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"No existen problemas agotados. solo hay hombres agotados por los
problemas.”

Comment to the press by Luis Federico Leloir, 1970 Nobel Prize in chemistry.



Abstract

The relatively recent experimental findings of the significant compliance of the thin
(actin) and thick (myosin) filaments has brought into question a number of conclusions
based on the assumption of perfect myofilament rigidity.

A discrete model of the interaction between individual myofilaments was developed
to study the stiffness of a sarcomere for the case in which filament compliance is not
negligible. The results of this model are discussed and compared to the predictions given
by the previously published model by Ford et al.(1981). Although it can be shown that
both models give identical results for an infinite number of links, for partial overlap our
model consistently predicts a stiffer sarcomere than the continuous model. An
explanation for the discrepancies between models is presented together with a way to
correct the continuous model to approximate discrete model results. Additionally, our
model is able to provide the stiffness for cases in which few cross-bridges are attached, or
when the distribution of attached cross-bridges is not uniform. Our results confirm
previous indications that it might be impossible to calculate the number of attached cross-
bridges using only stiffness measurements in quick stretch (or release) experiments.

Also, a new phenomenological model of activated muscle is presented. The model is
based on a combination of a contractile element, an elastic element that engages upon
activation, a linear dashpot and a linear spring. Analytical solutions for a few selected
experiments are provided. This model is able to reproduce the response of cat soleus

muscle to ramp shortening and stretching and, unlike standard Hill-type- models,
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computations are stable on the descending limb of the force-length relation and force
enhancement (depression) following stretching (shortening) is predicted correctly. In its
linear version, the model is consistent with a linear force-velocity law, which in this
model is a consequence rather than a fundamental characteristic of the material. Results
show that the mechanical response of activated muscle can be considered as viscoelastic.
Conceptual differences between this model and standard Hill-type models are analyzed
and the advantages of the present model are discussed.

The effect of non-commutativity between changes in activation and changes in length
on experiments performed on entire muscle are discussed. The results of exploratory
experiments are recorded and a possible analytical approach to the problem is presented
and discussed.

To conclude the dissertation, the continuum theory of chemically reacting mixtures is

presented and its possible application to muscle mechanics is briefly discussed.

v



Preface

Chapter II of this dissertation is based on the following manuscripts:

Forcinito M, Epstein M, Herzog W, (1997 ) Theoretical Considerations on Myofibril
Stiffness, Biophys J.. 72: 1278-1286.

Forcinito M, Epstein M, Herzog W, (in press) A Numerical Study of the Stiffness of
a Sarcomere, J. of Electromyography and Kinesiology.

Chapter III is based on the following manuscript:

Forcinito M, Epstein M, Herzog W, Don't Give Up on Rheological Models

(submittted to the Journal of Biomechanics).



Acknowledgements

During my years in Calgary I had the opportunity to learn from an exceptional
teacher whose personal qualities are only match by the immensity of his knowledge, [
would like to thanks Marcelo Epstein for his guidance, support and friendship.

As if finding an excellent supervisor were not enough luck, I also have the luxury of
meeting Walter Herzog who acted as a co-supervisor and to whom I will always be
thankful for his guidance, support and permanent encouragement to work in muscle
mechanics.

I would like to thanks to Gerald Pollack, Ron Zemnicke and Nigel Shrive for serving
in the dissertation defense committee.

My acknowledgments to Tim Leonard and Hoa Nguyen who gathered and prepared
the experimental data mentioned in chapter III.

Special thanks to Prof. Roger Woledge of the University College London for having
me as a student in his laboratory for four enriching months.

I would like to acknowledge my indebtedness to the University of Calgary and the
Natural Sciences and Engineering Research Council of Canada for the financial support
during my post-graduate term.

A special thanks to my loving wife Claudia for her helpful, understanding and

constant support along so many years.

vi



Dedication

to Claudia and Dante

vii



Table of Contents

APPIOVAL PAGE.......oiie et e e e e e te s ete e s s ee e s e ee e e a s aenaen 1

ADSETACT ....oceeieeeeceeee ettt et e e s et e s e s ee e e e aa s e e e s et e te e esassseensnaeaesnessnete s eenreennnaeeaes il
PrEface ...ttt ettt e et e e s e ee e et e s s e re s mne e e nsae s st e aear e sne e nne v

ACKNOWIEAGEMENLS. . ... et eeeeee e nreeesesaeses s emeseeaeseannaneseeans vi
DEAICATION ..c....ceiieireeieeetteteeieeeeieecete s taese e senaae s e meee s aes e seeeseassaesssassanssesansaseeseannneesen vii
DEAICATION ...ttt et et et s e s steae e e e s ae e e e sme e e e nsseseasasansnaseeeeseessaeaasesennes vii
LISt Of TADIES et recr et e e e te e r e ae e s e s s e an s aesmnameaas Xi
LASE Of FIGUIES ...ttt te e tee ettt et es st e e s s e s e samee e ne st e s e mees xii
LIRErodUCHION ... ...t cee e e e e e e e eesaeeeees s e mm e e s taennasaeeens 1

1.1 From Molecules to MUSCIE .........cocrimiiiiie et eece e e sens 3

1.2 From Muscle to MOIECUIES ........cooiieiimiieiiiiiecee et e ee e e snesceseneeeane 7

1.3 Plan of the present diSSEITAtION .......ccoceceeeeririeereeiieeereerenetetreeeaeesesessenseesaessenesasaaeens Il
1.4 What is NeW il ThiS WOTK .....eeeeeieieeiieee ettt eeeeecosme e eeee e e 12
IL. Structural Considerations on Skeletal Muscle Fibre ....................cccccevnnnnnnnneen. 13
2.1 SArCOMETE SITUCKUTE.....ccccoiiuieaaeanntiettereecteaeeteeraeee s serneeeesesssaesaeeessnnasssssesssssneansens 15
2.2 Thick and thin fIlaments .........cccoiiinie ettt cseee e sae e ee e 17
2.3 Cross Brid@e THEOTY ....cceeoieieeeeeccercitterineeeaee e s sceeeeseesesaeaseessss s eeessasssssansessenssnes 19
2.4 FIbre StIIESS ...coeeeee et e e e et saan e s s ne s e s eee e e e e s nan s es D2
2.5 The Discrete Approach to Stiffness Calculation.........cccccceecieveccernnnciinennenrcnecnnnn 24
2.5.1 Recursive stiffness algorithm......cccoccerereieniieeiiieecreteeerere e e e nrrsentessenseeees 25

viii



2.5.2 The Ladder Structure with Additional Series Filament ..........omueeemmerimvcnnccneee 29

2.5.3 Parallel Array of Ladder Structures with Additional Series Filament.................... 32
2.6 RESUILS....eeeeeeeeeeeeeeee et e e e et ncnte s s e e s s se e s s an s e rns e s s reeaa e smsne s e esasansnasanen 33
2.6.1 The 'Ladder’ StrUCTUIE......ccccor i iiieeimiicieerie e ereeee e tee e ssesesams s e s e s st e e ssacnsens 33
2.6.2 The Continuous Model ReVisited ............ooiimiiiiiree e 36
2.6.3 Parallel Array of Ladder Structures with Additional Series Filament.................... 43
2.6.4 Comparison with Experimental Results...........oooooioiiiiiiciins 45
2.7 Discrepancies between the discrete and continuous models.........coccoececroernninennnen. 46
2.8 Three-dimensionaliLy .........ccceeereeriecricmetieniiricce et ee s e sas s ns s s s seaesaneacacenes 48
2.8.1 Longitudinal and Transversal MOVEMENLS.........cocuriemiimeniiticeincecsiieininaas 51
2.8.1 TOPOIOZY «eeeenmeemmiitiieee et net e e s s ae ettt e st e sot e s et 52
2.9 CONCIUSIONS. ...eeeeeeeeireeeeneerearecerecerese e sssmesesree e are s ss s reasas s s eas s s ee s tessmanesssnsrnsnnsnases 56
II1. Muscle as an Engineering Material ..o 60
3.1 Pseudo-Rheological Muscle Models ........ ..o 61
3.2 A Phenomenological Model 0of MUsCle ..o 67
3.2.1 Hill-type mOdel ......omeeee st s 72
3.3 RESUIES oo eeeeieeeeieecnreeneeeeeeeee e s e s ne o secstecesstossnsrnnnnsaasbseashnsae ses s maantee et e aeaesas 73
3.3.1 Quick change in length ... 73
3.3.2 Quick change in FOTCE ......comiiiiieteeee ettt e 74
3.3.3 Constant Speed of Shortening or Stretching.........oooveeeieiiieieiiiiiinen 76
3.3.4 Comparison with Experimental Results. ..o 77
3.4 Critical Analysis of the present model.........coomiiiieriiee 81
3.5 DISCUSSION ...ueveeueereeeieenneesareeeaaeesneasasenerssssssaessiessssssnsesesssnasasssnsatesssantesosnsssssnssamsrssssas 86
3.6 Interaction Between Muscle Stimulation énd Movement.......cceoceeeermrienrrnreessninnens 88
3.6.1 Non-Commutativity Between Shortening And Stretching .......ccccceevvcnnnnnnnnnee. 94



IV. Mechanics and Thermodynamics ...........ccoooominneiiiiiieeeeeeeee e 98

4.1 ContinUum MECRANICS ......oeeriiiiiiee e cte e e et e e e e e e 99

4.2 Constitutive EQUAIONS .....c.ooueemee ettt seae s 105
4.3 MIXTUTE TREOTY ..ottt ees e ee et e ees e ne e e e e st e e seennas 106
4.4 Mixture of Chemically Reacting Bodies.........ccooomeeeiiiiiineaiiiniiecceneeeeeeeec e, 111
4.5 Comments on the Application of Mixture Theories to Muscle. ..........ccoceeereen.... 116
4.5.1 Non-Equilibrium Thermodynamics. .........cccoieeeerienreocieecencneerecereteee e, 118
4.5.2 Other Approaches Worth EXploring. ........cccoieoirimmiiieeeeee e 118
V. Conclusions and Recommendations..................cccoeoiiiiiiiinninrneneieeeesesenenaeas 120
5.1 CONCIUSIONS. ...ttt ee o et aeseme e mae e ot e e e sen e e s easnans 120
5.2 Recommendations for FUture Work...........cccoooieirieiiinicinniineiiescee e ceceeceee e 122
BIbLIOGIapRY ....oeieieee ettt ettt 124
Appendix A. The equation of Ford et al. (1981) revisited..........ceoeeceeiinninnccennnencancene. 132
INAEX ...t asa e s ee s e e e s a e e e s e et e e aes 135



List of Tables

Table 2.1: Comparison between the stiffness calculated with the discrete and
continuous models for the overlap zone for an increasing number of panels.........c....... 45

Table 2.2: Stiffnesses of the open and closed lattices of ladder structures in

Table 3.1: Parameters used for Hill's MOdel. ..ooooreeceieniimrnnansssranssccnsnmssnsesc e 73



List of Figures

Figure 1.1: Chemical Power as a function of the fraction v/Vmax derived by Hardt

2 N ————

Figure 2.1: Schematic representation of skeletal muscle fibre showing the

MYOFibrils AN the SATCOMETE ..cooovorsvecvemsssemsssssscsamssssess s
Figure 2.2: Schematic representation of a sarcomere (from M-band to M-band) .........
Figure 2.3: 'Ladder’ structure QETIItION. coeneeeeenmeneeeceseseresermnsseacesermnenansnsasensenasmsasencesss v

Figure 2.4: External degrees of freedom of the ladder structure with i - panels............

Figure 2.5: External and internal degrees of freedom when a new panel is added to

LHE STTUCTUTE. .o eoeererreesersecsesesasasssssessesse e sSSP ES
Figure 2.6: N-panel ladder structure with series elastic elements.........c.ccaaeuecrsmeninnnes

Figure 2.7: Element lengths for different configurations of the ladder structure. .........

Figure 2.8: Stiffness of the ladder structure as a function of the ratio a/b (top) and

the nUMber Of PANels (DOTOM). civvuuuucrusserssssssssssemmssrssssssssasassemsss s om0

Figure 2.9: Percent difference in the stiffness between the continuum and the

discrete solutions for the 1addEr STTUCTUTE. ....eeeeuenemrmersrsssnsccsenmmamsnssasasesssusamsansssasnssssnes

Figure 2.10: Sarcomere stiffness as a function of the sarcomere length for

different stiffness ratios of the ladder structure with additional filaments. ....ccccceeeeeeeees

Figure 2.11: Ratio of total stiffness and stiffness of the overlap zone as a function

of sarcomere length for different stiffness FATIOS. weveeveremeenessenseansssensacssssesseansssansansssonesess

.26

27

30

31

36

38

.39

41



Figure 2.12: Comparison between the stiffness given by the continuous and
dISCIEte MOMEIS. ....eeeeeeeeeeeceeereeeecceeeeceee e ceessrste e e ns s ea s se s e s s s e e s s ae s e s mn e e semanesanaassasansoss 42

Figure 2.13: Sarcomere length dependence of yo plotted in the same way as Fig

1310 FOrd €t al. (1981). cenmmeeeeeeeeeeeee ettt st tes e e s e nee b s e s aessse s s es s eenmsnnssas 43
Figure 2.14: Stiffness per myosin Dead........oocomriiciii e 45
Figure 2.15: Discrete model overlap Zone ... 46
Figure 2.16: Variation of the Stiffness per Cross bridge with sarcomere length............. 47

Figure 2.17: Three dimensional rendering of the super-lattice as described by
SQUITE, 1990. ..ottt e s en e st et sttt s s e s e 50

Figure 2.18: Three dimensional rendering of the arrangement of thick and thin

filaments as described by Pollack, 1990. ......oo e 50
Figure 2.19: Topology of the Open and Closed LattiCes. ......c.cccovviimmmmirresienracincceces 54

Figure 2.20: Variation of the Stiffness divided by the number of cross-bridges

with the number of cells for the Open and Closed Lattices.........cooeoueeemenciinnninnnnnenne 58
Figure 3.1: Isotonic and Isometric static curves for muscle ........coooirionneniniennens. 64
Figure 3.2: Hill's two element muscle model. ..o 65
Figure 3.3: Representation of the contractile element. ..........coooieiiiniiiiicicnnnccnenes 68

Figure 3.4: Solution of Eq 3.3 for a forcing function consisting of a periodic

fUNCLION With SATULALION. ....ecveerreemeerereneareeserseseeesessssmersrssranessssssnsaessssatonssstossssmees senasasnss 69
Figure 3.5: Rack element repreSentation. ....c.cocceeeireiitiiinnmeennnesse sttt sasasacnes 71
Figure 3.6: Rheological model repreSentation. ......c.cov.uveimuiinminmirenes st cnneenens 71

Figure 3.7: Characteristic curve for the present model with constant coefficients
compared to the characteristic force-velocity curve With . ...c.ccoovirmeiceicnincinncninn. 79
Figure 3.8: Shortening at constant speed: comparison between experimental

results, the present model and Hill's model. ..o 81

xiii



Figure 3.9: Lengthening at constant speed: comparison between experimental
results, the present model and Hill's model. ..ot cececrececeeaee 82
Figure 3.10: Effects of pulse doubling in cat soleus force.......c.ccceeeieeeniininimnnnnnnnnnnne. 82
Figure 3.11: Solution of Eq 3.3 for a square (left) and a triangular (right) pulses
for different values of the parameter ..ot 84
Figure 3.12: Brush Mechanics. Example of a structure with stable but negative
slope force-length relation ........ccc.oiiiieeeeer e nee e s seee e saan e e 84
Figure 3.13: Shortening from fully active state and activation from resting state to
reach the same F-L POINT .....cooiiiireeeeeeete e ece e e sasee s s sees 90

Figure 3.14: Stretching and reduction of stimulus from fully active state compared

to reduction of the activation and SIetChiNG .........coocoveereeecirecriiiiecce et eeanaeas 91
Figure 3.15: Active Shortening followed by Stretching of in vivo cat soleus. ................ 95
Figure 3.16: Active Stretching followed by Shortening of in vivo cat soleus. ................ 96

Figure 3.17: Active Shortening followed by reduction of the activation and
Stretching of in VIVO Cat SOIUS. ... .eoeeicieceiieeeeee et tenat et aees 97

Figure 3.18: Active Stretching followed by redacting of the activation and

Shortening of iN VIVO Cat SOLEUS. ... cooiiiiirieccitiitecettncc et esa e e 98
Figure A.1: Ladder structure with infinite panels. ........cc.ccocvviiniinninieninnnieeeeeeeene 134
Figure A.2: Coordinate system definition for boundary conditions. ......ccccceeoeieevenncnnnen. 134

Xiv



Introduction

Skeletal muscle has been the subject of intense study for more than a century. To the
obvious interest on muscle functioning arising from biology, we should add the interest
from mechanical scientists to understand the most ubiquitous natural transducer of
chemical energy into mechanical energy. Undoubtedly, the remarkable properties of
skeletal muscle are due to its complex structure; from the molecular level to the entire
muscle level, everything in muscle seems to spell structure and order.

Over the last half of the century, biologists and physiologist have tried to accomplish
the unlikely task of joining two completely different worlds; the molecular approach and
the phenomenological approach. It is opportune here to justify the use of the adjective
‘unlikely’. Consider a steel bar subjected to the uniaxial stress test. It is an easy exercise
for engineering students to predict the force at which the bar will yield by measuring the
cross sectional area of the bar and multiplying it by a single, macroscopically measurable
quantity: the yield stress. On the other hand it is also well established that the material is
mainly formed by iron and carbon atoms! arranged conforming one of a small number of
possible crystalline structures. Inter atomic and intermolecular forces are also well known
and can be precisely calculated. However the prediction of the yielding stress and
deformation based on the knowledge of atomic interactions is unlikely to be successful.

The reason is that between the atomic realm and the macroscopic world there are several

1With modem tunnel electron microscopy techniques it is possible to actually see the atoms.
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levels of organization of matter. In the case of the steel bar, the crystals are not always
perfect. Also, the crystals are arranged into grains of different shape and random
orientation. All these factors result in a yielding force for the bar that is several ord;rs of
magnitude lower than the one predicted for perfect crystals by calculating the effects of
inter atomic forces and postulating a dislocation pattern.

This example of a 'simple’ problem in engineering behaviour of materials, should
teach us to proceed with caution and remind us that we are probably too ambitious if we
expect to find a universal and simple model able to describe completely the behaviour of
complex systems. Returning to our simple example of the steel bar, one might think that
for that case there is no need of a sophisticated model; after all, for practical purposes,
one needs only to know at most two properties, the elasticity modulus and the yielding
stress, to describe the basic behaviour of the material in the range of practical
applications. But progress in science rarely goes hand in hand with practicality. In the
case of the steel bar, the shape of the functional form of the potential energy vs. the
separation between atoms can be used to demonstrate that, for small elongations, the
stress must be proportional to the strain. This shows that although the hope to find a
simple model that can predict exactly the macroscopic behaviour and at the same time
account for microscopic events is dim, knowledge of microscopic events surely helps to
develop and validate better macroscopic models.

Although the same line of reasoning can be applied in general to all problems in
material science, in the case of muscle there are some factors that must be taken into
account. Unlike the case of the steel bar, the lowest significant level of organization in
muscle can be taken to be the level of macromolecules. The proteins that constitute the

myofilaments2 have molecular weights of several hundred thousand Daltons, that is 4 to 5

2 The internal structural arrangement of muscle will be described in chapter II.
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orders of magnitude the molecular weight of iron and carbon molecules. Another
important difference that must be mentioned is the higher degree of order in which the
biological molecules arrange themselves in the muscle as compared with the haphazard
way in which crystal grains are arranged in steel. As structural order can be associated to
predictability, maybe there is more hope to find a model based on molecular interaction,
which at the same time can predict global behaviour, for a muscle than for a steel bar.
Perhaps this hope is founded upon the relative success that the two cornerstones of
twentieth century muscle physiology, Hill's muscle model and Huxley's Cross-bridge
theory, have had.

1.1 From Molecules to Muscle

To keep the perspective on the subject, a rough list of what is known and what is
unknown about muscle mechanics will be helpful. At the lower end, although the
microscopic structure of myofibrils is relatively well known from electron microscopy,
X-ray diffraction studies and biochemical analysis, there are still some points for debate.
Details such as whether the myosin head rotates or not, or the exact position and number
of myosin heads in a thick filament, to name a few, are still far from being firmly
established. Those 'details’ could be of secondary importance in the context of cross-
bridge models that assume the independence of the force generated by different myosin
heads, but they can be of central importance to models that assume the cooperativity

between myosin molecules.
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Using modern techniques such as laser light traps (or optical tweezers), researchers’
have been able to measure the stiffness of individual myosin molecules. These
advancements in experimental techniques should put an end to many years of debate
about the amount of force that each cross-bridge can exert and about the length of the
force stroke. Unfortunately the results are inconclusive so far, due to the variability
exhibited by the forces and lengths measured in different experimental assays*. With the
increasing availability of experimental results from such sophisticated preparations, it is
possible to foresee a complete elucidation of the mechanical aspects of the minute details
of myosin-actin interaction; however, as the experiments at the molecular level are
performed either in vitro or in skinned preparations, usually far from the physiological
ranges of operation, there will always be room for speculation on whether the events in
vivo resemble the ones measured in the laboratory or not. A larger gap in the knowledge
of myosin-actin interaction, is the elucidation of whether there exists some cooperativity
between neighbouring force generators. Huxley's cross-bridge theory, as well as all
similar and derived theories, assume the independence of force generators. Although
most of the researchers in the field agree with that idea, there are some authors that
dissent with it based on generally accepted experimental evidenceS. Zhou and Phillips,

1994, presented a theoretical model that implies the cooperativity between neighbouring

3See for example Nishizaka et al. 1995.

4There are some other problems due to the experimental techniques. for example in Nishizaka et al.
1995. the practice of using a piece of actin filament to attach the myosin heads will mask the real value of
the stiffness in the myosin head, unless the exact length and stiffness of the filament are known and
accounted for when measuring the displacement. The solution to such problems should be relatively easy to
address in future experiments.

5See Pollack, 1995 and the answers to that article for a detailed discussion on the matter.
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molecules on the actin filament and match in vitro experimental data. They used a cellular
automata model of the thin filament for which the calcium affinity of actin was modeled
as a function of the state of neighbouring troponin molecules. If the mechanism implied
by Zhou's model is true, and activation of receptive sites in the actin filament does not
proceed at random, it can have important implications on the ability to produce force of
the myosin molecules and, consequently, some indirect cooperation between
neighbouring myosin heads can be present even if we assume that the attachment of
myosin molecules to actin does not have such property.

However, the biggest unknown in the putative cycle of cross-bridge attachment and
detachment is, in our opinion, the rate at which the ATP (Adenosine Tri-Phosphate) is
hydrolyzed by the actomyosin complex. Experimental results are contradictory in this
issue. Researchers have measured different rates of ATP consumption for different
experimental conditions. This violates one of the fundamental postulates of Huxley's
cross-bridge dynamics, that is, that each cross-bridge cycle hydrolyzes a fixed quantity of
ATP. Thermodynamics of chemical reactions can be used to find the bounds of this
relation, for example, the sum of mechanical work and heat produced cannot be bigger
than the difference in free energies before and after the hydrolyzation. However the
correct relation between mechanical work and chemical energy change will, in general,
depend not only on the present thermomechanical state, but also on the history of the
process, because in general thermomechanical processes the amount of dissipation
(entropy production) depends on the path followed. There is also the possibility that the
mechanical state affects the chemical affinities between components, which is only

partially taken into account by the cross-bridge theoryé. Cooke et al., 1994, published a

$In Huxley's original theory only sliding velocity and cross-bridge distortion affect the probability of

chemical interaction.
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cross-bridge model that allows for detachment of myosin heads without hydrolization
whenever the free energy of the attached state exceeds the free energy of the detached
state. This type of weakly coupled models predict the relation between ATPase activity
and contraction velocity at high shortening velocities more accurately than strongly
coupled models.

It is always intriguing that cross-bridge models are unable to predict the force for
different velocities of contraction, if a set of constants adjusted for a particular
contraction velocity is used. As the constants needed to fit experimental results for a
given velocity of contraction are related to the rate constants of the chemical reactions
supposed to be relevant in the contraction process, the fact that for different velocities one
needs different values for the constants probably mean that the rates of reaction depend
on global mechanical parameters such as velocity or force. The dependence of rate
constants on contraction velocity can also mean that the kinetics of chemical reactions is
different from first order. The problems associated with the measured order of a chemical
reaction in reduced spaces was addressed by Savageau, 1995. To put Savageau's
conclusions in simple words, for enzymatic reactions the spatial distribution of reactants,
more specifically the spatial degree of freedom of the molecules participating in a
chemical reaction, have a strong influence on the kinetic order of the reaction. This means
that the kinetic order of the reaction and the rate constants measured in a situation where
all points in a three-dimensional space can be occupied by the reactants, are very different
from the ones corresponding to the same reaction proceeding in a situation where the
reactants have restricted spatial degrees of freedom. To our knowledge there is no
analysis of the consequences that this can have for myofibrils where the reactions
between myosin and actin are restricted to a space of a dimension close to 1.

Going a level up from the molecular constituents of muscle, there are some unsolved

problems regarding the properties of the structure of the sarcomere. There is experimental
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evidence that the actin filament at least, and possibly the myosin filament too, are more
compliant than previously thought. As we show in Chapter II this fact has important
implications on the stiffness of the sarcomere, which is often used to assess the
proportion of attached cross-bridges in experimental settings. We also show that the
structural arrangement of cross-bridges has influence on the stiffness value. To date, the
exact distribution of cross-bridges is not known. The contributions of other force carrying
components such as titin filaments and Z-discs are often neglected in the analysis,

although the influence they can have on the total stiffness of the sarcomere is not known.

1.2 From Muscle to Molecules

In his landmark paper of 1938, A. V. Hill established the bases for the most widely
used muscle model in biomechanics to date. From his thermal and mechanical
measurements, Hill foresaw that there must be a chemical reaction whose activity is able
to produce mechanical work and heat on muscle. Although for today's standards the
experimental techniques that Hill used were very crude, he predicted the proper
connection between the at the time unknown chemical reaction, the mechanical work and
the thermal energy dissipated in the contraction process. Regarding the mechanics of the
entire muscle, at first sight things look less complex than at the microscopic level.
Considering only the operational aspect, an entire muscle can be looked at as a black box
with certain properties or transfer functions between mechanical state variables (force,
length and contraction velocity) that depend on the value of a controlling variable (usually
called activation). Although some aspects of the transfer functions are very well known,
to date there is no muscle model that can represent completely its mechanical behaviour.

The state of affairs is worse if one is interested in questions such as how much metabolic
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energy is needed to complete a prescribed motion. It is common practice in biomechanics
to use the product of the force velocity and force length relations derived from
experiments to predict the force and length for any motion condition. The resulting model
is not a proper constitutive equation for muscle, its range of application is limited to cases
in which the shortening speed is constant or zero and cannot account for such phenomena
as force depression following shortening or force enhancement following stretching. Such
models are purely mechanical as they do not include any thermodynamics. The
thermodynamics is provided by an ad hoc function, derived from experimental data or
from cross-bridge modeling. One of the problems is that the thermodynamics of muscle is
incompletely known. As shown in chapter IV, the thermodynamics of chemically reacting
materials is complex, and theories developed from first principles are seldom used as a
framework for building muscle models. One of the reasons for this lack of theoretical
work could be the complexity of the mechanical theories for chemically reacting
mixtures. Even a model with the most simple geometry, that includes all possible
interactions between the stoichiometry, the chemical kinetics and the dynamics of
deformable bodies, is almost intractable. Moreover, for the case of a mixture of simple,
solid and fluid components, it is not clear how to calculate such quantities as the internal
energy and the entropy production. The standard practice in thermodynamics of living
tissues is to use expressions of internal energy and free energy derived for the case of
perfect gases. Assuming that these expressions are also valid for the calculation of very
dilute solutions, we still are far from justifying its direct use in the case of muscles.

An interesting approach to the problem of linking the energy liberated by the
chemical reactions with the force and velocity of the muscle is that used by Hardt, 1978.
In this unjustly ignored work, Hardt used a cross-bridge model previously published by
Julian et al., 1974, to derive numerically the necessary constitutive functions that relate

dynamic parameters of a sarcomere to its metabolic energy expenditure measured as a
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function of the cross-bridge activity. The constitutive relation is then scaled up to the
entire muscle and, using a three-dimensional model of the human limbs, related to the
forces and displacements occurring during level walking. Although not very precise (in
the sense that the numerical solution was not able to match known experimental results
by an order of magnitude), the transfer function found by Hardt had desirable features
such as a non-zero steady state chemical power for the isometric state and a smaller, but
positive, power for eccentric movements, as shown in Fig. 1.1. Those characteristics,
although easy to deduce intuitively are much more than most of mechanical models based

on kinematics of rigid bodies will ever be able to show.
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Figure 1.1: Chemical Power as a function of the fraction v/V 4, derived by Hardt
(1978). v is the contraction velocity, positive for concentric contraction and V,,, is

the contraction velocity of the unloaded muscle.
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Hardt had worked with the idea of an integrated model in which all the levels from

molecular interactions to entire muscular groups are considered as part of the analysis. In
his analysis, Hardt uses thermodynamic principles to maintain the consistency. Hardt's
main hypothesis was that in any cyclical movement there is a minimization of the global
energy expenditure. One can agree or disagree with this hypothesis, which is difficult to
prove true or false because criteria based in optimization of energy imply certain order at
levels of organization higher than the purely mechanistic level. Nevertheless, the fact that
Hardt made use of available models, covering the aspects of molecular interactions,
mechanics and thermodynamics, together with an implicit control strategy, is significant
in that it points to muscle mechanics as a composition of problems at different levels and

shows a possible way to address it.

1.3 Plan of the present dissertation

We have addressed two different problems: the influence of myofilament stiffness at
the sarcomeric level, and the force inhibition or enhancement after shortening or
lengthening at the entire muscle level. In Chapter II, we present a description of the
internal structure of muscle fibers together with a theoretical analysis of the sarcomere
stiffness for the case in which the myofilaments are compliant. The analysis is based on a
discrete model of the structure representing the interaction between thin and thick
filaments. Chapter III describes a simple rheological model of muscle that predicts effects
of force depression or enhancement after shortening or lengthening, and some ideas about
how the so-called memory effects, in which the activation and the change in length
interact, can be mathematically addressed. Chapter IV is a review of modern continuum

mechanics and thermodynamics, including a review of the continuum theory of
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chemically reacting mixtures. This chapter was included for completeness and to indicate

what, in our opinion, is the way for future theoretical developments on muscle mechanics.
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1.4 What is New in This Work

Using the model presented in Chapter II to calculate the sarcomere stiffness, it is
shown that the number of attachments and the stiffness of an array of intedigitating elastic
filaments are not directly related in the range of parameters that are physiologically
significant for mammalian skeletal muscle.

Chapter III presents a new rheological model for the entire muscle which is able to
account for effects such as the force depression after shortening and the force
enhancement after lengthening. The model departs from standard Hill like models in that
the force velocity relation is predicted as an explicit consequence of the interaction
between the elements appearing in the model, rather than as an intrinsic property of the
contractile element. Also, the consequences of the non-commutativity between the
application of stimulation and changes in length are discussed and a possible way of

addressing the problem is presented at the end of the chapter.



II

Structural Considerations on Skeletal Muscle Fibre

In this part of the dissertation we will restrict our attention to the mechanical events
affecting muscular contraction inside skeletal muscle fibres. Skeletal muscles are more or
less complex arrangements of fibres of different types, and muscle architecture strongly
influences the characteristics of a given muscle; however, since the interaction between
fibres in a muscle is supposed to be purely mechanical, we consider the fibre as the
minimal unit that exhibits all the essential mechano-chemical interactions that can be
found in muscle. For the description of morphological characteristics of fibres, we will
follow those given by Woledge et al. 1985, Squire 1981 and Pollack 1990.

A fibre is a multinucleated muscle cell, usually between 20 and 100 pm in diameter
and up to 100 mm in length It is surrounded by the cellular membrane, called
sarcolemma, which separates the internal media of different fibres. Fibres are chemically
and electrically insulated in such a way that they can be stimulated or activated separately
by the nervous system. This modularity of the activation function allows the muscle to
work over an extended range of forces with the same degree of control. Figure 2.1 shows
a schematic drawing of a fibre.

On the inside, the fibre is organized as a bunch of parallel fibres called myofibrils,
which are responsible for the contraction. Myofibrils, which are about 1 to 2 ym in
diameter and as long as the fibre, retain the striation (with a periodicity of 2 um at slack
length) characteristic of muscular fibres. Each myofibril is surrounded by a network of

closed tubules of irregular shape called the sarcoplasmic reticulum, which plays a
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fundamental role in the activation process. Upon close examination it can be seen that the

myofibril is composed of repeating units of filaments of contracting proteins that run

between consecutive structures resembling discs, called Z-discs (or Z- lines).
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Figure 2.1: Schematic representation of skeletal muscle fibre showing the myofibrils
and the sarcomere. (Based on drawings by Woledge, Curtin and Homsher (1985),
and Pollack (1990).)

A section of myofibril between two consecutive Z-discs is called a sarcomere. The
sarcomere is the minimal structural component of muscle capable of contraction and will
be described in some detail in the next section. Other components of the fibre are the

system of transversal-tubules (or T-tubules), that provide a shortcut for the electrical
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wave of stimulation, and mitochondria which supply energy by means of the oxidative

phosphorylation of the adenosine tri-phosphate (ATP).

2.1 Sarcomere Structure

In vertebrate muscle, the separation between consecutive Z-discs, the sarcomere
length, may vary between about 2 um and 4 um, depending on the degree of stretching of
the fibre. Upon contraction, the sarcomere shortens proportionally to the fibre
shortening!. This proportional shortening is possible thanks to the internal arrangement of
sarcomeres which consist mainly of interdigitating filaments of myosin and actin
polymers as shown schematically in Fig 2.2. There also exists a connection between the
end of each thick filament and the Z-disc through titin filaments, however the prevalent
way of thinking is that titin has a passive role of preserving the structural integrity of the
sarcomere upon stretching beyond the overlap region of the myofilaments, and that its
characteristic of easy foldability does not impose considerable forces upon contraction
(Rief et al. 1997, Kellermayer et al. 1997, Erickson 1997).

Thick filaments are cross-linked in their central part by a structure called the M-band
which has passive structural functions.

Although there are some objections, like those raised by Pollack (Pollack 1990,
Pollack 1995), it is widely accepted that the thick and thin filaments do not change
considerably their length when muscle contracts or stretches. This is the base of the

sliding filament model first proposed independently by A.F. Huxley and Niedergerke,

Although not all sarcomeres shorten by the same amount, on average they shorten proportionally to

fiber shortening.
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(1954), and by H. E. Huxley and Hanson, (1954). The sliding filament model assumes

that thick and thin filaments slide rigidly past each other. The sliding filament model has
served as the basis for the cross-bridge theory, the almost unanimously accepted

description of muscle contraction, that will be briefly discussed in section 2.3.
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Figure 2.2: Schematic representation of a sarcomere (from M-band to M-band).

2.2 Thick and thin filaments

Thick or myosin filaments are bipolar structures 1600 nm in length, formed by the
aggregation of myosin molecules. The length of thick filaments is remarkably constant
among different species of vertebrates. Myosin is a large molecule consisting of two
identical ellipsoidal heads 20 nm in length connected to a 156 nm long rod which has a
flexible hinge at 43 nm from the heads. In the last few years, the myosin molecule has

received a great deal of attention by molecular biophysicists, who in 1993 mapped all its
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domains in detail and identified the pocket that supposedly binds it to the actin monomer
(Rayment et al. 1993, Rayment et al. 1993b). The thick filament is formed by the union of
three strands or subfilaments. To form a subfilament, myosin molecules, staggered by 43
nm in the axial direction, slightly twist their tails around each other. The heads projecting
out of the filament form three helical tracks separated by 43 nm in the axial direction and
a pitch of 86 nm for vertebrate? skeletal muscle (Cantino and Squire, 1986). The two
halves of the filament on either side of the M-band are of opposite polarity with the tails
of the myosin molecules pointing towards the M-band. Because of this arrangement in the
centre of the filament, there exists a 150 nm long segment (the bare zone) without myosin
heads.

Thin filament length is variable among different vertebrate species, ranging from 950
nm in frogs to 1270 nm in humans. Thin filaments are formed mainly by three proteins:
actin, tropomyosin and troponin. Tropomyosin and troponin are believed to play a
regulatory role because it has been observed that they change their structure in the
presence of calcium ions (Ca++). The thin filament backbone is formed by a two-strand
helix of F-actin, with a pitch of 73 nm. F-actin is a polymerized form of actin monomers
or G-actin (globular actin), which is a ball-shaped molecule of 5.46 nm in diameter. Actin
monomers are believed to provide myosin heads with attachment points, thereby taking
part in the formation of cross-bridges. Tropomyosin and troponin lie in the groove of the
two F-actin helices. Upon activation, Ca++ binds to specific sites on the troponin
molecule which interact with tropomyosin, thereby removing an inhibition imposed by

tropomyosin molecules to the formation of acto-myosin connections (cross-bridges).

2The arrangement of myosin molecules to form the thick filament varies in invertebrates. See Squire

1990 and Pollack 1995 for a detailed description.
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When the fibre is in a relaxed state Ca++ is stored in the sarcoplasmic reticulum.
Upon activation, Ca++ is released from the sarcoplasmic reticulum and diffuses into the
intracellular space to the network of myofilaments. The binding of Ca++ to specific sites
in the troponin molecules of thin filaments enhance the affinity of the actin for myosin
molecules. Simultaneously, a series of chemical reactions start to restore the free Ca++ to
the sarcoplasmic reticulum against the diffusive gradient. The mechanism is known as
'the calcium pump' and it uses a considerable3 amount of energy generated by the
hydrolysis of ATP into adenosine di-phosphate (ADP) and inorganic phosphate (Pi). The
calcium pump continues its work even after the contraction is over, restoring a difference
in concentration of about three orders of magnitude between the sarcoplasmic reticulum

and the intracellular space.

2.3 Cross Bridge Theory

Based on the notion of sliding filaments, A. F. Huxley set forth the cross bridge
theory of muscle contraction (Huxley, 1957). The cross-bridge theory assigns the force
production of muscles to the interaction between myosin heads and thin filaments. In its
original proposal, myosin heads were represented as 'side pieces' sticking out of the thick
filament*. These side pieces were assumed to be attached to the thick filament by means
of a linear elastic spring. It was also assumed that thermal agitation was responsible for
making the side pieces oscillate back and forth, and, that the side piece spontaneously

attached to actin filaments. In the original proposal Huxley assumed that the farther the

3Up to 30% of the total energy consumed by the contraction as reported by Woledge et al., 1985.

4The detailed structure of the myosin filament was unknown at the time of Huxley's proposal.
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side piece is from its equilibrium position, the higher is the probability of attachment to
the thin filament. Once the side piece is attached to the thin filament, the cross-bridge
cycle can be broken only by a chemical reaction requiring the energy of a molecule of
ATP. Probabilities of detachment depend on the strain of the cross-bridge with a high
probability of detachment assigned to the case in which the spring is in compression. This
simple mechanical model allowed A. F. Huxley to formulate the distribution function of
attached cross-bridges in termns of the strain-dependent attachment and detachment
constants and the speed of contraction. In 1971 Huxley and Simmons, adopted a slightly
different version of the theory in which the side pieces were replaced by a tilting head
connected by a spring to the thick filament. The cross-bridge can now be in several states,
each with a distinctive potential energy. In this case it is assumed that the myosin head,
attached to the thin filament, is able to rotate between states, pulling the tail of the myosin
molecule. The model needs the specification of rate constants for transitions between
several energy states. Following Huxley's work, a large number of versions of cross-
bridge theories arose. In all of them the fundamental mechanisms are mainly the same,
except for the number of states and the transition constants between them. Harrington
(1979) proposed a different mechanism in which the myosin head attaches rigidly to the
actin filament and a helix-coil transition in the tail of the molecule is responsible for the
generation of the force. Independently of the detailed mechanism of interaction between
thick and thin filaments, all these theories can be grouped as a class; the independent
force generators theories. The common feature of the independent force generators
theories is the assumption that there is a uniform distribution of force generators along the
overlap between myosin and actin filaments. As these force generators are assumed to act

independent of each other, the total force is proportionally related to the overlap distance
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between myofilaments’. Representing the proportion of attached cross-bridges by a

function n(x,r) of the cross-bridge elongation x and the time 7z, Huxley's cross-bridge

model is described by the following differential equation:
on
—V3x-=f(x)-[f(x)+g(x)]-n (2.1)

where Vis the (constant) relative sliding velocity between filaments, f{x) and g(x) the
attachment and detachment rate functions respectively.

If simple mechanisms involving the interaction between Ca++ and the thin filament
are included in the model, Huxley's cross-bridge theory can be expressed by an equation

of the form (Zahalak, 1990, Zahalak and Ma, 1990, Zahalak and Motabarzadeh,1997):
&y r((CaD £ () (e =)= g(x)-m 22)
where ¢ the fraction of participating cross-bridges, v(7) the (variable) relative sliding
velocity between myosin and actin filaments, and r([Ca++]) a function of the
sarcoplasmic free calcium concentration. The force produced by the fibre can be found by

integrating the force produced by attached cross-bridges within half a sarcomere as:

F=§fxn-xdx (2.3)

where £ is the cross-bridge stiffness in units of force per distance and / is the average
separation of attachment sites along the thin filament. Because in this model the
detachment of each cross-bridge is driven by a chemical reaction, the total rate of energy
liberation is directly related to the energy liberated by the hydrolysis of one ATP

molecule, e, by:

5 Note that this proposition is exact if and only if myofilaments are considered rigid.
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E=§j:f-(a—n)cbc 2.4)

and the rate of heat liberation can be calculated as Q =E - PV.

From the point of view of continuum mechanics, the models implicit in 2.1 and 2.2
are very limited particular cases. For example, if the filaments are considered as linear
elastic with a stiffness that is non-negligibleé with respect to the stiffness of the cross-
bridges, then » and v also depend on X, the material coordinate along the sarcomere.
Mijailovich et al., 1996, presented a modified Huxley's equation that includes filament
stretch, but these equations are only applicable in the limit of small strains, where the
material and the spatial derivatives are approximately equal. During an isometric
contraction, further simplification of the equations can be obtained because for small
displacements the difference between Lagrangian and Eulerian coordinates can be
neglected.

The rate constants in Huxley's model depend only on x, the strain of the cross-bridge,
there is no allowance for a dependence on the filament global stress. Given that the
interaction between macromolecules in the filaments is supposed to be stereospecific, it is
plausible to hypothesize that the strain in the filaments, especially in the thin filaments, or
the cross-bridges, may modify the affinity of attachments. Cooke et al., 1994, proposed a
model in which, under fast isotonic contractions, the detachment of myosin from the thin
filament is carried out before the completion of the hydrolysis of ATP, implying that the
rate constants are also dependent on the contraction velocity, or that there is a non-strict
relation between the number of cross-bridge cycles and the number of ATP molecules

hydrolyzed.

6What constitutes non-negligible stiffnesses of the filaments will become apparent in later sections.



page 22

Despite the above mentioned shortcomings and the inability of predicting phenomena
often associated with 'memory effects' such as force depression/enhancement, (we will
discuss this in more detail in chapter III), the cross-bridge theory can be considered as
one of the most successful theories in muscle physiology. It is worth noting that a simple
but morphologically plausible mechanical model of the molecular interaction gives a
differential equation that can be used to predict the outcome of macroscopic experiments,

a feat comparable to that of the kinetic theory of gases in physics.

2.4 Fibre Stiffness

According to the cross-bridge theory (Huxley, 1957; Huxley and Simmons, 1971),
force production in skeletal muscle occurs through formation of linkages (cross-bridges)
between thick (myosin) and thin (actin) filaments. Furthermore, it is assumed that the
thick and thin filaments slide rigidly past one another during contraction: that is, any
compliance in the thick-filament—cross-bridge—thin-filament complex is associated
with the cross-bridges. Therefore, quick release or quick stretch experiments were used to
determine actomyosin stiffness, and from the stiffness values, the number of attached
cross-bridges was calculated. For rigid myofilaments, the relation between stiffness and
number of attached cross-bridges obtained in this way is linear (Ford et al., 1981).

Recent experimental evidence suggests that actin and myosin filaments are not
perfectly rigid but elongate when a muscle goes from a relaxed to a contracted state
(Kojima et al., 1994, Huxley et al., 1994, Wakabayashi et al., 1994, Goldman and Huxley,
1994). Although these elongations are only in the order of a fraction of a percent (~ 0.2%

for the actin filament, Kojima et al., 1994), the length of the filaments compared to the
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length of the cross-bridges is so large that as much as 50% of the fibre compliance has

been associated with the myofilaments (Higuchi et al., 1995). Since in the past two
decades many conclusions about skeletal muscle mechanics have relied on calculations of
the number of attached cross-bridges based on stiffness measurements, these conclusions
must be revisited with the new experimental findings in mind.

Ford, Huxley and Simmons (1981) addressed the problem of instantaneous stiffness
and its relation to the number of attached cross-bridges. They used a model consisting of
linear elastic rods to represent the thick and thin filaments, and a continuous material
which transfers force proportionally to the distortion, to represent the cross-bridges.
Distortion in their model becomes an internal variable that can be related to the geometry
of the sarcomere. Our model proves to be more general than that presented by Ford et al.
(1981) and, although simplified in structure, it can be used to draw useful conclusions
about the mechanical properties of sarcomeres.

It is widely accepted that in a contracting skeletal muscle, the link between thick and
thin filaments is physically realized through millions of myosin molecules attaching to
specific actin sites. Because of the huge number of links, a continuous model of force
transfer between representative filaments seems appropriate. However, consider the
myosin filament: its total length is about 1600 nm. It has a central bare zone of
approximately 160 nm, which leaves 720 nm for the myosin heads on each side of the
centre. The separation between successive cross-bridges facing a given thin filament is
about 43 nm: that is, only 17 cross-bridges can be formed between a given pair of thick
and thin filaments at maximum overlap length. For less than optimum overlap or for
submaximal activation, therefore, the validity of the continuum assumption may be

questionable.
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The purpose of this study was to develop a structural model of actomyosin
interaction which allows the calculation of muscle (sarcomere) stiffness for any stiffness
of the actin and myosin filaments, as well as the cross-bridges. Assuming that the entire
sarcomere behaves like the composition of many individual filaments acting in parallel,
we decided to base our model on a discrete description of the interaction between single

thick and thin filaments.

2.5 The Discrete Approach to Stiffness Calculation

Let us start by analyzing the static behaviour of a structure formed by elastic links, as
shown in Fig 2.3, which we call a "ladder" structure. In particular, we are interested in
calculating the total stiffness of such a structure if the stiffness of the links is known. The
ladder is one-dimensional, that is, points 0,1,2,..,2N+1 can move only in the horizontal
direction.

Each sub-structure formed by four springs arranged in a closed circuit is referred to
as a "panel”. For example, points 0-2-3-1-0 enclose a panel. Panels are numbered from 1
to N. The stiffness (in units of force per unit length) of each elastic link is denoted by a;,
b; and m; for the links corresponding to the actin filament, the cross-bridges, and the
myosin filament, respectively.

The stiffness of a structure (measured in units of force per unit length) with N+1
panels is obtained as the composition of the stiffness of the N-panel structure and the

contribution of the three new spring elements that must be added to close a new panel.
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Figure 2.3: "Ladder" structure definition. Panel numbers are circled. Joints are
numbered from 0 to 2N+1. Joints can move in the horizontal direction only. Joint 0
is fixed. @, b and m, are the stiffnesses, defined as force per unit length of
deformation, of the links in the actin, cross-bridges and myosin filaments,

respectively.

2.5.1 Recursive stiffness algorithm.

Given the one-dimensional spring ladder shown (Fig. 2.3), we wish to calculate the
stiffness relative to a displacement of point 2N+1.

We will do this inductively. Consider the case of / panels and assume that its stiffness
matrix (relative to the degrees of freedom shown in Fig. 2.4) is known:

Therefore:

F =K'-X (2.5)

where the forces are given by

Fl
L ! 2.6
) {F} &0
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support
Figure 2.4: External degrees of freedom of the ladder structure with i - panels..

the displacements by:

X =¢"" 2.7

:

and the stiffness matrix by:

1 ]

[x]=| " % (2.8)
21 2

The i +1 - panel case will have a 4 x 4 stiffness matrix (with respect to the degrees of

freedom shown in Fig 2.5) which can be calculated as:

Figure 2.5: External and internal degrees of freedom when a new panel is added to

the structure.
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ki,+a k), -a 0
[K““ ]= ky, kn,+m 0 ~m 2.9)
-a 0 a+b -b
0 -m -b b+m

Since there will be no forces applied at points 1 or 2, those degrees of freedom can be

eliminated algebraically, by subdividing the 4 x 4 matrix into four 2 x 2 blocks, as

follows:
ki,+a ki, l -a 0 x, 0
i 1" —- a O
ky kn+mj| 0 m|jx{_j90 (2.10)
-a 0 a+b -b x; F;
0 -m -b b+mjy |x, F,

After the elimination is carried out, the 4 x 4 stiffness matrix reduces to a 2 x 2 matrix

according to the following scheme:

[A B] ——[C-BTA"'B]

B"|C (2.11)
4x4 2x2
In our case:
NE i[ki—’ rmo } (2.12)
Nl -k, ki, +a
with:
& =(k}, +a)(ki +m) = (k) (2.13)
-a 0
[B]=[BT]=[ 0 _m] (2.14)

[C]z[a+b b ] 015)
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Thus, the components of the stiffness matrix corresponding to i+1 panels are obtained as:

2

kit =a+l:>—3A,--(k;2 +m) (2.16)
k' =kt = —b+ 2 g @.17)
=k <k
mZ
k! =b+m—T-(k{,+a) (2.18)

To get a complete formulation we need an explicit expression for [K'] which is obtained

as:
a-b
[K']:[ﬁ*b -b } (2.19)

-b b+m
Finally, once [K"] has been obtained, the stiffness relative to a displacement at 2N+1 can

again be obtained as before, because the force associated with the degree of freedom
number 2 is zero:

(k)

2

KL, =k~ (2.20)

2.5.2 The Ladder Structure with Additional Series Filament.

The ladder structure represents the overlap zone between filaments well. However, if
filament compliance is evenly distributed along the filament, sarcomere properties at

lengths exceeding optimal sarcomere length may be governed by the compliance of the



page 29
filaments in the non-overlap zone. Even a small compliance of the filaments must be
taken into account in the calculation of the stiffness of the total structure.

The next step in the analysis is, therefore, to calculate the stiffness for the ladder
structure with two elastic links on each side (Fig 2.6). The total stiffness of the structure

can be calculated using the formula for springs in series, i.e.,

/K, =1/a +1/K), +1/B (2.21)

overiap zone 2N+1  thin filament

i z,@[@ e :

thick filament K
IC me la d

Figure 2.6: N-panel ladder structure with series elastic elements. o and § are the

stiffnesses of the portion of thin and thick filaments, respectively.

where K, is the stiffness of the complete structure, and K., is the stiffness
corresponding to a ladder structure having N panels. a,  represent the stiffness of the
portions of thin and thick filaments beyond the overlap zone. Consequently, a and 3 are
functions of the stiffness per unit length and the length of the filaments beyond the
overlap zone.

In order to represent the approximate geometry of a vertebrate muscle sarcomere, it
was assumed that each panel has a length § = 40 nm. This lengtk was taken to
approximate the repeat distance of the cross-bridges on the thick filament. The exact

value for the cross-bridge repeat is not required for estimating sarcomere stiffness;
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maintaining approximate ratios of the cross-bridge repeat and the myofilament length is
sufficient for adequate estimation of the sarcomere stiffness.

In order to simplify the calculations, it was assumed that filament lengths were
similar to those of rabbit skeletal muscle and that they were integer multiples of 5. Let L,
= 1120 nm, the length of the actin filament; L,, = 800 nm, the length of half the thick
filament; and L, = 720 nm, the length of the portion of the thick filament containing
cross-bridges. The number of panels for maximum overlap is then N,,,,=18. Fig 2.7

shows a half sarcomere for three relevant configurations.

Sr/2 =840

80 720 40

80 720 400

S 12 =1880

@ 1 panel ]

760 40 1080

Figure 2.7: Element lengths for different configurations of the ladder structure.
Lengths [nm] relate the structure to the approximate sarcomere geometry of rabbit

skeletal muscle.
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With the dimensions defined, the sarcomere length Sy and the number of panels Ny,

of the ladder structure are related by:

maximum{0, minimum (L,+2,-5, /2) /8 ,18]} =V, 2.22)

where [x] denotes the integer part of x.

2.5.3 Parallel Array of Ladder Structures with Additional Series

Filament.

If we consider a sarcomere as an array of » filaments in parallel, the total stiffness of

such a system can be calculated as:

K;=) K (2.23)

This formula assumes that there is no mechanical interaction between neighbouring
filaments, which is an approximation considering the experimental evidence reviewed in,
for example, Squire (1990) and Pollack (1990).

Of course, if all ladder structures are identical, the stiffness of the array of ladders
will be a multiple of the stiffness of each ladder. The array of ladder structures can be
used to investigate the influence of the proportion of attached cross-bridges with respect
to the total number of cross-bridges available for interaction: for each cross-bridge in
each panel, the cross-bridge is attached to the thin filament if, and only if, x, < F,,, where
x, is a random number in the interval [0,1], and P, is the constant probability of
attachment. Recall that the analysis is done for a quasi-static case or, more properly,

within an infinitesimal time period, in which it can be assumed that the structure does not
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change its configuration. In this case, although the overlap region for each pair of
filaments has the same length, the number of panels in each unit may be different because

of the random process used to generate the ladder structures. Consequently, the stiffness,
K

10

. » of each unit may also be different. Two ladder structures can have the same length

but a different number of panels. In the case of missing cross-links, our model takes care
of the void by combining the stiffnesses of the corresponding myofilament portions,
therefore, panels can have different lengths as required’.

The total stiffness of the structure reflects the stiffness of the average structure, and a
large number of filament pairs has the effect of reducing the dispersion of the total
stiffness value with respect to the average. To calculate the average stiffness per myosin
head, s, the total stiffness K is divided by the maximum number of cross-bridges

available for interaction at the corresponding overlap and attachment proportion,
Ncam="'Pm'(Np+1)-

2.6 Results.

2.6.1 The "Ladder" Structure.

We first consider the ladder structure with an increasing number of equal panels; this

corresponds to the sarcomere overlap region gradually increasing with all the cross-

7 The recursive formulas should be modified by replacing @, b and mwith @, ,,b,,, andm__,.
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bridges attached at intervals of 40 nm. Calculations of the total stiffness were performed
starting from one panel with the minimum overlap possible, and going up to a
hypothetical maximum of 30 panels for the case in which a,=a,=..=ay=a;
m,=m, =..=my=m and b, =b, =..=b, =b where a is the stiffness of a portion of
the thin filament between two successive attachment sites, m is the stiffness of a portion
of the thick filament between two myosin heads, and b is the stiffness of an individual
cross-bridge. These conditions imply that the cross-bridges have the same elastic
properties and that the distribution of attachment sites is uniform along the thin filament.

In general, the thick and thin filaments can have different elastic properties. If we
write @ = pm, a particular configuration can be defined by knowing the stiffness of a
cross-bridge, b, and the parameters a/b and p.

Intuitively, it is easy to see that for a fixed value of p, the total stiffness of the
structure will be a linear function of the number of panels when the ratio a/b tends
towards oo, i.e. when the filaments become rigid. However, it is difficult to predict a
priori how large the ratio a/b must be for the structure to behave as if the filaments were
rigid.

Fig. 2.8a shows the variations in stiffness of the ladder structure versus the ratio a/b
for specific numbers of panels (5,10,...,30 panels) when p = 1. Experimental evidence
indicates that the filaments are much stiffer than the cross-bridges, therefore attention will
be given to the cases in which the stiffness of the horizontal links (filaments) is much

greater than the stiffness of the 'vertical' links (cross-bridges).
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Figure 2.8: Stiffness of the ladder structure as a function of the ratio a/b (top) and

the number of panels (bottom). The ratio m/a was 1 in all cases shown. The

structure behaves as if the filaments were effectively rigid for a/b ratios of 105 or

larger, as indicated by the flat part of the curves on the top, or the straight lines on

the bottom.
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Fig. 2.8b demonstrates that the total stiffness is not a linear function of the number of
panels for a/b less than 105. This result means that even though the horizontal links
(filaments) are much more rigid than the vertical links (cross-bridges), the behaviour of
the structure is not equivalent to that of the same structure having rigid filaments.
Therefore, the proposition that the stiffness is directly proportional to the number of
vertical links (i.e. artached cross-bridges) is not valid for a wide range of a/b ratios.
Qualitatively, the behaviour of the system does not change if filaments are given different
stiffnesses (within the same order of magnitude), i.e. for values of p other than 1.
As the number of panels increases (i.e. more myofilament overlap), cross-bridges in
parallel add to the total stiffness, while increasing the length of the filaments in series

with the ladder structure adds to the total compliance. The total compliance of an N-panel
1

——-—+H which has a minimum for N = /a/b-1.
b(N +1)

ladder can be approximated by

Note that the stiffness curves in figure 2.8b have a maximum when the number of panels
is = JE/_b .

The conclusions extracted from the solution of the ladder structure can be applied
readily to the overlap region between thin and thick filaments in one half of a sarcomere,

assuming a uniform distribution of the cross-bridges.

2.6.2 The Continuous Model Revisited.

The discrete model presented here should be able to reproduce the limiting case in
which the number of equal panels goes to infinity while the stiffness properties are kept
unaltered,(i.e. the width of the panel goes to zero). This process of going to the limit of

the discrete model is one way of constructing a continuous model in which the stiffness of
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the filaments and the cross-bridges are given as properties per unit length. The process is
described fully in Appendix A. Here, we will reproduce the result for the case in which
the stiffness per unit length is the same in both filaments:

k= (o2
@ (L/2+coth(yL12)/y)

y=(2n/0)" (2.25)

where: &k, is the stiffness of the overlap region, L is the overlap length, ¢ is the
characteristic stiffness per unit length of the filaments, and 1) is the characteristic stiffness
per unit length of the cross-bridges. Taking the term representing the overlap zone in
equation A 9 of Ford et al., (1981) for the case in which the compliances per unit length

of both filaments are equal (¢, = c,, following the notation therein), we obtain:

C, =1k, = 2¢+ 54 coth(ug / 2) (2.26)
U

4
2

which, after applying the definitions given by Ford et al. (1981), is exactly the same as
2.24.

How does 2.24 (or 2.26) compare with the results given by the discrete model?
Answering this question is the same as calculating how many panels a ladder structure
should have to be well represented by the continuum approximation. Fig 2.9 shows the
difference between the discrete (finite number of panels) and the continuum (infinite
number of panels) solutions for the overlap region between two similar filaments. Values
in Fig 2.9 were obtained by calculating the percent difference between the stiffness of the
ladder structure, K,),, and the stiffness calculated using Eq. 2.24, k_, for the continuum

structure of identical length and elastic properties. For the same number of panels, the
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difference is independent of the panel length and varies only slightly with the ratio

between filament and cross-bridge stiffness.
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Figure 2.9: Percent difference in the stiffness between the continuum and the
discrete solutions for the ladder structure. Even for 20 panels, the continuum

solution gives a stiffness that is about 5% lower than the discrete solution.

Assuming that all the available myosin heads are attached simultaneously to the thin
filament, only about 20 cross-bridges can be formed between a thin and a thick filament
at maximum overlap (for example in the rigor state). The number of attached cross-
bridges during a tetanic contraction is likely only a fraction of those attached in rigor,
implying that the continuum approach is not appropriate for representing the actin-myosin
interaction (Fig. 2.9). Therefore, the diﬁ‘ereﬁces in stiffness between the discrete and the

continuous model cannot be neglected in cases of partial activation or in cases of small
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overlap between thick and thin filaments. For a/b ratios greater than 1000, the term
representing the stiffness of the overlap zone (second term on the left hand side of Eq.
2.21) is dominant; therefore, a change in the value of this second term will give about the
same change in total stiffness. The dominance of this term increases for increasing

stiffness of the filaments.
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Figure 2.10: Sarcomere stiffness as a function of the sarcomere length for different
stiffness ratios of the ladder structure with additional filaments. Stiffness values are
plotted relative to the stiffness at 2400 nm, corresponding to configuration 2 in Fig

2.7

Although the continuum solution can be derived as a particular case of the discrete
ladder structure, some of the properties of the discrete structure with a few panels are lost
in the continuum solution. For a low number of panels the continuum solution
underestimates the stiffness because the implicit, continuously varied deformation
gradient is different from the piecewise constant deformation gradient of each elastic link

in the discrete model. In other words, the continuous model allows the transfer of forces
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and deformations between two consecutively attached cross-bridges while the discrete
model does not. This situation is the exact counterpart of the well-known rigidization
effect of finite-difference solutions in continuous structures. Because of the discrete
nature of the system under study, the discrete model is deemed as a better approximation
than the continuous model.

Using the solution of the ladder structure and the sarcomere geometry given in Fig
2.7, stiffness as a function of sarcomere length can be calculated using Eq. 2.21. The
resultant stiffness of half a sarcomere is shown in Fig 2.10. Clearly, as the filaments
become more rigid with respect to the cross-bridges, the total stiffness approximates a

direct linear relation with the number of panels (attached cross-bridges).

4
b

K,/K

Figure 2.11: Ratio of total stiffness and stiffness of the overlap zone as a function of
sarcomere length for different stiffness ratios. Ladder structure with additional

ﬁlamehts.

In Fig 2.10, the stiffness was normalized with respect to the stiffness calculated at a

sarcomere length of 2400 nm, the length at which myofilament overlap is maximum and
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no portion of the thin filament is unstressed. Fig 2.11 shows the ratio between the
stiffness of the entire structure and the stiffness corresponding to the overlap zone as a
function of sarcomere length. The graph clearly shows that the more rigid the filaments
are, the closer is the stiffness of the complete structure to that of the overlap zone (ladder

structure) alone.
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Figure 2.12: Comparison between the stiffness given by the continuous and discrete
models. Stiffness values are plotted relative to the stiffness at 2400 nm,
corresponding to the optimum overlap. a/b=3160 and a/b=630 correspond to p. =
0.61 um-! and p=1.4 um-1.

Comparison between the present, discrete model and the continuous model of Ford et
al. (1981) is shown in Figs 2.12 and 2.13. Fig 2.12 shows the stiffness normalized relative
to the stiffness at optimum overlap for both models with two biologically relevant values

of the parameter a/b. In Fig 2.13, the value of y,, the amount of shortening that would
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bring the tension to zero, is normalized in the same way as Fig 13 in the work by Ford et
al. (1981). The values 90% and 50% correspond to the cases in which the cross-bridges
contribute 90% and 50% of the compliance at optimum length respectivelv. The
difference between the continuous and the discrete model indicates that the discrete

model becomes relatively stiffer than the continuous model with increasing sarcomere

lengths.
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Figure 2.13: Sarcomere length dependence of y,, plotted in the same way as Fig 13 in
Ford et al. (1981). y, was taken to be proportional to compliance times overlap.
Comparison between discrete and continuous models: curves indicate that the
longer the sarcomere the stiffer the discrete model is with respect to the continuous

model with the same parameters.
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2.6.3 Parallel Array of Ladder Structures with Additional Series

Filament.

Figure 2.14 shows the total stiffness K and the stiffness per myosin head s,

calculated for a parallel array of filaments interacting in pairs. The results for a ratio a’b
= 3160 are shown together with the corresponding results of Ford et al. (1981) for the
same proportion of active cross-bridges. For a fixed overlap, variations of the stiffness
per cross-bridge as a function of the proportion of attached cross-bridges, are not the
same for the continuous and discrete models. This result can be relevant in the study of
the influence of activation.

When normalized with respect to the stiffness at a sarcomere length of 2400 nm, the
total stiffness values are all nearly the same regardless of the number of filament pairs or
the probabilities of cross-bridge formation. When the total stiffness is divided by the

maximum number of possible cross-bridge attachments, N, , the measure of stiffness

per cross-bridge depends on the proportion of attached cross-bridges and is independent
of the total number of filament pairs. This result implies that if the total stiffness of the
system is measured, the stiffness of an individual cross-bridge cannot be calculated
without measuring, in an independent way, the proportion of attached cross bridges. This
conclusion holds for both the continuous and the discrete model. However, in the discrete
model, even if the proportion of attached cross bridges is known, the number of attached

cross-bridges cannot be calculated uniquely from the overall stiffness measurement,

because for the discrete model the stiffness is also a function of the distribution of
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attachments, unlike the continuous model which was formulated for a uniform
distribution of attachments. This difference between discrete and continuous models,
although irrelevant in many experimental situations, could be important for in vitro assays

in which very few cross-bridge links are present.

1.0
000 ,0000000000%, 0 22 2
kééQégﬁgooengAAx 222 .'

a®
(LRl ] TV VIO oL
___us llulﬁﬁ EZAOX
g 0.8-' .\%
g ]
< or7-
~N a/b = 3160
X —&—Disc.; P, =1.0
s —A—Disc.; P,=05
——Disc.; P,=02
I Cort;a=1(Rigon
05 - —A—Cont.;a=05
—O—Cont.;a=02
1 T T Y T A J v !
2000 2400 2800 00 3600
S, [am]

Figure 2.14: Stiffness per myosin head. Results corresponding to a parallel array of
10000 filament pairs with additional series filament shown with filled symbols for
three different values of P, the probability of attachment of individual cross-
bridges. Results corresponding to the continuous model are shown with hollow
symbols for three different values of a, the proportion of attached cross-bridges.

The ratio a/b (corresponding to rigor state) was set to 3160.
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2.6.4 Comparison with Experimental Results.

Higuchi et al. (1995) measured the stiffness of the thin filament to be in the range of
45 - 67 pN/nm for a 1 um long filament. Taking a value of 65 pN/nm per 1000 nm, the
stiffness of a 40 nm long portion is @ = 1625 pN/nm. For a single cross bridge, Nishizaka
et al. (1995) reported a value for b ~ 0.6 pN/nm. These numbers put the ratio a/b in the
order of 3000; a region in which our calculations indicate that the stiffness is not linearly
related to the number of attached cross-bridges.

A comparison between our numerical results and an absolute measure of stiffness,
although tempting, is premature. Other factors, such as the possibility of interaction of
one thick filament with several thin filaments and the effects of the distribution of
attached cross-bridges on stiffness, must be addressed. A similar approach to the one
presented here can be used to study a system comprised of a myosin filament interacting
with six surrounding actin filaments. Also, interactions beyond those in the immediate
neighbourhood can be considered. If the distribution of cross-bridge attachments along
the actin filament is not uniform, the problem still can be addressed using the approach

presented here.

2.7 Discrepancies between the discrete and continuous models.

In order to show some further discrepancies between the continuous (Ford et al.
1981) and discrete models, Table 2.1 presents comparative results for the total stiffness of
the overlap zone. The values shown in the table correspond to the stiffness ratios a/c = 1,

/b = 3000. This last value is likely to be physiologically relevant, as suggested by the
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latest experiments by Kojima et al., 1994 and Huxley et al, 1994. The last column shows
the linear variation corresponding to the limiting case /b — «. The values in Table 2.1
show a more or less constant difference between the discrete model stiffhess for the
overlap zone and that calculated using Eq. 2.24. Moreover, the continuous values seem to

'lag’ the stiffness of the discrete structure by one panel.

number of K ladder /b Kb Kb
panels . Ford et al rigid
discrete 1981 filaments

1 2.00 1.00 2.0
2 3.00 1.99 3.0
3 3.99 299 4.0
4 498 3.98 5.0
5 5.96 4.97 6.0
6 6.94 5.95 7.0
7 7.91 6.92 8.0
8 8.87 7.88 9.0
9 9.81 8.84 10.0
10 10.75 9.78 11.0
11 11.67 10.71 12.0
12 12.58 11.62 13.0
13 13.47 12.52 14.0
14 14.35 13.41 15.0
15 15.21 14.28 16.0
16 16.06 15.14 17.0
17 16.88 15.97 18.0
18 17.69 16.79 19.0
19 18.48 17.59 20.0
20 19.25 18.37 21.0
21 20.00 19.12 220
22 20.72 19.86 23.0
23 21.43 20.58 24.0
24 22.12 21.28 25.0

Table 2.1: Comparison between the stiffness calculated with the discrete and
continuous models for the overlap zone for an increasing number of panels (cross
bridge attachments). The values shown in the table correspond to the stiffness ratios
a/c =1, a/b=3000. The column on the right shows the values of the stiffness in the
case of rigid filaments which is directly proportional to the number of cross bridges

attached.
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To understand this particular property of the difference, suppose for a moment that

the connection between both filaments actually consists of a uniform "jelly", represented
by the shaded area in Figure 2.15. If we want to model the transfer of force between
filaments by the finite element method, the usual procedure is to subdivide the continuum
into a number 7 of elements of width 4, replacing the distributed stiffness of each element
by one discrete spring in the middle of the element in question, shown as thick black lines
in Figure 2.15. This procedure will result in a discretized structure that is shorter than the
continuous one by a distance 4. In our case, the discrete structure is considered to be the
exact representation of the biological system; therefore, in order to have a continuum
equivalent with the same stiffness, it should be longer by a distance = A, the characteristic

length of a panel.

| Continuous Equivalent overiap zone

Discrete overlap zone

Figure 2.15: Discrete model overlap zone (thick black lines) and the continuous

overlap zone of an equivalent continuous model (shaded area).
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Figure 2.16: Variation of the Stiffness per Cross bridge with sarcomere length.
Comparison between discrete and continuous model and 'corrected’ continuous
model. Parameters for the calculations are taken as: characteristic spacing between
cross-bridges, 4 = 40 nm, length of the actin filament, L; = 1120 nm, length of half
the thick filament; L,,, = 800 nm, length of the portion of halif the thick filament
containing cross-bridges, L, = 720 nm, number of panels for maximum overlap,

Nmax=18, ratio a/c = 1 and ratio a/b = 3000.

In order to calculate sarcomere stiffness, we combine the stiffhess of the portions of
myosin and actin filaments beyond the overlap zone with the stiffness of the ladder
structure using the formula for springs arranged in series. In this way, the variation of a

half sarcomere stiffness with the length of the sarcomere can be calculated. Figure 2.16
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shows the results of such calculations for the following parameters, chosen to
approximate those of rabbit skeletal muscle: # = 40 nm, the approximate characteristic
spacing between cross-bridges, L, = 1120 nm, the length of the actin filament; L,, = 800
nm, the length of half the thick filament; and L, = 720 nm, the length of the portion of
half the thick filament containing cross-bridges. The number of panels for maximum
overlap is then N, =18, that is, all possible cross bridges are assumed to be attached.
Ratios a/c and a/b are taken as 1 and 3000 respectively. Fig. 2.16 shows values of
stiffness per cross-bridge, that is, the total stiffness of half a sarcomere divided by the
number of attached cross bridges for the corresponding overlap length. Also the
stiffnesses calculated by using the continuous model and the continuous model with the
correction previously discussed are shown in the same graph. It must be noted that while
the correction in length is applied to the overlap zone, this extra length is not deducted

from the length of the filaments out of the overlap zone.

2.8 Three-dimensionality.

So far we have introduced in our model the structure of a sarcomere in a limited
sense. When we consider the interaction between myofilaments, only structural effects on
the longitudinal directions were accounted for. In a sarcomere, myofilaments are
interconnected in a more complex way than that so far assumed by our model. Squire,
1990, and Cantino and Squire, 1986, describe the transversal arrangement of thick and
thin filaments in vertebrate skeletal fibers as reducible to a repetition of a super-lattice
formed by three thick filaments and six thin filaments with an orientation such that the

myosin heads of each thick filament can interact with the six surrounding thin filaments.
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Figure 2.17 is a three-dimensional rendering of the super-lattice described by Squire,

1990.

\5\ L/
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Figure 2.17: Three dimensional rendering of the super-lattice as described by
Squire, 1990.
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Figure 2.18: Three dimensional rendering of the arrangement of thick and thin

filaments as described by Pollack, 1990.

Squire's interpretation is not the only possible interpretation that can be drawn from
the existing body of experimental evidence. Pollack, 1990, has a different interpretation

based on a similar pool of experimental data. A rendering of the arrangement proposed by
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Pollack, 1990 is shown in Fig. 2.18. The lattice assumed by Pollack makes the functional

model different from Huxley's model, in that in the former cross-bridges form between
neighbouring thick filaments instead of between thick and thin filaments, the thin
filaments being caged in a framework of cross-bridges and thick filaments. In Pollack's
model, it is the crawling action of thin filaments against the myosin-myosin cage that
brings about the contraction.

The fact that the array of thick and thin filaments form a three-dimensional structure
brings two issues that were not taken into account so far: first, the stiffness in the
iongitudinal direction is the result of the combined movement of points in the longitudinal
and radial directions, and second, the topology of the connections between filaments
would have an effect on the longitudinal stiffness. In the next two sections we analyze

how both issues affect stiffness calculations.

2.8.1 Longitudinal and Transversal Movements.

In the calculation of the stiffness of the ladder structure, points in either filament are
restricted to move only in the longitudinal direction. In the sarcomere there is no physical
structure that can impose such a restriction on the movement of filaments. If we allow the
connection points of the ladder structure to displace without restriction in the transversal
direction, the ladder structure will collapse to a line upon the application of any force.
Some sort of restriction of the transversal movement is needed for the filaments not to
collapse into the line of application of the force. In the sarcomere, the necessary
transversal restriction can be provided by cbnstraints such as the preservation of volume

in the myofibril or the strain of other elastic structures, able to carry compressive loads,
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associated with the filaments. The character and stiffness of the transversal restraint, will

of course influence the value of the longitudinal stiffness.

Experiments conducted on skinned fibers by Xu et al., 1993 and Kawai et al., 1993
show that, upon attachment of cross-bridges, the radial spacing between filaments
decreases, and the radial stiffness is not directly proportional to the axial stiffness. Note,
that the cross-bridge theory predicts the proportionality between radial and axial stiffness
because if the filaments are rigid, the two stiffnesses are directly proportional to the
number of attached cross-bridges. The distinctive behaviour of both radial and axial
stiffness is supposed to arise from structural differences in the attached states of myosin
heads. To assess how the structural difference can influence the measure of stiffness, an
exact model of the structure is needed. Unfortunately the required structural data are not

available.

2.8.2 Topology.

The structural models presented here to calculate the stiffness rely on the assumption
that one can lump the elastic properties of thick and thin filaments into two representative
filaments. However X-ray diffraction and electron microscopy studies support a model in
which one thick filament is connected to the six surrounding thin filaments, which in turn
are connected to other thick filaments. Trying to model the complex lattice of
interconnections through a discrete model accurately is a formidable task in terms of the

computational resources involved. The fact that there still are unknowns and
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controversies about the exact arrangement of the interconnections®, makes the task of
modelling a three dimensional lattice an futile exercise. Instead a comparatively simple
model of the influence that such interconnection between filaments may have on stiffness

is presented here.

Figure 2.19: Topology of the Open and Closed Lattices. The Closed Lattice

structure is obtained by adding a row of cross-links such as row IV (dashed) and

connecting the points marked as 'x’

8 For example, the model of thick filament presented in Pollack, 1990, and the one presented in
Squire, 1990, differ in the number of myosin molecules by 2/3, although they are drawn from almost the

same raw data.
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Consider the structure represented in Fig 2.19. In it, two sets of elastic filaments,
those attached to fixed points on the left and those attached to the load on the right, are
interconnected by linear elastic, uni-dimensional links as shown. We considered two
topologies, the 'open lattice', in which only the links in rows I, II and III exist, and the
'closed lattice', which also includes the links (shown in dotted lines) denoted as row [V
which close the lattice joining the point marked by an X. Our objective was to compare
the stiffness of the two lattices with respect to each other and with respect to the simple
ladder structure, and to assess the effect of the connections with neighbouring filaments
on the stiffness. More specifically we wanted to investigate whether or not the connection
with parallel filaments will 'spread’ the force sharing among filaments in such a way that
the stiffness of the discrete structure will resemble more closely the stiffness of the
continuum model.

The two lattices were modelled, and the corresponding stiffnesses calculated, using a
standard finite element code (ANSYS) with the results shown in table 2.2 and Fig 2.20.
In the table, the column '# of cells' refers to the number of cells on odd numbered rows
(see figure 2.20). The numbers in this column are a measure of the overlap between the
two sets of filaments. The column named '# of pairs’ refers to the number of rows on the
closed lattice divided by two. Notice that for open lattices with the same overlap,
increasing the number of pairs has a very small influence on the stiffness per cross-
bridge. Although not shown in the table, the same is true for closed lattices. It becomes
apparent from the results that the cross-linking between non-consecutive filaments does
not influence considerably the results obtained with the ladder structure alone for small
overlaps. It is also evident that the way in which the filaments are interconnected

influences the measure of stiffness, that is, the stiffness of a model with a different
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number of interconnections or a different distribution of links between filaments would,

in general, have a different behaviour.

2.9 Conclusions.

Based on the commonly accepted idea that interactions between actin and myosin

filaments occur through cross-bridges, and the fact that only a few links can be formed

between pairs of myofilaments, we developed a discrete model to calculate the stiffness

of a sarcomere. The model retains the characteristic static behaviour of a sarcomere.

#of Cells  # of pairs Kot K/N¢p Kiot K/Ngp
1 8 23.00 1.00 24.00 1.00
4 8 67.56 0.99 71.51 0.99

8 110.67 0.97 117.44 0.97
1 4 77.14 0.95 — —
11 8 164.38 0.95 174.52 0.94
11 12 251.50 0.94 — —
14 8 200.93 0.92 213.24 0.91
17 8 233.76 0.88 247.87 0.88
20 4 123.57 0.85 139.13 0.84
23 4 135.44 0.82 152.09 0.80

Table 2.2: Stiffnesses of the open and closed lattices of ladder structures in parallel.

The values shown in the table correspond to the stiffness ratios a/c =1, a/b =3000.

In this study, we were only concerned with calculating the order of magnitude of

sarcomere stiffness. We refrained from trying to fit numerical predictions to experimental
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results such as those found by Higuchi et al. (1995) and Nishizaka et al. (1995) because,

as was shown here, stiffness is very sensitive to the exact configuration of the system.
Unfortunately, the exact geometry of the attached cross-bridges and their connections
between the myofilaments is not clearly understood at the moment. If stiffness properties
of actin and myosin filaments and the cross-bridges were known through in-vitro
experiments, a discrete model, such as the one presented here, could be used to

investigate different geometries which would match the total stiffness values.

ch

/N
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—O— 1-D Ladder
—0O— Open Lattice

0.6 —v— Closed Lattice
—+—Ford et al. (1981)
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Figure 2.20: Variation of the Stiffness divided by the number of cross-bridges with
the number of cells for the Open and Closed Lattices. The curve labeled '1-D
Ladder’ correspond to the ladder structure of Figure 2.3 and the curve labeled
'Ford et al.’ correspond to the continuous solution without the correction discussed

in section 2.8..
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We compared our discrete model to the continuum model developed by Ford et al.
(1981). Our main conclusion was that the continuum model is not able to represent a
system formed by a few links adequately. The difficulty in calculating the stiffness
attributable to an individual cross-bridge without knowing the exact number of attached
cross-bridges emerges, in our model, as a consequence of its sensitivity to the exact
geometry of the attached cross-bridges.

Considering that, in the case of mammalian skeletal muscle, for maximum overlap
only about 18 cross bridges can be formed between any given thin-thick filament pair, it
follows from Table 2.1 that, for less than maximum overlap, or in the case of partial
activation, the validity of the continuum hypothesis is questionable, unless the model
parameters are corrected to take into account the discrete nature of the problem. Other
factors which may influence the overall sarcomere stiffness are: attachment irregularities
(i.e., vacancies) as well as slight differences in distances between contiguous attachment
sites. A discrete model, such as the one presented here, could be used to investigate the
relative importance of these factors. We have shown that the continuous model presented
by Ford et al. (1981) can be used to approximate the discrete structure provided that the
overlap length is corrected.

The experimental finding that actin, and possibly myosin, filaments are more
compliant than first thought, is intriguing from a mechanistic point of view. Typically, it
has been assumed that stiffness of tetanized, single, intact muscle fibers is nearly
proportional to filament overlap (Ford et al, 1981, Huxley and Simmons, 1972)
suggesting that filament compliance is negligible and that stiffness measurements can be
used to determine the number of attached cross-bridges directly. However, there are
instances when force (which is presumably proportional to the number of attached cross-

bridges) and stiffness are not proportionally related. One such example occurs during the
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onset of a tetanus when stiffness precedes force (i.e., the fibre is stiff but shows no
external force), and so produces a variable relationship between stiffness and force in the
early phase of muscle activation. Although it has been proposed that this observation is
associated with different cross-bridge attachment states; a first state which contributes to
stiffness alone and a second state which contributes to stiffness and force, this
observation may possibly be explained by a nonlinear relationship between stiffness and
force as proposed in the literature (Bagni et al., 1988). The non-linearity could possibly
be related to the effect produced by myofilament compliance.

If myofilaments contribute to sarcomere compliance by as much as 50% (Kojima et
al., 1994), cross-bridge stiffness, by necessity, would have to be much higher than
assumed up to date. Recent evidence of the force produced by individual cross-bridges
(=5 pN Finer et al. 1994), and the release distance which brings the force of a fully
activated fibre to zero (4 to 6 nm per half sarcomere, Ford et al., 1977) suggests that
cross-bridge stiffness is approximately 1.0 pN/nm. However, this stiffness value for the
cross-bridge is about 2-5 times larger than those proposed in the literature which account
for the kinetics of early force recovery following a quick release or stretch (Huxley and
Simmons, 1971, Lombardi and Piazzesi, 1990). These larger values for cross-bridge
stiffness obtained from work on isolated cross-bridges compared to the corresponding
stiffness values obtained indirectly from experiment on fibres could possibly be explained
by the compliance of the myofilaments.

However, apart from the mechanistic implications of force production in skeletal
muscle associated with the idea of compliant myofilaments, one must ask the question
how such compliance affects the whole muscle behaviour and the modelling of whole
muscle. This is a difficult question, and at tﬁe moment, cannot be answered conclusively.

To relate myofilament compliance to the two most frequent models of muscle, i.e., the
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Hill model and the cross-bridge model, several factors should be considered. For

example, one of the drawbacks of any Hill-type model aimed at representing the actual
structures of skeletal muscle (that is, a contractile element associated with the sarcomere
and a series elastic element associated with the tendon) is that the length changes and
force distribution among the rheological elements of the model are hard to obtain.
Myofilament compliance is yet another elastic element arranged in series with the force-
producing cross-bridges, and therefore will make interpretations derived from Hill-type
muscle models even more difficult than they are when assuming rigid myofilaments.

For cross-bridge models, myofilament compliance has one very direct modelling
implication. So far, with the exception of one cross-bridge model by Mijailovich et al.,
1996, it has always been assumed that the relative speed of fixed points on the thick and
thin myofilament are linearly related to the shortening speed of the sarcomere. With the
myofilaments being compliant, this strict relationship between sarcomere shortening
speed and the relative speed of fixed points on the myofilaments does not exist anymore.

Summarizing, the recently discovered compliant properties of myofilaments have
important implications for interpreting muscle mechanical tests on the sarcomere or fibre
level. Furthermore, myofilament compliance should be considered in cross-bridge models
and should be accounted for in the series elasticity of Hill-type models. Stiffness testing
with the aim of deriving the number of attached cross-bridges must be made by
accounting for myofilament compliance.

We have shown that it is possible to construct a model which can account for
variables such as the elasticity of myofilaments and individual cross-bridges. On such a
basis, and counting on the increasing sophistication in performing in vitro experiments on
individual molecules, future discrete models of sarcomeres are a viable tool to help in the

understanding of muscle function.



I

Muscle as an Engineering Material

As we saw in the previous chapter, skeletal muscle has a very complex structure at
any level of description. This structural complexity results in a mechanical behaviour that
is far more complex than the usual behaviour exhibited by standard engineering materials.

We mentioned in chapter II that the available structural knowledge on muscle is, to
say the least, incomplete. This uncertainty in structural arrangements prevents us from
formulating a theory that, based on a model of molecular events, can be used to predict
the outcome of experiments on the macroscopic level. In studying the dynamics of animal
movement, the mechanical characteristics of entire muscles or groups of muscles are
needed in order to predict the forces acting on the body segments. At that level of
description, it is sufficient to have a global model of muscle function that, given the
position of its ends and the activation state!, is capable of predicting the force and the
energy expenditure. Such models have existed for a long time and are often used in
biomechanics. In this chapter we will discuss critically the most widely used type of
model, that is, Hill type models, and present an alternative model developed to address
certain aspects of muscle behaviour, such as force enhancement and force depression, that
are presently ignored by Hill type models. Other problems such as the non-commutativity

of the response to activation, will be briefly discussed towards the end of the chapter.

IIn the sense of an internal parameter related in some way to the myoelectric activity or control signal

sent by the nervous system.
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3.1 Pseudo-Rheological Muscle Models

Systematic measurements of the mechanical characteristics of entire muscles and
fibers are being conducted since the last decades of the XIX-th century. In 1938, from
thermal and mechanical measurements, A. V. Hill concluded that the relation between

isotonic force and shortening velocity for a tetanized muscle has the form (Hill, 1938):

(F +a)(v+b) = constant (3.1)

where F is the force, v the shortening velocity and a and b the characteristic muscle
constants. By the time A.V. Hill set forth this famous hyperbolic force-velocity relation, it
was already well known that "the force exerted by a muscle decreases as the speed of
shortening increases” (Gasser and Hill, 1924), however Hill also showed that it is
possible to derive the correct force-velocity relation from thermodynamical arguments.
From there, it was possible to infer that the energy of a chemical reaction was being used
to drive contraction years before the discovery of the hydrolysis of ATP as the energy
source for muscle contraction. The real value of Hill's equation lies in that its shape was
verified experimentally by many researchers in many different experiments and, since its
discovery, equation 3.1 has been used as the paradigmatic constitutive equation for
shortening muscle. It is worth mentioning here that Eq. 3.1 is not a proper constitutive
relation for muscle dynamics. To see why, let us analyze how the experimental data were
obtained. Hill's experiments proceed as follows: a muscle is tetanized and held
isometrically until it develops the maximal force. Then a lever instantaneously switches
the load holding the muscle to a lower than isometric load, and the 'steady state’
shortening speed is measured from length vs. time records. This procedure is repeated
several times for different loads. Each experiment is plotted as a point in the load-

shortening speed plane, resulting in the hyperbola 3.1. Confirmation of the results



page 62

obtained by Hill in 1938, obtained by using an electromagnetic puller, was reported by
Edman, 1979. To measure the maximum speed of shortening, that is the shortening speed
of the unloaded muscle, Edman performed experiments in which the muscle was held
isometrically and suddenly shortened by a controlled distance. The time that the muscle
takes to recover the slack was recorded and the maximum speed of shortening was
calculated as the shortened distance divided by the time. The maximum speed of
shortening measured in this way fits remarkably well with the value extrapolated (using
Hill's hyperbola) from points obtained by clamping the load with the puller. Later in
1986, Edman, used a puller to confirm the hyperbolic shape of the force-velocity curve,
although this time he found that the best fit was obtained using two different hyperbolic
functions; one covering the range from 0 to 78% of the maximal isometric force, another
covering the range from 78% to the maximal isometric force.

Despite the different techniques, and the marginally different results, all force-
velocity curves were obtained 'statically’. Static refers to the idea that each point on the
curve was obtained from a particular experiment in which a steady state situation was
attained. Therefore, a muscle that is shortening at a varying velocity will not follow a path
on the static force-velocity relationship.

Similarly, the force-length relation found by Gordon et al., 1966 can be thought of as
a static relation. In this case the curve is obtained by plotting the isometric force obtained
when a muscle is maximally activated at a constrained length. Figure 3.1 schematically
shows the resulting curves for both, isotonic and isometric experiments. The axes in
which the isotonic curve was plotted is such that stretching velocities are positive and
shortening velocities are negative. Note that the stretching branch of the curve is not a
continuation of the shortening hyperbola. In this region it is very difficult to obtain
experimental values because the muscle yields and it is very difficult to measure the force

accurately.
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The isometric force-length curve exhibits a flat region called 'plateau’ in which the
force is the same for different lengths within a narrow zone around the relaxed, or slack
length of the muscle. The curve labeled 'Active’ in Fig 3.1 is obtained by subtracting the
passive force, that is, the resistance provided by elastic structures formed by connective
tissue, from the total force, labeled 'Active + Passive' in the figure. Active force is the
force provided by the contractile machinery and the decreasing, linear relationship agrees

well with the predictions based on the cross-bridge theory (Gordon et al., 1966).

\ F

Hill's equation

Isotonic

[ o e —

v, v =dL/dt

K Active + Passive

Isometric

Figure 3.1: Isotonic and Isometric static curves for muscle

In his 1938 classic paper, A. V. Hill stated that muscle behaves as if it were
composed of a contractile element that shortens upon activation, arranged in series with

an elastic element. In Hill's model, the contractile element is endowed with the



page 64

characteristic equation derived from isotonic release experiments. The simplest way to
construct a model of muscle based in the above mentioned static curves, is to attach a
spring (SEE), to a contractile element (CE) endowed with the characteristic force-velocity
and active force-length relation. Figure 3.2 shows a representation of such a model. The
lengths L., and L, have no obvious physical meaning except that they are constrained
by the relation L + Ly, = L,,;, where L, is the total length of the muscle. The initial
length of the series elastic element can be determined form the initial condition and the
static equilibrium given by F = F.; = F,,.. Note, that the series elastic element is not
related to the passive force curve depicted in Figure 3.1. The passive force is associated
with an elastic element in parallel with the contractile element. The model described in
Figure 3.2, which does not have a parallel elastic element, works because the length L.,

is an internal variable? that compensates for the lack of the parallel element.

LCE LSEE
- g s o

series elastic

contractile element element
- F
§-\§\§\\°—
L
- - —-—— - — ————-Mt»—‘ e——— -

Figure 3.2: Hill's two element muscle model.

It is common practice to assume the constitutive equation for the force exerted by the

contractile element as:

FCE(LCE’VCE)=F0'M(ch)'f(vcg) 3.2)

2 This is the reason why we called this type of models 'pseudo-rheological'.
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where M(-),-T(-) are respectively the dimensionless forms of the isometric and isotonic

functions given by the curves in fig 3.1, and Fo is the maximal isometric force.
M (-),-f'(-) are dependent on two parameters that carry information on how the values of

. . d . . .
static curves change for different muscles. v, = = L.; is the contraction velocity of the
t

contractile element. As the functions M and T are usually measured under maximal
activation conditions, 3.2 is multiplied by a coefficient between O and 1 to account for
partial activation.

Over the years, this simple model was modified by adding linear elastic or viscous
elements in parallel or in series with the contractile element and by using non-linear
elastic elements to accommodate experimental findings into the phenomenological
theory. None of these models, however, can account for what are called memory-
dependent phenomena, such as force depression following shortening or force
enhancement following stretch. Also, Hill-type models are not good at simulating single
twitches. Furthermore, when Hill's model is used together with the force-length relation
for sarcomere lengths beyond the optimal length, the simulation becomes numerically
unstable because of the negative slope of the force-length relation in this range. Despite
these shortcomings, Hill's model has dominated the field of muscle biomechanics because
it is simple and readily applicable to many situations.

Our intention here is to formulate a phenomenological model which, on the one
hand, is able to represent the so-called memory-dependent phenomena and, on the other
hand, remains tractable. The formulation of such a model offers a simpler alternative to
phenomenological models based on the concept of fading memory (Fung, 1993). In
general, we consider phenomenological models as workable alternatives to those based
on biophysical explanations of muscle contraction (Huxley, 1957, Huxley and Simmons,

1971, Mijailovich et al., 1996), and those that are mathematical approximations of
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biophysical models (Zahalak, 1990, Zahalak and Ma, 1990 Zahalak and Motabarzadeh
1997), which are computationally much more complex than Hill's model.

Gasser and Hill (1924) characterized the mechanical response of activated muscle as
that of a viscoelastic material. Later, in his 1938 manuscript, Hill disregarded the 1924
viscoelastic model on the basis of thermal measurements. He reasoned that a viscous
component (if any was present) should release approximately the same amount of heat
during shortening as during lengthening, contrary to the experimental evidence coming
from his own heat measurements. Hill deduced that a chemical reaction must be
responsible for most of the heat and mechanical work produced by the contracting
muscle, as was later shown by biochemical experiments (see chapter 4 of Woledge et al.
1985 for an overview of the relevant experiments). However, a system undergoing
chemical reactions with rate constants that vary with muscle length and speed of
shortening may exhibit a behaviour similar to a non-linear viscoelastic material. This
viscoelastic behaviour is a product of the chemical reactions between filaments, the
characteristics of the internal structure, and the material properties of myofilaments which
are not included in the model but are represented by a combination of dashpots and

springs.

3.2 A Phenomenological Model of Muscle

Our starting point in the construction of a phenomenological model is the
reinterpretation of the two basic experiments: isometric and isotonic contractions. It is
obvious that the force-length relation established by Gordon, Huxley and Julian (1966)
cannot be directly related to the dynamical behaviour of muscle, as has been assumed in

many phenomenological muscle models. In force-length experiments, the isometric force
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for a given length will be reached if and only if the muscle is held at a constant length
throughout the entire contraction. If a length change is imposed once the muscle has been
activated, the force will not follow the force-length relation. Moreover, if after a change
in length the original length is restored, the isometric force following the length change
will not be the same as the force obtained during an entirely isometric contraction at the
original length. Therefore, we will consider the isometric force-length relation as a
fundamental, static characteristic of muscle, while requiring that the isotonic force-
velocity relation arise as a consequence of the model instead of being introduced as a
characteristic of the contractile element. It should be pointed out here that this specific
consideration is in direct contrast with typical Hill-type models in which the force-
velocity relationship is introduced as part of the behaviour of the contractile element.

The model presented here is built around a contractile element and an elastic rack
with the following properties:

Contractile element: Upon activation, the contractile element, represented in Fig.
3.3, will provide a force f . Let the dependence of f with time be governed by the

equation:

f+Bf=g) 3.3)

where £ is a material coefficient, and g(?) is a forcing function that we will loosely call
activation. This activation function can be associated in some way to the intracellular
concentration of Ca™ (Fig. 3.4). We assume that the force develops from zero to its
saturation value f{L,) which depends only on the muscle length, L,. For the sake of
simplicity, saturation time may be set to zero, so that the free force development is
instantaneous and the saturation force remains at f{L,/ until the activation is reduced or
stopped. This thinking is tantamount to assuming that 5= 0 in Eq. 3.3. The function f{L,)

can be identified with the isometric, fully activated force-length relation. Note that this is
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the simplest possible model of force generation; a more realistic contractile element

would include some dependence of the force on the instantaneous length.

LW\ M)

g
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Figure 3.3: Representation of the contractile element.
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Figure 3.4: Solution of Eq 3.3 for a forcing function consisting of a periodic function

with saturation.

Elastic rack: Experiment on force depression following shortening contractions
(Granzier and Pollack, 1989, Sugi and Tsuchiya, 1988, Abbott and Aubert, 1952,
Maréchal and Plaghki, 1979, Herzog and Leonard, 1997) suggest that the force
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depression is approximately proportional to the amount of shortening experienced by the
muscle, as if an elastic element were acting in parallel with the contractile element. This
parallel elastic element seems to be 'recruited’ (Edman and Tsuchiya, 1996) only when
muscle is activated. This property of activated muscle can be modeled using an 'elastic
rack’, shown schematically in Fig. 3.5. When the muscle is activated, a relay engages the
elastic rack. Thus, the effective stiffness of the muscle is increased upon activation. If a
linear elastic material is assumed for the rack, the stiffness of the rack decreases linearly
with increasing initial length L,. Indeed, if 4 denotes the cross-sectional area of the rack
and E stands for the modulus of elasticity, the effective stiffness of the rack is £4/L,. It is,
of course, possible to conceive a rack whose stiffness increases with L, or remains
constant; however, the cross-bridge theory indicates that stiffness must decrease with
increasing length, at least for sarcomere lengths greater than optimal (Ford et al., 1981,
Forcinito et al., 1997a). Although the experimental evidence indicates that force
enhancement upon stretching is a phenomenon of a somewhat different nature, here we
will use the same rack element to model stretches as well. In a general model, the
elasticity need not be linear and the strength of the engagement need not be infinite.
Depending on the net force acting on the rack and the direction of its force (tension or
compression), the engagement between rack and "muscle” could be broken allowing the
free relative movement of the end pieces.

Fig. 3.6 shows the proposed model consisting of a combination of the contractile
element, the elastic rack and a dashpot and spring arranged in parallel to the contractile
element. The motion of such a system is governed by the following system of ordinary

differential equations:

x+ 1+ o5 G.4)

(4 o

F=ftL)+
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L=L +x+ <% (3.5)
° k

where c is the dashpot constant, £ the spring elastic constant, and a superimposed dot
denotes the first time derivative. The physical meaning of x is the elongation of the

dashpot from its rest position (the length L, , before the activation is applied).

elastic

W) ) | F
bJ g
T AW~

L

- - Se- e =

Figure 3.6: Rheological model representation.
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3.2.1 Hill-type model

For the purpose of comparison, we will use the standard Hill-type model as depicted

in Fig. 3.2, which consists of a contractile element that follows a single-state equation

ZCE = h[LCE ), LMT(t)] and a series elastic element. In this model the force is given by:

F, 2
Fop = Foe =(U Zx )z (Lsa-:"[smcx) (3.6)
MaxLsrack

where Fy,, is the maximal isometric force, Ly .« and U, . are the resting length and
the strain at maximal isometric force of the series elastic elementand Ly = Ly — L.
Here, shortening of the contractile element is governed by Hill's (1938) characteristic
equation, and lengthening is defined in the same way as used by Cole et al. (1996).

Therefore:

_ b(FLEN‘ CE/FMAX)

, ‘ if Lyr <0
b= (FCE/F:\MX'*'G/FMAX) G.7)
c .
-L L +c, | if Lyr>0
CE(Om[FCE/me +6 :I '

where a and b are the characteristic muscle constants, and, as defined by Cole et al.
_BRELFL:EN(I_FASY.\{P)z BREL FLEN(I—FASYMP)

1996), c, = . The
(1996), SF(F,y + Agey) SF(F, o + Arer)

s €2 =—FlenFasywps 63 =—

ratio of the isometric force at a given length to the maximal isometric force, F . is a

function of the contractile element length and the optimal contractile element length
Lcgorn- The shape of this function was adapted from Fig. 2(b) in Herzog et al. (1992).

For concentric contractions, it was assumed that a/ F,,,, =b/V, =0.25. For cat soleus,
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the maximal shortening velocity ¥V, is taken to be 180 mm/s. Table 3.1 shows the

numerical values of all parameters used in the calculations.

[m] %* * * * * [m] [m/S]
0.03257 2.3 1.5 0.23 1.65 0.055 0.041 0.045

* Dimensionless

Table 3.1: Parameters used for Hill's model.

3.3 Results.

The response of the proposed model was analyzed using different conditions which
are often encountered in experiments. In the next section the results are compared to
experimental results and the standard Hill-type model presented in the previous section

(Cole et al., 1996).

3.3.1 Quick change in length

When the length of an isometrically contracting muscle is quickly changed, the force
exerted by the muscle also changes quickly, and then recovers slowly to a value different
from that of the isometric force of the muscle at the final length. A lengthening will
produce, after a short transient response, a steady-state force higher than the isometric

force obtained at the final length (force enhancement). On the other hand, a shortening
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will produce a steady-state force lower than the corresponding isometric force at the final
length (force depression). In order to obtain the response of the model to a quick length
change in the muscle, we impose an instantaneous length change from L, to Ly at time

t = 0. Solving Eq 3.5 for L, x is obtained (with zero initial conditions) as:

£,
x=L,-Ly—(L,~L,)€ (3.8)
Upon substitution into Eq 3.4, one obtains:
EA -5 EA £,
F=f(L0)+—(Lf-LO)(I—e ‘ )+(l+—)(Lf—Lo)-e : (3.9)
LO kLO

which corresponds to an exponential decay of the force to a force different from the
original isometric force. For large values of time, z, Eq. 3.9 gives a steady-state force:

F= L)+ =L, - 1,) (3.10)

(0]

that is, the change in force is a function of the total length change.

3.3.2 Quick change in Force

If the force of an isometrically contracting muscle is quickly changed to a lower
value than the isometric force, the muscle will shorten isotonically. Substituting the force

step into Eq 3.4 and solving for the internal variable x, one obtains:

EA
x=(Ff—f<Lo))%{1-e Ao ] 3.11)

after substitution of Eq 3.11 into Eq 3.5, one obtains:
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EA

Lo e ¢ LO‘EAA l
L=Lo+(F, - f(Lo) 22| 1- — 1 (3.12)
KL,

fo Frm S L) Toeg

3 (3.13)
(. EA
c- 1+——)
\ kLo
F,—f(L
a5 o) (3.14)
dt |- EAY
c-|l1+——
(&)

Equation 3.14 represents a "linear" force-velocity relation. In order to fit the
experimental results, one would have to introduce a material non-linearity in the
constitutive behaviour of one or more of the four elements which make up the muscle
model. Note, that the denominator in equation 3.14 represents a viscosity coefficient
relating the excess force to the velocity. Here, the velocity is defined positive for
stretching and negative for shortening.

Finally, after a very long time, the steady-state length, L, becomes :

L_= Lo(‘%&z) (3.15)
dL
@ =0 (3.16)

In this model (with linear springs and a dashpot) Hill's (1938) force-velocity
relationship will be satisfied (qualitatively, at least) between the (isotonic) force and the
initial velocity upon release. If, however, the rack element is disengaged during the

isotonic experiment, the velocity will remain constant in time. As suggested by
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experimental evidence, (Granzier and Pollack, 1989) an isotonically contracting muscle
will shorten at a constant speed or with a decreasing speed depending on the length step
and the length of the muscle upon release.

For short length steps, experimental evidence suggests that the speed of contraction
is constant (Hill 1938, Granzier and Pollack 1989, Edman and Tsuchiya, 1996). A
constant speed of contraction for a short period after release can be well matched by an
exponential function. In the present model, a constant speed of contraction can be
achieved by temporarily disconnecting the rack element.

The conceptual difference between the present model and that developed by Hill
(1938) is that the force-velocity characteristic is a consequence of the elements in the
model while Hill (1938) assigned the force-velocity characteristic to the contractile

element.

3.3.3 Constant Speed of Shortening or Stretching

When an isometrically contracting muscle is shortened (or stretched) at a constant
velocity, a, during a period of time, T, and held isometrically at some final length, the
force exerted by the muscle decreases (increases), reaches a minimum (maximum) value
and stabilizes at a lower (higher) force than the corresponding isometric value at the final
length. This phenomenon is known as force depression or force enhancement following
shortening or lengthening, respectively (Abbott and Aubert, 1952, Maréchal and Plaghki,
1979, Granzier and Pollack, 1989, Herzog, and Leonard, 1997, Edman and Tsuchiya,
1996). A Hill-type model is not able to predict these force depressions or force
enhancements, because when the speed of contraction is zero, the force in the contractile

element will be dictated by the force-length relation exclusively which is derived from
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isometric experiments alone. If the final length of a contraction is on the descending limb
of the force-length relation, Hill-type models will become unstable because of the
negative slope of the associated force-length curve.

For the case of a constant speed of contraction, the length is a known function of
time, L(z), and the force predicted by the present model can be calculated by inserting L(?)
as the left member of Eq 3.5. It is useful, in order to simplify the resulting expressions, to

introduce a 'step’ function defined by:

_J0ift<a
u, (1) = 1if t2a G.17)

Using the definition given by equation 3.16, the muscle length corresponding to

shortening at a constant speed, «, starting at t = 0 and finishing at ¢ = 1, can be described

by: L(t)=L,+a[t—(r—1)-u,(t)]. Substituting L(t) into 3.5 and solving for x, one

obtains:

k k
x=a[—z(ut —l)+t(1—u‘)+7¢€(l-u’ -e“)e ¢ +t-u:] (3.18)

i:a[(l—ut)—(l—u,-e:r JeT'J (3.19)

which can be inserted in Eq 3.4, to obtain the corresponding force as a function of time.

3.3.4 Comparison with Experimental Results.

In order to test the predictive ability of the present model, the results of the model

were compared with selected experimental results.
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Quick force release: The present model predicts that the velocity of shortening is an
exponentially decaying function in time and that the muscle will eventually stop
shortening. These predictions seem to contradict what is known as one of the principal
characteristics of shortening muscle under constant load: the constancy of the shortening
speed. We have not found convincing experimental evidence of constancy of speed of
shortening during isotonic contractions. At any rate, it is physically obvious that the
shortening speed cannot remain constant for a long period of time. Consider the
experiments performed by Granzier and Pollack (1989). In Fig 3, 4 and 5 of their paper,
records of fiber length and force as a function of time for different shortening distances
are shown. In all cases, there is a noticeable decrease of the shortening velocity in time.
However, this behaviour was not observed at the sarcomere level. Edman and Reggiani
(1983) showed that small sections of muscle can lengthen while the entire muscle is
shortening. These differences in length change observed on the entire muscle and on the
sarcomere level indicate that the behaviour of the entire muscle could be a product of the
structural arrangement between fibers and the non-uniformity of sarcomere lengths rather
than a characteristic of the contractile machinery.

In their 1966 paper, Gordon Huxley and Julian show records of an isotonic
contraction that goes towards a steady length (Fig. 8B in their paper). Podolsky (1960)
carefully measured the transient fiber length changes after a muscle was released
isotonically. The length records exhibited an almost perfectly constant slope after the
transient phase of shortening, but they only showed the first 10-20 ms following release.
If the time constant of the exponential is large enough, the behaviour of 2 model in which
the speed of contraction decreases exponentially can look as if it had a constant velocity
of shortening when followed for only a few milliseconds. Nonetheless, it is generally

accepted that isotonic force and shortening velocity follow Hill's (1938) characteristic
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equation. The characteristic equation for the present model with constant parameters E4.

k and c is a straight line given by Eq. 3.14 (Fig 3.7).

Present Model

------- Hill's Model

P/Po

0.0 0.2

Figure 3.7: Characteristic curve for the present model with constant coefficients
compared to the characteristic force-velocity curve (P +a)(v+b)=constant with

al P, =b/V,=0.25.

Active shortening at constant speed: The present model was used to match
experimental data from an in situ preparation of cat soleus muscle (Herzog and Leonard,
1997). In these experiments, soleus muscle and tendon were surgically exposed and the
distal end of the tendon was cut from its insertion with a remnant piece of bone. The hind
limb of the cat was fixed rigidly in a stereotaxic frame and the end of the tendon was
attached to a muscle puller. An electrode implanted on the tibial nerve was used to
stimulate the muscle. The muscle was passively stretched to the initial length, activated

supramaximally until the isometric force was fully developed, then the muscle was
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allowed to shorten 4 mm at a constant speed, and subsequently was held isometrically at
this final length while the activation was maintained. In order to fit the experimental
results, it was necessary to determine the three constants EA, & and c. First E4 was
determined using Eq. 3.10 as the asymptotic solution after the shortening was completed,
then k and ¢ were adjusted to match the peak value of the force (at the end of shortening),
and the force corresponding to the point at which half the total shortening was performed.
Fig 3.8 shows the resulting fit for shortening speeds of -8 mm/s and -20 mm/s. The
constants were obtained for the -8 mmy/s trial and were used for both, the -8 mm/s and the

-20 mny/s trials.

Force [N]

a isometric (exp.)
v -8 mm/s (exp.)
4 . 2 .20 mm/s (exp.)
10 hd —-8 mm/s
------ 20 mm/s
------- -8 mmi/s (Hill)

- -20 mm/s (Hiif)

5 ————r—r——T—T
1.50 1.75 2.00 2.25 2.50

time [s]

Figure 3.8: Shortening at constant speed: comparison between experimental results,
the present model and Hill's model. The points labeled isometric correspond to the
isometric force at final length. The values of the constant used (adjusted for -8mm/s)

were EA=1575-L, N, k =7.0N/mm and ¢ =0.757N-s/mm. Hill's model

parameters were those listed in Table 3.1.



page 80

Using the same constants, the maximal speed of shortening was determined to be
¥, =90.7 mm/s.

Active lengthening at constant speed: The same procedure as applied to the
shortening contractions was used to fit the lengthening contractions. The results are
shown in Fig 3.9. For lengthening, 2 different value for the constant E4 was used because
the magnitude of force enhancement following active lengthening is different from that of
the force depression following active shortening. Fig. 3.9 also shows the force-time

history calculated using Hill's (1938) model as described by Cole et al. (1996).

]
0 ‘,"“ 2 Isometric (exp.)
L v +8mm/s (exp.)
FE s +20mm/s (exp.)
: —— + 8 mm/s
..... + 20 mm/s
------- + 8 mmv/s (Cole etal.)
.. +20 mm/s (Cole etal.)

Force [N}

Figure 3.9: Lengthening at constant speed: comparison between experimental
results, the present model and Hill's model. The points labeled isometric correspond
to the isometric force at the final length. The values of the constants used (adjusted

for +8mm/s) were E4=0.675-L, N, k =7.0N/mm and ¢=0.757N -s/mm. Hill's

model parameters were those listed in Table 3.1.
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3.3 Critical Analysis of the present model.

Contractile element: A linear model of the contractile element, such as the one
represented by 3.3, will not be adequate to represent the experimental force response of a
muscle if the signal g(7) is associated with an electrical stimulation because Equation 3.3
implies the linear sum of effects. Experimental evidence shows that when two electrical
pulses are given to a muscle with a short inter-pulse interval, the response is more than
two times larger than that of a single pulse (figure 3.10). In a simple model presented by
Bobet and Stein, 1996, a static non-linearity is needed in the transfer function between
stimulation and force to represent the potentiation effect of a double electric pulse
adequately. Looking at the response of this simple equation to a square pulse or a
triangular pulse (Figure 3.11 left and right, respectively) we can see that the solutions do
not correspond with the response of a muscle to a single stimulation pulse (twitch). A
twitch starts with zero slope and positive curvature, has an inflexion point and then
reaches the maximum before a second change in curvature. It is easy to show that the
solution of equation 3.3, for the case in which g(?) is a triangular function is not exactly as
the twitch. Therefore g(t) was associated with some measure of [Ca++] in the intracellular
space rather than with the electrical stimulation. In some sense we are 'dumping’ the non-
linearity into the transfer function between the stimulus and the calcium concentration.

Elastic rack: A fixed elastic rack has a limited range of application. In a prolonged
contraction, the elastic rack should be able to slip and change its reference (unloaded)
length without significant change in force, in a similar way to a yielding material. Epstein,
1994 and Allinger, 1995 have proposed a mechanical device that exhibits such behaviour.

The device can be described as two brushes that are placed opposite to each other so that
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their bristles interpenetrate as shown in Figure 3.12. The force-length relation of such a
device exhibits a global negative slope although, locally, the stiffness is always positive.
If one of the brushes has an infinite number of bristles, the device would exhibit a force-
length relation similar to an elasto-plastic material except for the small scale saw-tooth
shape. There are alternative devices which are able to represent yielding behaviour, such
as the one based on snap-springs presented by Miiller and Villaggio, 1977. For a more
general treatment of stability of materials with non-convex energy potential the reader can

turn to Truskinosvsky and Zanzotto, 1996.

8 |-
------ Single Pulse
0.1ms
= 61 Doublet
— 5 0.1ms
[+
g oL 10 ms appart
uw
a2kl .
0 i T SR : o a1
0.0 0.1 0.2 0.3 04 0.5

time [sec]

Figure 3.10: Effects of pulse doubling in cat soleus force (from in-vivo experimental

data gathered by Herzog and Leonard, 1997b).

Linear Force-velocity relation: A chief idea underlying the development of the
present model was that the force-velocity relation should arise as a consequence, rather

than an inherent property, of the interplay between the elements explicit on the model.
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Equation 3.14, which gives the contraction velocity immediately after a force step, shows
that the velocity is a linear function of the force step, instead of a hyperbolic function as

the experiments by Hill and others indicate.

12 -
10 —g(t)
] ~——— beta=0.01
T beta=0.1
N beta=1
S oof
w
04 4
02}
0.0 Fa B vl [TTFevmmnransoopoo-o-o- Faieieinhe )
0.0 02 04 0.6
time [sec]
12
10 F \ — g
IAY —— beta= 0.01
o8} [/ \ """""" beta=0.1
N beta=1
S ost b \
TR A A
b fi T
02 . / \
P N
0 0.0 0.2 04 0.6
time [sec]

Figure 3.11: Solution of 3.3 for a square (left) and a triangular (right) pulses for

different values of the parameter 3.
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,,,,,,,

A

Figure 3.12: Brush Mechanics. Example of a structure with stable but negative slope

force-length relation. (from Epstein 1994).

The linear, constant parameter model presented above can be modified to account for
this fact by introducing a damping coefficient that varies with the square of the

contraction velocity, such as:

c=c, +e-%° (3.20)

for which Eq. 3.4 and 3.5 transform to:

F=f@L,) + ‘EA x + (H:Z) (c, +&-32) % (3.21)
L=Lo+x+£8'—x-x (3.22)
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A close-form solution of Eq. 3.21 and 3.22 is not possible, but assuming that € is a
small quantity a perturbation method? can be used to get an approximate solution. The
solution to the non-linear problem can be expressed in terms of the solution to the linear
problem plus corrective terms that depend on the small, parameter ¢ . The term £-x° can
be considered as a small perturbation of the linear equation. Retaining only the linear

terms in €, the perturbed solution can be written as:

xX=x,+€-X, (3.23)

where x, is a correction to the solution, x, being the solution to the linear problem. Using

E
the following notation: A=F-f(t,L)); &= EL:A; W=(1+kiA); y=—=—, the

4 o o

solution to Eq. 3.4 can be expressed as:

x =—(1—e"'); X, = e’ (3.24)

Substituting 3.24 into 3.23 and the result into 3.21:
E-x,+y-c, %, +y-x =0 (3.25)

where the validity of 3.4 and the approximation x° ~ %, were assumed. Solving Eq. 3.25

we obtain:
x== A -.w _e—‘{l)
é 2
5 (3.26)
A ) € A
x=—ye " +— (—3e"”’ + ye"’)
& 28 ( J

Replacing 3.25 and x° ~ %] in Eq. 3.21 we arrive at:

3 See chapter on perturbation methods in Butkov, 1968.
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(3.27)

d(L-L,)
dr

= - (C_a _1). A+i A ’ —_
R £ 2E\y-c,

4 A ? C €
3y = 1-3%244+ 2
Y2§(w-co]( PR k)

Eq 3.28 clearly shows that the force-velocity curve for the non-linear model can be

(3.28)

approximated by a third-degree polynomial on the force difference.

3.4 Discussion

Aside from the inclusion of the elastic rack element, there is a fundamental
difference between the model presented here and Hill's two-component model: Hill's
model has the characteristic force-velocity relation built into the description of the
contractile element, while here, the characteristic equation arises from the combined
action of the elements external to the contractile element. From the analysis, it is clear
that such an objective cannot be attained with a linear, i.e. constant parameter, model.
Despite this deficiency, our model captures some features of skeletal muscle, such as
force depression (enhancement) after shortening (lengthening), which is not contained in
traditional Hill-type models, as well as the instantaneous response of shortening
(lengthening) muscle. An examination of the current model reveals that the key element
which accounts for the history-dependent effects of muscle force is the elastic rack. The

rack acts as a parallel spring that is recruited only when the muscle is activated. Edman
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and Tsuchiya (1996) arrived at a similar conclusion in an experimental way, i.e. that there
must be some elastic structure in muscle which is recruited upon activation. The objective
of this part of the work was not to uncover what structure in muscle (if any) should be
responsible for producing this elastic effect upon activation, but to develop a simple
representation that can be used in entire muscle models.

Another fundamental issue which we wanted to address was whether viscoelasticity
should be ruled out as a model for muscle behaviour. An analysis of the response of the
present model is sufficient to discard linear viscoelasticity; however, more complex forms
of viscoelasticity cannot be discarded at present.

Phenomenological models have the appeal of remaining simple even when used in
complex systems, and they fill the gap between the molecular level and the entire system
level at which most experiments on muscle are performed. There is no intent here to
uncover the mechanism by which muscle contracts. The elastic rack, linear spring,
damper, and contractile elements are fictitious representations that help in the derivation
of a differential equation. Moreover, the equation is the model regardless of how it was
obtained. It was not the objective of this work to find a model that represents the muscle
under a wide variety of working conditions, but only to bring attention to the fact that
there are simple models that are able to represent many aspects of muscle mechanics

accurately.

3.5 Interaction Between Muscle Stimulation and Movement

We want to conclude this chapter on entire muscle modelling with some

considerations on the important issue of muscle stimulation. It is through the electrical

stimulation of muscle by the nervous system that the delivery of mechanical work is
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controlled. There are two basic ways by which the nervous system can control the force
produced by a muscle; one is by varying the number of fibres* producing force at any
given time and the other is by varying the frequency at which the stimulation pulses are
delivered. In modelling the entire muscle, the first modality of controlling the force does
not offer much difficulty; in unipennate muscles a scaling factor multiplying the force in
the contractile element, with due regard to the angle of pinnation, is the only addition one
needs to effect to the model. Even if the muscle is multipennate, the force can be resolved
in components parallel to the fibres and each component can be scaled accordingly to the
number of active motor units and added vectorially. However, with the second modality,
i.e., the control of the stimulus-pulse frequency, things are not so easy due to the non-
commutative nature of the process of stimulation and stretching (or shortening).

Before going into the mathematics of the problem, we simplify its description by
using a different measure of stimulation than the electrical activity of nerves. Because of
the complex mechanisms involved, it is not easy to relate directly the electrical
stimulation on the nerve endings to the force output in a fibre. In simple terms, the
variation of the electrical field on the sarcolemma triggers the release into the intracellular
space of the Ca++ stored in the sarcoplasmic reticulum. Once the Ca++ is released, not
only diffusive forces, but also the internal geometry of the cell (Kargacin 1994), the
calcium pump and the changing affinity for calcium of actin filament due cooperativity
effects (Zhou and Phillips, 1994), act to determine the rates of binding and detachment of
cross-bridges, which transduce the chemical energy of ATP into mechanical work. We
will loosely talk about 'activation' as a measure of muscle contractile activity; for

example, in an isometric contraction we can associate the activity with the stimulation

4 To be precise, we must say the number of motor units, since each motor nerve inervates a number of

fibers and stimuli go simultaneously to all the fibers in the motor unit.
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frequency, the higher the frequency: the more isometric force the muscle is able to exert
until a frequency is reached for which further increases do not affect significantly the
force outcome. The idea is to extend the concept of activation as a description of the
contractile state of the muscle regardless of the output force. In this way, if a contracting
muscle is stretched or allowed to contract, we will say that the activation does not change
as long as the stimulus does not change. Without further consideration to the mechanisms
involved in the transduction of electrical pulses into number of bound cross-bridges, we
can define the activation as an internal variable that enters the list of constitutive
parameters. This variable has a value 0 for the relaxed state and a value —<c for the fully
tetanized state. Intermediate values of activation need not be linearly related to the
stimulus frequency nor to the Ca++ concentration, but we assume that it is possible to
quantify the activation as a function of either one. In a sense, our definition of activation
is not different than that commonly used in biomechanics, except that in our case it is not
directly applied as a scaling factor for the force produced in the contractile element. To
understand why it is not possible to apply the activation as a scaling factor, consider the
outcome of the following two experiments; a) an isometrically contracting muscle that is
fully activated is shortened by a certain distance, thus reducing the force, b) the same
muscle is passively stretched to the final length reached in experiment a), where it is
stimulated in such a way that its isometric force is equal to the force reached after

shortening in experiment a) (point P in Fig 3.13).

5To define the activation as a function that asymptotically tends to one for stimulus of magnitude

infinity will helps to simplify the mathematics.
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Isometric

Active + Passive

Figure 3.13: Shortening from fully active state and activation from resting state to

reach the same F-L point.

Isometric

Active + Passive

Passive
L
Figure 3.14: Stretching and reduction of stimulus from fully active state compared

to reduction of the activation and stretching .

In both experiments, by definition, the same point in the force-length plane is
reached, however, the 'state’ of the muscle is different depending on the path followed to
reach point P. The state is different in the sense that if the path labeled a) was followed, at

point P the muscle is fully activated and an increase in the stimulus frequency will not
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increase the force. On the other hand, if the path labeled b) was followed to reach point P,
the muscle still has the potential to increase the force if an increase in the stimulus
frequency is provided.

Consider also what happens when a tetanized muscle is given a stretching followed
by a reduction in activation, as shown by the path labeled a) in Fig 3.14, and compare it to
what happens when the same two operations are applied in reverse order (path labeled b)
in Fig 3.14). In general the points in the force-length plane reached by the two processes
will be different because the force-length properties of muscle change when the stimulus
frequency history change (Roszek et al., 1994, Roszek, 1996).

From the preceding analysis we can conclude that not only the activation acts as a
state variable, but also that in order to have a complete description of the contractile state
of a muscle, it is necessary also to include the order in which changes in stimuli and
changes in length were given to the muscle. To model a change in the contractile state of
a muscle, we assume that it is made up of and arbitrarily ordered sequence of the
following two elementary operations:

(i) change in activation at a constant length;

(ii) change in length at a constant activation.

In this analysis we are ignoring the effects of the velocity at which the changes in length
proceed, considering that changes occur only between isometric states, that is, assuming
that after a transient period the force reaches a constant value that depends only on the
state. The passive response of the muscle is represented with the function (L) and the
collection of fully activated states obtained at constant length by g(Z). f(L) and g(L) are
represented in Figures 3.13 and 3.14 by the curves labeled 'Passive’ and 'Active +
Passive', respectively. The outcome of the two elementary operations can be calculated

using the following formulas due to M. Epstein, 1996:
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- ka _ -ka g(L) F
F=e™- -f(L)+(1-e )e"‘”-f(L)+(1—e"‘“)-g(L) (3.29)
for a change in activation, and,
F=F+e - (f(L)-f(L)+(1-e™)-E(L-L) (3.30)

for a change in length. In these expression, the hat over the variable represents the new
value, k is a time constant that can be a function of the type of muscle and the activation,
and E is a stiffness constant which in general is a function of 2and L.

Equations 3.29 and 3.30 have some interesting properties such as the non-linear
summation of activation effects, i.e., the application of two different activations at
constant length will give a different result than the application of the sum of activations
from the resting state. Memory effects are also included in the formulation; for instance,
the formulae will distinguish between the states of two identical points in the force-length
plane if they were reached following different paths, and if further changes are applied,
the two identical points will move differently in the force-length plane. The setting of the
activation to 0, resets the muscle to the virgin state and the memory of past changes is
lost.

So far we have described a possible theoretical approach to the modelling of the non-
commutativity effect in muscle. Unfortunately there are not many experiments performed
that address the issue of history-dependence of muscle properties. Herzog and Leonard
have published in 1997 the result of two experiments in which the length and the
activation of an in-vivo preparation of cat soleus are varied. In one of the experiments the
length of the muscle is shortened at the same time that the frequency of the stimulation is
reduced to a fraction of the maximal frequency, following the shortening the stimulation
is restored to the maximal value and the force trace is recorded. From the results it is

apparent that, after restoring the stimulation, the force returns to the isometric value
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corresponding to the final length only when the stimulation is reduced to zero. When the
stimulation frequency is reduced to a value different from zero, the force returns to a
lesser value than the isometric value corresponding to the final length, the smaller the
reduction in stimulation, the lower is the isometric force reached after restoration. This
behaviour seems to be at odds with the mathematical model proposed, although it is fair
to say that the experiment does not exactly fit into the theoretical framework because in it
the stimulus and the length are changed simultaneously. In their manuscript, Herzog and
Leonard used the results of this experiment to support the hypothesis that it is the stress in
the muscle during shortening that inhibits the contractile machinery to recover the force
after shortening. This hypothesis contradicts the commonly held notion that the non-
uniformities in sarcomere length along the fibre are responsible for the force depression
after shortening. It is known that non-uniformities in sarcomere length are always present
in experimental set ups, however, it is still unclear what is (if any) the relative importance
of the stress inhibition and sarcomere length non-uniformity in the force
depression/enhancement. From the point of view of continuum mechanics, the stress
history cannot be a priori deleted from the list of constitutive variables that determine the
changes in internal energy produced by the chemical reactions. Going to the molecular
level it is easy to understand why if we consider that the macromolecules forming the
myofilaments are deformable, and therefore that the rates of reaction depending on the
formation of stereo-specific links can be hindered by strain.

Here we want to raise the points that need to be investigated further. One way to do
that is to develop experimental protocols to probe the hypotheses advanced so far. To
conclude this chapter we present here the results of some exploratory experiments
suggested by the theoretical analysis presenfed above. The experiments described below,

were conducted by Herzog and Leonard, 1997b.
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3.6.1 Non-Commutativity Between Shortening And Stretching

The first test case was designed to assess the commutativity between active
shortening and stretching. An in vivo preparation of cat soleus muscle is isometrically
activated and when it reaches a steady isometric force it is actively shortened 4 mm at a
rate of 4 mm/s. After a delay dt, it is actively stretched back to the initial length at the
same rate. The force is measured throughout the cycle. Figure 3.15 shows the resulting

force and length traces for three different values of dt, from O to 1 s.

25+ Shortening / Stretching Cycle 710

1 FORCE ds
204
16

—8—dt=0ms
—e—dt=500ms
—&—dt = 1000 ms

15

Force [N]
Length [mm)]

LENGTH

Figure 3.15: Active Shortening followed by Stretching of in vivo cat soleus.

It is apparent from.the graph that the force returns to its isometric value
independently of the value of the delay. Additionally, the force follows the same path on

the recovery phases for all cases. If the order of the experiment is reversed, that is, if the
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stretch is applied first followed by a shortening to the initial length, the force does not
recover the isometric value but a value that is 15% lower, as shown in Figure 3.16. This
asymmetry in the response of muscle can be attributed to the presence of a mechanism of
inhibition to the formation of new cross-bridges after stretching that is not present (or not
as important) during shortening.

A second test case was tried to see the influence of a reduction in activation. In this
case the isometrically contracting muscle is subjected to an active shortening, followed by
a reduction of the activation frequency from 30 Hz to 7.5 Hz during a variable period of
time, and a stretching back to the initial length after that the frequency of the activation
was restored to 30 Hz. The same experiment is repeated reversing the order of the

shortening and the stretching with the results depicted in Figures 3.17 and 3.18.
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Figure 3.16: Active Stretching followed by Shortening of in vivo cat soleus.
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As in the first test case, the order in which the shortening and the stretching are
applied determines the final value of the force to be slightly enhanced (Fig 3.17) or
considerably depressed (Fig 3.18) with respect to the isometric level. To our knowledge,
there is no muscle model able to represent the experimental behaviour described by these
two test cases. A fair amount of experimental and theoretical work is needed to elucidate
whether this type of behaviour can be attributed to non-uniformities in the sarcomere
lengths or to a mechanism of inhibition of new cross-bridges formation due to stress. In

our opinion, the latter is the more plausible explanation of this and similar phenomena.
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Figure 3.17: Active Shortening followed by reduction of the activation and

Stretching of in vivo cat soleus.
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Figure 3.18: Active Stretching followed by reduction of the activation and

Shortening of in vivo cat soleus.



IV

Mechanics and Thermodynamics

In chapters II and III we presented simple, one-dimensional mechanical models of
muscle. Although useful to extract some general conclusions, they are very limited in
scope. The limitations are not only because their spatial dimensionallity, but also due to
the limited physics and chemistry considered. Continuum mechanics, with its formalism
based upon a strong axiomatic set, gives the framework to construct models that are
general enough to consider all possible interactions and, at the same time, mechanically
correct. The intention here is to introduce those theoretical constructions that could be
used as the basis for development of more complete models of muscle in the future. We
shall emphasize here that the mechanics and the thermodynamics for the general case of a
deformable body are well known; what is not known in the particular case of muscle
mechanics are the constitutive equations. Continuum mechanics alone is not able to give
the constitutive equations; they will be found only through careful experimentation and
by using theories dealing with events happening at the molecular level, however,
continuum mechanics will tell us what to search for.

This chapter presents a brief review of the general continuum mechanics and
thermodynamics that can be applied to the study of muscle. We will follow here the
treatment given by Truesdell (1969), Wang and Truesdell (1973), Bowen (1976) and
Eringen (1980), describing briefly the fundamental laws and going into some detail

regarding the theory of chemically reacting mixtures.
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4.1 Continuum Mechanics

We identify a deformable, spatial body with an oriented, three-dimensional
differentiable manifold which can be covered by a global coordinate chart. The elements
of 8 are called body-points, X. Any open submanifold of & is also a body called a subbody
of 3 In a given frame of reference, the configuration of 8 at instant ¢ is 2 map x,:8 — £°,
where £° is a Cartesian co-ordinate system on a 3-dimensional oriented manifold called
the instantaneous space. It is convenient to introduce the concept of reference
configuration of the body 2 that is simply a particular configuration ,:8 — £° of the
body, which is deemed convenient to take as reference.

The motion of a body is a one parameter family of diffeomorphisms
X8 £ Stef. Normally, the parameter is the time 7. If we name with x the spatial
position at time ¢ of the point identified with the body-point X, then x=1y, (X,?)
represents a motion.

The velocity and acceleration of a particle are defined, respectively, as the first and

second time derivative of the motion x:

~2

%=y (X.0), i=-,(:;—.,x,(x,t) (4.1)
v

Q’IQ)

Consider the configuration x at time ¢ There exists a diffeomorphism
o, =K, oK;':k(8) = x,(B) called the deformation, that maps the position of body points

from the reference configuration to the current configuration.
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The deformation gradient is the tensor defined by the gradient of the motion at the

reference point X:

4 -
F={(X) o dx=FdX (4.2)

that is, the deformation gradient, F, maps a line element in the reference configuration to

the corresponding line element in the deformed configuration. We will use the symbol

;() or a superimposed dot to indicate the material time derivative, that is the time

derivative calculated following the material particle.

Let M, the mass, be defined as a non-negative measure defined over all measurable
subsets of the body. M is invariant under motion and it is assumed that M is an absolutely
continuous function of volume in space and therefore a non-negative mass-density p
exists everywhere in the body. The Principle of Conservation of Mass establishes that the
total mass of the body does not change during the motion. This principle may be

expressed by:

d
= ! p-dV (4.3)

where dV is the differential of volume in the reference configuration. If the mass-density
and velocity fields are sufficiently smooth, the conservation of mass can be written in its
local form:
p+p-divx=0 44)
The linear momentum m and the rotational momentum r, respect to a fixed position

X,, of & in its present configuration are defined by:

m=JidM and x'=J'(x—x‘,)/\idM (4.5)
2 4

respectively, where dM is the differential of mass.
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According to Euler's laws of mechanics, for every body the time rates of change of
linear momentum and angular momentum are, respectively, equal to the rotal force f and
the rotal torque t acting upon the body. The total force f is assumed to be the sum of two
special kinds: an absolutely continuous function of mass called the fotal body force f,
and an absolutely continuous function of surface called the total contact force f.. The
body force is usually the resultant of an external field, e.g., gravitational and/or
electromagnetic, whose intensity per unit mass is given by b. Contact forces represent the
action of neighbouring parts of material upon one another or traction and is denoted by t.
A theorem by Cauchy established that the traction is delivered linearly through the outer

unit normal to the surface in consideration, n, by the stress tensor T:
t=Tn (4.6)
The balance of linear momentum can then be written as:
%jipdV=jbpdV+J'TndA (4.7)
s 3 -4

where dA is ihe differential of surface in the reference configuration. Eq. (4.7) can be

expressed in local form, if fields are smooth enough, as:
pX=divT+pb (4.8)

which is usually known as Cauchy's first law of motion. For the case in which all torques

are moment of forces, the conservation of angular momentum implies that:

T=T" 4.9)

also known as Cauchy's second law of motion.

The kinetic energy, K, -is defined by:
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K=+t[xaMm (4.10)
g

while the power, P, is the rate of working of all forces acting on the body:

P=jb-idV+an-di (4.11)
F4 &

Stokes proved that the net working W, that is, the power not used up in producing
motion is given by W = J. wdV = P— K, where the scalar w, the net working per unit
2z

volume, is called the stress power and is defined by:

w=T-grad %, 4.12)

where the dot indicating the inner product in the vector space of second-order tensors,
i.e, A-B=1t{AB"). On the basis of the purely mechanical principles established so far,
we can start to construct a thermodynamical theory compatible with continuum
mechanics. To that end we introduce the principle of balance of energy also called first

law of thermodynamics:

U=W+0 (4.13)

where U is the internal energy and Q is the heating, that takes into account the effects of
non-mechanical sources on the total energy of the body. Note that O must have units of
power and must be an additive function of the mass!. Similarly to what was done
previously for the total force, the heating Q is assumed to be the sum of two kinds of
heating: the body heating Oy, assumed to be a continuous function of the mass with

volume density s, and the conract heating Q,, a continuous function of the surface area

UIn a certain way the conservation of energy acknowledges the notion that doing work may change the

energy level of a body, that heating may effect work and that there is an equivalence between the two.
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with surface density g. The internal energy U is assumed to be an additive, continuous
function of the mass with volume density € called the specific internal energy. Cauchy's
theorem is also valid for the contact heating, therefore a heating flux vector h can be

defined by:

g=h-n, (4.14)
The balance of energy principle can now be written as:

%jspdV=jde+J'h-ndA+jspdV, (4.15)
4 r 2 -4 z

which for sufficiently smooth fields reduces to:

pe=w+divh+ps (4.16)

We introduce here the concept of absolute temperature 6 by assigning a positive-
valued field 8 = 8(x,7) > 0 defined over the present configuration of 3. The temperature is
a measure of how hot a point in the body is and can be measured with a thermometer or
thermocouple.

In the relationships between mechanical and thermal quantities established so far,
there is no restriction to the conversion of heat in work and vice versa, that is, the balance
of energy does not forbid a process where all the heating is converted to mechanical work
in a reversible manner or where heat flows to a hotter body from a colder one. Natural
processes are irreversible? and this irreversibility can be represented by assigning an a

priori least upper bound O* for the heating Q. For a homogeneous system, namely, a

2 We will accept this as an axiom without further considerations to the philosophical reasons or

implications.
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body that can be sufficiently described by functions of time only, the axiom of
irreversibility or second law of thermodynamics will read:

Q< O*or, U-W<Q* 4.17)

In order to render this principle in a more familiar form, and to make it useful, we
define a new quantity E called entropy. For a process lasting from ¢ to ¢ the entropy is
given by:

LO*

gE(:,:Q:_[%dz, (4.18)

lo

which is definite for every process because 6 > 0 everywhere. Considering now an non-

homogeneous process, as with other extensive properties we assume that there is a

corresponding volumetric density 1 or specific entropy such that & = ! ndM . Entropy is
z

introduced so as to represent gross dissipation, and although n locally can be a negative
quantity, the total entropy can only increase. The dissipation principle can be formulated

as:

& e

jﬁzj‘%dA+jng, (4.19)
I

-4

known as the Claussius-Duhem inequality. The application to particular cases of this last
principle provide additional restrictions on the constitutive equations, such as the

restriction that a the viscosity coefficient of a fluid cannot be negative, for example.

4.2 Constitutive Equations

The conservation principles used to derive the equations in 4.1 gives a system with

more unknowns than equations. Except for some trivial situations, like in the case of rigid
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body, motions in absence of heat conduction, additional equations must be supplied to
make the problem determinate. The necessity to complement the system of equations
derived from kinematic and mechanical principles can be understood as a way to
introduce different material behaviours into the continuum mechanics formulation. So far
nothing was assumed about how different materials will behave under the application of
an external field. For example, a solid block made of steel will deform slightly under a
given pressure, while a solid block of rubber will deform much more under the same
stress. Moreover, consider the case of a solid body, which preserves its shape when
subject to a gravitational field, and compare it to a liquid that will adapt to its container.
Continuum mechanics equations should be applicable to all possible materials, provided
that proper functions describing the particularities of the material are known. These
functions are known as constitutive equations. The variables in terms of which they are
expressed are known as constitutive variables. There is no systematic way to choose
constitutive variables nor to derive constitutive equations. A constitutive theory is used to
represent a number of physical phenomena relevant to the particular material under
particular conditions, by equations relating variables which represent an ideal material (or
ideal behaviour). For example, Elasticity theory represents only the behaviour of certain
materials in a given range of stress, The behaviour of the same material outside of this
range must be represented by another theory, e.g. plasticity theory.
Constitutive equations shall conform to the following basic principles or axioms

1. Axiom of Equiprescence: All constitutive functionals should include the same

list of independent variables a-priori.

2. Axiom of Determinism: The value of the constitutive functions at a material

point of the body is determined by the history of the motion and temperature of all

material points of the body.
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3. Axiom of Objectivity or Frame Indifference: constitutive equations must be
form invariant with respect to rigid motions of the frame of reference
4. Axiom of Local Action or Neighbourhood: The values of the independent
variables at distant material points do not affect appreciably the values of the
dependent variables at the point x.
5. Axiom of Dissipation: All constitutive relations are such as to satisfy the
dissipation inequality (such as the Clausius-Duhem inequality) for all arguments

in their domains.

4.3 Mixture Theory

Whenever two or more substances sharing the same physical space are interacting
mechanically and chemically, the description of the mechanics of continua presented so
far is not able to describe the thermomechanical state of each separate component. The
mixture theory presented below aims to represent the phenomena of diffusion,
dissociation, combination and chemical reaction in the broadest sense.

The philosophy behind the mathematical construction of the mixture -theory can be
summarized in the following three principles:

1. All properties of the mixture must be consequencés of the properties of its
constituents.
2. The motion of a constituent can be described as the motion of the constituent in
isolation provided the actions of the other constituents upon it are properly taken
into account.
3. The motion of the mixture is governed by the same equations as is a single

body.
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We will distinguish the quantities associated with each constituent with the word
peculiar and a small letter written below them, thus p will denote the peculiar mass
density of the a constituent, for instance. As the motion of each constituent has its own
kinematics, we need to define material derivatives with respect to the constituents. We

will use a backward prime to denote the time derivative when X is held constant.

Therefore the velocity of the constituent a is defined as:

x= itx(x t) (4.20)
and the acceleration as:
O
=—1xlX,? 421
§ at‘ a( a ) ( )

We consider only those points x in space which are simultaneously occupied by one

particle of each constituent. The total mass density of the mixture is defined by:
b
p=2p (4.22)
a=1 a
The concentration or mass fraction of the constituent a is the dimensionless ratio:

, (4.23)

80
1}
© D

therefore,

D=1 (4.24)

i=) cx (4.25)
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As in the case of a simple body, each constituent is acted upon by actions at a
distance like the body force b and the body heating s, and by contact actions represented

by the stress T and the heating flux h. The inner parts of the resultant actions on the

mixture are the sums:

bl=259, s,=Z§§, T,=>T, bh;=Yh (4.26)

a

In the same way we define the internal parts of the internal energy and entropy of the
mixture such that, in a given region, they are the sums of the internal energy and entropy

of the constituent bodies occupying the same region, or:
B=2% =2 @27

The relative motion of the constituents and the transfer of mass, momentum and energy
produced by physical transfers and chemical reactions are not taken into account by these
inner parts. The correct definition for the stress, body force, internal heating, heating flux
and internal energy are to be deduced from the application of the third principle
mentioned above. First, the equations of motion for the mixture must be formulated in

terms of the constituents. That can be achieved by applying the following conservation
laws to the growth of mass, r:', the growth of linear momentum, m, the growth of

rotational momentum, M, and the growth of energy, e:

Yc=0, Ym=0, Y M=0, >e=0, (4.28)

Assuming that all fields are sufficiently smooth, as we did for the case of a single

body, the conservation laws can be expressed in their local forms:
pe=p+pdivx (4.29)

- R U ’
pm=pcx+px~div T-pb (4.30)

a
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pM=T-T' 4.31)
- -~ - v2 -\ 3
pe=pm-x+ pc(e—%x J+p8—tr( TT gradx) — divh -ps (4.32)

The mixture considered as a single body in motion cannot distinguish whether it is
formed by only one component or if it is heterogeneous, therefore by properly defining
mixture variables the conservation laws should have the same form as those for a single

component. Assuming that the velocity of the mixture is given by x and defining the
diffusion velocity of the a constituent as u =x-x, the appropriate definitions are as

follows:

stress, T=T,-> pudu, (4.33)
total body force, b= Zgla) (4.34)
internal energy, e=g, +%Zf’{ , (4.35)
total heating flux, h=h,+ Z ['E‘T u- ;a)(§+%u:) ?], (4.36)
and total heating supply, s =s,+Zcb- u. 4.37)

aa a

As in the case of single bodies, a dissipation axiom is added to the conservation laws.
In order to do that it is necessary to calculate the contribution of changes in entropy and

relative motion of each constituent to the growth in entropy of the mixture. Measures of

coldness, defined by 8 = é, and entropy, 1, are assigned to each constituent. The growth

of entropy ﬁ of the constituent a can be defined through an equation of balance such as:
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pn=pcn+pn-div($ b)-9 ps (4.38)
Summing on a we obtain:
pi=pXn+dv3(9 h-pnu)+ X gps 439)

As we consider the entropy of each constituent to reflect exchanges and transfers between

constituents rather than true processes of creation or annihilation, there is no restriction
imposed to the values of ;] However the total growth of entropy for the mixture must
a

remain non-negative, that is:

> n20 (4.40)

is the axiom of dissipation. Using 2.39, 2.40 can be written as:

pn = divp + po (4.41)

where:
0=2(8 b-pnu. @42)
o= Ycs (4.43)

a aa

Introducing the free energy of the a-th constituent as:

y=¢-0n, (4.44)

the dissipation axiom for mixtures (4.40) can be written in its reduced form:
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Z{Sl:—;+ 1;1-;+ z'(w—%J\c- J:I-FC(S\;!-— n\‘\}/ 9)

(4.45)

4.4 Mixture of Chemically Reacting Bodies

In a mixture, the total mass preservation, Zc =0 is a very general statement for the
a

exchange of mass among constituents. If chemical reactions are taking place between the
constituents, they combine and dissociate only in definite proportions according to the
laws of chemical reactions. These laws can be explained by saying that the substances
consist of molecules and that each molecule is formed by a whole number of atoms, each
class of atoms having a fixed atomic weight. The molecular weight of a substance is the
sum of the weights of the atoms in each molecule. During the reactions, molecules are
destroyed and created but atoms remain constant in number and nature. Here the terms
'atom’ and 'molecule’ are being used in a broad sense. In a particular case a real molecule
can be considered as an atom as long as it remains an indestructible entity through the
reaction process. In this way we see that in the framework of mixture theory, chemical
reactions restrict the number of possible transfers allowed by the total mass preservation
law. The algebraic form of chemical laws have also important geometrical implications

for the continuum theories.

Let the x atomic substances with atomic weights a®,a =1,2,...,k, be capable of
combining to form { molecular substances. The molecular weight of these substances

will be given by:
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m =3t ", (4.46)
a=1

where . is the number of moles of the a™ atomic substance in one mole of the a®

molecular substance, a non-negative integer supposed to be given a priori, together with

a®, by the laws of chemical kinetics. The permanence of atomic substances asserts that:

340 .
Seo=0, a=12,..x (4.47)
a1 M °

Solving the system in equation 4.47 for the concentration growths we obtain:

- R
c= pm*Yy Pj,=0 (4.48)
a=1

where R < min({ - «) is the rank of the matrix (¢21, [ P?]is any £ x (& - R) matrix of rank
£ —R that obeys the condition

SR =0 (4.49)
a=1

for v=12,....,0-R,a=1,2,...,k and is called the stoichiometric matrix and the {-R
quantities j, are called the reaction rates. In other words, 4.48 is not more than the
application of a theorem that states that a system of K homogeneous linear equations in £
unknowns has k—%R linearly independent solutions. Multiplying 4.49 by m®and

summing on ¢, we obtain,

D PPm"=0 (4.50)

that can be recognized as the condition that the x — R reaction equations are balanced>.

As the stoichiometry matrix is not unique, the set of x — R reaction equations is not

3 Now the motivation to call P;" the stoichiometry matrix becomes clear.
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unique, but the number x-R is unique and represents the number of linearly
independent chemical reactions possible in a given mixture. For a given mixture, reaction
equations are assumed in advance , therefore the coefficients of the stoichiometric matrix
can be read off from them. Chemists usually regard certain constituents of a given
reaction as products and the remaining as reactants. They can be distinguished in 4.49 by
taking positive coefficients for the reactants and negative coefficients for the products.

For each chemical reaction there is a quantity j,, the reaction rate of the a” reaction,

which is also not unique. To see the rationale behind this name, let us rewrite 4.29 in

terms of the mean motion and the velocity of diffusion u;

-

pé=-divlpu)+pe, 4.51)

aa

for the special case in which there is no diffusion, the first term in the right hand side of

4.51 is zero. Integrating the resulting equation one obtains:

c c

17| -2 |=0 (4.52)
; a mﬂ ma

where ¢ is the concentration of the a™ constituent at some reference time. The system of

aaq

equations in 4.52 can be inverted to yield:

=%
c—c =m" Y PE,, (4.53)

a
a ao
a=l

where E_ is the extent of the o™ reaction. By using 4.51 without the diffusive term and

4.48 it follows that:

-3 5-R .
pé=pm’ Y Fj,=pm'} FE, (4.54)
a=l

a=Il

Thus, because [ P ] has rank £ — R means that:
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j,=&,, v=12...0-%R, (4.55)

That is, in a non-diffusing mixture, the reaction rate is the time rate of change of any
corresponding extent of reaction. In chemistry, these relations are always expressed in
terms of components corresponding to a particular choice of independent reactions.

A thermokinetic process for the mixture is the set of fields:
x(X,t), O(x,t), a=12,..,% (4.56)
defined for all points in the bodies constituting the mixture when —o <7 < k for some k.

For a region in which a given thermokinetic process is occurring, a calordynamic process

is a set of field of two kinds, those defined for each body:
T(x,?), h(x,t), &(x,2), n(x,?), b(x,1), s(x,1), (4.57)

and those describing reactions and exchanges in the mixture:

c(x,0), m(x,0), M(x.0), e(x1) (4.58)

provided they are subject to the general axioms 4.28. The general constitutive axiom can

be expressed* as: For each a, the seven fields

(4.59)

B0+

k4 m?
a

oM ¢

Ta h? W’ n’ ’

are determined at X by the history of an arbitrary thermokinetic process in a

neighborhood of )b( presently occupying the same place as X, in such a way that

4This axiom is known as the effective principle of thermodynamic determinism.
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c=m=e= 0, ZT is a symmetric tensor and the reduced dissipation inequality (4.45) is

satisfied identically.

To apply the balance equations, we need to supply the constitutive relations, that is,
the functional relations that represent the response of the bodies under study. For
example, a mixture whose mechanical response is that of an elastic material but is capable
of reacting chemically, conducting heat and transferring energy between constituents can
be defined by the set of functionals (Bowen, 1979):

T =T(F,0,grad 6,&)

h =h(F,0,grad 6,£)

n="(F.0,grad 6,%) (4.60)
e =&(F,0,grad 6,&)

£ =&(F,0,grad 6,),

for each constituent. Because of the equipresence axiom, the same list of independent
variables appear in all functionals. To model different physical phenomena, the list of
independent variables will change accordingly, for example, if viscous effects are to be

included as part of the material response, F must be added to the list of independent

variables.

4.5 Comments on the Application of Mixture Theories to Muscle.

The theory of chemically reacting mixtures presented has the advantage of being
developed from a rigorous framework based on first principles and axioms generally
accepted in continuum mechanics. It is also a general theory with very few restrictions to

its range of application, however, it was never applied to solve problems in biomechanics,
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perhaps due to its difficulty. The application of continuum thermodynamics or mixture
theories to problems in muscle mechanics is limited by the fact that the functional forms
of the necessary constitutive equations are unknown. It is not clear how to relate the rates
of chemical reactions to the thermomechanical variables such as strain, strain rate and
stress. The general theory itself gives little help to find these relations, it can only be used
to find the restrictions imposed by the thermodynamics of the chemical reactions onto the
value of certain parameters.

It is worthwhile however, to explore how mixture theory could be applied to model
muscle. We can assume that the muscle is a mixture formed by at least’ four 'atomic’
components, myosin (M), actin (A), ADP and Pi that forms 'molecular’ substances such
as actomyosin (AM), ATP, AM*ATP, AM*ADP, etc. Suppose also that A, M and all
substances in which they enter are elastic solidsé, that ATP, ADP and Pi are solutions
subjected only to diffusion and chemical forces. The formalism described in previous
sections can be applied to the interchanges of mass and energy between components. In
this case the force will be the resultant of the stress between A and M, and the velocity
given by the time derivative of their relative motion. An important simplification can be

obtained by assuming that all the constituents in the mixture are at the same temperature,
that is ?=9 =.....= 0. For for this case only one energy balance equation is required and

the terms in e are dropped from the equations. Still, the resulting theory will be more

complex than any muscle model developed so far: however, because all the possible
effects of thermomechanical variables on the chemistry (and vice versa) are already

considered by the conservation equations, it will be possible to treat more general cases.

5 The list can be extended to include other components such as Ca+ if activation is to be modeled as

part of the problem, for example.
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4.5.1 Non-Equilibrium Thermodynamics.

More traditional thermodynamical theories of mixtures are often used in muscle
mechanics. The so-called irreversible or non-equilibrium thermodynamics (Prigogine,
1967, Hill, 1989) is a less rigorous, although easier to apply approach. Those theories are
based in what is known as Onsager relations and they assume that there is a linear relation
between thermodynamical forces and fluxes. One of the fundamental problems is that
there are no strict and general rules to determine which quantities are to be considered as
forces and which are to be considered as fluxes. The relation between forces and fluxes is
linear, and additionally, it is required that the coefficients of the matrix relating fluxes to
forces be symmetric. The entropy, or dissipation is calculated using a quadratic form.
Hill, 1989, described the application of this type of theories to a three states cross-bridge

model of muscle.

4.5.2 Other Approaches Worth Exploring.

The standard chemical kinetics framework for enzymatic reactions assumes that the

reactions occurs in homogeneous, dilute solutions. This assumption results in an

expression for the rate at which the elemental process occurs that can be written as a

6 In view of what was discussed in chapter II1, a viscoelastic solid maybe is more appropriate.
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constant, the rate constant, times a product of the concentration factors. The concentration
in each factor is raised to a positive integer value called the kinetic order of the reaction
with respect to the corresponding metabolite. These integers also represent the number of
molecules of each type that enter the reaction. However it is clear from the experimental
evidence that the elementary chemical kinetics is different from a conventional rate law
when the reactions are limited by diffusion or dimensionally restricted. Under such
conditions, the rate constants given by conventional rate laws change with time. For
example, in a bimolecular reaction with two molecules of a single substrate reacting to
form a product, the rate will be proportional to the concentration of the substrate to the
second power, if the reaction occurs in a diluted, homogeneous, solution. If the reaction
occurs under dimensionally restricted conditions, the constant rate will decrease with
time. Savageau (1995) proposed that in such cases the rate law can be replaced by a
power law with constant rate and increased kinetic order, not necessarily of integer value.
The increased kinetic order results in a behaviour with increased cooperativity and a
fractional order of the rate. The in vitro experiments used to determine the reaction rates
between actin and myosin, are usually performed in perfect dilution conditions. In the
muscle, this is not the case given the highly ordered structural arrangement of molecules.
For reactions restricted to a one-dimensional channel, the power-law based kinetic order
of a bimolecular reaction is 3, a 50% difference with respect to that predicted by mass-
action law. In a similar direction, a totally different approach that has enormous potential
is the one based on cellular automata. Zhou and Phillips, 1994, used cellular automata to
address the problem of Ca++ binding to the actin filament taking into account the
regulatory presence of tropomyosin and troponin. Cellular automata can be used to track
the interaction between molecules in cases in which there are a finite number of them and
they have a certain spatial distribution. One of the typical applications of cellular

automata is the modelling of chemical reactions and diffusion, where it can be shown that
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cellular automata converge to the differential equations’ representing the phenomena.
Cellular automata and related approaches, such as geometrical automata (Forcinito, 1993,
Forcinito and Epstein, 1995), have also shown their potential to address complex
kinematics problems such as the stability of sand piles or the dynamic segregation of
granular materials. They should be considered as viable alternative tools to address

problems related to cross-bridge or inter-sarcomere dynamics.

7 A wealth of applications of cellular automata to similar problems can be found on Doolen, 1991.
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Conclusions and Recommendations

The variety of subjects addressed in this dissertation may leave in the reader the
impression of a lack of direction or focus in the study of the phenomena at hand. Instead
it should be understood as reflecting the ample variety of mechanisms put to work with
every muscle contraction. As the behaviour of muscle has many aspects, we decided to
use the analytical tools most appropriate for each one of them. However, the principal
objective, to understand muscle contraction and to model it with the greatest possible

generality, was never left out of sight.

5.1 Conclusions.

- With a simple, discrete model of interaction between thick and thin filament it was
shown that the stiffness of a sarcomere and the number of cross-links between filaments
are not directly related when the filaments are compliant. This conclusion can have
important implications in the design and interpretation of experiments, in particular, for
those cases when very small preparations are used (e.g., a few sarcomeres long), or when
there is a small overlap between filaments, or when the activation is submaximal. The
model presented in chapter II retains the static characteristics of a sarcomere and, in the
limit, the properties of a continuum model previously published (Ford et al. 1981). We

also found a corrective factor that makes the continuum model match the results from the
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discrete one for the case of a uniform distribution of links. It was also shown that the
effects on the effective stiffness per cross-link of neighbouring filaments of a three-
dimensional mesh of interdigitating filaments are small, if physiologically relevant
parameters are used.

Although in the case of evenly distributed cross-links, the corrected continuum and
the discrete approach will give practically the same results, only the discrete model can
readily handle cases with an uneven distribution of cross-links or with filaments with
variable stiffness along its length.

- Phenomena such as force depression after shortening or force enhancement after
stretching can be modelled using the simple rheological model introduced in chapter III.
The introduction of an elastic rack with an activation dependent switching mechanism
and the reinterpretation of the contractile element, give to this model its ability to
'memorize’ the length at which it was activated. Another particularity of the model is that
the force-velocity characteristic of the model is a consequence of the interaction between
the elements explicit in the model, and not an intrinsic property of the contractile element,
as in the case of standard Hill type models.

- A series of exploratory experiments performed in vivo, suggest that the temporal
order in which changes in length and changes in activation are imposed upon muscle is
important and it must be considered in the modelling. A possible way to handle this non-
commutativity between operations was suggested. Experimental results contradict some
of the theoretical results, therefore alternative ways to handle non-commutative
operations on muscle need to be developed.

- Continuum theories of chemically reacting mixtures can be used to advance the
development of theoretical models of muscie. To do so will involve a lot of theoretical
work as well as many new experiments aimed at determining the influence of

thermomechanical parameters on chemical reactions.
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5.2 Recommendations for Future Work

We said in the introduction that caution must be used when conclusions are to be
extrapolated from the microscopic to the macroscopic realm and vice versa. The careful
study of muscle models from the point of view of theoretical mechanics has an important
role to play in the advancement of biomechanics and physiology. The complexity of the
phenomena at hand are so formidable that even with sophisticated experimental
techniques it is very difficult to obtain results whose interpretation is beyond debate. In
our view it is very unlikely that a simple model will be found to describe all the variety of
behaviours that muscle, and living tissue in general, exhibit. The probabilities of finding a
universal, microscopic mechanism driving muscle contraction are more certain, although
as in the case of plasticity in metals, even when the microscopic mechanism is
conceptually known, it is very difficult to devise mathematical models of constitutive
relations that can encompass all possible outcomes.

We have shown here that it is possible to answer some pressing questions, such as
what is the influence of filament compliance, by using simple mechanical models. Also,
that simple mechanical models can extend the range of application of phenomenological
models to handle behaviours previously thought to correspond to some sort of memory
function. But in spite of the relative success of this type of models, we advocate for a
complete, rational model based on firmly established axioms of mechanics. In our view
the two possible ways to achieve that global model are either to use some derivative of
the continuum theory of chemically reacting substances or to use a totally discrete
approach such as cellular automata. Some guidelines for the former were already
discussed at the end of Chapter I'V. The latter can be approached in two ways: 1) a lattice-
gas automata representing the differential equations of a chemically reacting' mixture

developed by formulating the proper rules for the interaction of the particles, in a similar
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way to that used by Firsch et al., 1986 for the Navier-Stokes equations, or 2) an ad hoc set
of rules for the interaction of molecules (or ensembles of molecules) in a similar fashion
as the one presented by Zhou and Phillips, 1995, for the Ca++ binding to the actin
filaments, or the one presented by Forcinito, 1993, and Forcinito and Epstein, 1995, for

studying the stability of piles of granular materials.
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Appendix A

The equation of Ford et al. (1981) revisited

Our departure point is the generic panel of the ladder structure which we now recast
following the notation shown in Fig A.1, where a and b are the stiffness of the filaments
and cross-bridges respectively, h is the panel width, u(x) and v(x) are the displacements
of the points corresponding to the lower filament and upper filament respectively. For
simplicity, we consider the case in which both filaments have the same properties.

We intend to pass to the limit as the panel width goes to zero while keeping the
stiffness properties unaltered. It is clear that the stiffness of the filaments is inversely
proportional to the panel width, that is @ = ¢ /h where ¢ is the characteristic stiffness per

unit length. The generic equilibrium equations for the upper and lower nodes are

respectively
a(u; —u,q) ta(u;—u,)+b(y-v;)=0 (A.1)
a(v; — Vi) +a(v;—vi1)+b(v;-y;)=0 (A.2)
which can be recast as
% (Uos =20, +U ) +2 (U —v,) =0 (A3)
e u_,—2u +Uu,_, +B— u-v,)= )

-'h%'(viq-zvi +Vi-1)+%(vi—ui)=0' (A4)
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Denoting n = b/h, the cross-bridge stiffness per unit length, and passing to the limit as

h — O while keeping 6 and n constant, we obtain the ordinary differential equations:

—ou”+n{u-v)=0 (A.5)

-ov'+n(v-u)=0 (A.6)

The boundary conditions are (with the notation on Fig B2):

x=0->uU=0 v=0 (A.7)

x=L—> u=0;, v'=F/c (A.8)

The boundary conditions of force was obtained from a passage to the limit at the last

panel.

Subtracting equations (B3a) from (B3b) we obtain: 3" =213 for the distortion field
8 =u-v which is equivalent to equation [A.3] in the paper by Ford et al. (1981).

The complete solution of the system, with due account of the boundary conditions, can be

expressed as:
Fl(1+e)e™ +(1+ e )e™] F(2+et +e
u(x)= [( +e )e +( :i»e )e -+B.+ (2+e. +e ) (A9)
2yole* —e*) 20 2yole* -e)
Fi(1 AP 1 AY -~ F n -A
v(x)=- [(1+e™)em+(1+e*)e™] Fx Fla+e*+e) (A.10)

2}/(:\'(e’L —et) +E;+ 2y0'(e"' —e"L)

where y = (211/ 0')”2 , is identical to the quantity p defined by Ford et al.
The stiffness of the structure can be calculated as the ratio between the force applied to
the free end and the displacement of that node. Replacing x with L in the above

expressions, the total stiffness can be expressed as:



page 134

b= F _ c _ G
“Tul) L 2+et+et £+coth(yL/2)

2 yie"‘—e""Li 2 Y

(A.11)

Figure A.2: Coordinate system definition for boundary conditions.
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