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ABSTRACT

Managers must make important decisions when attempting to effectively
coordinate large-scale projects. Uncertainty arising due to quality problems in materials,
vendor shipment delays and labour disruptions contribute to the complexity involved in
project management.

In this dissertation, we develop mathematical models to guide the acquisition and
disposal of items in a project context. Specifically, with respect to a particular facility,
we divide time into two distinct phases: a "construction phase" (during which the facility
is erected) and an "ongoing phase” (during which the facility is in operation). We shall
consider an important, expensive item (e.g. pipe for a pipeline project, or valves and
electronic control devices in a compressor station) that exhibits uncertainty with regard to
total requirements during the construction phase. Materials managers are allowed to
place a single procurement order for this item at the beginning of the construction phase.
We consider such costs as procurement costs, holding charges and stockout penalties.

Surplus units on-hand after the construction phase completion may be salvaged
(disposed for revenue), or retained for usage (as a spare part or for routine replacement) in
the ongoing operations of the constructed facility.

The decision variables, then, include the appropriate quantity to procure at the
beginning of the construction phase, and the proper amount to dispose, in the event of on-
hand surplus, after construction completion. The procurement and disposal quantities are

to be selected so as to satisfy project and ongoing requirements at lowest possible cost.
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We use a spreadsheet model to determine the best procurement and disposal quantities.

We consider the cffects of non-constant salvage values. *“Marginally decreasing”
salvage values consist of those situations in which larger disposal quantities generate
smaller “per unit” salvage revenues. We also examine the scenario in which, over a
limited range, “per unit” salvage values may rise as additional units are disposed
(“increasing” salvage values). This higher unit price may still be beneficial to the buyer
for it saves the negotiation and logistics hassles involved in procuring smaller quantities
from several companies, as well as providing transportation economies.

We numerically explore the advantage of considering both construction phase and
ongoing phase issues when making one’s original construction phase procurement
decision. We determine the least-cost procurement quantities that would result if one
considered solely construction phase issues (the “myopic” approach), or construction
phase issues plus the disposal of all surplus stock (the “all-disposal” strategy). We
determine the percentage cost penalties of following these *“non-integrated” approaches,
and illustrate those cases that lead to higher penalties.

We further consider the impact of a future project occurring at a random time after
completion of the initial project’s construction phase. We show how this scenario affects
the initial project’s procurement quantity. Two specific cases are illustrated: no inter-
project usage, and deterministic, level inter-project usage.

We also analyze two separate extensions to our mathematical model; namely, the
incorporation of deterministic, time-varying ongoing phase usage, and multiple

procurement opportunities in the construction phase.
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1. INTRODUCTION

1.1 Moeotivation

"Except in the midst of a battlefield. nowhere must men coordinate the movement

of other men and all matenials in the midst of such chaos and with such limited

certainty of present facts and future occurrences as in a huge construction project”.
(Blake Construction Co. vs. C.J. Coakley Co. (1981): emphasis added)

Clearly. large-scale projects are subject to a tremendous amount of uncertainry.
Delays in vendor shipments. quality problems. mid-stream engineering design changes
(even project cancellation). environmental conditions (e.g. unpredictable project
"windows" in remote. harsh climates) and labour disruptions. among others. contribute to
the extreme difficulty in effectively managing projects.

In this dissertation. we shall develop mathematical models to guide the acquisition
and disposal of items in a project context. Specifically, with regard to a particular
facility, we divide time into two distinct phases: a "construction phase" (during which the
facility is erected) and an "ongoing phase"” (during which the facility is in operation). We
shall consider an important, expensive item (e.g. pipe for a pipeline project, or valves and
electronic control devices in a compressor station) that exhibits uncertainty with respect
to total requirements during the construction phase. Silver (1989) indicated that these
uncertainties may arise due to subsequent engineering design changes, the inherent
uncertainty in specific types of projects (e.g. subsurface work), errors in the material
takeoff, failures on installation (e.g. electrical equipment), or damage/loss of items.

Surplus units on-hand after the construction phase completion may be salvaged
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(disposed for revenue), or retained for usage (as a spare part or for routine replacement) in
the ongoing operations of the constructed facility. As far as we have been able to
determine, no previous attempt has been made to jointly analyze the effects of acquisition
and disposal in a project context.

The vital decision variables, then, include the appropriate quantity to procure at
the beginning of the construction phase, and the proper amount to dispose, in the event of
on-hand surplus, after construction completion. The procurement and disposal quantities
are to be selected so as to satisfy project and ongoing requirements at lowest possible
cost. Figure | illustrates a timeline of the respective acquisition and disposal decisions
during both phases.

Silver (1986, 1987b) conducted a survey of procurement and logistics managers
involved in large-scale oil and gas projects in the Province of Alberta. Critical decision
areas faced by these professionals involved coping with uncertainty surrounding total
project requirements, and the disposal of project surplus. Options for disposal included,
but were not limited to, return to supplier (using a buyback clause in the purchase
contract), sell (usually at a discount), or trade-in on a future purchase.

Subsequent discussions with several materials management personnel at a major
gas transmission company have further illustrated the pivotal nature of these respective
decisions. These are by no means trivial issues. Effective materials management within
large-scale projects is critical to project success. Hence, there would appear to bea
practitioner-oriented motivation for a systematic method to tackle the acquisition and

disposal problem. The relationship between construction phase requirements and
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ongoing usage is an important managerial issue examined in this dissertation.

The use of the “real world” for validating various parameters in order to create an
approach that is realistic, practical and able to lead to improved decision-making ought
not to be treated lightly. Besides an approach applicable to large-scale project situations,
we shall describe (in Chapter 9) how our approach can be applied in other decision-
making scenarios.

A principal element of this research is an analysis of the relative importance of the
various parameters involved in this decision-making environment. Obviously, the
"optimal solution" has benefit from an analytical standpoint. However, the ability to
determine the effect on the optimal solution of changes in parameter values (ie. sensitivity
analysis) is critical from a managerial perspective. Wagner (1980) suggested that
effective inventory management research ought to provide an indication of the
quantitative tradeoffs accompanying different strategic assumptions. Several experiments
will illustrate how the optimal solution varies under different conditions, and the
concomitant cost penalties of deviating from a best solution.

Some of the different decision-making scenarios illustrated in this dissertation
will now be described. We will begin by examining a single opportunity to procure at the
beginning of the construction phase. A further scenario could allow for the existence of
multiple procurement opportunities. To the extent that the firm is able to acquire items at
various times during construction, project procurement may become more "just-in-time"

(JIT) in nature.

The quantitative effect of product standardization represents an important issue




for procurement managers. This will be treated in the dissertation by changing the
salvage revenue received for surplus units disposal. We propose that the more (less)
standard an item, the higher (lower) the salvage value it can earn when disposed. Silver
(1987a) reported that, among company owners and procurement contractors, substantial
differences of opinion exist with respect to item standardization. The former group, due
to concomitant operating advantages (standard spare parts, maintenance procedures, etc.),
tends to favor increased standardization. Contractors, on the other hand, dislike the
concept because of its restrictive nature. Further, they suggest that some of the benefits
of standardization may be eroded in the event of subsequent product changes made by the
supplier. Mitchell (1962) suggested that excessive standardization could discourage the
technical progress which follows the experience gained from variation in design.

Large firms dealing in the construction industry often include a department
devoted to surplus disposals (under the name of "Investment Recovery Analysis", or other
such title). Several trade journals are published, listing companies willing to purchase or
sell various surplus items. Market conditions undoubtedly play a role in the disposal of
surplus items. As a result of differing market circumstances, one may not always obtain a
constant salvage value for disposals. Salvage values could be "marginally decreasing”, in
the sense that additional disposals yield lower per unit salvage values. Salvage values
could also be "increasing" as additional units are disposed. A firm desiring to purchase a
given number of units on the surplus trade market may pay a higher per unit price to a
supplier that could deliver the appropriate number of units required by the firm.

Purchasing from this supplier saves the negotiation hassles of buying smaller amounts
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from many different organizations. (We will allow salvage values to be increasing up to a
point, after which the marginal valucs will begin to decrease).

Various scenarios in the ongoing phase will be examined. A critical managerial
issue involves establishing the appropriate ongoing replenishment strategy. Increased
costs (presumably when a facility operates in a more remote location) may imply different
ordering strategies, such as a firm ordering larger quantities of required items in a single
replenishment.

We will also explore distinct usage patterns for these spare parts in the ongoing
phase. Besides deterministic level usage, we shall analyze probabilistic (Peisenn) 2nd
deterministic time-varying usage. The latter case incorporates a relatively high usage of
the item during the startup phase of the facility (due to the so-called "infant mortality”
effect). This usage tapers over time (as the facility matures), then begins to increase as
items start to wear out. In a comprehensive review of inventory management research,
Silver (1981) contended that the procurement of service (spare) parts is an important

research problem.

Our model will be expanded to include subsequent projects, occurring at random
points in the future. The procurement and disposal of material in the original project
when faced with the possibility of future projects represents an additional managenial
issue examined in this research.

Figure 2 provides an illustration of the various model scenarios to be analyzed in

this dissertation.



Figure 2
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1.2 Assumptions

The following assumptions will be used in our development of the various

acquisition and disposal models. Additional assumptions will be described when

required.

L We will only examine a single important item during the construction and
ongoing phases.

° Without loss of generality, initial inventory, prior to the acquisition at the
beginning of the construction phase, is zero.

® Any surplus is either disposed or kept on-site (ie. we do not consider
multiple locations).

o Any surplus remaining after a project would be used up during the

subsequent project. That is, the surplus after any project would never be
sufficient to cover the complete requirements during the next project. This

implies that each project requires at least some level of procurement.

1.3 Overview
In Chapter 2, we provide a review of the literature pertinent to this problem area.

We reference key articles in project management, materials management, and inventory

modelling.

Chapter 3 then describes the development of models to analyze decisions in the

ongoing phase. We begin by treating deterministic level usage, then showing its



equivalence to probabilistic (Poisson) usage. We illustrate how to calculate the optimal
replenishment quantity and show that it can be approximated by the economic order
quantity (EOQ). In Chapter 4, we develop models to derive optimal disposal quantities at
the conclusion of the construction phase. We launch our discussion by examining
constant salvage values, then show how these decisions are affected by non-constant
salvage values.

Chapter 5 combines the disposal decision rules with a model to examine the
acquisition of items at the beginning of the construction phase. We explore both an exact
and an approximate approach for determining the expected total project costs. Chapter 6
then provides numerical results for the models developed in Chapters 3 through 5. We
investigate the effect of various parameters by running our models with high, middle, and
low values for each parameter.

Chapter 7 analyzes the case of subsequent projects occurring at random points in
the future. We begin by exploring the situation in which there exists no "inter-project"
usage. then examine the circumstance of deterministic level "inter-project” usage.
Chapter 8 provides a description of two extensions to our acquisition and disposal
models: deterministic time-varying usage in the ongoing phase, and multiple procurement
opportunities in the construction phase.

We summarize our findings in Chapter 9 by indicating pertinent conclusions and
suggesting some relevant directions for further study.

In the Appendices, we provide a glossary of notation as well as various analytical

proofs supporting the text of the dissertation. We also illustrate the results of several
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numerical experiments designed to evaluate the heuristic used for approximating the level

of on-hand inventory in the case of future projects and deterministic level ongoing usage.
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2. LITERATURE REVIEW

This dissertation combines three dimensions of operations management (OM)
research: project management, materials management, and inventory modelling. Each
will be discussed in turn, with special attention given to the problem of excess stock
disposal. Figure 3 provides an overview for this chapter. We shall begin our discussion

at the top of the framework, and proceed in a clockwise fashion.

2.1 Project Management

The management of projects has received considerable attention in the literature.
Several textbooks, including Harrison (1992), Meredith and Mantel (1985), Lewis (1995),
and Morris (1994), have described analytical approaches in project management as well
as organizational structures required to effectively administer projects. Projects are often
judged on the cost or time taken to complete the project, the project’s technical
performance (ie. how well does it do what it is supposed to do), or the degree to which
stakeholders are satisfied.

Fox (1984) described a framework for evaluating the management of large,
complex projects. He based his framework on eight mega-projects (costing more than $1
billion each), including the TransAlaska pipeline. This 800 mile-long project was
initially budgeted at $900 million, but ballooned to $8.5 billion due to engineering and

regulatory changes. Fox illustrated the appropriate criteria one must apply when
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evaluating large-scale project management as well as common errors to avoid. He
suggested that one ought to judge a project manager’s decisions on the basis or the
information possessed by the manager when the original decision was made. Morris
(1986) described some of the lessons learned from the successful management of
projects. In particular, planning and design work ought to consider the future engineering
and construction portions of the project as well as a careful regard for any geophysical
uncertainties.

The treatment of uncertainty within a project management setting will now be
illustrated. AbouRizk and Halpin (1992) surveyed the durations of 71 different activities
and tasks in North American construction projects. They found that the beta distribution
would appear to be a suitable candidate for modelling construction task durations. Shtub
(1986) represented project uncertainty via stochastic activity durations and lead times.

He developed a heuristic procedure which could calculate the probability of finishing the
project late and the concomitant net present cost of the project. He then generated an
efficient frontier of net present costs versus the risk of not completing the project on time.
This allowed managers to examine the trade-offs involved in their projects. Recognizing
a nonlinear distribution of work completed versus the duration of the activity, Gilyutin
(1993) suggested that project management software needs to be refined. According to the
author, software tools are ineffective if they only allow linear completion plans (ie. work
would be completed at a linear pace).

Shachter and Kenley (1989) reported on the use of influence diagrams, a graphical

representation for a decision problem under uncertainty. In an attempt to develop a
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model for construction projects with uncertain activity durations and costs, Padilla and
Carr (1991) used influence diagrams. Resource assignments were dynamically adjusted
while the project was under construction.

Skitmore, Stradling and Tuohy (1989) developed a "psychological" model to
assist human decision-makers in coping with the uncertainty they face. Crucial to dealing
with risk was effective communication within a project environment and the equal
distribution of responsibility amongst participants.

Silver and Jain (1994) examined uncertainty within a project context.

Specifically, they allowed uncertainty with respect to period-by-period resource
requirements and available period-by-period supplier capacities. Procurement quantities
were selected at the beginning of individual periods, taking into account the current
inventory level and having observed the actual requirements and capacities in previous
periods. Costa and Silver (1996) developed an exact procedure for this problem, based
on a branch and bound approach with a dynamic programming algorithm. Since the exact
formulation could be only used on problems of relatively small size, various heuristic
procedures were also examined.

By reducing potential solution spaces, discrete approximations of continuous
random variables can be used to tackle uncertainty within a project management
framework. Miller III and Rice (1983) suggested that, in order to gauge the accuracy of a
discrete approximation, it must preserve as many moments of the original distribution as
possible. Claiming that typical discrete approximations often underestimate all moments,

they proposed a numerical integration procedure to determine more accurate
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approximations. Zaino, Jr. and DErrico (1989) emphasized using Taguchi’s work on
tolerance analysis to provide better approximations.

Keefer and Bodily (1983) highlighted the importance of searching for an
approximation which provides reasonable results for estimating expected utilities over a
variety of utility functions. Suggesting that one can encounter problems if decision
variables are made arbitrarily discrete, Stonebraker and Kirkwood (1994) proposed using
mathematical programming solution methods to handle continuous decision variables.
They used lower and upper bound functions to represent the potential range of values for
these variables.

Poland (1993) discussed "certainty equivalents". These represented the amount of
certain payoff one would be indifferent in receiving versus an uncertain payment from a
decision analysis problem. He recommended using these in assessing the "goodness" of a
discrete approximation. Keefer (1994) further alluded to the use of certainty equivalents.
He suggested that, instead of solely concentrating on the estimation of moments of the
underlying distribution, one ought to closely match the certainty equivalents.

Estimating the uncertain elements of project management problems often requires
carefully eliciting various values from those most intimately familiar with the system
under study. Merkhofer (1987) proposed some formalized procedures for obtaining,
among other items, a discrete representation of continuous probability distributions.
Keeney and von Winterfeldt (1991) suggested a seven-step process for eliciting
probabilities. They adopted their method for a large-scale study involving nuclear safety.

Logistics is an integral component of large-scale projects. Hax (1976) surveyed
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the design of large-scale logistics systems. Keys for effective systems included, but were
not limited to, delivering the requisite quantities of goods where and when required, and
with appropriate levels of quality. Assuming stochastic usage, Luxhoj and Rizzo (1988)
analyzed spare part inventory levels within large-scale logistics models.

Fabrycky and Banks (1966) developed a hierarchy of logistics systems, based
upon the nature of the item and source (either single and multiple). Sobel (1988)
analyzed dependent period-by-period demands in a logistics model.

Previous researchers have illustrated the significance of effective materials
management within a project management context. Some of these articles will be

discussed in the following section.

2.2 Materials Management

Materials management, according to Bennett (1985), involves the coordination of
several functions: purchasing, inventory control, warehousing, distribution and the
disposal of surplus materials. He showed that item standardization can lead to a
reduction in total inventory investment. Kathawala and Nauo (1989) suggested that
integrated materials management ought to be viewed from a holistic perspective. They
remarked that the efficient management of the disposal function, once regarded as an
incidental task, has gained substantial importance due to a better recognition of the key
benefits it can generate in an organization.

Diekmann (1981) emphasized the critical aspect of accurately determining the

quantity of both materials and labour required in a project. In an effort to more
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effectively integrate the project management and materials management functions in the
pulp and paper industry, Mendel (1986) developed an efticient decision support sysiem.

Smith-Daniels and Aquilano (1984) claimed that managers need to
simultaneously consider project schedules and material requirements. They developed a
heuristic scheduling procedure, applicable to multi-project environments. A heuristic
scheduling procedure was described by Shtub (1988). He addressed the problem of
scheduling a project in which expensive, long lead time inventory items are ordered from
outside vendors. Shtub (1991) analyzed a heuristic procedure for the scheduling of
programs within a number of identical manufacturing or construction projects (e.g. ships,
houses). He discussed the Line of Balance (LOB) technique and assumed unconstrained
resource availability.

Recognizing the "lumpy" nature of materials requirements within a project,
Smith-Daniels and Smith-Daniels (1986) examined the performance of several lot-sizing
heuristics. Assuming unconstrained resource availability, the same authors developed in
a later article (1987) a mixed-integer programming formulation to find the optimal project
scheduling and materials lot-sizing solution.

A vital materials management issue involves the provision of spare or service
parts. Numerous articles have appeared in the literature, attempting to determine the
appropriate level of spare parts inventory. Since the item we propose to analyze in our
acquisition and disposal models could be used as a spare part in the ongoing operations of
the firm, the literature on spare parts is worthy of consideration.

Melese, Barache, Comes, Elina and Hestaux (1960) reported on a decision rule for
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the inventory control of spare parts in the French steel industry. They considered two
types of costs (inventory carrying charges and stockout costs) and assumed a constant
lead time. Johnson (1962) allowed for stochastic lead times in his analysis of spare parts
control procedures at Canadian army workshops. The optimal solution showed a 34%

reduction in operating costs combined with a 24% increase in spare part availability.

Taking into account the possible repair of spare units, Howard (1984) analyzed
spare parts inventories of machinery for the National Coal Board (Britain). Jung (1993)
also considered spare units repair, but used a non-stationary failure rate. This implied
reliability amelioration as products were improved. He used the commercial airline
industry as his case study.

Foote (1995) described a forecasting method, based on maximum likelihood
estimation, for the procurement of spare parts in a Philadelphia-based Aviation Supply
Office. Considering inventory carrying, ordering and shortage costs, Bartakke (1981)
developed a technique based on mathematical programming and simulation to determine
appropriate spare parts inventory levels for Sperry-Univac. A multi-echelon provisioning
system was utilized within this organization. An additional study of a multi-echelon
system was provided by Shtub and Simon (1994). Applying the problem in a military
context, the authors developed an algorithm that would maximize fill rates at those
maintenance facilities deemed to possess the highest priority.

A large Belgian chemical plant, involving about 34,000 different types of
inventoried spare parts, was the subject of an analysis by Vereecke and Verstraeten

(1994). Demand occurrences were assumed to be Poisson distributed. Jensen (1992)



19
conducted a case study to examine spare parts inventory systems for the automobile
workshops within the Catena Group, an organization which manages the European
operations of Volvo. Another study on spare parts systems within the automobile
industry was conducted by Moore, Jr. (1971). He developed a forecasting technique and
dynamic inventory model to schedule the production runs of service parts.

Due to the inherent incompleteness, inconsistency and imprecise nature of many
of the parameters involved in determining optimal spare parts levels, Petrovic and
Petrovic (1992) suggested using heuristics. They developed an expert system to provide
the appropriate assortment and quantities of spare parts in electronic systems.

Phelps (1962) developed a dynamic programming method to determine the
optimal number of spare parts to procure, repair or dispose. His state variables included
the number of "serviceables" (repaired units not yet used) and the number of "repairables”
(units no longer working, but able to be repaired) available at the beginning of each
period. A simulation model, developed by Matta (1985), determined the appropriate
inventory policy for repairable spare parts. He also determined the optimal number of
repair stations to include within a manufacturing facility.

Thomas and Osaki (1978) analyzed a maintenance problem, where there existed a
lead time on orders and only sufficient room to store one spare unit in stock. They
considered shortage, holding and ordering costs. Their work was expanded by Kabir and
Al-Olayan (1996). The latter authors explored the situation in which an item is replaced

upon reaching a specific age, or on failure (whichever comes first). Optimal values were

determined by minimizing the expected total cost per unit time.
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Geurts and Moonen (19592) analyzed insurance-type spares. These expensive
spares are essential to the operation of the equipment they serve, but have a rather
considerable probability of never being needed during the lifetime of the equipment. The
costs of a stockout (requiring a spare, but having none available) are enormous.
Providing spares for equipment which is used on a scheduled, periodic basis (e.g. the
Space Shuttle) was the subject of an article by Bridgman and Mount-Campbell (1993).
Since the machinery in question is only used periodically, spares need not be available at
all times. They are only required when the next scheduled usage would begin.

Faced with the situation of small and decreasing usage (ie. "slow-movers"),
Brown (1967) determined the "all-time" supply that one ought to order. Fortuin (1980)
calculated the final order for a service part in a discontinued, manufactured product. In
this "resource-saving age", Yamashina (1989) considered it a "social responsibility” for a
firm to supply its customers with service parts, even for products manufactured and sold
many years previously.

Hollier (1980) concentrated on the distribution component of the spare parts
problem. He examined the situation in which a manufacturer needs to provide an
acceptable level of after-sales service at least cost.

Gross and Ray (1964) discussed two techniques for controlling spare parts
inventories. Bulk control (items are expensed on a periodic basis) was compared to item
control (each unit is accounted as it is used). The unit cost and demand of an item helped
to determine the appropriate costing technique.

Obsolescence considerations are important within materials management
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problems. Incorporating stochastic demands and obsolescence rates, Pierskalla (1969)
suggested a discrete-time model to deal with this problem. After obsolescence sccurs,
there is no longer any demand for the item. Masters (1991) likened obsolescence to
anticipated demand failing to materialize. He allowed a salvage value for obsolete units,
hinting that even though items may be obsolete to one organization, they may still be
quite useful for another. Song and Zipkin (1996) also equated obsolescence with
deteriorating demand. They determined appropriate inventory management policies for
such problems. Given that availability of items was deemed essential, the authors
showed that simply "cutting" inventories in the face of obsolescence may not be the

answer.

2.3 Excess Stock Disposal

A critical inventory management decision arises when an organization finds itself
with an excess of stock on-hand. Specifically, the problem is to determine the
appropriate amount of stock to dispose. Disposal creates benefits in at least two ways;
namely, the salvage revenue obtained from surplus unit disposal, and the savings in
inventory carrying charges due to the reduction in on-hand stock. However, due to
ongoing operational usage of the item, the organization may be required to eventually
repurchase (or remanufacture) units. Eliminating "too much" of this stock may. thus,
force the company to make premature repurchasing arrangements. As a result, the cost
tradeoff exists between salvage revenue and reduced inventory carrying charges versus

future repurchasing costs.
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The potential causes of excess stock are iegion. An abrupt decrease in demand or
changing business conditions may lead to an excess stock situation. Similarly, price
increases, forecasting errors, customer cancellations, the introduction of a new
(competing) product, production overruns, overpurchasing (to protect against stockouts),
or even simple goofs (e.g. errors in the transmission of an order request) may be the basis
for the excess occurrence. Poor quality in final product assembly could lead to an over-
supply of a sub-component. Ultimately, inadequate materials planning and execution
systems are at the root of the excess stock problem.

Tersine and Toelle (1984) suggested that excess inventory is a "dead weight".
Among other adverse effects, it uses valuable storage space, inflates assets, diminishes
working capital, and causes a reduction in return on inivestment (ROI). Toelle and
Tersine (1989) claimed that inventory is in fact a liability if it costs more than it earns.

Gottlieb (1994) submitted that two-thirds of the U.S. national defense stockpile is
wholly or in part excess. This surplus stock represented an investment of a few billion
dollars. He further alluded to the political difficulties and economic disruptions that can
be created should a country be perceived as "dumping" excessive amounts of key
materials. Bolwijn and Kumpe (1986) cited Martin Kuilman (a Philips Vice-President),
who maintained that the company has a substantial investment tied up in unnecessary
inventories of subassemblies, finished products and raw materials. May (1996) reported
on a Canadian Government Treasury Board study which indicated that at least $1.25
billion could be annually saved by eliminating over-supply situations. Police hats,

scientific equipment and National Defense inventories represented some of the excess
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items. We even recall the story of a local firm which contracted with a large construction
company to purchase all of its excess pipeline during a given year. The local firm
received such a quantity of surplus pipeline that it quickly filled its own warehouse
facilities. It was eventually required to rent storage space in order to house the excess
stock!

Silver, Pyke and Peterson (1998) reported that, given the current increases in the
rate of technological change (which imply a shortening of the typical product life cycle),
the general area of excess stock disposal is likely to continue to increase in importance.

We begin by describing simple decision rules for the disposal of excess stock.

We then relate analytical models which consider the disposal decision in isolation
("strict” disposal), with either deterministic or stochastic usage. We conclude our
discussion with a treatment of "hybrid" models, ie. those analytical models in which the
disposal choice is combined with an acquisition decision. We examine general
acquisition and disposal models, as well as models that link quantity discounts and

disposals. Figure 4 illustrates the framework adopted for this discussion.

2.3.1 Simple Decision Rules

These decision rules can be viewed as simple (mainly subjective) "rules of
thumb". They pay little (or no) attention to such details as inventory carrying charges and
future reordering costs. Their value is not so much in "to-the-penny" exactitude, but
rather in their ability to offer managers a conceptually simple, easy to implement

technique of determining the amount of excess stock an crganization ought to dispose.
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Pattinson (1974) prescribed a cross-functional approach to this problem, involving
representatives from such departments as marketing, operations, finance and engineering.
He suggested that one closely monitor all inventory in excess of 12 months’supply. Any
stock exceeding that time supply would be considered surplus to current requirements.

Brown (1977) offered a description of the excess stock issue for a general
managerial audience. He advocated using managerial intuition in setting two limits, the
"number-of-weeks supply” and the "dollar-value-of supply”. Any stock that surpassed
either of these two limits would be regarded as excess inventory.

A managerial examination of the nature of excess stocks was provided by Doll
(1984). He proposed the Inventory Evaluation and Review Technique (INVERT), a
process for reviewing the present state of an organization’s inventory position and
providing guidelines for improvement plans. While he suggested that an economic
analysis be performed to determine the most beneficial disposal strategy (retain, sell,
segregate, write-off), he failed to indicate any analytical details of this procedure.

A more quantitative, yet still relatively simple, excess stock rule was given by
Silver, Pyke and Peterson (1998). They suggested that one calculate, on an item-by-item
basis, the expected time at which the inventory level would be depleted. This quantity
was known as the item’ "coverage". By listing each item in descending order of
coverage and also maintaining 2 record of the item’s unit value, managers could obtain a
quick indication of the "cost” of excess stock. For instance, they could easily determine
the percentage of total inventory value tied up in stock with coverage of at least, say, 30

months. This would provide decision-makers with evidence of the significance of the
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excess stock problem. Disposal of a portion of the inventories of items with at least a

certain coverage would "free up" a specific amount of inventory investment.

2.3.2 "Strict" Disposal - Deterministic Usage

Although simple decision rules can provide a quick basis for decisions regarding
the disposal of excess stock, analytical models can consider a variety of specific inventory
details. The outcome of these modelling efforts is the quantity (and in some cases, the
"timing") of excess stock disposal.

Several models have been developed to examine the disposal of excess stock,
given that the organization is currently in a surplus inventory situation. We refer to these
as "strict" disposal models. Researchers have attempted to determine either an economic
retention quantity (or economic retention time period). Any stock that is found exceeding
either the best retention quantity or time supply ought to be disposed. Marginal salvage
values for stock disposal have been assumed to be constant in all cases. These models
have analyzed the problem from different perspectives (e.g. usage distributions, cost
components used, and the manner in which inflation and the time value of money are
addressed).

Assuming known and constant future item usage, Simpson (1955) was an early
contributor to the excess stock problem. Basing his analysis on inventories held at Naval
supply stores, he calculated an economic retention time period. His break-even
examination featured a tradeoff between storage and obsolescence costs versus the

expenses of repurchasing the material in the future (if and when required). The author
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used a constant time until obsolescence, and ignored inflation (ie. the future unit
acquisition cost was assumed to be equivalent to the current price).

Mohan and Garg (1961) expanded some features of Simpson’s model. Besides
considering inflation, they allowed the time until obsolescence to follow a general
probability distribution. In fact, they used the exponential distribution and constructed an
appropriate economic retention period. Kulshrestha (1962) expanded Simpson’s model
by incorporating an exponential probability distribution during iritial deterioration and
obsolescence, up until the time at which one could model the time until obsolescence as a
normal distribution.

Naddor (1967) developed an excess stock disposal model for the cases of both
finite and infinite horizons. However, he did not include any present value considerations
in his analysis. Dave and Pandya (1985) expanded Naddor’s model by allowing the stock
to exhibit a constant rate of deterioration. They examined a classical lot-size inventory
system, in which the EOQ was used for future, ongoing replenishments. Assuming no
shortages and zero leadtime, they developed expressions for the best amount of surplus
stock to retain. Under no conditions would an organization dispose a quantity of such a
size as to leave themselves with less than the EOQ on hand. Dave (1988) elaborated on
the previous work, by developing models in which shortages were permitted to be
completely backlogged.

Hart (1973) recognized that demand rates may be variable during the planning
horizon. However, he assumed that this horizon could be divided into a given number of

subperiods (which would not necessarily be of the same length), and that a separate
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forecast of demand could be generated for each of these respective time periods. The
demand rate, then, was presumed to be constant within each of these subperiods. In this
way, item usage was deterministic, yet time-varying. Hart heuristically determined a
future procurement schedule for the item, and noted that the heuristic performed quite
well when compared to the optimal schedules produced by a dynamic programming
algorithm (this latter technique required considerably longer computing times, a major
consideration when thousands of inventory items would be examined). Specific costs
considered included inventory holding charges, fixed and variable procurement costs, and
scrap value of disposed units. After discounting all future costs to the present, he was
able to find the optimal retention quantity by using a sequential search procedure.

An additional effort to recognize deterministic, time-varying demand was
produced by Miller, Mellichamp and Henry (1986). Basing their research on a financially
troubled General Motors carburetor assembly plant in Tuscaloosa, Alabama, they
attempted to find minimum cost time supplies for surplus items. Due to the multiproduct
nature of the facility, the same product could go into several "kits". As a result, there
existed an additional manner in which excess stock could be disposed - surplus units
could be "remade" into a different product for which there was a "good" demand. Their
present value model considered inventory carrying charges as well as future procurement
costs. Since future replenishments of the item would most likely be produced on a
smaller lot-size production run, the unit acquisition cost was assumed to be higher in the
future. Other costs considered included salvage revenue and the tax savings associated

with inventory write-offs. Using the technique of differencing, the authors determined
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the integer value of time supply that yielded the smallest total discounted cost. Adoption
of the analytica! method generated savings of approximately $1 million at the GM plani.

Krupp (1977) illustrated the manner in which obsolescence can lead to excess
inventory. He defined "fiscal obsolescence" as the gradual depletion in a product’s value,
resulting from the effect of accrued carrying charges over an extended period of time. An
item becomes "fiscally obsolete" at the specific point in time at which the cumulative
carrying charges exceeded the net unrecoverable value of the item (standard cost less
resale or salvage value). Any stock which exceeded this economic time supply would be
disposed. However, he neglected to include such factors as time value considerations, or
the effect of future reordering and repurchasing costs.

Measuring alternative disposal strategies in terms of their effects on relevant cash
flows, O'Neil and Fahling (1982) presented a decision model for excess inventories.
Their cash flow liquidation model, possibly appropriate for a retailing or distribution
enterprise, evaluated the present values of inventory carrying charges and cash from
disposal (net of tax). However, they did not incorporate future reordering and
repurchasing costs. They allowed disposal of stock at "discrete” points in time (the end of
each month). A rather cumbersome procedure was developed to determine the best
disposal strategy. The authors evaluated the total discounted cash flow of retaining all
inventory, then the total discounted cash flow of liquidating one month of inventory (and
retaining the remainder), and so on until all possible liquidation quantities up to and
including the quantity on hand had been evaluated. The optimal disposal amount, then,

was the one leading to the maximum discounted cash flow. Tersine, Toelle and
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Schwarzkopf (1986) expanded ONeil and Fahling’s liquidation model. They adopted
continuous compounding of future cash flows (the earlier authors had suggested that all
cash flows occurred at the end of discrete time periods). In addition, the later researchers
were able to develop an analytical, closed-form result for the optimal number of months
of stock to retain.

Brown (1982) determined economic retention quantities by comparing current
salvage revenue with the future costs of repurchasing the item. He permitted the
consideration of the time value of money, but disregarded holding costs and the fixed cost
of placing a future replenishment order.

Tersine and Toelle (1984) generated relationships for the economic time supply of
an item, under the existence or non-existence of present value and inflation
considerations. Backorders were not allowed. Their "net benefit" for the disposal of
excess stock may be conceptualized as:

Net Benefit = Salvage Revenue + Holding Cost Savings - Repurchase Costs -

Reorder Costs

The economic time supply produced by the present value model was shorter than
the one given by the model in which present value was not considered. Future reorder
and repurchase charges can be heavily discounted when considering present values. This
would tend to reduce the appeal of retaining more units of excess stock. As an outgrowth
of their models, Tersine and Toelle computed the minimum economic salvage value, the
lowest price for which a unit of excess stock would be disposed. This has considerable

managerial appeal, since it provides some indication of the sensitivity of solutions to
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changes in model parameters.

Silver, Pyke and Peterson (1998) described a method to calculate the amount of
excess stock which ought to be disposed. Neglecting any present value considerations,
they considered such parameters as the current inventory level of the item, replenishment
lot size (EOQ), annual item usage, unit acquisition cost, inventory carrying charge, and
salvage value. The authors note that, when salvage value is equivalent to unit acquisition
cost, the best disposal strategy is to dispose down to the EOQ level, ie. in this case, it is
optimal to put the inventory into the same situation as immediately subsequent to the
receipt of a replenishment.

George (1987) determined the minimum disposal price one must receive (o obtain
immediate disposal of an entire stock of surplus units. Restricting attention to a slow-
moving, non-replenishable item, he assessed different pricing strategies by comparing the
net return on invested funds. He found that, in most practical situations, a special price of
at least 80% of the normal price would be required for entire surplus disposal.

Stulman (1989), ignoring the possibility of obsolescence or spoilage, developed
an expression for the optimal retention quantity. His net benefit of excess stock disposal
involved surplus revenue (received immediately) as well as the present values of
associated carrying charges and ongoing replenishment costs.

Dyer, Edmunds, Butler and Jia (1997) applied utility theory to the disposal of fifty
metric tons of surplus weapons-grade plutonium, an important decision faced by the U.S.
Department of Energy. The authors considered such issues as cost, nonproliferation and

an assortment of environmental, health and safety factors. Disposal alternatives such as
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immobilization, “borehole” (direct disposal) and the use of plutonium to create nuclear

reactor fuel were examined.

2.3.3 "Strict" Disposal - Stochastic Usage

Rosenfield (1989) was the initial researcher to study the problem of excess stock
disposal, given stochastic usage. The number of units demanded per "demand episode"
was assumed to follow a Poisson distribution. While he assumed no stockouts and no
additions to inventory, the author did consider such factors as the immediate salvage
value of surplus unit disposal, holding costs resulting from carried items, and the ultimate
sales value of surplus stock. He applied his methodology to an actual distributor of
durable goods faced with excessive amounts of slow-moving items. The model showed
that substantial savings could be earned by the judicious disposal of surplus stock.
Rosenfield also examined the effect of inventory perishability on the excess stock
disposal decision. He obtained closed-form results for the cases of complete (all-units)
perishability at random or known times, and for individual item perishability at random
times.

In a later paper, Rosenfield (1992) showed the optimality of a myopic policy when
disposing excess stock. Assuming that the same disposal opportunity is available at any
subsequent time and given Poisson demand, the optimum threshold remains the same.
Notwithstanding the opportunities to change one's mind in the future, one still disposes
the same number of items. Stulman (1989) also found an expression for the optimal

retention quantity given probabilistic (Poisson) usage.
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Hill, Giard and Mabert (1989) analyzed service parts inventory retention levels in

a Fortune 100 company. They developed an integrated, menu-driven, database decision
support system (DSS) which permitted the forecasting of future demand and the
determination of optimal retention stocks. The authors permitted disposal to occur
immediately, or at the "product termination date”. The latter time was established by
marketing as the period after which no parts required for the specific product were to be
kept in stock. Various components such as both tax savings and after-tax revenue of
surplus unit disposal (either immediately, or at the termination date) and after-tax back-
ordering and carrying costs were included in their model. The Fortune 100 enterprise
examined by the researchers had an original investment of $50 million in service parts
inventories. Over a two-year period, the organization was able, with help of the analytical
model, to dispose $13 million worth of service parts. This resulted in a tax savings of

approximately $6 million.

2.3.4 Acquisition and Disposal Models

Now our attention shall turn to a consideration of those analytical approaches
combining the acquisition and disposal decisions. We note that the disposal decision now
consists of the quantity of excess items to dispose, as well as the timing of disposals.

Fukuda (1961) was perhaps the first to jointly consider acquisition and disposal
decisions. He examined ordering and disposal policies in a multiechelon, multiperiod
inventory environment. Considering such details as ordering costs, disposal values,

shortage penalties and holding costs, he was able to determine optimal policies for the
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planning horizon. Essentially, the decision made at the beginning of each time period
was always one of the following: an order of a certain amount is placed, a given quantity
is disposed, or no ordering or disposal choice is made (the "do nothing" alternative).

Rothkopf and Fromovitz (1968) discussed the rental of container units, and the
decision as to when to return the container to the supplier. They considered a commodity,
purchased in bulk using containers that must be rented. Rental fees for the container stop
when the container is returned. However, returning the container (to terminate the rental
charges) requires discarding unused contents. Under what circumstances, therefore,
ought the container to be returned? The authors analyzed constant and exponentially
distributed demand sizes, as well as the discounting of future costs. They further
considered the decision as to the size of the container to rent.

Teisberg (1981) illustrated a model to guide the ongoing acquisitions and
disposals (releases) of the U.S. strategic petroleum reserve. He developed a multi-period,
stochastic dynamic programming tool to analyze this situation, incorporating potential
"states" of the oil market in a given time period. His methodology is from a rather
"economics" viewpoint as he considered "consumer surplus” and the supply and demand
functions for oil in both a domestic and world context. For each entering stockpile size
and each possible oil market state, and using the present value of all relevant costs, he
was able to determine the optimal stockpile acquisition or release rates for a specific time
period.

Models treating the maintenance and replacement of equipment have been

examined in the literature. These models, although examining an "acquisition and
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disposal” scenario, consider a varied set of costs when making appropriate decisions.
Maintenance charges, operating costs, lease costs, license fees and road use expenditures
are a few of the many parameters considered. Furthermore, these approaches often
examine the timing of equipment disposal, rather than how many units of excess stock
ought to be disposed. Models often use the shortest path method to determine when to
procure or dispose an expensive piece of equipment (Eppen, Gould and Schmidt (1993)
contain a description of this methodology for the equipment replacement problem).

Waddell (1983) used this methodology to analyze the replacement of highway
trucks within the Phillips Petroleum Company. Annuals savings of $90,000 were
reported due to the implementation of his approach. Olorunniwo (1992) examined
several issues surrounding the maintenance of equipment (e.g. when should maintenance
be performed, and of what type (corrective, preventive, overhaul) ought it to be).
Adopting an integer programming methodology, Rajagopalan and Soteriou (1994) treated
equipment procurement as a "capacity addition". Due to breakdowns caused by physical
deterioration and technological obsolescence, the effective capacity of a piece of

equipment may diminish over time.

2.3.5 Quantity Discount and Disposal Models

An additional class of models in which acquisition and disposal decisions are
combined involves those approaches featuring quantity discounts and disposals. An
important type of quantity discount treated in the literature concerns "all-unit” structures

(see Johnson and Montgomery (1974) or Silver, Pyke and Peterson (1998) for a treatment
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of their effects on inventory management and control). An all-units discount, as opposed
to an incremental one, offers the reduced cost on all procured units. Without loss of
generality, one can assume a situation in which two unit prices are possible (c, at the
lower quantity, and c, at the larger quantity, where ¢, <c¢,). In order to take advantage of
the discount, a certain number of units, Q,, must be purchased.

Sethi (1984) proposed certain situations in which it may be better to purchase the
larger number of units (Q,) at the lower unit price, then dispose of a given quantity (even
if there exists a cost in making such disposals). Jucker and Rosenblatt (1985) extended
the work of Sethi. They evaluated the disposal of excess stock in a quantity discount
context, for a single-period situation. They determined a range (Q, < Q < Q,) just before
the breakpoint, Q,, such that it would be better for the purchaser to order the larger
quantity. Jucker and Rosenblatt also discuss the implication of probabilistic demand in
this quantity discount - disposal decision. For stochastic usage, the purchaser will always
wait until the end of the period to dispose excess units. This occurs due to the relative
uncertainty surrounding total demand and since, in the single-period newsvendor
formulation, the period is assumed to be so short in duration that holding costs may be
ignored. In the deterministic case, the purchaser is indifferent as to the time of disposal.

In an effort to determine optimal procurement quantities when faced with all-units
price discounts, Gupta (1988) developed upper bounds on the total annual relevant costs.
He determined a relation which a specific price level must satisfy in order to yield the
optimal procurement quantity. Should the price violate that relation, then it could be

ignored from further consideration. This greatly reduced the computational effort
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required to find the best solution.

Arcelus and Rowcroft (1991) examincd the integration of purchasing and stock-
control policies in the presence of secondary markets, a rather important practical
problem which has received little attention in the academic literature. They considered
both quantity and iicight-rate discounts with the possibility of disposals. Their research
allowed a price-dependent (downward-sloping) demand function. They assumed that
there exists only one price break. Firms have the option of taking advantage of a larger
quantity purchase, at lower unit costs. Since a constant "markup" is applied to purchase
cost (to produce retail price), a lower unit cost will generate higher demand for the
product. Arcelus and Rowcroft considered purchasing, ordering and holding costs. They
derived the net profit resulting from either taking advantage of the quantity discount, or
ordering the smaller quantity. Sensitivity analysis was performed to observe the effects
of the various model parameters on resulting profit. A later article (1992) by the same
authors discussed multiple price breaks. For this problem scenario, a computationally
efficient, simple-to-use, two-stage algorithm was developed. First, one derived the
solution for the generalized all-units discount structure, when disposals are not allowed.
Then, the disposal decision was incorporated into the model. The profit or return on

investment (ROI) of following each strategy was determined.

2.4 Inventory Models

The literature on inventory modelling is expansive. Porteus (1990) offered an

excellent review of various stochastic topics and methodologies discussed in this vital
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OM area. (A precise treatment on several stochastic issues is given by Ross (1993)).

Heyvaert and Hurt (1956), analyzing the inventory management of slow-moving
items, used a Poisson distribution to model item usage. They attempted to maximize the
"customer’s satisfaction", the ratio of the number of items delivered to the number
requested.

Scarf (1960) considered the dynamic inventory problem. Holding and shortage
costs were charged at the end of every period, and one attempted to minimize the
expectation of the discounted value of all costs. Azoury (1985) commented that most
dynamic inventory models with stochastic usage make the assumption that the underlying
demand distribution is known with certainty. Suggesting that some decision-makers may
have considerable uncertainty regarding the nature of the distribution of demand, he
proposed a Bayesian formulation to this problem.

Hadley and Whitin (1961) proposed an inventory system that is only reviewed at
discrete, equally spaced intervals of time. They considered review, procurement, storage
and stockout costs while assuming that the mean rate of demand does not change with
time. A later article by the same authors (1962) allowed demand to change with time,
although demands in each period were assumed to be independent.

Kaplan (1970) analyzed a single-product problem wherein lead time is a discreie
random variable with a known distribution. Veinott (1965) described a multi-product
problem with a fixed lead time. A general demand process (no stationarity, no
independence assumptions) was used in his analysis. He proposed sufficient conditions

that the optimal policy must satisfy. Naddor (1975) developed optimal solutions and
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heunistic decision rules for single and muiti-item inventory systems. He allowed
uncertainty with respect to product demand and lead time.

Zipkin (1986) evaluated the cost performance of inventory systems under the
conditions of random lead time and demands. He allowed all stockouts to be
backordered. Vinson (1972) claimed that substantial losses can result if we ignore lead
time unreliability. This factor can be more important in determining inventory cost
behavior than either mean lead time, or the vanability of demand during lead time.

A procurement strategy we shall analyze in our modelling efforts consists in
solely considering only one phase in the project, namely construction phase requirements.
This shall help us determine the efficacy of combining construction phase and ongoing
phase decisions. There has been considerable research in so-called "single-period"
models.

Ward, Chapman and Klein (1991) claimed that one of the difficulties with
theoretical models is that often they cannot be used in a given practical context. The
authors, using an approximate, discrete specification of demand, illustrated a practical
approach for obtaining solutions to the newsvendor problem. Lau (1980) considered two
alternative optimization objectives for this problem: maximizing expected utility, or
maximizing the probability of achieving a budgeted profit.

In specifying the underlying demand distribution for the newsvendor problem,
Shore (1986) did not require any assumptions as to the form of the distribution. His
approximate sclutions, however, required that one specify the first three or four moments

of the distribution. Recognizing that demand may not be solely an exogenous variable,
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Moon and Choi (1995) considered the situation in which demand depends upon the
inventory position. As inventory falls, some potential customers may choose to go
elsewhere (in the hopes of greater selection). Like Shore, the authors did not make any
distributional assumptions; they only required that the first two moments of a distribution
are known.

"Lump-sum" penalty costs represent an important issue within single-period
inventory problems. Beliman, Glicksberg and Gross (1955) were perhaps the first to
consider these types of penalty costs. Examining a single commodity, finite horizon,
periodic-review inventory problem, Aneja and Noori (1987) considered both a fixed and
variable component in stockout costs. For all nonincreasing demand density functions,
the optimal approach is shown to follow an "order-up-to" policy.

The perishability inventory area is related to the newsvendor problem. In this
former problem, products become worthless after a specific (perhaps known) time.
Nahmias (1982) offered an exceptional review of perishable inventory theory. He
considers both fixed and random lifetimes, as well as deterministic and stochastic demand
for either single or multiple product models. Nahmias (1978) assumed zero lead time and
backlogging of all unsatisfied demand. He evaluated the effect of the fixed ordering cost
on the nature of the optimal ordering policy.

Nose, Ishii and Nishida (1984) examined perishable inventory management under
two different selling prices and two different lead times. Allowing the commodity to
possess a fixed-life perishability, they developed optimal ordering policies for all cases.

Nadakumar and Morton (1993) also examined the fixed-life perishability problem. They
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derived efficient "near-myopic" bounds on the order quantities, and then use these bounds
to suggest some good heuristics.

Barbosa and Friedman (1981) describe the finite-time horizon inventory lot-size
model. They determine the optimal replenishment schedule when examining a single
commodity, assuming no backlogs and no lead time. A model to derive optimal order
quantities for a finite horizon, multi-item inventory system was prescribed by Mehrez and
Ben-Arieh (1991). They allowed demand to be normally distributed and adopted a goal
programming, mixed-integer technique to solve the problem.

Chand (1982) considered the situation arising in a production shop in which the
product would be discontinued or replaced after a certain (known) number of periods.
Further, he extended his algorithm to deal with non-constant demand rates. Goyal, Morin
and Nebebe (1992) suggested a replenishment policy for an inventory item that displays a
linearly increasing demand rate over a finite time horizon.

Morton and Pentico (1995) tested four heuristics against a stochastic dynamic
programming optimal solution for a finite horizon, nonstationary stochastic inventory
problem. Almost 1,000 test problems were examined. The best of the heuristics
averaged only 0.02% above the optimal solution.

The nature of the underlying product demand has received attention in the
literature. Using a continuous-time discrete-state dynamic program, Song and Zipkin
(1993) considered inventory control within a fluctuating demand environment. Their
model allowed two state variables (inventory position, state of the world). Smith (1977)

analyzed the problem of specifying the timing and sizing of all production runs required
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to satisfy all future demand. He explored the situation in which the demand rate is
exponentially decreasing. Brosseau (1982) also investigated the optimal number and
timing of future replenishments, but uses a demand rate that is linearly decreasing.

Silver (1978) examined the timing and sizing of replenishments for an item
displaying time-varying demand. This demand was assumed to be probabilistic, with an
average value that varies considerably over time. Due to the complexities of developing
an explicit optimization model, a heuristic was offered.

Examining dependent period-by-period demands, Johnson and Thompson (1975)
showed the optimality of myopic inventory policies. They assumed proportional holding
and shortage costs, no fixed ordering costs, and zero lead time. Heyman and Sobel
(1982) developed a two-vector Markov decision process to examine the dependent
demand inventory problem. The vectors represented the on-hand inventory at the
beginning of the period and the previous period’s demand. Miller (1986) considered
linear holding, shortage and ordering costs in his dependent demand model. Average

demand was described by an exponential smoothing expression.
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3. ONGOING PHASE ANALYSIS

Figure 5 illustrates the respective decisions encountered throughout the
construction and operation of the facility. We shall restrict our attention, for the time
being, to those aspects directly related to ongoing phase replenishments.

Our analysis will feature deterministic, level usage of this expensive, important
item. (We illustrate in Appendix B the equivalence of our cost expressions under both
deterministic, level usage and probabilistic (Poisson) usage. Moreover, the case of
deterministic, time-varying usage will be treated as a model extension in Chapter 8).

A vital issue involves the determination of the optimal (ie. least-cost)
replenishment quantity in the ongoing phase. We represent a particular replenishment
amount by the variable Q, with the optimal quantity being denoted by Q,. In addition, the
following parameters are used in evaluating the costs of replenishments in the ongoing
phase (for ease of reference, a glossary of notation is provided in Appendix A):

Fixed cost of acquisition

Continuous discount rate

Annual usage rate

“Out-of-pocket” inventory carrying charges, expressed in $ per unit of

inventory per unit time
Unit acquisition cost

TOR/R A

<

Note that we use a constant carrying charge (k) per unit of inventory per unit time.
Alternatively, we could have used the acquisition cost of the item (v,) multiplied by an
appropriate annual carrying cost percentage (often referred to as “r”) to derive the holding

costs. However, (as we shall see later), unit acquisition costs in the ongoing phase are
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higher than those in the construction phase. Had we used the carrying cost percentage
approach, this would have produced different holding costs for the same item in either
phase! To be more realistic, we decided to use the parameter  for our carrying charges.

The continuous discount rate, @, includes the firm’s cost of capital (the so-called
opportunity cost). A further purpose of the discount rate, in our study, is to “bring all
costs back” to a specific time, so that the present value of relevant costs may be
determined. The holding cost parameter 4 includes out-of-pocket expenses such as those
costs associated with running a warehouse, insurance, taxes, and the costs of any special
storage requirements.

Operational usage of this item occurs in discrete amounts, with one unit being
used every 1/D, time units. Consequently, the usage pattern portrayed in Figure 5
involves an infinite series of “staircases”. Vertical segments of this “step-wise” pattern
occur when an item is used and, thus, on-hand inventory drops by one unit. Since usage
is constant and known under this deterministic, level pattern, we propose that the receipt
of new replenishments (of size Q,) can be timed so as to arrive precisely when a unit is
used. As a result, the top of each step-wise cycle comprises Q,-1 units (Q, units are
received just as one unit is used). Modelling replenishments and ongoing usage in such a
way also allows a time interval of 1/D, time units (prior to the receipt of an order) in
which on-hand inventory is zero.

We now illustrate the procedures involved in developing an analytical expression
for the present value of this infinite step-wise pattern of ongoing phase replenishments.

Our approach is similar to that found in Hadley (1964). We shall let Z(Q) denote the
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present value of an infinite series of replenishments of size Q.

Replenishments of size Q are received every Q/D, time units. Consequently, we
incur an A+Qv, charge each time a replenishment is received. Carrying charges are also
incurred throughout the step-wise pattern. In an effort to accurately model ongoing phase
costs, we will continuously discount these carrying charges. Hadley and Whitin (1963)
and Gurnani (1983) offer a discussion of the continuous discounting of these costs.

We recognize that one unit is carried, in a particular step-wise cycle, from time 0

to time 1/D,. The continuously discounted carrying charges of this unit, then, are:

e %dt

X~
o’\zbl—

This is evaluated as:

Another unit is carried from time 0 to time 2/D,. In a similar fashion to the

analysis depicted above, its carrying charges are:

2

D,,
h wdt
{ e
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which is evaluated as:

Finally, one unit is carried from time 0 to time (Q-1)/D,. The evaluation of the

continuously discounted carrying charges for this unit yields:

-(Q-Da
| e D,
hl= -
a a

Letting / be an index variable, we can represent the total (out-of-pocket) inventory

carrying charges in one cycle as:

l.'u
e D 3.1)

b

1
j=1 @

Ignoring, for the moment, the parameter 4 and pulling out of the summation any

terms which are independent of j, we obtain the following:

L
o-1 15,7, (3.2)
a @ ,-=l
We may write (3.2) as:
-a
D. _a -2 «Q-2a
g:l—e (1+eD"+eD”+ + e 0 (3:3)

a a
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Recognizing that the term in parentheses in (3.3) is equivalent to:

where

‘_a_( (Q-1a
D D
-1 e |1 -e o
Ao
o. a o (3.4)
D
] -e 7

The total replenishment cost incurred in one step-wise cycle then can be written

1( -(@-a

D D

-1 Al - .

A+Qv0+hQa —ea — (3.5)
l 1 -e

Since each replenishment cycle is separated by O/D, time units, we can use the

following expression to obtain the present value of this infinite stream of costs (see

Silver, Pyke and Peterson (1998) and Trippi and Lewin (1977) for an analysis of the

present value of costs in inventory systems). To provide notational simplicity, we now

define a “as /D, and h "as h/a.
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A+ Qv+ h’[Q -1 - e-u'(l - e-(Q-na]]
o (3.6)
) L4

[ - e

2Q) =

Although (3.6) provides an accurate depiction of the present value of a series of
inventory cycles associated with replenishments of size (, we can make the expression
somewhat less cumbersome. Algebraic manipulation yields:

l-e® + e'“/(l —e @-ha)

A+ Q(v.+h") [-¢ @

2Q) = — - A (3.7

In Appendix B, we illustrate that the same functional form of Z(Q) is obtained
under Poisson usage. Hence, adopting either a deterministic, level usage pattern (with
annual rate D, units) or a Poisson one (with an annual usage rate of 4 units) will lead to
the same results for the present value of all future costs. We are only required, thus, to
perform complete numerical analyses with one of the usage patterns. We shall use
deterministic, level usage.

In order to adopt the optimal replenishment strategy in the ongoing phase, we
must select the integer Q that minimizes Z(Q). Since Q is evaluated at discrete points, we

must use the method of “differencing” to find the best Q (we shall denote this optimal
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replenishment quantity by Q,). In other words, we need to find the smallest integer O
such that 4Z(Q) = Z(Q+1) - Z(Q) > 0. This corresponds to the first place where the Z(Q)
function begins to “turn up”. Pursuant to finding Q, through differencing is the notion
that the function in question be convex. We must be certain that once the function begins
to increase, it will continue to increase. Convexity also implies that the function reaches
one (and only one) minimum point. Appendix C offers a proof that Z(Q) is indeed
convex.

From (3.7), we have:

A+ (Q+1)v,+h") A + Qv +h")
- >
1 - e~(Q~I)a' | - ¢ @

0 (3.8)

AZQ) =

Using basic algebra to write (3.8) under a common denominator, and then

multiplying both sides of the inequality by that common denominator yields:

[l ) e‘Qﬂ'] [A . (Q+])(Vo+h/)} _ [l _ e'((_)-l}(x' [A . Q(V,)*‘h/)] >0

Expanding terms and simplifying the result gives:

v« h - de -Qu’ O, +h e “Ca -ve o poe R, o 1@ 1 «Q(v, +h e “@-he 5

Dividing through by v, and then multiplying all terms by ¢* gives:

/ / / / ’ ! !
e eQu/_i-Q-ﬂ-l-’Lﬁe @ gee D 0 5 g (3.9)

v o Vo Vo VO Va Vo

This may be simplified as:
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Equation (3.10) can be written as:

eQ"(Hh—/] >[ - e

vO

h/
1= (3.11)
\’0
which becomes:

ol )
. 1Y 1%
e > 1 + : 2 (3.12)

Thus, equation (3.12) is the nonlinear equation that the best O, Q_, must satisfy.
One simply finds the first (ie. smallest) integer Q such that the left-hand side of (3.12)
exceeds the right-hand side. The fact that Q appears on both sides of the above inequality
does not present us with serious problems. We have shown (see Appendix D) that the
Economic Order Quantity (EOQ) is often a good place at which to initiate the process of

finding Q,. The EOQ is given as follows:

24D
EOQ = 2
h + av,

Consequently, we are not required to search individual Q’s from O=1, 2, and so
on until we find the smallest Q such that (3.12) is satisfied. This limits our search

procedure by allowing us to quickly detect the optimal replenishment quantity in the
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ongoing phase.

Numerical Example:

Consider the following parameter values:

A=3250

D, = 20 units per year

h = $13 per unit of inventory per year

a=0.10

v, =$190

Using equation (3.12) gives us the following values for the inequality:

O = 16 has left-hand side = 1.08328 and right-hand side = 1.08369.

O = 17 has lefi-hand side = 1.08871 and right-hand side = 1.08868.

Thus, Q, = 17 units and Z(Q,) = $43761.42.

The value given by the EOQ expression is 17.68, which is very close to (),
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4. DISPOSAL DECISIONS

We shall now address those inventory decisions encountered at the conclusion of
the project’s construction phase. As we illustrated in Figure 5 (see page 44), a critical
decision involves determining the optimal number of units to dispose (or retain for
ongoing phase usage), given a specific quantity of on-hand surplus upon completion of
the construction phase. We shall examine the case of constant salvage values in the
initial section of this chapter. Later sections will be devoted to various types of non-
constant salvage value functions.

We shall use the following notation in our analysis:
per unit salvage value for surplus disposals
on-hand surplus (if any) upon completion of project construction phase

number of units retained
number of units disposed

FxT®

To evaluate the present value of concluding the construction phase with / units
and disposing W of them (to leave / - W, or M units on-hand), we must consider the
revenue generated from disposals as well as the costs of carrying retained units in the
“transition” period (prior to ongoing phase replenishments). When these retained units
have all been used, the replenishment pattern (with O, units bought in each cycle) is
inaugurated. Consequently, we must also include all costs associated with an infinite
stream of ongoing phase replenishments (of size 0,). This approach is similar to that
prescribed in Stulman (1989), although the author halts his transition period when on-

hand inventory reaches the top of its normal operating range (ie. 0,). In our analysis, the
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transition period concludes when the M units are all used (ie. when on-hand inventory
reaches zero).

When the number of units disposed increases, higher revenues result (assuming a
strictly positive g). Carrying charges in the “transition” period (prior to ongoing phase
replenishments) are reduced since less units are then carried. However, the future
replenishment pattern is inaugurated earlier. Since its costs (Z(Q,)) are incurred sooner,

the present value of these costs (when brought back to the conclusion of the construction

phase) increases.

4.1 Constant Salvage Values

In this case, disposing W units earns a revenue of gi¥. Since we wish to evaluate
the present value of decisions as of the conclusion of the construction phase and because
disposals occur immediately upon project completion, gl represents the present value of

disposal revenue.
Carrying costs in the transition period are continuously discounted. Using the
analysis discussed in Chapter 3, we hold one unit for 1/D, time units, another unit for

2/D, time units, and so on until the MtA unit, which is held for M/D, time units. The

present value of these carrying charges, then, are:

_  -Ma
M- e L (4.1)
I -e™®
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As described in Chapter 3, we can set the replenishments in the ongoing phase to
arrive exactly when required since item usage is known and constant. Hence, the
inauguration of the future replenishment pattern is “offset” by (M+1)/D, time units (we
have a time interval of 1/D, time units in which on-hand inventory is zero, prior to the
receipt of the initial replenishment in the ongoing phase).

The present value of the future replenishment pattern, when brought back to the

conclusion of the construction phase, is:

e ‘(M~I)Q/(Z(Qo)) (4.2)

Combining these various revenue and cost components yields the present value of

concluding the construction phase with / units and disposing ¥ of them:
_ o Md
M-e* l-e™ , ]
1 -e™®

Since W = [ - M, we may write (4.3) as:

PUMD) = -gW + k' ez (43)

- 7
- e Ma

PV(M) = -gl + gM + h' [M - e'“[ LI ]] + e MNNZ)  (4.4)

] -e™®

This is the present value of retaining M units upon completion of the construction phase,

given an initial surplus of / units.

Since retention quantities can only assume integer values, we will use the method

of differencing to find the optimal retention amount (ie. the value of M, denoted by M,
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which minimizes PV(M)). In order to determine an analytical expression for the value.of
M, we will need to show (as we did in finding the best ongoing phase replenishment
quantity in Chapter 3) that the function under question is convex. To do this, we will
need to show that 4°PV(M) = PV(M+2) + PV(M) - 2PV(M+1) is strictly positive.

Expansion of (4.4) gives:

hle @ h'le (M- ,
PVM) = -gl +gM +h'M - + -+ e MNNZ0) (4.5
l -e™® I -e™®

Note that the first and fourth terms of this expression are independent of M. As
well, the second and third terms are linear with respect to M. Consequently, these terms
disappear when determining 4°PV(M).

Evaluating 4°PV(M) gives:

- . ’ (M- ‘ - Na’
[e (M-3)a + e (M-a' _ 2e (M+a

a

/
[_”_ + Z(Q,)

!
1 -e
which can be expressed as:

- - / - - !
[e (M- + e (M-a

l 5 - e -(M-2)a’ (4.6)

{h_ + Z(Q,)

I -e™®

Obviously, the terms within the first set of squared brackets are strictly positive.
In addition, the expression within the second set of squared brackets is strictly positive.
(We know that €™ is convex for x > 0, so the arithmetic mean of two points (;,/) along the

¢” function, less the value of a point in between (&), will be positive). Thus, PV(M) is

convex, implying that the function reaches a minimum point.
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In developing an analytical expression for A", we need to find the first (ie.
smallest) integer M such that APV(M) = PV(M+1) - PV(M) > 0.

Evaluating the first difference of (4.5), and setting it strictly positive, yields:

h—/(l -e -a’)] -e _(M‘”a/(Z(QO)(l - e -u’)) >0 4.7)

g +h!- e~(M-I)a’[
| -e™
which may be expressed as:
e ez - e <g e h’ (4.8)

Solving for M in (4.8) gives the following inequality:

g +h'
2@ - e )+ n’

-(M+1)a' < In

which becomes:

-1 (4.9)

This expression is used to find the optimal retention quantity. Since M only
occurs on one side of the ineauality, the procedure to find the best value of M is quite
straight-forward. One simply calculates, from the parameter values given, the right-hand
side of (4.9). The smallest integer greater than or equal to that right-hand side becomes
M.

Determining appropriate disposal (or retention) quantities depends on the amount

of on-hand inventory, /, at the conclusion of the construction phase and the value of M .
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The optimal policy is to retain any surplus inventory up to and including the quantity M".

One would never want to retain morc than M" unpits for ongoing phase usage. Although

the present value of the future inventory cycles would be lessened by higher amounts of
M, these cost savings would be eroded by additional carrying charges and foregone
salvage revenue. Should /be less than or equal to M", no stock is disposed (all surplus
units are retained). For any values of inventory greater than M", one disposes the excess
above M (and, thus, retains M units). Thus, we may express the optimal disposal
quantity decision rules, for the case of constant salvage values, as:
Ifl<sM,W=0
IfI>M W=I-M
Figure 6 expresses these decision rules in graphical format. Disposal of surplus units
begins when inventory values exceed the optimal retention quantity.
Numerical example:
Let us expand on the one provided in Chapter 3. Recall that we had:
Z(Q,) = 343761.42
a=0.10
D, = 20 units per year
h = $13 per unit of inventory per year
Let us introduce a value of $35 per unit for g.
Evaluating (4.9) shows that M = 149. Consequently, we would only begin to
dispose surplus units when inventory values exceeded 149. If the on-hand inventory after

the construction phase was, say, 160 units, then our optimal materials management policy

would be to dispose 11 units.
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We present, in Appendix E, a proof that the expression within the logarithmic
argument of (4.9) is always > |. Thus, the logarithmic value will always be defined, and
the resulting optimal retention quasitities will be positive. Appendix F illustrates that,
when salvage values are equivalent to ongoing phase unit acquisition costs, the optimal
retention quantity becomes Q,-1. This implies that when one can salvage a unit for as
much as one pays for it, the best policy is to put the inventory into the same situation as

immediately subsequent to the receipt of an order.

4.2 Marginally Decreasing Salvage Values

As far as we have been able to determine, previous excess stock disposal research
has always assumed constant salvage values. We now explore the situation in which a
firm finds itself unable to earn constant marginal salvage values as total disposals
increase. In this scenario, a certain salvage value (g,) is earned for a specific number of
units disposed, followed by a lower salvage value (g,) for units disposed beyond that
amount (up to a certain limit). An even lower salvage value (g;) is obtained for any
disposals beyond the most allowed under g,, etc.

We can define the following model parameters:

n: number of different unit salvage values

g: marginal salvage value earned for ith “group” of disposals (i = 1,2,...,n)

N;: maximum number of units that can be disposed for $g; per unit (i =
1,2,...,n)

M;":  the best remaining stock level (after possible disposal) when there is a
marginal salvage value g, (i = 1,2,...,n)

The value M;" is calculated by replacing g with g, in (4.9). We thus have that M,"
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is the smallest integer M such that:

ZION - e )+ n!
M> _l/m @) ) -1 (4.10)

a g +h'

Since g, >g,>... >g, itfollows that M," < M," <... < M,". Strict inequalities
do not necessarily apply due to the integer requirement on M,".

For disposals at the largest salvage value (g,), the disposal decision is determined
relatively easily. For any / (on-hand inventory prior to any disposal decision) s M,",

W’ =0 (in other words, there is no disposal). Note that this follows a similar approach to
the one used in the constant salvage value case. Recall that in that situation, no units
were disposed if  was < M.

For the marginally decreasing salvage value scenario, we know that the most we
can dispose and still earn g, per unit is N, units. Consequently, when / exceeds M,", we
will dispose at g, per unit up until the point at which / = M," + N,. Thus, for / such that
M, <I<M,+N, W =1-M, (we dispose the excess above M,").

While disposing at g, per unit, retained inventory remains at M,”. When we reach
the maximum possible disposals at g,, we know that / = M," (retained stock) + N,
(disposed stock). From the definition of M, we cannot inaugurate disposals at g, until
the retained inventory exceeds M,". Disposing N, units implies that retained inventory
equals /- N,. Thus, until /- N, > M,", we will only dispose the N, units (at g, per unit).
Once we initially reach the maximum possible disposals at g, (when / = M," + N,), we

will stay at a disposal quantity of N, units (until / = M," + N,). As a result, total



62

disposals remain at N, units for a “distance” M, - M,".

We will dispose excess stock at g, per unit for /such that M," + N, <[ < M," +
N, + N,. Figure 7 displays a pictorial representation of the optimal disposal policies,
when facing diminishing marginal salvage values. We obtain an alternating pattern of
plateaus (no additional disposals are taking place) and ramps (additional disposals are
occurring at a certain g;). The plateau between the use of g; and g,,, is of width M,,," - M/*
(corresponding to the “distance” notion described in the previous paragraph). Ramps at a
certain g, continue for N, units. We note that there will be no plateau between two ramps
ifand only if M,,," = M".

Continuing our reasoning described above for determining optimal disposal

quantities for g, and g,, we can develop the following decision rules (we note that M," =0

and N, = 0):

PLATEAU : For M + }_N. <1< M +Y N, W =3} N,

Jsi Jjsi Jei

RAMP : For M{ + Y} N <I <M  +Y N +N, W' =1-M

i<i j<i

These decision rules allow a relatively straight-forward procedure in finding the
optimal disposal quantities. We begin by calculating, for a given marginally decreasing
salvage value function, each of the M,”’s. Then, for any on-hand inventory amount, we
can quickly determine whether that specific / value corresponds to a plateau or a ramp.
We can then ascertain the optimal disposal quantity, given that / value. We can use the

cost expressions outlined in Section 4.1 to obtain the present value of having a specific
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amount of on-hand inventory after the completion of the project’s construction phase, and
proceeding opiimally regarding any possible disposals.

Numerical Example:

Consider the following marginally decreasing salvage value function (ongoing
phase costs remain as outlined in prior numerical examples):

g,: $50 per unit N,: 40 units

g>: $35 per unit N,: 30 units

g;: $20 per unit N;: 40 units

g, $1 per unit N,: infinite (we receive $1 per unit for any disposals made

beyond 110 units)

Using equation (4.10) yields the following values for M,™:

M, 131

M,": 149

M,": 168

M, 195

For / < 131, we make no disposals. Disposals at g, per unit (ramp) occur until / =
M,"+ N, (131 +40 = 171). At that point, there is a plateau of width M,"- M," = 149 - 131
= 18 units. Thus, disposals at g, per unit are not begun until / exceeds 171 + 18 = 189. A
ramp at g, continues until /= 219. Then, there is a plateau of 19 units (M,’- M,"); that is,
until /=238. A ramp at g; occurs from /=238 to / = 278, after which there is a plateau

of 27 units (until /= 305). From that point onward, a ramp at g, continues indefinitely

(additional units are disposed for $1 each).



65
4.3 Increasing Salvage Values

We shall now provide an analytical treatment of optimal disposal decisions given
increasing salvage values. In this scenario, we suggest that per unit salvage values may
rise as additional units are disposed. A firm desiring to purchase a given number of units
on a surplus trade market may pay a higher unit price to a supplier that has the capability
of delivering the quantity of units required by the firm. This higher unit price is
beneficial to the buyer since purchasing from this supplier saves it the negotiation and
logistics hassles involved in procuring smaller quantities from several companies, as well
as providing transportation economies.

Our analytical models will allow salvage values to be increasing up to a point,
after which the marginal values will begin to decrease. This features recognizes that, in
practice, salvage values will not display this increasing behaviour forever. (In a
somewhat related perspective, Das (1984) derived economic order quantities in the
presence of price “premiums”, whereby unit acquisition prices increased as additional
units were purchased).

Increasing salvage values imply that g, < g.,, <... < g, (where m represents the

number of increasing salvage values). We will use the following notation in our analysis:

L;: minimum quantity of units which must be disposed to earn g; per unit
disposed

U: maximum quantity of units which can be disposed to earn g, per unit
disposed

These L, and U, values represent ranges over which a certain g; is valid. Thus, if

L,=11, U;=50and g, = $30, this would imply that, should total disposals be anywhere
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from 11 to 50 (inclusive), the firm would earn $30 on every unit disposed. Note that this
represents an “all-units” revenue function. This, then, is a vital difference between the
increasing and marginally decreasing salvage value functions. In the latter case, we used
an “incremental” revenue function. The firm obtained the particular salvage value only
on those units for which the range was valid.

The ranges for increasing salvage values obey the following restrictions:

L.,=U+1
L<U,

i

L =1

The analytical treatment in this section is perhaps the most complex of any in the
dissertation. Our findings, however, can be summarized by noting that since the “all-
units” revenue function is discontinuous, the graph of optimal disposal quantities may
show some discontinuities. Figure 8 illustrates a possible graph for this salvage value
case. Various notation for this graph will be described later.

We still have the “ramps” and “plateaus” (additional units are either disposed or
retained as inventory is increased) as described in earlier sections of this chapter.
However, in an effort to earn the larger revenue (on all units disposed) associated with a
higher per unit salvage value, it may become attractive (at certain inventory values) to
“jump up” to a higher plateau. Jumping up to the higher plateau implies, obviously, that
one must dispose the number of units required to earn the higher salvage value.

We shall now derive an expression for the inventory level at which it first

becomes attractive to jump from a plateau at L, (total disposals equal L,) to a plateau at L,
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(Wis L). We earn g, per unit disposed when at the L, plateau, and g; per unit disposed
when we jump to the L, plateau (g, < g). We will derive the smallest inventory level, /,
such that the present value of the costs associated with disposing L, units at g, (and
retaining / - L, units) is less than the present value of the costs associated with disposing
L, units at g, (and, thus, retaining / - L, units). This smallest inventory level shall be
noted by /P, (the indifference point in jumping from an L, plateau to an L, plateau).

Using our notation from earlier sections of this chapter, we wish to find the

smallest / such that:

) / Coddr-e -(-L)a’ L,
gl + WU - L) - e| ———— 1+ e 2(Q,) <
1 -e”
) Jd1 - o Lo’ ULy
_gkLk + h'\( - Lk) -e — || * e Z(Qo) (4.11)
1 -e®

Expansion of the terms in (4.11) and some algebraic simplification yields:

/
Lig kY + e-u-L,..na[ L z0)

<
| ~-e®

/
-L,(g;+h") + e“"‘*"’“(—-" -+ ZQ)

] -e®

(4.12)

Letting:
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we may write (4.12) as:
e -(Iol)a’el-,al(c) -e -(I’I)u’eLt“I(C) < Li(g’,-fh’) - Lk(gk+h’) (4.13)
Equation (4.13) can further be simplified as:

oD < Ligi+h)) - Li(g+h)

Lo La
Ry

(4.14)

Solving for / yields IP,;

/> 1 bt - o) 1 (4.15)

o' |L(g+h") - L (g,+h")

Thus, the smallest integer greater than or equal to the right-hand side of (4.15)
becomes the indifference point in jumping from a plateau at L, to a plateau at L. This
inventory level is the first place at which it becomes attractive to jump to the higher

plateau.

An important special case of (4.15) involves the situation in which we jump from
making no disposals to a certain L, plateau. With # =0, we have that L, =0 and g, = 0.

This changes the above expression in the following manner:

La'
1>_‘1£e—-1)—c -1 (4.16)
o L(g+h"

This inventory indifference point shall be noted by /P, (the inventory level at which it
first becomes attractive to move from making no disposals to disposing a certain L)).

We have thus far discussed situations in which optimal disposal decisions involve



70

Jjumping from plateau to plateau. There remains one additional inventory indiffercnce
point to examine. As shown in Figure 8, there may be situations in which disposals
involve a “ramp” at a certain g,, followed by moving to a higher plateau. Recall from our
earlier analysis in this chapter that disposals on a ramp occur when the retained inventory
equals M,”. As total inventory increases, additional units are disposed (total disposals
become / - M,’, while retained stock remains at M, units).

Thus, we need to determine the smallest inventory level at which it becomes
attractive to jump from a ramp with salvage value g, (we dispose / - M,” and retain M,") to
a plateau earning g; per unit disposed (L, units are disposed while / - L, are retained)
Pursuing our cost expressions used earlier, we may write this as;

1 - e‘(l~L,)a/ I
R U ] | RCRENE (PR

] -e™®

- -M,a o
g (U-M) « h\M, - e l_e_J < NZi0) @

Similar algebraic manipulation to that used earlier gives:

e o LERY - Mg - e

/ (4.18)
eL,a (C)

which becomes:

/
e La (C)

1>i1
/

el (4.19)
¢ L(g+h") - (I‘Mk.)(gk+h’) + e M 'l)u(c)
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The smallest integer greater than or equal to the right-hand side of (4.19)
represents the inventory point at which it first becomes less costly to jump from a ramp
involving salvage value g, (total disposals equal / - M,) to a plateau using (a higher)
salvage value g, (total disposals become L,). We shall denote this indifference point by
IP,,; (where the “r” signifies “‘ramp”).

A potentially troublesome feature of (4.19) is that the term / appears on both sides
of the inequality. Thus, the effort to find /P, is not as straight-forward as that used in
finding either /P, or IP,, (recall that in our earlier indifference points, / appeared on only
one side of the inequality). As a result, we are required to evaluate values of / until we
find the first / such that the inequality in (4.19) is satisfied. We know, however, that in
order for us to be on the ramp with salvage value g,, the retained stock must equal M,"
units. Since we are required to make at least L, disposals in order to earn g, per unit
disposed, total stock must be greater than M," + L, (retained + disposed). Since we
cannot dispose more than U, units at the g, salvage value, total inventory cannot exceed
M," + U, (retained + disposed). Consequently, total inventory (/) is bounded between
M, + L, (on the low side) and M," + U, (on the high side).

There is another feature of /P,; worth noting. As illustrated in Figure 9, we note
that the left-hand side (LHS) of the inequality in (4.18) is nonlinear with respect to / (it is
decreasing exponentially). The right-hand side (RHS) is linear with respect to / (as

inventory increases, the right-hand side decreases linearly). In addition, when /=0, the
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left-hand side is quite close to 1 (a ‘<< 1). Analyzing the right-hand side of this
expression, we nate a relatively large value of the denominator (due to the positive
exponential term). This implies that it is possible, when / = 0, for the right-hand side to
be much lower than 1. Sincc it is decreasing linearly from an intercept much lower than
1, it will intersect the left-hand side of (4.18) in two places. When the left-hand side of
(4.18) is smaller than its right-hand side (for a given /), this implies that it is attractive to
jump from the ramp with lower salvage value g, to a plateau involving L, disposals (but at
higher unit value, g)). However, when the left-hand side becomes greater than the right-
hand side of (4.18), the reverse holds true. It then becomes attractive to “jump back” to
the ramp. This suggests a rather counter-intuitive behaviour (ie. moving back to a lower
salvage value). But, we have been able to show in a detailed proof (see Appendix G) that

the “second” indifference point would occur when / exceeds M, + U,! Such an inventory

value is beyond the relevant range of consideration for the g, salvage value. As a result,
when applying our analytical models, we would never observe a situation in which we
would “jump back” to the lower salvage value. If it is attractive to jump to the higher
plateau (and earn g; per unit disposed) somewhere along the ramp, it will still be attractive
to do so at the end of the ramp (when / = M, + U)).

We shall now present an efficient algorithm for determining optimal disposal
quantities under the presence of increasing salvage values. As inventories on-hand at the
conclusion of the construction phase increase, we recognize that additional units can
either be retained or disposed. Thus, as we did with marginally decreasing salvage

values, our procedure shall establish #* as one “builds up” /.
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Obviously for /= 0, no units are available to be disposed. As a result, W' = 0.
Our initial step in this algorithm, consequently, is to determine at what inventory level we
will first find it attractive to make disposals. If we are currently disposing no units, then
we can either jump to a higher plateau (at some inventory level IP,), or we can begin a
ramp at the lowest increasing salvage value. We note that this ramp at g, would begin

when / exceeds M,” (ie. when/ > M, + 1). Thus, we initially find:
min (IPy, M, +1) Vi > | (4.20)

For example, if there were four increasing salvage values, then we would initially
determine /P,,, IP,; and /P,,. These values correspond to the inventory levels at which it
becomes attractive to jump up to a higher plateau (where we would dispose either L,, L,
or L, units). The value M," + 1 is the on-hand inventory level at which we would begin a
ramp with salvage value g, (we would dispose, in this case, / - M,” units).

The minimum value as found in (4.20) represents the on-hand inventory level at
which we start making disposals. For any inventory values less than the minimum in
(4.20), we would fail to dispose any of the surplus stock (ie. W = 0).

Suppose the minimum as given in (4.20) corresponds to a higher plateau (one of
the /P, values). Further, let /P, represent this minimum value (in other words, at
inventory level /P,,, we change from disposing 0 units to disposing L, at g, per unit). We
now are required to determine at what inventory level it would first become attractive to

jump to a higher plateau, or enter a ramp with salvage value g,. Thus, we need to find:

min (IP,, My +L,+1) Vi > k 4.21)
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The indifference points /P,, signify jumping from a plateau at W = L, to one at
which we dispose L, units. We would enter a ramp with salvage value g, when the on-
hand inventory, /, less any required disposals (L,) exceeded M,". Thus, we would start a
ramp at g, when/ > M," + L, + 1 (we dispose I - M, units). The minimum value as found

in (4.21) gives the inventory level at which we would begin making more than L, total

disposals.

Suppose that the minimum as established in (4.20) was M," + 1. Thus, we would
enter a ramp with salvage value g, We know, from our previous analysis in this section,
that somewhere along this ramp (ie. on or before reaching / = M )"+ U,), we will jump to

a higher plateau. Consequently, we need to find:

min ([P, ) Vi >1 (4.22)

The minimum value as given by the expression in (4.22) represents the on-hand inventory
level at which we leave the ramp with salvage value g,, jumping to a higher plateau (with
larger per unit salvage values).

As an extension to (4.22), suppose the M," + L, + | value represented the
minimum in (4.21). Then, we would enter a ramp with salvage value g,. The next step in

our procedure would be to determine:
min ([P, ) Vi > k (4.23)
Using expressions (4.20) through (4.23), one can efficiently determine the optimal

disposal quantity for any given level of on-hand inventory. We begin by establishing the

inventory level at which we would start making disposals. When we jump to a higher
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plateau, we determine if the next jump will be to an even higher plateau, or if we will
start a ramp at the current salvage value. If we ever find ourselves on a ramp, all we need
to do is determine at what inventory level it becomes attractive to jump to a higher
plateau (with larger per unit salvage values).

Two critical issues regarding this procedure ought to be discussed. One is that
should we jump from, say, zero disposals to making L, disposals, we will never find it
attractive to make disposals at any (increasing) salvage values k, where k < i. For
example, if we initially jumped to an L, plateau from zero disposals, we would never find
it attractive to make disposals for g, or g, per unit. This tends to reduce the
computational effort of our algorithm. Once a salvage value has been passed over, it can
be removed from consideration. We only need to consider higher salvage values than the
one currently under analysis.

A second point is that when we begin making disposals for g,, per unit, our
approach becomes somewhat more simplified. Since this is the highest increasing
salvage value, we are not required to use our earlier expressions [(4.20) through (4.23)].
Simply put, there are no higher salvage values to consider. We will initiate a ramp at g,
when /> M," + L, + 1. This ramp will conclude when / = M," + U, (retained stock plus
disposed units).

As explained at the outset of this section, we propose that the increasing salvage
value behaviour will not be observed indefinitely. Eventually, we will allow marginally
decreasing salvage values. Thus, once we conclude a ramp using the largest increasing

salvage value, we can adopt our earlier approach for marginally decreasing salvage
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values. Thatis, for /> M,," + U, there will be a plateau with total length corresponding
to the difference in M, values between the largest increasing (g,,) and largest marginally
decreasing salvage values (call it g,,,,). We then initiate a ramp using the highest
marginally decreasing salvage value. This ramp extends until we have disposed the
maximum possible number of units at g, , ,, after which the usual interchanging pattern of

plateaus and ramps continues.

Numerical Example:

Consider the following salvage value function. The first four salvage values
represent the increasing ones (ie. m = 4), while the latter four correspond to the
marginally decreasing salvage values. Values for various ongoing phase parameters are
identical to those used in earlier numerical examples (remember that a glossary of

notation is included in Appendix A).

Table 1
Numerical Example for Increasing Salvage Values
i g L |y N, M,
1 3 1 20 192
2 40 21 50 143
3 45 51 100 137
4 65 101 140 115
5 35 141 200 60 149
6 25 201 240 40 161
7 20 241 260 20 168
8 1 261 195

We initiate our procedure by determining /P, as well as M,". We have the
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fullowing values:

IP,,: 154 (*** minimum value ***)

IP,;: 164

IP,,: 169

M, 192

Thus, for / < 154, we fail to dispose any units. When / reaches 154, we begin
making disposals for g, per unit by jumping to the L, plateau (21 total disposals).

Our next step is to determine when we leave the L, plateau. We would begin a
ramp at g, when/ = M," + L, + 1. Furthermore, the IP,, values illustrate the specific
inventory levels at which we jump from a plateau at L, to a plateau at L. We have the
following results:

M," + L, + 1 =165 (*** minimum value ***)

IP,;: 170

P,,;: 172

Thus, we begin a ramp with salvage value g, when /= 165. Our next step
involves determining the inventory level at which it becomes attractive to jump from this
ramp (to a higher plateau). Using (4.19), we observe the following values for jumping

from the ramp at g, to a plateau involving L, total disposals:

For I=169: LHS of (4.19) = 169, RHS of (4.19) = 169.106
For /=170: LHS of (4.19) = 170, RHS of (4.19) = 169.992

Thus, when on-hand inventory at the conclusion of the construction phase equals 170, it
is attractive to jump from a ramp at g, to the L, plateau.
For the L, plateau, we observe the following values for (4.19) when / = 170:
I=170. LHS of (4.19) = 170, RHS of (4.19) = 170.459

The inequality involving a jump to the L, plateau is not satisfied when /=170. Asa
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result, the first movement from the ramp at g, occurs when we jump to the L ; plateau at
I1=170.

From the L; plateau, we will either enter a ramp with salvage value g,, or proceed
to a plateau involving total disposals of L, units. The inventory level at which it becomes
attractive to enter the ramp at g; is 189 (M;" + L, + 1), while determining the value for
IP,, yields the point at which we would move to the higher plateau. It turns out that /P,
equals 173, thus indicating that we will stay along the L, plateau for only a narrow
interval of inventory values (from /=170 to /= 173).

We are now making disposals for the highest increasing salvage value. Our
further analysis of optimal disposal decisions becomes quite straight-forward. A ramp
with salvage value g, begins when /= M," + L, + 1 (115+ 101 + 1 =217). Thus, for/ >
217, we dispose [ - M, = [ - 115 units. This ramp concludes when/=M," + U, =115+
140 = 255. Then, we initiate disposals on the marginally decreasing side. There is a
plateau of length 149 - 115 = 34 units. Thus, for / such that 255 < <255+ 34=289, W*
= 140. Then, a ramp using a salvage value of $35 per unit begins. The remainder of this
behaviour is similar to that described in our earlier numerical example for marginally
decreasing salvage values. Figure 10 illustrates the behavior of W* versus / for the

increasing salvage values of this numerical example.

We have now completed a critical chapter of this dissertation. The implication of
these findings is that, for any salvage value function (whether it involve constant or non-

constant values) and for any level of on-hand inventory, we can quickly determine the
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optimal disposal decision. We can also calculate the present value of the relevant costs of

this best decision. This capability will be crucial to our model development in Chapter 5.
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5. CONSTRUCTION PHASE DECISIONS

Having completed our analysis of disposal decisions as well as replenishment
strategies in the ongoing phase of the project, we will now examine construction phase
procurement decisions. Faced with uncertainty as to the total requirements of an item
during the construction phase, what quantity ought a materials manager to procure at the
outset of the project? This procurement decision shall reflect acquisition, holding and
shortage costs during the construction phase as well as the costs (as discussed in Chapter
4) of concluding construction with a specific amount of on-hand inventory, and
proceeding in an optimal fashion from thereon.

The following notation will be used in this chapter:

B, Fixed cost per stockout occasion

B, Penalty (expressed as a fraction of the unit value) per unit short
D, Total requirements in the construction phase

EPV'(D): Expected present value of all future costs associated with

concluding the construction phase with / units of inventory on-
hand, and proceeding in an optimal fashion from thereon (with
respect to disposal and ongoing phase replenishment decisions)
Q. Construction phase procurement quantity
Duration of construction phase (in years)
Unit acquisition cost in the construction phase
To reflect uncertainty with respect to total construction phase requirements, we
shall allow D, to follow a discrete probability distribution (where P, (D,) represents the
probability of observing a specific value of total requirements). Using a discrete

distribution, as opposed to a continuous one, reduces the effort involved in optimizing

this analytical model and also makes it easier for the practitioner to subjectively specify
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difference between the smooth and discrete patterns diminishes as an inventory cycle
increases in height. Total requirements in the construction portion of the project tend to
dominate annuai ongoing usage, so allowing requirements in the construction phase to
display the linear pattern will have only a minor, secondary effect. We were more
concerned with modelling the precise nature of item usage during the ongoing phase
(when annual usage rates were relatively lower); hence our use of the step-wise pattern
during that portion of our analysis.

We initialized our description of construction phase costs by using an
“‘approximate” approach. This approach allowed a more straightforward illustration of
cost function convexity. Later, we developed an “‘exact” approach. Sections of this

chapter will be devoted to each approach.

5.1 Approximate Approach

We now wish to determine the expected total costs for the entire project
(construction and ongoing phases) as a function of the quantity procured before
construction is initiated. We shall use the following notation:

ETCQ,): Expected total discounted costs, as a function of Q,

There are two important differences between how we determine ETC(Q,) in either
approach. The first difference consists in how we derive construction phase holding

costs. The approximate approach uses the average requirements in the construction

phase, EC , in its computation of holding costs. This average value is computed as
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follows (noting that n represents the number of different possible requirements in the
construction phase):

D, = _E(Di « Pp(D))

i=1

Under the exact approach, we explicitly recognize each separate requirements value, D,,
when computing holding costs.

The other major difference concerns the calculation of the present value of
stockout penalties. Under the approximate approach, we discount the stockout costs from
the end of the construction phase. With the exact approach, these stockout charges are
discounted from the specific moment at which they might occur.

As an aside, we note that these differences suggest that the construction phase
procurement quantity provided by the approximate approach is a lower bound on the
optimal quantity given by the exact approach. The approximate approach underestimates
the cost of a stockout by discounting this event from a point in time later than its
occurrence. Moreover, the approximate approach overpenalizes carrying charges. For
very large construction phase requirements, we recognize that smaller carrying charges
would actually be incurred than those given in the approximate approach (which uses
average construction phase requirements).

We shall now describe the various components of £7C(Q,) under the approximate

approach. The acquisition costs are simply:

Q.. (.1)
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Since there is only a single procurement opportunity during the construction phase, the
fixed cost of procurement (the “4” ierm) has been ignored.

The holding charges can be evaluated as:
h i F‘ g,
[| Q- Fefear (5.2)
0 [
A common table of integrals may be used to evaluate (5.2). It becomes:

DI AT
e ur,[_c_ + —l—] - —I-D (5.3)
a gl a’

The fixed costs per stockout occasion, B,, must be weighted by the probability of

a stockout, then discounted from the end of the construction phase. This gives:

-a 54
B,e ™ P(D>Q.)

The per unit stockout costs consist of an expediting premium (B,v,) in addition to
the normal unit acquisition costs (in order to satisfy construction phase usage, we must

bring in the number of units by which we are short). The present value of these costs is:

(1 +Bz)vc € e E (Dc_Qc) PD(Dc) (5.9)

D>Q.

The term:

Y D.-0,)P,D,)

DC>Q('

represents the expected number of units short.
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We must properly represent the present value of concluding the construction
phase with a given level of on-hand stock, and proceeding from thereon in an optimal
fashion with respect to disposal and ongoing phase replenishment decisions. Obviously,
if the total requirements in the construction phase exceeded the procurement quantity (e,
a stockout occurred), then we would expedite the number of units by which we were
short, thus beginning the ongoing phase with 0 units on-hand. No units are available for
disposal; hence, we would simply bring in Q, units (this replenishment would be timed so

as to arrive when the next usage occurs). The expected present value of this is:
e “EPV*(0) P(D.2Q.) (5.6)

Suppose, however, that the construction phase concluded with / units on-hand,
where /> 0. This could only happen when the procurement quantity exceeded total
construction phase requirements (ie. / = Q. - D, > 0). The expected present value of these

costs becomes:

e Y EPV'(Q.-D,)P,D,) 5.7)
Dr<Qc

Combining expressions (5.1) and (5.3 - 5.7) yields an expression for the entire
project costs as a function of the initial procurement quantity.

In order to provide a search method for determining the optimal procurement

quantity (as will be described later), we must show that ETC(Q,) is convex within a range

between two adjacent requirements values. If it is, then we will know that the function

will reach one (and only one) local minimum in each range. We observe that those costs
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specifically related to the construction phase (ie. expressions (5.1) and (5.3 - 5.5)) are, for
D; s Q. < D,,,, linear with respect to Q.. Hence, these costs are convex between adjacent
requirements values.

Itis vital that we accurately understand the behaviour of EPV°(). Recall that
units on-hand at the conclusion of the construction phase may be either disposed or
retained. Assuming that g > 0, disposal of surplus units implies that EPV'(1+1) <
EPV"(I). Salvage revenue lowers the expected present value of costs. The retention of
surplus units, then, can only be attractive if it generates a greater reduction in costs than
that provided by stock disposal. Thus, if retention of surplus stock is optimal, we must
have that EPV°(I+1) < EPV'(I). Consequently (provided that g > 0), EPV"(]) is a non-
increasing function in /. For constant salvage values, it displays a nonlinear pattern
during the “retention region” (ie. when it is attractive to retain stock) and a linear shape
during the “disposal region” (ie. when we dispose surplus units). Specifically, we
showed in Chapter 4 that PV(M), the present value of retaining M units to satisfy ongoing
usage, was convex in M. Since the disposal region exhibits a linear shape, it is thus
convex. Hence, for Q. within an interval such that D, < Q. < D,,, and for constant
salvage values, we know that ETC(Q,) is convex.

We shall now address the convexity of ETC(Q,) for the case of marginally
decreasing salvage values. Note that those costs specifically related to the construction
phase are identical under either constant or non-constant salvage value functions; hence,
these costs are convex regardless of the specific form of salvage values. The key issue

involves determining if EPV°(I) remains convex when marginally decreasing salvage
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values are introduced.

As was shown in Figure 7 (see page 63), optimal policies in the presence of
marginally decreasing salvage values exhibit an interchanging pattern of plateaus and
ramps (retentions and disposals). Recall that the distance of a specific plateau
corresponds to the difference between adjacent M;" and M,,," values, while the length of a
ramp is determined by the maximum number of disposals that can be made for g, per unit.
The function EPV'(I) displays a nonlinear but convex shape during any such region, while
it has a linear pattern when it is attractive to dispose stock (although the slopes of these
respective linear segments become less negative as / increases, due to the marginally
decreasing nature of the salvage values). From our earlier explanation for constant
salvage values, we showed that the present value of retaining any quantity of units to
satisfy ongoing usage was convex with respect to the retention amount. Since linear
functions (which occur when disposals beccme attractive) are also convex, we see that
EPV'(I) remains convex. As a result, we can say ETC(Q,) is convex, within a range
between two adjacent requirements values, for the case of marginally decreasing salvage

values.

With increasing salvage values, our analysis must be modified somewhat. Now,
we have discontinuous places (denoted by the values /P,, IP,, or IP,,) such that we jump
from a plateau or ramp to a plateau with a higher per unit salvage value. The function
EPV*(I), as before, is convex within specific ramps or plateaus; however, when analyzing
the convexity of ETC(Q,), we must give special attention to these points at which

discontinuities occur in the optimal disposal graph.
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A discontinuity occurs when on-hand inventory equals one of the /P values as
given above, say, IP, Thus, a discontinuity would be generated when [ = Q.-D.=1IP,,
or Q. =D, + [P,. This implies that when a construction phase procurement quantity
equals a specific requirements value plus a given inventory indifference point, a
discontinuity will occur in the EPV"(I) function (and, by association, in the ET cQ,)
function). Let us denote by Q,, any procurement quantity that yields a discontinuity in
ETC(Q,), due to the presence of increasing salvage values.

When evaluating the convexity of ETC(Q,), we can no longer restrict our attention
simply to ranges between adjacent requirements values. There will be discontinuous
Jjumps in the ETC(Q,) function, whenever Q. = Q,- This means that the ETC(Q,)
function is now convex between any D, or O, value and the next higher value, whether it
be a D or O, point. With the inclusion of increasing salvage values, the number of

ranges within which the total cost function is convex increases.

5.2 Exact Approach

We shall now provide an examination of the exact approach for determining the

expected total project costs. The acquisition costs are identical to those given under the

approximate approach, namely:
Q.. (3.8)

We explicitly consider each total requirements value when evaluating construction

phase holding costs. We have, for any procurement quantity 0., the following
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expression for carrying charges:

.
‘ D

h Y PyD,) [l - =t|e™ar (5.9)
DCSQC 0 TC

This is evaluated as:

0 ar) D\ o[ T, 1 1
A Y PD(DC)( (1-¢ 7 ?cle {; R ;] - ;]] (5.10)

=<
D.sQ. a

"\

Under the exact approach, we also recognize any carrying charges incurred prior
to the occurrence of a stockout. Since a stockout, if it occurs, would happen at time

Q.T/D_, this is given as:

T,
D, D
h ¥ PyD,) f[Qc - —‘t]e“‘dr 10
Dc>Qr 0 TC

which becomes;

h Y PyD)

eQ T,
PR 4 D<
%(l -e D, ) + -
D>Q, a

] 1 (5.12)

Expression (5.12) may be simplified to yield:

a

aQ T,
Q. D) 1 1 5.13
h Y, PyD) (=< + T[e (_z) - —,J (-13)

& xc (4

Although we explicitly recognize holding costs prior to a stockout, we shall ignore

any carrying charges incurred subsequent to the receipt of expedited stock. In all
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likelihood, the relatively large stockout penalties would dominate these holding costs.
We note, however, that these costs could be included in our total cost function if deemed
necessary.
Since the exact approach discounts stockouts from the specific moment at which

they occur, our expressions for the stockout penalties must be modified somewhat. The

B, stockout penalty is given as:

_uQrTr
B Y PyDye ™ (5.14)
DC>Q(‘
while the B, stockout penalty is:
(1+B)v, Y. (D ~Q)PDJe (5.15)
D>,

The expected present value of concluding the construction phase with / units, and
proceeding in an optimal fashion regarding any future inventory decisions, is the same

under either the approximate or exact approach. Thus, we have (for D, > Q.):

e " EPV*(0) P(D20.) (5.16)
and forD. < Q.:
e’ Y EPV*(Q,-D,)PyD,) (5.17)
Dc<Qc

Combining expressions (5.8), (5.10) and (5.13 - 5.17) yields our exact approach

for determining the expected total project costs, as a function of the initial procurement

quantity.
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Earlier, we showed that the approximate approach yielded a cost function which
was convex between adjacent D, values (or, in the case of increasing salvage values, a
convex cost function between any D, or Q,, value and the next higher D, or Q,, point).
We shall now show that the same behaviour is observed under the exact approach. Recall
that those expressions which comprise ETC(Q,) include (5.8), (5. 10)and (5.13) - (5.17)
inclusive.

Expressions (5.8), (5.16) and (5.17) are identical to those given under the
approximate method. In addition, expression (5.10) is linear with respect to Q., so the
convexity of ETC(Q,) between adjacent D, or Q,, values will not be affected by this new
expression.

The convexity of expressions (5.13) - (5.15) can be checked by determining the
second difference of each expression. If a second difference is strictly positive, then we
know that the specific expression is convex. To illustrate this, consider expression
(5.13). Evaluating its second difference for each D, yields (after all linear terms are
eliminated):

-a(Q.+2)T, ~a(QT, (@, T,
D D D
¢ +e ¢ -2e

h P,(D,)

c

which can be expressed as:

(@, -2T. -a(Q T, -a(Q +1)T
h P,(D,) : e P 4o D _# (.18)
<& 2 ~°

Obviously, the term within the first set of squared brackets is strictly positive. As
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we showed in Chapter 4, e* is convex for x > 0. Consequently, the arithmetic mean of
two points (/,/) along the e* function, less the value of a point in between (k) will be
positive. Thus, expression (5.13) is indeed convex. Similar reasoning can be applied to
functions (5.14) and (5.15) to illustrate their convexity.

Since ETC(Q,) is convex between adjacent D, or Q,, values, we know that the
function will reach one (and only one) local minimum within each range. Thus, we can
now prescribe a simple search procedure to find the optimal construction phase
procurement quantity (using the exact approach).

We shall begin with the case of constant or marginally decreasing salvage values.
Figure 11 illustrates the various steps to follow in finding the best Q.. We proceed
through each of the requirements values, beginning with the lowest D.. We evaluate the
expected total costs of procuring an amount equal to a D, value (Q, = D,), then the
expected total costs of procuring one unit above a D, point (Q, = D, + 1). If the expected
total costs increase from the lower to higher quantity, then we know (from the convexity
property) that these costs will continue increasing throughout the entire range between
adjacent D, values (ie. between D, and D,,,). Consequently, we do not need to evaluate
any additional procurement quantities within this range.

If, on the other hand, the costs fail to increase from D, to D, + 1, then we need to
evaluate costs at the right end of this range (ie. from D_,,-1 to D,,,). Recognizing that
proceeding from one unit below a requirements value to a specific D, will yield a “drop”
in the expected total cost function (due to a reduction in B, stockout penalties), we

evaluate the total costs between D, -1 and D, without the B, component (we shall



Figure 11

Search Procedure for Finding Qc*

Constant or Marginally Decreasing Salvage Values

Define:

ETC(Q,) = Expected Total Costs (all components)
f,(Q.) = ETC without the B, component

For all D, do
the following

Is ETC(Q:=D,)
<=

ETC(Q.=D.~1)?

[s I:I(Qc=Dc-l'l)
<=

fi(Qc=Dc-1)?

The function is
decreasing throughout

minimum point is found
at QC=DC°|

Do not continue
to search in the
interval [D,D..,]

A local minimum
point occurs in the
interval [D,D¢.]

the interval. A local  [r————]p

Evaluate total costs of each
jocal minimum. The
optimal Q. is the one giving
the lowest total costs.

95
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denote this cost expression by £,(Q,j). If the total costs, without the B, component, were

not increasing between these two points, then the cxpected total cost function has been

decreasing throughout the entire [D,, D] range. A local minimum is then found at Q.
Dg,,.

Should the total costs without the B, component increase between these two
points (D,-1 and D_,,), then a local minimum is found somewhere within the interval
(D, D_,]. A “Fibonacci” search could be used to efficiently find this interior minimum.
Due to the convexity of the expected total cost function within adjacent requirements
values, once the function begins to “turn up”, we know that a local minimum has been
found.

The optimal procurement quantity, Q.°, is simply the local minimum with the
lowest expected total costs.

Numerical Example:

Consider the following parameter values for the construction phase (ongoing

phase parameter values remain as previously given, with a constant salvage value for

disposals of $35 per unit):

B,=$3000

B,=0.5

D, =200 Py(D,)=0.10
D, =300 Py(D,)=0.20
D; =400 PyD;)=0.40
D,=500 Py, =020
D; =600 Py(Dy =0.10
T.=1 year

v.=$100

Using our search procedure, we evaluate the following points:
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ETC(200) = $91,337.10

ETC(201) = $91,288.85

/1(299) = $85,148.82

//(300) = $85,122.48

Thus, the cost function is decreasing throughout the [200,300] interval.

ETC(300) = $87,086.20

ETC(301) = $87,047.55

£,(399) = $83,251.95

/f(400) = $83,248.51

The cost function is decreasing throughout the [300,400] interval.

ETC(400) = $84,083.03

ETC(401) = $84,055.59

/,(499) = $83,870.92

/(500) = $83,903.01

There is an interior minimum within the [400,500] range. It is found at Q, = 436

units, with E7C(436) = $83,595.21

ETC(500) = $84,179.02
ETC(501) = $84,199.42

The function is increasing throughout the {500,600] interval.

ETC(600) = $88,550.73
ETC(601) = $88,606.83

The function is increasing for any points beyond the largest requirements value,
600. On a range-by-range basis, we have local minima at the right ends of the [200,300]
and [300,400] ranges, as well as the left ends of the [500,600] and [600+] intervals. In
addition, we have an interior minimum at O, = 436. The local minimum point giving the

lowest expected total costs is O, = 436. Thus, this quantity becomes our optimal

procurement amount.
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The search procedure is relatively similar for the case of increasing salvage
values. As depicted in Figure 12, we sort all the D, and Q,, values in ascending order and
evaluate cost differences at the left end of each interval. (These intervals are defined
between any D, or O, value, and the next higher point).

If the total costs are decreasing at the beginning of an interval, then we perform a
cost evaluation at the right end of the range. Noting that proceeding from one unit below
a Q,, point to a specific Q,, value will yield a “drop” in the expected total cost function
(due to the inclusion of higher per unit salvage values), we evaluate the total costs
between Q,,,,-1 and Q,,,, assuming that all disposals earn the marginal salvage value
obtained prior to the indifference point (we shall denote this cost expression by £,(Q.)). If

the total costs, without the higher per unit salvage values, were not increasing between
these two points, then the expected total cost function has been decreasing throughout the
entire [Q,,, O,,.,] range.

Numerical Example:

Consider the same construction and ongoing phase parameter values as illustrated
in the previous example in this chapter. The following increasing salvage value function

1s used:



Define:

Figure 12

Search Procedure for Finding Qc*

Increasing Salvage Values

ETC(Q,) = Expected Total Costs (all components)

f(Q) = ETC (Q,) without the B, component

f,(Q.) = ETC (Qc ), assuming that disposals earn the
marginal salvage value obtained hefare the [P is reached

For all D, and Q, do the

following (after arranging
all D and Q;, values in

ascending order):

Is ETC(Q.=D. or Q;;)

<=

ETC(Q.=Dc-1 or Q,-1)?

Is f\(Qc=Dc’l'l) <=

t.I(Qc'-'-Dcﬂ)?' or
Is 3(Q=Qip-1-1) <=
f'Z(ch'-le- | )')

The function is
decreasing throughout the
interval. A local minimum

Yes

occurs in the interval
;’

Do not continue to
search in the interval
between D, or Q.. and

the next higher value J

A local minimum point

between D, or Q,; and
the next higher value

v
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point is found at
Qt::Dc-lv orat Qc=Q|p-l

Evaluate total costs of each
local minimum. The
optimal Q, is the one giving
the lowest total costs.
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Numerical Example for Search Procedure Invoiving Increasing Salvage Values

i I L, U, N, M’
1 5 1 10 189
2 20 11 30 168
3 25 31 60 161
4 60 61 100 121
5 40 101 130 30 143
6 20 131 170 40 168
7 10 171 200 30 182
8 1 __| 201 195

We have chosen this specific increasing salvage value function in order to make

our numerical example relatively concise. Specifically, this given function has a single

inventory indifference point at /= 152. For inventory levels less than this quantity, no

excess stock is disposed. When /= 152, we begin making disposals for g, per unit. We

jump up to the L, plateau (61 total disposals), remaining at that disposal level until I

exceeds M,” + L,. A ramp with salvage value g, then begins, proceeding until total

disposals equal U,. Subsequently, disposals are initiated on the marginally decreasing

side.

Recall that Q,, = D+ [P. Since our lone indifference point (/P) is at / = 152, we

will have to consider the following Q,, values (352, 452, 552, 652 and 752) in addition to

the usual five requirements values (200, 300, 400, 500 and 600). Using our search

procedure, we evaluate the following points:
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ETC(200) = $91,337.10
ETC(201) = $91,288.85
/1(299) = $85,148.82
//(300) = $85,122.48

Thus, the cost function is decreasing throughout the [200,300] interval.

ETC(300) = $87,086.20
ETC(301) = $87,047.55
/x(351)=885,675.63
/x(352) = $85,658.60

The cost function is decreasing throughout the [300,352] interval.
ETC(352) = $85,658.39

ETC(353) = $85,636.51

/1(399) = $83,105.96

f,(400) = $83,100.26

The cost function is decreasing throughout the [352,400] interval.
ETC(400) = $83,934.78

ETC(401) = $83,905.08

f(451) = $83,443.56

/:(452) = $83,453.62

There is an interior minimum within the {400,452} range. It is found at O, = 437

units, with £7C(437) = $83,374.69.

ETC(452) = $83,453.20
ETC(453) = $83,453.44

The function is increasing throughout the [452,500] interval.

ETC(500) = $83,658.65
ETC(501) = $83,675.88

The function is increasing throughout the [500,552] interval.

ETC(552) = $85,448.83
ETC(553) = $85,521.79
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The function is increasing throughout the [552,600] interval.

ETC(600) = $87,481.29
ETC(601) = $87,534.14

The function is increasing throughout the [600,652] interval.

ETC(652) = $90,812.44
ETC(653) = $90,879.76

The function is increasing throughout the [652,752] interval.

ETC(752) = $99,202.45
ETC(753) = $99,295.56

The function is increasing for any points beyond the largest Q,, value, 752.

On a range-by-range basis, we have local minima at the right ends of the
[200,300], [300,352] and [352,400] ranges. Furthermore, there are local minima at the
left ends of the [452,500], [500, 552], [552,600], [600,652], [652,752] and [752+]
intervals. We also have an interior minimum point at Q. = 437. The local minimum
point providing the lowest expected total costs is O, = 437. Consequently, this quantity

becomes our optimal procurement amount.

Although our search procedures will find the optimal quantity, we can also
develop some bounds on Q. to further narrow the range of possible procurement
quantities to evaluate. For a specific set of parameter values and for constant salvage
values, we can obtain an upper bound on Q.". This bound is developed by noting that we
would continue to procure in excess of the largest construction phase requirements value

as long as the marginal benefits of so doing exceeded the concomitant marginal costs.
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Since stockout charges are nil when Q, exceeds the largest D_, the present value of the
marginal benefits consist of the reduction in EPV"(]) associated with larger procurement

amounts. These become:

e (A EPV () (5.19)

The present value of the marginal costs comprise acquisition and carrying charges.

These are:

v, + k'l - &%) (5.20)

Thus, we would continue to procure until the absolute value in (5.19) fell below
(5.20). This would give the largest inventory amount that we ever need consider. Adding
this / to the largest D, provides us with the largest possible Q.. Such an upper bound on
the procurement quantity could prove helpful in situations for which it becomes attractive
to exceed the largest D, (e.g. very high stockout penalties, high likelihood of largest D,
occurring, and so forth).

An additional procedure to narrow the search is to use solutions obtained from
prior constant salvage value cases as bounds on Q" for the case of non-constant salvage
value functions. Suppose various cases have been run in which different constant salvage
values were used. The solution from a situation in which the constant value represented
the largest marginally decreasing one provides an upper bound on Q. in the case of the

specific marginally decreasing salvage value function. When one can earn the largest
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salvage value over all disposals (instead of over a limited range of disposals), higher
procurement quantities become attractive. Of course, a lower bound on Q.° is obtained
when the constant salvage value represents the lowest marginally decreasing one.

For the case of increasing salvage values, we can use the lowest salvage value to
provide a lower bound on Q,". An upper bound on the optimal procurement quantity is
somewhat more complex. We could use the reasoning presented with respect to (5.19)
and (5.20) to find the largest inventory amount that we ever need consider. As before,
this largest inventory amount would then be added to the largest D, to provide the largest
possible 0. However, we must recognize that, for the case of increasing salvage values,
the EPV"(I) function is not convex. In particular, we could find that, once the absolute
value in (5.19) fell below (5.20), there may be a larger / value for which the absolute
value in (5.19) exceeded (5.20). Thus, a decision-maker may need to consider a relatively

large number of / values before being confident that an upper bound on Q." has been

obtained.
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6. MODEL RESULTS

The mathematical model developed in Chapters 3 through 5 of this dissertation
provides a mechanism to determine the expected total costs of procuring a specific
quantity of a given item in a project context. Moreover, our model also illustrates the
calculation of costs arising due to disposal and ongoing usage decisions. We have also
shown the manner in which least-cost decisions may be determined.

At various places during the previous three chapters, we have used numerical
examples to demonstrate our model. However, the true value of any optimization
exercise lies not simply in generating the optimal solution for a particular set of parameter
values, but rather in being able to analyze a range of parameter values and their impact on
managerial decision-making. Extensive sensitivity analysis avoids the problem of
making broad generalizations based on a single numerical example.

Table 3 lists levels for the various parameters that will be used in our model
analysis (remember that a glossary of notation is included in Appendix A). The specific
ranges of values have been elicited from materials management personnel involved in
large-scale construction projects. Note that the three respective levels for each
parameter’s value are equally spaced. Observe further that we use only a single
representative value for v,, the unit acquisition cost in the construction phase. This serves

as our “point of reference” for other (dollar-valued) model parameters (ie. one could

normalize everything in terms of v,).
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Parameter Values
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Parameter Low Value Middle Value High Value ‘
v, $100
B, $2,000 $3,000 $4,000
B, 0.5 1.0 1.5
h $10 $13 $16
a 0.08 0.10 0.12
T 0.5 1.0 1.5
A $100 $250 $400
D, 10 20 30
v, $160 $190 $220

Although we restrict each scenario to minimum and maximum construction phase
requirements of 200 and 600 units, respectively, the probabilities of various requirements
do change. Table 4 shows the different discrete probability distributions of construction
phase requirements. The “base case” provides a distribution peaked in the middle, while
the increasing (decreasing) case offers an upward-sloping (downward-sloping) probability
distribution. The level scenario suggests that each requirements value is equally likely,
while the bi-modal case introduces a situation in which high and low values are most

likely (the probability distribution is peaked at both ends).
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Probability Distributions of'gzl::t:ucﬁon Phase Requirements
—Requirements 200 ] 300 T 500 600
Base Case 0.1 0.2 0.4 0.2 0.1
Increasing 0.06 0.13 0.2 0.27 0.34
Decreasing 0.34 0.27 0.2 0.13 0.06
Level 0.2 0.2 0.2 0.2 0.2
|_Bi-modal 0.35 0.12 0.06 0.12 0.35

Recall that procurement, disposal and ongoing operational usage decisions are
combined in our model. Is it worthwhile for materials managers to jointly consider these
issues when making procurement decisions? Or, can managers simply examine
construction phase factors when determining appropriate procurement quantities? In
order to increase the appeal of our approach in managing real-world project inventories,
we must provide a mechanism for illustrating the benefit of combining project
procurement, disposal and ongoing usage decisions. To accomplish this, we will test

three different inventory management strategies:

® Integrated Strategy: determines optimal procurement quantities by
considering construction phase costs as well as
subsequent disposal and ongoing phase
replenishment decisions

® All-disposal Strategy: determines best procurement decisions by
considering construction phase costs plus the
disposal of all surplus units on-hand after the
construction phase (no retention of excess stock)

® Myopic Strategy: determines best procurement decisions by
considering only construction phase costs
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We require the following notation:

0. optimal procurement quantity produced by the integrated inventory
management strategy (using the exact costing approach in the construction
phase)

Q, optimal procurement quantity produced by following the all-disposal
inventory management strategy

Q,"  optimal procurement quantity produced by following the myopic inventory
management strategy

The integrated strategy is the approach adopted by our mathematical model. Both

of the “‘non-integrated” strategies fail to consider ongoing phase replenishment decisions.
The difference between these two strategies is that the all-disposal scheme disposes any
surplus stock while the myopic approach, as the name implies, is the most short-sighted
of the alternatives. It simply looks at construction phase costs when determining the best
procurement quantities.

With the exception of one case (which shall be explained later), we shall test the

effects of the different strategies by varying one model parameter at a time and observing

the resulting best construction phase procurement quantity under each inventory
management strategy. We choose to vary a single parameter during each model run in
order to assess the change in an optimal solution directly attributable to that specific
parameter. For instance, we begin by determining the best procurement quantities for the
various strategies when all parameters are at their “middle” values and the “base case”
setting is used for the probability distribution of construction phase requirements (note
that in all model analyses, this shall be referred to as the “intermediate” treatment

combination). Then, we change the value of one parameter (say, B,) to its low value and

observe the resulting Q.°, 0, and Q,," values keeping all other model parameters at their
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middle or base case settings. We then change the value of B, to its high value and
observe the optimal procurement quantities. This process is repeated for all settings of
model parameters.

These “one-way” tests allow us to observe how various decisions change for
different levels of model parameters. While it may be tempting to simply compare the
different optimal procurement quantities produced by any of the respective strategies, we
ought to determine the penalty cost associated with following each non-integrated
inventory management strategy.

To find the penalty costs, we take either Q," or Q,," and find the expected total
discounted costs of this procurement quantity under the integrated approach. In other
words, we find the total costs of procuring such a quantity (using the exact costing
approach in the construction phase), and then proceeding in the best possible fashion in
the future with respect to disposal and ongoing phase replenishment decisions. The
percentage difference between this total cost and the expected total discounted costs of
Q. is referred to as the percentage cost penalty. Obviously, if an integrated and non-
integrated strategy produce identical optimal procurement quantities for a specific setting
of model parameters, then the percentage cost penalty of following a non-integrated
strategy (for that setting of model parameters) would be nil. Moreover, we point out that
our percentage cost penalties are somewhat “conservative” in nature in that, when
determining the total costs of following a non-integrated strategy, we assume that the best
possible disposal and ongoing replenishment decisions will be made.

This chapter devotes individual sections to each of the three types of salvage value
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functions: constant, marginally decreasing and increasing. We shall begin by examining

the model results associated with constant salvage values.

6.1 Constant Salvage Values

Table 5 shows the range of constant salvage values considered in our model
analysis.

Table 5
Range of Constant Salvage Values

Parameter Low Value Middle Value High Value

g $20 $35 $50

Table 6 (see pages 111-112) provides the optimal procurement quantities for each
treatment combination. The percentage cost penalties of following each non-integrated
strategy, as well as the integrated strategy (using approximate costing in the construction
phase), are given in parentheses below each best procurement quantity. Recall that using
these one-way tests allows us to pinpoint the effect on the percentage cost penalty directly

attributable to that single setting of the specific parameter.



Table 6

Results - Constant Salvage Values

Treatment Integrated Integrated All-disposal Myopic
Combination (exact) (approx.)

Intermediate 500 500 400 400
(1.54) (1.54)

B, low 459 455 400 400
(0.005) (1.35) (1.35)

B, high 500 500 400 400
(1.76) (1.76)

B, low 436 433 400 300
(0.004) (0.58) (4.18)

B, high 500 500 400 400
(3.17) (3.17)

h low 500 500 400 400
(2.31) (2.31)

h high 450 445 400 400
(0.06) (0.99) (0.99)

a low 500 500 400 400
(1.94) (1.94)

a high 451 446 400 400
(0.01) (1.15) (1.15)

T, low 500 500 400 400
(2.87) (2.87)

T, high 441 435 400 400
(0.02) (0.72) (0.72)

D, incr. 600 600 500 500
(0.99) (0.99)

D. decr. 400 400 300 300
(2.21) (2.21)

D, level 500 500 400 400
(1.10) (1.10)
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Treatment Integrated Integrated All-disposal Myopic
Combination (exact) (approx.)

D_ bi-modal 500 422 400 300
(0.32) (0.54) (3.27)

A low 500 448 400 400
(0.05) (1.13) (1.13)

A high 500 500 400 400
(1.83) (1.83)

D, low 433 430 400 400
(0.01) (0.88) (0.88)

D, high 500 500 400 400
(2.53) (2.53)

v, low 441 436 400 400
(0.01) (0.65) (0.65)

v, high 500 500 400 400
(2.67) (2.67)

g low 455 451 400 400
(0.01) (1.26) (1.26)

g high 500 500 400 400

(1.90) (190) |

We note that, for all treatment combinations, the optimal procurement quantities
produced by the integrated approach are never smaller than the best quantities given by
the non-integrated inventory management strategies. This would seem to suggest that,
when ongoing phase replenishment issues are factored into the decision, it becomes
attractive to procure extra units in the construction phase. Procuring these units during
project construction saves one from having to purchase these units (at much costlier unit

prices) during subsequent operations. Moreover, we note the close similarity in best
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procurement quantities given by either integrated approach (using exact or approximate
construction phase costing). As we dcscribed in Chapter 5, the approximate approach
provides a lower bound on the optimal procurement quantities used under the exact
method.

A few comments will now be made on the effects of various parameters. Note
that when the B, parameter is at its low setting (indicating a relatively small stockout
penalty), Q" falls to 300 (when B, was at its middle setting, 0, was 400). Observe
further that Q. falls from 500 to 436 when B, has a low value. The percentage cost
penalty of procuring this smaller quantity is relatively large (we note that cost penalties
tend to rise as the percentage difference between integrated and non-integrated best
procurement quantities increases).

When either the B, or B, parameters are at their high settings, Q," and Q, " do not
change from their “intermediate” level of 400. Moreover, Q," does not change from its
intermediate treatment combination quantity of 500. However, when stockouts are more
costly (as results when either B, or B, take on higher values) and ongoing operations are
considered in the original procurement choice, it becomes more attractive to procure extra
units. This leads to larger percentage cost penalties associated with following the non-
integrated approaches.

Lower values of the holding cost parameter, 4, increase the advantage of
procuring additional units during project construction since these units are less costly to
hold. Since both Q," and Q," do not change with either setting of the & parameter, the

cost penalties are larger for smaller holding costs.
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Lower values of either the continuous discount rate, a, or project duration, T,
produce smaller discount factors. As a result, the costs associated with ongoing phase
decisions are discounted less. Thus, from a present value perspective, the cngoing phase
becomes more “costly”. Failure to consider ongoing phase decisions (as both non-
integrated strategies suggest) leads to larger percentage cost penalties.

Ongoing operations also become costlier as the parameters 4, D, and v, take on
their high values. Consequently, adopting a non-integrated strategy produces larger cost
penalties. We note that the “intermediate” Q," or Q,," value of 400 units is used for Q," or
Q.. in these cases, since the above parameters are not considered in either non-integrated
strategy.

If larger values of construction phase requirements are more likely (as is reflected
in the increasing requirements distribution), even the non-integrated inventory
management strategies will want to over-procure. The advantage of procuring extra units
to provide for ongoing usage would be partly eroded by the desire to over-procure to
safeguard against construction phase stockouts. As a result, the cost penalty of following
a non-integrated approach drops. On the other hand, if construction phase requirements
follow a decreasing probability distribution, then non-integrated strategies would feel less
of a need to over-procure. This leads to larger cost penalties associated with not
following the integrated approach. Note the large percentage cost penalty involved with
the myopic strategy and a bi-modal requirements distribution. This distribution, with its
relatively high likelihood of either large or small requirements, provides significant

benefit for procuring larger quantities during the project. Surplus units (a substantial
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quantity of them would result if the smallest requirements value occurred) could be either
disposed or used to satisfy ongoing usage. Neither of these possibilities are included in
the myopic strategy.

Finally, we note that larger values of the salvage value parameter, g, combined
with consideration of ongoing usage, leads one to procure additional units during project
construction. This results in a larger percentage cost penalty associated with following a
non-integrated strategy.

For several scenarios, the all-disposal and myopic policies provide the same
optimal procurement quantity. This would appear to indicate the utility of retaining
excess stock. Given the parameter values considered in our analysis, there is not a great
deal of additional benefit in disposing surplus items. The true benefit comes from the
ability to retain stock to satisfy ongoing operational usage. In other words, the option to
simply dispose all surplus stock after the construction phase does not change procurement
decisions that much when compared to solely considering construction phase costs.

These comments indicate the general effects of various parameters. However,
they do not assess the statistical importance of each parameter. Is the increase in
percentage cost penalty attributable to a specific parameter truly “significant”? Which of
the model parameters are important in contributing to the benefit of adopting an
integrated inventory management strategy?

A factonal design is a useful approach for determining the statistical significance
of various factors (Montgomery (1991)). This method involves the replication of a model

for all possible combinations of the levels of the parameters. Recall that our project
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procurement and disposal model involves nine factors with three levels each (B,, B,, h,a,
T.,A,D, v, and g), plus an additional model parameter (construction phase requirements
distributions) at five levels. Consequently, the number of replications required to fully
analyze all possible combinations of model parameters is enormous. The issue of
computational time, coupled with the complexity involved with interpreting results when
several parameters are simultaneously varied, forces us to adopt a fractional factorial
design. In this experimental approach, only a limited number of the replications are
tested.

Our experimental approach shall use both the one-way results previously obtained
plus results for “two-way” tests. These latter tests shall involve each possible pair of
parameters, keeping all other model parameters at their middle or base case settings. For
example, we shall take two parameters (say, B, and 4) and determine model results for all
possible combinations of these factors (B, high and A high, B, low and 4 high, B, high and
h low, and so on). Table 7 provides an example of the pair-wise results which are
generated when varying B, and 4. Appendix H lists results for the complete set of pair-

wise comparisons.
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Table 7
Example of Pair-wise Comparisons - Constant Salvage Values
B,vs. h o
All-Disposal Myopic
High 400 400 400 400 400 400
(2.53) (1.76) (1.07) (2.53) (1.76) (1.07)
B Middle 400 400 400 400 400 400
! (2.31) (1.54) (0.99) (2.31) (1.54) (0.99)
Low 400 400 400 400 400 400
(2.09) (1.35) (0.99) (2.09) (1.35) (0.99)
Low Middle Hi Low Middle High 1
h

Note that we have two separate penalty cost comparisons (one for the all-disposal
strategy, and another for the myopic strategy). We have chosen to not analyze the
percentage cost penalties resulting from the approximate integrated strategy. Recall that
our initial motivation for the approximate method, as outlined in Chapter 5, was that it
allowed a more straightforward illustration of cost function convexity. In addition, the
best procurement quantities obtained with this approach serve as lower bounds on the 0.°
provided with the exact method. The percentage cost penalties of using the approximate
method are extremely small.

Observe that the middle cell in each 3*3 “square” is either Q," or Q,,", as well as
the percentage cost penalty, produced by the intermediate treatment combination (all
parameter values are at their middle or base case settings). The results given at either end
of the middle row in the all-disposal or myopic tables were previously obtained as part of

the one-way tests (in the middle row, one of the parameters is held at its middle value,
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while the other is varied). Similarly, the one-way tests provided the results for the top
and bottom cells in each of the middle columns.
One of the principal advantages of the 3*3 tables is that they provide a visual
indication of the directior or "pull” of the percentage cost penalty. Note, for example, the
cost penalties of following either non-integrated strategy when B, and 4 are varied. As B,
takes on higher values or & takes on lower values, the percentage cost penalty increases.
The tables varying the construction phase requirements distributions and another
model parameter are not 3*3 tables, as shown in the latter portions of Appendix H. For
each of the non-integrated inventory management strategies, we obtain a 5*3 table. The
values in the middle column of the table, as well as those in the middle row, were
obtained as part of the one-way analysis.
Our one-way and two-way tests provide a sample size of 239 “observations” for
each non-integrated strategy. This specific number of observations is obtained in the
following manner:
] One observation is provided by the "intermediate" treatment combination.
o 22 observations are given by one-way tests (four construction phase
requirements distribution values, plus nine other factors (8, B,, h,a, T, A,
D,, v, and g) at high and low levels each).

o 144 observations are obtained when we perform two-ways tests on any
pair of model parameters (excluding the requirements distributions). This
is derived by taking pairs of these nine factors (we have ,C, =36 such

pairs), then multiplying this result by four (the number of additional
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observations for each pair of parameters).

L 72 observations are provided when we vary the requirements distribution

and any of the nine other model parameter (B,, B,, h,a, T,A,D,v,and g).
We have 36 different comparisons (four distributions * nine other
parameters). For each of these comparisons, we have two observations
(resulting when any of the nine other parameters are at either their high or
low settings).
The average percentage cost penalty of following the myopic strategy, considering all 239
observations, was 2.006. The average percentage penalty of following the all-disposal
strategy was 1.542.

In our model scenarios, the dependent variable is represented by the percentage
cost penalty derived as a result of the one-way and two-way tests. The different settings
of the model parameters constitute levels for the independent variables. The statistical
package SAS/STAT® (using the General Linear Models procedure) can indicate the
significance of the various model parameters. These are also called main effects. This
statistical package uses the analysis of variance method to determine the portion of
variability in cost penalties ("sums of squares") attributed to a specific model parameter.
An F test is used to compute factor significance. Table 8 indicates our statistical results

(*** indicates significance at the 1% level, while * indicates significance at the 5%

level).
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Table 8
Statistical Significance Results - Constant Salvage Values
Inventory Management Strategy
Parameter All-Disposal Myopic
Sum of Squares F value Sum of Squares F value
B, 0.9498 2.57 0.3226 0.49
B, 42.1248 113.83 *** 32.6998 49.98 ***
h 12.1865 32.93 *** 11.1212 17.00 ***
a 3.793 10.25 *** 2.1823 334 *
T. 42.7671 115.56 *** 36.9611 56.50 ***
A 2.8042 7.58 *** 3.0805 4.7] ***
D, 27.408 74.06 *** 30.1504 46.09 ***
v, 32.9824 89.12 **x* 36.2171 55.36 ***
g 1.6754 453 * 4.1002 6.27 ***
D, Incr. 2.7315 14.76 *** 481 14.7] ***
D, Decr. 0.4764 2.57 4.826 14.75 ***
D, Level 3.2228 17.42 *** 3.1988 9.78 ***
D, Bi-Modal | 15.4128 83.30 *** 18.3586 56.13 **=*

For the particular ranges of parameter values used in our model, the following

conclusions can be provided. Several of the parameters are highly significant (ie. at the
1% level). It would appear that many of our parameters account for large portions of the
variability in the dependent variable. The exceptions are as follows: in the myopic
strategy, the discount rate (a) is only significant at the 5% level, while in the all-disposal
strategy, the salvage value (g) is also significant at this level. The B, parameter is not

significant under either strategy, while the decreasing requirements distribution is
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insignificant under the all-disposal strategy. Again, we wish to stress that concluding that
a certain variable is not significant does not mean it is not important. Rather, it simply
suggests that, given the range of values considered for that parameter, it did not
contribute to an extensive portion of variability in percentage cost penalties.

Using SAS/STAT®, we can generate a normal probability plot to determine if the
residuals from the myopic or all-disposal cases follow a normal distribution. These plots
are illustrated in Figures 13 and 14. The “*” symbols correspond to the actual residual
values in our data sets, while the “+” symbols are used to illustrate a straight (45°) line.

If the underlying residual distribution is normal, then the normal probability plots
ought to resemble a straight line. The residuals from the all-disposal case (Figure 13)
appear to bend down slightly on the left side and turn up slightly on the right side.
According to Montgomery (1991), this would indicate that the left tail is somewhat
thinner than would be expected in a normal distribution while the right tail is somewhat
thicker. The negative residuals are not quite as large (in absolute value) as we would
generally see in a normal distribution, while the positive residuals are larger than would
usually be observed. The residuals from the myopic case (Figure 14) appear to bend
down siightly on the left. Although each plot does display some irregularity, the
distribution is reasonably close to normal. Moreover, the analysis of variance approach
(used to obtain the F test statistics in Table 8) is only slightly affected by variations from
the normality assumption of the residuals. Thus, since the analysis of variance approach
is robust, we are confident in the statistical results obtained in our cases.

Although the results provided in Table 8 indicate the significance of main effects



Figure 13
Normal Probability Plot
All-Disposal Residuals
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Figure 14
Normal Probability Plot
Myopic Residuals
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in our model, we were unable to use our analysis of variance approach to determine the
significance of any two-way interaction effects (ie. the contribution to percentage cost
penalty due to one parameter multiplied by another). Since we determined percentage
cost penalties arising from only one-way and two-way tests, we did not have a large
enough sample size to test all of the two-way interaction effects. Had we attempted to
statistically test the interaction effects, we would not have had enough degrees of freedom
to determine appropriate F tests.

We note, however, two ways of overcoming this problem (both with some
drawbacks). Firstly, we could have used our analysis of variance approach to statistically
test “some” of the interaction effects. However, this would have required a priori
knowledge of the supposedly important interactions. If we knew ahead of time the
significant interactions, then why would we require statistical tests? Further, we were
rather reluctant to simply test some of the interactions, for this still could have missed
important two-way interaction effects. Our second approach would have involved
determining percentage cost penalties arising from three-way tests. This would have
offered a large enough sample size to test two-way interactions. However, as indicated
earlier, the issue of computational time, coupled with the complexity involved with
interpreting results when several parameters are simultaneously varied, precluded us from
using this approach.

Nonetheless, there is a valid approach that one can use to obtain the significance
of two-way interaction effects. As long as we have three values for each parameter, we

note that a quadratic function (using the Response Surface Regression procedure
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available on SAS/STAT®) could be fit to this data. Our model analysis has used three
values (high, middle and low) for each of the following parameters: B8,, B,, h.a, T,, 4, D,,
v, and g. The only model parameters that cannot be used are the respective D,
distributions. These parameters are actually “qualitative” independent variables, for we
used a 1 to indicate the presence of a particular requirements distribution, 0 otherwise.
As a result, choosing to fit a quadratic function to this data involves eliminating any data
points obtained when the D, distribution was varied from the “base case” scenario. This
reduces our sample size from 239 observations to 163.

Our response surface regression results are provided in Table 9.



Table 9

Response Surface Regression Results

126

" Inventory Management Strategy
" All-Disposil Myopic
I 1% B 5% 1% B 5%
B,*B, B,*g B,*B,
B,*h h*a B,*B,
B,*T, h*T, B,*h
B,*D, h*g B,*a
B,*v, T.*g B,*T.
h*h D,*D,
h*D, a*v,
h*v, Vo*V,
T, g'g
T.*T,
T.*D,
T.*v,
D, *v,

Table 9 illustrates that there are several significant two-way interactions and

quadratic effects (ie. a parameter multiplied by itself). For the all-disposal case, it would

appear that a handful of the parameters (B,, 4, T., D, and v,) have extensive interaction as

well as quadratic effects. An examination of our percentage cost penalty results in Table

6 shows that various settings of these five particular parameters contributed to relatively
large percentage cost penalties (the other four parameters led to smaller percentage cost

penalties). Consequently, these five parameters can be deemed rather important in
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determining the penalty of adopting an all-disposal versus integrated inventorv
management straicgy. Interactions between these parameters (e.g. high value of 3, and a
low value of T,) would result in even larger penalties (as shown in Appendix H). We
note that the only parameters to not appear significant at either level were B, and 4.

For the myopic case, we note the substantial interaction involving the B,
parameter. This is rather understandable since, as shown in Appendix H, varying other
parameters with B, played a significant role in changing the value of Q,," and the
concomitant cost penalties. (We note that there were no effects significant at just the 5%
level).

We shall limit our two-way tests to the case of constant salvage values. We are
confident that the set of significant model parameters observed in this section would not
change substantially under new scenarios. As shall be shown later, incorporating non-
constant salvage value functions does not drastically alter the percentage cost penalties

from those observed with constant salvage values.

6.2 Marginally Decreasing Salvage Values

We now consider the optimal procurement quantities in the construction phase, as
well as percentage cost penalties, obtained when salvage values are marginally
decreasing. Table 10 illustrates the various marginally decreasing salvage functions
included in our analysis (for comparison, recall that under the case of constant salvage

values, we used g values of 20, 35 and 50).
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Table 10
Marginally Decreasing Salvage Value Cases
Case | ] Case 2 Case 3
gi N; &i N, g N,
50 40 55 50 50 30
35 30 50 40 20 70
20 40 25 40 10 40
1 Infinite 1 Infinite 1 Infinite

The infinite value in the N, column for the lowest salvage value indicates that we receive

$1 per unit for any disposals made beyond N, + N, + N; total disposals.

Model results are provided in Table 11 (see pages 128-130). All treatment

combinations, except the final two, use "Case 1" for the salvage value function.

Results - Marginally Decreasing Salvage Values

Table 11

Treatment Integrated Integrated All-disposal Myopic
Combination (exact) (approx.)

Intermediate 500 500 400 400
(1.53) (1.53)

B, low 462 458 400 400
(0.004) (1.37) (1.37)

B, high 500 500 400 400
(1.75) (1.75)

B, low 435 432 400 300
(0.004) (0.57) (4.23)

B, high 500 500 400 400
(3.17) (3.17)
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_———_——r— S e e
Treatment Integrated Integrated All-disposal Myopic
Combinaticn (exact) (approx.)

h low 500 500 400 400
(2.36) (2.36)

h high 452 448 400 400
(0.01) (1.01) (1.01)

a low 500 500 400 400
(1.97 (1.97)

a high 453 448 400 400
(0.01) (1.17) (1.17)

T.low 500 500 400 400
(2.87) (2.87)

T. high 441 434 400 400
(0.02) (0.71) (0.71)

D, incr. 600 600 500 500
(0.75) (0.75)

D, decr. 400 400 300 300
(2.46) (2.46)

D, level 500 500 400 400
(0.97) (0.97)

D, bi-modal 500 420 327 300
(0.05) (2.08) (3.19)

Alow 500 451 400 400
(0.01) (1.11) (1.11)

A high 500 500 400 400
(1.84) (1.84)

D, low 430 427 400 400
(0.01) (0.79) (0.79)

D, high 500 500 400 400
(2.59) (2.59)

v, low 444 439 400 400
(0.67) (0.67)
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Treatment Integrated Integrated All-disposal Myopic
Combination (exact) (approx.)

v, high 500 500 400 400
(2.71) (2.71)

g Case 2 500 500 400 400
(1.78) (1.78)

g; Case 3 500 500 400 400
L (1.41) 1.41)

Generally, these one-way results are quite similar to those we observed under the

constant salvage value scenario. This would appear to suggest that, given the parameter

ranges considered in our analysis, adopting a marginally decreasing salvage value

function provides little difference in procurement decisions and cost penalties.

There is one interesting difference, however. Recall that Q" faced with a bi-

modal requirements distribution and constant salvage values, was 400 (see Table 6).

Now, the similar scenario with marginally decreasing salvage values yields an optimal

procurement decision of 327 units. With the bi-modal requirement distribution, there is a

relatively high likelihood of observing very low construction phase requirements. For

moderate procurement quantities, this would result in a substantial quantity of surplus

stock. When larger disposal quantities earn less revenue per unit (as is the case with

marginally decreasing salvage values), it becomes less attractive to over-procure during

project construction when one is assuming that all remaining items will be disposed. This

reduces the optimal procurement quantity.
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6.3 Increasing Salvage Values
Finally, we consider model results for the case of increasing salvage values.
Table 12 illustrates the various increasing salvage functions analyzed (again, recall that

for the case of constant salvage values, the settings of g were 20, 35 and 50).

Table 12
Increasing Salvage Value Cases

Case 1 Case 2 Case 3
g L U | N | & | L | U] N| s L, U | N
5 1 10 3 1 20 25 1 100
20 11 30 40 21 50 30 | 101 | 110
25 31 60 45 51 100 40 | 111 | 140
60 61 100 65 | 101 | 140 60 | 141 | 170

40 101 | 130 | 30 35 141 | 200 | 60 40 171 | 220 | 50
20 131 | 170 | 40 25 | 201 | 240 | 40 30 | 221 | 250 | 30
10 171 | 200 | 30 20 | 241 | 260 | 20 15 | 251 | 290 | 40

1 201 % 1 261 ot 1 291 %

The model results are given in Table 13 (see pages 132-133). All treatment

combinations, except the final two, use "Case 1" for the salvage value function.



132

Table 13
Results - Increasing Salvage Values
Treatment Integrated Integrated All-disposal Myopic
Combination (exact) (approx.)

Intermediate 500 500 400 400
(1.99) (1.99)

B, low 500 500 400 400
(1.77) (1.77)

B, high 500 500 400 400
(2.21) (2.21)

B, low 437 434 400 300
(0.01) (0.67) (4.45)

B, high 500 500 400 400
(3.63) (3.63)

h low 500 500 400 400
(2.74) (2.74)

h high 500 459 400 400
(0.07) (1.30) (1.30)

a low 500 500 400 400
(2.34) (2.34)

a high 500 500 400 400
(1.55) (1.55)

T, low 500 500 400 400
(3.36) (3.36)

T_high 442 437 400 400
(0.01) (0.81) (0.81)

D, incr. 600 600 500 500
(1.30) (1.30)

D, decr. 403 400 300 300
(0.004) (2.88) (2.88)

D_ level 500 500 400 400
(1.63) (1.63)
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Treatment Integrated Integrated All-disposal Myopic
Combination (exact) (approx.)

D, bi-modal 500 500 400 300
(1.03) (4.38)

A low 500 500 400 400
(1.60) (1.60)

A high 500 500 400 400
(2.27) (2.27)

D, low 437 434 400 400
(0.01) (1.24) (1.24)

D, high 500 500 400 400
(2.75) (2.75)

v, low 455 451 400 400
(0.01) (0.87) (0.87)

v, high 502 501 400 400
(0.0001) (3.08) (3.08)

g; Case 2 500 500 401 400
(2.16) (2.21)

g Case 3 503 502 401 400
(0.001) (1.89) (1.95)

We observe that percentage cost penalties are somewhat higher than those
previously provided for constant, or marginally decreasing salvage values. Increasing
salvage values may not have a substantial effect on procurement quantities, but they do
increase the penalty of following a non-integrated inventory management strategy. If
surplus units can be either disposed for increasing (attractive) salvage values or be used to
satisfy ongoing usage, the impact of solely considering the construction phase, or
restricting one’s post-project decision to disposal only, becomes more severe.

There are, however, some optimal procurement quantities which are somewhat
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larger under increasing salvage values. Recall that results for constant, marginally
decreasing and increasing salvage values are provided in Tables 6, 11 and 13, respectively
(also, remember that a list of tables is provided on pages x and xi of the dissertation).
Note that when B, is at its low value, the Q. was 459 (constant salvage values), 462
(marginally decreasing) and 500 (increasing). For the high setting of @, the 0.° was 450
(constant salvage values), 453 (marginally decreasing) and 500 (increasing). In these
cases, non-constant salvage values tend to increase Q. since relatively large disposal
quantities generate larger total salvage revenues than those that could be earned with
constant salvage values. For example, with increasing salvage values, one has to dispose
at least 61 units (but no more than 100) to earn a salvage value of $60 per unit. This
attractive disposal opportunity provides the incentive to procure extra units. Note that,
with the low value of B, or the high setting of a, the desire to over-procure to protect
against construction phase stockouts or to provide for ongoing operational usage, is
somewhat eroded. It is the (initially) higher disposal revenue that makes it worthwhile to
over-procure.

Moreover, note Q," for Cases 2 and 3 (respective increasing salvage value
functions). These decisions are both 401. This quantity does not correspond to a specific
requirements value (as most of the non-integrated strategies do), but rather a "breakpoint"
in the salvage value function. In both of these functions, there is an L, (on the
"increasing" side) equal to 101. If one wants to obtain the salvage values associated with
L; equal to 101, then one would need to procure exactly 101 units above a requirements

value. This leads to the procurement decision of 401 units.
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7. FUTURE PROJECTS ANALYSIS

Thus far, we have examined the procurement of an item to satisfy requirements
during a project’s construction phase. Surplus units on-hand at the conclusion of
construction may be disposed, or used to satisfy ongoing operational usage. As it stands,
the only source of requirements for this item in the future consists of this ongoing usage.

However, companies would hope to be around long enough for more than just one
project! Suppose one considers the impact of a subsequent large-scale project, occurring
at some random time in the future. What effect does the presence of this next project
have on the procurement decision in the initial project? How are disposal decisions at the
conclusion of the first project affected? Presumably, if unit acquisition costs in the
subsequent project rise substantially from their levels in the first project, then one may
find it advantageous to procure more (and/or dispose less) in the initial project, assuming
that the same item is used in the subsequent project. Figure 15 illustrates a timeline for
this decision-making situation.

We shall model two scenarios of inter-project usage: no usage, or deterministic-
level, (ongoing) usage. We note that suggesting there is no usage during the inter-project
period resembles the situation involved in the procurement of pipe for large pipeline
projects. In this context, pipe is not retained for ongoing "spare parts" usage. Its only
source of usage is during large-scale projects.

We shall begin by examining the (less complex) case of no inter-project usage.



Figure 15
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Then, we shall examine the case of deterministic, level ongoing usage. Within each
section, we shall treat the three respective salvage value functions (constant, marginally

decreasing and increasing).

7.1 No Inter-Project Usage

After initial project completion, there is a random time until the subsequent
project. This random time follows a discrete probability distribution. We introduce the
following notation:

t-.

i

the end-point of time interval / associated with a subsequent project
(i =12,...,n)

i a particular time interval

D probability of a subsequent project beginning within [z, ¢]

Common probability rules maintain that each p, is non-negative. However, we note that
the sum of the respective probabilities over all time intervals does not necessarily have to
equal one (a sum less than one would indicate, with a certain likelihood, the case of no
future projects). We assume that the subsequent project is equally likely to occur any
time within [z, ,, ;] and that ¢, = 0.

As an example, suppose we had three potential time intervals (in years) for the
subsequent project with ¢,, ¢, and ¢; values of 1.0, 2.5 and 3.5. Suppose further that the
respective probabilities were 0.6, 0.25 and 0.15. This probability and time interval
combination suggests that there is a 60% chance of a subsequent project beginning at any

time within 1.0 years after initial project completion, a 25% likelihood that a subsequent

project will begin between 1.0 and 2.5 years after the initial project and a 15% chance that
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a subsequent project will commence between 2.5 and 3.5 years in the future.

Surplus stock may be retained after completion of the initial project in the hope of
satisfying part of the requirements of the subsequent project. Maintaining available on-
hand stock, then, means that those specific units will not need to be procured during the
future project. This represents a cost savings. However, one must pay holding charges to
carry these units in inventory. As we have done in earlier chapters of this dissertation, we
shall use continuous discounting to determine these holding costs. Let us introduce some
further notation:

Vv, Unit acquisition cost in a subsequent project

Due to varying market conditions, this future unit procurement cost may be greater than,
the same as or less than the unit cost in the initial project. (However, it will most
certainly be lower than v, the applicable unit price should one be required to replenish for
any ongoing usage).

The present value of the inter-project costs for each surplus unit retained may be

modelled as:

Tf,(t,,)[R(to)}dt,, (7.1)
0

where ¢, ., represents the largest ¢, value under consideration and:

t

R(t) = f he®dz -ve ™ (7.2)
0

and, for¢,, <¢t, st
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P;
t. -t

i i-l

f @) =

Evaluation of (7.2) gives (recall that 4 * = h/a):

R'(1-e %) - ve™ (7.3)

Since we are dealing with a discrete probability distribution, we may rewrite (7.1)

as.
n 0
Y [Ra,) il dr,
=1 L=t
i-\
which is:
n p h
" [R(t)dr
X [Re4, (7.4)

Substituting (7.3) into (7.4) gives:

!

‘znl: # f[h ‘A-e™) - ve """]dto (7.5)
4
Evaluation of the integral in (7.5) gives:
h't, 'Il - ‘[/'?1 e + ve ")dto
fi fio
which can be expressed as:
e - 1) - ( ’ /; v’)[e‘“"" - e (7.6)
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Thus, the expected present value of the inter-project costs per surplus unit retained

(EIPC) becomes:

=l 5 T4

£IpC = 3 ( At =0 - (h - V’J[e‘“’"' -e“‘"]] (7.7)

Note that the unit inter-project costs are linear with respect to the quantity of
retained stock. In essence, they are independent of the on-hand surplus after initial
project completion (assuming that all units retained are needed in the subsequent project,
a rather reasonable assumption).

Numerical Example:

Consider the following parameter values:

p,=0.05 t; = 1.0 years

p>=0.05 t, = 3.0 years

p;=0.90 ;= 4.5 years

h = $13 per unit of inventory per year

v, = 5100

a=0.10

Using equation (7.7), we determine that E/PC = -32.777.

We note that, for realistic settings of our parameters, E/PC will have a negative
value (ie. ignoring any immediate salvage value, it is attractive to retain surplus items).
Observe, however, that if the unit price in the subsequent project is quite low, then the

EIPC value could be positive.
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7.1.1 Constant Salvage Values

Disposing surplus stock upon completion of the initial project generates
immediate revenues. Since we have constant marginal inter-project costs and disposal
revenues, the determination of optimal disposal quantities upon completion of the initial
project is quite straight-forward. We simply compare the associated costs and revenues
in the following fashion:
] If EIPC + g < 0 (this implies that £/PC < -g), then W = 0. No surplus
stock is disposed (equivalently, all units are retained) since the benefit
(cost reduction) of retention is higher than the benefit of disposal.

° If EIPC + g > 0 (this implies that E/PC > -g) then W* =[. All surplus
stock is disposed (equivalently, no units are retained) since the benefit
(cost reduction) of retention is less than the benefit of disposal.

Figure 16 illustrates this decision rule. The numerical example provided earlier
gave a result of -32.777 for EIPC. Consequently, we would need to obtain a unit salvage
value of more than $32.777 in order to make disposal attractive. If our salvage values
were below $32.777, then retention of surplus stock would prove the best choice.

The disposal choice after the initial project is, essentially, an "all-or-nothing"
decision. We either dispose everything on-hand, or retain all of it to satisfy future project
requirements. One could suggest that, if one were indifferent between surplus stock
retention or disposal (ie. EIPC = -g), then it could be attractive to dispose a portion of the
on-hand surplus. However, in this extreme case, observe that total costs would be
equivalent under any disposal strategy. The key finding is that an organization could

never be better off by disposing a portion of the on-hand surplus.

Since disposal decisions are independent of on-hand stock, the EPV"(I) values are
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either:

® EIPC * I, if W =0 (all surplus stock is retained)
® -g *[,if W =1(all surplus stock is disposed)

As we did in Chapter 6, we shall calculate the percentage cost penalties of
following non-integrated inventory management strategies. We shall use the same values
for construction phase parameters as our previous analysis (see Tables 3 and 4).
However, since we do not have any ongoing usage, the parameters 4, D, and v, will not
be used in this section.

Table 14 lists the respective inter-project period probability distributions used in
our analysis. Table 15 gives the range of values for the parameter v,, the unit acquisition

cost in a subsequent project.

Table 14
Inter-Project Period Probability Distributions
Case 1 Case 2 Case 3
Di L, Di L Pi f
0.6 1 0.2 0.5 0.05 1
03 2 0.6 3 0.05 3
0.1 3.5 0.2 4 0.9 4.5
Table 15

Range of Unit Acquisition Costs in a Subsequent Project
Parameter Low Value Middle Value | High Value

v, $80 $100 (equal to v.) ' $120
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Table 16 (see pages 144-145) provides the procurement quantities, selected by the
various approaches, in the initial project's construction phase, as well as any applicabie
percentage cost penalties. All treatment combinations, unless otherwise indicated, use
"Case 1" for the inter-project period probability distribution.

Table 16
Results - Future Projects, No Inter-project Usage, Constant Salvage Values

Treatment Integrated Integrated All-disposal Myopic
Combination (exact) (approx.)

Intermediate 400 400 400 400

B, low 400 400 400 400

B, high 500 400 400 400
I (0.23) (0.23) (0.23)

B, low 400 400 400 300
(4.59)

B, high 500 500 400 400
(2.72) (2.72)

h low 500 500 400 400
(0.80) (0.80)

h high 400 400 400 400

a low 500 500 400 400
(0.42) (0.42)

a high 400 400 400 400

T, low 500 500 400 400
(2.12) (2.12)

| T. high 400 400 400 400

D, incr. 600 600 500 500
(1.20) (1.20)
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Treatment Integrated Integrated All-dispo<al Myopic
Combination (exact) (approx.)
D, decr. 400 400 300 300
(2.75) (2.75)
D, level 500 500 400 400
(2.33) (2.33)
D, bi-modal 600 600 400 300
(5.23) (10.74)
g low 400 400 400 400
g high 400 400 400 400
¢, Case 2 400 400 400 400
¢, Case 3 400 400 400 400
v, low 400 400 400 400
v, high 500 500 400 400
(2.31) (2.31)

One of the main conclusions of this analysis is that the desire to over-procure in

the initial project’s construction phase has been somewhat dampened. For several of the

scenarios, adopting a non-integrated inventory management strategy yields identical

optimal procurement decisions to those given under an integrated approach. The

percentage cost penalties for these scenarios are zero. When the only source of item

usage comes from large-scale project requirements, simply considering the needs of one’s

initial project may represent an attractive policy.

However, there are instances in which considering future projects does lead to

differences in the procurement decisions produced by the integrated and non-integrated

strategies. We note that the following scenarios: B, high, B, high, 4 low, a low, T, low
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and v, high each lead to 0."'s of 500 units. Intuitively, this makes sense for each of these
scenarios suggests a greater attractiveness in over-procuring during the initial project.

Observe also that the integrated optimal procurement quantity under a bi-modal
requirements distribution is rather large (600 units). When we have future projects and

no ongoing usage, there is a considerable constant marginal benefit to retaining surplus

stock (recall that under the cases presented in Chapter 6, the marginal benefit of retaining
extra units decreased as one retained more and more units). Given that the bi-modal
distribution provides a good chance of observing low construction phase requirements, it
is not surprising that the optimal procurement quantity is rather large. Procuring a large
quantity in the construction phase would yield a fair amount of excess stock, should the
lowest requirements value be observed. Since the bi-modal distribution could aiso
produce relatively high requirements, over-procurement is further warranted due to its
ability to hedge against costly construction phase stockouts. Note that following either

non-integrated approach leads to fairly large cost penalties.

7.1.2 Marginally Decreasing Salvage Values

Recall that with constant salvage values, the disposal choice after the initial
project was an "all-or-nothing" decision. With marginally decreasing salvage values, the
“all-or-nothing" disposal decision is now made at gach of the respective salvage values.
Consequently, we ought to investigate each particular salvage value to determine if

disposal is warranted.

However, as Figure 17 shows, we can take advantage of a simpler process. We
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know that if disposal is not warranted for a certain salvage value, it will never be

attractive to dispose for lower salvage values. As a result, we begin our determination of
optimal disposal decisions by examining the first (largest) salvage value. We compute
the quantity EIPC + g, If this value is < 0, then we would never find it attractive to
dispose surplus units, whatever the salvage value. Thus, we would have W =0 for all
quantities of surplus stock. The key conclusion is that whenever we obtain a value of
EIPC + g, < 0, our procedure can stop. Should it be beneficial to dispose surplus stock at
a particular unit salvage value, then we will continue to dispose until at least the point
where the surplus equals the maximum disposal quantity at that salvage value. In the
extreme case wherein it is attractive to dispose stock at the lowest salvage value (g; = 31
per unit), then W = [ for all quantities of surplus stock.

The values of EPV’(I) are determined in a straight-forward manner. For any
quantity of surplus stock, we obtain the total salvage revenue (if any) and add this to
EIPC (I-W').

The results for the case of marginally decreasing salvage values are given in Table
17 (see pages 149-150). All treatment combinations, unless otherwise indicated, use
"Case 1" for the salvage value (see Table 10) and inter-project probability distributions

(see Table 14).
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Treatment Integrated Integrated All-disposal
Combination (exact) (approx.)
Intermediate 400 400 400 400
B, low 400 400 400 400
B, high 500 400 400 400
(0.23) (0.23) (0.23)

B, low 400 400 400 300
(4.59)

B, high 500 500 400 400
(2.72) (2.72)

h low 500 500 400 400
(0.80) (0.80)

h high 400 400 400 400

a low 500 500 400 400
(0.42) (0.42)

a high 400 400 400 400

T. low 500 500 400 400
(2.12) (2.12)

T_high 400 400 400 400

D, incr. 600 600 500 500
(1.20) (1.20)

D, decr. 400 400 300 300
(2.75) (2.75)

D, level 500 500 400 400
(2.33) (2.33)

D_ bi-modal 600 600 327 300
(9.25) (10.74)

g Case 2 400 400 400 400
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Treatment Integrated Integrated All-disposal Myonpic ,

Combination (exact) (approx.)
400

g, Case 3 400 400 400 l
t, Case 2 400 400 400 400
t, Case 3 400 400 400 400
v, low 400 400 400 400
v, high 500 500 400 400 ,
| (2.31) 2.31)

Generally, these one-way results are quite similar to those we observed under the
constant salvage value scenario. This would appear to suggest that, given the parameter
ranges considered in our analysis, adopting a marginally decreasing salvage value
function provides little difference in procurement decisions and cost penalties.

There is one interesting difference, however. Recall that Q,", faced with a bi-
modal requirements distribution and constant salvage values, was 400 (see Table 16).
Now, the similar scenario with marginally decreasing salvage values yields an optimal
procurement decision of 327 units. With the bi-modal requirement distribution, there is a
relatively high likelihood of observing very low construction phase requirements. For
moderate procurement quantities, this would result in a substantial quantity of surplus
stock. When larger disposal quantities earn less revenue per unit (as is the case with
marginally decreasing salvage values), it becomes less attractive to over-procure during

project construction. This reduces the optimal procurement quantity.
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7.1.3 Increasing Salvage Values
The process of finding optimal disposal quantities for the case of increasing
salvage values is somewhat similar to the procedure adopted in the previous section.

Figure 18 provides an illustration of the appropriate decision rules.

As we established in section 7.1.2, we know that if disposal is not warranted for a

specific salvage value, it will never be attractive to dispose for lower salvage values.
Consequently, we begin our determination of optimal disposal decisions by examining
the largest increasing salvage value. We compute the quantity £IPC + g, If this value is
< 0, then we would never find it attractive to dispose surplus units, whatever the salvage
value. Thus, we would have #" = 0 for all quantities of surplus stock.

If it is beneficial to dispose surplus stock for a certain increasing salvage value,
we will continue to dispose / units as long as L; s /< U, As an example, suppose we
found it worthwhile to dispose stock for the largest increasing salvage value, but for none
of the others. In that case, we would have #" = 0 for all levels of surplus stock until / =
L, (where L, represents the L, value for the largest increasing salvage value). Then, we
would have W = [ (dispose all stock) for L,, s [s U,, (where U, represents the U, value
for the largest increasing salvage value)

If we do find it attractive to dispose stock for at least one of the increasing salvage
values, then we will need to examine the largest salvage value on the decreasing side.
Suppose that, in the example under consideration, none of the decreasing salvage values
were found to be sufficiently large to permit disposal. As a result, our # values would

be W' = U, forall [ » U,
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As we found in the previous section, for cases in which it is attractive to dispose
stock at the lowest salvage value, then W = [ for all quantities of surplus stock.

The values of EPV (I) are determined in a straight-forward manner. For any
quantity of surplus stock, we obtain the total salvage revenue (if any) and add this to
EIPC (I- W').

The results for the case of increasing salvage values are given in Table 18 (see
pages 154-155). All treatment combinations, unless otherwise indicated, use "Case 1" for
the salvage value and inter-project probability distributions. The increasing salvage value

functions are included in Table 12, while Table 14 provides the inter-project probability

distributions.
Table 18
Results - Future Projects, No Inter-project Usage
Increasing Salvage Values
=
Treatment Integrated Integrated All-disposal
Combination (exact) (approx.)
Intermediate 400 400 400 400
B, low 400 400 400 400
B, high 500 400 400 400
(0.23) (0.23) (0.23)
B, low 400 400 400 300
(4.59)
B, high 500 500 400 400
(2.72) (2.72)
h low 500 500 400 400
(0.80) (0.80)
h high 400 400 400 400
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Treatment Integrated Integrated All-disposal
Combination (exact) (approx.)
a low 500 500 400 400
(0.42) (0.42)
a high 400 400 400 400
T, low 500 500 400 400
(2.12) (2.12)
T_high 400 400 400 400
D, incr. 600 600 500 500
(1.20) (1.20)
D_ decr. 400 400 300 300
(2.75) (2.75)
D, level 500 500 400 400
(2.33) (2.33)
D, bi-modal 600 600 400 300
(5.23) (10.74)
g; Case 2 400 400 401 400
(0.01)
g: Case 3 400 400 401 400
(0.01)
t, Case 2 400 400 400 400
t, Case 3 400 400 400 400
v. low 400 400 400 400
v, high 500 500 400 400
(2.31) (2.31)

Again, we observe similar results to those obtained under the constant salvage

value scenario. However, note the behaviour of the various inventory management

strategies for Cases 2 and 3 of the salvage value function. In these cases, we obtain a

higher procurement quantity for the all-disposal case than we do for the integrated
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strategy. This marks the first time that a non-integrated approach has produced larger
procurement quantities than those given under an integrated method. It would appear that
when one is limited to the disposal of all surplus units, it can become attractive to “jump
up” to a higher D, + L, value. Note that both cases 2 and 3 have L, values of 101 on the
“increasing” side. When we consider future projects and no inter-project usage, we have
often found it best (given the range of parameter values in our model) to retain all surplus
units upon completion of the original construction phase. Consequently, there is no

desire to “jump up” to a higher L, when adopting an integrated strategy.

7.2 Deterministic, Level Ongoing Usage

We shall now extend our analysis to consider the case of deterministic, level
ongoing usage of an item during the inter-project period. In this case, materials managers
may retain surplus stock after completion of the initial project to satisfy two sources of
future usage of an item; namely, operational ongoing usage as well as requirements in a
subsequent project.

Recall that in the case of no inter-project usage, all of the stock retained (after any
disposal decision) was available to meet requirements in a subsequent project. This
resulted in a future cost savings since those specific units did not need to be procured
during the future project.

When we introduce ongoing operational usage during the inter-project period, the
quantity of stock on-hand when the next project occurs can still be transferred to the

subsequent project. As before, this provides a cost savings. However, the specific level
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of on-hand stock will likely not be equal to the amount available at the start of the inter-
project period. Operational usage runs down on-hand stock, while replenishments of size
Q, (made every Q /D, time units) build it back up. We require the following notation:

I.: (Approximate) on-hand inventory when a subsequent project occurs

As an aside, we note that procurement for ongoing operations can be affected by
the subsequent project. When the next project occurs, materials managers are provided a
special opportunity to procure items at v, (v, < v,) to satisfy ongoing usage from the earlier
project. Others who have examined special procurement opportunities include Whitin
(1953), Burton and Morgan (1982), Lev and Soyster (1971) and Hall (1992). We wish to
note an assumption that we make regarding this scenario. Faced with future projects, we
realize that (in practice) materials managers may adjust their ongoing replenishment
qQuantities, particularly if a subsequent project is imminent and a replenishment is
required. Since regular replenishments cost v, per unit, a materials manager may opt to
bring in very little at the regular price, realizing that in a very short time, one will have
the opportunity to replenish at reduced unit prices. However, we will ignore these
adjustments of @, which may occur as a future project draws near. These are rather
complicated effects. Besides, assuming that Q, is established without consideration of
future projects ought to have very little impact on the overall Q." and W decisions.

In order to accurately calculate overall costs, we need to determine the quantity of
on-hand stock when a subsequent project occurs. Obviously, /, is affected by, among
other factors, the number of units retained after the disposal decision (M), the annual

usage rate in the ongoing phase (D,), the optimal ongoing replenishment quantity (Q,)
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and the time until a subsequent project. However, determining exact on-hand stock levels
for each and every potential moment at which a future project could occur, by using
simulation, could prove extremely time-consuming. Due to this complexity, we shall
develop a heuristic approach to approximate /, (note that a general treatment of heuristic
procedures is provided in Barr, Golden, Kelly, Resende and Stewart, Jr. (1995) as well as
Silver, Vidal and de Werra (1980)). Further, we note that solely for purposes of
determining the subsequent amount of time over which to discount (in order to calculate
present values of various costs), we assume that the subsequent project occurs half-way
within [z, £].

Our heuristic approach is illustrated in Figure 19. Recall that in Chapter 4, we
determined the present value of beginning the ongoing phase of a constructed facility
with M units of on-hand inventory. Recall further that we had a “transition” period
during which these M units were depleted. When these units were eventually used up by
ongoing operations, we began making replenishments of size Q,. Since ongoing usage
was assumed to be constant and known, we showed (in Chapter 3) that materials
managers could time their replenishments so as to arrive precisely when a unit was used
in ongoing usage. Consequently, this meant that each replenishment cycle was Q,-1 units
high. These ongoing replenishments continued indefinitely.

The heunistic approach we suggest for estimating /, when a subsequent project
occurs takes the above issues into consideration. In particular, we wish to carefully
model inventory levels during the specific time interval in which we first enter ongoing

phase replenishment cycles. It is during this time interval that the “transition” period
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stock is depleted, and one begins replenishments of size Q,. During this specific time
interval, we shall explicitly calculate the average on-hand inventory level. However, if
during all parts of a given time interval, one is in the transitional period of ongoing
operations (still using on-hand stock retained after any disposal decision), or completely
within the ongoing phase replenishment cycles, then we shall adopt a simpler approach
for estimating /, within that time interval.

The specific time interval i in which we first enter the ongoing phase

replenishment cycles corresponds to the first ¢, such that:

M-Dt <0 (7.8)

If (7.8) is satisfied, then the M units of on-hand stock would have been used up by the end
of this time interval, and one would have initiated the ongoing replenishment pattern. We
shall call i” the first time interval that satisfies (7.8).

We shall now describe our approach for calculating the average on-hand inventory
level during this specific time interval. We recognize that on-hand stock during this time
interval consists of three “types”. First, we have “transitional” stock. This is stock that is
used up prior to the initiation of ongoing replenishment cycles. Second, we have stock
that is part of “complete” replenishment cycles. This would result if (7.8) were satisfied
early enough within a time interval to allow stock from an ongoing replenishment cycle(s)
to be completely used up within that time interval. Finally, we have inventory that is
derived from an “incomplete” cycle. This results when a replenishment is made, but not

all of the units in this cycle are depleted before the end of the time interval. For
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computational ease in this heuristic, we ignore the step-wise ongoing usage pattern
provided in Chapter 3. We will assume that we have “linear” (ie. continuous) usage, thus
creating a series of traditional “sawtooth” patterns. Further, there are Q, units on-hand at
the top of each of these replenishment cycles. For purposes of this heuristic, these are
relatively minor modifications.

For the “transitional” inventory, we recognize that the total number of units on-

hand at the beginning of time interval i are (with ¢, = 0):

Since, by definition of i", the “transitional” stock is completely used up within this

time interval, the average number of units on-hand during the transition period is:

M - Dt
— (7.9)

These units will last for the following number of time units:

M- Dt
D

[]

or, for the following portion of time interval i:

M- Dy,
_— .10
D, -1.) (7:19)

Combining (7.9) and (7.10) gives the average number of units on-hand during the

time interval, resulting from “transitional” usage:
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(M - Dozi_,] [M - Doti_l)
(7.11)

2 D -t )

We shall now calculate the average on-hand inventory level during the time

interval resulting from complete cycles. Each cycle has an average inventory of:

9,
- 7.1
3 (7.12)
with each complete cycle lasting for the following number of time units:
2 713
5 (7.13)

o

We need to determine the number of complete cycles that will occur within the
specific time interval. The duration of the time interval is ¢, - t., time units. The total
time “used up” by the transitional stock was, as given earlier:

M - Da[i-l
D

(]

Hence, the total time “available” for complete cycles is:

M- D¢
L=ty - (———o"' (7.14)

D

]

Algebraic manipulation of (7.14) gives:

i

- M
Do
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This expression makes intuitive sense for the value M/D, gives the point in time at
which the M units of retained stock would be depleted by ongoing usage. Since the end-
point of this specific interval is ¢, then we know that there must be t, - M/D, time units

available for complete cycles.

Multiplying (7.14) by D, provides the total usage during the time available for

complete cycles. This is given as:

Dt - M

Since each complete cycle comprises Q, units, the number of compiete cycles is:

Dt - M
—"‘—J (7.15)

2

where | x| signifies the largest integer smaller than or equal to x.

Combining (7.13) and (7.15) gives the length of time covered by these complete

cycles:

0, < (7.16)

or, the following portion of time interval i:

Dt -M
o, 2, (7.17)
Do (ti - [i-l)
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Combining (7.12) and (7.17) gives the average number of units on-hand during

the time interval, resulting from “complete” cycle usage:

Dgt -M

(_Q_o] o, [~ (7.18)
2 )\ D,@-1.)

When examining on-hand inventory due to an “incomplete” cycle, we must

recognize that the number of units used in an incomplete cycle is:

MOD (7.19)

D - MJ

o

Since @, is the number of units at the top of an incomplete cycle, the following

gives the number of units on-hand at the end of an incomplete cycle:

Q, - MOD (7.20)

Dy - M]

o

The average number of units on-hand during this incomplete cycle is:

0 +0, - MOD(D""' - M]
] o Q

o

2

which can be simplified as:
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Dt,—M
MOD| 2
Q

A (7.21)
Qo -
2
An incomplete cycle will last for the following number of time units:
Dt -M
MoODl =2
2,
DO
or, the following portion of time interval i:
Dt -M
MOD| —2 i "
D{ Q, ] (7.22)

Do(ti - ti-l)

Combining (7.21) and (7.22) gives the average number of units on-hand during

the time interval, resulting from “incomplete” cycle usage:

Dt -M MO D,t, - M
o, 0, (7.23)

2 Dyt -1.)

MOD

Q, -

To calculate the average on-hand stock during the entire time interval i, we

combine (7.11), (7.18) and (7.23). This results in the following expression:
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Dt - M
[ M - Doti-l M - Do'i—l ( Qo) Qo Qo
2 D, -1.) 7 D, -¢.) ’
Dt - M Dt -M
MOD| =2 MOD| —2*
0 - o, ] 4 0, ] (7.24)
° 2 Dt -¢.)

We note that one can simplify (7.24) by taking 1/(¢-t,,) outside the expression.

This gives:
Dt - M
1 (M B Doti-l M - Doti-l Qo Qo °
+ | — +
L=t 2 D, 2 D,
Dt -M D,t, - M
MOD| —— MOD| ——
o - 0, o, (7.25)
? 2 D

The above expression, then, calculates the average on-hand inventory (/,) during
the first time interval, , such that the transitional stock was completely depleted and we
entered the ongoing phase replenishment pattern. We note that continuous values of
(7.25) are rounded to the closest integer.

The procedure we have described explicitly calculates on-hand stock levels during
an important time interval. However, we still need to determine appropriate on-hand

inventory levels during the other time intervals.
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As shown in Figure 19, for any time interval j prior to i°, we use the following

expression to determine the average on-hand stock during this interval:

(7.26)

Since we have yet to completely use up all of the “transitional” stock, determining the
stock on-hand half-way through this time period ought to be a good estimator of /, during
this time interval.

For any time interval &£ subsequent to i°, we use the following simple expression to

estimate the average on-hand stock during this interval;

Q, -1

> (7.27)

This expression recognizes that we would be completely within ongoing phase
replenishment cycles during all portions of time interval k. The average on-hand stock
during a single ongoing replenishment cycle ought to closely approximate the average on-
hand stock during the entire time interval. We note that if (7.27) provides a continuous
value, we round the value to the closest integer.

In our heuristic procedure, one unifying thread throughout all the time intervals
concerns the timing of the subsequent project. We are assuming that the project occurs
when the inventory is at its average level during a time interval. This average level is
computed in an exact fashion for any time intervals j < i while it is computed

approximately for time intervals £ > i". However, note that this is not equivalent to
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suggesting that the project occurs at the midpoint of an interval. As explained earlier, the
midpoint assumption is only used when determining the duration of time over which we
discount in order to calculate present values.

Numerical Example:

As a numerical example, consider the following parameter values:

t,=0
,=10
$,=20
t,=3.5

Q, =17 units

D, = 20 units per year

Suppose we wish to determine the on-hand inventory levels for all three time
intervals for M = 21.

We recognize that M - D ¢, will first be negative during the [¢,, ¢,] time interval, ie.
i =2. This represents the first time interval in which one begins ongoing phase
replenishments.

During the (¢, ¢,] time interval, we are still fully within the “transitional” period.
As a result, using (7.26) provides an average on-hand stock level during this interval of
11 units.

We begin the [z,, ¢,] time interval with one unit of inventory in “transitional” stock
(since M - D,,= 1) lasting for 1/20 time units. We also have one complete
replenishment cycle lasting for 17/20 time units and 15 units remaining at the end of an
incomplete cycle (the incomplete cycle lasts for 2/20 time units). Using (7.25), we

determine a value of 8.85 for average on-hand stock during this time interval, which is
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rounded up to 9.
The remaining time interval ([¢,, #;]) consists completely of ongoing replenishment

cycles. We estimate the average on-hand inventory during this time interval as 8 units

(ie. (0,-1)/2).

After estimating the /, levels for each of the possible time intervals until a
subsequent project, our next step is to determine the costs of beginning the ongoing phase
with M units of stock. This is denoted by PV(M). Recall that in Chapter 4, we
determined such an expression. However, that expression did not recognize the
possibility of subsequent projects at random points in time. For ease of reference, we

include the expression here (it appeared as (4.4) in Chapter 4):

|l - ¢ -Ma’

G/

PV(M) = -gl + gM + h’[M - e‘“[ ]] + e-(M’l)ul(Z(Qo)) (7.28)

I - e~

Recall that the quantity of disposed stock, W, was equal to / - M. Throughout our
derivation of expected costs in this section, we shall refer to (7.28) as the “old PV(M)".

In attempting to determine PV(M) when subsequent projects are introduced, we
must recognize that some costs occur prior to the subsequent project, while some costs
occur after the subsequent project. The former costs shall be referred to as “pre-project”
costs, while the latter shall be denoted by “post-project” costs.

During the time period between the commencement of the initial project’s
ongoing phase and the subsequent project, the M units of on-hand stock will be used and

ongoing replenishments (if any) will be inaugurated. As illustrated in our heuristic
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approach, the level of on-hand inventory when the subsequent project occurs is
represented by /. Hence, the present value of all costs during this “pre-project” period is
simply the difference between the ““old PV(M)” and the present value of having /, units
on-hand at the time of the project, using these /, units up and beginning ongoing
replenishment cycles. Figure 20 provides a sketch of these *“pre-project costs”. Note that
in calculating the pre-projects costs, we are taking the costs out to a certain time Y
(representing the time at which the subsequent project occurs) as the difference between
two infinite streams of costs. One stream starts at time 0, while the other starts at time Y.
Note further that Figure 20 represents the case of a time interval i fully subsequent to the
initiation of ongoing phase replenishment cycles. That is, the level of on-hand stock is
represented by the average inventory during a replenishment cycle, and the subsequent
project is assumed to occur when the inventory is at this average level.

We can use part of (7.28) to determine P¥(/,). Since the ongoing phase

replenishment cycles would be delayed by (/,+1)/D, time units, we have the following:

-la
1 -

PWI) = h' !4 - e'“[ ————J v e M z0)) (7.29)
1 -e™®

Since we assume (for present values purposes) that the subsequent project occurs
exactly half-way within the time interval (¢,, to ¢,) under consideration, the present value

of the *“‘pre-project” costs may be written as:

-a{t,. +1)

Old PV(M) - e % PWI) (7.30)



Figure 20

Sketch of Pre-Project Costs
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Now we shall explore the specific events which occur during the “post-project”
period. We propose that, as we discussed at the beginning of this section, any on-hand
stock when the subsequent project occurs be transferred to the subsequent project. This
results in a cost savings of /,v,, since these units do not need to be procured during the
subsequent project.

Moreover, as we also discussed earlier, the costs of meeting ongoing usage from
the original project are also affected by the subsequent project. When the next project
occurs, materials managers are provided a special opportunity to procure items at v, (v, <
v,) to satisfy ongoing usage from the first project. A vital question, therefore, is to
determine the best quantity one ought to procure at this reduced price. We shall use the
following notation:

S the quantity of stock ordered at v, to satisfy ongoing operational usage
from the original project

The present value of ordering S units is comprised of the following components.

Firstly, we have the costs of ordering these units. These are:

A+ Sv, (7.31)

We also have the costs of carrying the S units. Using the results developed in

Chapter 4 (and alluded to in (7.30)), we may write these carrying charges as:

'ls - e'“( 1‘—331] (1.32)
I -e™®
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Finally, we have the costs arising from the infinite pattern of stepwise cycles in
the ongoing phase. By procuring S units, we are delaying the infinite pattcrn by (S+1)/D,

time units. This gives the following expression:

e N (Z(Q,)) (7.33)

Combining (7.31), (7.32) and (7.33) provides an expression for the present value,
at the moment of purchase, of all costs associated with procuring S units at v,. This

expression is:

PV(S) =A + Sv, + h'

a

a1 -e™ S+’
S-eY ———J| +e ZQ,) (7.34)

1 -e@

As we have done in earlier portions of this dissertation, we will use the method of
differencing to find the optimal procurement amount (ie. the value of S, denoted by S”,
which minimizes PV(S)). Before doing this, however, we must show that the PV(S)
expression is convex. Note the close similarity between this expression and the one for
PV(M). This latter expression first appeared as (4.4) in Chapter 4 and was subsequently
repeated as (7.28) in this Chapter. The only differences between PV(S) and PV (M) is that
S is used in place of M in the holding cost expression (the third term) and in the offset of
the present value of the ongoing replenishment cycles (the final term in the expressions).
As well, PV(S) includes a (linear) cost of procuring the S units, while PV(M) provides
salvage revenue for the disposal of surplus stock. In Chapter 4, we showed that PV(M)

was indeed convex. Since PF(S) is structurally identical to PV(M), we know that PV(S) is
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convex.
In developing an analytical expression for S°, we need to find the first (ie.
smallest) integer S such that APV(S) = PV(S+1) - PV(S) > 0.

Evaluating the first difference of (7.34), and setting it strictly positive, yields:

’

v, + h' - e"s"’“'( h—’(l - e"’] - e"s"’“'(Z(Qo)(l - e'“» >0 (7.35)
1 -e™
which may be expressed as:
e‘(S'l)a’[h/ . Z(Qo)(l - e'“')] <v. +h' (7.36)

Solving for S in (7.36) gives the following inequality:

/
v. + h

~-(S+1)d’ < In
ZQ - e®)+ h’

which becomes:

ZONM -e®) +h’
oo L, |ZON - )+
a’ v, + h'

-1 (7.37)

This expression is used to find the optimal procurement quantity. In a fashion
analogous to that used in finding M, the procedure to find the best value of S is quite
straight-forward. One simply calculates, from the parameter values given, the right-hand
side of (7.37). The smallest integer greater than or equal to that right-hand side becomes
S".

To express all costs in a present value perspective, we discount any post-project
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costs back tc the beginning of the ongoing phase. Since we assume that the subsequent
project occurs ha!f-way through a time interval, we have the following expression for the

present value of the post-project costs:

-alt,, + 1)
e 2 (PV(S y - I,V,) (7.38)
The present value of beginning the ongoing phase with M units of stock on-hand
can be ascertained by combining (7.30) and (7.38). In addition, we must include the
probability, p,, of a project occurring within a given interval. This yields the following
expression (we shall call it the “new PV(M)” to distinguish it from the *“old PVY(M)”

computed without the consideration of future projects).

—a“l'l .Il)

New PV(M)= Old PV(M) + Z p [e 2 (PV(S ) -PWI) —ISVS) (7.39)
i=1

We have now developed an important expression which will be quite useful in
obtaining the best disposal quantities (and, later, the optimal procurement quantities) for
the case of future projects and ongoing usage. However, simply developing a heuristic
procedure is not sufficient. One must show that this heuristic approach does a reasonably
goad job of estimating the on-hand inventory levels (and associated costs) when a
subsequent project occurs. If it does a rather poor job, then one would not be confident in
the pre-project and post-project costs obtained.

We shall use a simulation experiment to judge the appropriateness of our heuristic
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procedure. Recall that two critical assumptions of our heuristic approach concerned the
timing at which a subsequent project would occur (we assumed it would occur exactly
halfway within a time interval) and the determination of on-hand inventory levels when
the project occurs, ie. the /, values. If we wanted to use simulation to determine the exact
timing of the next project and on-hand stock quantities, we would require the following
notation:

Exact time until a subsequent project that occurs in the ith interval

T

We note that 7; will satisfy the following expression:

G =4yt RAND(, - 1) (7.40)

]

where RAND is a random number drawn from a uniform distribution between 0
and 1. Moreover, we again note that 7, = 0.

The determination of the exact quantity of on-hand inventory is accomplished by
noting that, once the ongoing phase has begun, there are (M+1)/D, time units until the

ongoing replenishments (at unit price v,) commence. Consequently, if:
M+ 1)>Dr, (7.41)
then one would still be in the “transitional” period (namely, prior to the inauguration of

the ongoing replenishment pattern). Thus, if (7.41) is satisfied, then the following

expression represents the on-hand inventory:

(M + 1) - D, (7.42)



177
Any continuous values of (7.41) are rounded to the closest integer.
However, if {7.41) is not satisfied, then one would be somewhere within the

ongoing phase replenishment cycles. We recognize that the quantity:

Dy - (M + 1) (7.43)

represents the distance we have “progressed” into the infinite stepwise pattern. Recall
that each replenishment cycle (following an “‘exact” approach) has Q, - | units at its top.

The expression:

Dt -(M + 1)
o 5288

[

represents the number of units used in the last replenishment cycle. As a result, we can
determine the on-hand inventory at the specific moment z, by using the following

expression:

-1

o

D(Dr,. - (M + 1)]
Q, - 1 - MOD| = (7.45)

We used Microsoft Excel to conduct our simulation analysis. Appendix I contains
results from our experiment. For a specific set of inter-project period probability
distributions (in other words, a set of p,’s and ¢,’s), we began by computing the costs
associated with following our heuristic approach. We explored PV(M) values for
individual M’s, choosing specific values of M that we thought were most important to the

effective working of our heuristic. We wanted to be sure that our heuristic accurately



estimated costs arising when, for instance, specific values of M coincided with the
beginning of ongoing replenishments, or close to the time at which a subsequent project
occurred. We also computed the sum of all PV(M) values for every value of M from 0 to
600.

We ran a series of experiments for five different inter-project period probability
distributions. Our experiments in no way were meant to represent an exhaustive
collection of tests. Rather, we analyzed a range of possible inter-project period
distributions. Some featured a high likelihood of a subsequent project in the immediate
future, while another featured a relatively strong probability of a future project quite a bit
later. By testing a range of distributions, we can be confident that our heuristic approach
performs well under a variety of conditions.

We performed 100 replications of our simulation model for each PV(M)
calculation. This specific number of replications worked well in providing accurate
estimates of the exact expected costs, while also being computationally feasible. For each
set of simulation replications, we determined the average PV (M) value as well as the
standard error, s,.

In order to test the appropriateness of the heuristic, we need to determine the
difference between PV(M) values given by the heuristic and exact approaches. A “t-
value” can be computed by taking this difference and dividing it by the standard error
found in the simulation replications. We note that any t-value in excess of 2.0 (in
absolute value) would suggest a statistically significant difference between the heuristic

and exact costs. The t-value of 2.0 corresponds to a significance level of about 5%. That
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is, there would be a relatively small likelihood that such a difference was due to chance
occurrences.

As illustrated in Appendix I, the heuristic performs well. By assuming that the
subsequent project occurs exactly halfway within a time interval, and using our heuristic
to estimate /, there does not appear to be a significant difference in the PV(M) costs
produced by the two approaches. None of the t-values exceeds 2.0 (in absolute value).
Moreover, there does not appear to be a pattern of positive or negative t-values in our
results. The heuristic does not consistently over- or under-estimate the costs produced by
the exact approach. As an aside, we note that if one encountered a series of conditions
under which the heuristic failed to closely approximate the exact costs, then one could
“carve up” the time intervals into finer portions. This would result in relatively narrow
time intervals, so the assumption that a subsequent project occurs half-way within an
interval would become less prone to error. The downside to such an approach is the extra
computational effort generated by the additional time intervals.

Now that we have an approach to determine the present value of beginning the
ongoing phase with M units of stock while recognizing the likelihood of subsequent
projects, we require an approach to determine the best amount of stock to dispose, given a
specific inventory level at the conclusion of the construction phase. Recall that in
Chapter 4, we developed decision rules to choose the optimal disposal quantity, #*. We
were able to do this since PV(M) was convex with respect to the retention amount.
However, when we incorporate future projects into our analysis, we have no guarantee

that the PV(M) expression provided in (7.39) is convex with respect to M. Indeed, we
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have seen in our use of this model that PV(M) is not convex! As such, we are unable to
adopt the decision rule methodology used in Chapter 4. In order to determine the best
disposal quantities (and the very important EPV"(I) values), we must resort to a “brute
force” approach. That is, we must calculate, for every /, the associated costs of disposing
W units (for every W value less than or equal to /) and retaining M = [ - ¥ units to satisfy
ongoing operational usage or subsequent requirements in a future project. We must

evaluate the following expression:

EPV*(l) = min(-gl¥ + New PV -W)) (7.48)
W<l

The expression, as given above, is for the case of constant salvage values. For
non-constant salvage values, we would replace “-g/#” by the total salvage revenue earned

in making a total of W disposals.

7.2.1 Constant Salvage Values

The results for the case of constant salvage values are provided in Table 19 (see
pages 181-182). The reader is asked to recall that Table 3 provides a list of parameter
values and Table 5 gives the range of constant salvage values under consideration. The
inter-project period probability distributions and ranges for the acquisition costs in a
subsequent project are shown in Tables 14 and 15, respectively. All treatment
combinations, unless otherwise indicated, use Case 1 for the inter-project period

probability distribution.
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Table 19
Results - Future Projects, Ongoing Usage, Constant Salvage Values

[ —————————— =r———__—_'
Treatment Integrated Integrated All-disposal Myopic
Combination (exact) (approx.)

Intermediate 503 503 400 400
(1.44) (1.44)

B, low 503 440 400 400
(0.06) (1.22) (1.22)

B, high 503 503 400 400
(1.66) (1.66)

B, low 423 423 400 300
(0.62) (3.98)

B, high 503 503 400 400
(3.13) (3.13)

h low 502 502 400 400
(2.02) (2.02)

h high 440 436 400 400
(0.002) (0.95) (0.95)

a low 501 501 400 400
(1.62) (1.62)

a high 500 437 400 400
(0.06) (1.13) (1.13)

T low 516 516 400 400
(2.87) (2.87)

T. high 423 423 400 400
(0.69) (0.69)

D, incr. 603 603 500 500
(1.73) (1.73)

D, decr. 416 409 300 300
(0.01) (2.71) (2.71)

D, level 516 516 400 400
(2.21) (2.21)
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= —
Treatment Integrated Integrated All-disposal Myopic
Combination (exact) (approx.) ﬁ'

D, bi-modal 603 603 400 300
(3.83) (7.54)

A low 500 500 400 400
(1.18) (1.18)

A high 500 500 400 400
(1.59) (1.59)

D, low 500 420 400 400
(0.11) (1.01) (1.01)

D, high 500 500 400 400
(1.66) (1.66)

v, low 500 500 400 400
(1.11) (1.11)

v, high 503 503 400 400
(1.77) (1.77)

g low 503 503 400 400
(i.44) (1.44)

g high 503 503 400 400
(1.44) (1.44)

¢, Case 2 444 444 400 400
(1.18) (1.18)

t;Case 3 457 452 400 400
(0.004) (1.07) (1.07)

v, low 423 423 400 400
(0.86) (0.86)

v, high 516 516 400 400
2.69) 2.69)

One observation illustrated by this table is that the respective Q_" values given for

the case of future projects, no ongoing usage and constant salvage values (see Table 16)

provide lower bounds on the optimal procurement quantities when ongoing usage is
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combined with future projects. When one incorporates usage in the inter-project period
(with a higher unit value), then one will procure at least as much as one did in the case of
no ongoing usage. We also note that, generally, the percentage cost penalties of the non-
integrated inventory management strategies are larger under the cases of ongoing usage
than they are when there is no ongoing usage between projects.

However, we wish to point out the myopic percentage cost penalties observed for
the case of the low setting of B,. In particular, Table 19 shows that 0, was 300 while
Q." was 423. The percentage cost penalty associated with this case was 3.98%. Table 16
(constant salvage values and no ongoing usage) illustrated Q,," and Q." values of 300 and
400, respectively. Even though these procurement quantities are closer than those in
Table 19, the percentage cost penalty of following the myopic strategy is larger (4.59%).
This behaviour is observed since the absolute total cost figures of procuring specific
quantities are substantially less when there is no ongoing usage between projects (since
one does not have to make relatively costly replenishments at unit price v,). Thus,
despite the fact that the two procurement quantities in Table 16 are closer than those
observed in Table 19, the smaller overall cost values in Table 16 provide larger
percentage cost penalties.

We also observe that several of the Q," values occurred a few units above a
specific construction phase requirements value. This occurs due to the non-convexity of
the EPV"(I) function. It was often worthwhile to procure a few units above a
requirements value in order to capture the large cost savings associated with the

decreasing (and non-convex) EPV"(I) function.
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Finally, we note that for many of the treatment combinations, disposal of surplus
stock was not attractive. For the ranges of parameter values considered in our analysis,
the two sources of future usage of the item would appear to warrant the retention of

surplus inventory after completion of the original project’s construction phase.

7.2.2 Marginally Decreasing Salvage Values

The results for the case of marginally decreasing salvage values are provided in
Table 20 (see pages 184-186). One can find the various marginally decreasing salvage
value functions in Table 10. The other tables pertinent to this section were listed at the
beginning of Section 7.2.1. As before, all treatment combinations (unless otherwise
specified), use Case | for the marginally decreasing salvage value functions and inter-
project period probability distributions.

Table 20
Results - Future Projects, Ongoing Usage, Marginally Decreasing Salvage Values

Treatment Integrated Integrated All-disposal
Combination (exact) (approx.)

Intermediate 503 503 400 400
(1.44) (1.44)

B, low 503 440 400 400
(0.06) (1.22) (1.22)

B, high 503 503 400 400
(1.66) (1.66)

B, low 423 423 400 300
(0.62) (3.98)

B, high 503 503 400 400
(3.13) (3.13)
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Treatment Integrated Integrated All-disposal Myopic
Combination (exact) (approx.)
_ A —

h low 502 502 400 400
(2.02) (2.02)

h high 440 436 400 400
(0.002) (0.95) (0.95)

a low 501 501 400 400
(1.62) (1.62)

a high 500 437 400 400
(0.06) (1.13) (1.13)

T. low 516 516 400 400
(2.87) (2.87)

T, high 423 423 400 400
(0.69) (0.69)

D, incr. 603 603 500 500
(1.73) (1.73)

D, decr. 416 409 300 300
(0.01) (2.71) (2.71)

D, level 516 516 400 400
(2.21) (2.21)

D, bi-modal 603 603 327 300
(6.30) (7.54)

A low 500 500 400 400
(1.18) (1.18)

A high 500 500 400 400
(1.59) (1.59)

D, low 500 420 400 400
(0.11) (1.01) (1.01)

D, high 500 500 400 400
(1.66) (1.66)

v, low 500 500 400 400
(1.11) (L.1D
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Treatmeant Integrated Integrated All-disposzal Myopic
Combination (exact) (approx.)

v, high 503 503 400 400
(1.77) (1.77)

g; Case 2 503 503 400 400
(1.44) (1.44)

g, Case 3 503 503 400 400
(1.44) (1.44)

t,Case 2 444 444 400 400
(1.18) (1.18)

t,Case 3 455 450 400 400
(0.01) (1.16) (1.16)

v, low 423 423 400 400
(0.86) (0.86)

v, high 516 516 400 400
(2.69) (2.69)

We note a similarity between the results in Tables 19 and 20. This should not be

too surprising. If the disposal of surplus stock was unattractive for the case of constant

salvage values, then it will be difficult to justify it when salvage values begin to fall as the

number of disposals increase.

7.2.3 Increasing Salvage Values

The results for the case of increasing salvage values are provided in Table 21 (see

pages 187-188). Table 12 lists the various increasing salvage value functions used. The

other tables relevant to this section were listed at the beginning of Section 7.2.1. All

treatment combinations (unless otherwise specified) use Case 1 for the increasing salvage

value functions and inter-project period probability distributions.
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Table 21
Results - Future Projects, Ongoing Usage, Increasing Salvage Values
Treatment Integrated Integrated All-disposal Myopic
Combination (exact) (approx.)

Intermediate 503 503 400 400
(1.44) (1.44)

B, low 503 440 400 400
(0.06) (1.22) (1.22)

B, high 503 503 400 400
(1.66) (1.66)

B, low 423 423 400 300
(0.62) (3.98)

B, high 503 503 400 400
(3.13) (3.13)

h low 502 502 400 400
(2.02) (2.02)

h high 440 436 400 400
(0.002) (0.95) (0.95)

a low 501 501 400 400
(1.62) (1.62)

a high 500 437 400 400
(0.06) (1.13) (1.13)

T. low 516 516 400 400
(2.87) (2.87)

T high 423 423 400 400
(0.69) (0.69)

D, incr. 603 603 500 500
(1.73) (1.73)

D, decr. 416 409 300 300
(0.01) (2.71) (2.71)

D, level 516 516 400 400
(2.21) (2.21)




188

reatment Integrated Integrated All-disposal Myopic
Combination (exact) (approx.)
E—E———— ———————

D, bi-modal 603 603 400 300
(3.83) (7.54)

A low 500 500 400 400
(1.18) (1.18)

A high 500 500 400 400
(1.59) (1.59)

D, low 500 420 400 400
(0.11) (1.01) (1.01)

D, high 500 500 400 400
(1.6%) (1.66)

v, low 500 500 400 400
(1.11) (t.11)

v, high 503 503 400 400
(1.77) (1.77)

g Case 2 503 503 401 400
(1.36) (1.44)

g Case 3 503 503 401 400
(1.36) (1.44)

t; Case 2 444 444 400 400
(1.18) (1.18)

t; Case 3 467 459 400 400
(0.01; (1.47) (1.47)

v, low 423 423 400 400
(0.86) (0.86)

v, high 516 516 400 400
. (2.69) (2.69)

Again, we observe that there exists substantial benefit to retaining surplus stock

after the original project’s construction phase. Even when we incorporate increasing

salvage values (for the range of parameter values considered in this case), retention is



189
usually the best option. We note, however, that when there exists a very high likelihood
of a subsequent project “far down the road” {as provided in t, Case 3), surplus stock
disposal becomes rather attractive. The desire to retain surplus units to eventually fulfill
some of the requirements in a subsequent project is eroded due to the carrying charges
required to hold this stock. In addition, we note that the attractiveness of surplus disposal
is enhanced as the unit acquisition prices in a subsequent project fall. When
“deflationary” conditions exist, one would like to have relatively little on-hand when the
subsequent project arises. The cost savings obtained by transferring units to another
project are reduced when unit prices fall.

This concludes the treatment of future projects. We have examined this important
materials management issue through two separate cases; namely, no inter-project usage
and deterministic, level ongoing usage. We have calculated the costs of retention and
disposal decisions, and used this information to find the best procurement quantities in

the original project’s construction phase.
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8. MODEL EXTENSIONS

Thus far, this dissertation has developed a mathematical model to examine the
procurement and disposal of an important, expensive item within the context of a large-
scale project. Non-constant salvage values and the consideration of ongoing usage and
possible future projects have also been treated.

In this Chapter, we seek to extend our mathematical model to analyze two
additional cases; namely, deterministic, time-varying usage in the ongoing phase and
multiple construction phase procurement opportunities. We shall consider these cases in
the context of constant salvage values and no future projects (in other words, the situation
illustrated in Section 6.1 of this dissertation). Our goal in this Chapter shall not be to
exhaustively analyze different treatment combinations, but rather to illustrate how one
can modify our model! to take into account these two important extensions. We shall

provide some brief numerical analyses.

8.1 Deterministic, Time-Varying Ongoing Usage

Recall that our previous work in this dissertation has considered deterministic,
level usage in the ongoing phase. We used the parameter D, to represent the annual usage
rate. Moreover, we were able to generate expressions (see (3.12) in Chapter 3) that
provided the optimal ongoing phase replenishment quantity (Q,) for a given set of

parameter values. Recall that we also showed in Chapter 3 (and Appendix D) that the
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Economic Order Quantity (EOQ) was often a good place at which to initiate the search
process for finding O, We were also able to compute the present value of all future
ongoing phase costs associated with any replenishment quantity (see (3.7) in Chapter 3).

However, the assumption of deterministic, level ongoing phase usage will
certainly not always be valid. Based on discussions with materials management
personnel, we have found that other usage patterns may be appropriate. In particular,
ongoing phase usage could follow a time-varying pattern. We submit that this case calls
for a relatively high usage of an item during the startup phase of the facility (ie.
immediately after the end of the construction phase). This could be due to the so-called
"infant mortality" effect. Usage then tapers over time as the facility matures, then begins
to increase as items wear out.

From a practical perspective, it is probably wise to assume that the time-varying
usage pattern eventually becomes "level" (ie. at a constant annual usage rate). This
implies that we need to sub-divide the ongoing phase into two particular phases: a "time-
varying" period in which per period usage varies, and a "level" period in which per period
usage is constant. A vital question, obviously, involves the specific duration of the time-
varying nature of ongoing phase usage. The longer the duration of time-varying usage,
the greater the computational effort involved in determining appropriate replenishment
schedules. Moreover, from a present value perspective, the particular pattern of usage for
periods further into the future will have less bearing on the calculation of relevant costs
(for instance, the present value of beginning the ongoing phase with M units on-hand). It

will have even less bearing on the calculation of the present value of procuring a specific
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quantity in the construction phase.

Based on our discussions with materials management personnel, we submit that
an appropriate duration for the time-varying usage phase ought to be 3 years (36 months).
Any usage subsequent to that time is assumed to be constant and level. We require the
following notation:

d: number of units used in month j

Notice that we selected a month as the basic period during the time-varying usage phase.
We feel this decision is appropriate since there would be enough time periods during the
3-year phase to capture the essence of time-varying usage, yet not too many time periods
to make the computation of our replenishment schedules intractable. A narrow time
period (days or weeks) may introduce unwanted complexities (including data needs),
while a broad time period (quarters or half-years) would not adequately reflect the time-
varying nature of the pattern and the opportunities for replenishment.

Recognizing that the time-varying usage pattern lasts for 36 months, we realize

that either of the following two ongoing phase cases could occur:
36
Case A : M < ,21: d

This case implies that at least one replenishment will be required during the time-varying
portion of the ongoing phase. The quantity of on-hand stock at the beginning of the

ongoing phase (M units) is not large enough to cover all of the time-varying requirements.
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36
Case B : M > ,Eldj

This case implies that no replenishments are needed during the time-varying phase. We
have sufficient inventory to satisfy all time-varying requirements.

We shall begin by examining the various costs incurred under case A. The
determination of appropriate replenishment schedules during the time-varying usage
period is not a trivial task. We cannot simply conclude, as we did in Chapter 3, that each
replenishment quantity will consist of O, units. Since monthly usage varies, the
appropriate replenishment quantities during the time-varying period are also likely to
differ.

As is common practice in the literature, we will assume that replenishments can
only be made at discrete points in time (namely, at the beginning of each month). We
note that if one allowed continuous opportunities for replenishment, then the
computational effort involved in finding the respective replenishment quantities would
become immense. Furthermore, this assumption ought to be rather reasonable from a
practitioner perspective. Vendors of items may limit replenishment opportunities to a set
of pre-determined times. The use of discrete replenishment opportunities (and the fact
that ongoing phase stockouts are not permitted) implies that an ongoing phase
replenishment must cover an integer number of time periods (ie. months).

Silver, Pyke and Peterson (1998) succinctly explore the development of
replenishment schedules for the case of time-varying usage. In order to provide the

reader with some appreciation of the work previously done in this area, a few of the
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approaches will be briefly described. The Wagner-Whitin method uses dynamic
programming to provide the optimal replenishment quantities for time-varying usage.
However, this approach makes at least one critical assumption; namely, that there is an
"ending point" where the inventory level must be at zero or some other specified value.
We note that this could be worked into our mathematical model by assuming that the
inventory level must be zero at the conclusion of the time-varying period. Suppose that
one did the Wagner-Whitin calculations for the duration of the 36-month time-varying
period and assuming that one would enter the level usage period with 0 units on-hand.
We could then use our previous expressions (see (4.1) and (4.2) in Chapter 4) for
calculating the present value of having 0 units on-hand and making the optimal ongoing
phase replenishment decisions thereafter.

However, there would appear to be a potential difficulty with the Wagner-Whitin
approach. Suppose we entered the ongoing phase with such a quantity of on-hand stock
that we had 1 unit on-hand at the beginning of the final month of the time-varying portion
(in other words, the 36th month). Suppose further that the usage in month 36 was 2 units.
Since the Wagner-Whitin approach forces us to have 0 units on-hand at the end of the
time-varying phase, we would be required to make a very small replenishment (1 unit) in
the 36th month. Granted, this is an extreme case, but it does not seem attractive from an
overall cost perspective to replenish such a small quantity. This issue of avoiding
imposing a constraint of 0 units on-hand at the end of the time-varying phase will be
handled in the heuristic solution procedure.

Silver, Pyke and Peterson (1998) also discuss the "EOQ approach”. This method
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reduces the computational effort in finding repienishment schedules by ignoring the time-
varying nature of the usage pattern. It determines an EQQ based on average demand
rates, then uses this calculated EOQ value to guide the determination of respective
replenishment quantities. Each replenishment quantity is selected so as to cover an
amount at least as great as the EOQ value. However, this heuristic approach performs
rather poorly under significantly varying usage. Consequently, we have chosen not to use
it in our work.

The Silver-Meal heuristic (1973) provides an efficient approach for determining
replenishment quantities in the case of time-varying usage. It minimizes total relevant
costs per unit time (ordering and carrying costs), a feature possessed by the basic EOQ
when the demand rate is level. However, the heuristic ignores the discounting of relevant
costs. Nonetheless, Grubbstrom (1997) presents a formulation of the Silver-Meal
heuristic to calculate the net present value of associated costs. Our approach, as given in
this Chapter, borrows to a large extent from Grubbstrom’s work.

To simplify the analysis, we shall assume that usage occurs at the conclusion of a
time period (month). Without loss of generality, the material presented in the
development of this approach assumes there is no on-hand inventory at the beginning of
the planning period (ie. just before the replenishment in question). We shall calculate
carrying charges based solely on ending monthly inventories (in other words, on the stock
carried forward to the next period). Although this represents a depz:iure frcm our
previous use of the continuous discounting of carrying charges, it is consistent with the

usual approach suggested in the Silver-Meal heuristic. Moreover, as shall be shown later,
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the differences (in terms of Q," decisions and concomitant percentage cost penalties) are
relatively minor.

Earlier, we used the notation d, to represent monthly usages. In order to provide a
succinct way of illustrating monthly ending inventories, we will use the following
notation:

D, cumulative requirements up to and including month &

Mathematically, the term D, can be expressed as:
D, - ,“; d
We further note that D, represents the quantity of a replenishment of sufficient size to
cover all requirements up to and including month .
Monthly ending inventories may be written as, for j < k:
D, - D,
We note that the monthly ending inventory in month £ would be zero. As an example,
consider the following monthly usage pattern: 5 (d,), 3 (d,) and 1 (d;). Then,D;=5+3 +
1 =9 units. We also note that D, =5 and D,=5+ 3 = 8. If one placed an order in month
1 (of sufficient size to cover 3 months’requirements), then the respective monthly ending
inventories would be D; - D, = 4 units (at the end of the first month), D; - D, =1 unit
(month 2), and 0 units (month 3).
The net present value (VPV) of an order covering until the end of month % (ie. a

replenishment of D, units) is:
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k-1
NPV = 4 + _1%2 (D, - D)e ™" @.1)
i

We note that the term in the summation for j=k is zero. This suggests that if one
placed an order that was large enough to cover only one month of requirements, then the
relevant inventory carrying charges would be zero (since they are based solely on ending
monthly stock levels). Further, observe that we have divided the parameter 4 (carrying
costs) by 12. This is done to represent our carrying charges on a monthly basis. Note that
we also divided the ¢, value (the end of the month under consideration) by 12 so as to
determine appropriate present values (since the discount rate a is on an annual basis). In
other words, if we were considering inventory carrying charges at the conclusion of
month 6, then we would need to discount the on-hand stock costs by half a year to
determine their present value.

After determining the NPV s associated with replenishments of various sizes,
Grubbstrom then determines the heuristic replenishment schedule. He uses the following

notation:

A(k): the annuity stream (the level of a constant annual cash flow generating a
particular NPV)

His A(k) values are computed in the following manner:

. _aWNPY)

Once the particular 4(k) values are computed (for k= 1, 2, ...), we determine (in a
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fashion analogous to the Silver-Meal heuristic) the first time that A(k+1) > A(k). This
represents the initial point at which the A(k) function "turns up”. The appropriate
replenishment, consequently, is made to cover 4 time periods. This provides a reasonable
criterion to use in obtaining “good” replenishment schedules for we end up with a “local
minimum” of the annuity stream associated with the current replenishment. As pointed
out in Silver, Pyke and Peterson (1998), one may obtain a lower total cost value by
extending the analysis for a few more values of k, but the possibility of substaniially
reducing total costs is rather minimal.

Numerical Example:

Consider the following parameter values:

d, =7 units
d, = 2 units
d; = 10 units
d, = 4 units
d; = 20 units

A = $250 per replenishment

h = $13 per unit of inventory per year

a=0.10
Suppose we wanted to determine the associated costs of an order large enough to cover
the first four months of requirements. In this case, D, = 23 units (assuming no units on-
hand at the beginning of the first month). The particular monthly ending inventories are
16 (month 1), 14 (month 2), 4 (month 3) and 0 (month 4). Using (8.1), we obtain an NPV
of $286.33. The A(4) value, as given by (8.2), is $873.39. Table 22 provides a

comparison of the A(k) values for all values of £ from | to 5. Note that A(4) is the

minimum A4 (%) value, thus suggesting that one should cover the first four months of
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requirements with a replenishment in month one.

Table 22
Comparison of A(k) Values - Deterministic, Time-Varying Usage
k Replenishment NPV A(k)
Quantity
1 7 250.00 3012.52
2 9 252.15 1525.54
3 19 273.55 1107.92
4 23 286.33 873.39
5 43 _ 371.22 909.61 _

The present value of the costs of a single inventory cycle (ordering, carrying and
purchase costs) would be given as:

NPV + Dy, (8.3)
Since we are assuming that replenishments arrive at the beginning of a time period, there
1s no need to discount the purchase costs (within a single cycle). However, we do note
that the costs in (8.3) would need to eventually be discounted back to the beginning of the
ongoing phase.

The approach outlined thus far can determine the size (and associated costs) of
each replenishment during the duration of the time-varying usage pattern. However, it is
not necessarily the case that the proposed replenishment schedule during the time-varying
phase will exactly cover the 36 months worth of requirements, thus leaving 0 units on-
hand at the beginning of the level portion of the usage pattern. In particular, it may be

advantageous for the final replenishment during the time-varying period to cover
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requirements somewhat into the constant demand portion. Thus, it is important that we
appropriately treat the last replenishment during this 36-month period.

An obvious way to do this would be to define d; = D,/12 for each month in the
level phase. However, recall that our "base case" setting of D, was 20 units. Dividing
this quantity by 12 does not result in an integer value! Nonetheless, a rather pragmatic
way around this would be to assume a monthly pattern of 2, 2, 1,2,2,1,2,2,1,2,2, 1,
etc. in the level phase. Observe that this 12-month usage pattern results in an annual total
of 20 units, our "base case" usage rate. It is important to realize that this approach would
only be used to compute the size (not the relevant costs) of the last replenishment during
the time-varying usage phase. It would be necessary to compute the mcnthly carrying
charges required to hold this stock until the conclusion of the time-varying period. Then,
we would be left with a certain amount of stock on-hand (denoted by /) at the beginning
of the level phase. We could use our earlier expressions (see (4.1) and (4.2) in Chapter 4)
to determine the present value (36 months into the future) of having / units on-hand and
proceeding in an optimal fashion regarding future (deterministic, level) replenishments.

We need to make one final point regarding the computation of relevant costs for
case A (ie. M is less than cumulative requirements during the time-varying period). The
initial replenishment during the time-varying phase will be made in the first time period j
(denoted by ) such that M - D, < 0. For any months prior to j*, we must compute the
relevant inventory carrying charges. Whenever we make a replenishment during the
time-varying period, it is important to recognize that the decision to replenish, say, D,

units represents an "order-up-to" decision. In other words, if we enter time period j* with
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some units of on-hand stock, this reduces the quantity that needs to be purchased (at unit
price v,). However, since carrying charges are based solely on monthly ending inventory
levels, the determination of carrying cliarges is unaffected by stock on-hand at the
beginning of time period ;* (or, for that matter, any other time period in which a
replenishment is made).

We shall now examine (the relatively straight-forward) case B. Recall that this
case does not involve replenishments during the time-varying portion of the ongoing

phase. We simply have carrying charges for the on-hand stock during these 36 months.

The total carrying charges are given by:
Y L -De (8.4)
12 /

At the conclusion of the time-varying phase, we will have / = M - D, units of on-
hand stock. As we noted earlier when analyzing the final replenishment during the time-
varying phase, we can determine the costs (36 months into the future) of having a specific
quantity of on-hand stock and proceeding in an optimal fashion with respect to future
replenishment decisions.

Once we have determined the present value (at the beginning of the ongoing
phase) of having M units on-hand (for all values of M), our next step is to determine the
best disposal quantities as a function of the inventory level / prior to any disposal. This
would allow us to generate the all-important EPV"(1) values. Recall that when we had

deterministic, level ongoing usage, we were able to generate a closed-form expression
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(see (4.9) in Chapter 4) for determining the optimal retention quantity. However, we
doubt that it is possible to do tiiis when time-varying usage is introduced. We have seen
(through numerical examples) that the PV(M) expression is not convex with respect to M.
Consequently, we will need to adopt a similar approach to what we did for the case of
future projects and ongoing usage (see Section 7.2). We must compute, for every /, the
associated costs of disposing W units (for every W value less than or equal to /) and
retaining M = [ - W units to satisfy ongoing phase requirements. The following

expression is used:

EPV*(]) = ?]ﬁn (-gW + PV -W)) (8.5)

<

We shall perform some limited numerical analysis in this Section. Table 23

provides our time-varying usage pattern.

Table 23
Monthly Time-Varying Usage - '*Base Case" Example

Month |13 [14 |15 |16 |17 |18 [19 (20 [21 |22 |23 |24

d 1 1 1 B 1 1 0 0 0 0 0 1 1
Month |25 [26 |27 I 28 129 130 |3t (32 {33 |34 {35 |36
2

—
—
—
—
—
—
—
[\
[\
N

I~
i

We wish to point out that the usage pattern portrayed in Table 23 is initially
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relatively high, then drops as the facility matures (eventually reaching a point of no usage
for several months). Then the usage climbs, eventually levelling off at a value very close
to the constant monthly usage amount.

In order to observe if time-varying usage generates substantially different optimal
construction phase procurement decisions and associated penalty costs, we need to
compare "apples to apples”. Specifically, the total usage during the time-varying period
must be equivalent to the total level usage during a time period of similar duration. For
example, our "base case" usage rate was 20 units per year. This translates into 60 units
during a 3-year (36-month) period. We note that the total usage during the 36 months as
illustrated in Table 23 is 60 units.

Except where indicated, we shall use the "base case" settings for the various
parameter values. We exclude the integrated (approximate) strategy in this Section and in
Section 8.2. Throughout our previous work in Chapters 6 and 7, the approximate strategy
provided very similar results to those given by the exact integrated approach.

To determine the effect of the particular pattern of time-varying usage on
construction phase decisions and associated penalty costs, we shall analyze an additional

usage pattern. This pattern is provided in Table 24.
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Monthly Time-Varying Usage - "Extreme" Example

204

Month |1 |2 |3 4 |5 |6 |7 |8 [9 |10 [11 |12
d 18 {8 |3 [2 [t jo Jo |o Jo Jo {0 ]o
Month |13 |14 |15 |16 |17 |18 |19 |20 |21 |22 |23 |24
d o (o Jo Jo |1 f{r [t |t v |1 |1 |1
Month [25 |26 (27 |28 |29 [30 |31 |32 [33 {34 |35 |36
d, Lo (v o2 d2 2 2 ]2 f2 12 |2

Note that this time-varying usage pattern also consists of 60 total units during the 36-

month period. However, the actual time-varying pattern is quite a bit more pronounced

than the one provided in Table 23. We have extremely high requirements in the first

month. This drops off quite quickly, eventually reaching zero units. Usage remains at

zero for a rather long time period, after which it (slowly) builds up to the constant level

monthly usage amount.

Table 25 provides the results of a brief numerical analysis for the case of

deterministic, time-varying ongoing phase usage. The particular treatment combinations

chosen involve the ones that tended to be thz more "interesting". Specifically, they

provided some of the larger percentage cost penalties in our earlier work (see, for

example, Table 6 in Chapter 6).
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Table 25
Results - Deterministic, Time-Varying Usage
|
Treatment Integrated All-disposal Myopic
Combination Exact
Intermediate 500 400 400
(1.77) (1.77)
B, low 443 400 300
(0.82) (4.54)
T. low 500 400 400
(3.12) (3.12)
v, high 500 400 400
(2.94) (2.94)
Extreme usage 500 400 400
pattern (1.63) (1.63)

The introduction of time-varying ongoing phase usage appears to generate
(somewhat) higher percentage cost penalties than those observed in Table 6, for similar
treatment combinations. Recall that under time-varying usage, a greater share of the
ongoing phase requirements tends to occur "up-front” (near the beginning of the ongoing
phase). If one selected as one’s construction phase procurement decision the smaller

procurement quantities suggested by the non-integrated approaches, this would lead to

costly ongoing phase replenishments earlier in the ongoing phase. Consequently, the
percentage cost penalties of these non-integrated strategies increase as compared to those
observed under deterministic, level usage.

The Q," decisions produced by the two types of time-varying usage pattern are

identical, and the percentage cost penalties are relatively close. This would indicate ihat
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the determination of optimal procurement quantities is rather insensitive to the particular
time-varying usage pattern modelled in the ongoing phase. Despite the cffect of very
high usage in the first month, followed by a quick drop to several months of no usage, we
obtain a similar decision as the one provided by a usage pattern that is more “‘gradual”.

We wish to make one final note regarding the case of time-varying usage. Since
we did not continuously cost our inventory during each time period (instead basing it on
monthly ending amounts), the respective heuristic replenishment quantities during the
ongoing phase tended to be a bit larger than those observed under deterministic, level
usage. Essentially, the reduction of the holding costs served to somewhat increase the

size of the particular replenishment quantities.

8.2 More than One Construction Phase Procurement
Opportunity

Our objective in this part of the dissertation is to introduce another procurement
opportunity in the construction phase and to illustrate the manner in which the relevant
costs may be calculated. Our earlier work has permitted only a single procurement
opportunity at the beginning of the construction phase. As a result, decision-makers
made their procurement decision, then a particular requirements value for the entire
construction phase was observed. Based on the specific combination of procurement
quantity and requirements value, a particular set of costs was obtained.

However, in many real-world instances, materials managers may be able to
procure items at different stages during the construction of a large-scale project.

Presumably, this would allow them to operate in more of a "just-in-time" environment,
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wherein required items could be brought in on an "as-needed" basis.

We will assume that there exists a second procurement opportunity for an
important, expensive item exactly half-way through the construction phase. We note that
we are simply using the case of two opportunities to illustrate how to deal with more than
one procurement decision. Due to the computational complexities involved, we are not
trying to establish the optimal timing of the additional procurement opportunity. Further,
since the fixed costs of procurement (A4) are likely dwarfed by the acquisition costs (Q,v,),
we shall ignore the fixed cost parameter.

With the incorporation of an additional procurement opportunity, our
mathematical model will need to include a probability distribution of requirements during
either half of the construction phase. Recall that in our earlier work, we had a single set
of requirements values during the construction phase (ie. the D, values were 200, 300,
400, 500 and 600 units). To reduce complexity, we shall assume that the requirements in
either half of the construction phase are independent. This implies that the specific
requirements value observed in the initial half of the construction phase has no influence
on the requirements value in the latter half. We note that, for a variety of reasons, real-

world project requirements could be dependent between the two halves of the

construction phase. Vendor quality problems or weather effects could generate inter-half
dependencies. Moreover, it is possible that requirements could be negatively correlated
across the two halves of the construction phase. Greater labour efficiency, learning
effects or switching to a better supplier could produce this situation. Although it would

provide greater model realism, it would introduce considerable additional complexity.
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We shall now describe the procedure for finding the optimal procurement

quantities in either half of the construction phase. We require the following notation:

I: On-hand siock at the conclusion of the first half of the construction
phase
EPV'(L): Expected present value of all future costs associated with

concluding the first half of the construction phase with /, units of
inventory on-hand, and proceeding in an optimal fashion from
thereon (with respect to any second half procurement, disposal and
ongoing phase replenishment decisions)

The variable /, is equal to max {Q. - D, 0}. Note that the O, and D, terms in this
expression refer to the initial half of the construction phase. Our computational effort in
determining best procurement decisions increases as compared to the effort involved in
the single opportunity case, since for the second half decision, we must take account of all
possible ("incoming") values of /. That is, the best procurement decision in the second
half of the construction phase is a function of /..

However, we wish to make a few points regarding this issue. The case of /. =0 is
essentially the same as the situation we have discussed throughout this dissertation.
Recall that one of our assumptions described in Chapter 1 was that there was no on-hand
stock at the beginning of the construction phase. As compared with our earlier model
(see Chapter 5), the particular case of /. = 0 simply involves a splitting in two of the
parameter T, the construction phase duration. Moreover, we recognize that there is a
limit to "all possible values" of /. The largest possible /. value is equivalent to the
highest possible Q. that one could use for the first opportunity minus the smallest D, in

the first half of the construction phase. Although it is impossible to know a priori the

"highest possible Q." one would encounter, we have found that using the largest D, in its
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place has produced acceptable results. Using this approach, we have (through our limited
numerical analyses) kept track of every single /. value required. Once we have all the
EPV(I) values, then it is a rather simple procedure to find the best Q. for the first
opportunity. This best procurement decision is equivalent to finding Q. in the single
opportunity case (see Chapter 5), given that we know the EPV (I) values (ie. the expected
present value of all future costs given the value of the on-hand stock at the end of the
construction phase).

The process of computing the best procurement decisions for the non-integrated
inventory management strategies is rather similar. Let us consider the "all-disposal”

approach. We begin by finding, for every value of /, the best procurement quantity in the

second half of the construction phase, assuming that all surplus stock after construction

phase completion is disposed. The following notation is useful:

EPV (1 Expected present value of all future costs associated with
concluding the first half of the construction phase with /_ units on-
hand and making the best procurement decisions in the second half
of the construction phase, followed by the disposal of all surplus
units

We recognize that this process creates a decision rule for determining the best all-
disposal procurement decision in the latter half of the construction phase. In other words,
we would know (for every possible value of 1), the associated best procurement quantity.

Turning our attention to the first half of the construction phase, we realize that one
would encounter acquisition, carrying, stockout and the EPV,"(I ) costs. (However, we
wish to point out that no disposal is allowed at the half-way point of the construction

phase. Surplus stock can only be disposed after construction completion). Using our cost
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expressions as developed in Chapter 5, we can determine the best all-disposal
procurement quaniity in the first half of the construction phase.

For the myopic strategy, the only difference would be that one must determine, for

every value of /_, the best procurement quantity in the second half of the construction

phase, assuming that one considers construction phase costs only. The following notation
is required:

EPV, (1) Expected present value of all future costs associated with
concluding the first half of the construction phase with /. units on-
hand and making the best procurement decisions in the second half
of the construction phase, considering only construction phase
costs

There exists a rather helpful feature regarding the construction phase decisions for

the case of two procurement opportunities. In particular, the determination of best
procurement decisions in the latter half of the construction phase (whether they are
optimal, all-disposal or myopic) follows an "order-up-to" decision. We note that this is a
consequence of ignoring the fixed replenishment cost parameter, A. This suggests that
once we know the best procurement decision, say, for /. = 0, then it is rather straight-
forward to determine the best procurement quantities for any level of /. We simply
subtract the particular /, value from the procurement quantity found when /, was 0! The

following notation is now introduced:

The order-up-to level in the second half of the construction phase for the
caseof /.=0

S

c

Consequently, the best procurement quantity is S, - I (for /, < S."). The reason

for this behaviour is quite clear. Suppose we determine S,". Note that this implies that /.
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=0. Now, suppose that one begins the second half of the construction phase with /. = 1.
If one procures S.” - | units, then the only cost that changes (when /, changes from 0 to 1)
is the acquisition costs (Q.v,) since we are implicitly assuming that any procurement
quantities arrive at the beginning of the time period under consideration (ie. the beginning
of the latter half of the construction phase). The carrying costs, stockout penalties and
EPV"(1) values do not change since we are always dealing with the same on-hand stock
level after the second half procurement decision. The relevant costs have simply been
"scaled down" by v.. Thus, if it was optimal to procure S, units when /, was 0, then it
will be optimal to procure S,.* - 1 units when I_ is 1.

Further, the computation of the expected total costs (E7C) of the best procurement
decisions, for /. < S,”, is rather straight-forward. We observe the number of units which
are not required to be purchased (this is equivalent to /.) and subtract their acquisition

cost (1.v,) from ETC(S."). Mathematically, we can express it as:

ETC(Q, =S, -1) = ETC(S;) - Lv, (8.6)

However, what about /. values in excess of S,"? At first glance, one would
suppose that the best procurement decision for this case is to procure O units. It would
seem obvious that if the on-hand stock levels before any procurement decision are rather
large, then it would be attractive to procure nothing. To a large extent, this is the case.
However, for rather large /. values (particularly those close to a construction phase

requirements value, D,), it may be attractive to procure a sufficient number of units to
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place one at an order-up-to-level equal to the D, value. In these cases, it would appear
that the ability to reduce one’s stockout penalties (by procuring an amount equivalent to a

D, value) compensates for the increased acquisition and holding costs.

Numerical Example

Consider the following parameter values:

D, =100 with P(D)) = 0.15
D, =200 with P(D,) = 0.35
D, =300 with Pp(Dy = 0.35
D, =400 with P,(Dy =0.15
(each half of the construction phase has the same probability distribution)

B, =$%3000
B,=1.0
a=0.10

T.=1year (recall that the construction phase is divided into two equal halves;
hence, each half is 6 months long)

h = $13 per unit of inventory per year

v. = $100 per unit

v, = $190 per unit

D, = 20 units per year

A =5%250 (recall that this parameter is only applicable for ongoing usage
decisions)

g = %35 per unit

Using our mathematical model, we find that S."is 332 units. That s, forany /. <
332, our best procurement decision in the second half of the construction phase is (332 -
1) units. We have also observed a "breakpoint" at /. = 387 units. For any /_ such that 387
< I < 400, the best procurement decision in the construction phase’s latter half is (400 -
L) units. For any /, such that 332 </, <387, or forany /. > 400, the best procurement
decision is zero units. In these latter cases, the on-hand stock levels are simply too large

(or too far away from a D, value) to merit a procurement.
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We shall perform some limited numerical analysis in this Section. As we claimed
in Section 8.1, if we want to observe if a particular model extension generates
substantially different results from those obtained in our earlier model, we must compare
"apples to apples". Specifically, if we wish to observe the effects of two procurement
opportunities in the construction phase, we need to generate a probability distribution for
the single opportunity case that is equivalent to the convolution of the two "half-
construction phase" independent distributions used in the two opportunities case.

We suggest values of 100, 200, 300 and 400 units as the possible construction
phase requirements values during either half of the construction phase. We shall analyze
the following probability distributions: a "base case" one in which the probabilities are
peaked in the middle and an increasing (decreasing) distribution in which the
probabilities increase (decrease) as D, increases. We stress that each half of the
construction phase has an identical probability distribution (ie. we will not examine the
case where different distributions are observed in either half).

Table 26 provides a list of the equivalent probability distributions for the cases of
two procurement opportunities and one opportunity, respectively. Note that the single
procurement opportunity (derived from the convolution of two independent distributions)
has a 7-point discrete probability distribution. The possible requirements values range
from 200 to 800 units. The computation of best procurement decisions (and percentage
cost penalties for the non-integrated inventory management strategies) can be done by
using the mathematical model illustrated in Chapter 5. The only difference between the

current case and the earlier one (in Chapter 5) is that the one in this Section involves a 7-
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point distribution, while the earlier one featured a 5-point distribution.

Table 26
Probability Distributions for Examining the case of
Two Procurement Opportunities

2 Opportunities 1 Opportunity
D, __PuD) .| Pmy
100 0.15 200 0.0225
200 0.35 300 0.1050
300 0.35 400 0.2275
“Base” Case 400 0.15 500 0.2900
600 0.2275
700 0.1050
800 0.0225
100 0.10 200 0.01
200 0.20 300 0.04
300 0.30 400 0.10
Increasing 400 0.40 500 0.20
600 0.25
700 0.24
800 0.16
100 0.40 200 0.16
200 0.30 300 0.24
300 0.20 400 0.25
Decreasing 400 0.10 500 0.20
600 0.10
700 0.04
. _ 800 | 0.01




We shall begin by providing the numerical results for the case of a single

procurement opportunity as shown in Table 27. With the exception of the specific

parameter tested in a particular treatment combination, we shall use the "base case"
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settings for the various parameter values. As we explained in Section 8.1, the particular

treatment combinations chosen involve the ones that tended to generate the larger

percentage cost penalties in our earlier work.

Results - Single Procurement Opportunity (7-point Distribution)

Treatment Integrated All-disposal Myopic
Combination Exact
-—m
[ntermediate 600 500 500
(1.20) (1.20)
B, low 526 400 400
(2.66) (2.66)
T, low 600 500 500
(2.36) (2.36)
D, increasing 700 600 600
(1.34) (1.34)
D, decreasing 500 400 400
(0.82) (0.82)
v, high 600 500 500
(1.99) (1.99)

We note that these results (particularly the relative values of the respective best

procurement quantities for any specific case) are generally in line with the earlier results

obtained for the 5-point distribution (see Table 6).



Table 28 provides the results for the case of two procurement opportunities.

Table 28
Results - Two Procurement Opportunities
Integrated All-disposal Myopic
Treatment (Exact)
Combination . . . . .
Q. S, Q. S, \)
7_————'“_——_?—_—————‘
Intermediate 400 332 400 300 400 300
(0.44) (0.44)
B, low 400 323 300 200 300 200
(3.61) 3.61)
T.low 400 338 400 300 400 300
(0.65) (0.65)
D, increasing 400 410 400 400 400 300
(0.04) (3.37)
D, decreasing 400 300 300 200 300 200
(2.08) (2.08)
v, high 400 349 400 300 400 300
(1.05) (1.05)

The reader will probably notice that our format of Table 28 is rather different from
previous tables that have provided model results. Within each inventory management
strategy, the left-most column provides the best procurement decision in the initial half of
the construction phase. The other column shows the order-up-to level in the second half
of the construction phase. For ease of readability, we have not shown the "breakpoint"
values. Recall from our earlier discussion that these values comprise rather large /.
amounts (close to a D, value) such that one chooses to order up to the D, value, thereby

reducing one’s stockout penalties.

The “benefit” of incorporating the second procurement opportunity in our model
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can be determined by comparing the costs of the optimal solution for the case of one
procurement opportunity and a 7-point distribution versus the costs of the optimal
solution for the case of two procurement opportunities. Table 29 illustrates the
percentage cost savings realized by incorporating the additional procurement opportunity
for the six treatment combinations analyzed.

Table 29

Comparison of Costs of Optimal Solutions
One vs. Two Procurement Opportunities

Treat‘mer‘u Optimal Costs Percentage Cost
Combination With One With Two Savings
Opportunity Opportunities
Intermediate $96,599.35 $92,143.30 4.61%
B, low $95,212.72 $92,143.30 3.22%
T low $96,065.53 $92,553.20 3.66%
D, increasing $107,896.42 $96,742.26 10.34%
D, decreasing $87,544.33 $86,897.53 0.74%
v, high $100,500.73 $95,965.43 4.51%

The increasing construction phase requirements distribution, in particular, leads to
a substantial advantage associated with the additional procurement opportunity. In this
scenario, failure to adequately procure in the construction phase would lead to costly
stockouts. The incorporation of another procurement chance allows a decision-maker the
opportunity to bring in additional stock half-way through the construction phase.
Consequently, stockout penalties decrease; in addition, the decision-maker is not forced

to carry a huge quantity of stock throughout the entire construction phase (as would be
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required with only a single procurement opportunity).

A few brief commentc are in order regarding the procedure we used to calculate
the various percentage cost penalties. Consider, for example, the all-disposal inventory
management strategy. We noted the all-disposal best procurement decision in the first
half of the construction phase and the associated costs (ordering, carrying and stockout
penalties). Using this quantity, and the possible requirements values in the initial half of
the construction phase, we could then determine resulting inventory levels (/) at the half-
way point of the construction phase. We then made use of the decision rule previously
determined for the all-disposal strategy. This decision rule provided the best procurement
decision for any level of /.. As we did in the initial half of the construction phase, we
costed out this procurement decision in terms of ordering, carrying and stockout charges.
Moreover, we used the possible requirements values in the second half of the construction
phase to generate various on-hand inventory levels at the conclusion of project
construction. We then could use our EPV"(I) values to determine the expected present
value of concluding the construction phase with a certain quantity of on-hand stock, and
proceeding in an optimal fashion with respect to any disposal or ongoing phase
replenishment decisions. We could then combine all our various expected costs to arrive
at a total expected cost value. This total would be compared with the (optimal) total
expected cost value generated by the integrated approach to determine percentage cost

penalties.

The comparison of the single and two procurement opportunities case is

somewhat unclear. Based on the parameter values we considered, it would appear that
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there are instances in which an additional procurement opportunity lessens the percentage
cost penalty of adopting a non-integrated inventory management approach. "Carving" the
construction phase into smaller "decision windows" provides a materials manager with a
certain element of recourse. The "gap" between best first half construction phase
decisions for any of the strategies narrows (in fact, for many of the treatment
combinations, there is no difference between the respective best first half procurement
decisions).

However, for the cases of B, at its low setting or a decreasing requirements
distribution, there is a noticeable cost penalty involved with either non-integrated
strategy. The first half procurement choices and second half order-up-to quantities are
markedly different between the integrated and non-integrated approaches. It ought to be
noted that both of these cases reduce the attractiveness of over-procuring in the
construction phase (since per unit stockout penalties fall, or there is a rather large
likelthood of observing a relatively small requirements value).

The increasing requirements distribution displays a rather interesting behaviour.
The all-disposal order-up-to decision in the second half of the construction phase is rather
close to the integrated decision. However, the myopic decision is far less. With the
increasing distribution, the all-disposal strategy would provide rather large salvage
revenues for larger order-up-to decisions. This enhances the appeal of increased
procurement in the second half of the project. Under the myopic approach, there is no
such appeal for extra procurement. Increased purchasing and holding costs outweigh the

benefit of reduced stockout penalties as more units are procured. This generates a larger
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percentage cost penalty for the myopic inventory strategy.

We need to make one final point regarding the case of two procurement
opportunities. Generally, we noted that one ordered more units during the first half of the
construction phase than were ordered during the latter half. The procurements were not
evenly split between the halves. Presumably, over-procuring during the first half of the
construction phase protected one against initial half stockouts while also allowing one the
opportunity to use any surplus units during the latter half of the construction phase.
Consequently, one would not be required to procure as many units during the construction
phase’s second half.

This concludes our treatment of two important extensions to our model. We have
illustrated how deterministic, time-varying usage and an additional construction phase
procurement opportunity may be separately incorporated into our analysis. Although we
have not exhaustively analyzed all treatment combinations, we have still been able to

draw some helpful conclusions through the testing we have done.
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9. CONCLUSIONS AND DIRECTIONS

FOR FURTHER STUDY

We have reached the conclusion of this dissertation. This Chapter shall offer a
few comments and provide some directions for further study.

It is probably a reasonable idea, at this stage, to reflect back upon the beginning of
this dissertation. Recall that we opened our initial Chapter with a citation from a legal
case involving two parties in a construction dispute. Apparently, the judge had some
rather strong feelings regarding the logistics of large-scale projects. Based on our
experience in this dissertation, we can strongly echo the judge’s sentiments!

Materials management decisions within the context of large-scale projects are by
no means trivial issues. We have developed in this dissertation a mathematical model to
examine a set of critical decisions that logistics personnel must make when dealing with
project inventories. When an important, expensive item is subject to quantity
uncertainties during a project, managers have many factors to consider. Carrying units in
stock could drain funds, but the organization could face a (severe) shortage cost if
required items are not available when needed.

An additional factor that materials managers must tackle involves the disposal of
surplus stock. Units may be disposed for revenue by, among other possibilities, returning
them to the vendor, or selling them on a secondary market. Surplus stock may also be
used to satisfy ongoing operational usage.

The likelihood of future projects could also impact current procurement and
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inventory decision-making. When the specific item is also required during a subsequent
project {a rather logical assumption), then managers may opt to retain surplus units to
satisfy some of the requirements during the next large-scale project.

One of the important outcomes of this research is that it allows project managers
to obtain a "wider" perspective on critical materials management issues within large-scale
projects. Our mathematical model developed in this dissertation has examined factors
that relate to a project's construction phase, as well as those that involve ongoing phase
and future project issues. We have illustrated the relationship between construction phase
requirements and ongoing operational usage. We have examined the coordination of
requirements for future projects. Moreover, we have incorporated the consideration of
non-constant salvage values, a feature hitherto undeveloped in previous academic
research. The increasing salvage values case, in particular, presents a set of complex
mathematical decisions. In addition, through two separate model extensions, we showed
how additional realistic scenarios could be incorporated into our analytical framework.

Another significant result of this dissertation research is that we have been able to
generate decision rules to determine, for a wide range of salvage value functions, the
appropriate quantity of surplus stock to dispose upon completion of project construction.
Surplus stock disposal is a key problem encountered in project management. Our
decision rules considered revenue received for surplus disposal, carrying charges
associated with retained stock, and future repurchase costs of the specific item.
Moreover, these decision rules allowed us to observe the effects (in terms of optimal

disposal decisions) as per unit salvage values changed. Recall that, as we discussed in
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Chapter 1, one of the important real-world issues involved in project logistics concerns
the degree of product standardization. Our model uses higher per unit salvage values to
reflect a more standardized item.

A further important benefit of our research is the treatment of an additional
procurement opportunity within the project’s construction phase. We were able to
calculate the percentage cost savings associated with the incorporation of this second
procurement chance, and to highlight those cases that provided larger cost savings.

We would suppose that our ultimate goal has been to develop a model that
materials management personnel can use. To a certain extent, we believe this can
happen. We have described how various decisions are affected based on the different
parameter values used in our study. We have calculated cost penalties that arise as one
makes non-integrated inventory management decisions. Further, we have shown how
these penalties change as parameter values vary. We have highlighted those cases that
lend themselves to larger penalties. In some cases (particularly for future projects and no
ongoing usage (Section 7.1)), we have shown that non-integrated approaches perform
rather well. Presumably, there are certain situations in which managers can solely
concentrate on current project requirements. This would suggest that organizations, for
some of the cases cited in this dissertation, have a cerain degree of flexibility when
making construction phase procurement decisions. They can choose to consider or ignore
the future, being fully assured that the impact of considering the future is negligible.

Even though some of our percentage cost penalties were rather small, recall that

we only performed one and two-way tests (varying one or two parameters at a time,
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depending upon the specific case). If we were to vary three, four or more parameters
simultaneously, then the cost penalties of not considering surplus stock disposal and/or
ongoing phase issues would certainly increase.

We wish to make a brief comment regarding the issue of spreadsheet modelling.
It would appear that academic researchers are increasingly adopting the spreadsheet both
as a means of model development and pedagogical support. We can certainly attest to the
utility of the spreadsheet for solving (even complex) analytical problems. Every case
considered in this dissertation has been analyzed with a spreadsheet model. Although one
could have used a computer language (such as Fortran) to develop our model, the choice
of a spreadsheet was motivated by a few key factors. First, we had considerable previous
experience using spreadsheet models. This removed the "learning curve" that would have
been present had we used a (previously unfamiliar) approach. Further, the spreadsheet
model allowed us to carve the cost calculations into small pieces so we could fully
appreciate what was happening at each stage. This made model-debugging fairly
straightforward when we were faced with the model providing us some rather strange
outcomes. Some have commented that the applicability of spreadsheet modelling is
limited due to the rather small size of problems that can be tackled. However, we
analyzed a case in which the construction phase requirements and ongoing phase usage
rates were multiplied by a factor of 10 (ie. the D, values ranged from 2000 to 6000 and
the base case D, value was 200). (We wish to stress here that this particular case has not
been discussed earlier in the dissertation). Our spreadsheet model was still able to handle

a problem of such a dimension. The computer time spent in calculating total expected
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costs was a little bit higher. but still not unnecessarilyv leng. For example. our 486 DX2
66 computer determined the optimal solution for the "usual” set of parameter values in
about 5 seconds. It took roughly 15 seconds to obtain the least-cost solution tor the
"factor of 10" case.

As with any piece of academic research, there are some limitations to our work.
Our particular model has been developed for an environment that is dynamic and ever-
changing. The specific set of decisions illustrated in our approach may occur ditterently
in other projects. or other decision areas (e.g risk assignment for surplus material
ownership) may become relevant. We must not be oblivious to the fact that our approach
may need to adapt in order to be applicable for continued project management decision-
making.

A further limitation of our work involves the issue of external validation. Recall
that we interviewed materials management personnel employed with one company
involved in large-scale projects. To what extent is our model and its associated findings
applicable to other companies and the logistics issues they face? Of course. a method to
determine the external validity of our research would be to test our model with data from
other companies and their projects. Frankly, we see external validation as a continued.,
ongoing process.

There are some future areas of study that we wish to examine within the contexts
of our mathematical model. Obviously, it would be appropriate to consider those
combinations of scenarios that have not been addressed in this dissertation. Among

others, we have not addressed the melding of future projects and two procurement



226
opportunities. or non-constant salvage values and two procurement opportunities.

When we examined the issue of future projects. on¢ of our main assumptions was
that the time until the next project was modelled as a random vanable following a
discrete probability distribution. We note that one could incorporate continuous
probability distributions (such as the normal or gamma) to represent inter-project ime.
However. our selection of a discrete distribution was practitioner-motivated. Revall that
representative parameter values in our study were obtained Via interviews with materials
management and logistics personnel. We felt it was more reasonable to elicit discrete
data from these practitioners (ie. a certain likelihood of a subsequent project occurring
within a specific time interval), rather than querying them for continuous inter-project
distributions. In essence. a greater understanding (and appreciation) of model
development may lead to improved prospects of model implementation.

A decision that we did not treat involved the behaviour of Q, in the case of tuture
projects and deterministic, level ongoing usage. Recall in our earlier work that we
assumed that decision-makers would not adjust 0, as the next project became imminent.
In reality, materials managers may choose to drop this ongoing phase replenishment
quantity as the subsequent project draws near. One may choose to bring in "just enough"
stock to cover one’s requirements until the subsequent project. In that way, one would
have very little (or nothing) on-hand when the next project began. One could then
replenish a larger quantity of stock at v, (v, <v,) to satisfy ongoing operational usage.
Dynamic programming could potentially be used to analytically model this situation.

We treated the future projects as sequential "entities"; that is. they occurred only
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one at a time. An obvious extension would be to examine the case of multiple concurrent
projects. This could also lead into logistics issues surrounding the use of multi-echelon
storage facilities. If several large-scale projects are underway at the same time, it may not
be attractive for each project to store all units of items on-site. If the projects are rather
close in distance (or if transportation costs are not prohibitive), then one may be able to
make use of a few large storage facilities to serve several projects at once. This could
reduce storage duplication and expense.

There are several issues one could consider with respect to construction phase
decisions. One of our basic assumptions was that this model analyzed a single item. We
could extend our analysis to cover the multi-itemn situation, wherein several items could
be procured at the same time. We have also analyzed the case of two procurement
opportunities and assumed that the second procurement choice occurred exactly half-way
through the construction phase. A logical extension would be to examine the issue of n
opportunities. Furthermore, we said nothing about the optimal timing of any of the
additional procurement decisions. If one could evaluate the expected costs of procuring
specific quantities at various points throughout the construction phase, then presumably
one could determine the best set of times at which to procure during a large-scale project.
This would assist materials managers in project scheduling. However, we recognize the
complexities associated with such an approach, particularly if one allowed dependent
requirements distributions during each 1/n portion of the construction phase. (Asan
aside, we note that if one analyzes the special case of n = 2 procurement opportunities,

the "best" procurement choice is likely to occur in the latter half of the construction
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phase).

We could also permit quantity discounts for construction phase procurement. The
approach in this dissertation allowed a single (deterministic) unit acquisition cost, v,
Using a quantity discount schedule for an item may produce a situation in which the best
construction phase procurement decision is found at a "quantity break-point", rather than
at a requirements value (as was often the case in our work).

We further note that other items (besides pipe, valves and motors) could be
analyzed in our model. Of particular relevance could be the modelling of brick or glass
procurement. Specifically, additional procurement opportunities for this item may not be
advantageous due to product quality differences in respective shipments. In this case,
materials managers may opt to procure rather large quantities of these items at the outset
of a project. Doing so serves to increase the likelihood that all units of a particular
shipment will have the same product characteristics.

In terms of ongoing phase operations, we have not allowed item obsolescence.
This factor would be typical of an item prone to frequent product changes. If
obsolescence were considered in our mathematical model, then this would likely lead to
smaller retention decisions at the conclusion of the construction phase.

There are additional environments, besides large-scale project decisions, for
which our approach may be applicable. Consider the case of a movie video rental outlet.
In a fashion analogous to "construction phase procurement"”, managers at these
establishments must make key decisions as to the appropriate number of video tapes ofa

particular movie to order. Customer rentals of a specific movie title would most likely be
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subject to uncertainty. Failure to procure sufficient copies of a movie to satisfy customer
demand would lead to lost sales and, perhaps, the loss of consumer goodwill. At the
conclusion of a movie’s "run" in a rental outlet, a manager must make a critical decision
as to the number of copies to release for sale to the general public (as "previously-
viewed" copies) and the quantity to keep on-hand to satisfy ongoing, occasional usage.
(The reader will most likely notice the similarity between these decisions and the
"disposal" and "ongoing usage" decisions described earlier in the dissertation). An
important difference between this situation and the project management scenario is that
the video outlet manager must decide, in addition to the sizing of various procurement
and disposal decisions, the timing of disposal of movie titles (ie. the particular moment in
time at which to sell off copies of the movie). Recall that, in our project management
study, we assumed that the end of the construction phase occurred at a well-defined point
in time. We further note that, besides video rentals, our procurement and disposal
approach could be applied to the case of a retailer of fashion/style goods.

These future research suggestions, as well as our findings in this dissertation,
suggest that materials management issues in large-scale projects are worthy of study.
One can link academic research and practitioner issues into a mathematical model that

can be used to improve decision-making.
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Appendix A. Glossary of Notation

Notation

Description

T

A

Fixed cost of a replenishment

A(k)

The annuity stream (the level of a constant annual cash flow generating a
particular NPV)

>

Fixed cost per stockout occasion

-

Penalty (expressed as a fraction of the unit value) per unit short

O |®

i}

Total requirements in the construction phase (has a discrete probability
distribution P,(D.))

Number of units used in month j

Cumulative requirements up to and including month &

O IS a

Annual usage rate in the ongoing phase

EIPC

Expected present value of the inter-project costs per surplus unit retained

EPV(I)

Expected present value of all future costs associated with concluding the
construction phase with / units of inventory on-hand, and proceeding in
an optimal fashion from thereon (with respect to disposal and ongoing
phase replenishment decisions)

EPV'(L)

Expected present value of all future costs associated with concluding the
first half of the construction phase with 7, units of inventory on-hand, and
proceeding in an optimal fashion from thereon (with respect to any
second half procurement, disposal and ongoing phase replenishment
decisions)

EPV,()

Expected present value of all future costs associated with concluding the
first half of the construction phase with /_ units on-hand and making the

best procurement decisions in the second half of the construction phase,

followed by the disposal of all surplus units

EPV,'()

Expected present value of all future costs associated with concluding the
first half of the construction phase with L. units on-hand and making the

best procurement decisions in the second half of the construction phase,

considering only construction phase costs

ETC(Q,)

Expected total discounted costs as a function of construction phase
procurement quantity
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Notation Description
g Per unit salvage value for surplus disposals (constant salvage value case)
g Per unit salvage value for surplus disposals (non-constant salvage value
cases)
h Out-of-pocket inventory carrying charges ($ per unit of inventory per unit
time)
h’ hla
i A particular time interval
i The first time interval in which we begin ongoing phase replenishments
/ On-hand surplus after completion of project construction phase
I On-hand stock at the conclusion of the first half of the construction phase
/, (Approximate) on-hand inventory when a subsequent project occurs
[ IP, Inventory level at which it first becomes attractive to go from making no
disposals to disposing a certain L, (increasing salvage value case)
1P, Inventory level at which it first becomes attractive to jump from
disposing at an L, plateau to disposing at an L, plateau (increasing salvage
value case)
IP,, Inventory level at which it first becomes attractive to jump from

disposing along a ramp with salvage value g,
to disposing at an L, plateau (increasing salvage value case)

L Minimum number of units which must be disposed to earn g, per unit
disposed (increasing salvage value case)

m Number of increasing salvage values
M Number of units retained after disposal decision
N Maximum number of units that can be disposed for g, per unit disposed

(applicable for the marginally decreasing salvage value case)

P,(D.,) | Probability distribution of total requirements in the construction phase

D, Probability of a subsequent project beginning within [¢,,, ¢]

Q Replenishment quantity in the ongoing phase

0, Optimal procurement quantity produced by following the all-disposal
inventory management strategy
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Notation Description
0. Construction phase procurement quantity
oS Optimal procurement quantity produced by the integrated inventory
management strategy (using the exact costing approach in the
construction phase)

O, A procurement quantity that yields a discontinuity in ETC(Q,), due to the
presence of increasing salvage values

(o Optimal procurement quantity produced by following the myopic
inventory management strategy
0, Optimal replenishment quantity in the ongoing phase
S The quantity of stock ordered at v, to satisfy ongoing operational usage
from the original project
S’ The order-up-to level in the second half of the construction phase for the
caseof [ =0
T Duration of construction phase (in years)

The end-point of time interval i associated with a subsequent project (/

=1,2,...,n)

U Maximum number of units which can be disposed to earn g; per unit
disposed (increasing salvage value case)

V. Unit acquisition cost in the construction phase (original project)

v, Unit acquisition cost in the ongoing phase

v, Unit acquisition cost in a subsequent project

W Number of units disposed

ZQ) Present value of an infinite series of ongoing phase replenishments of size

Q (Z(Q,) represents the present value of future replenishments associated
with the optimal replenishment quantity)

a Continuous discount rate (ie. a cost of x incurred at time ¢ has a present
value of xe™)
a’ a/D,

e 2l ot 1 i the ith inrerval |



245

Appendix B. Equivalence of the Present Value Expressions Under
Deterministic Level and Probabilistic (Poisson) Usage in the

Ongoing Phase

(In a parallel development, Teunter and Haneveld (1995) generated similar results
for the present value of an infinite series of inventory cycles).

When Poisson usage (with annual rate 4) is introduced in place of deterministic,
level usage, the calculation of discounted carrying costs within an inventory cycle
changes somewhat. We now hold one unit for time ¢,, one unit for time ¢, + ¢,, and so on
until the last unit which is held for time ¢, + ¢, + ... + 1,,,. Note that this assumes that we
start an inventory cycle with Q-1 units (ie. we bring in Q units just as a unit is used in the
ongoing phase).

With Poisson usage, the times between usage of consecutive units is exponential
and the sum of independent, identical exponential variables has an Erlang distribution.
Therefore, in general, we are paying continuous out-of-pocket expenses on one unit for an
Erlang time and these charges must be continuously discounted to time 0. Thus, the
carrying charges under Poisson usage may be represented as:

o B kpk-1, -M
%j [he ax Xt e Ty (B.1)
k=1 0l 0 (k'l)'

The imbedded integral represents the continuous out-of-pocket expenses.

Evaluating that integral gives:



This represents the present value of carrying one unit for a time .

We may express (B.1) as:

LT \kpkelg M
————.—PV (carrying costs of 1 unit |t)dt

o J (k-1

which is:

This then becomes:

-1 = akok-1, ~(h-al

OE ko gfxz e
a (k-1

a
0

Equation (B.3) may be represented as:

-l [ s )ipk! -(A-q)
&_fi_ﬁ(k) (Lra)fehle o
o S

k=1 a
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(B.3)

(B.4)

The integral in (B.4) equals 1, since the integrand represents the general form of

an Erlang distribution with parameter (4 + ).

As a result, the total discounted (to time 0) carrying charges, in one inventory
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cycle, can be given as:

which become:

- ! k
b _ 1 ( k] (B.5)
a Ak \ A+
Letting:
e = 2 B.6
o (B.6)
and:
o = L
DO
we can express (B.5) as:
-1
h Q-l _ l%: e-ku’} (B.7)
a Q@ k=1

The summation term in (B.7) can be written as:
e '°/(1 ve s e ™ s ‘(Q'z’“l)
The term in parentheses can be expressed as:

] - e @be
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which gives the following for the present value of continuously discounted inventory
carrying charges within one cycle:

h[Q_l ) e-u'{l - e-(Q-Ha’]]

G ak | -e®

The total costs incurred in one inventory cycle, under Poisson usage, then are:

A+ Qv, +h

Q_l e-a'(l _ e-(Q-l)u’J

a a 1 - e-a"

The present value of all future inventory cycles, Z(Q), is then:

A+ Qv +h-Q‘1 e[ e"Q”"”

a (lk 1] -e®

| - e

Similar algebraic manipulation as described in Chapter 3 will give the following

for Z(Q):

(B.8)

Equation (B.8) is identical to (3.7), thus showing the equivalence, through the
transformation of (B.6), between the present value expressions when using either

deterministic level or Poisson usage.
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Appendix C. Proof that Z(Q) is Convex

(Sincere appreciation is extended to Dr. Peter Ehlers, University of Calgary, for
the considerable assistance provided in the development of this proof).
A simplified form of equation (3.7), recognizing only those terms which depend

upon Q, can be given as follows:

20 - 215 (R}

1 - e

where a, b and ¢ are (strictly positive) constants.

We are interested in the convexity of Z(Q), where Q is restricted to integer values.
Strictly speaking, a function defined on integers cannot be convex, since convexity
requires continuity. However, it will suffice for our present purposes to show that the
Z(Q) function consists of points on an associated function which is convex.

The second derivative of Z(Q) is:

ce ™™ . ac cx l-e &
———— = 2h(l+e ™) = [— + = -
(] -e ‘CX)J [2[) 2 | +e ‘“}

which, from the definition of a hyberbolic tangent, is:
ce . ac cx cx
————— = 2h(l+e * = + = -1 =
g e - 5 5 - w5

Since z - tanh(z) > 0 for z 2 0, we can conclude that the second derivative of Z(Q)

1S convex.

As a result, once the function begins to increase, it will continue increasing.
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Appendix D. The EOQ as an Approximation of Q,

Recall that the optimal replenishment quantity in the ongoing phase is the smallest

integer Q that satisfies the following nonlinear equation:

(1 - e'“{i + 4“;’—/])
’ Vo Vo
i (D.1)

Since a << 1, let us use a first-order approximation of (1 - ¢*). Thus, (1 - ¢€") =

a . We canrewrite (D.1) as:

/ / /
eQ“(l + L) >1 + h_ + q_{i + 4]4.;’_)] (DZ)
Yo Vo Yo Vo

Using a second-order approximation in place of ¢9* gives:

2,12 ! / /
(1+Qa/+Q—2°‘—J(1+’:—)>1+t—+a'(vi+g(1+ﬁ—]] (D.3)

Multiplication of terms in (D.3) and simplifying the result yields:

Q2a/2 . QZa/Zh/ 5 (l/A
2 2v v

4] o

Recognizing that a “= /D, and that 4’ = h/a, we have:

QZGZ . Qz(lh S aA
2D? 2w D? D, 4

Multiplying all terms in (D.4) by D /a gives:
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which can be expressed as:

2 5 o
0 oo, (D.5)

Taking the square root of (D.5) leaves us with the expression for the EOQ:

24D,
o>

h+av,

Consequently, the value provided by the EOQ expression offers a good place at

which to initiate the search for the optimal replenishment quantity in the ongoing phase.
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Appendix E. Proof Regarding Logarithmic Argument

in Equation (4.9)
We may write (4.9) as:
1
M > ?ln(/) -1 (E.1)

where:

ZQN - e)« h’
g+h

f =

We need to show that /> 1. Otherwise, we could obtain an invalid result for M .

If f> 1, this implies that:
ZQ)N -e®)>g (E.2)

Obviously, the largest feasible value for g is v, (the ongoing phase unit acquisition

cost). Hence, if (E.2) is valid for g = v,, then it will be true for any permissible salvage

Substituting g = v, into (E.2) and using (3.7) yields:

[A + O (v,+h" h'
[ 1 - e 2 1 -e®

Il -e®)>v, (E.3)

which gives:
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4+ 0,v,+h") (_L;ia_] SV

I -e

This can be expressed as:

A+ Qo(vo+h /) > ( l____e__T (vo + h /) (E.4)
1 -e”
Thus, in order for the expression within the logarithmic argument in (4.9) to be >
1, all we need to show is that the left-hand side of (E.4) will always exceed the right-hand

side. This boils down to showing that:

- o0l
02|t (E.5)
1 -e*
Note that (E.5) can be written as:
- %
Qozl 4 (E.6)
1 -r

where r = e™.

For Q, = 2, the right-hand side of (E.6) yields (noting that r < 1):

1—r2=(1+ﬂﬂ—r)=l+r<Q >
1 -r 1 -r ?

For Q, = 3, we have the following:

1-r3=(l+r+r2)(l—r)=1+r+r2<Qo=3
1 -r 1 -r
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Thus, in general, the right-hand side of (E.6) is:

Q2,1
r” (E.7)

n=0

which is always less than Q, since r < 1. As a result, the expression within the
logarithmic argument of (4.9) will always be > 1. The logarithmic value will be well

defined and the economic retention quantities will be positive.
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Appendix F. Proof Regarding Optimal Retention Quantities
When g =v,
Recall that the expression for the optimal retention quantity involves selecting the

smallest integer M such that:

ZON -e®)+hn
M> L @) - ) - '} I (F.1)
0./ g - h/
where:
A+ Q. (v +h 8] B!
Z2Q) = — - - (F.2)
1 - e 9" l-e®

We wish to determine what one can conclude when the salvage value, g, is equal to the
ongoing phase unit acquisition cost, v,.

Since we were able to show that the associated continuous function for Z(Q) was
convex (see Appendix C), let us begin by evaluating the first derivative of Z(Q) with
respect to Q.

We have:

< 70) - i - ey, « 1) - (4 + Qv oh))ae )

(F.3)
49 i - e}

At the minimum point, Q,, the derivative must be equal to 0. This implies that the

numerator of the derivative must equal 0.

As a result, we have:
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- e'Qo“')(vo +h) =4+ Qo(vo+h’))(a’e 2.) (F.4)

Simplifying (F.4) leads to:

A+ O,k (vrh?) €%

| - e 90 o’

(F.5)

Observe that the left-hand side of (F.5) is equivalent to a portion of (F.2). Thus,

one can substitute the right-hand side of (F.5) into (F.2). This yields the following:

v, +h") €2 h'
209, = / - , (F.6)
a 1l -e®

Replacing g with v, and using (F.6), we can express (F.1) as:

(v,+h") e 2 h'

/ (1 - e‘“") + h'

_ ,-a
M> L ¢ 1 - e -
a v, + h'

(F.7)

Algebraic manipulation of (F.7) gives us the following:

g.u
M > —]7ln[e / (1-e ‘“’)] -1 (F.8)

a a

Since a “<< 1, let us use a first-order approximation on (1 - e ). This means that

(1 - ¢“) can be approximated as a© We can rewrite (F.8) as:
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M>émwﬂ-1

which becomes:

M>Q, -1

As a result, when salvage values equal the ongoing phase unit acquisition costs,
the optimal retention quantity is the smallest integer greater than Q, - 1 (or equal to
Q, - 1, should this quantity already be an integer value). In other words, we dispose down

to the top of the optimal, ongoing inventory cycle.
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Appendix G. Behaviour of Cost Function

for Increasing Salvage Values

Suppose Fsome [, L, + M, <[ <M, + U,, such that it is attractive to jump from
a ramp with salvage value g, to a plateau earning g, per unit disposed (g, < g,). Will it
still be attractive to jump to this higher salvage value plateau when / = M," + U,? (ie. at
the end of the ramp). If so, then our cost function will never display the counter-intuitive
behaviour of moving back to the lower salvage value ramp.

Let us analyze the general situation in which one jumps somewhere along the g,
salvage value ramp to a plateau at a certain L, where L, = U, + | +y (y > 0).

At the L, plateau, we dispose L, = U, +1 +y units. Weretain/-L; =
[-U.-1-7v units.

Using our usual cost expressions from section 4.3, we have that PV (Plateau) is:

, |l -¢ U-ly-la -U-U, -na’
-(U+1+7)g, + A |(I-U-1-7) -€® re U ZQ,) (G.1)
1 -e™
Expanding (G.1) gives:
! -a’ (It - G/
-Ug -8 -v8 + Rl - h/Uk -h'-h"y '_he_’, re e (c) (G.2)
1 -e*®

where ¢ is as defined in section 4.3.

Along the ramp with salvage value g,, we dispose / - M, units and retain M,

units. Thus, PV (Ramp) is:
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- 0 _M‘u/ . .. ‘a/
—(!—Mk')gk + h' Mk' - e'“[ l—’—/—] v o Mo Z(Q)) (G.3)
1 -e©
which becomes;
- ns® h /e o ‘(‘M‘.’”u/
-(I—Mk )gk * }z Mk - 1 ' + e (C) (G-4)
- e a

Since PV (Plateau) < PV (Ramp), this implies that (G.2) - (G.4) < 0. Thus:

-Ug, -8 -8 + h'l - h/Uk -h! - h'y + e_(I—U"_m,(c)

s U-M)g, - R'M; - e ™" <0 (G.5)
k /&K k

Let us now describe the behaviour of the cost functions at / = M, + U,.
At the L, plateau, we dispose L, = U, +1 + y units. Weretain/- L, =

M +U-U-1-y=M,-1-yunits.

Thus, PV (Plateau) is:
g Mt (M, i’
“(Uprl+yg, « B/ |(M-1-y) - e , e N ZQ)  (G6)
1l -e™®
which is:
PR / / h'e ¢’ -(M, -)a’
-Ug, -8 -1 +hM, -h _h7_°'_7+e () (G.7)
1 -e™®

Along the ramp with salvage value g,, we dispose /- M,  =M," + U, -M," = U,
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units. A total of M, units are retained. This gives PV (Ramp) as:

_M"a/ . ,
-Ug, + h'|M; - e[ loe " Jlee™z0) (G.8)
I -e

-a

which is:

(M, -1y’
+ e

-Ug, + h'M, - (c) (G.9)

The difference between PV (Plateau) and PV (Ramp) at / = M,” + U, is simply:

(M, -7)a’

Vg, -8 -1 - h' -k - e M) < Ug - e M) (G10)

Let us define the following terms:

(M, -l

A=-Ug -8 -18-h'-hy-e (c)

B() = 'l - h/Uk + e-(I'Uk‘Y)“’(C) + ([_Mk.)gk - h/Mk.

C(Mk. +Uk) - e ‘(4{“ —'{)u/(c) . ngl‘
We know that, from (G.5):
A+BW)<O

The difference between PV (Plateau) and PV (Ramp) at = M," + U, can be

written as:

A+ C(M, +U))
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Therefore, to show that PV (Plateau) - PV (Ramp) <0 at/ = M,” + U,, all we need

to show is that:
F =Bl -CM+U)>0 (G.11)
Defining:
[ =M +L, +3
we can write F as:

F = h(M; +L,+8) - h'U, + e Mt

+ (L,+8)g, - h'M, - e _W".‘m/(c) - Ug, (G.12)
Equation (G.12) may be simplified as:
F = -(h'eg)(U-Ly-8) + o M Hobmes o Memify  (G.13)

Letting:
R=U-L, -5
we may express (G.13) as:
F - -(h'+gk)R . e-(M,‘-R—na’ _ e-w;-wa’](c)

which becomes:

F = -(h'sg)R + e M (e -1] (G.14)
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In essence, to show that F > 0, we need to prove that:
e -(M; -y)u’(c)[eku: -l] > (h ’+gk)R (G.15)

We could accomplish this by showing that the inequality in (G.15) holds for
exp (-M,"). Obviously, if it holds for exp (-M,"), it will continue to hold for exp (-(M,"-y)),
since the latter term is larger than the former.

From the derivation for M," in Chapter 4, we know that the optimal retention

quantity is the smallest integer M such that:

/
o ¢ BT (G.16)
20)1-e ) + h'

At M,” - 1, the inequality in (G.16) is reversed. Thus, we have that:

_ / + h/
P — (G.17)

2Q)-e) - n’

Recognizing that exp (-(M,-y)) > exp (-M,"), we can substitute (G.17) into (G.14)

to give:

+h)clef® -1
F> -(h'+g)R + . [ : } (G.18)

2Q)1-e®) « &’

which is:
F efd - |

— >R+ d ,1 (G.19)

h'sg, 2Q)(1-e =)+ n’

Using the definition of ¢, we may express (G.19) as:
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/
h -a, + Z(Qo) [eRa. - 1]
,F > R + l-¢€ ’
h'+g, 20)(1-e) « a’
which gives:
! [h’ + Z(Qo)(l -e '“I)][eku - l]
F [-e "
> -R +
h'+g, 2@, (1-¢ ) + h’
which then becomes:
Ra’' _
fsop. 0 (G.20)
h'+gy (1 -e u)
Now, if we can show that:
Ra’
e -l >R (G.21)
[ -e™@

we are done. If (G.21) is true, then F > 0. Should F be >0, than B(1) >
CM. + U,.

Let us define:

G(R)z_e__'_l_-R

If we can show that AG(R) = G(R+1) - G(R) > 0, then the inequality in (G.21) will

hold, and F will be strictly positive.
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which becomes:

which is:
eRie _ | (G.22)

This term in (G.22) must be positive, since a "> 0. Thus, for any R > 0, £ will be
strictly positive. As a result, if it is attractive to jump up to the higher plateau somewhere
along a ramp, it will still be attractive to make the same decision when / = M," + U, (at

the end of the ramp).
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Appendix H. Pair-wise Comparisons - Constant Salvage Values

B, vs. B,
All-Disposal l Myopic
*
High 400 400 400 400 400 400
(0.58) (1.76) (3.39) (0.58) (1.76) (3.39)
Middle 400 400 400 300 400 400
(0.58) (1.54) (3.17) (4.18) (1.54) 3.17)
Low 400 400 400 300 400 400
(0.58) (1.35) (2.96) (3.74) (1.35) (2.96)
Low Middle High Low Middle High
B,
B,vs.h
All-Disposal | Myopic
#
High 400 400 400 400 400 400
(2.53) (1.76) (1.07) (2.53) (1.76) (1.07)
Middle 400 400 400 400 400 400
(2.31) (1.54) (0.99) (2.31) (1.54) {0.99)
Low 400 400 400 400 400 400
(2.09) (1.35) (0.99) (2.09) (1.35) (0.99)
Low Middle High Low Middle High
h

All-Disposal

B, vs.a

[ Myopic |
]

400 400 400 400
(1.76) (1.29) 214 | .16) | (1.29)
400 400 400 400 400 400
(1.94) | (1.54) (1.15) 194) | (154 | @.15)
400 400 400 400 400 400
(1.74) | (1.35) (1.15) 174 | w35 | .15
Low Middle | Hi Low Middle | High
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B,vs. T, _
I Myopic 1

High 400 400 400
(3.10) (1.76) (0.72)

Middle 400 400 400 400 400 400
(2.87) (1.54) (0.72) (2.87) (1.54) (0.72)

Low 400 400 400 400 400 400
(2.65) (1.35) (0.72) (2.65) (1.35) (0.72)

Low Middle High || Low Middle High

T

I Myopic
High 400 400 400 400 400 400
(1.36) (1.76) (2.05) (1.36) (1.76) (2.05)
Middle 400 400 400 400 400 400
(1.13) (1.54) (1.83) (1.13) (1.54) (1.83)
Low 400 400 400 400 400 400
(1.09) (1.35) (1.62) (1.09) (1.35) (1.62)
Low Middle High Low Middle High
A
B,vs.D,
I Myopic
m
High 400 400 400 400 400 400
{0.88) (1.76) (2.71) (0.88) {1.76) (2.71)
Middle 400 400 400 400 400 400
(0.88) (1.54) (2.53) (0.88) (1.54) (2.53)
400 400 400 400 400 400
(0.88) (1.35) (2.35) (0.88) (1.35) (2.35)
Low Middle High Low Middle High |
D s—
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B,vs. v, _
All-Disposal I Myopic
*
High 400 400 400 400 400 400
(0.65) (1.76) (2.88) (0.65) (1.76) (2.88)
B Middle 400 400 400 400 400 400
! (0.65) (1.54) (2.67) (0.65) (1.54) (2.67)
Low 400 400 400 400 400 400
(0.65) (1.35) (2.46) (0.65) (1.35) (2.46)
Low Middle High Low Middle High
vlL
B, vs.g
Ali-Disposal I Myopic I
m
High 400 400 400 400 400 400
(1.46) (1.76) (3.12) (1.46) (1.76) (3.12)
B Middle 400 400 400 400 400 400
! (1.26) (1.54) (1.90) (1.26) (1.54) (1.90)
Low 400 400 400 400 400 400
(1.26) (1.35) (1.68) (1.26) (1.35) (1.68)
Low Middle High Low Middle High
&
B,vs. h .
All-Disposal l Myopic |
High 400 400 400 400 400 400
(3.98) (3.17) (2.46) (3.98) (3.17) (2.46)
Middle 400 400 400 400 400 400
B, (2.31) (1.54) (0.99) (2.31) (1.54) (0.99)
Low 400 400 400 400 300 300
(0.88) (0.58) (0.37) (0.88) (4.18) (3.46)
Low Middle High Low Middle High |
) ]
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| Myopic
T

High 400 400 400 400 400 400
(3.43) (3.17) (2.81) (3.43) (317) (2.81)
Middle 400 400 400 400 400 400
(1.94) (1.54) (1.15) (1.94) (1.54) {1.15)
Low 400 400 400 400 300 300
(0.73) (0.58) (0.45) (0.73) (4.18) (3.95)
Low Middle High Low Middle High |
a
B,vs. T,

All-Disposal

| Myopic

High 400 400 400 400 400 300
(4.57) (3.17) (1.85) (4.57) 3.17) (1.85)

Middle 400 400 400 400 400 400
(2.87) (1.54) (0.72) (2.87) (1.54) (0.72)

Low 400 400 400 400 300 300
(1.16) (0.58) (0.22) (1.16) (4.18) (2.68)

Low Middle High Low Middle High

I
B,vs. A

| Myopic I

R A ——|

High 400 400 400 400 400 400
(3.17) (3.45) (2.80) 3.17) (3.45)
Middle 400 400 400 400 400 400
(1.13) (1.54) (1.83) (1.13) (1.54) (1.83)
Low 300 300 300
(3.85) (4.18) (4.43)
Low Middle




269

| Myopic

High 400 400 400 400 400 400
(1.70) (3.17) (3.91) (1.70) (3.17) (3.91)

Middle 400 400 400 400 400 400
(0.88) (1.54) (2.53) (0.88) (1.54) (2.53)

Low 400 400 400 300 300 300
(0.33) (0.58) (1.15) (3.53) (4.18) (4.76)

Low Middle High Low Middle High

B, vs. v,
All-Disposal I Myopic
High 400 400 400 400 400 400
(2.08) (3.17) (4.23) (2.08) (3.17) (4.23)
Middle 400 400 400 400 400 400
(0.65) (1.54) (2.67) (0.65) (1.54) (2.67)
Low 400 400 400 300 300 300
(0.33) (0.58) (1.22) (3.31) (4.18) (5.24)
Low Middle High Low Middle High
— va
B, vs.

r———-—_ 1
Myopic
400 400 400 400 400

(3.17) (3.54) 2.87) | G171 | (3.59)

Middle 400 400 400 400 400 400
(1.26) (1.54) | (1.90) (1.26) | (1.54) | (1.90)

All-Disposal

High 400

Low 400 400 400 300 300 300
(0.53) (0.58) (0.65) (4.05) (4.18) (4.35)
Low Middle Hi Low Middle High

s |




hvs.a

270

All-Disposal

I Myopic |

High 400 400 400 400 400 400
(1.26) (0.99) (0.84) (1.26) (0.99) (0.84)
Middle 400 400 400 400 400 400
(1.94) (1.54) (1.15) (1.94) (1.54) (1.15)
Low 400 400 400 400 400 400
(2.72) (2.31) (1.82) (2.72) (2.31) (1.82)
Low Middle High Low Middle High
a
hvs. T.
| Myopic
*
High 400 400 400 400 400 400
(2.31) (0.99) (0.44) (2.31) (0.99) (0.44)
Middle 400 400 400 400 400 400
(2.87) (1.54) (0.72) (2.87) (1.54) (0.72)
Low 400 400 400 400 400 400
(3.52) (2.31) (1.15) (3.52) (2.31) (1.15)
Low Middle High Low Middle High |
I r
_ hvs. A
All-Disposal | Myopic
High 400 400 400 400 400 400
(0.77) (0.99) (1.17) (0.77) (0.99) (1.17)
Middle 400 400 400 400 400 400
(1.13) (i.54) (1.83) (1.13) (1.54) (1.83)
Low 400 400 400 400 400 400
(1.91) 2.31) (2.61) (1.91) (2.31) (2.61)
Low Middle Hi Low Middle High .
A
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hvs.D,
All-Disposal " Avopic
High 400 400 400 400 400 400
(0.70) (0.99) (1.89) (0.70) (0.99) (1.89)
Middle 400 400 400 400 400 400
(0.88) (1.54) (2.53) (0.88) (1.54) (2.53)
Low 400 400 400 400 400 400
(1.11) (2.31) (3.27) (1.11) (2.31) (3.27)
Low Middle High Low Middle High |
D,

I Myopic

High 400 400 400 400 400 400
(0.43) (0.99) (1.94) (0.43) (0.99) (1.94)
Middle 400 400 400 400 400 400
(0.65) (1.54) (2.67) (0.65) (1.54) (2.67)
Low 400 400 400 400 400 400
(1.07) (2.31) (3.51) (1.07) (2.31) (3.51)
Low Middle High Low Middle High |
— v”
. hvs. g
l Myopic
High 400 400 400 400 400 400
(0.90) (0.99) (1.92) (0.90) {0.99) (1.92)
Middle 400 400 400 400 400 400
(1.26) (1.54) (1.90) (1.26) (1.54) (1.90)
Low 400 400 400 400 400 400
(2.08) (2.31) (2.62) (2.08) (2.31) (2.62)
Middle High Low Middle High
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Myopic

High 400 400 400 400 400 400
(2.60) (1.15) (0.54) (2.60) (1.15) (0.54)

Middle 400 400 400 400 400 400
(2.87) (1.54) (0.72) (2.87) (1.54) (0.72)

Low 400 400 400 400 400 400
(3.05) (1.94) (0.93) (3.05) (1.94) (0.93)

Low Middle High Low Middle High

T,
a vs. A

All-Disposal

| Myopic I

High 400 400 400 400 400 400
(0.90) (1.15) (1.37) (0.90) (1.15) (1.37)
Middle 400 400 400 400 400 400
(1.13) (1.54) (1.83) (1.13) (1.54) (1.83)
Low 400 400 400 400 400 400
(1.57) (1.94) (2.21) (1.57) (1.94) (2.2D)
Low Middle High Low Middle High
A
a vs. D, _
=
| Myopic |
#

High 400 400 400 400 400 400
(0.77) .15 | @2y | ©1 | @15 | @2n
Middle 400 400 400 400 400 400
(0.88) (1.54) | (2.53) ©088) | (1.54) | (2.53)
Low 400 400 400 400 400
(1.94) | (2.75) 099 | (1.94) | (275
Middle | High Low Middle | High




High
Middle
a
Low
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a vs.v,
I Myopic
400 4006 400 400 400 400
(0.53) (1.15) (2.20) (0.53) (1.15) (2.20)
400 400 400 400 400 400
(0.65) (1.54) (2.67) (0.65) (1.54) (2.67)
400 400 400 400 400 400
(0.80) (1.94) (3.04) (0.80) (1.94) (3.04)
Low Middle High Low Middle

High {

|

e —

All-Disposal | Myopic

#

400 400 400 400 400 400

(1.05) (1.15) (1.48) (1.05) (1.15) (1.48)

400 400 400 400 400 400

(1.26) (1.54) (1.90) (1.26) (1.54) (1.90)

400 400 400 400 400 400

(1.71) (1.94) (2.23) (1.71) (1.94) (2.23)

Low Middle High Low Middle High

=5

T .vs. A _
! M;ogic !I

High 400 400 400 400 400

(0.72) (0.80) (0.53) (0.72) (0.80)

Middle 400 400 400 400 400

(1.54) (1.83) (1.13) (1.54) (1.83)

400 400 400 400 400

(2.87) (3.17) (2.47) (2.87) (3.17)

Middle High | Low | Middle
A

I—i____“




High 400 400 400 400 400 400
(0.23) (0.72) (1.42) (0.23) (0.72) (1.42)
T Middle 400 400 400 400 400 400
¢ (0.88) (1.54) (2.53) (0.88) (1.54) (2.53)
Low 400 400 400 400 400 400
(1.51) (2.87) (3.76) (1.51) (2.87) (3.76)
Low Middle High Low Middle High
D,
T.vs.v, _
All-Disposal Myopic
High 400 400 400 400 400 400
(0.24) (0.72) (1.40) (0.24) (0.72) (1.40)
T Middle 400 400 400 400 400 400
¢ (0.65) (1.54) (2.67) (0.65) (1.54) (2.67)
Low 400 400 400 400 400 400
(1.70) (2.87) | (4.0%8) (1.70) (2.87) (4.05)
Low Middle High Low Middle High
T vs.g )
|___Mm2i_°____
High 400 400 400 400 400 400
(0.66) (0.72) (0.80) (0.66) (0.72) (0.80)
T Middle 400 400 400 400 400 400
¢ (1.26) (1.54) (1.90) (1.26) (1.54) (1.90)
Low 400 400 400 400 400 400
(2.55) (2.87) (3.26) (2.55) (2.87) (3.26)
Low Middle High

T vs.D,
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| Myopic

|i




Avs.D,
,l Myopic
m
400 400 400 400
(1.83) 2.77) (1.05) (1.83) (2.77)
400 400 400 400 400 400
(0.88) (1.54) (2.53) (0.88) (1.54) (2.53)
400 400 400 400 400 400
(0.66) (1.13) (2.20) (0.66) (1.13) (2.20)
Low Middle High Low Middle High
_D,

I Myopic

High 400 400 400 400 400 400
(0.80) (1.83) (2.96) (0.80) (1.83) (2.96)

Middle 400 400 400 400 400 400
(0.65) (1.54) (2.67) (0.65) (1.54) (2.67)

Low 400 400 400 400 400 400
(0.46) (1.13) (2.26) (0.46) (1.13) (2.26)

Low Middle High Low Middle High

vl)
Avs.g

High 400 400 400 400 400
(1.55) (1.83) | (2.18) (155 | a.83) | (218
Middle 400 400 400 400 400 400
(1.26) (1.54) | (1.90) (126) | (1.54) | (1.90)
Low 400 400 400 400 400 400
(1.00) (1.13) | (1.52) 00 | @13 | .52
Middle | High Low | Middle | High
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D, vs.v,
All-Disposal I Myopic

High 400 400 400 400 400 400
(1.33) (2.53) (3.80) (1.33) (2.53) (3.80)

D Middle 400 400 400 400 400 400
° (0.65) (1.54) (2.67) (0.65) (1.54) (2.67)

Low 400 400 400 400 400 400
(0.47) (0.88) (1.36) (0.47) (0.88) (1.36)

Low Middle High Low Middle High

vn
D,vs.g
I Myopic
ﬁ

High 400 400 400 400 400 400
(2.44) (2.53) (2.66) (2.44) (2.53) (2.66)

D Middle 400 400 400 400 400 400
o (1.26) (1.54) (1.99) (1.26) (1.54) (1.90)

Low 400 400 400 400 400 400
(0.69) (0.88) (1.10) (0.69) (0.88) (1.10)

Low Middle High Low Middle High

g

v, vs. g

! M;ogic

an

|

High 400 400 400 400 400 400
43 | 267 | (2.96) 2.43) | .67 | (2.96)
Middle 400 400 400 400 400 400
Yo (126) | (1.54) (1.90) (126) | (.54 | (1.90)
Low 400 400 400 400 400
(0.65) (0.81) ©0.57) | ©65 | 0.8D
Middle | Hi Low | Middle | High

H
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D_vs. B, )
All-Disposal " Myopic
—*
Incr. 500 500 500 500 500 500
(0.66) (0.99) (1.33) (0.66) (0.99) (1.33)
Decr. 300 300 300 300 300 300
(1.98) (2.21) (2.45) {1.98) (2.21) (2.45)
Base 400 400 400 400 400 400
Case (1.35) (1.54) (1.76) (1.35) (1.54) (1.76)
Level 400 400 400 400 400 400
(0.89) (1.10) (1.31) (0.89) (1.10) (1.31)
Bi- 400 400 400 300 300 300
Modal (0.41) (0.54) (0.66) (3.09) (3.27) (3.46)
Low Middle High Low Middle High
B,
D_vs. B,
| Myopic I
400 500 500 400 500 500
(1.79) (0.99) (2.67) (1.79) (0.99) (2.67)
Decr. 300 300 400 200 300 300
(0.51) 2.21) (0.01) (5.46) (2.21) (4.52)
Base 400 400 400 300 400 400
Case (0.58) (1.54) (3.17) (4.18) (1.54) 3.17
Level 300 400 500 300 400 400
(1.89) (1.10) (0.002) (1.89) (1.10) (3.22)
Bi- 300 400 500 200 300 500
Modal (0.37) (0.54) (1.21) (4.66) (3.27) (1.21)
Low Middle High Low | Middle High |
B,
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D vs. h _
All-Disposal I Myopic

500 500 500

(1.62) (0.99) (0.44)
300 300 300

(3.09) (2.21) (1.48)
400 400 400

(2.31) (1.54) (0.99)
400 400 400

(1.72) (1.10) (0.56)
300 300 300

(4.37) (3.27) (2.35)
Low Middle High

l Myopic

M
500 500 500 500 500
(0.99) (0.59) (1.35) | 099 | (0.59)
300 300 300 300 300
.21) (1.81) .55 | @21 | (1.81)
400 400 400 400 400
(1.54) (1.15) (1.94) | (1.54) | (1.15)
400 400 400 400 460
(1.10) ©.76) | (1400 | (1.10) | (0.76)
400 400 300 300 300
(0.54) (0.32) (3.56) | (3271 | (2.92)
Middle High Low Middle | High




r——————
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D vs. T,
I All-Disgosal " Myopic I
m
| Incr. 500 500 500 500 500 500
(2.24) (0.99) (0.19) (2.24) (0.99) (0.19)
Decr. 300 300 300 300 300 300
(3.53) (2.21) (0.96) (3.53) (2.21) (0.96)
Base 400 400 400 400 400 400
Case (2.87) (1.54) (0.72) (2.87) (1.54) (0.72)
Level 400 400 400 400 400 400
(2.30) (1.10) (0.80) (2.30) (1.10) (0.80)
Bi- 500 400 400 400 300 300
Modal (0.63) (0.54) (0.02) (2.21) (3.27) {1.92)
Low Middle High Low Middle High
T.

D._vs. A

| Myopic ||

All-Disposal

m
500 500 500 500 500 500
©0.73) | 099 | (1.19) (0.73) 099 | (1.19)
300 300 300 300 300 300
(1.88) | @21 | (2.46) (1.88) 221) | (2.46)
400 400 400 400 400 400
(1.13) (1.54) (1.83) (1.13) (1.54) | (1.83)
400 400 400 400 400 400
0.88) | (1.10) (1.26) (0.88) (1.10) | (1.26)
400 400 400 300 300 300
(0.46) | (0.54) (0.59) 3.04) | 327 | (345
Low Middle Hi Middle | High

]

A

Low
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|
| Myopic
m
Incr. 500 500 500 500 500 500
(0.32) (0.99) (1.81) (0.32) {0.99) (1.81)
D Decr. 300 300 300 300 300 300
¢ (0.98) (2.21) (3.39) (0.98) (2.21) (3.39)
Base 400 400 400 400 400 400
Case (0.88) (1.54) (2.53) (0.88) (1.54) (2.53)
Level 400 400 400 400 400 400
(0.43) (1.10) (1.84) (0.43) (1.10) (1.84)
Bi- 400 400 400 300 300 300
Modal (0.18) (0.54) (0.91) (2.43) (3.27) (4.40)
Low Middle High Low Middle High
D,
D_vs.v,

I Myopic

500 500 500
©0.22) | 099 | (.75
300 300 300
125 | @21y | @.2n
400 400 400
©0.65 | .54 | 2.67)
400 400 400
©047) | 10y | @.73)
300 300 300
263 | 327 | (3.98)

High Low | Middle | High

Yo

|
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D.vs. g )
Al-Disposal " Myopic II
g e
Incr. 500 500 500 500 500 500
(0.59) (0.99) (1.45) (0.59) (0.99) (1.45)
Decr. 300 300 400 300 300 300
(1.96) (2.21) (0.00) (1.96) (2.21) (2.58)
Base 400 400 400 400 400 400
Case (1.26) (1.54) (1.90) (1.26) (1.54) (1.90)
Level 400 400 400 400 400 400
(0.66) (1.10) (1.61) (0.66) (1.10) | (1.61)
Bi- 400 400 500 300 300 300
Modal (0.10) (0.54) (0.21) (2.61) (3.27) (4.47)
Low Middle High Low Middle High
£




Appendix I. Evaluating the Heuristic for Approximating I,

(Critical t-value is £ 2.0)
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P,=06 ;=10
P,=03 ;,=2.0
P;=0.1 ;=35
(with ty = 0)
r I
M PV (M) PV (M)
(Heuristic approach) Exact approach
X si t-value
Sum $8,291,617.06 $8,228,612.46 | $77,524.5026 0.813
0 40605.92 40568.62 32.6342 1.143
10 38459.63 38431.01 30.9937 0.923
30 35381.66 35354.97 19.8388 1.345
45 33792.6 33808.61 28.9563 -0.553
60 32497.1 32497.74 21.5711 -0.03
P,=02 t;=0.5
P,=0.6 t,=3.0
P,=02 t;=4.0
(with t; = 0)
M PV (M)

(Heuristic approach)

t-value

Sum $10,014,695.61 $10,040,822.47 | $116,730.2648 -0.224
0 40787.89 40833.7 32.3971 -1.414
10 38610.67 38597.78 24.9565 0.517
30 35332.98 35310.7 22.1007 1.008
45 33395.89 33424.7 37.4571 -0.769
60 31919.63 31872.51 49.4638 0.953
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P;=0.05 t;,=1.0

P,=0.05 t,=3.0

P;=0.90 t;,=4.5

(with t, = 0)
M PV (M)

(Heuristic approach)
n X s t-value
Sum $13,295,732.30 $13.259,940.94 | $72,536.4895 0.493

0 41166.76 41156.81 35.3882 0.281
10 39073.45 39081.75 26.6632 -0.311
30 35432.91 35465.06 33.7971 -0.951
45 33126.34 33136.74 32.4956 -0.32
60 31201.32 31200.08 27.0227 0.046

P,=03 t;=0.5

P,=0.5 t,=2.0

P;=02 t;=4.5

(with t; = 0)
M PV (M)

(Heuristic approach)
P X s t-value
Sum $8,976,555.52 $8,930,469.29 $83,454.6713 0.552

0 40696.57 40697.56 30.6129 -0.032
10 38442.64 38455.71 22.2936 -0.587
30 35382.87 35387.14 22.3701 -0.191
45 33677.03 33662.96 28.5942 0.492
60 32308.16 32283.93 26.4688 0915
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P,=04 t,=1.0
P,=03 t,=2.5
P;=0.2 ,=3.0
(with t;=0)

(10% chance of no future project)

M PV (M) PV (M)
(Heuristic approach) xact approach
X S t-value
Sum $10,376,743.53 $10,333,360.77 | $69,179.3993 0.627
0 40974.28 40972.5 20.3318 0.087
10 38847.25 38830.59 21.0916 0.79
30 35547.8 35544.26 18.9226 0.187
45 33717.97 33723.36 28.2581 -0.191
60 32161 .35_____ 32144.52 26.2904 0.64






