

T-t=90 | T-t=120| T-t=210| T-t=270| T-t=365

~v=0.00| 10.2942| 27.5875| 25.2781| 83.5000| 80.8677
v =0.05 | 10.4219| 28.2762| 26.0158| 86.6462| 85.0139
v =0.10 | 10.5512| 28.9821| 26.7751| 89.9109| 89.3726
v =0.15 | 10.6821| 29.7056| 27.5565| 93.2986| 93.9548
v =0.20 | 10.8146| 30.4472| 28.3608| 96.8140| 98.7720

Table 7: Call option prices for mean reverting supply model

6. Conclusion
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depending on the assumptions used when estimating the statethe weight
parameters for the Markov chain. There is noticeable sedispm the call prices
as well as an obvious increase in call prices near the endeojdhr, (270 days
and 365 days), for both models. This indicates that the misdeldeed pricing

the expected increase of the spot price during these timibe gfear.

In this paper we have presented a hybrid model that uses dysd@mand
approach for price electricity derivatives. We were ableapture most of the

dynamics exhibited in the power markets and find closed farhti®ons for Eu-




ropean call options. Our goal was to provide a model thatucagdtthe price
dynamics of power while remaining simple enough to yielgsekbform solutions
for derivatives. We believe that models such as the one we pewposed are
of benefit to those operating in the power trading market, r@ptdesent a class
of model that can be used rather than the standard Blacki€chaodel or its
variants. Admittedly the model is more complex than theddad financial mod-
els. However, we believe that the model is still simple erdotagbe used on a
day-to-day basis by practitioners.
Our results are promising and we tested them on an the eXirewlatile Al-

berta market. There are many areas of future research:rexgptbe implications
of imposing hard price floors and caps in the model would bentgfrest. Addi-

tionally more complex supply functions may be appropriaie might yield better

statistical results.
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