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Abstract 

in seismic exploration, statistical wavelet estimation and deconvolution are standard 

tooIs. Both of these processes assume randomness in the seismic reflectivity sequence and 

aiso make a minimum phase assumption about the actual wavelet embedded in the trace. The 

validiiy of these assumptions is examined by using well-log reflectivity sequences, synthetic 

seismic traces, and by using a procedure for evaluating the resulting deconvoIutions. With 

red data, wavelet estimations are compared with the in-situ recording of the actual waveform 

from a vertical seismic profile (VSP). As a result of these investigations, this thesis presents 

a fairly simpIe group of tests that can be used to evaluate the validity of the randomness 

and minimurn phase assumptions. From the investigations of seismic data in .Alberta, it is 

concluded that the assumption of reflectivity randomness is less of a problem in cfeconvolution 

than other assumptions such as phase and stationarity. 
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Chapter 1 

Introduction and background 

Introduction 

The processing of a digital seismic section is one of the most widely practiced activities in 

the field of exploration seismology. Signal deconvolution is a processing step that is ideally 

carried out after exponentid gain recovery and before velocity analysis. The underlying 

purpose of deconvolution is to improve data resolution (i.e. improve the ability to separate 

two features that are close together, from Sheriff (1974)) by increasing the sharpness of the 

seiwic reflections. In practice, this process attempts to shorten the seismic wavelet, broaden 

the wavelet's spectrum, remove the change in wavelet shape due to earth atering, and to 

stabilize the wavelet kom trace to trace- 

In both academia and industry, seismic data processors tend to focus on the seismic 

wavelet when considering the deconvoIution probIem because if the wavelet is reliably es- 

timated, it can generalIy be deconuolued or shaped to some desired output with a digital 



filter. Since the onset of the digital recording, a time honored tradition has arisen in that 

statistical estimation methods are used to model the seismic wavelet. Although these meth- 

ods have been in use for several decades, it was only in 1991 that Ziolkowski(February 1991, 

Geophysics) gave a scathing criticism of theis theoreticd basis. Even though these statisticaI 

methods ace tried and tested, there has been no comprehensive response to the questions 

raised by Ziokowski. The major points of contention arise Gom the vaIidity of the following 

stat erneats. 

1. The seismic reflectivity sequence is random. 

2. The seismic wavelet is minimum phase for impulsive sources and zero phase for vibroseis 

sources. 

3. The seismic wavelet is stationary. 

Ziokowski does not accept the validity of these assumptions. Furthermore, he goes on 

to propose that seismic wavelets should be modeied on data gathered From direct source 

measurements. 

The problem as it stands now is that the determination of the seismic wavelet via the 

traditional method of statistical estimation has been challenged and an alternate method 

has been suggested. This thesis wiII bring together a comprehensive and detaiIed analysis 

of the first two assumptions. The third assumption is addressed in the h1.S~. thesis of 

AIana Schoepp. AII of this will first be considered in a synthetic framework and then be 

examined with real data. The importance of this evaInation is that the increased resolution 

resulting fkom deconvolution is directly dependent on the wavelet used. Consider Figure 



1. This shows that if the wavelet is knom, then deconvolution will give consistently good 

results. Hence, the deconvolution of data is only effective if the estimated wavelet is a 

reasonable approximation of the true wavelet. To establish the best, and most effective, 

means of wavelet extraction is key to creating a more interpretable seismic section. This is 

why the assumptions of statistical wavelet estimation must be tested. The stated problem 

will be addressed in the following systematic manner. 

The first point to be investigated will be the randomness assumption. Statistical wavelet 

estimation methods assume that the reflectivity is random (i.e. the reflectivity has a probabil- 

ity of occurrence determined by a probability distribution) and this effectiveIy means that the 

seismic trace autocorrelation is approximately equal to the seismic wavelet autocorrelation. 

The random reflectivity assumption allows one to estimate the wavelet's autocorrelation, 

and consequently the amplitude spectrum, from the trace autocorrelation. This thesis devel- 

ops tests for the randomness assumption. The validity of this assumption can be tested by 

using sonic and density Iogs to compute the reflectivity for a series of geological areas. This 

wen log information wiII allow a measure of the assumption's goodness to be obtained by 

comparing waveiet estimates obtained by statistical methods, such as the Wiener-Levinson 

doubIe inverse method and the Hilbert transform method, to the information gained fiom 

the well log. This wefi log information will allow a measure of the assumption's goodness 

to be obtained by comparing statisticd wavelet estimates to the actual wavelet in the case 

of model data and to information from Iogs or vertical seismic profiles in the case of red  

data. The comparison w3.t consider how the tracers autocorrelation reIates to the known 

witveIet3s autocorrelation. Then investigations into how this reEation Wers  when statistical 



wavelet estimates are used will be done. For synthetic data, a companion of the model 

wavelet and wavelet estimates obtained by this assumption will be made. It is expected that 

the randomness assumption for a reflectivity sequence will be closely tied to the lithology 

of an area. That is to say, if an exploration area has periodic physicd properties, then its 

reflectivity will not be random. The reflectivity sequence, in this case, violates the random- 

ness assumption because the periodicity of physical properties implies periodic (not random) 

reflections occurring on a seismogram. The present met hods, under the assumption of ran- 

domness, mould be told to interpret these events as multiples and remove them. This is not 

the desired effect since processing hopes to image the geology, not obscure it. The end result 

is a simple test that can be performed on the data to see if there are significant amounts of 

periodicity which make the randomness assumption invalid. One such way of testing data 

for randomness is to deconvolve the data with the estimated wavelet and compare the output 

to the reflectivity derived from well log data or known from a model. The comparison wiil 

be done by cross-correlating the reflectivity with the deconvolution output. A 100% perfect 

deconvolution will have output that cross-correlates with the reflectivity to give a spike. 

Therefore, it can be said that if this crosscorrelation value is within a scale factor of the 

spike, then the data is random. The exact determination of the scale factor s h d  result from 

the investigation of various cases. Practically, this ideal is not often the case since there may 

be extraneous energy (side lobes, muItiples, etc ...) present. Other avenues to be explored 

with synthetic data include the use of various known wavelets and the use of a reflectiviw 

sequence (a signal that consists of ody primary arrivaIs) instead of an impulse response (a 



signal that contains primary and multiple arrivals). 

The next issue to be discussed is the problem of estimating the phase spectrum. The 

randomness assumption allows for the estimation of the wavelet's amplitude spectrum, in 

order to completely define the wavelet, the phase spectrum is also required. The phase 

spectrum is often determined by using a minimum phase wavelet (for dynamite sources) 

or a zero phase wavelet (for vibroseis sources). The critical role of phase estimation in 

deconvolution can be estabiished by making comparisons between wavelet deconvolutions 

that make different phase assumptions. Comparisons will allow for an evaluation of this 

minimum phase assumption. These various deconvolution results wilI be compared to the 

reflectivity sequence and evaluated. The evaluation will be done in much the same manner 

as the test for randomness in that both deconvolution outputs will be cross-correlated with a 

reflectivity. Whichever gives a result cIosest to a spike (a perfect cross-correlation is a spike) 

is the best. It is suspected that the superiority of one over the other will be dependent on 

the validity of the phase estimates. This comparison and evaluation will occur with a model 

data set because, with model data, the correct answers are known and therefore the methods 

can be objectiveIy analyzed. Speaking in a strict Iy theoretical sense, deconvoiut ion eludes 

a rigorous mathematical justification because it is the ill-posed problem of one equation 

and many unknowns. However, these series of investigations hope to evaluate how well 

these phase assumptions work in practice. To this effect, the decomlution output nrilI 

be examined for evidence of distortion, mdti-Iobed operators, and other effects that are 

inconsistent with the r d t s  of the desired deconvolution. Figure 2 demonstrates what can 

occnr in the output of a deconvoIntio~ that makes an incorrect phase assumption about 
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the seismic wavelet. Establishing the validity of the minimum phase assumption is critical 

because this is the assumption used for estimating the phase for dynamite and tuned air gun 

sources. 

Ziolkowski's criticism of the wavelet stationarity assumption is the next point to be ad- 

dressed. Nonstationarity of the wavelet is a reality. It is caused by absorption and dispersion 

effects in the Earth. These effects are caused by stirring of interstitial pore fluid and constant 

Q attenuation. If the data concerned has a nonstationary wavelet for which the assumption 

of stationarity is invalid, then the amplitude spectrum will show a shift towards the Iow- 

er frequencies with time. This implies that as empirical evaluation of the assumption will 

give a limit on the amount of time shift that can occur without violating the stationarity 

assumption. In theory, if the time varying nature of the wavelet is teaken into account, then 

the estimate of the wavelet shodd be better. This problem is addressed in Schoepp (1998) 

and a time variant method is developed. 

Outlined above is a problem statement and the groundwork for addressing the problem. 

This thesis bring the above research to fruition and evaluates the criticisms of statistical 

deconvolution- 



Figure 1.1: The result of deconvolution when the wavelet is known (&om S.E.G. inversion 
course notes, B. Russell). 

Figole 1.2: The result of deconvolution when an incorrect assumption about wavelet phase 
is made (fkorn S.E.G. inversion course notes, B. Russell). 



1.2 Background 

Exploration seismoIogists might think of the earth as being made up of rock layers that 

have differing Iithologies and physical properties. These Iayers are seismicalIy defined by 

density and seismic wave propagation velocity, as wen as attenuation factors. The product 

of this velocity and density is the seismic impedance of the layer. Impedance contrasts 

between adjacent rock Iayers cause the reflections recorded during a seismic survey. 

The recorded seismogram can be modeled as the co~volution of the earth's impulse re- 

sponse with the seismic wavelet. This impulse response of the earth is what would be 

recorded if the wavelet were just a delta function or spike. It contains the reflectivity series 

and all multiples. Ideally, deconvolution compresses the wavelet and removes multiple ener- 

gy so that only the reflectivity of the primary lithology is left in the recorded seismic trace. 

The fimdamentd assumption underlying statistical deconvolution is that of minimum phase 

because if it is assumed that the seismic wavelet is minimum phase, then its unique phase 

spectrum can be determined from an input seismic trace. It is because of this (as well as 

other assumptions) spiking deconvolution is not always desirable. 

Deconvolution improves temporal resolution by compressing the besic seismic wavelet. 

It is normally applied before stack but it is also common to perform deconvoIution on post- 

stack data. After a proper deconvoiution, the prominent reflections from interface boundaries 

are more distinctive because of the compressed waveform and the reduction in the section's 

ringiness. 



1.2.1 The convolutional model 

A number of assumptions are made to simplify the earth imaging problem described in 

this work- Six of these are mentioned here and in subsequent areas. The fist  two of these 

are as follows. 

Assumption 1 The earth is comprised of ho~nzontally deposited [zthologrcnl layers that ex- 

hibit constant velocity. 

Assumption 2 An impuis2we seismic source generates a conrpressionol pressure ,wave (P- 

wave) that impinges on lithological layers at normal incidence (i.e., perpendicular to hori- 

zontal layer orientation). Ph ysicolly, this causes no shear waves (S-uraues) to be generated 

as the waveform passes across layer boundaries. 

*Assumption I is violated in structurally complex areas, such as the foothills of the Cana- 

dian Cordillera, and areas that contain gross lateral facies changes. The second of these 

assumptions implies that zero-offset data must be used but this is a problem since the 

zero-offset is rarely, if ever, recorded. Both of these assumptions imply that the reflection 

coefficient c, for pressure or stress, for the waveform moving from Iayer 1 to Iayer 2 can be 

defined as c = ~~;: :~~, where p and u are the densities and velocities of the layers being 

considered. Assuming a density invariance with depth, within the layers, gives the following 

approximation c = E. The reflection coefficient is seen as the ratio of the change in 

velocity to hRice the average velocity. 

The P-wave created by an impulsive source is cded  the signature of the source. 

signatnres are band-Iimited waveIets of finite duration. This Ieads into the next assumption 

that must be made before an earth model can be put forth. 
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Assumption 3 The source wavefon does not change as it trnuels in the earth's subsurface. 

That is to soy, the seismic source signature is stationary. 

With these three assumptions, the convolutional model of the earth can now be written as: 

where x(t) is the recorded seismogram, w(t)  is the seismic source signature, e ( t )  is the impulse 

response of the earth, and n(t) is random noise. The process of deconvolution being discussed 

seeks to undo this convolution that occurs in the subsurface in order to recover e ( t ) .  To this 

end, several more assumptions are made. 

Assumption 4 The random noise component in a recorded se imogmm is zero or  can es- 

sentially be reduced to zem by processing. 

Assumption 5 The seismic source signature, or  waveform, is known. 

Again, these assumptions are generally invalid. However, if the latter holds, then the solution 

to the deconvolution problem is deterministic. Otherwise, the process has only a statistical 

solution. In the normal nm of seismic processing, the signature is rarely known. To ease 

this assumption, and yet still be able to recover e( t ) ,  the following assumption is made. 

Assumption 6 The reflectiwity of the earth's subsurface is a random process. This means 

that the recorded seismogmm and the seismic source signature hove autocor~e~dions and 

amplitude spectra that are identical to within a scale factor. 



Inverse filtering 

If there is a filter o(t) such that e ( t )  = a( t )  * x( t ) ,  then the convolutional model of the 

earth becomes x(t) = ur(t) * a(t) * x ( t ) .  This model uses the assumption that the noise 

component is negligible or zero. Simplifying this equation by eliminating x ( t )  gives 

1 if t equals 0, 
d ( t )  = ,w(t) * a(t)  = 

(0 elsewhere. 

The function b(t) is the Kronecker delta function and the above simplification implies a( t )  = 

b(t) * u~'(t), where tul(t) is the inverse wavelet. This means that the operator required to 

recover the earth's impulse response from a recorded seismogram is the inverse of the seismic 

source signature. Inverse filtering is a form of deconvolution when this source signature is 

known. This type of deconvolution is said to be deterministic. Hence, the solution to the 

deconvolution problem is deterministic (i.e. predictable) when the source wavelet is known. 

One way to recover the reff ectivity in this case is to transform the seismic trace and known 

wavelet to the frequency domain (via the Fourier transform) and divide. If there are zeros 

in the transform of the wavelet, then a stabiliw factor E is added to the zero and near zero 

d u e s -  

1.2.3 Least-squares inverse fiItering 

The cumulative energy of the error1 L, is defined as the sum of the squares of the differ- 

ences between the coefficients of the actual and desired outputs. Consider a filter (a, 6 )  and 

an inpnt mvdet (c, d ) .  The convolution of the two gives the actnd output, (ac, ad + bc, bd) . 



In addition, say, the desired output is (e, f,g). Then, the cumulative energy of the error 

between the actual and desired output is L = (ac - e)2 + [(ad + bc) - f I 2  + (bd - g)2. To 

minimize the error between these coefficients requires that the variation in L with respect 

to the filter (a, b) to vanish. The computation of L dows  for a quantification of goodness. 

If the desired output has an energy distribution that closely resembles that of the convolved 

input series, then the error is reduced. 

1.2.4 Minimum phase 

Wavelets are transient waveforms with a finite duration. They can be minimum, maxi- 

mum, or mixed phase. A minimum phase wavelet has most of its energy at the onset of the 

time series, while a maximum phase wavelet has most of its energy at the end of the time 

series. Mixed phase wavelets have their energy distributed throughout the time series. In 

addition, a wavelet is reaiizable if is finite in length (i.e. a finite time series) and is causal 

if it is zero for aU negative times. Hence, a minimum phase wavelet is one that is minimum 

phase, reaIizabIe, and causaI. These kinds of waveIets have the Least energy delay. 

Mathematicdy, a stable inverse means that the filter coeEcients make a convergent 

series. That is, they decrease with increasing time and vanish at infinity. This means 

that a stable inverse Mter has finite energy. Minimum phase wavelets have stable inverses 

but maximum and mixed phase waveIets do not. This Leads to the following, and final, 

assumption. 

Assumption 7 The seismic source wavelet is minimum phase and has a #minimum phase 

inverse. 



Some examptes of proven minimum phase phenomena in exploration geophysics are the 

transmission response of layered media (Robinson and Tkeitel, L980) and the attenuation 

1aw of Futtennan (Futterman, 1962). 

1.2.5 Optimum Wiener filters 

The general Form of the matrix equation for an optimum Wiener filter of length n is 

RZ = 3, and the process R-LRa' = R-'g'solves for Z. in expanded Form (from Robinson and 

TreiteI, 1980): 

where R is the autocorrelation matk of the wavelet which is a symmetric Toplitz matrix, a' 

is the desired deconvolution filter vector (the vector components are the desired deconvolu- 

tion filter coefficients), and ij is the crosscorrelation vector of the input and desired output. 

When soIving for Z, the Toplitz nature of R is exploited by the Wiener-Levinson algorithm 

to compute the inverse in an efficient manner. The Wiener Hter Z is optimal in the sense 

that it Ieastsquares minimizes the energy of the error between actual and desired outputs. 



Ty-picdyt the desired output is one of the following: 

a spike at arbitrary lag, 

a time advanced form of the input series, 

a zero-phase wavelet, 

a or any desired arbitrary shape. 

spiking deconvoIution 

When the process of determining an optimum Wiener filter requires that the desired 

output be a zero-lag spike, it is called minimum-phase spiking deconvolution. In spiking 

(or statistical) deconvolution the autocorrelation matrix is computed &om the recorded seis- 

mogram, while in the case of least-squares inverse filtering (or deterministic deconvolution) 

this matrk is computed directly from the h o r n  source wavelet. If the input wavelet is 

not rn.inimum phase, then the spiking deconvolution cannot shape the output to a perfect 

zero-lag spike. This is the pitfall of the minimum phase assumption. 

To insure nmericd stability (i.e. prevent division by 0) when computing the inverse 

EIter, an aztificid IeveI of white noise cded prewhitening is introduced to the data before 

deconvoIuti~n. This is achieved by adding a constant to the zero-lag of the autocorreIation 

h c t i o n  or to the diagonal of R. 



shaping Hters 

For any given wavelet, a series of delayed spikes can be produced as desired output. The 

leastsquares error can then be plotted as a function of delay. The delay, or lag, with the least 

error is defined to be the desired spike output. Using this spike as the desired output will 

resdt. in general, in the Wiener filter producing the most compact result. Wavelet shaping 

with a spike as the desired output is a special case of shaping deconvolution. Generally 

speaking, however, shaping deconvolution inciudes deconvolutions whose desired output is 

something other than a spike (a narrow Gaussian, for example). In the industly jargon, 

wavelet shaping filters that result in zero-phase wavelets are called clephasing operators 

and the process of converting a wavelet to zero-phase is called dephasing (i.e. the desired 

wavelet is the zero-phase wavelet that could be found from the amplitude spectrum of the 

input wavelet). 

If the input wavelet is the recorded source signature, then wavelet shaping is called 

signature processing. Wavelet shaping requires a knowledge of the input waveiet. The term 

wavelet processing generaIly refers to estimating the embedded w'dveIet in the seismic data, 

designing a filter to shape the wavelet to the desired form, and applying the Hter to the 

seismogram. 

Minimum phase wavelets have optimal delay at zero, while madmum phase wavelets have 

optimaI deIay at wavelet length. To delay the desired spike output, apply a constant time 

shiR to a delayed spike result. Mternatively, shift the shaping filter as much as the deIay in 

the spike and then appIy it to the input data. This operator is two-sided (i.e. noncausal) 

since it has coeEcie11ts for positive and negative time dues. 



Chapter 2 

Analyzing statistical deconvolut ion 

2.1 Analyzing the randomness assumption 

The conventional assumptions of wavelet deconvolution have been criticized by some as 

being generally invalid. One focus of this research is to evduate the common assumption of 

reflectivity randomness by use of mode1 synthetics and real data. Since it is expected that 

this assumption is dependent on geology, data has been examined from various hydrocarbon 

reservoirs. 

Statistical wavefet estimation methods usually assume that the reflectivity is a random 

uncorrelated signal (that is, the reflectivity has an autocorrelation which approximates a 

deIta function) and this effectively means that the seismic trace autocorreIation, T(t)T* (2) , 

is approximately equal to the seismic wavelet autocorreIation, W (2) W* (2). The deconvoIu- 

tion of data is o d y  effective if the input wavelet is a reasonabIe approximation to the true 

wavelet. To establish the best, and most effective, means of wavelet extraction is the key 

to creating a more interpretable, high-resorution, seismic section. This is precisely why we 
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must investigate the assumptions upon which our commonly used statistical methods are 

based. The random reflectivity assumption allows one to estimate the wavelet's autocorre- 

lation, and consequently the amplitude spectrum, kern the trace autocorrelation. Hence, 

given an input seismic trace, it is possible to estimate the wavelet needed for deconvolotion. 

Four synthetic seismic sections are generated for use in this investigation. Two are created 

with a minimum phase wavelet and the remaining two are created with a zero phase wavelet. 

First to be investigated is the validity of the randomness assumption with a primaries only 

section derived from a well in central Mberta and then with a section that also incorporates 

multiples, also derived from the same well. The use of synthetic data is done because the 

wavelet used to generate the section is known and, therefore. meaningful comparisons are 

made with the statistical estimates. 

In judging the accuracy of the randomness assumption, on (model) synthetic data, a 

systematic approach is developed. Compare the trace autocorrelations with the wavelet 

autocorrelations and examine the degree of similarity- For a purely random reflectivity, 

these should be identical to within a scale factor. Subsequently, compare the estimated 

waveIet with the actual wavelet. However, it is redly the deconvolution based on the waveIet 

estimate that should be evaluated. One way to do this is to compute the convolution of the 

actual wavelet with the deconvoIution Hter for the estimated wavelet. One hopes that, this 

will produce as dose a representation of a spike as for the 6Iter computed from the actual 

waveIet. This estimation of a spike is what is referred to as a resolving kernel. That is to say, 

a resoIving kerneI is the convoiution of a wavelet with a deconvoIution mter to get an estimate 

of the ideal spike. This gives a measure of resolvability in that the convolution of a waveiet 

with a deconvoIution mter shodd - in the idea1 case of estimates that approximate the actual 



wavelet well - give a spike as the response. In addition to this, estimates of the reflectivity 

sequence are generated by convolving the synthetic seismic section with various deconvolution 

filters. This is simply the deconvolution of the input trace in that the process wiU remove the 

wavelet kom the input data and the result wil l  be an estimate of the reflectivity sequence. 

To evaluate how this estimate compares to the well-log derived reflectivity sequence, cross- 

correlate the two sequences. An ideal cross-correlation of these reflectivities will give a spike 

as the result, Hence, this can provide a measure of goodness in that comparisons between 

the similarity of the cross-correlations to a spike can be made. 

For the case of real data, the evaluation is somewhat more difficult since the wavelet or 

the reflectivity sequence is not known. However, there is access to in-situ measurements 

of the seismic wavelet if there are verticd seismic profile (VSP) data, and in some cases 

there is also sonic well data to evaluate the deconvolutions. In this particular case. there 

are vibroseis surface recordings and a VSP recorded kern a vibrator source. This allows the 

actual wavelet to be directly measured as the down-going VSP waveform. It is truncated 

to the same number of sampIes as a zero phase waveIet estimate so as to have a measured 

wavelet with a more reasonable Iength. Since there is no well-log derived reff ectivity sequence 

to act as  a control for the results, the investigation proceeds in a sIightly different manner 

than that used for synthetic data. M e a d  of comparing estimated sequences to the actual 

sequence, the resuIts are evduated with respect to how well responses are brought out and 

if the ringy nature of the d a c e  data can be suppressed. 



2.1.1 Minimum phase methods 

The estimation of minimum phase wavelets from dynamite data generally use the as- 

sumption of a random reflectivity sequence. This assumption is used so that the wavelet's 

autocorrelation can be derived horn the seismic traces's autocorrelation. Given a wavelet's 

autocorrelation or its corresponding amplitude spectrum, there is then the problem of de- 

riving its phase spectrum. For the case of a minimum phase wavelet, its phase spectrum 

is uniqueiy defined by the amplitude spectrum and can be found using either the Wiener- 

Levinson double inverse method (a time domain method) or the Wold-Kolmogorov factor- 

ization method (a frequency domain method). Both of these methods use the assumption 

of reflectivity randomness to estimate minimum phase wavelets. There is an ovenriew of 

these methods in the subsections below and detailed descriptions can be found in White and 

O'Brien (1974), Claerbout (1976), and Lines and Ulrych (1977). 

The Wiener-Levinson double inverse method 

The Wiener filter shapes a time sequence into an approximation of the desired output in 

a leastsquares sense. There is an assumption of wavelet stationarity in this method. It uses 

this assumption to minimize the square of the difference between the actual output and the 

desired outpnt by choice of a Wiener filter to get a system of nonnol equations. This system 

is as follows: 



where V t  

/ 

1 
r(n)  = - z(n + r)z(r) = input autoconelation, 1v 

I 
g ( n )  = - z(r)z(n + r) = input and desired output cross-correlation, 

1v 

f (n) = the deconvolution filter coefficients, and 

N = Iength of the input sequence. 

The inverse Wiener Hter is designed so that the wavelet estimate is shaped to a spike. This 

dows for an estimate of the impulse response of a layered earth to be computed by convolving 

the inverse Wiener Nter with the input trace. If the impulse response being estimated is 

a white noise sequence (that is7 random), then the trace autocorrelation can be repIaced 

by the wavelet autocorrelation. It should be noted that this method truncates the trace 

autocorrelation to obtain this approximation but it can also be accomplished by windowing 

the trace autocorrelation (e.g. using a Hanning window). In addition, if a zero-delay is the 

desired output, then ody the first component of the cross-correlation vector in the normal 

equations will be non-zero. A zero-delay spike for desired output is optimd if and only if 



the the wavelet being considered is minimum delay. Using these assumptions of a random 

impdse response and a zero-delay spike as desired output enables a Wiener deconvoIution 

filter to be designed without explicitly evaluating the source wavelet. Estimating the wavelet 

itseIf is done by applying the process again to invert the originaI minimum delay filter and 

now the output is the minimum phase wavelet estimate. 

The Woid-Kolmogorov factorization met hod 

This is a method where by a minimum phase spectrum is determined &om a given 

amplitude spectnun. If given an amplitude spectrum for a wavelet of length n + 1, then there 

are T wavelets with different phase spectra that will have this given amplitude spectrum. 

However, only one of these 2" wavelets will have a minimum phase spectrum. By comparing 

the naturd logarithm of the amplitude spectrum, Iog,(lW(w) I), to the natural logarithm of 

the wavelet's Fourier transform, log,(W(w)), the minimum phase spectrum can be deduced 

from the amplitude spectrum. -4s shown by Robinson (196'ib), the relationship between 

phase and amplitude is as EoIIows 

phase spectrum = 8 ( w )  

inverse Fourier transform of log, (1 tV(w)() 
& 

m t=- / F ~ C  
\ 

&- L log amplitude spectrum 

= HiIbert transform of the n a t d  logarithm of the amplitude spectrum. 

(2.2) 

The inverse Fourier transform, u(t),  of Iog,(W (w) )  can be written as u(t) = u, (t) + v.(t). 



These components are the even and odd parts of v(t) and the even component, ue(t), is 

the inverse Fourier transform of the log amplitude spectrum, log,(l W ( w )  1). Requiring that 

w(t) be minimum phase means that v(t) is causal and this causality means that uo(t) = 

u.(t)sgn(t). The Fourier transform of v,(t) is the sine t r d o r m  -9 xzT sin(wt)v,(t). 

Computing this gives Im[log,(W(w))] and this is the phase spectrum 8(w) .  The entire 

process, just described, is essentially equal to that which is shown in Equation 2.2. This 

equation is used instead of said process because of the computational speed advantage gained 

when using the fast Fourier transform (FFT). 

The phase spectrum, 8 ( w ) ,  can also be computed in the frequency domain by the con- 

volution of Iog,(lW(u)l) and the Fourier transform of sgn(t). This convolution is essentially 

a Hilbert transform and is the reason why the Wold-Kohogorov factorization method is 

commonly referred to as the Hilbert transform method. This method is equivalent to the 

Wiener-Levinson double inverse method if the Wiener filter has an infinite number of filter 

points and if the wavelet is considered to be a transient time sequence of finite energy. 

2.1.2 Zero phase methods 

The previous section revolves around minimum phase wavelets. h o t h e r  common type 

of waveIet is the zero phase waveiet. When compared to minimum phase wavelets, these zero 

phase wavelets are symmetrical and are very broad banded in the frequency domain. That 

being the case, investigations are made into the changes that may occur when a zero phase 

wavelet is used in the reflectivity analysis. The zero phase wadets in this study are Ricker 

and KIander wavelets that have 30Hz as the dominant kequency- Besides the fact that now 



there is a zero phase wavelet, nothing eke changes and the analysis proceeds in the same 

manner as for minimum phase wavelets. 

KIauder wavelets 

Vibroseis is based on a concept fiom chirp radar (Klauder et al., 1964) which was adapt- 

ed for seismic exploration by Conoco researchers. The source signature, s@), sent into the 

ground by a vibrator is a lengthy sweep of frequencies. As described by Ristow and Jurzyk 

(1975), the recorded trace, y (t), can be considered as the convolution of s(t)  with the reflec- 

tivity, r( t ) ,  and some earth filter, e ( t )  . That is to say, y (t) = s ( t )  * e ( t )  * r( t )  . The correlation 

of this recorded trace with the input trace produces 

Here the autocorrelation of the input sweep s ( - t )  * s ( t )  produces a zero-phase wavelet ur(t), 

which is ako known as the Klauder wavelet. 

2.2 Analyzing the phase assumptions 

The next, and more problematic, issue of concern is that of phase. .As stated in the back- 

ground section, a ftmdamentd assumption that is made about the seismic source signature 

(or seismic waveIet) is that it is minimum phase for impulsive sources. While this assump 

tion is essential to the process of statistid signature deconvoIution, it is generdy accepted 



as  being invalid. That being the case, it is essential to determine how poor this minimum 

phase assumption for the seismic wavelet is. In practical terms, it would be worthwhile to 

know how this assumption affects the deconvolution. To that end, a three pronged approach 

is taken. 

Firstly, the effect of assuming that the wavelet is minimum phase will be investigated 

with respect to resolving kernels. That is, wavelets of various phase will be given as input 

to an optimum spiking deconvolution program. This program will determine the optimum 

spiking position based on the input wavelet and then generate a resolving kernel that is the 

convoIution of the input wavelet and the deconvolution filter predicted kom it. Two model 

wavelet scenarios shall be considered. For both of these models, four waveiets (model wavelet 

and three permutations) shall be investigated: a model minimum phase wavelet, a mixed 

phase wavelet (permutation), another mixed phase wavelet (permutation), and a mit,uimum 

phase wavelet (permutation). 

After analyzing the resolving kerneIs, the investigation will focus on how the minimum 

phase assumption affects trace deconvolution. Again, the two scenarios that will serve as  

models to investigate are the wavelets discussed above. For each of these, synthetic seismo- 

grams will be generated by convolving the wavelet and permutations discussed above with a. 

primaries o d y  reflectivity sequence. These synthetics will then be used to estimate Hilbert 

transform and Wiener-Levinson minimum phase wavelets. -After this, the wavelets estimated 

from the synthetic trace will be used to generate deconvoIution fiIters. ConvoIving these fl- 

ters with the synthetic trace will give two estimates of the reflectivity sequence used to make 

the trace. By comparing the three (the actual reflectivity sequence and the two estimates), 

the effect of the mi.nhaum phase assumption wiII be evaluated. The use of noise-free se- 



quences is to show how phase effects trace deconvolution in its simpIest case. As complexity 

in the trace increases (i.e. muitiples, noise, etc . . .) , the effect of phase compounds. 

Finally, there will be an investigation of a proposed test for phase. Here, carious synthet- 

ic sections are used to statistically compute deconvolution filters. Then the actual wavelet 

that is used to make the section in question dl be convolved with the estimated Nter. 

Comparisons of these results to the ideal result of a spike will allow for further evalua- 

tion of the minimum phase assumption made about seismic wavelets. Model 1 uses the 

mbimum phase wavelet (-1.1 + ~)~(1.75 + z ) ~ ~ ,  its selected pennutations, and a primaries 

only reflectivity sequence. Model 2 wiU show results involving the minimum phase wavelet 

(-1.35 + r)*(1.5 + z)~', its selected permutations, and the same reflectivity sequence from 

model I. 



Chapter 3 

The randomness assumption 

3.1 A proposed test for the randomness assumption 

-4.n extensive analysis of the assumption that the reflectivity sequence is random has led 

to the deveiopment of two tests for randomness. These two tests to check the validity of 

the randomness assumption are fairly simple and easy to apply. The first of these tests 

uses a resoIving kernel to evduate the randomness assumption while the second test uses a 

well-log derived reflectivity sequence to evaluate the goodness of the assumption. To FoIlow 

are Bow charts that outline how these tests work and then there are pseudocodes for the 

tests themselves. 



INPUT: seismic trace / INPUT: actual wavelet I I 

Use trace to compute 
wavelet estimates 

I I Estimate the Wiener 
demnvolutFn filter 1 

I 

Convolve the actual model wavelet 

deconvolution filters. 
I with the statistically estimated , 
I 

COMPARE RESOLVING KERNELS I 
TO THE DESIRED OUTPUT SPIKE 

Figme 3.1: Test for reflectivity assumption's effect on waveIet deconvolution. 



Compute statistically 
estimated wavelet 

INPUT: seismic trace 

Estimate the Wiener 1 
I 

1 l ~ ~ ~ ~ . . r e f l e c t i v i t ~  derived I 
from well logs 

, I I 

I deconvolution filter I 

Convolve the seismic trace with / 
the statistically estimated 
deconvolution filter. i I 

COMPARE DECONVOLVED TRACE 
TO THE DESIRED REFLECTIVITY 

Fignre 3.2: Test For reflectivity assumption's &ect on trace deconvoIution. 



BEGIN: A validity test for the random reflectivity assumption. 

for each seismic section & -- 

compute desired statistically estimated ~wavelet w (n) , or -G 

compute deconvolution filter f(n), or A based on w(n) ; 

compute the resolving kernel; 

compare to the desired outpvt delta /unction end do 

where 

proc cu' = (R-Lij) - L,  R is the autoco~elotion mot+ of the trace s(n) ;  

proc /t= W-Lg, W is the autocorrelation mat& of the a.mc~elet; 

proc resolving kernel n Vnln 2 Otur(n) + f (n) = ~ : z f  w ( r )  f (n - r) .  

END 

BEGIN: A well-log validity test for the random reflectivity assumption. 

for each seismic section & -- 

compute desired statistically estimated .wavelet w(n), or 13; 

compute deconvolution filter f (n) ,  or f based on w(n); 

compute the tmce deconvolution; 

compare to the well-log derived reflectivity sequence end do 

where 

proc G = (R-%j)-', R is the autocorrelation mdriz  of the trace s(n); 

proc f = W-Lfr W is  the autocorrelotion m o t k  of the wavelet; 

proc tmce deeonvolvtion G Vn(n 2 0, s(n) + f (n) = CE: s ( ~ ) ) f  (n - TI.). 

END 



44 

The remaining sections of this chapter present a comprehensive set of results regarding 

the investigations on the randomness assumption. Figures 3.3 through 3.14 illustrate the 

analysis on minimum phase synthetic sections. Following these are the analyses for the zero 

phase sections and then the work on real data is displayed. 

3.2 Ideal minimum phase synthetic data 

Shown in Figure 3.3 is a synthetic seismogram that contains ody the primary reflections. 

That is to say, no multiples have been computed. Along side this seismic section is the 

minimum phase model wavelet used to create it. It is this wavelet that is convolved with a 

well-Iog derived reflectivity sequence to generate the synthetic to be analyzed. Note several 

important reflections between 50 and 100, I00 and 150, and again between 150 and '200. 

The Wiener-Levinson and Hilbert transform methods base their minimum phase stat istical 

waveiet estimates on an input seismic section. These statistical estimation methods use 

the trace autocorrelat ion to reproduce the wavelet autocorrelation under the assumption 

that the trace autocorrelation is approximately equal to the wavelet autocorrelation. This 

requires that the reflectivity sequence be random. There is significant simiIarity between the 

two plots of trace and waveIet autocorrelations shown in Figure 3.2. The close similarity 

Iends support to the claim of randomness. Now consider the image in Figure 3.5. Here 

is a comparison of the actual model wavelet and two common minimum phase wavelets. 

The HiIbert estimate is created from a frequency domain method and the Wiener-Levinson 

estimate is generated from a time domain method. 



Figure 3.6 illustrates the concept of a resolving kernel. That is to say, a resolving kernel 

is the convolution of a model wavelet with a deconvolution filter to get an estimate of the 

ideal spike. This gives a measure of resolvability in that the coevolution of a wavelet with 

a deconvolution filter should (in the ideal case of estimates that approximate the actual 

wavelet) give a spike as the response. The deconvolution filter from the model wavelet gives 

a clean spike. This is to be expected. What is interesting is that the convolutions of the 

model waveiet with the statistically estimated filters give vety good representations of a 

spike. The result with the Hilbert transform filter has a little noise in the tail and the result 

from the Wiener-Levinson filter has minute amounts of noise in the t d .  

In Figure 3.7, the ability of the statistical methods to reproduce the actual well-log 

derived reflectivity sequence is evaluated. M n g  the filters based on statistical estimation. 

estimates of the reflectivity are generated by convolving the synthetic seismic section with 

the various filters. This is simply the deconvolution of the input trace in that the process 

wiU remove the wavelet from the input data and the result should be the reflectivity. Notice 

that these deconvolutions are good reproductions of the actual sequence in question. Some 

things to note are that the estimated reflectivities are a bit smeared and that the estimates 

have a slight delay. Some significant events that cordate &om the actual sequence to the 

estimated sequences can be noticed just before 50, between 50 and 100, and at about 150. As 

mentioned before, these events are a bit delayed on the estimates and appear out of phase. 

At this stage, the goodness of these reflectivity estimates are examined. Ideally, cross- 

corrdation of the estimated reflectivities with the true reflectivity will give a spike as the 

result. Hence, the simiIarity ofthe cross-correIation to a spike provides a measure of goodness 
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for the deconvolution. Figure 3.8 shows such a result. Both of the cross-correlations show 

a spike that is many magnitudes greater than the minor amounts of noise that occur later 

in the trace. These are accurate estimations of the reflectivity. Notice, again, that there 

appears to be a slight delay in the cross-correlation with the HiIbert transform estimate. 



Figure 3.3: -4 primaries only minimum-phase synthetic trace and the model wavelet. 

Figure 3.4: The trace autocorreIation and the model waveIet aatccorrelation. 





. . . . . .  ; ; ; ; ; ;  
/ F I F F ~ l l l l  
I , , ,  I . ?  I I I , ,  m ,  . P  . 

a o 4 i t : i : , i i t ;  
A - - 

Tncs Deconvolulion with HUbmt m k  

Figure 3.7: The actual well-log derived reflectivity series, the Wiener-Levinson reflectivity 

series estimate, and the Hilbert transform reflectivity series estimate. 
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Figure 3.8: Cross-correlation of the actuaI reffectmity series with the Wiener-Levinson re- 

flectivity series and the HiIbert transform reflectivity series. 
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3.3 Impulse response minimum phase synthetic data 

Now the same andysis is conducted for a synthetic seismogram that contains multiples. 

This section is created in the same manner as above but multiples have been added by the 

method outbed by Robinson (1967). The inclusion of multiples in a synthetic seismic section 

generally worsens the whiteness assumption. -\gain, as an initid test, the trace and wavelet 

autocorrelations are compared (Figure 3.10). There is no significant difference between the 

two except that the trace autocorrelation seems to have the onset of a doublet near its 

end. The very close similarity between the trace and wavelet autocorrelations lends further 

support to the validity of the randomness assumption. Figure 3.11 shows the Wiener- 

Levinson and HiIbert transform estimates based on an input trace with multiples. Even 

though the whiteness assumption is worsened with multiples in the section, the resolving 

kernels (Figure 3.12) for the estimated wavelets are very goocl approximations to the expected 

spike response. The final 2 plots concerning this seismic section relate to the reflectivity 

sequence. Figure 3.13 compares the actual reflectivity to the estimated sequences. These 

estimated reflectivity sequences are quite good reproductions of the actual reflectivity. Once 

again, the estimated results are a bit smeared, due to the band Limited nature of the seismic 

data, but there is no delay present. This causes events at 50, between 50 and 100, and at I50 

on the actual sequence to correlate better to the same events on the estimated sequences. 

As above, the h a 1  image shown here is a comparison of cross-correiations. Both of these 

are very reasonable to the ided r e d t  of a spike. 



Actual Wavslet 

Figure 3.9: A primaries with multiples minimum-phase synthetic trace and the model 

wavelet. 

Figure 3.20: The trace autocorrelation and the model wavelet autocorrelation. 
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Figure 3.11: The model wavelet, a Wiener-Levinson double inverse (WLDI) estimate of the 

wavelet, and a Hilbert transform estimate of the wavelet. 

Figure 3.12: Model, Wiener-Levinson, and EEilbert waveIet deconvolutioos. 
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Figure 3.13: The actual well-log derived reflectivity series, the Wiener-Levinson reflectivity 

series estimate, and the Hilbert transform reflectivity series estimate. 

Figure 3.14: Cross-correlation of the actual reflectivity series with the Wiener-Levinson 

reflect;ivi@ series and the Hilbert transform r d e c t ~ t y  series. 



3.4 Ideal zero phase synthetic data 

Another common type of wavelet is the zero phase wavelet. When compared to minimum 

phase waveIets, these zero phase wavelets are symmetrical and axe very broad band in the 

frequency domain. That being the case, an investigation into the changes that may occur 

when a zero phase is used in the reflectivity analysis is done. h zero phase Ricker 

wavelet that has a dominant frequency of 30Hr is created to be the ideal model wavelet. 

Besides the fact that a zero phase wavelet is being used as the model. nothing else has 

changed and the analysis proceeds as before. The figures shown in this section concern 

investigations for a primaries only zero phase synthetic while those in the following section 

show results for a zero phase synthetic that contains primary and multiple arrivals. 



Figure 3.15: A primaries only zero-phase synthetic trace and the model Ricker wavelet. 

SyntMc trace r utoeambtfon 

Figure 3.16: The trace autocorreIation and mode1 Ricker wavelet autocorreIation. 



Figure 3.17: The model wavelet and a KIauder zero-phase estimate of the wavelet. 

Figure 3.18: Ricker and EClatxder wavelet deconvo~utions. 
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Figure 3.19: The actual well-log derived reflectivity series, the Ricker band limited reflec- 

tivity series estimate, and t he Klauder refi ectivity series estimate. 

Figure 3.20: Cross-correlation of the actual reflectivity series with the Ricker band limited 

reffectiviw series and the EUauder refIectivi@ series. 



3.5 hpulse response zero phase synthetic data 

From Figures 3.15 - 3-26, note that the general trends discussed previously continue. 

Notice, in Figure 3.16 and Figure 3.22, that the trace autocorrelation and the wavelet au- 

tocorrelation are quite similar. Also note that the Klauder zero phase wavelet estimates, 

shown in Figures 3.17 and 3.23, are nearly identical to the model Ricker wavelet. Despite 

these similarities, some points of discussion arise. Figure 3.28 shows, for the 1'' zero phase 

synthetic, that the Klauder and Ricker wavelet deconvolutions spike at different positions. 

Namely, the Klauder wavelet deconvolution has a spike that lags behind the spike seen for 

the Ricker wavelet. This lag is also evident in Figure 3.19, where the band limited reff ec- 

tivity estimates are compared. It shows that events on the Klauder reflectivity sequence lag 

behind events on the Ricker reflectivity sequence. Figure 3.23 illustrates the close correlation 

between the Ricker wavelet and the KIauder estimate based on the zero phase synthetic with 

multiples. Their deconvolutions (Figure 3.24) spike at  the same positions and are effectively 

identical. This similarip is also reflected in Figure 3.25. Here, the band limited reflectivities 

are shown and they too axe effectively identical. 



Figure 3.21: A primaries with multiples zero-phase synthetic section and the model Ricker 

wavelet used to create it. 

Figure 3.22: The trace antocorrelation and the Ecker wavelet autocorreIation. 
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Figure 3.23: The model wavelet and a Klauder zero-phase estimate of the wavelet. 

Figure 3.24: Ricker and KIauder wavelet deconvoiutions. 
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3.6 htegration of VSP data with Vibroseis data 

With the battery of tests on synthetic data concluded, the focus is now turned to an 

analysis on a real data set. The data set comes to CREWES through a gracious donation 

from PanCanadian Petroleum and is from a field in Alberta, Canada. Shown in Figure 3.27 

is a near offset surface recording of real data shot with a vibroseis source and the d o m  

going vertical seismic profile (VSP) waveform. The VSP is also shot with a vibroseis source 

and it is this down going VSP waveform that is the in-situ measured wavelet. It, the in- 

situ wavelet, is a direct recording of the transmission energy. One thing to note about the 

waveform is that it: apparently, is illustrating a time varying nature. This violates the major 

assumption of the wavelet being stationary. Shown in Figure 3.28 is the autocorrelation 

of the reflected wave surface trace and the autocorrelation of the total down going VSP. 

The close similarity between the autocorrelations lends support to the assumption of a 

random reflectivity sequence. The direct measured wavelet is truncated to the same number 

of samples as a zero phase wavelet estimate. This gives a measured wavelet with a more 

reasonable length. A comparison of the two is shown in Figure 3.29. When plotted on the 

same scale, noticeable differences exist between the measured wavelet and the KIauder zero 

phase wavelet estimate. The most pronounced of these differences are in wavelet phase. 

It appears that the estimated waveIet is about 180 out of phase from the in-situ wavelet. 

This means that whenever there is a trough in the measured mveIet, there is a peak in the 

estimate. Also note what can be best described as difference in symmetry. What is meant 

by this is that the estimate is a typical zero phase wavelet in that it is symmetric about its 

major peak. However, this is not what is seen in the tnmcated measured wavelet. There is 



no symmetry about the major trough. In fact, it appears as if the in-situ measurement is 

a delayed minimum phase wavelet of sorts. .Although there are these significant differences 

between the two, the autocorrelation of the real seismic trace data is quite similar to the 

autocorrelations of the truncated and estimated wavelets (see Figure 3.30). The wavelet 

autocorrelations themselves are also quite similar to each other. Collectively, this reinforces 

the belief that trace and wavelet autocorrelations are approximations of each other and, 

hence, the reflectivity is random. Resolving kernels for the deconvolution of the different 

wavelets (in-situ, in-situ truncated, and statistical zero phase) are shown in Figure 3.31. 

.MI three give good, relatively clean, spikes but the spikes all occur at different positions. 

These different spiking positions may imply that the phase differences and nonstationarity 

of the waveIet itself are important. That is, the different spiking positions may be due 

to different phases and the nonstationary nature of the wavelet. The haI figure, Figure 

3.32, relates to how well the deconvolution filters work. Since there is no well log derived 

reflectivity sequence to act a s  a control for the results, we proceed in a slightly different 

manner. Instead of comparing estimated sequences to the actual sequence, me evaluate the 

results with respect to how we1 responses are brought out and if the ringy nature of the 

surface data can be suppressed. Note that the deconvoIution result From a Hter based on 

the KIauder zero phase wavelet estimate best reduces the ringiness and responses are very 

clear. 
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Figure 3.27: Near offset d a c e  data and the in-situ measured wavelet (down going VSP) 

Figare 3.28: Near offset trace autoconeIation and in-situ wavelet autocorreIation 



Figure 3.29: Truncated measured wavelet and a KIauder zero-phase wavelet. 

Figure 3.30: Near oftket trace autocorreIation, truncated wavelet autocorrelation, and K- 

lauder wavelet autocorre1atioa- 





Chapter 4 

The phase assumption 

4.1 Proposed tests for the phase assumption 

An e-xtensive analysis of the phase assumption made in statistical deconvolution has 

led to the development of two tests for phase. The first test to check the validity of the 

phase assumption is fairly simple and easy to apply. It assumes that a trace and a wavelet 

(measured or estimated) exists. From this trace, a deconvolution filter is estimated based 

on the seismic trace. As in the previous case of the randomness test, the design of the 

deconvolution filter is based on the seismic trace since this is what is generally available in 

the case of reaI data. Then, the actual wavelet is convolved with the estimated Hter to 

produce a resolving kernel which is compared to the ideal spiking response. The resolving 

kernels simiIarity to a spike will dictate the goodness of the phase assumption being made. A 

pseudocode describing this test is outlined below. The second test involves a well-Iog derived 

reflectivity sequence. Statisticdy estimated minimum phase wavelets are created h.om the 

input trace. These wavelets are then wed to estimate minimum phase deconvoIution filters. 
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The filters are convolved with the input trace to generate reflectivity estimates. Comparisons 

of these estimates to the well-log derived reflectivity wi l l  allow one to ascertain the goodness 

of the phase assumption being made. Again, the flow charts that outline these tests (shown 

below) are followed by the pseudocode for the tests themselves. 



I 

INPUEreflectivity derived 

i from well logs 

INPUT: model wavelet 

I Convolve to form model I 

r 

I svnthetic seismic trace 1 

I I I Estimate the Wiener I 
deconvolution filter 

t t 7 

Convolve the actual model wavelet 
with the statistically estimated 
deconvolution filter. 

I 
I 
I COMPARE RESOLVING KERNEL 1 

I 

TO THE DESIRED OUTPUT SPIKE ! 
Figure 4.1: A d d i @  test of wavelet phase assumption. 



IN PUT: reflectivity derived 
from well logs 

Compute statistically 
t estimated wavelet 

f 
Estimate the Wiener i 
deconvolution filter ! i 

Convolve the seismic trace with / 
the statistically estimated 1 
deconvolution filter. 

COMPARE DECONVOLVED TRACE 
TO THE DESIRED REFLECTIVITY 

Figare 4.2: A well-log validity test of waveIet phase assumption. 



BEGIN: A validity test for the minimum phase assumption. 

for each seismic trace -- 

compute statistical estimate of deconvolvtion jitter f (n) ,  or  

using the Wiener-Leuinson method; 

compute the resolving kernek 

cornpore to the desired output delta function end do 

where 

proc f= R-Lij, R is the autocorrelation mot& of the input trace s(n); 

7=1v proc resolving kernel = Vnln 2 0, w(n)  * f (n) = z,=, ur(r)/(n - r) ,  

w(n) is the actual wavelet being considered. 

END 

BEGIN: A well-log validity test for the minimum phase assumption. 

for each seismic section 
7- 

compute desired statistics L $ estimated wavelet ,ur (n) , or cu'; 

compute deconvolution filter f (n) ,  or f: based o n  said wauelet; 

compute the trace deconvolution; 

compare to the well-log derived r e h t i v i t y  seqaence end do 

where 

proc G= (R-'ij)-', R is the avtocorreiation rnutri2- of the trace s(n); 

proc f =  W-=ij, W W the avtocorrelotion mat* of the ~urcrwelet; 

proe tmce deconvolution = Vnln 2 O,s(n) * f (n) = xzf s ( ~ ) J ( n  - T). 



These tests will be used on two model environments. Each of these models have a minimum 

delay wavelet, two -ed delay wavelets, and a maximum delay wavelet. as well as their 

corresponding synthetic traces. The remaining sections of this chapter present the model 

environments and a comprehensive set of results regarding the investigations on the phase 

assumption with these models. 



4 model 1 

Presented here and in the folIowing subsection are the two model environments where the 

mhimum phase assumption is investigated. Each of these scenarios incorporates a minimum 

delay wavelet, an end-loaded mixed delay wavelet, a Gont-loaded mixed delay wavelet, and 

a maximum delay wavelet. An end-loaded mixed delay wavelet refers to s mixed delay 

wavelet whose energy is concentrated closer to its end. h front-loaded mixed delay wavelet 

refers to a &ed delay wavelet whose energy is r n a e d y  concentrated at its onset. These 

models also contain the synthetic traces associated with each of wavelets and the reflectivity 

sequence used to create the synthetics. In addition, the minimum delay synthetic is used 

to generate two statistical minimum delay wavelet estimates and their deconvolut ion filters. 

The trace deconvolut ion investigations use these statistically estimated filters. 

Figures 4.3 - 4.6 show the various wavelets used in this model, the common reflectivity 

sequence for the model, and the associated synthetic traces. Note that the reflectivity is 

a primaries only reflectivity sequence (i-e. no multiples) and is convolved with each of 

waveIets to give the traces shown to the right. The mixed delay wavelet in Figure 4.4 is 

end-loaded, whiIe in Figure 4.5 is a front-loaded mixed delay wavelet. The tin& two images 

shown (Figures 4.7 and 4.8) are the statisticdy estimated minimum delay wavelets. Figure 

4.7 shows the model minimum delay wavelet, a HiIbert transform wavelet estimate, and 

the deconvoIution filter associated with it. This figure shows that the model wavelet and 

the Hilbert transform estimate are similar waveforms but have different time delays and the 

statistical estimate has some minor noise in its taiL Figore 48 aJso shows the mode1 minimurn 

deIay nve le t  but the statistical wavelet and its filter are generated by the Wiener-Levinson 
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method. Here, the waveforms are very dissimilar. In particular, the Wiener-Levinson double 

inverse wavelet is quite front-loaded with minimal amounts of tail energy and is extremely 

characteristic of a spike response. 



Figure 4.3: The minimum delay wavelet, (4.1 + ~ ) ~ ( 1 . 7 5  + z ) ~ ~ ,  and primaries only reflec- 

tivity sequence are convolved to give the synthetic trace to the right. 
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Figare 4.4: A mixed delay waveIet,(l - ~.Iz)~(I.?~ + i)", and a primaries only reff ectivity 

sequence are convoived to give the synthetic trace to the right. 



Figure 4.5: A mixed delay wavelet,(-1.1 + z ) ~  (1 + 1 . 7 5 ~ ) ~ ~ ,  and a primaries only reflectivity 

sequence are convolved to give the synthetic trace to the right. 

Figure 4.6: The maximum deIay waveIet,(l - l.1r)~(1+ 1 . 7 5 ~ ) ~ ~ ,  and primaries ody reffec- 

ti* sequence are convolved to give the synthetic trace to the right. 
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Figure 4.7: The actual minimum delay wavelet (Left) for this model, the Hilbert transform 

minimum delay wavelet estimate (center) for this model and the deconvolution filter (right) 

estimated horn it. 

Figure 4.8: The the actual minimum delay wavelet (left) for this model, the Wiener-Levinson 

minimum deIay wavelet estimate (center) for this model and the deconvolution Nter (right) 

estimated horn it. 



4.1.2 model 2 

Figures 4.9 - 4.14 show the various waveIets used in this model, the common reflectivity 

sequence for the model, and the associated synthetic traces. Note that the reflectivity is a 

primaries only reflectivity sequence (i.e. no multiples) and is convolved with each of wavelets 

to give the traces shown to the right. The mixed delay wavelet in Figure 4.10 is Front-loaded, 

while in Figure 4.11 is an end-loaded &ed delay wavelet. Notice that all of the model 

wavelets used here have Iarge band-widths and have very little energy distribution. That 

is, virtually all the energy is concentrated at the waveforms onset or at its end. The hal 

two images shown for this subsection (Figures 4.13 and 4.14) are the statistically estimated 

minimum delay wavelets. Figure 4.13 shows the model minimum delay wavelet, a Hilbert 

transform wavelet estimate, and the deconvolution filter associated with it. This figure shows 

that the model wavelet and the Kilbert transform estimate are similar waveform but have 

different time delays and the statistical estimate has some notable noise in its tail. Figure 

4.14 also shows the model minimum delay wavelet but the statistical wavelet and its filter 

are generated by the Wiener-Levinson met hod. Here, the waveforms are very dissimilar. In 

particular, the Wiener-Levinson dou ble inverse wavelet is quite front-loaded with minimal 

amounts of t d  energy and is extremely characteristic of a spike response with Iarge band- 

width. 
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Figure 4.1 1: -2 mixed delay wavelet ,(- 1.35 + + 1 . 5 z ) ~ ~ ,  and a primaries only reflectivity 

sequence are convolved to give the synthetic trace to the right. 
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Figure 4.12: The maximum deIay wavelet,(l - 1.35z)~(l+ 1 . 5 ~ ) ~ ~ ~  and primaries only refkc- 

tivity sequence are convolved to give the synthetic trace to the right. 





4.2 Phase effects on resolving kernels 

4.2.1 results: model 1 

Figures 4.15 through 4.18 show the resolving kernel tests for the first model minimum 

delay wavelet and its selected permutations. The minimum phase wavelet has the z-dipole 

form (-1.1 + z)*(1.75 + 2)38 md the permutations considered are: (1 - ~.lr)~(1.'75 + r)38 

(mixed delay), (-1.1 + ~ ) ~ ( l +  1.75~)~ '  (&ed delay), and (1 - l.lz)'(l+ 1 . 7 5 ~ ) ~ ~  (maximum 

delay). 

In Figure 4.15, a spiking deconvolution filter for the minimum delay wavelet is shown 

along with the wavelet itself and the resulting resolving kernel. The convolution of the Wiener 

deconvolution filter with the wavelet produces the resolving kernel shown in this figure. This 

is a sharp resolving kernel with a narrow band-width. The optimal spiking position is at 

25ms and there is insignificant energy in the tail of the kernel. If the dipoles for the lSt 

term are interchanged, the end-loaded mixed delay wavelet shown in Figure 4.16 results. 

The deconvoltrtion, in this case, produces a resolving kerneI which is almost identicd to the 

minimum phase situation with the exception being that now the optimal spiking position 

is at 4krns. Similarly, in Figure 4-17, the second mixed delay wavelet (fiont-loaded) has a 

sharp resolving kernel with narrow band-with and an optimum spiking position at 36ms. 

Figure 4.18 shows the resolving kernel result for the maximum delay wavelet. In this case, 

the kernd is sharp with a spiking position at 55772s but the kernel has a broader band-with 

than the previous three images. The general observed trend is that as the phase delay of 

the waveIet changes, so does the optimum spiking position. This is seen by comparing the 

optimum spiking positions of the various resoLving kernels. In other words, if the waveIet is 



known, the Wiener deconvolution fiiter can produce an e q d y  good resolving kernel. 



Figure 4.15: The model minimum delay wavelet, (-1.1 + ~ ) ~ ( 1 . 7 5  + z)387 its deconvolution 

filter, and its resolving kernel. The optimal spiking position is at 25ms. 

Figure 4.16: A mixed delay version of the model wavelet, (I - l.1~)~(1.75 + z ) ~ ~ ~  its decon- 

v01ution Mter, and its resolving kerner. The optimal spiking position is at 44ms. 



Figure 4.17: .Another mixed delay version of the model wavelet. (-1.1 + Z ) ~ ( I  + 1 . 7 5 ~ ) ~ ~  its 

deconvolution filter, and its resolving kernel. The optimal spiking position is at 36ms. 

Figure 4.18: The madmum delay version of the mode1 wavelet, (1 - 1.12)~ (1 + 1 . 7 5 ~ ) ~ ~ ~  its 

deconvoIution filter and its resolving kernel. The optimal spiking position is at 55772s. 



4.2.2 results: model 2 

Figures 4.19 through 4.22 show the resolving kernel tests for the second model minimum 

phase wavelet and its selected permutations. The minimum phase waveIet has the z-dipole 

form (-1.35 + Z ) ~ ( I . ~  + 2)38 and the permutations considered are: (1 - 1.352)~(1.5 + 2)38 

(mixed delay), (- 1.35 + z ) ~  (1 + 1 (mixed delay), and (1 - 1 . 3 5 ~ ) ~  (1 + 1.52)" (maximum 

delay). 

In Figure 4.19, a spiking deconvolution filter for the minimum delay wavelet is shown 

along with the wavelet itself and the resulting resolving kernel. The convolution of the 

Wiener deconvolution Elter with the wavelet produces the resolving kernel shown in this 

figure. This is a sharp resolving kernel with a narrow band-width. The optimal spiking 

position is at 36ms and there is insignificant energy in the tail of the kernei. The front- 

loaded mixed deIay wavelet is shown in Figure 4.20 rrnd the deconvolution. in this case, 

produces a resolving kernel which is almost identical to the minimum phase situation with 

the exception being that now the optimal spiking position is at 44772s. Notice that both of 

the resoIving kernels shown thus far have a broad band-width. In Figure 4.21, the second 

mixed delay wavelet (end-Ioaded) has a sharp resoIving kernel with slightly narrower band- 

with and an optimum spiking position at 36ms. Figure 4.22 shows the resolving kernel result 

for the maximum delay waveIet. In this case, the kernel is sharp with a spiking position at 

Urns and the kernel has a narrow bandwith. 

With the waveIets used in this section, the trend hinted at earlier is again visible. As the 

delay in the waveIet is changed from minimum, through mixed, to maximum, it is seen that 

the optimum spiking position deviates to time positions equal to or later than the optimum 



position seen for the minimum delay case. In addition, as before, these results show that if 

the wavelet is known, then the optimum Wiener-Levinson deconvolution filter wiU convolve 

with the wavelet in question to create a sharp resolving kernel. The key question now 

becomes the following: i f  the wavelet is not known and certain wavelet phase ossvrnptions 

must be made in order to perform seismic deconvolution, how well will the deconvolued traces 

estimate the earth 'k reflectivity ? 



Figure 4.19: The model minimum delay wavelet, (-1.35 + r)'(1.5 + z)? its deconvolution 

filter, and its resolving kernel. The optimal spiking position is at 36ms. 

Figure 4.20: A mixed delay version of the model wavelet, (1 - 1.35~)~(1 .5  + z ) ~ ~ ,  its decon- 

voiution filter and its resolving kernel. The optimal spiking position is at Urns. 





4.3 The well-log phase assumption tes t  

The next 8 images display the effect of the minimum phase assumption on the deconvo- 

Iution of the entire trace. For both models, each synthetic is created by the convolution of 

a wavelet (minimum, mixed, or maximum delay) with the model reflectivity sequence. In 

each of these models, the minimum delay trace is used to estimate minimum deiay wavelets 

by the Hilbert transform and Wiener-Levinson double inverse methods. 

4.3.1 results: model 1 

This section introduces the problems that often arise when using the minimum phase 

assumption. Figures 4.23 through 4.26 illustrate just how problematic and damaging the 

minimum phase assumption can be. Shown in Figure 4.23 is the actual reflectivity sequence 

used in this analysis, the Hilbert transform deconvoIution of the minimum delay trace. asd 

the Wiener-Levinson deconvolution of the minimum delay trace. Both of these reflectivity 

estimates have a band-passed nature to them and suffer from significant amplitude attenua- 

tion. Both aIso seem to have strong impulses for minor reflections but the major reflectivities 

are absent. It also appears as if the Wiener-Levinson estimate suffers more from these short 

comings than the Hilbert transform estimate. Similar results are seen in Figure 4.24 where 

the results of a mixed delay trace deconvoiution are presented. Present here are the same 

short comings listed previous =cept that there seems to be significant phase mismatch. 

Next (Fignre 4.25) are the deconvolution resdts for the second mixed deiay trace. These 

reflectivity estimates cannot, not even in the broadest sense, be considered representitbe 

of the mode1 refiectivits- This may be due to the fact that both assumptions (phase and 



randomness)about the wavelet are now being used in the deconvolution. The time delay is 

particdarly noticable. Finally, in Figure 4.26, there are the results of the deconvolutions for 

the maximum deIay trace. Here, the statistical reflectivity estimates are very time delayed, 

have a significant band-passed nature, suffer from severe phase mismatches, and there is 

major amplitude attenuation. 



Figure 4.23: The actual reflectivity sequence (left), spiking deconvolution of the minimum 
delay synthetic trace based on the Wiener-Levinson wavelet (center), asd spiking deconvo- 
lution of the minimum delay synthetic trace based on the Hilbert wavelet (right). 
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Figure 4.24: The actuaI reflectivity sequence (left), spiking deconvolution of the mixed delay 
synthetic trace based on the mener-Levins~n mveIet (center), and spiking deconvo1ution 
of the mixed deIay synthetic trace based on the EIiIbert waveIet (right). 



Figure 4.25: The actual reflectivity sequence (left), spiking deconvolution of the second 
mixed delay synthetic trace based on the Wiener-Levinson wavelet (center), and spiking 
deconvolution of the second mixed delay synthetic trace based on the Hilbert wavelet (right). 

m u m n m b r  
4 6 
C C I .  

b ) 1 *  

! ! ! I  
t t t :  
t t t t  

i i i i  
L C . .  

1 

: k t :  

I ! ! !  
S S i i  

-p -? - b  -p 
-L ,L -L .L . - . .  -r -,C -E -,t 
L ' C  .L L 

i i i i  
-r -e -r -r 

2 
b . .  
l b t  

I ! !  
t : :  
t t ,' . . 

i i i  
C t .  

* . *  
. c -  

! ! !  
L i i 

.D v B  . b  . . 
L - C  i '  . . .  -r -! -r 
L L L  

C C .  

* * r *  . - -  
L t r  

5 ,  5 i I  

"w L'c 

Figure 4.26: The actud reflectivity sequence (Ieft), spiking deconvolution of the maximum 
deIay synthetic trace based on the Wiener-Levinson wavelet (center), and spiking deconvo- 
Intion of the maximum deIay synthetic trace based on the HiIbert waveIet (right). 



4.3.2 results: model 2 

Figures 4.27 through 4.30 tell the same story seen in model I. Shown in Figure 4.27 is the 

actual reflectivity sequence used in this analysis, the Hilbert transform deconvolution of the 

minimum delay trace, and the Wiener-Levinsoon deconvolution of the minimum delay trace. 

Both of these reflectivity estimates have a prominant band-passed nature to them, suffer 

from significant amplitude attenuation, and are time delayed. Both also seem to have strong 

impulses for minor reflections but the major reflectivities are absent. It also appears as if the 

Wiener-Levinson estimate suffers more from these short comings than the Hiibert transform 

estimate. Similar results are seen in Figure 4.28 where the results of a delay trace 

deconvolution are presented. Present here are the same short comings listed previous except 

that there seems to be phase mismatch. Ne-xt (Figure 4.29) are the deconvolution results 

for the second mixed delay trace. These reflectivity estimates are not representitive of the 

model reflectivity. The time delay is particularly noticable but these estimates do not suffer 

from as much band-passing or amplitude attenuation. Finally, in Figure 4.30, there are the 

results of the deconvolutions for the rnauimum delay trace. Here, the statistical reflectivity 

estimates are very time delayed. However, the trace deconvolutions have better amplitude 

content than the first two of this subsection. 
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4.4 The phase assumption test 

The final two subsections illustrate a set of resdts using the proposed test for phase 

discussed earlier. Both model 1 and model 2 use the synthetic traces to statistically estimate 

Wiener-Levinson deconvolution filters- These filters, computed using the minimum phase 

assumption, are then convoIved with the actual wavelets to generate resolving kemeIs. The 

similarity to an ideal spike will give a measure of how well or how poor the minimum phase 

assumption is working. 

4.4.1 results: model 1 

Given the rather poor preformance of the statistical methods in trace deconvolution 

section, another approach is taken. As described above, the model synthetic traces are used 

with the minimum phase assumption to spike the waveIets used in this model. That is. 

the synthetic traces generate the statistically estimated minimum phase filter that convolves 

with the actual wavelets to give a good resolving kernel where the major peak greatly dwarfs 

the residual peaks in the kernel. The intrigue in Figure 4.32 and Figure 4.33 comes from 

the &ed phase nature of the actud wavelets. Figure 4.35 shows a model mixed phase 

wavelet that is simiIar to the maximum delay wavelet (see Figure 4-34, except that the 

mixed deiay waveiet is not a s  time delayed as the maximum deIay waveIet. The mixed delay 

wavelet spikes at 397ns, whiIe the maximum delay wavelet spikes at 49ms. Its resolving 

k e d  is a version of the kerneI for the maximum deIay waveIet except at an earlier time. 

The same holds when considering the mixed deIay waveIet in Figme 4.33 and the rnhimum 

deIay wavelet (see Figure 4-31). This &ed delay wavelet has a dose resemblance to the 



minimum deIay wavelet and its resolving kernel is that of the minimum delay wavelet but it 

spikes at 22ms instead of Ilms. 



Figure 4.31: The actual minimum phase wavelet used to create the previously shown syn- 
thetic is convolved with the deconvolution filter, estimated from the smthetic trace, to give 
the resolving kernel to the right. 

Figure 4.32: The actual mixed phase waveIet used to create the previonsIy shown synthetic 
is convolved wit6 the deconvohtion Hter, estimated kom the synthetic trace, to give the 
resolving kernel to the right. 



Figure 4.33: The actual &ed phase wavelet used to create the previously shown synthetic 
is convoIved with the deconvolution filter, estimated kom the synthetic trace, to give the 
resoIving kernel to the right. 

Figure 4.34: The actual maximum phase wavelet used to create the previously shown syn- 
thetic is convolved with the deconvoIution filter to give the resolving kerneI to the right. 



4.4.2 results: model 2 

The pattern identified with the previous model also reappears in these r e d t .  Again 

it is seen that one &ed delay wavelet follows the patterns of the minimum delay wavelet 

while the other mimics the maximum delay wavelet's behavior. The general trend being 

seen with these two simple models is that even if the wavelet is not minimum phase the 

deco~volution filter based on the minimum phase assumption wi l l  effectively convert the 

mixed delay waveiet to a spike. 

The intrigue seen in the previous subsection is seen again here. Figure 4.36 shows a 

model &ed phase wavelet that is similar to the minimum delay wavelet (see Figure 4.35), 

except that it is more time delayed. The mixed deIay wavelet spikes at 23ms, while the 

minimum delay wavelet spikes at L4ms. Its resolving kernel is a version of the kernel For the 

minimum delay wavelet except at a later time. The same hoIds when considering the mived 

delay wavelet in Figure 4.37 and the maximum delay waveIet (see Figure 4.38). This mixed 

delay wavelet has a close resemblance to the maximum delay wavelet and its resolving kernel 

is that of the madmum delay waveIet but it spikes at 35ms instead of 36,rns. 
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Figure 4.35: The actual minimum phase wavelet used to create the previously shown syn- 
thetic is convolved with the deconvoiution filter, estimated from the synthetic trace, to give 
the resolving kernel to the right. 

Figure 4.36: The actuaI mixed phase wavelet used to create the previously shown synthetic 
is convolved with the deconvoIution flter? estimated from the synthetic trace, to give the 
resoIving kerrzei to the right. 





Chapter 5 

Conclusions 

The preceding results of Chapter 3 shed some light on the issue of the randomness of 

the reflectivity sequence. Use of sonic and density logs to compute a reflectivity sequence 

serves to Iocdy measure the goodness of the statisticai estimates and helps to test the 

validity of the assumption. In order to evaluate the effectiveness of the random reflectivity 

assumption on deconvolution, a simple test is proposed based on the use of a sonic log. 

.b investigated are the various resolving kernels. The closeness of the resolving kernel to 

a spike is a measure of the deconvolution Hteis  eEectiveness. A further test is to apply 

the estimated deconvolution filter to the trace and compare the deconvolved output to the 

reflectivity sequence. With real data, we can compare the wavelet estimate obtained from 

surface recorded data with waveforms obtained from insitu VSP recordings. Through all of 

the randomness investigations, it has become clear that the justification of the randomness 

assumption is closely tied to the LthoIogy of an area. That is to say, if the rock Iayering has 

periodic properties, then its reflectivity sequence d not exhibit the required randomoess 

property. Should reflectivity randomness be an inadequate assumption, then the processing 
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flow will need to resort to alternate methods or, in fact, to physicd measurements of the 

source signature- 

&om the investigations ofchapter 4, it is dear the minimum phase assumption is far more 

critical in determining the success or failure of statistical deconvolution methods. Proper 

investigation of the minimum phase assumption must be done in a synthetic framework 

because a knowledge of how the wavelet phase differs from minimum phase is required to 

h o w  how these phase differences affect statistical deconvolution. The complete picture 

involves investigating resolving kernels and trace deconvolutions. It is evident that if there 

is a prion' knowledge of the wavelet, then the statisticd methods used in this thesis will 

consistently produce a well-defined, sharp, resolving kernel. .Mso seen kom the study is 

that statistically estimating minimum phase wavelets from input traces asd then using these 

wavelets to deconvolve the trace is a disastrous path to follow. Far better results are seen 

when the statistical deconvoiution filters are estimated from the trace themselves. This is 

seen by convolving the Nter estimated from the trace with the actual wavelet used to create 

the trace. For the situations considered in this thesis, the previous process creates good 

resolving kemeIs and, therefore, it can be conchded that the filters wilI effectively spike the 

embedded wavelet - 

As a whore, for the Alberta data examined in this thesis, it is seen that the probIems 

of wavelet phase and waveIet non-stationady beset the statistic& deconvolution problem 

far more than the random reflectivity assumption. To assess the usefulness of statistical 

deconvolution as a processing tool, use the proposed tests dong with the best interpretive 

judgment available- 
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