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ABSTRACT 

The presence of positively-charged D B A molecules in the solution bathing the 

intracellular side of a sodium channel in a lipid bilayer, blocks the current through the 

channel. This blocking is inhibited by adding the positively-charged u-conotoxin G1IIA 

derivative, R13Q, to the extracellular solution. The hypothesis that this inhibitory effect 

can be explained by electrostatic repulsion between two molecules is tested in this thesis. 

For this purpose, the potential inside the channel due to the toxin molecule was 

calculated. Calculations were performed using a cylindrical geometry for the channel 

and spherical model of the R13Q-molecule under the mean field approximation for ionic 

solution. The Boundary Element Method was chosen, as it is more efficient for this 

problem then the typical finite difference methods. To implement the method, a program 

was written and tested on a variety of simple geometries. 

Experiment shows that the probability for the D E A to be unbound increases when 
0 

R13Q is bound at the extracellular end of the channel. Based on the experimental data 

and our calculated potential, an estimate of the position D E A adsorption site in the 

channel was obtained. This estimate is in reasonable agreement with the present 

understanding of the sodium channel structure, demonstrating that the method produces 

plausible results. 
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INTRODUCTION 

Biophysical properties of cellular membranes have been a subject of research for 

a substantial period of time. Experiments with voltage-dependent ion membrane channels 

[Hille. 1992] have shown significant influence of added toxins and drugs on electrical 

properties of these channels. The study of these effects is extremely important for 

medical research. Certain toxins or drugs applied to cells can change the electric current 

through the membrane channels. This can result in suppression of the transmission of 

nerve impulses, which is based on the sodium channel activity. 

Investigation of this phenomenon poses the question of the nature of the 

contribution to the electric potential inside the channel due to toxin molecules. A related 

field of research, leading to the same type of problem, is the study of the charge transport 

through the channel. To calculate the potential, it is necessary to adopt an appropriate 

model of the ionic solution around the ion channel and of the complex molecular 

structure of ion channel itself. 

The first work in this area was done by Stillinger [1961]. He obtained an 

analytical solution for the potential due to a point charge placed at some distance from 

the infinite planar boundary between an ionic solution and a uniform dielectric substrate, 

utilizing the linearized Poisson-Boltzmann equation for the ionic solution. Biophysical 

application of this result means that the membrane is modeled by a continuous dielectric 

semi-infinite medium. 

Other authors [Mathias et al.,1992] derived an exact expression for the potential 

due to a single charge placed between the interface of a semi-infinite ionic solution and a 

semi-infinite dielectric substrate, based on the linearized Poisson-Boltzmann equation. 

They also numerically calculated the potential for a substrate (membrane) with finite 

width. The mathematical method used in this work was different from that of Stillinger 

[1961]. A n analytical solution of a more general problem (for an arbitrary distance 

between the charge and the membrane with the finite width) can also be found. 

More sophisticated models of the channel were studied with the aid of numerical 

methods. The main efforts were concentrated on the study of cylindrical model of the 

channel [Jordan. 1983]. Later, bi-conical or combined channels came into play (see. for 
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example. Cai and Jordan [1990], Hoyles et al.,1996). These studies utilized the Poisson 

equation and the linearized or nonlinear Poisson-Boltzmann equations. 

Kuyucak et al. [1998] found the analytical solution of the Poisson equation for a 

point charge near a toroidal channel. This solution was used to calculate the potential 

inside the channel using Brownian Dynamics simulation [Li et al, 1998]. 

In spite of the fact that many different complicated models have been utilized, no 

specific calculations were performed on the electric potential created by large toxin 

molecules within the channel. The purpose of our work is to solve this problem and 

attempt to explain experimental data [French et a l . 1996] for the two charged molecules. 

R13Q and D E A , in the ion channel based on the hypothesis of their electrostatic 

interaction. 

We found that the Boundary Element Method ( B E M ) was the most appropriate 

mathematical tool for solution of this problem. This method has been developed recently 

(in the 1980s) mostly for engineering applications (for example, elasticity, fluid 

dynamics, heat transfer etc.). In biophysics it was applied to calculations of properties of 

macromolecules (see Juffer et al.. 1997 and references therein). B E M is very powerful 

for systems with complicated geometry and is easily adjustable to the changes of 

geometrical shape. This is an advantage in the case of ion channels, which have 

complicated geometrical structure. We have solved the problem on the electric potential 

inside the cylindrical channel with the aid of this method and applied this solution to 

interpret experimental data. 

The structure of the thesis is as follows. In Chapter 1 we discuss the main 

properties of the ion channels. Experimental measurements in such channels are 

described in Chapter 2. In Chapter 3 we analyze possible models of the ion channel, the 

ionic solution surrounding the membrane, and toxin molecule. Since B E M is a recent 

numerical technique, in Chapters 4 and 5 we present the details of the method and its 

application to particular models of the channel. In Chapter 6 we present the results of 

testing the program in a variety of ways, for example, by comparing its performance on 

problems for which analytical solutions are known. In Chapter 7 we investigate the 

sensitivity of the potential calculation to variations in model parameters to allow us to 

assign an error range to the results. 
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CHAPTER 1. BASIC PROPERTIES OF BIOLOGICAL 

M E M B R A N E CHANNELS 

Ion channels are large protein molecules incorporated into the cellular membrane 

[Hiller, 1992], which consists of a bimolecular layer (bilayer) of l ipid molecules (Fig. 1.1, 

[Doyle et al., 1998]). 

C E X T R A C E L L U L A R 

* ft. 

I N T R A C E L L U L A R 

34 A 

Lipid phase 
(membrane) 

\ \ p r o t e i n 

^f* ( c h a n n e l ) 

Fig. 1.1. Structure of a bacterial potassium channel (ribbon representation of protein 
backbone). 

The membrane is surrounded by a water solution of different ions, N a + , K + , C a + , 

M g + etc. Ion channels are highly permeable to some but not to all ions. Thus sodium 

channels are very permeable to N a + ions and less permeable to K + , while potassium 

channels are very permeable to K + ions but not to N a + . Ions from the surrounding 

solutions (intracellular or extracellular) flow through the central narrow part of the 

protein, or pore, carrying an electric current through the channel, the magnitude and the 

direction of which depends on the applied external voltage across the membrane and the 

concentrations of the ions in the solution. B y measuring the channel current in different 
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physical conditions it is possible to investigate the properties of the channel and obtain 

some information about its structure. In this chapter we wi l l discuss two key properties of 

the channel, gating and blocking. 

1.1. Gating 

1.1.1. Stochastic nature of gating 

For most ion channels the current I fluctuates with time between two discrete 

levels, the open level (1*0) and the closed level (1=0). This stochastic process of opening 

and closing is called gating. Fig. 1.2 [French et al., 1986] shows an example of a current 

recording from a single ion channel. One notes that current fluctuations are essentially 

rectangular in shape ( ^several ms ) with extremely small transition times between open 

(O) and closed (C) states. The transitions are so rapid (< Ins) that the observed transition 

times are limited by the response time recording instruments. According to a common 

physiological convention, voltage V is defined as voltage inside the cell with respect to 

outside. 

511.5 msec 
2 p A I - 9 ' 3 mV 

Fig.1.2. Single-sodium-channel current fluctuations, taken at -95 mV. Upper level is closed in this 
trace. Vertical scale, 2 pA; horizontal scale, 511.5 msec. From | French et al., 1986| 

Gating results from changes in the conformation or structure of the channel 

protein, but the detailed mechanism, on the molecular level, is unknown. Gating can be 

treated within statistical mechanics as a stochastic Markov process (Horn, 1984). In 

essence, the channel has no memory, such that the probability of a transition between 

conformational states does not depend on the sequence of previous states of the channel. 
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The probability function that governs the gating process is analogous to that for a 

radioactive decay. Let the channel made a C—»0 transition at t=0. If x 0 is the average 

lifetime of the open state (1/ x 0 is the probability of the decay of the open state per unit 

time) then the probability p(t. T 0 )dt that the open state wi l l decay (close) during the 

time interval (t, t+dt) is 

p(t.T 0)dt = — e T"dt (1.1) 

This formula describes the probability density function p(t. to) for channel open 

lifetimes. 

The probability P(t. x 0 ) that the open state wi l l remain open at the time t is given 

by: 

t 

P(t ,x 0 ) = e"T» (1.2) 

This function defines the cumulative distribution of channel open times. 

Experiments (see, for example. [French et. al., 1986; Sigworth, 1980]) confirm 

that the probabilities (1.1) and (1.2) do describe the gating mechanism. To illustrate this 

we give the experimental data from French et al. [1986]. 
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Fig. 1.3. Cumulative open-time distribution with a single exponential fit (smooth curves) to data 
superimposed. The ordinate represents the number of events lasting at least as long as the time on 

the abscissa. The average life time T 0 of open state is 2.4 msec. From | French et al., 1986| 

Fig. 1.3 shows the number of open states N t which survived till the time t, starting 

from the instant of channel opening, as a function of this time. The smooth curve is the 

theoretical curve N t = N-P(t, T 0 ). where N is the total number of open states and P(t, T 0 ) is 

a fit of (1.2) to the data with t 0 as an adjustable parameter. One sees that the probability 

(1.2) fits the data points reasonably. The average life time i c o f the closed state can be 

obtained the same manner. Experiments (see, for example. [French et. al., 1986]) show 

that both T 0 and T c change with applied external voltage. 

1.1.2.Voltage dependence of gating 

One can also ask, what is the steady state probability P(V) for the channel to be 

open as a function of voltage? (In the steady state at any particular voltage, the open 

probability P(V) is invariant in time). The answer is straightforward: 
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P(F) = = - ^ — = - = — (1.3) 

where index i numerates individual open and closed events and /' is the lifetime of the 

i t h event. The recording time during which the lifetimes of individual events are 

measured should be, of course, much large than the r 0 and r c . 

If values x0 and xc are known for each voltage applied across the membrane we 

can calculate the open probability P(V) as a function of the applied voltage. Fig 1.4 

[French et al , 1986] shows experimental data for the estimated probability P(V) (or 

fractional open time) versus applied voltage. Note again, that voltage V is defined as 

voltage inside the cell with respect to outside. 

' act i on At opfN tier 
1 . (It! 

i a a-

! / O 

r 
-fid 

Fig. 1.4. Fractional open time (or the probability for the channel to be open) as a function of 
membrane voltage for single sodium channel. The smooth curve is drawn according to equation (1.4) 
of the text. From [French et al., 1986]. 

This experiment, as do many others, shows that the experimental data can be well 

fit with the following formula: 

P(V) = (1.4) 
\ + Cexv[qV/kT] 
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where V is the applied voltage and parameters C and q are found by fitting the data. The 

physical meaning of relationship (1.4) can be understood on the basis of statistical 

physics. If, at zero voltage, the energies of open and closed states are s0 and ec 

respectively, then the probability for the channel to be open at some voltage is given by 

the following formula 

P(V) = 1 (1.5) 
l + Cexp[((£0-sc) + AU)/kT] 

where C is constant. T is the temperature, k is the Boltzmann constant, and term AU is 

the change of the energy difference between open and close state due to the presence of 

an external voltage. The exponential term in this formula represents the Boltzmann 

factor for the ratio of probabilities for the system to be in each of the two states. If we 

assume that some effective charge q. inside the channel, is responsible for the voltage 

dependence of gating, we can rewrite (1.5) in the following way: 

P(V) = 1 (1.6) 
\ + C*exp[qV/k/T] 

here C* = C e x p ( £ 0 - s c ) l k T . 

Recent investigations of molecular structure of the sodium channel protein [W. 

Stuhmer et al.. 1989] reveal charged helical chains of amino acids, called S4, that are 

involved in the process of opening and closing the channel. A detailed discussion of this 

question is beyond the scope of this thesis. 

Now we wi l l consider another important property of the channel - blocking of 

channel by a drug molecule or a toxin added to one side of the membrane. 

1.2. Blocking 

There are some classes of molecules that can partially or completely block the 

channel, i.e. decrease or eliminate the current through the channel. These molecules are 



9 

called blockers. Typically, blockers are charged molecules and have the same sign as the 

permeant ion. When present in intracellular or extracellular aqueous solution, these 

molecules undergo Brownian motion. They may stochastically surmount the energy 

barrier near the surface of the channel protein, bind to this protein, and then, after some 

period of time, leave the binding site and move to the salt solution again. Mean lifetime 

in the bound state ib depends on the type of the molecule, the shape of the intrinsic 

potential profde within the channel, and on the voltage applied. This stochastic process 

could be described in terms of the Fokker-Planck equation (or, strictly speaking, in terms 

of the Kramer's equation [Van Kampen. 1984] for a Brownian particle in an external 

potential field). However, experimentally observable properties that the channel exhibits 

when the blocker is present in the ionic solution adjacent to membrane can be described 

satisfactorily in terms of kinetics of chemical reactions or thermodynamic theory. At the 

end of this section we wi l l discuss briefly the thermodynamic approach to this problem. 

1.2.1. Slow and fast blockers 

The blockers can be divided operationally into at least two classes: a) fast 

blockers, which oscillate very rapidly between bound and unbound states with a period 

much less than x 0 and x c , and b) slow blockers, for which the time of binding to the 

channel protein is much larger then x 0 and x c . Below, we give examples of current 

recordings for both types of blockers: (Fig 1.5 [Becker, et al., 1992] illustrates the action 

of slow blockers, and Fig 1.6 [Zamponi, et al., 1993] shows a fast blocker). 

Fig. 1.5 shows records from single rat skeletal muscle sodium channel in the 

presence of slow blockers. yK-conotoxin GIIIA and its derivatives on the extracellular side 

of the channel. jU-Conotoxin is a toxin from the venom of the piscivorous sea snail; it is a 

small peptide which consists of 22 amino acid residues and has a known 3-dimensional 

structure. 
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Control 
40 mV 

Natl v< 
-3!> mV 
ICXi r.-A 
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KS'J 
-35 mV 
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HI 3. J 
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43!:.. r M 

D 

Fig. 1.5. Records from single rat skeletal muscle sodium channels showing discrete blocking events 
produced by various derivatives of conotoxin GIIIA (slow blocker). In all traces openings are in the 
downward direction. In control records, taken in the absence of toxin, the channel spent > 98% of 
the time in the open state. Addition of ^-conotoxin or its derivatives to the extracellular side of the 
channel induced long lived blocking events. The peptide concentration used, and the voltage, are is 
indicated alongside each record. From [S.Becker, et al., 1992]. 

One sees that the addition of the /^-conotoxin GUI or its derivatives to the 

extracellular side of the channel induces long-lived blocking events. Control records 

(Fig. 1.5 A) show only occasional brief gating closures; the channel spent > 98% of the 

time in the open, conducting state. Native conotoxin (Fig. 1.5 B) blocks the channel 

almost all of the time. During individual blocking events no current flows through the 

channel. The derivative K16Q (Fig. 1.5 C) closes and opens the channel with some 

period of time of the order of a minute, not changing the amplitude of current 

fluctuations. The derivative R13Q exhibits a different behavior: seconds-long 

interruptions in current flow induced by R13Q do not result in complete occlusion of 

current flow through the channel but, rather, appear as abrupt steps to a reduced, but 

nonzero current. 
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Fig . 1.6 shows current recordings from a single sodium channel of rat skeletal 

muscle in the presence of a fast blocker, the local anaesthetic procainamide, in the 

intracellular side of the membrane. 

1 p A 
0.5 s 

M O m V 

o n t )-<•,] 

r o c a i n a rn J a <• 
i 1 rnW ) 

Fig.1.6. Current traces recorded from single sodium channel from rat skeletal muscle in absence and 
presence of procainamide (fast blocker) on the intracellular side. The solid lines indicate the closed 
level. Blocking events appear as an increase in open channel noise with a concomitant decrease in the 
apparent single channel current amplitude. From [Zamponi, et al., 1993]. 

In the absence of the drug, the channel is open most of the time. Procainamide, 

applied to the intracellular side, acts by inducing rapid blocking events, which were not 

resolved as discrete rectangular steps, but rather appear as an increase in open channel 

noise with a concomitant decrease in the apparent single channel current amplitude. 

From the above analysis of current recordings for fast and slow blockers, one sees 

that it is possible also to investigate the behavior of the channel when both slow and fast 

blockers are present; the slow blocker may bind to the channel for seconds or minutes, 

while the fast blocker oscillates with period much less than a millisecond. We w i l l return 

to this question in Chapter 3, in which we w i l l discuss an experiment that demonstrates 

interaction between such a pair of blockers. 
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1.2.2. Calculation of the probability for the channel to be unblocked 

It is natural to ask the question, what is the probability for the channel to be 

unblocked at some arbitrary moment of time? It is easy to obtain this probability from 

the current recordings, described above. With a blocker in the ionic solution the channel 

has four possible conformational states. For the purpose of our calculation we only need 

to know that these states differ with respect to the probability for the channel to be in 

each of these states, and by the magnitude of channel state current. Characteristics of 

each state are given in Table 1.1. 

Conformational Open. Open, Closed, Closed, 
state Unblocked Blocked Unblocked Blocked 
(Gating. 0 0 O B C O C B 

Blocking) 
0 0 O B 

Probability (P) Poo Pob Pco Pcb 

Current (I) loo lob (Iob< loo) I CO Icb 

Conductance of the Nonzero Nonzero ( I 0 b< loo) or Zero Zero 
state Zero (depending on 

the type of blocker) 

Table 1.1. Four possible conformational states of a channel for the case when a blocker is present in 
ionic solution. 

The expression for the average current <I>v v l t h b l o , - k c r flowing through the channel 

when the blocker is present in the solution can be written in a standard way, using the 

ergodic theorem: 

^j^witli blocker _ with blocker 
1 t ime - 1̂̂ " ensemble 

= PooIoo+ Pobfib- (1-7 ) 

The other two terms are omitted since there is no current through the closed channel. 

In the case of molecules that totally block the channel IOb=0. For this type of 

blocking molecules the expression (1.7) for an average current becomes 

with blocker _ p T 
— loo-loo (1.8) 
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If we assume that the processes of gating and of blocking are independent then we 

can rewrite (1.8) in the following way: 

< I > W i t h b , O C k e r = P o o I o o = P G o P B o I o o , (1.9) 

where P ° 0 and P B

0 are probabilities for the channel to be open due to gating and 

unblocked respectively. 

For the ratio of 

channel with and without the blocking molecules in the surrounding solution we have 

For the ratio of average currents <I>w i l h b l o c k c r and <I> w i t h o u t b i ^ r through the 

/ v with blocker / v without blocker Q Q 
W W P q P q Iqq _ D B 

with blocker 

- P o 5 (1-10) 
/r\without blocker /,\Gatina d G T 
(1; (1) "o ioo 

Finally. 

/ j \ with blocker 
p B = A i (1.11) 

without blocker 

This formula is valid for slow and for fast blockers (provided blocking is 

complete). Fig. 1.7 illustrates the calculation of P B

0 for experimental data in the case of a 

fast blocker . 

C O N T R O L 
no fast blocker in the solution 

.without blocker 

with fast b locker 
in the so lu t ion 

Figure 1.7. Calculation of probability P „ for the channel to be unblocked from experimental data 
in the case of a fast blocker (See equation (1.12)) . The ratio of the two average currents is the 
desired probability. 
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So, according to (1.11), the probability for the channel to be unblocked (by a 

blocker that blocks the channel completely) is equal simply to the ratio of average 

currents in the presence and absence of blocker respectively and can be found easily from 

experimental data. 

1.2.3. Voltage dependence of blocking 

Experiments show [Zamponi at el, 1993, Zamponi and French, 1993] that 

probability P B

0 for the channel not to be blocked by a cationic blocker present on the 

cytoplasmic side (inside) depends on the applied voltage as shown in Fig . 1.8 [Zamponi et 

al., 1993] 

O <3 1 c in M P r o m i n n m u l e 

:i ij 

it 

o 

o 

0. 

"J \ 

! 
0 ! 

1 

*i r 

h e a r t 

s k e i e t n l r n n s c l c 
1 ! 1 

(SO 100 50 0 50 100 

V o l t a g e [ n i V j 

1 

) 5>0 

Fig.1.8. Voltage dependence of procainamide block of bovine cardiac and rat skeletal muscle sodium 
channels. The data were fitted with the formula (1.12). From (Zamponi et al., 1993]. 

Experimental data are usually fitted with the following formula: 
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P' 
1 11 

1 1 

1 + P'11P" ~ 1 + C" exp(zO/kT) 
(1.12) 

where C' and z are constants, found from the experimental data, and <f> is the potential 

difference across the membrane, previously denoted by V . 

This formula can be naturally explained in terms of adsorption theory. Let us 

consider two systems: membrane with or without molecule A (system I) and solution 

with a known concentration of A (system II). Systems I and II are in thermodynamic 

equilibrium and can exchange a molecule A . There is exactly one adsorption site in the 

membrane. Molecule A is a charged particle with charge z. F i g . l . 9 shows the energy 

profile for the molecule in the membrane and in the solution without and with an applied 

potential O. 

II (membrane 
with/without 
molecule A) 

I (solution 
containing A) 

Distance 0=0 Distance O>0 

Fig. l.Q.Energy profile for the molecule in the membrane and in the solution without (left) and with 
(right) an applied potential O which is shown as a dashed line. When 0=0 energy of molecule A in a 
bound state is s„ the energy of molecule A in solution is e0. Symbol - indicates new energy levels for 
ct>̂ 0. 5 is some number(0< 5 <1) which characterizes the value of potential on the binding site 

When <t>=0. the energy of molecule A in a bound state is e„ and the energy of 

molecule A in solution is So. The energy profile changes when external voltage <t> is 

applied. Let new energies of molecule A in the bound state and in the solution be 

and gQ respectively. Let P\ and P0 denote the probabilities that the channel (system 

II) contains or does not contain molecule A , respectively. Assuming a single energy state 
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at the adsorption site we get for the ratio of these probabilities when system II is 

brought to thermodynamic equilibrium with system I: 

^ = C-exp(-(£l-£0)/kT) (1.13a) 
"o 

5- = C-exp(-Q}-£0)/kT) (1.13b) 
M) 

The symbol ~ in (1.13b) indicates that this formula is written for the case when 

O^O. The constant C, as can be shown from more detailed analysis of adsorption theory, 

for low concentration nA of molecules A in the water, has the form: 

C = n4 exp(// s / /kT) (1.13c) 

where jusl is the standard chemical potential of molecule A in solution. 

Now we wi l l assume that the change of energy levels is caused only by the 

change of electrostatic energy due to the external field. Then the energy of molecule in 

the solution changes by A 0 ( O ) = z<t>. and the energy of the molecule in a bound state 

changes by A, (O) = z • 8 • <E>, where 8 is some number (0< 8<l) which characterizes the 

magnitude of the potential at the binding site. So. for new energy levels of molecule we 

have: 

£ , = ^ , + A i ( ( I ) ) = £, + z-8-® (1.14a) 

£o = £o + AoW = £o + z'*>- 0 - 1 4 b ) 

With (1.14) expression (1.13b) becomes: 

R 

P0 

C • e x p ( - ( £ , -£o)/kT) = C- exp(- - £f) I kT) exp(-(A, (O) - A { 1 (<D)) / kT ) 

C* -exp(z-(l-8)-®/kT) 

(1.15) 
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where C* = C - e x p ( - ( £ - £ o ) / k T ) (1.15a) 

Finally, by rearranging terms in (1.15) we get for the probability P0 for the 

channel to be unblocked when external voltage is applied across membrane: 

P0 = ^ ^ - = : . (1.16) 
\ + PJP, 1 + C - e x p ( z - ( l - £ ) - O / k T ) 

Comparing this expression with (1.12) we note that z = z • (1 - S) 

So, based on an adsorption theory, and the assumption that the energy of molecule 

A in the presence of an external potential is influenced only by the electrostatic effects, 

we have derived the basic formula (1.12) for voltage dependent blocking. 



CHAPTER 2. INTERACTION BETWEEN INTERNAL 

AND EXTERNAL BLOCKERS OF SODIUM CHANNEL 

In Section 1.2.3 we described the blocking action of a series of derivatives of 

u-conotoxin QUIA on rat skeletal muscle sodium channels. We noticed that derivative 

R13Q is unusual in that it only partially blocks the single-channel current and remains in 

a bound state long enough for that state be easily distinguished from periods of gating 

closure or fast blocking. These two principal properties of R13Q provide a unique 

opportunity to study, for example, voltage-dependent channel gating during both free and 

peptide bound states. Such an experiment was performed [French et al. 1996] and it was 

shown that R l 3Q. when bound to the channel, decreases the probability for the channel to 

be open. R13Q. being a slow extracellular blocker, also gives a possibility to investigate 

and compare the behavior of fast intracellular blockers during both free and R13Q bound 

states. Such experiments [French et al. 1996] show that the probability for the channel to 

be blocked by fast blocker decreases when R13Q is bound to the channel. Both R13Q and 

fast blockers in these experiments are positively charged molecules; the probability for 

the channel to be blocked by fast blocker depends on the external voltage; this probability 

decreases at each external voltage when R13Q is bound to the channel - these three facts 

lead to the idea that the experimental result may be explained by simple electrostatic-

repulsion between two positively charged blockers [French et al. 1996]. A n estimate of 

the distance between two molecules, based on the hypothesis of electrostatic interaction 

between the two blockers, was made by French et al. [1996] and it was shown that the 

distance obtained was consistent with the present understanding of the channel size and 

structure. 

S e c t i o n 2.1. E x p e r i m e n t with two b l o c k e r s , R 1 3 Q a n d D E A 

The experiment was performed with single sodium rat skeletal muscle channels to 

investigate the interaction between R13Q. a slow extracellular blocker, and 

diethylammonium (DEA) , a fast internal blocker. Both blockers are positively charged 

molecules. The total charge of R13Q is +5; the charge of D E A is +1. 
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The structures of the molecules, native conotoxin (net charge +6) and D E A (net 

charge +1), are shown in Fig. 2.1. The sequence of symbols represents the sequence of 

amino acids of which peptide consists. Positively charged amino acids are shown blue 

colored, and negatively charged amino acids are shown red colored. The net charge of 

native conotoxin is +6. The derivative R13Q with net charge +5 can be obtained by 

substitution of the positively charged (+1) residue R13 of native conotoxin by the neutral 

residue Q. 

l i C T X (+6) 

RDCCTHyHyKKCKDRQCKHyQRCCA 
1 8 13 19 

D E A 

Fig. 2.1. Structures of native u. Conotoxin (pCTX, MW=2.5*103 amu )and diethylammonium (DEA, 
MW=74 amu). For clarity, DEA is shown on a large scale. Two views of the 3-dimensional structure 
(pCTX) are shown. The complete linear sequence of amino acids in pCTX is shown below the 3 

dimensional representation, using standard single-letter codes, except for Hy, 4-trans-
hydroxyproline. Positively charged amino acids are shown blue colored, and negatively charged 
amino acids are shown red colored. The net charge of (pCTX) is -H>. Substitution of neutral residue 
Q instead of positively charged (+1) residueR13 will give the derivative called R13Q, with net charge 
+5. 
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Table 2.1 lists the name of amino acids of u-Conotoxin with their symbols and 
individual charges. 

Amino Acids Symbol Charge 

Arginine R +1 
Aspantate D -1 
Cysteine C 0 
Threonine T 0 
4-trans-
hydroxyproline 

Hy 0 

Lysine K +1 
Glutamine Q 0 
Alanine amide A - N H 2 +1 

Table 2.1. Amino acids of |.i-Conotoxin 

The objective of the experiment was to obtain the voltage dependence of the 

probability for the channel to be unblocked by the D E A for two cases, when R13Q was 

bound, and when it was not bound to the channel. Single-channel recordings were made 

in the presence and absence of D E A in the intracellular solution for 8 voltages in the 

range -80mV - 80 mV. R13Q was permanently present on the extracellular side of 

membrane. The concentration of N a C l was the same in both internal and external 

solutions and was equal to 200 m M . The experiment was performed at the room 

temperature, T=25° C. Examples of current recordings obtained at +60mV are presented 

in Fig. 2.2 ( from [French et al., 1998 ]). 
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Extracellular 

Fig. 2.2. Current recordings from the single rat skeletal muscle sodium channel in the presence of 
R13Q at the extracellular side (+60 mV). Left recording - no DEA in the intracellular solution. 
Right recording - DEA present. The dashed line indicates open level for unbound state of RI3Q, the 
dotted line shows open level for RI3Q bound state. From | French et al., 1998 |). 

Fig.2.2 shows that the individual slow block events by R13Q are easily identified. 

Thus, the fast block by D E A can be analyzed separately for the R13Q-bound and 

-unbound states. In Sections 1.2.1 we discussed such types of recordings, and in Section 

1.2.2 (see formula (1.11) and Fig. 1.7) we analyzed the way of calculation of the 

probability P 0 for the channel to be unblocked by the internal fast blocker from the 

similar experimental data. When the slow blocker binds the channel, the method of 
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calculation of P 0 is the same, but the time of averaging the currents wi l l be equal to the 

total time of slow blocker binding. 

The probability P B

0 was calculated by using formula (1.11) for each experimental 

voltage, for R13Q-bound and R13Q-unbound states The results are presented on 

Fig.2.3. 

DEA / R13Q 

O R 1 3 Q b o u n d 

i i i i i— 
-100 -50 0 50 100 

E [mV] 

Fig.2.3. Voltage dependence of probability P for the channel to be unblocked by DEA for two cases: 
R13Q is not bound to the channel (black squares) and R13Q is bound to the channel (circles). DEA 
block is shifted to more positive voltages by R13Q binding. 

One sees that the probability for the channel to be unblocked by D E A is greater, 

for each experimental voltage, when R13Q is bound to the channel. 

Two voltage-dependent curves for P B

0 were obtained by fitting data with the 

formula P0

B = ; (see (1.12), (1.16)), which was discussed in Section 
1 + C e x p ( z 0 / £ r ) 

1.2.3. The values obtained for parameters. C* and z , are the following: 

without R13Q z =0.514 ± 0.018 (2.1a) 
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C* =0.358 ± 0 . 0 1 1 

wi thR13Q z' =0.560 ± 0 . 0 2 3 (2.1b) 

C* =0.203 ± 0 . 0 1 0 

The indicated errors are the estimated standard deviations for the parameters. 

To find fitting parameters and their errors we first linearized the expression for 

P" and then performed data analysis by using "maximum likelihood method" for the 

case when error is known in one variable only. 

In Section 2.2 we wi l l give an explanation of the experimental results based on 

the hypothesis of electrostatic repulsion of two positively charged blockers. 

2.2. Electrostatic interaction of two blockers. Estimation of 
location of DEA binding site from electrostatic potential due to 
R13Q. 

In Section 1.2.3 we analyzed the relationship between the probability for the 

channel to be unblocked and applied external voltage (See Fig 1.9, formulas (1.12)-

(1.16)). We wi l l now continue this analysis for the case when R13Q is bound to the 

channel. 

If. in addition, the R13Q molecule is present on the binding site at the external 

side of the membrane the energy of molecule A (DEA) wi l l experience an additional 

change. Let new energies of D E A in the R13Q-bound state and in the solution be 7^ 
o 1 

and £ ^ respectively. Then we can write: 

where ^ g m o is the change of energy of D E A on the binding site. The energy of D E A 

at infinity in the solution does not change. 

Then for the ratio of probabilities for the channel to be unblocked by D E A when 

R13Q is bound to the channel from external side of membrane we have from (1.13): 
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(P ] ~ ~ 
f - = C - e x p ( - ( ? | - ? 0 ) / ^ ) 

v"o )RnQ (2.3) 

= C* • exp(z • (1 - S')<&IkT - A£kik,IkT ) 

Finally, the probability for the channel to be unblocked by D E A in R13Q-bound 

state is: 

1 
( ^ 0 )«13(J 

1 + C* • exp(- fa I kT) exp(z • (1 - 5') • O / kT ) 
\ (2.4) 

' 1 + C * • exp(- & € r 1 3 q I kT) exp(z' -O/kT) 

For convenience we wi l l write again the analogous formula for P B

0 in the case of 

R13Q-unbound state of the channel (see (1.16)): 

P0= ; = ; ]- (2.5) 
1 + C -exp(z-(\-S)-c£)/kT ) 1 + C • exp(z • O / kT ) 

According to relationships (1.15a) and (1.13c), constant C" is the same in 

formula (2.4) for {PQ)KIM) and formula (2.5) for P 0 Hence, value of & £ I ( U 0

 c a n be 

found from the fitting parameters (1.17a, 1.17b) : 

*' 
& S m Q = kT\n^r = (14.6± 1.5) meV (2.6) 

We wi l l assume now that the energy change of D E A due to R13Q. / \ £ / 0 M ) , is 

related only to electrostatic interaction between D E A and R13Q. Then we can write: 

A f f t t H ^ - t f W * ' ) (2-7) 

where R* is the distance between R13Q and D E A . 
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We see that i f we knew the potential due to R13Q. as a function of distance we 

could estimate the distance between R13Q and the binding site of D E A by solving 

equation 

for R* . Fig 2.4. illustrates this idea. 

zO(R) 

As 

R* R 

Fig. 2.4 Graphical solution of equation (2.8). R* is the distance betweenR13Q and DEA 
binding site. 

To calculate the potential inside the channel due to R13Q we have to create an 

appropriate model of the channel itself the R13Q molecule and the ionic solution 

surrounding the membrane. We wi l l do this in the following chapter. 
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CHAPTER 3. PHYSICAL MODELS OF T H E SYSTEM 

(IONIC SOLUTION- R13Q M O L E C U L E - CHANNEL) 

We want to estimate the location of the D E A binding site by solving equation 

(2.8). This equation was obtained with the assumption that the external potential and 

potential due to R13Q do not cause conformational changes inside the channel protein 

and, hence, do not disturb the intrinsic potential of the channel. In other words, we 

assume that the potential inside the channel is a linear combination of intrinsic channel, 

external and R13Q potentials. Although we do not need to know the intrinsic potential of 

the channel in this approach, channel geometry and dielectric properties influence the 

potential due to R13Q inside and outside the membrane. This potential also depends on 

the structure of the R13Q-molecule and on the properties of the ionic solution that 

surrounds the membrane. We now consider possible physical models of the system 

consisting of ionic solution-R13Q molecule and channel. For a detailed review of present 

models for similar systems that allow calculation of potential distribution inside the 

channel see [Partenskii and Jordan, 1992]. In more recent studies, other workers have 

continued to test the ability of continuum electrostatic theories to predict ion channel 

properties [e.g. Corry et al., 2000; M o y et al., 2000; Nonner et al., 2000]. 

3.1. Models of ionic solution 

If we consider the water as a continuous dielectric medium with dielectric 

constant s then the distribution of the potential inside the solution due to free external 

charges, i.e. ions of solution and other arbitrary ions, is determined by Maxwel l 

equation: 

- ^ V > = 4 ^ (3.1) 

where is the density of free charges in the solution. This equation is often called the 

Poisson equation. 

Two approaches can be used to solve (3.1), as detailed below. 
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1. Mean field approximation. The solution is considered as a continuous 

charged medium with a continuous charge density p/ree: 

where nj is a continuous number-density of specific charged particles. In this case 

potential <p and density p are values averaged over physically infinitesimal volume. 

Physically infinitesimal volume (V in f) is the volume that on one hand is big enough to 

contain many particles (in order to exclude microfield fluctuations), and on the other 

hand is small enough in order to have a small difference in macrofields (averaged over 

the volume) with respect to adjacent volumes. 

For this description to be applicable, the following condition should be satisfied: 

inside the volume with characteristic scale X of the potential change the number of 

particles N>. should be sufficiently large, i.e. 

N. =H(4TT/3)A'»\ (3.3) 

Otherwise, it is not possible to talk about the average (mean) potential, and 

fluctuations of the potential wi l l dominate. We wi l l show further that the characteristic 

length X of the potential change is: 

A = (3.4) 

where k is the Boltzmann constant. T is temperature, n is concentration of ions, and z is 

the charge of an individual ion. 

From (3.3) and (3.4) we get the following estimate for an upper limit of 

concentration: 

\ln « ( 4 ; r / 3 ) : 5 

8;zz2 
(3.5) 

The numerical value for this upper limit of concentration (for particles with z=l) 

18 — 3 
is: « « 3 - 1 0 cm (n « 5 mM) 



28 

In order to write an appropriate expression for the average charge density 

P/ree w e wi l l recall that this continuous charged medium consists of charged particles. 

which are in random thermal motion. The energy of each particle consists of two parts: 

1) energy of the ion in the average field and 2) correlation energy [J.Mayer and 

M.Goeppert Mayer, 1977]. If correlation energy is negligible, then for singly charged 

positive and negative ions in the solution we can write: 

= qn 
kT kT + Pa 

(3.6) 

where q is the elementary charge. pexl is the density of external charges, and <p is the 

average potential. To justify neglecting the correlation energy we should have: 

^ - « k T (3.7) 
s r 

i.e. the energy of interaction between charges has to be small compared to their thermal 

energy. With relation r ~—— we get from (3.7): 
n 

, r kTe 
V / 7 « — (3.8) 

We see that this condition coincides with (3.5) up to a numerical multiplier. 

Maxwell equation (3.1) with expression (3.6) for pfree. 

- eV'(p = nA/tq e x p ( — — ) - e x p ( - ^ — ) 
kT kT 

+ (3-9) 

is a nonlinear Poisson-Boltzmann equation. The approach described above is called the 

mean field approximation. 

Analytical solution of (3.9) is possible in a few very restricted cases. To linearize 

this equation we should have qq>(r)I kT « V6 . Then from (3.9) we obtain: 

-V2cp + K2<p = Anpnl (3.10) 
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where K = \l A (A is defined in (3.4)). This equation is called the linear Poisson-

Boltzmann equation, and the parameter A is the Debye length. For a point charge placed 

in infinite space with dielectric constant s the solution of the linear Poisson-Boltzmann 

equation is: 

-icr 

<p(r) = ^ (3.11) 
s r 

From this expression we see that parameter A =\lK characterizes the scale of the 

potential change. The ions of the solution create "a cloud of oppositely charged 

particles" around the external charge and partially screen its field. 

We wi l l check now the validity of the mean field approximation for parameters of 

our biophysical system. 

The concentration of N a + ions in the solution for our experiment is 

n = 1.2 • 10 2 f ) cm'3. For this concentration the value of the Debye length is A = 6.8 A. 

If we model the R13Q-molecule as a sphere with uniform surface charge and 

solve the boundary value problem with the linear Poisson-Boltzmann equation (3.10) in 

the infinite space and the Laplace equation inside the sphere, then for the potential <p{r) 

at any point r outside the sphere we obtain: 

Q e r U eRU 

<P{r) = - 7 — r - y (3 .H) 
r \ + RIA 

where R is the radius of the sphere and Q is the charge of the sphere. 

It is worthwhile to note that the potential outside a uniformly charged ball (charge 

distributed throughout volume) is expressed by the same relationship (3.11). The radius 

of the R13Q-molecule is about 10-12 A, the charge Q is +5q. Then for the number of 

particles NX in the spherical layer of thickness /L = 6.8 A around a ball of radius R=10 

A we get NA = 2>1. So. we are at the margin of application of the mean field 

approximation. In such cases it is common to use the approximation to obtain a 

reasonable estimate for the solution of a problem. 
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Now we wil l check the possibility of linearizing the Poisson-Boltzmann equation 

for our physical parameters. Condition qcp{r) « for the room temperature and 

potential (3.11) is valid. Also i f we substitute potential (3.11) due to the charged sphere, 

obtained as a solution of the linear Poisson Boltzmann equation, into the nonlinear 

equation (3.9) and compare the values of the left and the right side of this equation for 

any point r. we wi l l find that the relative difference for R=12 A at r =R is 20%. This 

number diminishes rapidly with the increase of r: at r=15 A the relative difference is 

5%. 

Based on the above estimates it is reasonable to use the mean field approximation 

for our system, and under this approximation solve the linear Poisson-Boltzmann 

equation. 

2. Brownian Dynamics (BD) simulation. For another limiting case, when 

NX « 1 , the mean field approximation cannot be used. The electric field inside the ionic 

solution fluctuates with time and is determined by the motion of individual ions in the 

solution. To find the electric field at some point r at time t. one needs to compute the 

electric forces acting on each of the ions due to the other charges and couple these results 

with Brownian dynamics simulations, i.e solve the Langevin equation. This computation 

has to be repeated at every step (in some time interval). Such calculations became 

available only in the last few years because of their huge computational intensity and are 

not employed in this thesis. This approach is often called Brownian Dynamics (BD) 

simulation. For solution of a particular problem utilizing this approach see [Kuyucak et 

al., 1998, L i et. al.. 1998]. 

3.2. Structure of an ion channel 

We wi l l consider now the general architecture of the channel and take the 

bacterial K + (KcsA) channel as an example. The detailed structure of the K c s A channel 

crystals was obtained by X-ray analysis with resolution 3 A [Doyle et al.. 1998]. This 

channel is not voltage dependent and has relatively small size (~ 45 A in length and 
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diameter). Eight long helixes (transmembrane helixes) that constitute the channel protein 

cross the membrane forming a narrow pore (on the axis of the channel), through which 

the ions flow [see Figs. 1.1, 3.1]. Short helixes that form part of the connection between 

the two transmembrane helixes from the extracellular side of the membrane form the 

vestibule, or mouth, of the channel. The overall length of the pore is about 45 A . The 

diameter of the pore varies along its length (see Fig.3.1A). From inside the cell (bottom) 

the pore begins as a tunnel 18 A in length and ~ 5-6 A in diameter, and then opens into 

a wide cavity ~ 10 A across near the middle of the membrane. This cavity is filled with 

water. Then follows the narrowest part of the pore, ~12 A in length and ~ 3 A in 

diameter, representing a selectivity filter, which "recognizes'' and selects ions. The rest 

of the upper part of the pore (~ 5 A in length) has a conical form with vestibule (mouth) 

of 6 A diameter. The distribution of the charge inside the channel can be seen from 

Fig.3.1 A . The channel is mainly neutral, except for the ends of the pore, which are 

negatively charged. 
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Fig.3.1. 3-Dimensional 
representation of the Ksc. 

A (bottom). Pore (red) and pore 
former (stick representation, 
black) 

B (top) Distribution of the 
charge in the channel. Positive 
charges are blue colored, 
negative charges are red 
colored. White colour is for 
neutral area. The green spheres 
represent Na ions position in 
the conduction pathway. 



It is unlikely that such a detailed examination wi l l be available soon for voltage 

dependent N a channels, because of their size (-80 - 100 A in length and diameter) and 

less symmetrical structure. However, biophysical and mutational information suggests 

that the structural framework of K c s A may also be found in N a + channels [Lipkind and 

Fozzard. 2000]. 

Voltage dependent N a + channel has 24 transmembrane helixes. Based on the 

data from various investigations [Lipkind and Fozzard. 2000] one can think that the 

selectivity filter of this channel is shorter than that of K c s A and at its narrowest part is 

larger, ~ 4-6 A in diameter. The extracellular vestibule is essentially wider, ~12 A in 

diameter [Lipkind and Fozzard. 2000]. Being inserted into the lipid bilayer, an N a + 

channel wi l l extend into the surrounding solution for at least 20 A from each sides of the 

membrane. Although the chemical composition of the N a + channel is known, 

information about its geometry is uncertain. The following drawing is a possible 

representation of the geometry of N a + channel: 

filled 

Fig.3.2. Possible geometry of Na+ channel. 
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3.3. Channel as a continuous medium 

Usually the membrane and the channel proteins are modeled as continuous and 

uniform dielectrical media. The molecular structure of the channel is ignored in this 

approach. The membrane and the pore former are considered to be one unit with average 

dielectric constant s m between 2 and 10. For the narrow pore, the dielectric constant s p 

depends on the diameter of the pore. In the wide channel cavity the water structure 

should be essentially that of bulk water with sp=80. In the narrow part of the pore, where 

water molecules behave as individual particles, it is difficult to assign a particular value 

to the dielectric constant. Probably it should be taken to be much less than 80. Because 

of their computational complexity, models with nonuniform distribution of s inside the 

pore former and the pore itself were not considered. For detailed analysis of this problem 

see [Partenskii and Jordan. 1992]. 

3.4. Advantages of BEM 

Cai and Jordan [1990] considered the following realistic model 

membra ne 
+protein 
8 = 2 aqueous 

electrolyte 
s =80 

"1* water ,TT=80 

surface charge 
density 

Fig.3.3. Geometry of the cylindrieally symmetric model Na channel and electrolyte system, from [Cai 
and Jordan, 1990|. The regions to the right and to the left of the membrane contain aqueous 
electrolyte.The vestibule contains electrolyte, and s for the vestibule is the same as for bulk solution., 
Concentration of ions in the narrow pore is zero and s is the same as the bulk water. The black 
regions reprezent the vestibule charges. 
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The potential inside the channel due to the surface charge located on the channel 

was calculated. Application of the finite difference method in this work was causing a 

number of difficulties when applied to this complex geometry as discussed by the authors 

of the paper. Disadvantages of finite difference methods, most commonly used in 

numerical calculations of this type, lie in the difficulty of representing the complex 

geometry of the boundaries and in describing singularities. Also any change in geometry 

requires rebuilding the numerical grid. The computational cost of such changes is very 

high. 

Boundary Element Method is perfectly suited to overcome all the above problems 

for the following reasons: 

1) No grid is needed; 

2) Singularities are described with analytical accuracy; 

3) Any changes in the boundary geometry are easily implemented, which is especially 

important for examining systems whose geometry is uncertain. 

3.5. Our Model 

We use the mean field approximation for the ionic solution, and treat the 

membrane and the channel as continuous and uniform dielectric mediums. The pore is 

represented as a cylinder containing ionic solution (see Fig. 3.4), and the toxin molecule 

R13Q is modeled as a sphere with uniform charge density. The nonuniform charge 

distribution of R13Q is also considered. For calculation of the potential due to the R13Q-

molecule inside the channel we apply B E M . Using the advantages of this method, we 

examine the influence of various physical parameters (for example, the width and radius 

of the channel, the radius of the toxin, dielectric constant, nonuniform charge distribution 

of R13Q) on the behaviour of the potential in the channel. Mathematical details of these 

procedures are given in Chapters 4-6, and results are discussed in Chapter 7. 
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R13Q-molecule 

s=80 
K 

membrane 

8=10 

c=80 k 
s=80 
K 

ionic 
solution 

s=10 ionic 
solution 

Fig 3.4. Our model. Geometry of the cylindricallysymmetric model Na channel. The regions to the 
right and to the left of the membrane contain ionic solution, the pore is also Filled with ionic solution. 
1 / K = A = 7 A. e of the pore is the same as the bulk water. 
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CHAPTER 4. BOUNDARY E L E M E N T METHOD 

(BEM). THEORY. 

4.1. BEM applied to the Laplace and Poisson equations 

4.1.1.Integral representation for potential 

Let us consider the following problem (see Fig.4.1). Two regions (1 and II) with a 

separating smooth surface L are filled with uniform dielectrics that have dielectric 

constants £, and s2 respectively. The space charge q is placed in the first region. This 

charge q may be a point charge or distributed charge. We want to find the electric 

potential^ in both regions. Charge density distribution is described by f{r)sj An, 

where / ( r ) is some arbitrary function of position, r. 

Figure 4.1. Geometry of the system. Two regions, I and II, with dielectric constants^, 

and £\ respectively are separated by surface r. Charge q is in region I. 

This problem is governed by the following system of equations: 

For region / . - V 2 ^ = / ( r ) Poisson equation (4.1) 

For region / / . - V 2 < p ; / = 0 Laplace equation (4.2) 



38 

These equations have to be accompanied by the usual boundary conditions on the 

surface F : 

VI\T=<PII\T (4-3A) 

e, ( n - V ) ^ | r = £ 2 ( n - V ) ^ | r (4.3b) 

\im<p(r) = 0 (4.3c) 

where (n • V) is the derivative along the direction n , normal to the surface. The condition 

(4.3c) is applied to potentials that contain infinity in their domain. 

Equations (4.1 )-(4.3) uniquely define the potential in the whole space. 

Now we wish to write an integral representation for the potentials <p, and cpn . To 

do this we wi l l introduce a Green function, which is a solution of the following equation: 

- V j G ( r , S ) = £ ( r - 5 ) (4.4) 

where point \ is an arbitrary point belonging to regions I or IE and symbol S(r - %) 

represents the Dirac delta function. Here subscript r attached to the Laplacian means that 

differentiation is performed with respect to variable r . Explicitly the Green function can 

be written as 

G(r.$)= 1 +F(r ,£) (4.5) 
\n | r - % | 

with the function F(r.$) satisfying the Laplace equation inside regions I or II: 

- V ; F ( r 4 ) = 0 (4.6) 

We wi l l need Green's second identity or Green's theorem, which states that for any two 

differentiable functions <fi and y/ the following equation is valid: 

J(^ V > - ¥ V2<j>)dV = fa V y/ - if/ V V ) • dS (4.7) 
v r 

where V is the volume enclosed by the surface F. 
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With Green's theorem (4.7). tj> = <p, y/ - G(r,^), the specified properties of G 

(4.4). and equations (4.1), (4.2) it is simple to obtain the integral representation for 

potentials in regions I and II [Jackson, 1999; Morse and Feshbach, 1953]: 

<p,(l) = \f{r)G(r,QdVr - \(p!(v)VrG{r^)-dSr + jG(r ,S)v>,(r)-dS, (4.8a) 
v, r r 

<P„ (4) = - \(P„ (r)V,.G(r.^) • dSr + j G ( r , $ ) V > „ (r) • dSr (4.8b) 
I r 

Here \ is an inner point (the observation point) of the corresponding region 

(%&V, ^ £ T ) , / (r) is the right hand side of (4.1), and subscript r in the symbols dVr 

and dSr means that integration is performed with respect to variable r. According to 

common convention one measures the gradient pointing outward from the surface (in 

other words, the surface element dS points away from the interior of the volume, where 

the field is to be evaluated), so that the surface integrals are the usual normal outflow 

integrals. 

It is worthwhile to emphasize that the above equations (4.8) are not a solution to a 

boundary value problem but only an integral statement since arbitrary specification of 

both the potential <p and its normal derivative — (Cauchy boundary conditions) on the 
dn 

surface V is an over specification of the problem. But the above equations relate the value 

of the potential <p (£) anywhere inside the volume to the values of the potential and its 

normal derivative at the boundary surface T. If we knew the values of the potential and 

its normal derivative on the boundary T we could find the values of the potential in any 

point of the region by simple integration. 

Now we wi l l investigate the possibility of finding the potentials and their normal 

derivatives on the surface. 

4.1.2. Integral equations for potential on the surface 

Equations (4.1a) and (4.1b) are valid only for inner points \ , but since the 

potential is a continuous function we can get its values on the boundary by a limiting 

process. 
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Let %Q be a point on the boundary Y. In the limit of % —> %0 we have 

<Pi ft<>) = ] i r n <Pi ft) 

= l im \f{r)G(r^)dV - l im U (r)V,G(r ,§) • (4.9a) 
" " '/ r 

+ lim fG(r ,5 )V^(r ) -dS r 

p,,G 0 ) = l im ? , , £ ) = - l i m f ^ ) V , G ( r , $ ) - d S r + l i m J G ^ ^ V ^ ( r ) • ^ (4.9b) 

These equations are still very general. Using the freedom of choice of Green function (via 

the function F(r,^)) we wi l l take its simplest form, namely, the free space Green 

function: 

G(r,$)=A / g | (4.10) 
An | r - % | 

In this case equations (4.9a) and (4.9b) become: 

P/fto) = ! i m P / f t ) 

J 4 ^ | r - ^ 0 | f-*&J 4 ^ | r - q | 

+ l im f / V<p,(r)-dSr 

J 4/r I r - q | 

(4.10a) 

P//fto) = Jim?//(5) 

, - 1 - , 1 - (4.10b) 
= - hm \<p„ (r)V, — • dS, + l im f— - Vp„ (r) • dSr 

f. An\r-§\ r

J An | r - \ \ 

To do the next step and obtain particular expressions for <p (^ 0 )we have to 

investigate the integrals on the right hand side of the above equations. We wi l l perform 

this analysis the way it is done in [Stakgold, 1979]. We shall investigate the behavior of 

integrals in the vicinity of a fixed point c,0 on T. 

Let us consider integrals that determine, say, <p,: 
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<p,{%)= f/(r) ' J F - U ( r ) V 1 -dSr 

J 4 * | r - § 0 | J 4 * | r - § | ^ 

+ | , , ' V ^ ( r ) - ^ r ,J 4;r1 r - \ | 

We first analyze the second integral in (4.11). Let 

I2=giS)=\ ' V(p,(r)-dSr, (4.12) 
• \n | r - \ | 

This integral is well defined when ^ is outside F. Further, it is also well defined when % 

is on L . To see this, we need only prove that for V ^ 0 e T and any well-defined vector 

function V<p(r) 

limg(5) = g(S 0)= j G ( r , § 0 ) V ^ ( r ) - d S , (4.13) 
" " r 

where the last integral is understood as an improper integral. Let us take a point ^ e T 

and calculate the limit of function g{%) for % - » ^ 0 . First we divide L into the 

complementary parts T E and r-re, where rc is the portion of T within a sphere of radius 

s centered at point ^ 0 . Since integral (4.12) converges for any ^iV it can be 

represented as the sum of two integrals: 

g(t)= lG(r,Ss)V<pf(r)-dSr+ \G{r,%)V<p,{r)-dSr (4.14) 
r-r r 

£ £ 

Let us introduce the following notation: 

g~**{\) = jG(r ,$)V^(r ) -dS, (4.15a) 
r-r 

g r ^ ) = \G{Y^)SJ(p,(r)-dSr (4.15b) 

So that g($) = g r ~ r * ($) + / * (5) • 
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We calculate limits of functions g 4 (£) and g e (£) for % —» %0 separately. If 

these limits exist and are finite then the limit of function g(L) for \ —> ^ 0 exists and is 

equal to the sum of these two limits. 

Consider first the integral over r-rE. Since £ 0 does not belong to the region of 

integration ( § 0 g T - T c ) the integral does not have any singularity, and hence 

Now consider the second integral, over re. For s sufficiently small, rE is nearly a 

flat surface and we can regard rE as lying in the plane tangent to T at £ 0 . We introduce a 

Cartesian coordinate system (u. v. w) with origin at ^ 0 ; u, v lie in the tangent plane and 

the positive w axis is in the direction of the normal n . Then we can write 

(4.16) 

(4.17) 

where r is a point on the tangent plane (see Fig.4.2). 

A w 

P i s the 

S r at the 
point 

tangent 
plane to 
the surface 

Figure 4.2. Local geometry in the vicinity of point %() on the surface F . (u,v,w) is a local 

Cartesian coordinate system with origin at ! j 0 . 
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Since y/(&0 + r) is continuous function we can rewrite equation using the mean value 

theorem: 

g ' . w _ r £ ^ l £ * L + o l t ) ( 4 , 8 ) 

An JI r - % | 

where ^ 0 + r * is some appropriate point on the plane in rE. If we let \ lie on the normal 

to T at £ 0 , then we can write (this does not restrict the generality of the proof, see 

[Mikhlin. 1970; Paris and Canas, 1997]) 

An r

J(£; +ir + v ) ' 
£ 

4* r

J 

i" 

^ + y , ) ( ( ^ + g 2 ) ' 2 - ^ . ) + o ( g ) 

N o w we can take the limit of g £ (£) for \ —» ^ 0 using the last expression in (19): 

l i m g r g ( 5 ) = ^ 0 + r ) £ + o(£). (4.20) 
2 

So, the limit of g(^) for £, -> ^ 0 exists and equals the following: 

A = l im g($) = l im g r _ r * (§) + l im g ' ' (§) = g r ' r * ($ 0 ) + ^ « + r ) e + o(£) (4.21) 

Since l im g(^) exists it is unique and therefore it does not depend on the way of dividing 

the region of integration r into two parts r, ;and r-re and. hence, does not depend on s. 

Then the following is valid: 
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= lirai g ( § , ) + l i m ( ^ 0 + r ) + 0(e)) 
s^o s-^o 2 ( 4_22) 

= l i m / " r ' ( S 0 ) 
6 ->0 

= lim \G(r,^)V<pr{r)dSr 

I - I 

The last expression is the definition of integral jG(r,^0)V<p / (r) • dSr as an improper 

integral, i.e. we have 

A = \\m/-V'^)^\\m j G ( r , $ 0 ) V ^ ( r ) - < £ r = g ( $ „ ) (4.23) 
r-r 

So. we have proven that V ^ 0 e T g(^ 0 ) = j*G(r,^n)V<£>/ (r) • dSr and the limit of 

the integral in question taken from appropriate side of the surface coincide with the value 

of g(^) right on the surface. 

Let us now consider the first integral in the integral representation (4.11). 

/, © = -L Ur)V,. - J— • dS, (4.24a) 
4^" r I r ~ S I 

This integral reduces to 

/, (§) = ̂  Wr) • ~~T~TT (4.24b) 
4;r ,J | r - £ | 

where i?(r) is a normal to the element of the surface dSr and n is the unit vector in the 

direction of gradient of | r - ^ |. 

This integral is well defined for any £ not lying on the surface Y. To analyze the 

behavior of integral / , . we. as in the previous discussion, divide T into the 

complementary parts rE and r-r£ (̂ 0 is the center of re) and write: 
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4;r 

r-r 

JLJL.jsr+-— 
r - ^ | 2 4;r 

U r ) - - j-dS, 

r-$| 
(4.25) 

7,(5) = /, ft) «+/,(£) 

The first integral is clearly continuous at any point h not lying on Y-Tz, and wi l l 

therefore be continuous as \ ~> So. The second integral is over a nearly flat surface i f £ 

is sufficiently small. Using the same Cartesian coordinate system that was introduced 

earlier we get: 

(-1) f^fto + r)cos[r-5,v(^ 0 + r)] 

= -pf t» + r*) { 
rcos[r ,i?(50 + ?)] 

(4.26a) 

/ J dwdv + o(f) 

With% lying on the normal v (v ~w) to Vr. at (see Fig.4.3) the functions in the 

integrand can be written as 

| c - r r = (£,. + w +v ) 

and (4.26b) 

cos[r - §,v?(S„ + r)] = — , " , 
( £ +w- +v-)"-

Figure 4.3. Local geometry in the vicinity of point in the case when S" approaches %o 
along the w axis. 
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f 
After this an expression for integral / 8 (£) becomes: 

/, = {-P-<P&N + r') \—2 .3/2dudv + 0(£) 

6 

X t . + ? - ) f - V " f ^ + 0(8)= (4.27) 
4;r r

J + 

Now using the last expression in (4.27) we can take the limit of / / £ ( ^ ) at ^ —> £ 0 

( £ , - • 0 , £ , < ( > ) : 

i i m / ; ; ( ^ ) = ^ i k ± L i + a ( f ) . ( 4 . 2 8 ) 

We note here that the limit of / , I f i(J;)is equal to one-half the value of potential at some 

point close to ^ 0 on the plane up to the first order of radius s. This limit does not depend 

on s and wi l l not disappear i f we take radius s smaller and smaller. In the analysis of the 

previous integral a similar contribution was proportional to s and was disappearing in the 

limit of small s. 

If we imitate the argument that led to (4.22, 4.23), we can write that 

^ ( ^ 0 + ? ) + , m ( - i ) , ^ 
2 s^o An r_J Y y | r - ^ 0 | 2 r 

(4.29) 

2 > - § , | J 

Now after this analysis of the behavior of integrals in the vicinity of a point lying 

on the surface from (4.10a, 4.10b) we can easily obtain a particular expression for the 

potential at an arbitrary point on the surface: 
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<P,(&O)= f . A r ) ^ — r - ^ ' - k ' ^ — i — — d s r 4 ^ ! r - £ 0 

(4.30a) 

+ I V<Pi(r)dSr 

r

J 4 ^ | r - ^ 0 

•V^(r)dS, (4.30b) 

With addition of conditions (4.3) on the surface for functions q>, and cpu these 

integral equations form a closed system. Analytical solution of these equations is possible 

only in very specific cases. In order to be able to solve them in general situation we have 

to develop a numerical method of solution. 

4.1.3 Discretization of equations (Implementation of B E M ) . 

One of the possible approaches to this problem is to subdivide the surface into 

elements within which the functions cp and — do not change much, use some 
dn 

approximation for those functions within these elements (the simplest of which is 

constant value within the element) and discretize equations (4.30) based on this 

description. As a result a linear system of equations wi l l be obtained, solution of which 

wi l l be the values of functions <p and — on each boundary element. Finally, 
dn 

substitution of these boundary values of potentials and their normal derivatives into the 

equations (4.10). discretized in the same manner, w i l l give us the value of potential at any 

point of space. The above comments explain why this numeric method got the name 

Boundary Element Method ( B E M ) . 

Let us describe this approach in some detail. 

We subdivide surface into A" elements and number them with an index i = \,...,N (see 

Fig.4.4). 



4X 

4>i, (d(|)/dn)i -
unknowns 

Figure 4.4. Representation of the boundary by finite elements. 

At some point of each element we write two equations: one coming from the region I and 

the other coming from the region II in accordance with (4.30a)-( 4.30b). This gives 2N 

equations. We also have 2N unknowns in this system of equations: N values of potential 

(p(^'0) and ./V values of normal derivative — (^J,) on the surface T. 
dn 

To keep the appearance of the formulas the same we wi l l use notation V„ instead 

d 
of — tor the component of the gradient along the normal to the surface. 

dn 
So, the system of equations (4.30a) and (4.30b) can be transformed to a linear 

system of equations as follows: 

X-(p,(^)= f/(r) 1 dV + 
v, 4,t | r - &(l | 

(4.31a) 

<p, fii) = £ ( - « > , (r,) |V„ ' dS, 4 < - A ) ( V „ p , (r,)) | ' aB r) (4.31 b) 
r, 4^" | r c,0 I £"2 r 4;r | r ^ 0 | 
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Note that in this system we substituted functions (pn and Vn(pu from the region II by 

the corresponding functions from the region I based on boundary relations (4.3) and with 

the notion that the directions of the vector normal to the surface are opposite for regions I 

and II. After introducing the following notations 

r 4 ; z " l r - S o l 

Mtl = f dS, (4.321 

the above system of equations become: 

2 r, 4 ^ | r - ^ 0 | / 

=2("V, + ( — W ) (4.32b) 

Once we find a solution of this system of equations we can find the potential at 

any point of regions I and II using equations (4.8a). (4.8b) and the approximation 

employed in this method. For a point \ of region I we have: 

= \m. , ' + ! ( - * , • J V / +>', \ A / , , < g r ) (4.33a) 
>r 4TT I r — c I V r 4TT | r — ^ | r

J 4;r | r - \ \ 

and for a point ^ of region II we have: 

M S ) = fv„ . ,* p , ^ r + ^ / ( — ) f , / B , ^ r ) (4.33b) , r

J 4;r1 r - \ | <?2 , J 4;r1 r - \ \ 

which is a quadrature that can be calculated by any standard method of numerical 

(sometimes, in symmetrical cases, analytical) integration. 
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4.2. B o u n d a r y e l e m e n t m e t h o d a p p l i e d to the L a p l a c e a n d 
P o i s s o n - B o l t z m a n n e q u a t i o n s . 

We now consider a problem similar to that described in section 4.1. Again two 

regions (I and II) are separated by smooth surface V and region II is a uniform dielectric 

with dielectric constant £ 2 . In contrast to the previous case, region I is uniformly filled 

ution with dielectric constant £1 and the with ionic solution with dielectric constant £1 

and Debye radius X =l/k. As before, the space charge q is located in the first region. 

The electric potential in both regions is to be found. 

Since the idea of the method is treated in detail in section 4.1 and all main 

equations are analogous we wi l l only point out the basic steps. 

The problem is governed by the following equations: 

For region I. -V2(pL+K2(pl = f(r) Poisson-Boltzmann equation (4.34) 

For region II. - V 2 < p / ; = 0 Laplace equation (4.35) 
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Boundary conditions on the surface F are the same as in previous case (See (4.3a)-

(4.3c)). 

Equations for the Green function are: 

For region I. - V 2 G , + K 2 G , =5{r-%) (4.36) 

For region II. - V 2 G „ = S(r-%) (4.37) 

We see that in this problem the Green functions in the two regions are different. 

The integral representation for potentials <p, and <pn (analogous to 4.8a-4.8b) now 

takes the form: 

<p, ft) = | / ( r ) G / (r.%)dVr - \<p, (r)V r G, (r,§) • dSr + JG, (r,S)V,p, (r) • dSr (4.38a) 
i) r r 

ft) = - \<p„ ( r )V r G„ (r,§) • dS, + JG„ {r,%)Vr<pn • (r)dSr, (4.38b) 
r r 

With the simplest forms of Green functions 

-k r-\ 
G /(r,^) = — 

(4.40) 

An I r - \ | 

and in the limit of > l ; 0 , where ^ 0 is a point on the boundary T, the above equations 

become: 

P/fto)= ! i m P / f t ) 

= f / ( r ) / i \ > d V r ~Hm k ( r ) V g " -dS, + (4.41a) 

-A r-c,| 

Hm f-̂  — S/<p,(r)-dS, 
•! Air \ r - \ j 
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f - 1 - f 1 - - <4"41b> 

= - l im U (r)V,. — • J 5 r + l im f — Vcp,, (r) • dSr 

• 4TT I r — q I f-̂o * 4K \ r - c 

These equations are analogous to (4.10a)-(4.10b). 

Both limits in the second equation were investigated in great detail in the 

previous section and it was proven that these limits exist and their values were obtained. 

N o w we need to analyze the behavior of integrals of equation (4.41a) in the vicinity of a 
fixed point ^ 0 on the boundary. 

Let us first consider the second integral in (4.41a). Following the same logic as 

in the case of integral I2 (see (4.12)) we wi l l come up with the function gTe (£) : 

4n J r - £ 
e 

r 

which is similar to function g e (^) defined in (4.17 ). 

It is easy to show that 
l i m g r ^ ) = l i m = + r ) s + o{£) (4.43) 

£-><fo 2 

and hence this limit vanishes for,? —>0. From the proof analogous to (4.22) it follows that 

-k r-\ -k r-5„ 

l i m JVl ^ V ^ ( r ) - ^ , . = l i m J - 1 _ V ^ ( r ) - d S r 

1̂ r

J 4;r | r - ^ | J 4^r I r — ^ 0 | 

= l im f G ^ r . ^ V ^ G O - d S , = J G , ( r , $ 0 ) V p , -(r)dS r(4.44) 
r-r 

and the limit under consideration is again a convergent improper surface integral. 

Without detailed analysis of the first integral in (4.41a) we wi l l write the final answer 
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lim U (r)V, e [ r \ • dSr = + l im J <p, (r)V„ / ' • 

= _ ^ o ) + ,j L ( r ) y r G / ( r 4 o ) . ^ r (4.45) 

= - ! y ^ + | * ' , ( r ) V r G ( ( r , ^ ) ^ , 

The similarity of this result to the result (4.29) obtained in the previous section can be 

understood by the notion that the exponent in the integral can be approximated by 1 on 

the plane tangent to the surface rE. 

Finally, we use (4.44) and (4. 45) in (4.41a) and (4.41b) to generate the following 

equations for the potential and its normal derivative on the boundary: 

I = J/(r) e*''\ dVr - fc,(r)V -dSr + 
e\r-U\ 

(4.42a) 

r 4x \r 

\ <pn = - \<pn (r)V 1 • 4 + J 1 V p „ (r) • dSr 

2 ,J 4;r|r-5„| r

J 4 / r | r - £ J 

These equations are analogous to (4.30a) and (4.30b)). 

(4.42b) 

A s in section 4.1. we can numerically solve this system and then calculate the 

potential at any point of region I and II by using B E M . We discretize equations (4.42a)-

(4.42b) and come up with the linear system analogous to (4.32a)- (4.32b), coefficients of 

which (see (4.32")) are to be calculated in accordance with integrals appearing in 

equations (4.42a)-(4.42b). Then we solve this linear system and substitute obtained 

values of potential and its normal derivative on the boundary elements into the 

discretized expressions (4.38a) - (4.38b). As a result we have equations analogous to 

(4.33a)-(4.33b) and can calculate potential at any point of regions I and II. 
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CHAPTER 5. CHANNEL MODELS - APPLICATION 

OF T H E BEM 

5.1. Point charge near membrane with finite cylindrical 
channel in the absence of ionic solution in the surrounding 
space (k=o) 

n is an external 
normal for region I 

q is a point charge 

T is a continuous 
surface separating 
regions I and II 

Figure 5.1 Cross-section of infinite membrane (region II) with a finite cylindrical channel. The 
arrangement is rotationally symmetric about the z-axis. 

Fig.5.1 shows a simplified model of the membrane with a cylindrical channel of 

finite length. There is no ionic solution in this case. The dielectric constants of membrane 

and channel are £2 and S i respectively. The surrounding space also has the same 

dielectric constant as the channel, S|. The whole arrangement has cylindrical symmetry 

about the z-axis. The width of the membrane is h and the radius of the channel is a. A 

point charge q is placed on the z-axes at some distance from the channel. We wish to 

calculate the electric potential in all the space. The potential within the channel wi l l be of 

special interest to us. The surface T between the regions I and II is piecewise smooth and 

we can apply the B E M for Laplace and Poisson equations, as described in section 4.1. 

13 

E2 n3 
n2 

E1 

t n l 

11 11 
q <> 

S1 
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Let us write the basic equations for the potential and Green function (see section 

4.1): 

F o r r e g i o n / . -SJ2

(pl = f(r\ -V2

rG,(r,£) = 8(r-£) (5.1) 

F o r r e g i o n / / . -V2<p„ =0, - V2

rGn{r^) = 5 { r , (5.2) 

G, ( r , £ ) = G„ (r,<f) = 1 . (5.3) 
4n | r - q \ 

Given the cylindrical symmetry of the problem we choose cylindrical 

coordinates. Any point in space wi l l be represented as r=(z, p) 

Let us subdivide the membrane surface into N+P+S symmetrical rings of some 

width, which we can vary for the purpose of calculation (N. P. S correspond to the 

number of rings on the surfaces n . T2_ T3) (see Fig.5.2). The potential and its normal 

derivative are assumed to be constant within each ring. 

• z 

Figure 5.2. Representation of the surface by the symmetrical rings. A cross-section has been 
taken through the membrane in a plane containing the z-axes. A portion of the membrane 
lying behind this section is seen in perspective from above. T l , the bottom surface of the 
membrane, is not shown. 

The first step in solving this problem is to obtain the values of cpk and — on 
v dn )k 

each ring. i.e. to solve the linear system (4.32a)-(4.32b). A t first we have to obtain 

coefficients Ky and Mj, of this system. To do this we write explicitly equation (4.31a) for 



56 

some point \ l belonging to the & ring (subscript "0" in symbol £ is omitted here): 

= 4«>,,«')-T>, J-Gir^'W - I ft, J + 

=N+1V & ' * r 2 t 

d<pj 

"* JkYX 

(5.4) 

k VSk 

Fig. 5.3 shows the example of location of points £ and r on the surface. 

T3/ 

z 

r2 

Figure 5.3. An example of local position of points £ and r on the surface: the figure shows the case 

of r 6 T2,% 6 T3 . Other configurations are possible. 

With the following relations (see Fig. 5.3 for definition of angle ^ ) 
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8
r r r ^ _ H ) (*-£)_ H) 

dz An r - £ l 4;r 4 * ( ( z - ^ ) 2 + p 2 + ^ - 2 p ^ c o s ^ ) 2 

5 (-1) ( p - ^ c o s ^ ) 
— (G(r&) = 
dp An , , , 1 

( ( z - ^ + p 2

+ ^ - 2 p ^ c o s ^ ) 2 

(5.5) 
r e T l , r = (0 ,p) 

r G T2 . r = (a, z) 

r e r3, r = (h, p) 

integrals in the equation (46), i.e. coefficients K and M that we are looking for, take 

the form: 

r e T l , r = (0,p) 

dz " '" ' An J 7 J 3 

" ( ( ^ 2 + p 2 + £ % - 2 p < ? cos^ ) 2 

r e T 2 , r = (a, z) 

(-1) }jjkf {a - %p cos <f>)adz 
dp 4;r 

*' ( ( z - £ r ) 2 +a2 +{2

P - 2 < , c o s ^ ) : 

r e T 3 , r = (h,p) 

f fcfcOds^tS 
J dz 4;r 

2,T A -

0 ft, 

p{h-%:)dp 

{{h-^zf +p2 +%2

P -2p£ cos</>): 
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r e T l , r = (0,/9) 

( - l ) 2 r 7 / V pdp fG(r,^,=^jW J An 

0 " ( ( ^ ) 2 + p 2 + ^ 2 , - 2 p ^ c o s ^ ) 2 

r e T2. r = (a,z) 

t a V f r 
r2< 0 z < ( ( z - £ _ . ) 2 + a 2 + - 2 a £ p c o s ^ ) 2 

r e T3, r = (h,p) 

\G(r,$)dS3 = \d<P J 
4;r i r.l, 0 p, . . . K x2 . 2 . 1 - 2 ( ( / * - ^ . ) 2

+ / r + ^ - 2 / ^ , c o s ^ ) 2 

system, i.e. get <pAand — on the £th ring (k=l, 2,. . . N+P+S). We see that all 

Calculating the value of these integrals for each ring and for each fixed point 

(£=l, 2.. . . N+P+S) we fill the matrix of linear system (4.32a)-(4.32b) and solve the 

( 

dn 

integrals with respect to <j) are expressed through elliptic integrals. The second 

integrations with respect to poxz have to be done numerically. 

5.2. Point charge near membrane with finite cylindrical 
channel in the presence of ionic solution in the surrounding 
space (k^O) 

We now consider a system whose geometry is the same as in previous case (see 

Fig.5.1). The difference from the first model is that region I surrounding the membrane 

is filled with an ionic solution with dielectric constant S i and Debye radius X = 1/k 

(k^O). To find the potential in all space we wil l apply B E M for Laplace and Poisson-

Boltzmann equations, as described in section 4.2. 

The basic equations for the potentials and Green functions are (see Section 4.2): 

F o r r e g i o n / . - V > , + k2tp, = A * q — , -V2G,+k2G, =&(r-$) (5.7) 
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For region / / . -V2(p„ = 0. 

-k r-% 

•V2

rG„(r,$) = S(r-Z)), 

1 

(5.8) 

(5.9) 
4n\r-%\ *n\r-\\ 

The general procedure of solving this problem is the same as in the case with k=0. 

Therefore we wi l l write only equations analogous to (4.31a) and (4.31b) for (p, and (pu 

at some point belonging to the ^th ring: 

ATiq 

k=\ n. k=N+\ i~2, P 

±(Pk\^^)dSi+±{dM \Gl{r£)dS, + 

r d(pi 

A=N+1 V ^ - r2 

(5.10a) 

2>, f - < J a ( r , V ) * 3 + V 
CZ t =i \ CZ 

J G ^ O A 

c>z A „ J 3 z 
I 

A=N+IV ^ / j n 

\Gu(v,l')dS, 

(5.10b) 

To illustrate the type of integrals arrived at in the first equation we wi l l write the 

explicit expression for one of them: 
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r 6 T2. r-(a,z) 

j—G,{rtJQdS2 = — J -

4/r 
0 M / /_ c \2 , 2 , e2 ( ( z - £ ; ) 2 + a 2 + £ % - 2 a £ / ; co s^ ) 2 

(5.11) 

One can see that integration with respect to both variables has to be done numerically, 

unlike the previous case. Integrals in the second equation (5.10b) are similar to integrals 

(5.6). 

5.3. Charged sphere near membrane with finite cylindrical 
channel in the presence of ionic solution in the surrounding 
space(k^O) 

n is an external 
T3 normal for region I 

/ is an external 

normal for region III 

a is a surface 
charge distribution 

I is the surface of 
the charged sphere 

Figure 5.4. Charged sphere (with surface charge distributiona) near membrane with finite 
cylindrical channel in the presence of ionic solution in the channel and surrounding space (k^O) 
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A sphere with some cylindrically symmetrical surface charge distribution and 

dielectric constant S3 is placed near the channel, as in Fig. 5.2. There are three different 

regions in this problem and none of them contains space charge. The external surface 

charge of the sphere is taken into account by the boundary condition expressed below in 

(5.18). 

This problem is governed by the following equations for potentials and Green 

functions : 

F o r r e g i o n / . - V V / + * V / =0, - V 2 G 7 + £ 2 G 7 =8{r-%) (5.12) 

F o r r e g i o n / / . -V2<pn=0, - V 2 G 7 7 ( r , i ; ) = S ( r , (5.13) 

F o r r e g i o n / / / . -V2<pm=0, -V2

rGm(r£) = S(r-Z}), (5.14) 

G 7 ( r , 0 = / . ' * Gn(r£) = G f f l(r,{) 1 . (5.15) 
4?r I r - % I 4n I r - \ \ 

The boundary conditions on the surface T and S are: 

P / | r = P / / l r ' ^ ( n - V ) ^ | r =s2 ( n - V ) ^ | r (5.16) 

<Pi|s = Par | £ » f 3 (1 • V ) p f f l | 2 - £,(1 • V)(p,I£ = 4/rc7 

where ( n - V ) and ( I V ) are the derivatives along the normals to the surfaces 

T and I respectively. 

Equations for potential and its normal derivative on the boundaries take the form: 

\q>l&0) = - J^(r )VG 7 ( r , S o ) - c /5 r + j G , ( r ^ ) V p 7 ( r ) - < f f r (5.17a) 

/̂7ft0) = -Ĵ /(r)VG (r,§ o ) -dS r +/VG (r,§ o)^(r)-5r (5.17b) 
2 r r 

; f t r f t o ) = - K W V G (r,§ o ) -dS r +JVG (r,§ 0)̂ (1-).̂  ( 5 . 17c ) 

With boundary condition (5.16) from (5.17a, 5.17b, 5.17c) we obtain pairs of equations 

for each point of the two surfaces, T and I : 
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For V£ 0 e r 

\<p,&\) = - \(pl{rWGl{r^»)-dSl,+ JG^Mv^r)-^, , 
^ r+i r+i 

\<pI(go) = -\<pl(r)VG (x,\\)-dSrll +—\Gl(r^o)y<Pl(r)-dSl.ll 

1 r £2 r (5.18) 

For V ^ 0 e 2 

i ^ ( ^ o ) = -j^(r)VG /(r,^o)-4/ +jG /(r,^o)V <p,(r)-dSrl 

i ^ ( f 0 ) = -J^(r)VG ( r , f o ) - ^ r / / / +— JG ( r ,^o)(4^(r) + ^(l-V)^(r))^ 

After dividing the surface T into L cylindrical rings and spherical surface Z into P 

spherical rings symmetrical relative to the z axis, and treating the values of potential and 

its normal derivative as constant on these rings, a consistent linear system of 2(L+P) 

equations for 2(L+P) unknowns can be written in a way similar to equations (5.10a)-

(5.10b). 

Notation S,, Sn, S,n , means that an external normal to the appropriate region is 

taken. One can prove that this linear system has a unique solution. 

The inhomogeneous part of this linear system contains terms related to the surface 

charge of the sphere. In the case of uniform charge distribution the integral in the last 

equation of (5.18). — j*G {r.^(i)4na{r)dSr = ^ G ^ , and is independent of £ £ o . For 

some arbitrary charge distribution, the integral ^G(r,t,l'o)4n:a(r)dSr depends on point 

£ s o and is to be calculated for each spherical ring. 
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CHAPTER 6. TESTING T H E PROGRAM 

In order to be able to check the results obtained by numerical methods for the 

problem with a finite channel we would like to have analytical solutions for some 

limiting cases. This is also important for understanding the physical meaning of the finite 

channel solutions. Such limiting cases are the infinite cylindrical channel and the infinite 

membrane without the channel. Solution of the latter problem for the case k=0 can be 

found in [Grechko. 1984]; for the case when k^O see Appendix A . 

Both cases have been used for testing the numerical solution. Since the problem 

of interest is the finite channel, the limiting case of the infinite channel is most important. 

We give the analytical solution of this problem, analyze the physical properties of the 

solution and compare them with the physical properties of the finite channel solution. 

6.1. Infinite Cylindrical Hole. 

6 .1.1.Formulation and solution of the problem 

Let us consider the following system. A cylindrical hole of radius R and infinite 

length (see Fig.6.1) is filled with ionic solution with dielectric constant s, and Debye 

radius A=l/k. The surrounding space is filled with dielectric that has dielectric constant 

s2. A positive point electric charge q is placed on the axis of symmetry at the origin of 

the coordinate system. The electric potential is to be found. 



(A 

II s2 k=0 

II k=0 s2 

Figure 6.1. A cylindrical hole of radius R and infinite length is filled with ionic solution with 
dielectric constant e, and Debye radius A=l/k. The principal axes of symmetry of the hole coincide 
with the z axes.The surrounding space is filled with dielectric that has dielectric constant e 2- A 
positive point charge q is placed on the axis of symmetry at the origin of the coordinate system 

The electric potential cpu in region II is governed by the Laplace equation ( 5.8). 

and the potential <p, in region I satisfies the Poisson equation (5.7). These equations are 

subject to the following boundary conditions: 

(pI(z,R) = <p„(z,R) 

(6.3) 
P

 d(Pi 
' dp 

d<p„ 

p=R dp 

where R is the radius of the channel. A n additional physically obvious condition is that 

both potentials. <p, andcp,,. vanish at infinity. 

The solution of the analogous problem with k=0 can be found in [Smyth, 1968]. 

The solution for the case when k^O is given in Appendix B . 

6.1.2.Results and analysis 

We would like to point out two important features of the potential inside the 

infinite cylinder: (a) the change of sign of polarized charges on the surface of the cylinder 

in the presence of ionic solution inside the hole and (b) an essential dependence of the 
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potential on the ratio of Debye length A to channel radius R 

In Fig. 6.2 the normal derivative of the potential at the cylindrical surface vs. z is 

presented. The two curves correspond to different dielectric constants. The radius of the 

channel is equal to Debye length (R = A = 7 A) 

4 * * * * * * * * * * * * * * * * * * 
* • 

o<C 

CO 
j J 
•H * • 
C 
3 * • 

-0.00005 
00 * 
O • 
U 

-0.0001 
• 

* 
II 
Q_ -0.00015 * 0 - l 

e i = 80,e2 = 8 0 , K = l / 7 K 
e i = 80 ,e2=10,K=l/7 A 

Q. 
fD 
\ -0.0002 * i—i 
— ' -0.00025 

0 10 20 30 40 
o 

Z A 

Figure 6.2. The normal derivative of the potential in region I on the channel surface as a function of 
coordinate z for the case shown in Fig.6.1. Different curves correspond to different sets of dielectric 
constants: upper curve- for e, =80, Zi=W, lower curve— for z\ =z^=80. Radius R of the channel is 7 
A; A =1/7 A"' 

One can see that the normal component of the electric field at the boundary and, 

therefore, the density of the induced surface charge, change sign at some value of z 

(induced charge is positive near the external point charge q and becomes negative further 

away). This effect is observed even in the case of equal dielectric constants (8i = £ 2 ) . 

when there is no induced surface charge; i.e. it is caused by the space charge of free ions 

in the channel. 

Below a similar graph (see Fig 6.3) is presented for the case when there is no 

ionic solution in the channel (k=0). 
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to 0 10 20 30 40 
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Figure 6.3. Same as Fig 6.2, but for the case k=0 (no ionic solution in channel). 

This graph shows once again that the effect of the sign change of the normal component 

of the electric field on the surface of the cylinder is totally due to the space charge of free 

ions in the solution. We wi l l discuss this effect qualitatively later. 

Now we wil l examine the influence of the important parameter A/R on the 

properties of the system. 

Fig. 6.4 represents the potential inside the cylinder at a point with fixed z 

coordinate (z=5 A) as a function of p for four different channel radii: R= 3A, A, A/3 and 

A/7 with A=l A , when the two dielectric constants are the same (£=£\=&2). For 

comparison two limiting functions of the potential <p are shown: the bottom one 

corresponds to the point charge in uniform infinite space (infinite channel radius. R->co) 

<p = q exp(-/cr) l(sr), the top one corresponds to vanishing channel radius, 

R->0, (p = ql{£r). 
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0.01 ei - 8 2 

OQ 
O o.c 
U 

LO 0.006 
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Figure 6.4. The potential inside the cylinder at .a point wjtji, fixed Z = £ A a s ^function of radial 
coordinate P for four different channel radii, R= 3 , R= , R= and R= for 1 A when the two 
dielectric constants are the same EI ZI . Upper and lower curves correspond to limiting functions, 
(p = ql(8xr) a n d <p = qexp(-kr)/(£ir) respectively. 

The two lowest curves, corresponding to the potential in the uniform infinite space and 

potential in the cylinder with radius R=3^ coincide. One sees that for R » ^ (actually 

^ - ^A ) the potential does not depend on the channel radius, i.e., the charge does not 

feel the channel boundary and the potential behaves as that of a point charge in the 

infinite volume tilled with ionic solution, <P = A exp(-fcr) A>,r). 
As can be seen from the 

graph, for ^ - ^ . when the screening effect is small, the potential inside the channel 

approaches the potential of a point charge in the infinite volume without ionic solution 

This conclusion is also illustrated by Fig.6.5, which shows the dependence of the 

potential at a fixed point on the channel radius for different values of 

X:X->co, X=2X , X=X , X=X /2, w here ^ =7 A. Here both dielectric constants of 

channel and surrounding medium are the same. 
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Figure 6.5. Graph representing the potential at a fixed point ( z=5 A, P—0.2 A ) inside the channel as 
a functio^ of the channel radius R for four different values of A,'A «p/)fr 
cwrvg ' A A. ' A. A ' A A. v /0H><?r curve where ^=7 A The three points plotted at R=30 A are 
analytical solution points for the case R= 

Limiting case points corresponding to the potential in the infinite volume with ionic 

solution (V ~ t/exp(-/cr)/(<5,r))_ shown connected by a vertical line, are on the 

asymptotes at very big channel radii. These asymptotes are reached when R»X and the 

walls of the channel do not influence the potential. When R « A , there is no screening 

effect and. hence, no dependence on the value of X (in the E\ - £ i case, of course). This 

can be seen as the curves for different X converge to the same value when the channel 

radius tends to zero. For the curve with X~*°° any value of R, so there is no screening 

and there is no dependence on R. 

Fig. 6.6 shows the influence of the parameter A./R on the distribution and the 

magnitude of the polarized surface charge on the boundary of the cylindrical channel. 

The polarized surface charge is represented as a function of coordinate z for the case 

when R=7 A . si—80, s2=10. One can observe that the width of the region of positive 

charge is of the order of X and becomes smaller as ^ / R decreases. For R « ^ the 

surface charge distribution is similar to the case when k=0 (not shown on the graph). 

although it changes sign at z ~ X. 
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Figure 6.6. Polarized surface charge as a function of coordinate z for the case when R=7 A, E!=80, 
e2=10. 

6.1.3.Comparison with results obtained by numerical method 

The B E M calculations performed for a very thick membrane should be very 

close to the analytical result for the infinite cylinder (see Section 6.1.2. These are 

compared in Fig. 6.7, which shows the dependence on z of the potential on the surface of 

the cylindrical channel for infinite and finite membrane for two cases: k=0 and k^0. One 

can see a good agreement. The discrepancy can be explained by the finite width of the 

membrane, within which the potential is lower due to the high dielectric constant of the 

ionic solution. 
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Figure 6.7. Potential at the channel surface as a function of z coordinate (both graphs). Point charge 
is placed at z=40 A. Upper curve corresponds to the infinite cylinder (analytical solution), lower -
finite cylinder (BEM calculations). The curves nearly coincide For both graphs R=5 A, s,=80, s2=40. 
The length of membrane L is 80 A. 

Fig. 6.8 represents the normal derivative of the potential on the surface of the 

cylindrical hall as a function of z coordinate (k=0, k*0). Curves for finite membrane 

( B E M calculations) and infinite membrane (analytical solution) almost coincide. The 

effect of changing sign of the surface charge density of the channel (positive close to the 

point charge and negative further away) observed for the infinite cylinder is also present 

in the case of the very thick membrane. 

Figure 6.8. Normal derivative of the potential on the surface of the cylindrical channel as a function 
of z coordinate ( k=0, k^O). Point charge is placed at z=40 A. Upper curve corresponds to the infinite 
cylinder(analytical solution), lower - to the finite cylinder(BEM calculation). The curves nearly 
coincide. For both graphs R=5 A, £(=80, 62=40. The length of membrane L is 80 A. 
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Calculations were performed for various values of k, from (l/2)k* to 3k*. where 

k* =1/7 A" 1 They show also a very good agreement with the results obtained for the 

infinite cylinder. 

6.2 Behavior of the potential and the electric field in the 
membrane with the finite channel. Comparison with the 
infinite cylinder 

It is interesting to examine the behavior of potential and electric field for the finite 

membrane in all space. This also demonstrates the ability of B E M to calculate potentials 

at any point of the space. In the following we wi l l consider two cases: 1) the point charge 

is in the middle of the finite channel and 2) the point charge is near the finite channel. 

!)• Point charge is in the middle of the channel Fig 6.9 shows the 

equipotential maps inside the membrane and the channel of radius R=5 A for three 

cases A.=21 A ( A » R ) , \=7 A ( R ~ A ) . ^=2.3 A . ( ^ « R ) . Equipotential lines are drawn in 

the plan containing z axes. 
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X=3X* (k=k*/3) X=X* (k=k*) X=X*/3 (k=3k*) 

Figure 6.9. Equipotential maps inside the channel (R= 5 A) and membrane for three cases: X=2\ A 
(X>>R), A=7 A (R~X), X=2.3 A (X .«R). Equipotential lines are drawn in the plane containing z axes. 
As one moves from one equipotential contour to the next, the potential changes by a fixed step, A<D. 
Point charge is placed in the middle of the channel. Vertical axes shows z coordinate in Angstrems, 
The length of membrane is 70 A. Horizontal axes shows radial coordinate in Angstroms. Electric 
field lines are drawn in white. Black lines shows the boundary of the channel. 

A s the value of k increases (or, equivalently, X decreases), Inside the channel 

with increasing k (or, equivalently, X decreases), the electric potential inside the channel 

along the z axis inside the channel falls off faster (density of the equipotential lines 

becomes higher). The rate of change of the electric potential inside the membrane does 

not vary much (as k is changed) since there is no screening effect due to free charges 

there. A s a consequence, the electric field lines (drawn in white) for A,<R at some 

distance from the point charge converge towards the channel and reenter the channel. 
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One can see that the point at the channel boundary where the normal component of the 

electric field changes sign is closer to the point charge for large k, in agreement with 

what was observed in the case of an infinite cylinder (see Fig. 6.6) 

2) Point charge is near the channel. When the point charge is not inside the 

channel, but near the channel (we do not have an analytical solution for this case), we 

expect to observe the properties of the potential analogous to those in the infinite channel 

and in the thick membrane. Fig. 6.10 shows the equipotential lines for the case, when the 

distance of the charge from the surface is equal to 7 A . ( A s before, equipotential lines are 

drawn in the plane containing z axes). One can see that the electric field on the surface of 

the channel also changes sign at some distance from the charge. 

-20 -10 0 10 20 

Figure 6.10. Equipotential lines (in the plane containing z axes) inside the channel (R=5 A) and 
membrane for the case: X=l A, (R=A.), d=7 A, £,=80, e2=10. ). As one moves from one 
equipotential contour to the next, the potential changes by a fixed step. Point charge is placed outside 
the channel (d=7 A). Vertical axes shows z coordinate in Angstroms. The length of membrane is 70 A. 
Horizontal axes shows radial coordinate in Angstroms. . Electric field lines are drawn in white. 
Black lines shows the boundary of the channel and the membrane. 
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Results of calculations (not presented here) show that the distance at which the 

electric field changes sign increases with decreasing k. For k=0 the convergence of 

electric field lines towards the channel is not observed. We noted the same effects in the 

infinite cylinder and in the finite cylinder with the charge placed in the middle of the 

channel. 

Finally, we compare the numerical calculation for the potential inside the channel 

of small radius due to the point charge near the membrane channel with another limiting 

case, when this point charge is placed near the membrane without the channel. We expect 

that when the channel radius approaches zero, the solution should approach the analytical 

solution of the above limiting case. Fig. 6.11 shows the potential as a function of z 

coordinate for three different channel radii, R=15 A (bottom), R= 3 A , R= 1 A . One can 

see that the BEM-calculated curves span the space between the two analytical curves 

representing the free space solution ((p-qexp(-/cr)/(£-,r), bottom curve) and the above-

mentioned solution for a charge near the membrane without the channel (top curve). We 

also see here that for R»k the potential doesn't feel the channel: curves for free space 

solution and for R=15 A coincide. This is in agreement with what was observed in the 

case o f an infinite cylinder (see Fig. 6.3, Fig. 6.4). 
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Figure 6.11. Potential as a function of z coordinate for three different radii of the channel: 
R=15 A (bottom), R= 3 A, R= 1 A, Upper curve (Analyt) is for the potential due to point charge near 

membrane without the channel. Free Space curve (<p — q exp(—kr) /(s^r)) coincide with the curve 
forR=15 A . For all cases e,=80, e2=10. 

So, after the above analysis we can conclude that numerical results obtained 

with B E M are accurate. 
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CHAPTER 7. RESULTS AND DISCUSSION 

7.1. Influence of parameters of the basic model on the 

behaviour of the potential inside the channel 

In Chapter 6 we considered the problem of the potential due to a point charge 

inside an infinite cylinder filled with ionic solution. We discussed the importance of the 

parameter X/A (X is the Debye length, and, in the current chapter, A stands for the radius 

of the channel) for the potential behaviour. In particular, when X/A«\ the screening 

effect is essential and the field around the charge is almost unaffected by the presence of 

the channel. In the same chapter we discussed the screening of the potential of a point 

charge within or near the channel of a finite membrane. The importance of the parameter 

X/A holds true for this system as well, although in this case additional governing 

dimensionless geometrical parameters become important. They are the distance of the 

charge from the membrane d/X and the thickness of the membrane H/X. Calculations 

show that for d/X > 1 (when the potential of the charge is almost screened) the field in the 

channel does not feel the membrane. For our model with a charged sphere of radius R 

near the finite channel another physical parameter appears due to the finite size of the 

sphere, R/ X. The importance of this parameter can be seen from formula (3.11) which 

describes the potential of a charged sphere placed in an infinite ionic solution. When K/X 

« 1 the potential is close to the potential of a point charge. When RJX » 1 the potential 

differs from the point charge potential by a constant factor at each point in space. For the 

typical parameters of our system, R=10 A and X=l A, this factor is 1.7. This factor 

grows exponentially with R and is due to the fact that screening takes place outside the 

sphere only. 

So, the number of important parameters in our system is substantial. Under such 

circumstances a complete analysis of all the dependencies is not realistic. We wi l l study 

the sensitivity of the potential to different parameters within the realistic range. This 

study is important, because there is uncertainty in the values of major physical parameters 

of the system such as the radius of the channel, its length and dielectric constants in the 
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system. Also the shape of the toxin molecule and charge distribution in it used in the 

model is only approximation of the real shape and charge distribution of the R13Q. 

Fig. 7.1 shows the potential along the z axis (the axis of symmetry of the system) 

for three models: point charge near the membrane of finite width without the channel, 

point charge near the membrane of finite width with channel, and uniform charged sphere 

near the membrane of finite width with channel. In all three cases h=l A, H=30 A, and 

distance d from the centre of the charge to the membrane is 11 A. The radius of the 

sphere R is 10 A and the channel radius A is 3 A. 

rCP)p = o (CGS u n i t s ) 

0 5 10 15 20 25 30 35 

Figure 7.1. Potential as a function of z coordinate (p=0) for different models. Models top to bottom 
are: spherical charge near the membrane with a channel; point charge near the membrane without 
the channel; point charge near the membrane with the channel. z=0 corresponds to the left side of the 
membrane.In all three cases X=l A, H=30 A, and distance d from the centre of the charge to the 
membrane is 11 A. The radius of the sphere R is 10 A and the channel radius A is 3 A. 

This graph shows that both the finite size of the charge and the presence of the 

channel noticeably influence the behaviour of the potential. 

Fig. 7.2 demonstrates the influence of the membrane thickness on the potential 

distribution. Variation of this parameter within the realistic range from H=30 A to H = 

50 A (R=3 A) leads to a hardly noticeable change of the potential. For H=10 A the 
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potential changes substantially. On the outer side of the membrane this potential is close 

to the potential of the sphere in free space. For H=3 A the potential becomes closer to the 

potential of the sphere in free space even within the membrane. This is due to the fact 

that the length of the membrane is much less then the Debye length (A,=7A) and the effect 

of the membrane is small. 

(CP)p = o (CGS units) 

Fig. 7.2. Potential as a function of z coordinate (p=0) for different width of the channel. For all cases 
\=1 A, R=10 A, A=3 A, d=ll A. Potential due to charged sphere in the infinite ionic solution is 
presented as well. 

Calculations for a wider channel (radius R=5 A) were performed for realistic 

values of H between 30 A and 50 A and they have shown the similar results. We may 

therefore conclude that the uncertainty in the membrane width wi l l not greatly influence 

the results. 

There is some uncertainty in the values of dielectric constants of the membrane 

and of the charged toxin molecule. Fig. 7.3 shows the influence of these parameters on 

the potential inside the channel. 
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Fig.7.3. Potential as a function of z coordinate (p=0) for different values of dielectric constants. 
S m , S s p are dielectric constants of membrane and sphere respectively. For all cases X=l A, R=10 A, 
A=3 A, d=ll A, H=30 A. 

The bottom curve represents calculations for the model with the same dielectric 

constant throughout the whole system (s=80). The next one was calculated with the 

membrane and R13Q-molecule dielectric constants changed to 40. The last three curves 

were obtained with the dielectric constant of the membrane s m and R13Q-molecule s s p 

being £ m =10 and e s p=2, and em=2 and s s p=10. These three cases are almost 

indistinguishable, which shows that in the realistic range of 2 to 10 for the dielectric 

constants of the membrane and the toxin the uncertainty in these values is not very 

important for calculations, as the final result is not sensitive to these parameters. This 

type of conclusion may change with different system geometry. In this particular case we 

used the most realistic values of geometric parameters, namely: H=30 A, A=3 A, R=10 

A, d=l 1 A. When the value of A (width of the membrane) is 5 A this influence 

diminishes even more and for A = l A the difference is a little more pronounced. 
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Fig. 7.4. illustrates calculations of the potential along the z axis for various 

channel radii from 1 A to 10 A. The last value was found to produce a potential 

distribution that is very close to that around a sphere in a infinite ionic solution without 

the membrane (lower curve on this graph). This is understandable, because in this case 

the distance from the sphere to different parts of the membrane is more then the Debye 

length. So. the electric potential on the z axis almost does not feel the presence of the 

membrane. The real channel itself is not a cylinder with constant radius. A reasonable 

estimate of its radius variation is of 1.5 to 6 A. Assuming that the potential distribution 

for a non-cylindrical channel is somewhere between the potential distributions for the 

cylindrical channels with the maximum and minimum possible channel radii we can 

make an estimate of the uncertainty in the modeling of the potential. 

P = o 'CGS units) 
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Fig. 7.4. Potential as a function of z coordinate (p=0) for different radii of the channel. From the top 
to the bottom: A=l A, A=3 A, A=5 A, A=10 A. For all four cases R=10 A, d=ll A. Lower curve 
represents the potential of the sphere in the infinite ionic solution. 

The real toxin molecule is not a sphere (Fig.2.1). Based on the examination of its 

structure, we assume that it could be reasonably represented by a sphere of radii from 10 

A to 12 A. Fig.7.5 shows the influence of the sphere radius on the behaviour of the 
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potential inside the channel. The surface of the sphere is at a distance of l A from the 

membrane surface in both cases. The difference in the potentials is not large. Naturally, 

the potential of the larger sphere is lower here due to a larger distance between some 

parts of the larger sphere and the point of observation. 

<(f)p = o (CGS u n i t s ) 

0.00015 

0.000125 

0.0001 

0.000075 

0.00005 

0.000025 

1C 20 25 30 35 Z A 

Fig. 7.5. Potential as a function of z coordinate (p=0) for different radii R of the charged sphere. 
Upper curve corresponds to R=10 A , lower to R= 12 A. For each case d=ll A, A=3 A. z=0 
corresponds to the beginning of the membrane. 

In all the previous calculations the charge of R13Q was assumed evenly 

distributed over the surface of this molecule. N o w we want to consider non-uniformities 

in the charge distribution. Biochemical data suggest that the neutral Q13-residue of this 

molecule is the closest to the channel (indeed enters the channel). We wi l l try to take this 

fact into account by a slightly changed model of the R13Q, in which the charged sphere 

has a neutral cap of some diameter s (see Fig.7.6). 
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Fig. 7.6. Simple modeling of nonuniform charge distribution in R13Q-molecule. a is the surface 
charge density. The residue of R13Q closest to the channel is represented by a neutral hat. 

In Fig.7.7 we present the result of calculation of the potential inside the channel 

for such a nonuniform surface charge density distribution of the R13Q molecule. From 

top to bottom the curves on this graph correspond to the following cases: no cap, cap with 

diameter 2.8 A (0.5% of the sphere area), cap with diameter 5 A (1.6% of the sphere 

area), and cap with diameter 8.7 A (5% of the sphere area). In all four cases R=10 A. 

Fig. 7.7. Potential as a function of z coordinate (p=0) for different diameters of surface charge 
nonuniformity of the sphere, s is the diameter of the neutral cap. Radius of the sphere R is 10 A. z=0 
corresponds to the beginning of the membrane. d=l 1 A. 
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One can see that the distribution of the charge on the sphere is important, but 

further improvement of accuracy might be attained by using realistic structure for the 

charge distribution in this molecule. Within our model the estimate with cap diameter 5 A 

looks reasonable to us as a measure of the influence of nonuniformity of the charge. 

Based on the above analysis we can conclude that, within a realistic range of 

parameters of our system, radius of the channel, radius of the sphere and surface charge 

distribution of the sphere influence the potential distribution most strongly. The 

uncertainty in the width of membrane and dielectric constants of membrane and sphere 

can be neglected. 

7.2. Estimation of location of DEA binding site 

As was described in Chapter 2. the presence of R13Q causes a shift of the energy 

level AeRnQ for the D E A at the adsorption site. From the experimental data (see Chapter 

2) we have obtained the numerical value for this shift: AsRUQ = (14.6 ± 1.5) meV. The 

shift (expressed in terms of potential) and the potential on the z axes for different 

essential parameters of the system are presented in Fig. 7.8. Based on this graph we can 

make an estimation of not only the adsorption site location, but also (within our basic 

model) its uncertainty due to the uncertainty in the channel radius, R13Q radius and the 

nonuniformity of the charge distribution of R13Q. 
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Fig. 7.8. Final graph for estimation of location of DEA binding site. Potential as a function of z 
coordinate (p=0) for limiting realistic parameters of the system is shown. Upper curve corresponds to 
R=10 A, A= lA. Lower curve corresponds to R=12 A, A=5 A. For both cases d=ll A, H=30 A, 
sm=10, £ s p=10, e of ionic solution is 80. Horizontal lines represent the shift in DEA energy level (with 
the error), expressed in units of potential. Location of DEA binding site is 4 A-11.5 A from the front 
wall of the membrane. 

The upper curve corresponds to l A channel radius and R13Q radius 10A. The 

lower one corresponds to A = 5 A and R = 12 A. A l l the intermediate cases lie between 

these curves. Based on our previous results, the curves representing realistic variations in 

the charge distribution are also covered by the presented range. This gives an estimate of 

the maximum possible difference in calculated potential for a realistic range of main 

parameters. Based on the above estimates and on the experimentally measured energy 

shift (with its error) we can estimate the position within the channel of the adsorption site 

of D E A to be somewhere from 4 A to 11.5 A as measured from the front membrane 

surface. 
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7.3. Conclusion 

The range 4 A - l 1.5 A for location of D E A adsorption site obtained for our basic 

model of a sodium channel seems realistic. Biochemical data [Lipkind and Fozzand, 

2000] for sodium channel suggest that the distance between the outer end of the vestibule 

of the channel protein and selectivity fdter could be approximately 14-17 A, and the 

length of the selectivity filter is probably 2 A-4 A. If we equate the front surface of the 

simplified membrane geometry in our model to the outer surface of the vestibule of the 

real channel protein (See Fig. 3.2) and take into account that D E A cannot go through the 

selectivity filter, then our result would imply that the selectivity filter is located <11.5 A 

from the outer end of the vestibule. This value is somewhat smaller than that implied by 

the Lipkind-Fozzand model. The discrepancy can be qualitatively explained as resulting 

from simplification made in our geometrical model. In the real channel, part of the 

R13Q-molecule is surrounded by the channel protein. If the model were to include this 

effect, the potential inside the channel due to R13Q would be larger because of the lower 

dielectric constant of the protein and the decrease of the screening effect of the ionic 

solution. Calculations with a point charge placed inside a uniform solid membrane 

without the channel (results are not presented here) qualitatively support this conclusion. 

Also, the narrowest part of the pore of the real channel does not contain the ionic 

solution. If this effect were to be included in our model, this would likewise increase the 

potential in the channel. In addition, the space between the outer end of the vestibule and 

the selectivity filter of the real channel probably does not contain negative ions from the 

surrounding ionic solution; this should also increase the potential. Any effect that tends 

to increase the potential in our model channel wi l l increase our estimate of the distance 

between the outer end of the vestibule and the D E A adsorption site. On the other hand, 

the charges of the R13Q-molecule are located at the ends of the residues, which are 2 A -

5 A from the main body of the molecule. This factor wi l l decrease the potential. 

Although it is hard to say how far the channel protein extends into the ionic solution and 

how deep the R13Q-molecule is immersed into the protein, it is possible to perform B E M 

calculations for a more realistic channel boundary shape and for more realistic geometry 

of the R13Q. and examine the influence of uncertain parameters on the behaviour of the 

potential. 
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To sum up then, our model, given the simplifications employed, has produced 

reasonably realistic estimates of the D E A adsorption site. Future calculations could 

easily be enhanced to give improved fits to experimental data. 
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APPENDIX A 

INFINITE CYLINDRICAL H O L E . 

For formulation of the problem see Section 6.1.1. The radius of the channel here 

wil l be denoted by a. 

The electric potential in region II (see Fig. 6.1) is governed by Laplace equation: 

V > „ =0 

The potential in region I satisfies the equation 

V (pj -k <p, = o(r-r0) 

These equations are subject to the following boundary conditions; 

(1) 

(2) 

<pl{z,a) = q>„{z,a) 

d<p, 

dp 

d(P,, 

dp 

(3) 

where a is the radius of the channel. A n additional physically obvious condition 

is that both potentials vanish at infinity. 

The first step is to find the potential in region II. In cylindrical coordinates 

(p.<p ) equation (1) takes the form: 

d<P„ ) , 1 , dl(Pi, 

p <77 
+ • + • = o (4) 

dp J p~ d(j>~ dz~ 

Because of symmetry the second term in this equation vanishes and the equation 

can be written in the following form: 

p dp 

d(Pu 

dp 

d2<pn 

dz~ 
0 

Equation (5) is subject to variable separation. Let 
cpn = R(p)Z(z) 

(5) 

(6) 
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After substitution (6) into (5) and simple transformations we get: 

1 d dR 
P — 

pRdp{ dp _ 
+ -

1 d'Z 

Z dz2 
= 0 (7) 

Introducing a separation constant we can write: 

1 d2Z 

and 

Z dz2 

p d 

R dp 

-a' (8) 

dR 

dp 
= a~ p~ (9) 

General solution of equation (8) is of the following form: 

Z(z) = Ae-iaz + Beiaz, (10) 

Solutions with imaginary a do not meet the boundary condition V —»0 

as z —>• ± c o . Consequently, the solution can be rewritten in real form 

Z(z) = A(a)sin(a z) + B(a)cos(a z), where a is a real number. Without limiting 

generality we can consider a > 0 . Because of the symmetry of the problem the potential 

is an even function of z and the term with sin(cc) wi l l be absent in the solution. So, 

Z(z) = B(a)cos(az) (10a). 

By applying substitution v = a • p we transform equation (9) to the form: 

or 

dp~ v dp 

This is the modified Bessel equation. Its general solution is of the form: 

R(v) = C-I0(v) + D-KJv) 

R(v) = C-I0(ap) + D-K0(ap) 

(11) 

(12) 

(13) 

where k(v) and Kn(v) are the modified Bessel functions. The function I0(v) grows to 

infinity at infinite v. which violates the boundary condition at infinity. 
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Finally, the general solution of Laplace equation in region II can be presented in 

the following form: 

<pn{p,z) = \ A(a)K(J(ap)cos(az)da (14) 

Now let us consider the solution in region I. First we find the solution of the 

homogeneous equation 

V > , - * > , =0 (15) 

This equation, similar to equation (1), admits variable separation. Let V - R(p)Z(z). 

After transformations this equation is reduced to two equations, which are similar to 

equations (8) and (9)-

1 d2Z 

Z dz-

p d 

R dp 

-a 

< dR^ 

v dpj 
2/j 2 2\ 

= p (k~ +a ) 

(16) 

(17) 

Because of the similarity of the boundary conditions for equations (8) and (16) 

along the z axis the solution of equation (16) is Z(z) = A(a)cos(a z ) . 

The substitution v-ylk2+a2 reduces (17) to the modified Bessel's equation 

(11) with general solution of the form (12). So, general solution <pI0 of homogeneous 

equation (15) can be presented in the form: 

<pl0(p,z) = ] B(a)K0(pylk2 +a2) + C(a)I0(p-Jk2 +a2) cos(az)da (18) 

A particular solution cp/ r of inhomogeneous equation (2) is 

P,AP>2) = qe (19) 

The integral representation of this solution is: 

<pp (p, z) = — j Kg (pjk2 +a2) cos(az)da 
7T£, o 

(20) 



9 4 

General solution of equation (2) can be written as a sum of a particular solution of 

this equation and general solution of homogeneous equation: 

<p,(p,z) = j B(a)K0(pJk2 + a2) + C(a)I0(pJk2 +a2) 

—— j K0 (pjk2 + a2) cos(az)da 

cos(az)da + 

(21) 

Tie, o 

Since the last term in this formula represents singular part of the potential 

associated with the charge there should be no other singularity in the solution and we 

have to let B=0 to eliminate K o , which is singular at p = 0. Instead of a rigorous proof of 

this assumption we wi l l obtain the solution that satisfies equations and boundary 

condition of the problem at hand. Based on the theorem of uniqueness of the solution we 

wi l l be able to conclude that this assumption is valid. 

Finally, for general solution of inhomogeneous equation (14) we get: 

<p,(p,z) = )B(a)I0(pyJk2 +a2 )cos(az)dz + — ] K0(pj k2 +a2 )cos{az)da (22) 
o 7TSi o 

Using boundary conditions (3) we come up with two integral equations, which 

can be solved for coefficient functions A(a) and B(a), which appear in general solutions 

cp, and . Finally, the solution of the initial problem is the following: 

<p, (p,z) = —±-](Kn(pylk2 + uz) + F(u)I0(pJk2 + u2)cos(zu))du (23) 
7T£l o 

where 

- u£2K0(Rylk2 + u2)K(Ru) + £, yjk2 +u2K0 (Ru)K] (Ryjk2 +u2)) 
F(u) 

£^k2 +u2I,(Ry[k2 + u )K()(Ru) + u£2 Jk2 +u2In(Rjk2 

i \ 2 r f „ , p , (/, / ? V * 2 + W )K0(Rjk: +ir) + Il) (RyJk2 +u-)Kt (Ryjk+U^) 
<pu (p, z) = -2-]K0( Ru) cos(zu))du 

n£, o It(RJk2 +u2)K0(Ru) + (us2/£lJk2 +u2)I0(Rjk2 +u2)Kt(Ru) 

(24) 
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APPENDIX B 

POINT C H A R G E NEAR MEMBRANE OF T H E 

FINITE WIDTH SURROUNDED BY IONIC SOLUTION 

Fig. A l shows the geometry of the system under consideration. 

-O 

Fig A l . Geometry of the system: point charge near membrane with finite width surrounded by ionic 
solution 

The membrane of width a and dielectric constant sm is in the salt solution with dielectric 

constant su and Debye length A=l/k. The charge q is at the distance d from the 

membrane. It is convenient to place the origin of the cylindrical coordinate system (z=0, 

p=0) on the left surface. The space is divided into three regions. Region I contains the 

solution and the charge, region II corresponds to membrane, and region III contains the 

solution on the other side of the membrane. 

Usually this type of the problem is solved by adjusting the general solutions of 

every region to the boundary conditions of the problem. 

The electric potential <p is governed by the following equations: 

in region III A(pw -K2<pw = 0 (1) 
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in region II A(pu = 0 (2) 

in region I A<pw - K2<pm = —-S(r - r 0 ) (3) 

where vector ro corresponds to the position of the charge. 

The problem is clearly axisymmetric and solution cp wil l be independent of the 

polar angle. The general solutions of (1) - (3) vanishing at the infinity and represented in 

cylindrical coordinates (z,p) become: 

co 

<pni = \A3(a)J0(ap)e-'a2+k2:da (4) 

CO CO 

(p„ = JB2(a)J0(ap)ecada + ^D2(a)JQ(ap)e~a:cia (5) 

<P,=± , g / , + k\(a)J0(ap)e"a2+k2=da (6) 

where Jo is the Bessel function of the first kind, and A 3 , B 2 , D 2 , C i are arbitrary 

coefficients. 

In expression (6) for <p, the first term is a particular solution of inhomogeneous 

equation, which represents the screened potential of the point charge. It can also be 

written as an integral from the Bessel function with the use of the following relation: 

-A \ p a \ h 

C, , , = \aJ0{ap)^j=—==da (7) 

In order to specify the arbitrary coefficients of the general solution boundary 

conditions must be satisfied. In cylindrical coordinates we have: 

at the interface between regions I and II (z=0) 
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(10) 

d(p,{p,z) 
= s. 

(11) 

2=0 

at the interface between regions II -III (z=a) 

^ / / ( A « ) = ^/ / / (A«) (12) 

d(pu{p,z) 

cz 
d(pw(p,z) 

dz 

(13) 

Solutions (4) - (6) and a system of equations (10) - (13) completely determine the 

potential in all space. After simplification, system (10) - (13) is reduced to a linear 

system of equations with the arbitrary coefficients of the general solution as unknowns. 

Solution of this system determines the exact solution of the problem. The potentials are 

presented below: 

q g - ^ ^ r q «f p fi(p)(\-e-2pa) 
— k . + — k ' ; 
ea ^]p2+(z + d)2 £a lyjl + p2 \~P~(p)e 

x \+pl(z-d) dp (14) 

<P„(P-z) = — ~ k f 

2g 

B\p)e ,-J-pa 
— J0(pp)e-^P ''e"--dp 

s. 

—7J0(pp)e~"]+"~''e~''zdp 

(15) 

( V T 7 7 ^ ^ ) 2 l - ^ ( ^ 
j-J^ppy-^^e^dp (16) 
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where ^ ^ Z ^ t 

s j l + p2 +£,„p 

A l l distances here are normalized by the length X-I/K. 




