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Abstract

In seismic exploration, statistical wavelet estimation and deconvolution are standard
tools. Both of these processes assume randomness in the seismic reflectivity sequence and
also make a minimum phase assumption about the actual wavelet embedded in the trace. The
validity of these assumptions is examined by using well-log reflectivity sequences, synthetic
seismic traces, and by using a procedure for evaluating the resulting deconvolutions. With
real data, wavelet estimations are compared with the in-situ recording of the actual waveform
from a vertical seismic profile (VSP). As a result of these investigations, this thesis presents
a fairly simple group of tests that can be used to evaluate the validity of the randomness
and minimum phase assumptions. From the investigations of seismic data in Alberta, it is
concluded that the assumption of reflectivity randomness is less of a problem in deconvolution

than other assumptions such as phase and stationarity.
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Chapter 1

Introduction and background

1.1 Introduction

The processing of a digital seismic section is one of the most widely practiced activities in
the field of exploration seismology. Signal deconvolution is a processing step that is ideally
carried out after exponential gain recovery and before velocity analysis. The underlying
purpose of deconvolution is to improve data resolution (i.e. improve the ability to separate
two features that are close together, from Sheriff (1974)) by increasing the sharpness of the
seismic reflections. In practice, this process attempts to shorten the seismic wavelet, broaden
the wavelet’s spectrum, remove the change in wavelet shape due to earth filtering, and to

stabilize the wavelet from trace to trace.

In both academia and industry, seismic data processors tend to focus on the seismic
wavelet when considering the deconvolution problem because if the wavelet is reliably es-

timated, it can generally be deconvolved or shaped to some desired output with a digital

15
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filter. Since the onset of the digital recording, a time honored tradition has arisen in that
statistical estimation methods are used to model the seismic wavelet. Although these meth-
ods have been in use for several decades, it was only in 1991 that Ziolkowski(February 1991,
Geophysics) gave a scathing criticism of their theoretical basis. Even though these statistical
methods are tried and tested, there has been no comprehensive response to the questions
raised by Ziolkowski. The major points of contention arise from the validity of the following

statements.
1. The seismic reflectivity sequence is random.

2. The seismic wavelet is minimum phase for impulsive sources and zero phase for vibroseis

sources.
3. The seismic wavelet is stationary.

Ziolkowski does not accept the validity of these assumptions. Furthermore, he goes on
to prepose that seismic wavelets should be modeled on data gathered from direct source

measurements.

The problem as it stands now is that the determination of the seismic wavelet via the
traditional method of statistical estimation has been challenged and an alternate method
has been suggested. This thesis will bring together a comprehensive and detailed analysis
of the first two assumptions. The third assumption is addressed in the M.Sc. thesis of
Alana Schoepp. All of this will first be considered in a synthetic framework and will then be
examined with real data. The importance of this evaluation is that the increased resolution

resulting from deconvolution is directly dependent on the wavelet used. Consider Figure
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1. This shows that if the wavelet is known, then deconvolution will give consistently good
results. Hence, the deconvolution of data is only effective if the estimated wavelet is a
reasonable approximation of the true wavelet. To establish the best, and most effective,
means of wavelet extraction is key to creating a more interpretable seismic section. This is
why the assumptions of statistical wavelet estimation must be tested. The stated problem

will be addressed in the following systematic manner.

The first point to be investigated will be the randomness assumption. Statistical wavelet
estimation methods assume that the reflectivity is random (i.e. the reflectivity has a probabil-
ity of occurrence determined by a probability distribution) and this effectively means that the
seismic trace autocorrelation is approximately equal to the seismic wavelet autocorrelation.
The random reflectivity assumption allows one to estimate the wavelet’s autocorrelation,
and consequently the amplitude spectrum, from the trace autocorrelation. This thesis devel-
ops tests for the randomness assumption. The validity of this assumption can be tested by
using sonic and density logs to compute the reflectivity for a series of geological areas. This
well log information will allow a measure of the assumption’s goodness to be obtained by
comparing wavelet estimates obtained by statistical methods, such as the Wiener-Levinson
double inverse method and the Hilbert transform method, to the information gained from
the well log. This well log information will allow a measure of the assumption’s goodness
to be obtained by comparing statistical wavelet estimates to the actual wavelet in the case
of model data and to information from logs or vertical seismic profiles in the case of real
data. The comparison will consider how the trace’s autocorrelation relates to the known

wavelet’s autocorrelation. Then investigations into how this relation differs when statistical
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wavelet estimates are used will be done. For synthetic data, a comparison of the model
wavelet and wavelet estimates obtained by this assumption will be made. It is expected that
the randomness assumption for a reflectivity sequence will be closely tied to the lithology
of an area. That is to say, if an exploration area has periodic physical properties, then its
reflectivity will not be random. The reflectivity sequence, in this case, violates the random-
ness assumption because the periodicity of physical properties implies periodic (not random)
reflections occurring on a seismogram. The present methods, under the assumption of ran-
domness, would be told to interpret these events as multiples and remove them. This is not
the desired effect since processing hopes to image the geology, not obscure it. The end result
is a simple test that can be performed on the data to see if there are significant amounts of
periodicity which make the randomness assumption invalid. One such way of testing data
for randomness is to deconvolve the data with the estimated wavelet and compare the output
to the reflectivity derived from well log data or known from a model. The comparison will
be done by cross-correlating the reflectivity with the deconvolution output. A 100% perfect
deconvolution will have output that cross-correlates with the reflectivity to give a spike.
Therefore, it can be said that if this cross-correlation value is within a scale factor of the
spike, then the data is random. The exact determination of the scale factor shall result from
the investigation of various cases. Practically, this ideal is not often the case since there may
be extraneous energy (side lobes, multiples, etc ...) present. Other avenues to be explored
with synthetic data include the use of various known wavelets and the use of a reflectivity

sequence (a signal that consists of only primary arrivals) instead of an impulse response (a
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signal that contains primary and multiple arrivals).

The next issue to be discussed is the problem of estimating the phase spectrum. The
randomness assumption allows for the estimation of the wavelet’s amplitude spectrum. In
order to completely define the wavelet, the phase spectrum is also required. The phase
spectrum is often determined by using a minimum phase wavelet (for dynamite sources)
or a zero phase wavelet (for vibroseis sources). The critical role of phase estimation in
deconvolution can be established by making comparisons between wavelet deconvolutions
that make different phase assumptions. Comparisons will allow for an evaluation of this
minimum phase assumption. These various deconvolution results will be compared to the
reflectivity sequence and evaluated. The evaluation will be done in much the same manner
as the test for randomness in that both deconvolution outputs will be cross-correlated with a
reflectivity. Whichever gives a result closest to a spike (a perfect cross-correlation is a spike)
is the best. It is suspected that the superiority of one over the other will be dependent on
the validity of the phase estimates. This comparison and evaluation will occur with a model
data set because, with model data, the correct answers are known and therefore the methods
can be objectively analyzed. Speaking in a strictly theoretical sense, deconvolution eludes
a rigorous mathematical justification because it is the ill-posed problem of one equation
and many unknowns. However, these series of investigations hope to evaluate how well
these phase assumptions work in practice. To this effect, the deconvolution output will
be examined for evidence of distortion, multi-lobed operators, and other effects that are
inconsistent with the results of the desired deconvolution. Figure 2 demonstrates what can

occur in the output of a deconvolution that makes an incorrect phase assumption about
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the seismic wavelet. Establishing the validity of the minimum phase assumption is critical
because this is the assumption used for estimating the phase for dynamite and tuned air gun

sources.

Ziolkowski’s criticism of the wavelet stationarity assumption is the next point to be ad-
dressed. Nonstationarity of the wavelet is a reality. It is caused by absorption and dispersion
effects in the Earth. These effects are caused by stirring of interstitial pore fluid and constant
Q@ attenuation. If the data concerned has a nonstationary wavelet for which the assumption
of stationarity is invalid, then the amplitude spectrum will show a shift towards the low-
er frequencies with time. This implies that an empirical evaluation of the assumption will
give a limit on the amount of time shift that can occur without violating the stationarity
assumption. In theory, if the time varying nature of the wavelet is taken into account, then
the estimate of the wavelet should be better. This problem is addressed in Schoepp (1998)

and a time variant method is developed.

Outlined above is a problem statement and the groundwork for addressing the problem.
This thesis brings the above research to fruition and evaluates the criticisms of statistical

deconvolution.
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Figure 1.1: The result of deconvolution when the wavelet is known (from S.E.G. inversion
course notes, B. Russell}.
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Figure 1.2: The result of deconvolution when an incorrect assumption about wavelet phase
is made (from S.E.G. inversion course notes, B. Russell).
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1.2 Background

Exploration seismologists might think of the earth as being made up of rock layers that
have differing lithologies and physical properties. These layers are seismically defined by
density and seismic wave propagation velocity, as well as attenuation factors. The product
of this velocity and density is the seismic impedance of the layer. Impedance contrasts
between adjacent rock layers cause the reflections recorded during a seismic survey.

The recorded seismogram can be modeled as the convolution of the earth’s impulse re-
sponse with the seismic wavelet. This impulse response of the earth is what would be
recorded if the wavelet were just a delta function or spike. It contains the reflectivity series
and all multiples. Ideally, deconvolution compresses the wavelet and removes multiple ener-
gy so that only the reflectivity of the primary lithology is left in the recorded seismic trace.
The fundamental assumption underlying statistical deconvolution is that of minimum phase
because if it is assumed that the seismic wavelet is minimum phase, then its unique phase
spectrum can be determined from an input seismic trace. It is because of this (as well as
other assumptions) spiking deconvolution is not always desirable.

Deconvolution improves temporal resolution by compressing the basic seismic wavelet.
It is normally applied before stack but it is also common to perform deconvolution on post-
stack data. After a proper deconvolution, the prominent reflections from interface boundaries

are more distinctive because of the compressed waveform and the reduction in the section’s

ringiness.
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1.2.1 The convolutional model

A number of assumptions are made to simplify the earth imaging problem described in

this work. Six of these are mentioned here and in subsequent areas. The first two of these

are as follows.

Assumption 1 The earth is comprised of horizontally deposited lithological layers that ez-

hibit constant velocily.

Assumption 2 An impulsive seismic source generates a compressional pressure wave (P-
wave) that impinges on lithological layers at normal incidence (i.e., perpendicular to hori-
zontal layer orientation). Physically, this causes no shear waves (S-waves) to be generated

as the waveform passes across layer boundaries.

Assumption 1 is violated in structurally complex areas, such as the foothills of the Cana-
dian Cordillera, and areas that contain gross lateral facies changes. The second of these
assumptions implies that zero—offset data must be used but this is a problem since the
zero-offset is rarely, if ever, recorded. Both of these assumptions imply that the reflection
coefficient ¢, for pressure or stress, for the waveform moving from layer 1 to layer 2 can be
defined as ¢ = %, where p and v are the densities and velocities of the layers being
considered. Assuming a density invariance with depth, within the layers, gives the following
approximation ¢ = ﬁf& The reflection coefficient is seen as the ratio of the change in
velocity to twice the average velocity.

The P-wave created by an impulsive source is called the signature of the source. All

signatures are band-limited wavelets of finite duration. This leads into the next assumption

that must be made before an earth model can be put forth.
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Assumption 3 The source waveform does not change as it travels in the earth’s subsurface.

That is to say, the seismic source signature is stationary.

With these three assumptions, the convolutional model of the earth can now be written as:

Vit > 0, z(t) = w(t) * e(t) + n(t). (1.1)

where z(t) is the recorded seismogram, w(t} is the seismic source signature, e(t) is the impulse
response of the earth, and n(t) is random noise. The process of deconvolution being discussed
seeks to undo this convolution that occurs in the subsurface in order to recover e(t). To this

end, several more assumptions are made.

Assumption 4 The random noise component in a recorded seismogram is zero or can es-

sentially be reduced to zero by processing.

Assumption 5 The seismic source signature, or waveform, is known.

Again, these assumptions are generally invalid. However, if the latter holds, then the solution
to the deconvolution problem is deterministic. Otherwise, the process has only a statistical
solution. In the normal run of seismic processing, the signature is rarely known. To ease

this assumption, and yet still be able to recover e(t), the following assumption is made.

Assumption 6 The reflectivity of the earth’s subsurface is a random process. This means
that the recorded seismogram and the seismic source signature have autocorrelations and

amplitude spectra that are identical to within a scale factor.



25

1.2.2 Inverse filtering

If there is a filter a(t) such that e(t) = a(t) * z(¢), then the convolutional model of the
earth becomes z(t) = w(t) * a(t) * z(t). This model uses the assumption that the noise

component is negligible or zero. Simplifying this equation by eliminating z(t) gives

1 ift equals 0,
o(t) = w(t) xa(t) =

0 elsewhere.

The function &§(2) is the Kronecker delta function and the above simplification implies a(t) =
d(t) * w'(t), where w'(t) is the inverse wavelet. This means that the operator required to
recover the earth’s impulse response from a recorded seismogram is the inverse of the seismic
source signature. Inverse filtering is a form of deconvolution when this source signature is
known. This type of deconvolution is said to be deterministic. Hence, the solution to the
deconvolution problem is deterministic (i.e. predictable) when the source wavelet is known.
One way to recover the reflectivity in this case is to transform the seismic trace and known
wavelet to the frequency domain (via the Fourier transform) and divide. If there are zeros
in the transform of the wavelet, then a stability factor € is added to the zero and near zero

values.

1.2.3 Least-squares inverse filtering

The cumulative energy of the error, L, is defined as the sum of the squares of the differ-
ences between the coefficients of the actual and desired outputs. Consider a filter (a, b) and

an input wavelet (c,d). The convolution of the two gives the actual output, (ac, ad + bc, bd).
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In addition, say, the desired output is (e, f,g). Then, the cumulative energy of the error
between the actual and desired output is L = (ac — e)? + [(ad + bc) — f]*> + (bd — g)2. To
minimize the error between these coefficients requires that the variation in L with respect
to the filter (a,b) to vanish. The computation of L allows for a quantification of goodness.
If the desired output has an energy distribution that closely resembles that of the convolved

input series, then the error is reduced.

1.2.4 Minimum phase

Wavelets are transient waveforms with a finite duration. They can be minimum, maxi-
mum, or mixed phase. A minimum phase wavelet has most of its energy at the onset of the
time series, while a2 maximum phase wavelet has most of its energy at the end of the time
series. Mixed phase wavelets have their energy distributed throughout the time series. In
addition, a wavelet is realizable if is finite in length (i.e. a finite time series) and is causal
if it is zero for all negative times. Hence, a minimum phase wavelet is one that is minimum
phase, realizable, and causal. These kinds of wavelets have the least energy delay.

Mathematically, a stable inverse means that the filter coefficients make a convergent
series. That is, they decrease with increasing time and vanish at infinity. This means
that a stable inverse filter has finite energy. Minimum phase wavelets have stable inverses
but maximum and mixed phase wavelets do not. This leads to the following, and final,

assumption.

Assumption 7 The seismic source wavelet is minimum phase and has a minimum phase

inverse.
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Some examples of proven minimum phase phenomena in exploration geophysics are the
transmission response of layered media (Robinson and Treitel, 1980) and the attenuation

law of Futterman (Futterman, 1962).

1.2.5 Optimum Wiener filters

The general form of the matrix equation for an optimum Wiener filter of length n is
Ra = §, and the process R"'!Ra = R~ solves for @. In expanded form (from Robinson and

Treitel, 1980):

To Ty +.. Tp-y (1)) o
ry To ... Tp2 a, 0 (12)
Th—t Tp-2 ... Tg Qp-1 gn-1
L - J L J N J
R i g

where R is the autocorrelation matrix of the wavelet which is a symmetric Toplitz matrix, @
is the desired deconvolution filter vector (the vector components are the desired deconvolu-
tion filter coefficients), and g is the crosscorrelation vector of the input and desired output.
When solving for &, the Toplitz nature of R is exploited by the Wiener-Levinson algorithm
to compute the inverse in an efficient manner. The Wiener filter @ is optimal in the sense

that it least-squares minimizes the energy of the error between actual and desired outputs.
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Typically, the desired output is one of the following:

a spike at arbitrary lag,

a time advanced form of the input series,

a zero—phase wavelet,

e or any desired arbitrary shape.

spiking deconvolution

When the process of determining an optimum Wiener filter requires that the desired
output be a zero-lag spike, it is called minimum-phase spiking deconvolution. In spiking
(or statistical) deconvolution the autocorrelation matrix is computed from the recorded seis-
mogram, while in the case of least-squares inverse filtering (or deterministic deconvolution)
this matrix is computed directly from the known source wavelet. If the input wavelet is
not minimum phase, then the spiking deconvolution cannot shape the output to a perfect

zero—lag spike. This is the pitfall of the minimum phase assumption.

prewhitening

To insure numerical stability (i.e. prevent division by 0) when computing the inverse
filter, an artificial level of white noise called prewhitening is introduced to the data before
deconvolution. This is achieved by adding a constant to the zero-lag of the autocorrelation

function or to the diagonal of R.
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shaping filters

For any given wavelet, a series of delayed spikes can be produced as desired output. The
least-squares error can then be plotted as a function of delay. The delay, or lag, with the least
error is defined to be the desired spike output. Using this spike as the desired output will
result, in general, in the Wiener filter producing the most compact result. Wavelet shaping
with a spike as the desired output is a special case of shaping deconvolution. Generally
speaking, however, shaping deconvolution includes deconvolutions whose desired output is
something other than a spike (a narrow Gaussian, for example). In the industry jargon,
wavelet shaping filters that result in zero—phase wavelets are called dephasing operators
and the process of converting a wavelet to zero—phase is called dephasing (i.e. the desired
wavelet is the zero—phase wavelet that could be found from the amplitude spectrum of the
input wavelet).

If the input wavelet is the recorded source signature, then wavelet shaping is called
signature processing. Wavelet shaping requires a knowledge of the input wavelet. The term
wavelet processing generally refers to estimating the embedded wavelet in the seismic data,
designing a filter to shape the wavelet to the desired form, and applying the filter to the
seismogram.

Minimum phase wavelets have optimal delay at zero, while maximum phase wavelets have
optimal delay at wavelet length. To delay the desired spike output, apply a constant time
shift to a delayed spike result. Alternatively, shift the shaping filter as much as the delay in
the spike and then apply it to the input data. This operator is two-sided (i.e. noncausal)

since it has coefficients for positive and negative time values.



Chapter 2

Analyzing statistical deconvolution

2.1 Analyzing the randomness assumption

The conventional assumptions of wavelet deconvolution have been criticized by some as
being generally invalid. One focus of this research is to evaluate the common assumption of
reflectivity randomness by use of model synthetics and real data. Since it is expected that
this assumption is dependent on geology, data has been examined from various hydrocarbon
reservoirs.

Statistical wavelet estimation methods usually assume that the reflectivity is a random
uncorrelated signal (that is, the reflectivity has an autocorrelation which approximates a
delta function) and this effectively means that the seismic trace autocorrelation, T'(z)T*(z),
is approximately equal to the seismic wavelet autocorrelation, W (z)W*(z). The deconvolu-
tion of data is only effective if the input wavelet is a reasonable approximation to the true
wavelet. To establish the best, and most effective, means of wavelet extraction is the key

to creating a more interpretable, high-resolution, seismic section. This is precisely why we
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must investigate the assumptions upon which our commonly used statistical methods are
based. The random reflectivity assumption allows one to estimate the wavelet’s autocorre-
lation, and consequently the amplitude spectrum, from the trace autocorrelation. Hence,
given an input seismic trace, it is possible to estimate the wavelet needed for deconvolution.

Four synthetic seismic sections are generated for use in this investigation. Two are created
with a minimum phase wavelet and the remaining two are created with a zero phase wavelet.
First to be investigated is the validity of the randomness assumption with a primaries only
section derived from a well in central Alberta and then with a section that also incorporates
multiples, also derived from the same well. The use of synthetic data is done because the
wavelet used to generate the section is known and, therefore. meaningful comparisons are
made with the statistical estimates.

In judging the accuracy of the randomness assumption, on (model) synthetic data, a
systematic approach is developed. Compare the trace autocorrelations with the wavelet
autocorrelations and examine the degree of similarity. For a purely random reflectivity,
these should be identical to within a scale factor. Subsequently, compare the estimated
wavelet with the actual wavelet. However, it is really the deconvolution based on the wavelet
estimate that should be evaluated. One way to do this is to compute the convolution of the
actual wavelet with the deconvolution filter for the estimated wavelet. One hopes that, this
will produce as close a representation of a spike as for the filter computed from the actual
wavelet. This estimation of a spike is what is referred to as a resolving kernel. That is to say,
a resolving kernel is the convolution of a wavelet with a deconvolution filter to get an estimate
of l;he ideal spike. This gives a measure of resolvability in that the convolution of a wavelet

with a deconvolution filter should — in the ideal case of estimates that approximate the actual
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wavelet well — give a spike as the response. In addition to this, estimates of the reflectivity
sequence are generated by convolving the synthetic seismic section with various deconvolution
filters. This is simply the deconvolution of the input trace in that the process will remove the
wavelet from the input data and the result will be an estimate of the reflectivity sequence.
To evaluate how this estimate compares to the well-log derived reflectivity sequence, cross—
correlate the two sequences. An ideal cross-correlation of these reflectivities will give a spike
as the result. Hence, this can provide a measure of goodness in that comparisons between
the similarity of the cross—correlations to a spike can be made.

For the case of real data, the evaluation is somewhat more difficult since the wavelet or
the reflectivity sequence is not known. However, there is access to in-situ measurements
of the seismic wavelet if there are vertical seismic profile (VSP) data, and in some cases
there is also sonic well data to evaluate the deconvolutions. In this particular case, there
are vibroseis surface recordings and a VSP recorded from a vibrator source. This allows the
actual wavelet to be directly measured as the down-going VSP waveform. It is truncated
to the same number of samples as a zero phase wavelet estimate so as to have a measured
wavelet with a more reasonable length. Since there is no well-log derived reflectivity sequence
to act as a control for the results, the investigation proceeds in a slightly different manner
than that used for synthetic data. Instead of comparing estimated sequences to the actual
sequence, the results are evaluated with respect to how well responses are brought out and

if the ringy nature of the surface data can be suppressed.
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2.1.1 Minimum phase methods

The estimation of minimum phase wavelets from dynamite data generally use the as-
sumption of a random reflectivity sequence. This assumption is used so that the wavelet’s
autocorrelation can be derived from the seismic traces’s autocorrelation. Given a wavelet’s
autocorrelation or its corresponding amplitude spectrum, there is then the problem of de-
riving its phase spectrum. For the case of a minimum phase wavelet, its phase spectrum
is uniquely defined by the amplitude spectrum and can be found using either the Wiener-
Levinson double inverse method (a time domain method) or the Wold-Kolmogorov factor-
ization method (a frequency domain method). Both of these methods use the assumption
of reflectivity randomness to estimate minimum phase wavelets. There is an overview of
these methods in the subsections below and detailed descriptions can be found in White and

O’Brien (1974), Claerbout (1976), and Lines and Ulrych (1977).

The Wiener-Levinson double inverse method

The Wiener filter shapes a time sequence into an approximation of the desired output in
a least-squares sense. There is an assumption of wavelet stationarity in this method. It uses
this assumption to minimize the square of the difference between the actual output and the
desired output by choice of a Wiener filter to get a system of normal equations. This system

is as follows:
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r0) (1) ... r(n) | |f(0) 9(0)
r(l) ) ... r(e-=1)} | f(1) g(1)
= , where V¢ (2.1)
r(n) r(n—-1) ... 7(0) f(n) g(n)
L iy J U
R 7 7
1 . .
r(n) = v zr:x(n + 7)z(t) = input autocorrelation,
g(n) = %—Zx(’r)z(n + 1) = input and desired output cross-correlation,
f(n) = the deconvolution filter coefficients, and
N = length of the input sequence.

The inverse Wiener filter is designed so that the wavelet estimate is shaped to a spike. This
allows for an estimate of the impulse response of a layered earth to be computed by convolving
the inverse Wiener filter with the input trace. If the impulse response being estimated is
a white noise sequence (that is, random), then the trace autocorrelation can be replaced
by the wavelet autocorrelation. It should be noted that this method truncates the trace
autocorrelation to obtain this approximation but it can also be accomplished by windowing
the trace autocorrelation (e.g. using a Hanning window). In addition, if a zero-delay is the
desired output, then only the first component of the cross-correlation vector in the normal

equations will be non—zero. A zero-delay spike for desired output is optimal if and only if
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the the wavelet being considered is minimum delay. Using these assumptions of a random
impulse response and a zero—delay spike as desired output enables a Wiener deconvolution
filter to be designed without explicitly evaluating the source wavelet. Estimating the wavelet
itself is done by applying the process again to invert the original minimum delay filter and

now the output is the minimum phase wavelet estimate.

The Wold-Kolmogorov factorization method

This is a method where by a minimum phase spectrum is determined from a given
amplitude spectrum. If given an amplitude spectrum for a wavelet of length n+1, then there
are 2" wavelets with different phase spectra that will have this given amplitude spectrum.
However, only one of these 2" wavelets will have a minimum phase spectrum. By comparing
the natural logarithm of the amplitude spectrum, log,(|W(w)|), to the natural logarithm of
the wavelet’s Fourier transform, log, (W (w)), the minimum phase spectrum can be deduced
from the amplitude spectrum. As shown by Robinson (1967b), the relationship between

phase and amplitude is as follows

phase spectrum = O(w)

inverse Fourfer transform of lag, (|W (w)|)

= _% g sin(wt) /: cos(wt) log(|W(w)) d&;

log amplitude spectrum

= Hilbert transform of the natural logarithm of the amplitude spectrum.

(2.2)

The inverse Fourier transform, v(t), of log. (W (w)) can be written as v(t) = v.(t) + v,(t).
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These components are the even and odd parts of v(t) and the even component, v,(t), is
the inverse Fourier transform of the log amplitude spectrum, log, (|W(w)|). Requiring that
w(t) be minimum phase means that v(t) is causal and this causality means that ,(t) =
ve(t)sgn(t). The Fourier transform of v,(t) is the sine transform —2 3" =% sin(wt)ve(t).
Computing this gives I'm[log,(W(w))] and this is the phase spectrum ©(w). The entire
process, just described, is essentially equal to that which is shown in Equation 2.2. This
equation is used instead of said process because of the computational speed advantage gained
when using the fast Fourier transform (FFT).

The phase spectrum, ©(w), can also be computed in the frequency domain by the con-
volution of log,(|W (w)|) and the Fourier transform of sgn(t). This convolution is essentially
a Hilbert transform and is the reason why the Wold-Kolmogorov factorization method is
commonly referred to as the Hilbert transform method. This method is equivalent to the

Wiener-Levinson double inverse method if the Wiener filter has an infinite number of filter

points and if the wavelet is considered to be a transient time sequence of finite energy.

2.1.2 Zero phase methods

The previous section revolves around minimum phase wavelets. Another common type
of wavelet is the zero phase wavelet. When compared to minimum phase wavelets, these zero
phase wavelets are symmetrical and are very broad banded in the frequency domain. That
being the case, investigations are made into the changes that may occur when a zero phase
wavelet is used in the reflectivity analysis. The zero phase wavelets in this study are Ricker

and Klauder wavelets that have 30H z as the dominant frequency. Besides the fact that now
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there is a zero phase wavelet, nothing else changes and the analysis proceeds in the same

manner as for minimum phase wavelets.

Klauder wavelets

Vibroseis is based on a concept from chirp radar (Klauder et al., 1964) which was adapt-
ed for seismic exploration by Conoco researchers. The source signature, s(t), sent into the
ground by a vibrator is a lengthy sweep of frequencies. As described by Ristow and Jurzyk
(1975), the recorded trace, y(t), can be considered as the convolution of s(¢) with the reflec-
tivity, r(t), and some earth flter, e(¢). That is to say, y(t) = s(t) *e(t) *r(t). The correlation

of this recorded trace with the input trace produces

z(t) = s(=t) * y(t)
= s(—t) = s(t) = e(t) * r(t) (2.3)

= w(t) * e(t) * r(t).

Here the autocorrelation of the input sweep s(—t) = s(t) produces a zero—phase wavelet w(t),

which is also known as the Klauder wavelet.

2.2 Analyzing the phase assumptions

The next, and more problematic, issue of concern is that of phase. As stated in the back-
ground section, a fundamental assumption that is made about the seismic source signature
(or seismic wavelet) is that it is minimum phase for impulsive sources. While this assump-

tion is essential to the process of statistical signature deconvolution, it is generally accepted
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as being invalid. That being the case, it is essential to determine how poor this minimum
phase assumption for the seismic wavelet is. In practical terms, it would be worthwhile to
know how this assumption affects the deconvolution. To that end, a three pronged approach
is taken.

Firstly, the effect of assuming that the wavelet is minimum phase will be investigated
with respect to resolving kernels. That is, wavelets of various phase will be given as input
to an optimum spiking deconvolution program. This program will determine the optimum
spiking position based on the input wavelet and then generate a resolving kernel that is the
convolution of the input wavelet and the deconvolution filter predicted from it. Two model
wavelet scenarios shall be considered. For both of these models, four wavelets (model wavelet
and three permutations) shall be investigated: a model minimum phase wavelet, a mixed
phase wavelet (permutation), another mixed phase wavelet (permutation), and 2 maximum
phase wavelet (permutation).

After analyzing the resolving kernels, the investigation will focus on how the minimum
phase assumption affects trace deconvolution. Again, the two scenarios that will serve as
models to investigate are the wavelets discussed above. For each of these, synthetic seismo-
grams will be generated by convolving the wavelet and permutations discussed above with a
primaries only reflectivity sequence. These synthetics will then be used to estimate Hilbert
transform and Wiener-Levinson minimum phase wavelets. After this, the wavelets estimated
from the synthetic trace will be used to generate deconvolution filters. Convolving these fil-
ters with the synthetic trace will give two estimates of the reflectivity sequence used to make
the trace. By comparing the three (the actual reflectivity sequence and the two estimates),

the effect of the minimum phase assumption will be evaluated. The use of noise—free se-
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quences is to show how phase effects trace deconvolution in its simplest case. As complexity
in the trace increases (i.e. multiples, noise, etc ...), the effect of phase compounds.

Finally, there will be an investigation of a proposed test for phase. Here, various synthet-
ic sections are used to statistically compute deconvolution filters. Then the actual wavelet
that is used to make the section in question will be convolved with the estimated filter.
Comparisons of these results to the ideal result of a spike will allow for further evalua-
tion of the minimum phase assumption made about seismic wavelets. Model 1 uses the
minimum phase wavelet (—1.1 + z)2(1.75 + z)%, its selected permutations, and a primaries
only reflectivity sequence. Model 2 will show results involving the minimum phase wavelet
(—1.35 + 2)%(1.5 + z)38, its selected permutations, and the same reflectivity sequence from

model 1.



Chapter 3

The randomness assumption

3.1 A proposed test for the randomness assumption

An extensive analysis of the assumption that the reflectivity sequence is random has led
to the development of two tests for randomness. These two tests to check the validity of
the randomness assumption are fairly simple and easy to apply. The first of these tests
uses a resolving kernel to evaluate the randomness assumption while the second test uses a
well-log derived reflectivity sequence to evaluate the goodness of the assumption. To follow
are flow charts that outline how these tests work and then there are pseudocodes for the

tests themselves.
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INPUT: seismic trace INPUT: actual wavelet
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Use trace to compute
wavelet estimates
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Estimate the Wiener
deconvolution filter |

Convolve the actual model wavelet l
with the statistically estimated |
deconvolution filters. |

COMPARE RESOLVING KERNELS
TO THE DESIRED OUTPUT SPIKE

Figure 3.1: Test for reflectivity assumption’s effect on wavelet deconvolution.
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INPUT:reflectivity derived

INPUT: seismic trace
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Estimate the Wiener
deconvolution filter

Convolve the seismic trace with
the statistically estimated
deconvolution filter.

COMPARE DECONVOLVED TRACE
TO THE DESIRED REFLECTIVITY

Figure 3.2: Test for reflectivity assumption’s effect on trace deconvolution.
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BEGIN: A validity test for the random reflectivity assumption.

for each seismic section do
compute desired statistically estimated wavelet w(n), or w;
compute deconvolution filter f(n), or f, based on w(n) ;
compute the resolving kernel;
compare to the desired output delta function end do

where
proc @ = (R™!'g)™!, R is the autocorrelation matriz of the trace s(n);
proc f = W-lg, W is the autocorrelation matriz of the wavelet;

=N

proc resolving kernel = Vnjn > 0,w(n) « f(n) =Y —, w(r)f(n — 7).

END

BEGIN: A well-log validity test for the random reflectivity assumption.

for each seismic section do
compute desired statistically estimated wavelet w(n). or &;
compute deconvolution filter f(n), or f, based on w(n);
compute the trace deconvolution;
compare to the well-log derived reflectivity sequence end do

where
proc @ = (R7'g)~!, R is the autocorrelation matriz of the trace s(n);
proc f=W-1g§, W is the autocorrelation matriz of the wavelet;
proc trace deconvolution = Vnln > 0,s(n) « f(n) = Z:gr s(r)f(n — 7).

END
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The remaining sections of this chapter present a comprehensive set of results regarding
the investigations on the randomness assumption. Figures 3.3 through 3.14 illustrate the
analysis on minimum phase synthetic sections. Following these are the analyses for the zero

phase sections and then the work on real data is displayed.

3.2 Ideal minimum phase synthetic data

Shown in Figure 3.3 is a synthetic seismogram that contains only the primary reflections.
That is to say, no multiples have been computed. Along side this seismic section is the
minimum phase model wavelet used to create it. It is this wavelet that is convolved with a
well-log derived reflectivity sequence to generate the synthetic to be analyzed. Note several
important reflections between 50 and 100, 100 and 150, and again between 150 and 200.
The Wiener-Levinson and Hilbert transform methods base their minimum phase statistical
wavelet estimates on an input seismic section. These statistical estimation methods use
the trace autocorrelation to reproduce the wavelet autocorrelation under the assumption
that the trace autocorrelation is approximately equal to the wavelet autocorrelation. This
requires that the reflectivity sequence be random. There is significant similarity between the
two plots of trace and wavelet autocorrelations shown in Figure 3.2. The close similarity
lends support to the claim of randomness. Now consider the image in Figure 3.5. Here
is a comparison of the actual model wavelet and two common minimum phase wavelets.
The Hilbert estimate is created from a frequency domain method and the Wiener-Levinson

estimate is generated from a time domain method.
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Figure 3.6 illustrates the concept of a resolving kernel. That is to say, a resolving kernel
is the convolution of a model wavelet with a deconvolution filter to get an estimate of the
ideal spike. This gives a measure of resolvability in that the convolution of a wavelet with
a deconvolution filter should (in the ideal case of estimates that approximate the actual
wavelet) give a spike as the response. The deconvolution filter from the model wavelet gives
a clean spike. This is to be expected. What is interesting is that the convolutions of the
model wavelet with the statistically estimated filters give very good representations of a
spike. The result with the Hilbert transform filter has a little noise in the tail and the result

from the Wiener-Levinson filter has minute amounts of noise in the tail.

In Figure 3.7, the ability of the statistical methods to reproduce the actual well-log
derived reflectivity sequence is evaluated. Using the filters based on statistical estimation,
estimates of the reflectivity are generated by convolving the synthetic seismic section with
the various filters. This is simply the deconvolution of the input trace in that the process
will remove the wavelet from the input data and the result should be the reflectivity. Notice
that these deconvolutions are good reproductions of the actual sequence in question. Some
things to note are that the estimated reflectivities are a bit smeared and that the estimates
have a slight delay. Some significant events that correlate from the actual sequence to the
estimated sequences can be noticed just before 50, between 50 and 100, and at about 150. As
mentioned before, these events are a bit delayed on the estimates and appear out of phase.

At this stage, the goodness of these reflectivity estimates are examined. Ideally, cross—
correlation of the estimated reflectivities with the true reflectivity will give a spike as the

result. Hence, the similarity of the cross—correlation to a spike provides a measure of goodness
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for the deconvolution. Figure 3.8 shows such a result. Both of the cross—correlations show
a spike that is many magnitudes greater than the minor amounts of noise that occur later
in the trace. These are accurate estimations of the reflectivity. Notice, again, that there

appears to be a slight delay in the cross-correlation with the Hilbert transform estimate.
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3.3 Impulse response minimum phase synthetic data

Now the same analysis is conducted for a synthetic seismogram that contains multiples.
This section is created in the same manner as above but multiples have been added by the
method outlined by Robinson (1967). The inclusion of multiples in a synthetic seismic section
generally worsens the whiteness assumption. Again, as an initial test, the trace and wavelet
autocorrelations are compared (Figure 3.10). There is no significant difference between the
two except that the trace autocorrelation seems to have the onset of a doublet near its
end. The very close similarity between the trace and wavelet autocorrelations lends further
support to the validity of the randomness assumption. Figure 3.11 shows the Wiener—
Levinson and Hilbert transform estimates based on an input trace with multiples. Even
though the whiteness assumption is worsened with multiples in the section, the resolving
kernels (Figure 3.12) for the estimated wavelets are very good approximations to the expected
spike response. The final 2 plots concerning this seismic section relate to the reflectivity
sequence. Figure 3.13 compares the actual reflectivity to the estimated sequences. These
estimated reflectivity sequences are quite good reproductions of the actual reflectivity. Once
again, the estimated results are a bit smeared, due to the band limited nature of the seismic
data, but there is no delay present. This causes events at 50, between 50 and 100, and at 150
on the actual sequence to correlate better to the same events on the estimated sequences.
As above, the final image shown here is a comparison of cross—correlations. Both of these

are very reasonable to the ideal result of a spike.
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3.4 Ideal zero phase synthetic data

Another common type of wavelet is the zero phase wavelet. When compared to minimum
phase wavelets, these zero phase wavelets are symmetrical and are very broad band in the
frequency domain. That being the case, an investigation into the changes that may occur
when a zero phase wavelet is used in the reflectivity analysis is done. A zero phase Ricker
wavelet that has a dominant frequency of 30H = is created to be the ideal model wavelet.
Besides the fact that a zero phase wavelet is being used as the model, nothing else has
changed and the analysis proceeds as before. The figures shown in this section concern
investigations for a primaries only zero phase synthetic while those in the following section

show results for a zero phase synthetic that contains primary and multiple arrivals.
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3.5 Impulse response zero phase synthetic data

From Figures 3.15 — 3.26, note that the general trends discussed previously continue.
Notice, in Figure 3.16 and Figure 3.22, that the trace autocorrelation and the wavelet au-
tocorrelation are quite similar. Also note that the Klauder zero phase wavelet estimates,
shown in Figures 3.17 and 3.23, are nearly identical to the model Ricker wavelet. Despite
these similarities, some points of discussion arise. Figure 3.18 shows, for the 1% zero phase
synthetic, that the Klauder and Ricker wavelet deconvolutions spike at different positions.
Namely, the Klauder wavelet deconvolution has a spike that lags behind the spike seen for
the Ricker wavelet. This lag is also evident in Figure 3.19, where the band limited reflec-
tivity estimates are compared. It shows that events on the Klauder reflectivity sequence lag
behind events on the Ricker reflectivity sequence. Figure 3.23 illustrates the close correlation
between the Ricker wavelet and the Klauder estimate based on the zero phase synthetic with
multiples. Their deconvolutions (Figure 3.24) spike at the same positions and are effectively
identical. This similarity is also reflected in Figure 3.25. Here, the band limited reflectivities

are shown and they too are effectively identical.
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3.6 Integration of VSP data with Vibroseis data

With the battery of tests on synthetic data concluded, the focus is now turned to an
analysis on a real data set. The data set comes to CREWES through a gracious donation
from PanCanadian Petroleum and is from a field in Alberta, Canada. Shown in Figure 3.27
is a near offset surface recording of real data shot with a vibroseis source and the down
going vertical seismic profile (VSP) waveform. The VSP is also shot with a vibroseis source
and it is this down going VSP waveform that is the in-situ measured wavelet. It, the in—
situ wavelet, is a direct recording of the transmission energy. One thing to note about the
waveform is that it, apparently, is illustrating a time varying nature. This violates the major
assumption of the wavelet being stationary. Shown in Figure 3.28 is the autocorrelation
of the reflected wave surface trace and the autocorrelation of the total down going VSP.
The close similarity between the autocorrelations lends support to the assumption of a
random reflectivity sequence. The direct measured wavelet is truncated to the same number
of samples as a zero phase wavelet estimate. This gives a measured wavelet with a more
reasonable length. A comparison of the two is shown in Figure 3.29. When plotted on the
same scale, noticeable differences exist between the measured wavelet and the Klauder zero
phase wavelet estimate. The most pronounced of these differences are in wavelet phase.
It appears that the estimated wavelet is about 180 cut of phase from the in-situ wavelet.
This means that whenever there is a trough in the measured wavelet, there is a peak in the
estimate. Also note what can be best described as difference in symmetry. What is meant
by this is that the estimate is a typical zero phase wavelet in that it is symmetric about its

major peak. However, this is not what is seen in the truncated measured wavelet. There is
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no symmetry about the major trough. In fact, it appears as if the in-situ measurement is
a delayed minimum phase wavelet of sorts. Although there are these significant differences
between the two, the autocorrelation of the real seismic trace data is quite similar to the
autocorrelations of the truncated and estimated wavelets (see Figure 3.30). The wavelet
autocorrelations themselves are also quite similar to each other. Collectively, this reinforces
the belief that trace and wavelet autocorrelations are approximations of each other and,
hence, the reflectivity is random. Resolving kernels for the deconvolution of the different
wavelets (in-situ, in-situ truncated, and statistical zero phase) are shown in Figure 3.31.
All three give good, relatively clean, spikes but the spikes all occur at different positions.
These different spiking positions may imply that the phase differences and nonstationarity
of the wavelet itself are important. That is, the different spiking positions may be due
to different phases and the nonstationary nature of the wavelet. The final figure, Figure
3.32, relates to how well the deconvolution filters work. Since there is no well log derived
reflectivity sequence to act as a control for the results, we proceed in a slightly different
manner. [nstead of comparing estimated sequences to the actual sequence, we evaluate the
results with respect to how well responses are brought out and if the ringy nature of the
surface data can be suppressed. Note that the deconvolution result from a filter based on
the Klauder zero phase wavelet estimate best reduces the ringiness and responses are very

clear.
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Chapter 4

The phase assumption

4.1 Proposed tests for the phase assumption

An extensive analysis of the phase assumption made in statistical deconvolution has
led to the development of two tests for phase. The first test to check the validity of the
phase assumption is fairly simple and easy to apply. [t assumes that a trace and a wavelet
(measured or estimated) exists. From this trace, a deconvolution filter is estimated based
on the seismic trace. As in the previous case of the randomness test, the design of the
deconvolution filter is based on the seismic trace since this is what is generally available in
the case of real data. Then, the actual wavelet is convolved with the estimated filter to
produce a resolving kernel which is compared to the ideal spiking response. The resolving
kernels similarity to a spike will dictate the goodness of the phase assumption being made. A
pseudocode describing this test is outlined below. The second test involves a well-log derived
reflectivity sequence. Statistically estimated minimum phase wavelets are created from the

input trace. These wavelets are then used to estimate minimum phase deconvolution filters.
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The filters are convolved with the input trace to generate reflectivity estimates. Comparisons
of these estimates to the well-log derived reflectivity will allow one to ascertain the goodness
of the phase assumption being made. Again, the low charts that outline these tests (shown

below) are followed by the pseudocode for the tests themselves.



INPUT: model wavelet

INPUT:reflectivity derived
from well logs

\
|

4

Convolve to form model
synthetic seismic trace

1

y

Estimate the Wiener
deconvolution filter

Convolve the actual

with the statistically estimated

deconvolution filter.

model wavelet

COMPARE RESOLVING KERNEL
TO THE DESIRED OUTPUT SPIKE

Figure 4.1: A validity test of wavelet phase assumption.




INPUT: seismic trace

INPUT:reflectivity derived
from well logs
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Compute statistically
estimated wavelet

L4

Estimate the Wiener
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the statistically estimated

deconvolution filter.

COMPARE DECONVOLVED TRACE
TO THE DESIRED REFLECTIVITY

Figure 4.2: A well-log validity test of wavelet phase assumption.
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BEGIN: A validity test for the minimum phase assumption.

for each seismic trace do
compute statistical estimate of deconvolution filter f(n), or f,
using the Wiener—-Levinson method;
compute the resolving kernel;
compare to the desired output delta function end do

where
proc f=R"'7, R is the autocorrelation matriz of the input trace s(n);
proc resolving kernel = VYn|n > 0,w(n) « f(n) = Z:{,V w(r)f(n — 1),

w(n) is the actual wavelet being considered.

END

BEGIN: A well-log validity test for the minimum phase assumption.

for each seismic section do

compute desired statistically estimated wavelet w(n), or ;
compute deconvolution filter f(n), or f, based on said wavelet;
compute the trace deconvolution;

compare to the well-log derived reflectivity sequence end do

where

proc @ = (R™'§)~", R is the autocorrelation matriz of the trace s(n);
proc f = W~lg, W is the autocorrelation matriz of the wavelet;
proc trace deconvolution = VYnjn > 0,s(n) * f(n) = 73‘;’ s(t)f(n—1).

END
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These tests will be used on two model environments. Each of these models have a minimum
delay wavelet, two mixed delay wavelets, and a maximum delay wavelet, as well as their
corresponding synthetic traces. The remaining sections of this chapter present the model
environments and a comprehensive set of results regarding the investigations on the phase

assumption with these models.
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4.1.1 model 1

Presented here and in the following subsection are the two model environments where the
minimum phase assumption is investigated. Each of these scenarios incorporates a minimum
delay wavelet, an end-loaded mixed delay wavelet, a front-loaded mixed delay wavelet, and
a maximum delay wavelet. An end-loaded mixed delay wavelet refers to a mixed delay
wavelet whose energy is concentrated closer to its end. A front-loaded mixed delay wavelet
refers to a mixed delay wavelet whose energy is maximally concentrated at its onset. These
models also contain the synthetic traces associated with each of wavelets and the reflectivity
sequence used to create the synthetics. In addition, the minimum delay synthetic is used
to generate two statistical minimum delay wavelet estimates and their deconvolution filters.
The trace deconvolution investigations use these statistically estimated filters.

Figures 4.3 — 4.6 show the various wavelets used in this model, the common reflectivity
sequence for the model, and the associated synthetic traces. Note that the reflectivity is
a primaries only reflectivity sequence (i.e. no multiples) and is convolved with each of
wavelets to give the traces shown to the right. The mixed delay wavelet in Figure 4.4 is
end-loaded, while in Figure 4.5 is a front-loaded mixed delay wavelet. The final two images
shown (Figures 4.7 and 4.8) are the statistically estimated minimum delay wavelets. Figure
4.7 shows the model minimum delay wavelet, a Hilbert transform wavelet estimate, and
the deconvolution filter associated with it. This figure shows that the model wavelet and
the Hilbert transform estimate are similar waveforms but have different time delays and the
statistical estimate has some minor noise in its tail. Figure 4.8 also shows the model minimum

delay wavelet but the statistical wavelet and its filter are generated by the Wiener-Levinson
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method. Here, the waveforms are very dissimilar. In particular, the Wiener-Levinson double
inverse wavelet is quite front-loaded with minimal amounts of tail energy and is extremely

characteristic of a spike response.
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4.1.2 model 2

Figures 4.9 — 4.14 show the various wavelets used in this model, the common reflectivity
sequence for the model, and the associated synthetic traces. Note that the reflectivity is a
primaries only reflectivity sequence (i.e. no multiples) and is convolved with each of wavelets
to give the traces shown to the right. The mixed delay wavelet in Figure 4.10 is front-loaded,
while in Figure 4.11 is an end-loaded mixed delay wavelet. Notice that all of the model
wavelets used here have large band-widths and have very little energy distribution. That
is, virtually all the energy is concentrated at the waveforms onset or at its end. The final
two images shown for this subsection (Figures 4.13 and 4.14) are the statistically estimated
minimum delay wavelets. Figure 4.13 shows the model minimum delay wavelet, a Hilbert
transform wavelet estimate, and the deconvolution filter associated with it. This figure shows
that the model wavelet and the Hilbert transform estimate are similar waveforms but have
different time delays and the statistical estimate has some notable noise in its tail. Figure
4.14 also shows the model minimum delay wavelet but the statistical wavelet and its filter
are generated by the Wiener-Levinson method. Here, the waveforms are very dissimilar. In
particular, the Wiener—-Levinson double inverse wavelet is quite front-loaded with minimal
amounts of tail energy and is extremely characteristic of a spike response with large band-

width.



-3ySU 3y) 03 3JBI) JIJPYIUAS 93 JAIS 0] PAAJOATOD 3Ie 30USNbas

ud e pue ‘g (2 + 61),(26¢T — 1)*19[0rem Ae[op PaXTW Y 0T 3m31g

Lreur

130921 AJUO 3

A1AT

IBARM | TARSP PRI

SS[AROSYSI paapap Boliem

FIIIIIITTI
B oot o i i

IR0 INWNUAS ARep pexim

Pme (e}

b (trw )

g ¥
,—.4,._-..41. FrT YTy ey
—.‘_...41. R L B TR ot
[ LA A A S
—..-::.-1. 1-,.-. FUTT T v ey
SRR LU TUUT IR SUE StEel PR
F L ER RAR A5 N R AT IR BT SRR
ETEE LR 20 8 B Rt R IR TRt

!
!
“.:,41 nvr ﬂ-..-.«:,c|14‘... Py ey
_d.:.....: L RIS IR ST R P
]

TG P R e ey ey

Lme (ne)

8 § § g

- Tvw gyTve - w T —
it Tvw gyvvr w - - — -
= TwwY gyrvwe - wv T =
- Twvw ‘.11‘1 > "— -
- Tww gyt w -« > ~— -
- Tew gyyTr w - > — -
- TwvY YT v~ v - -
- TeEw gyyrvrwe - w ~—— —
- Tvw yyrv e - - — -
il ARAAE A Radh AR Bt

[}

Ayan

-3gSu ay3 03 ade1y J139YJuLs ay) 9ALS 0 PaAjOATOD are 3duanbas

67 amS1g

-

4L

ur 9

+6'1)q(z + 6¢'1—) ‘19[oaeM A[op WINWIT

~
“

Lreurtid pue ‘go

-D9pe1 AJuUo S

I9[8ABM ABjep MWW

SORIARORUS) PeASP Botiem

01 JPYIUAS ARfBD WNWIUIN

bme (me)
L} 8 3
B |
ume (me)

RURUPIS - SE .

IR LRE LA LT Ty vy e vy

AN pryp gy e~y T ey
AR AR LT [ LR ER R S R
WA Py ey
AT p ey ey ey

e e ﬂ..a. P ETTe g erenyy

T Y i e e e e v

IR IR RO L R R et R

]

|

]

]

| v

_:1;.1_ R L R R L]
]

]

]

|

R R IR LI L A ST B S R R it s TR

e (e}

§ & 8

SV WYTT W v w e
~vw ‘..1(( v T e — -
CYv gyTTw - — =
~vw gyTTw v W — -
TTw WYTTw v w
TV YT YT w
TV WVTT W T v
i A A A Al Jhall Jheadihos
A R 2 AL ALk ok o
~vw gy T w - —

6L



80

10

0

Maximum deiay synthetic trace

2

‘5

» -y

3

. 3]
-- A A a A Aba AL h ° -~ - A o A Abhmaa.
NGNS SN WY Y YWY 8 m - .a A o A Abhm ..

;
- ‘.P..D.,DD'DPs\ .m >, - e - 4 A a A AAm oAl
L - - - A . A DD'DD.._ M .ln.. - - A . M8 Aba aa.
’ll."ib‘bb‘l.b.b E o) WC_ - o A o A Adm .a.
SN Y Y Y VY m 4 m“; - 4 A o A Abe AL
NPT N Y LY WY W .m - -~ A A o A Adaaa.
- A ’.‘DD-.D.Pb m PN N WY Y Y e
e s & o A A aa, {8 m N . W Y Y WYYy
et A~ A AAa aaL 5 - e A o B ALAe aal
|
R S s 8 8 3
{ow) own o) oum

Aanitiae iod disba biadd b d :»r -:.—
faiutiac A e nian, ..—B.-.- ol :—.“
PORVRTVIUSEr N :!.i-;_ YR WYYIOWRTTY §

[P S I WY | .b,—...—.—.—
daatian by s s ki d al ..—:._
baaidise i chs aba biab i d sals ..:—._
Aciardang soch b abiem -.L»,..—.,k_. Aal ..:—.—
Aaimitisaichs e niad. b d iab ::—.—

Slecitiie i ds vasanddnd iali. —_—.—'
taietesn A e st il dnd Ak :—.“
@lbaiitninicds pabiand i d sl -—.—.

64
1.

saseitens iods seasiabd b bid iabedib
mlT.i.:.. oA e tad b d Al btd
m Aesnibsanccd s e bat b d Y TIN
@ ldniaitaan cda ..'-.I-..LA.P—L .br::-.

L e

Ly T Y | WORTTY
A rasbebe s adh »;.."-D).L..L._.L >)r..—=._

o

mf—a—-‘a‘:-:s-‘aca‘a«-

[ S Sy Y
Woelk-iog derived reflectivities
B e e e e e e e e

Y O N R YO o YV} sals . -_—.“

b aceibiae ook s sbia boan ok hs A iab ;—P— ternitiin i do uasat b b d iab itk

>

mf.—-a«g-s-a-z RSNy

g E

() owe

I
mixed delay_2 waveiet
maximum deiay wavelet

CTTE TR s T Yy

{ow) o towh o

Figure 4.11: A mixed delay wavelet,(—1.35+2)%(1+1.5z)%, and a p
sequence are convolved to give the synthetic trace to the right.

nly reflec-

rimaries o

)38, and pri

5z
ic trace to the right.

4

Well-log derived refiectivities

delay wavelet,(1 —1.35z)2(1+1
the synthet

The maximum

-
-

tivity sequence are convolved to give

Figure 4.12



BB

e (me)

B

minimum delay waveiet

81

B
. _ L —
> T —
i - F
' . >
? ; >
ol : w >
Hilbert transform waveist estimats Decanvoiution fiiter

Figure 4.13: The actual minimum delay wavelet (left) for this model, the Hilbert transform

minimum delay wavelet estimate (center) for this model and the deconvolution filter (right)

estimated from it.

1

g el

- g

o . b
: )

Wiensr-Lavinson wavelet estimate Osconvolution filter

Figure 4.14: The actual minimum delay wavelet (left) for this model, the Wiener-Levinson

minimum delay wavelet estimate (center) for this model and the deconvolution filter (right)

estimated from it.



82

4.2 Phase effects on resolving kernels

4.2.1 results: model 1

Figures 4.15 through 4.18 show the resolving kernel tests for the first model minimum
delay wavelet and its selected permutations. The minimum phase wavelet has the z-dipole
form (—1.1 + 2)?(1.75 + z)*® and the permutations considered are: (1 — 1.12)%(1.75 + 2)
(mixed delay), (—1.1+2)*(1+1.752)% (mixed delay), and (1 —1.12)?*(1+1.75z)*® (maximum
delay).

In Figure 4.15, a spiking deconvolution filter for the minimum delay wavelet is shown
along with the wavelet itself and the resulting resolving kernel. The convolution of the Wiener
deconvolution filter with the wavelet produces the resolving kernel shown in this figure. This
is a sharp resolving kernel with a narrow band-width. The optimal spiking position is at
25ms and there is insignificant energy in the tail of the kernel. If the dipoles for the 15t
term are interchanged, the end-loaded mixed delay wavelet shown in Figure 4.16 results.
The deconvolution, in this case, produces a resolving kernel which is almost identical to the
minimum phase situation with the exception being that now the optimal spiking position
is at 44ms. Similarly, in Figure 4.17, the second mixed delay wavelet (front-loaded) has a
sharp resolving kernel with narrow band-with and an optimum spiking position at 36ms.
Figure 4.18 shows the resolving kernel result for the maximum delay wavelet. In this case,
the kernel is sharp with a spiking position at 55ms but the kernel has a broader band-with
than the previous three images. The general observed trend is that as the phase delay of
the wavelet changes, so does the optimum spiking position. This is seen by comparing the

optimum spiking positions of the various resolving kernels. In other words, if the wavelet is



known, the Wiener deconvolution filter can produce an equally good resolving kernel.
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Figure 4.15: The model minimum delay wavelet, (—1.1 + z)?(1.75 + z)*, its deconvolution

filter, and its resolving kernel. The optimal spiking position is at 25ms.
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Figure 4.16: A mixed delay version of the model wavelet, (1 — 1.12)%(1.75 + z)3, its decon-

volution filter, and its resolving kernel. The optimal spiking position is at 44ms.
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Figure 4.18: The maximum delay version of the model wavelet, (1 — 1.1z)%(1 + 1.75z)%, its

deconvolution filter and its resolving kernel. The optimal spiking position is at 55ms.
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4.2.2 results: model 2

Figures 4.19 through 4.22 show the resolving kernel tests for the second model minimum
phase wavelet and its selected permutations. The minimum phase wavelet has the z-dipole
form (—1.35 + z)2(1.5 + z)™® and the permutations considered are: (1 — 1.35z)%(1.5 + z)38
(mixed delay), (—1.35+2)?(1+1.52)% (mixed delay), and (1—1.35z)?(1+1.5z)% (maximum
delay).

In Figure 4.19, a spiking deconvolution filter for the minimum delay wavelet is shown
along with the wavelet itself and the resulting resolving kernel. The convolution of the
Wiener deconvolution filter with the wavelet produces the resolving kernel shown in this
figure. This is a sharp resolving kernel with a narrow band-width. The optimal spiking
position is at 36ms and there is insignificant energy in the tail of the kernel. The front-
loaded mixed delay wavelet is shown in Figure 4.20 and the deconvolution. in this case,
produces a resolving kernel which is almost identical to the minimum phase situation with
the exception being that now the optimal spiking position is at 44ms. Notice that both of
the resolving kernels shown thus far have a broad band-width. In Figure 4.21, the second
mixed delay wavelet (end-loaded) has a sharp resolving kernel with slightly narrower band-
with and an optimum spiking position at 36ms. Figure 4.22 shows the resolving kernel result
for the maximum delay wavelet. In this case, the kernel is sharp with a spiking position at
44ms and the kernel has a narrow band-with.

With the wavelets used in this section, the trend hinted at earlier is again visible. As the
delay in the wavelet is changed from minimum, through mixed, to maximum, it is seen that

the optimum spiking position deviates to time positions equal to or later than the optimum
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position seen for the minimum delay case. In addition, as before, these results show that if
the wavelet is known, then the optimum Wiener-Levinson deconvolution filter will convolve
with the wavelet in question to create a sharp resolving kernel. The key question now
becomes the following: if the wavelet is not known and certain wavelet phase assumnptions

must be made in order to perform seismic deconvolution, how well will the deconvolved traces

estimate the earth’s reflectivity?
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Figure 4.20: A mixed delay version of the model wavelet, (1 — 1.35z)%(1.5 + z)%, its decon-

volution filter and its resolving kernel. The optimal spiking position is at 44ms.
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Figure 4.21: Another mixed delay version of the model wavelet, (—1.35 + 2)%(1 + 1.52)%, its

deconvolution filter, and its resolving kernel. The optimal spiking position is at 36rms.
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Figure 4.22: The maximum delay version of the model wavelet, (1 — 1.352)%(1 + 1.52)%, its

deconvolution filter and its resolving kernel. The optimal spiking position is at 44ms.
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4.3 The well-log phase assumption test

The next 8 images display the effect of the minimum phase assumption on the deconvo-
lution of the entire trace. For both models, each synthetic is created by the convolution of
a wavelet (minimum, mixed, or maximum delay) with the model reflectivity sequence. In
each of these models, the minimum delay trace is used to estimate minimum delay wavelets

by the Hilbert transform and Wiener-Levinson double inverse methods.

4.3.1 results: model 1

This section introduces the problems that often arise when using the minimum phase
assumption. Figures 4.23 through 4.26 illustrate just how problematic and damaging the
minimum phase assumption can be. Shown in Figure 4.23 is the actual reflectivity sequence
used in this analysis, the Hilbert transform deconvolution of the minimum delay trace, and
the Wiener-Levinson deconvolution of the minimum delay trace. Both of these reflectivity
estimates have a band-passed nature to them and suffer from significant amplitude attenua-
tion. Both also seem to have strong impulses for minor reflections but the major reflectivities
are absent. It also appears as if the Wiener-Levinson estimate suffers more from these short
comings than the Hilbert transform estimate. Similar results are seen in Figure 4.24 where
the results of a mixed delay trace deconvolution are presented. Present here are the same
short comings listed previous except that there seems to be significant phase mismatch.
Next (Figure 4.25) are the deconvolution results for the second mixed delay trace. These
reflectivity estimates cannot, not even in the broadest sense, be considered representitive

of the model reflectivity. This may be due to the fact that both assumptions (phase and
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randomness)about the wavelet are now being used in the deconvolution. The time delay is
particularly noticable. Finally, in Figure 4.26, there are the results of the deconvolutions for
the maximum delay trace. Here, the statistical reflectivity estimates are very time delayed,
have a significant band-passed nature, suffer from severe phase mismatches, and there is

major amplitude attenuation.
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4.3.2 results: model 2

Figures 4.27 through 4.30 tell the same story seen in model 1. Shown in Figure 4.27 is the
actual reflectivity sequence used in this analysis, the Hilbert transform deconvolution of the
minimum delay trace, and the Wiener-Levinson deconvolution of the minimum delay trace.
Both of these reflectivity estimates have a prominant band-passed nature to them, suffer
from significant amplitude attenuation, and are time delayed. Both also seem to have strong
impulses for minor reflections but the major reflectivities are absent. It also appears as if the
Wiener-Levinson estimate suffers more from these short comings than the Hilbert transform
estimate. Similar results are seen in Figure 4.28 where the results of a mixed delay trace
deconvolution are presented. Present here are the same short comings listed previous except
that there seems to be phase mismatch. Next (Figure 4.29) are the deconvolution results
for the second mixed delay trace. These reflectivity estimates are not representitive of the
model reflectivity. The time delay is particularly noticable but these estimates do not suffer
from as much band-passing or amplitude attenuation. Finally, in Figure 4.30, there are the
results of the deconvolutions for the maximum delay trace. Here, the statistical reflectivity
estimates are very time delayed. However, the trace deconvolutions have better amplitude

content than the first two of this subsection.
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4.4 The phase assumption test

The final two subsections illustrate a set of results using the proposed test for phase
discussed earlier. Both model 1 and model 2 use the synthetic traces to statistically estimate
Wiener-Levinson deconvolution filters. These filters, computed using the minimum phase
assumption, are then convolved with the actual wavelets to generate resolving kernels. The
similarity to an ideal spike will give a measure of how well or how poor the minimum phase

assumption is working.

4.4.1 results: model 1

Given the rather poor preformance of the statistical methods in trace deconvolution
section, another approach is taken. As described above, the model synthetic traces are used
with the minimum phase assumption to spike the wavelets used in this model. That is.
the synthetic traces generate the statistically estimated minimum phase filter that convolves
with the actual wavelets to give a good resolving kernel where the major peak greatly dwarfs
the residual peaks in the kernel. The intrigue in Figure 4.32 and Figure 4.33 comes from
the mixed phase nature of the actual wavelets. Figure 4.32 shows a model mixed phase
wavelet that is similar to the maximum delay wavelet (see Figure 4.34), except that the
mixed delay wavelet is not as time delayed as the maximum delay wavelet. The mixed delay
wavelet spikes at 39ms, while the maximum delay wavelet spikes at 49ms. Its resolving
kernel is a version of the kernel for the maximum delay wavelet except at an earlier time.
The same holds when considering the mixed delay wavelet in Figure 4.33 and the minimum

delay wavelet (see Figure 4.31). This mixed delay wavelet has a close resemblance to the
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minimum delay wavelet and its resolving kernel is that of the minimum delay wavelet but it

spikes at 22ms instead of 11ms.
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Figure 4.31: The actual minimum phase wavelet used to create the previously shown syn-
thetic is convolved with the deconvolution filter, estimated from the synthetic trace, to give
the resolving kernel to the right.
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Figure 4.32: The actual mixed phase wavelet used to create the previously shown synthetic
is convolved with the deconvolution filter, estimated from the synthetic trace, to give the
resolving kernel to the right.
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Deconvolutian fiiter

Figure 4.33: The actual mixed phase wavelet used to create the previously shown synthetic
is convolved with the deconvolution filter, estimated from the synthetic trace, to give the

resolving kernel to the right.

Mmdimum delsy phase test

Figure 4.34: The actual maximum phase wavelet used to create the previously shown syn-
thetic is convolved with the deconvolution filter to give the resolving kernel to the right.
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4.4.2 results: model 2

The pattern identified with the previous model also reappears in these result. Again
it is seen that one mixed delay wavelet follows the patterns of the minimum delay wavelet
while the other mimics the maximum delay wavelet’s behavior. The general trend being
seen with these two simple models is that even if the wavelet is not minimum phase the
deconvolution filter based on the minimum phase assumption will effectively convert the
mixed delay wavelet to a spike.

The intrigue seen in the previous subsection is seen again here. Figure 4.36 shows a
model mixed phase wavelet that is similar to the minimum delay wavelet (see Figure .35),
except that it is more time delayed. The mixed delay wavelet spikes at 23ms, while the
minimum delay wavelet spikes at 14ms. Its resolving kernel is a version of the kernel for the
minimum delay wavelet except at a later time. The same holds when considering the mixed
delay wavelet in Figure 4.37 and the maximum delay wavelet (see Figure 4.38). This mixed
delay wavelet has a close resemblance to the maximum delay wavelet and its resolving kernel

is that of the maximum delay wavelet but it spikes at 35ms instead of 36ms.
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Figure 4.35: The actual minimum phase wavelet used to create the previously shown syn-
thetic is convolved with the deconvolution filter. estimated from the synthetic trace, to give
the resolving kernel to the right.
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Figure 4.36: The actual mixed phase wavelet used to create the previously shown synthetic
is convolved with the deconvolution filter, estimated from the synthetic trace, to give the
resolving kernel to the right.
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Figure 4.37: The actual mixed phase wavelet used to create the previously shown synthetic
is convolved with the deconvolution filter, estimated from the synthetic trace, to give the
resolving kernel to the right.
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Figure 4.38: The actual maximum phase wavelet used to create the previously shown syn-
thetic is convolved with the deconvolution filter, estimated from the synthetic trace, to give
the resolving kernel to the right.



Chapter 5

Conclusions

The preceding results of Chapter 3 shed some light on the issue of the randomness of
the reflectivity sequence. Use of sonic and density logs to compute a reflectivity sequence
serves to locally measure the goodness of the statistical estimates and helps to test the
validity of the assumption. [n order to evaluate the effectiveness of the random reflectivity
assumption on deconvolution, a simple test is proposed based on the use of a sonic log.
Also investigated are the various resolving kernels. The closeness of the resolving kernel to
a spike is a measure of the deconvolution filter’s effectiveness. A further test is to apply
the estimated deconvolution filter to the trace and compare the deconvolved output to the
reflectivity sequence. With real data, we can compare the wavelet estimate obtained from
surface recorded data with waveforms obtained from in—situ VSP recordings. Through all of
the randomness investigations, it has become clear that the justification of the randomness
assumption is closely tied to the lithology of an area. That is to say, if the rock layering has
periodic properties, then its reflectivity sequence will not exhibit the required randomness

property. Should reflectivity randomness be an inadequate assumption, then the processing

104
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flow will need to resort to alternate methods or, in fact, to physical measurements of the
source signature.

From the investigations of Chapter 4, it is clear the minimum phase assumption is far more
critical in determining the success or failure of statistical deconvolution methods. Proper
investigation of the minimum phase assumption must be done in a synthetic framework
because a knowledge of how the wavelet phase differs from minimum phase is required to
know how these phase differences affect statistical deconvolution. The complete picture
involves investigating resolving kernels and trace deconvolutions. It is evident that if there
is a priort knowledge of the wavelet, then the statistical methods used in this thesis will
consistently produce a well-defined, sharp, resolving kernel. Also seen from the study is
that statistically estimating minimum phase wavelets from input traces and then using these
wavelets to deconvolve the trace is a disastrous path to follow. Far better results are seen
when the statistical deconvolution filters are estimated from the trace themselves. This is
seen by convolving the filter estimated from the trace with the actual wavelet used to create
the trace. For the situations considered in this thesis, the previous process creates good
resolving kernels and, therefore, it can be concluded that the filters will effectively spike the
embedded wavelet.

As a whole, for the Alberta data examined in this thesis, it is seen that the problems
of wavelet phase and wavelet non-stationarity beset the statistical deconvolution problem
far more than the random reflectivity assumption. To assess the usefulness of statistical
deconvolution as a processing tool, use the proposed tests along with the best interpretive

Jjudgment available.
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